AUTOMORPHISM GROUP AND SUBFIELDS OF THE
GENERALIZED GIULIETTI-KORCHMAROS FUNCTION FIELD

by
MEHMET OZDEMIR

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Sabanci University

Spring 2011



AUTOMORPHISM GROUP AND SUBFIELDS OF THE GENERALIZED
GIULIETTI-KORCHMAROS FUNCTION FIELD

APPROVED BY

Assoc. Prof. Dr. Cem Giineri

(Thesis Supervisor)

Prof. Dr. Henning Stichtenoth  ......... @'\’Q ......................

(Thesis Coadvisor)

Prof. Dr. Alev Topuzoglu [}]ﬂ/—\

Assoc. Prof. Dr. Erkay Savasg

Prof. Dr. Ismail Suayip Giiloglu




©Mehmet Ozdemir 2011
All Rights Reserved



AUTOMORPHISM GROUP AND SUBFIELDS OF THE GENERALIZED
GIULIETTI-KORCHMAROS FUNCTION FIELD

Mehmet Ozdemir
Mathematics, Doctor of Philosophy Thesis, 2011
Thesis Supervisor: Assoc. Prof. Dr. Cem Giineri

Thesis Coadvisor: Prof. Dr. Henning Stichtenoth

Keywords: function fields, maximal curves, Weierstrass points, automorphism

groups, subfields.

Abstract

A function field over a finite field which has the largest possible number of ratio-
nal places, with respect to Hasse-Weil bound, is called maximal. The most important
example of a maximal function field is the Hermitian function field H. It has the
largest possible genus among maximal function fields defined over the same finite
field, and it is the unique function field with this genus, up to isomorphism. More-
over, it has a very large automorphism group. Until recently there was no known
maximal function field which is not a subfield of H. In 2009, Giulietti and Korch-
maros constructed the first example of a maximal function field over the finite field
Fgs, where ¢ is a prime power, which is not subfield of H over the same finite field.
They also determined the automorphism group of this example. Later, a general-
ization of Giulietti and Korchmaros construction to [F2n for any odd number n > 3

was given by Garcia, Giineri and Stichtenoth and was shown to be maximal.

In this thesis, we determine the automorphism group of the generalized Giulietti-
Korchméros function field. Moreover, some subfields of the generalized Giulietti-

Korchmaros function field and their genera are also determined.
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GENELLESTIRILMIS GIULIETTI- KORCHMAROS FONKSIYON CISMININ
OTOMORFIZMA GRUBU VE ALTCISIMLERI

Mehmet Ozdemir
Matematik, Doktora Tezi, 2011
Tez Danmigmani: Do¢. Dr. Cem Giineri

Tez Es Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: fonksiyon cisimleri, maksimal egriler, Weierstrass noktalari,

otomorfizma grubu, altcisimler.

Ozet

Sonlu cisim {izerinde tanimli ve Hasse-Weil sinirina gore olasi en biiyiik sayida
rasyonel yer sayisina sahip fonksiyon cismine maksimal denir. En énemli maksimal
fonksiyon cismi 6rnegi Hermitian fonksiyon cismi ‘H’dir. H, ayn1i sonlu cisim iiz-
erinde tanimli maksimal fonksiyon cisimleri arasinda en biiyiik cinse sahiptir, ve bu
cinse sahip, izomorfizma denkligine gore, tek maksimal fonksiyon cismidir. Ayrica
oldukca biiyiik bir otomorfizma grubuna sahiptir. Cok yakin zamana kadar H’in
altcismi olmayan bir maksimal fonksiyon cismi 6rnegi bulunamamigtir. 2009 yilinda
Giulietti ve Korchméros IF s sonlu cismi iistiinde, ¢ bir asal say1 kuvveti olmak iizere,
ve ayni sonlu cisim iizerinde tanimh Hermitian fonksiyon cisminin altcismi olmayan
ilk maksimal fonksiyon cismi 6rnegini insa ettiler. Ayrica bu fonksiyon cisminin oto-
morfizma grubunu da buldular. Daha sonra Garcia, Giineri ve Stichtenoth, Giulietti-
Korchméaros fonksiyon cisminin herhangi bir tek tam say1 n > 3 igin F2n iizerinde
tanimh genellemesini buldular ve genellegtirilmis Giulietti-Korchméaros fonksiyon cis-

minin de maksimal oldugunu gosterdiler.

Bu tezde genellegtirilmig Giulietti-Korchmaros fonksiyon cisminin otomorfizma
grubu tarif edilmistir. Ayrica, bu cismin bazi alt cisimleri ve bu alt cisimlerin cinsleri

de bulunmustur.
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CHAPTER 1

INTRODUCTION

In this chapter, we will recall some of the basic concepts and facts about algebraic
function fields over finite fields that will be used in later sections. We will also
review earlier works on maximal function fields which are relevant to this thesis.
Our preference will be the language of function fields although the notion of curve
and relevant geometric terminology will also be used sometimes. Since the theory
of function fields and curves are essentially equivalent, this should not cause any

confusion.

1.1 Basics

Let F/K be an algebraic function field of genus g and D be a divisor of F. The

Riemann-Roch space associated with D is defined as
L(D)={xe F|(x)>-D}uU{0}. (1.1)

We denote the dimension of £(D) by ¢(D). This dimension can be computed via
Riemann-Roch theorem [13, Theorem 1.5.15] which states that

(D) =degD+1—g+ (W — D), (1.2)

where W is a canonical divisor of F'.

For any place P of F' the integer n is called a pole number of P if there exists
an element x € F with (z),, = nP, where (x), denotes the pole divisor of z. Oth-

erwise, n is called a gap number of P. It is immediately seen from the definition of

L-space that n is a gap number for P if and only if L(nP) = L((n — 1)P). The



set of pole numbers of P is a semigroup, and there are exactly g gap numbers for a

rational place P of F' [13, Theorem 1.6.8].

The sequence of gap numbers at a rational place P is called the gap sequence
at P. All but finitely many rational places of a function field have the same gap
sequence. Such places are called ordinary places of F//K. A non-ordinary place is
called a Weierstrass point. If g > 2 and K is algebraically closed then a function
field F' has a Weierstrass point |9, Corollary 7.57, Theorem 7.103].

Let F'/K’ be another function field of genus ¢’ such that F' O F and K’ D K.
Assume further that F’/F is a finite separable extension. Then, Hurwitz Genus
Formula [13, Theorem 3.4.13] yields

2 —2 = [[g ‘ ?] (2g — 2) + deg Dif f(F'/F), (1.3)

where Dif f(F'/F) is the different divisor of F'/F defined by

Dif f(F'/F)=Y_> d(P|P)F (1.4)

PePr p'|p

Here d(P'|P) stands for the different exponent of P" over P. Later, we will see that
there is a useful way of calculating d(P'|P) in finite Galois function field extensions.
We will now recall some properties of Galois extensions of function fields (i.e. F'/F
is a finite Galois extension). Throughout, vp denotes the discrete valuation of F//K

associated with the place P.

Lemma 1.1.1. [13, Lemma 3.5.2, Theorem 8.7.1] Let F'/F be an algebraic exten-
sion of function fields, P € P, P' € P with P'|P. For an automorphism o of
F'/F, the set o(P') = {o(x) | z € P'} is a place of F'. Moreover, we have

(a) vypry(x) = vpr (07 () for any x € F.

(b) o(P") lies over P. Hence, Aut(F'/F) acts on the set of places of F' lying over
P.

(c) e(a(P")|P) = e(P'|P) and f(o(P")|P) = f(P'|P), where e(P'|P) and f(P'|P)

stand for ramification index and relative degree of P’ over P, respectively.



(d) If we further assume that F'/F is Galois, then Aut(F'/F') acts transitively on
the set of places of F' lying over P(i.e. for any Py and Py above P there ezists
o € Aut(F'/F) such that o(Py) = Ps.

We will now recall properties of some special types of Galois extensions, namely

Kummer extensions and Artin-Schreier extensions.

Proposition 1.1.1. [13, Proposition 3.7.3] Let F/K be an algebraic function field
with K containing all n-th roots of unity, where n > 1 s relatively prime to the

characteristic of K. If u € F' is an element that satisfies
uw#w'  forallw e F andd|n, d>1, (1.5)

then the extension F(y)/F with y" = u is called a Kummer extension of F. We

have:

a) The polynomial ¢(t) = t" — w is the minimal polynomial of y over F. The
extension F(y)/F is Galois of degree n. Its Galois group is cyclic, and the
automorphisms of F(y)/F are given by o(y) = Cy, where ( is an n-th root of
unity i K.

b) Let P € Pr and P' € Pr(, with P'|P. Then

e(P'|P) = % and d(P'|P) = — —1, (1.6)

rp

where rp = ged(n, vp(u)).

Proposition 1.1.2. [13, Proposition 3.7.8] For an algebraic function field F/K of

characteristic p > 0, suppose that u € F' is an element which satisfies the condition
u#wl —w forall weF. (1.7)

The extension F(y)/F with y?» —y = u is called an Artin-Schreier extension of F.
For P € Pr we define the integer mp by

m if there exists z € F satisfying vp(u — (2 — z)) = —m < 0 and pfm
mp =
—1 ifvp(u— (2" —2)) > 0 for some z € F.

Then we have:



(a) F(y)/F is a Galois extension of degree p with cyclic Galois group. The auto-
morphisms of F(y)/F are given by o(y) =y + v, where v =0,1,...,p — 1.

(b) P is unramified in F(y)/F if and only if mp = —1.

(c) P is totally ramified in F(y)/F if and only if mp > 0. In this case, the

different exponent d(P'|P) is given by
d(P'|P) = (p—1)(mp+1). (1.8)

For a Galois extension of function fields I /F with Galois group G = Gal(F'/F),
the i-th ramification group of P'|P for i > —1 is defined as

Gi(P'|P):={0€G|vp(o(z)—2)>i+1 forall zecOp}. (1.9)

For simplicity, we will write G;(P") instead of G;(P'|P). G_1(P') and Go(P') are
special subgroups of Gal(F'/F) and they are also denoted by Gz(P") and Gp(P'),

respectively. It is easy to see that

/

Gz(P) = {0 € Gal(F'JF)|o(P) =P} (1.10)

Gz(P') and Gp(P") are called decomposition and inertia groups of P' over P, respec-
tively. The inertia group Gp(P') is a normal subgroup of Gz(P"), and the orders of

these groups are

IG5 (P)| =e(P'|P)- f(P'|P), |Gr(P)|=e(P|P) |13, Theorem 3.8.2]. (1.11)
The following proposition gives more information about higher ramification groups.

Proposition 1.1.3. /13, Proposition 3.8.5] Let G; be the i-th ramification group of
P’ over P. We have:

a) G.12Gy 2D ... 2G; DG 2 ... and Gy, = {id} for m sufficiently large.
b) Let 0 € Gy, i > 0 and let t be a P'-prime element. Then

g€ G <= vp(o(t)—t)>i+ 1. (1.12)



¢) If charF = p > 0 then Gy is a normal subgroup of Go. The order of Gy is a
power of p, and the factor group Go/G1 is cyclic of order relatively prime to

p.

The following useful theorem is known as Hilbert’s Different Formula. It relates

the different exponent d(P’|P) and the ramification groups G;(P").

Theorem 1.1.1. /13, Theorem 3.8.7]) Let F'/F be a Galois extension of function
fields and P’ € P be a place lying over P € Pr. Then

(i)

o0

A(P'|P) = 3 (IGA(F)| - 1. (1.13)

i=0
(ii) If P'|P is totally ramified (i.c., Gal(F'|F) = Go(P'|P)) and t € F' is a prime

element of P, then

dP'|Py= " Y wvp(o(t)—t). (1.14)

id#o€Gal(F' | F)

1.2 Maximal Function Fields and Automorphism Groups

of Function Fields

Let F'//K be an algebraic function field of genus g with constant field K, where
K is a finite field. Let N(F) denote the number of rational places of F. By the
Hasse-Weil theorem [13, Theorem 5.2.3], this number is bounded by

IN(F) = (IK[+1)] < 2V/|K]g. (1.15)

A function field is called mazimal if its number N (F') of rational places attains the

upper bound in the above inequality. If | K| is not square and F'/K is maximal then
we have

N(F) = |K| +1+2¢9\/|K] (1.16)

which implies that ¢ = 0. So, F'is a rational function field in this case. Hence, we

will always assume that | K| is square, i.e. K =F 2 for some prime power ¢. Hence,

F/K is maximal if and only if

N(F)=¢*+1+2¢q. (1.17)



Remark 1.2.1. Let F' be a maximal function field over F and F, = FF;r be a
constant field extension of F'/F ;. for an odd integer r. Then, F, is also a maximal

function field over Fer.

Example 1.2.1. The most well-known example of a maximal function field is the

Hermitian function field H = F2(x,y) which is defined by
x4 x =yt (1.18)

H can be considered as a Kummer extension of F(z) of degree ¢ + 1. There are
¢* + 1 degree one places of F2(z), namely the unique pole (z = 00) of 2 and places
(x = a) for a € F2. We have r,_) = ged(g + 1, —¢) = 1 which by, Proposition
1.1.1, implies

e(Rucl (= 00)) =g+ 1 d(Ruol(z = 00)) = g. (1.19)

where R, is the unique degree one place of H lying above (x = oco). We also have

Fa=a) = gcd(q +1,1) = 1 where (z = a) € Pp ,() with a?+ a = 0. This gives
e(Rul(z =a)) =q+1 d(Rw|(z=a))=q, (1.20)

where R, is the unique degree one place of H lying above (z = a). The places
(r=a)€ IP’]FqZ(x) with a? — a = 0 and a? + a # 0 split into ¢ + 1 degree one places
Ry with a? + a = 09 in ‘H by Kummer’s theorem (see [13, Corollary 3.3.8|). This
shows that N(H) = (¢* — q)(¢+ 1) + ¢+ 1 = ¢* + 1. Any place P of Fp2(z) which
is not rational is unramified as rp = ged(q + 1, vp(29 + x)) = ged(¢ + 1,0) =g+ 1
which implies d(R|P) = 0 for R|P. Now we can calculate the genus g(H) of H by

Hurwitz genus formula. We have
29(H)—2=-2(q+1)+q-q+q, (1.21)

hence, g(H) = (]((;2__1)' As @ +1=¢*>+1+29(H)q, H is a maximal function field

over [Fpo.

Remark 1.2.2. Let H, = HF;» be a constant field extension of H with r an odd
positive integer. Then H, is also maximal by Remark 1.2.1. Note that a rational

place in H is unramified in H,./H and there exists a unique rational place in H, lying



over it [13, Lemma 5.1.9]. For the places Rq, of H, lying above (z = a) € Py ,, ()

with a € Fpr \ Fj2, we have
Tw=a) =q¢+1 e(Rpl(x=a)) =1, (1.22)

where a?+a = b, Hence such a place Ry, is a rational place of H,.. Therefore, the
rational places of H, apart from R, with a € F2 and R lie above some rational
place (z = a) with a € F2r \ F 2, and these places split completely in H,. Note that
not all places (z = a) with a € Fper \ Fjp2 split in H, . This can easily be seen by
comparing N(H,) = ¢*" +1+q(q—1)q" (since H, is maximal) and the number that
is obtained if each (z = a) with a € F2r \ F 2 splits completely.

Theorem 1.2.1. (lhara) [13, Proposition 5.3.3] If F/Fp is a mazimal function

field, then
(g —1)

9(F) = =

(1.23)

So, ‘H has the maximum possible genus among all maximal function fields over
Fp2. In fact, it is the unique maximal function field, up to isomorphism, with this

genus [12].

Finding new maximal function fields with different genera has been of significance

for a long time. One of the main problems is to describe the following set:

M(q*) = {g > 0] there exist a maximal function field F//F, with genus g}.
(1.24)
By Theorem 1.2.1, the largest number in this set is @, which comes from the

Hermitian function field. The following result is due to Serre.

Theorem 1.2.2. [10, Proposition 6] Let F/K be an algebraic function field which

1s maximal. Then, any subfield E of F with K ; E s also mazximal.

Serre’s result can be used to obtain new maximal function fields from old ones
by considering the automorphism group Aut(F/K) of the maximal function field
F and then finding fixed fields of some subgroups of Aut(F/K) inside F. The
automorphism group of a function field F/K is the set

Aut(F/K) = {0 € Aut(F) | o(k) =k for all k € K. (1.25)

7



If K is a finite field then Aut(F/K) is a finite group. In characteristic 0, the

cardinality of the automorphism group is bounded by Hurwitz Bound
Aut(F/K) < 84(g(F) — 1) |9, Theorem 11.56]. (1.26)

In prime characteristic, however, automorphism groups can be much larger (see [9,
Theorem 11.127]). The Hermitian function field is also interesting in this respect
since it has a large automorphism group. Let us now describe it.

Automorphism Group of Hermitian Function Field: Let H be the Hermi-
tian function field over F 2. The automorphism group of H, which will be denoted
by A, is

A={oecAut(H) | o(a) =a for all a € Fp}. (1.27)

The group A is known [14, 15|, and it is described as follows. Let R, be the unique

common pole of z and y in H. Then, the group

consists of the following set of automorphisms (cf. |7, Eqn. (2.2)]):

o(y) =ay+b o(r)=a 'z +ably +c (1.29)
a€Fyn beFe, c+c= patt

Clearly, |A(Rs)| = ¢*(¢* — 1). Note that A(R.) is the decomposition group of
R in the extension H/F#, where F4 is the fixed field of A. There is an another

automorphism w of H which is an involution (cf. |7, Eqn. (2.7)]):
wiy) =7 we)= (1.30)
The automorphism group A of H is generated by w and A(R«), i.e.
A=< A(Rx),w > . (1.31)

A is isomorphic to PGU (3, ¢?), and its order is ¢*(¢> —1)(¢> +1). Clearly, this order
violates the Hurwitz Bound (1.26).



Remark 1.2.3. Let H = HFQQ be a constant field extension of H, where an is the

algebraic closure of F 2. Let A be the automorphism group of H, ie.
A= {o€ Aut(H) | o(a) = a for all a € Fp}. (1.32)

Then, each automorphism in the automorphism group A of H induces an auto-
morphism in A, and likewise any automorphism in the group A(R.) gives us an
automorphism in A(Ry) (cf. Eqn. (1.28)), where R, € P is the unique place
lying above R.,. By [15, Theorem 7|, we further have

Al = (@ -1+ 1), (1.33)

¢*(¢* — 1), (1.34)

=
=

8
I

which are the orders of A and A(R.) respectively. Therefore, a constant field

extension of H has the same automorphism group as H.

The subgroups of A were extensively investigated, and a large class of the sub-
fields of the Hermitian function field is known and described in [2] and [7]. By Serre’s

result, these are also maximal over F 2 and hence yield members for the set M (¢?).

For a long time, all known examples of maximal function fields were shown to be
subfields of H. In the next section, we will present the first example of a maximal

function field which is not a subfield of the Hermitian function field.

1.3 GK and Generalized GK Function Field

Let ¢ be a prime power and consider the function field £ = F6(x, y, z) over F 6 with

defining equations

7+ x =yt (1.35)
q3
g’ —y = 2T (1.36)

E was introduced by Giulietti and Korchmaros [8], and therefore will be called the
GK function field.

Theorem 1.3.1. [8] The GK function field E is mazimal over Fy with

(¢° + 1)(¢* - 2)
2

g(E) = +1 NE)=¢-¢+¢+1. (1.37)



GK function field was later generalized by Garcia, Giineri and Stichtenoth to a
family of function fields C,, over F 2. for any odd integer n > 3 as follows [5]:
Generalized GK Function Field: Let n > 3 be an odd integer, and consider the

function field C,, over Fp2n defined by the following equations:

r? 4+ =it (1.38)
g —y =z (1.39)

Theorem 1.3.2. [5]/ C, is a mazimal function field over Fpan for any odd integer

n > 3 with

(¢g— D" +¢" —¢*)
5 .

Remark 1.3.1. (i) C, coincides with the GK function field for n = 3.

INC) =" ="+ ¢ +1 g(Ca) = (1.40)

(i) If ¢ = 2, the GK function field is a subfield of the Hermitian function field
over Fgs [8, page 235]. For ¢ > 2, the GK function field C3 is not a subfield of the
Hermitian function field over Fys [8, Theorem 5|. However, for n > 3 it is not known

yet whether C, is a subfield of the Hermitian function field, which is defined by
29" = yr (1.41)

over [Fgon.
(7ii) Recently, Duursma and Mak [3| showed that C, is not a Galois subfield of the
Hermitian function field, i.e. for n > 3 there is no embedding of C,, over F . into

H such that H/C, is Galois.

We will now describe the rational places of C, [5]. We henceforth assume that
K =TFpn. The pole (z = 00) of z in K(x) is totally ramified in C,,/K(z), we denote
the unique place of C, above (r = 00) as P,. Observe that P, is also totally
ramified over K (y) and over K(z), i.e. Py is the unique pole of z,y and z. Any
degree one place of C,, apart from P, lies over the places (z = a) in K(z), (y = b)

in K(y), (z=c)in K(z), where a,b,c € K satisfy

al +a = bt (1.42)
b — b= (1.43)

We will denote this place by P,.. The diagrams in Figures 1.1, 1.2, 1.3, 1.4 and 1.5

will be useful to visualize the rational places of C,, with their ramification indices.

10



Cn = K(x,y,2)

/

H=K(z,y) Xn:K(y,z)
K(x) K(y) K(z
Figure 1.1: Field extensions and extension degrees, m = ;:“11.

/\
%ﬂ\/\

Figure 1.2: Places at oo with ramification indices, m = qull.

AN
AN AN

(y=10) (z=0)

Figure 1.3: Places Py, with a?4+a =0, m = q;:’ll.
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AN
AN AN

(y=10) z=0)

Figure 1.4: Places Py, with e’ —a=0and a? +a #0,m= q;:ll.

2N
AN AN

(y =0) (z=rc¢)

Figure 1.5: Places Py, with a?’ —a £ 0.
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In these diagrams, H denotes the constant field extension of the Hermitian func-
tion field over F2 to the field K. Since n is odd, it is also maximal (cf. Remark
1.2.1). A, is defined by the equation (1.39). Its maximality was proved by Abdon,
Bezerra and Quoos in [1]. As it is shown in the diagram of poles, poles of = in
K(z), y in K(y) and z in K(z) are denoted by (z = o0), (y = o0) and (z = 00),
respectively. The common pole of y and z in K(z,y) is Ty, and the common pole
of x and y in K(z,y) is Rw. We will now explain how the information in these

diagrams can be deduced.

We will also denote the degree one places of K (z,y) and K (y, z) lying below Py
as Ry ,The, respectively. The degree one places of K(z), K(y) and K(z) lying below
Py are (z = a), (y = b) and (z = ¢), respectively. From the defining equations

(1.38) and (1.39), we can deduce

n
1 +1 q+1

(" — )
— yq+1((yq+1)q71 o 1>q+1
_ ((L’q—l—l‘) ((l‘q—l—l’)Q_l)

i+ x
quz o q+1
- (1:114—:5) (2% +2).
So, we reach the following equation:

qu o q+1
20 = ( ) (x4 x). (1.44)

9+ x

i+

n 112_ q+1 . . .
The polynomial f(T) =T — (u) (9 +x) is irreducible over K (x). Hence
Cn = K(z,2), and it is a Kummer extension of K(z) of degree ¢" + 1. With the

notation in Proposition 1.1.1, we have

qz q+1
n rt —x
T(x=c0) — ng q + 17 V(z=00) ( 21+ 1 > (‘rq + SL’)

= ged(¢"+1,—¢*) = 1.

Therefore, e(Py|(z = 00)) = ¢" + 1.
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aeK,a —a=0,a"+a#0:

qu o q+1
Fa=a) = ged | ¢"+1,0p=0) ( 2+ ) (27 + )

= ged(¢"+1,g+1)=q+ 1.

Therefore, e(Pyo|(x = a)) = q;:ll-

aceK,a+a=0:

2 q+1
N ¢ —x
Te=a) = gcd | "+ 1,00 ( g ) (x4 x)

= ged(¢"+1,1) =1

Therefore, e(Puyo|(x = a)) = ¢" + 1.
aeK,a” —a0:

q2 q+1
N x4 —x
Ta=a) = 8cd | ¢" 4+ 1,0g=q) ( . ) (27 + x)

= gced(q" +1,0) =¢" + 1.

Therefore, e(Pye|(x = a)) = 1.
Combining these observations with the ramification structure in H/K(x) (cf. Ex-
ample 1.2.1 and Remark 1.2.2), we conclude that the place R., and the rational
places Ry, € Py with a” —a =0 (i.e. a € F,) are totally ramified in C,/H. The
other rational places in H split completely in the extension C,/H.

The extension C,/K(y) is Galois as the extensions H/K(y) and &,,/K(y) are
both Galois (Artin-Schreier and Kummer extensions, respectively). In the extension
X,/K(y) , we have

q" —|— 1 2
T(y=c0) = ged (q?’ U(y:oo)(yq - Z/)>

Il
(0}
Q.
VRS
')
3
+
—_
|
<
(Y]
~~
|
—_

Therefore, (Th|(y = 00)) = Lt
be K, b —b=0:

qn —|— 1 2
Ty=b) = ged (q—7 U(y:b)(yq - ?J))
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Therefore, e(Tyo|(y = b)) = q;:l.
be K, b7 —b#0:

q" + 1 2
T(y=b) = ged (q_i_—1>v(y=b)<yq _y))

"4+1

Therefore, e(Ty.|(y = b)) = 1.

In the extension C,/X,,, ramification occurs only at T, and it is a total ramifica-
tion. The other rational places of A, split completely in C,, (see |5, Theorem 2.6]).
Hence, in the extension C, /K (y) ramification occurs at the places Ppo with a € F e
and P.. The ramification indices are
(¢"+1)

q"+1
p e(Px|(y = o)) =¢q PR (1.45)

As far as the extension C,,/ K (z) is concerned, the extension &,,/ K (z) is an Artin-

e(Pan|(y = b)) =

Schreier extension. For L € Pg(.), we have

q"+1
mp, or #(z=00) and M=o o (1.46)

Therefore, the only ramified place in &, /K (2) is (2 = 00) € Pk, and it is totally
ramified (see [13, Proposition I11.7.10]). As mentioned above, there is only one
(total) ramification in C,/X,, at the place T, € Py, . Hence, the only ramified place
in C,,/K(z) is (z = 00), which is totally ramified.
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CHAPTER 2

THE AUTOMORPHISM GROUP OF THE
GENERALIZED GK FUNCTION FIELD

In this chapter, we will describe the automorphism group of C,, explicitly. For Cs, the
automorphism group was computed by Giuliettti and Korchmaros in [8]. Recall that
K stands for the finite field K = F2n, where n denotes an odd integer greater than
or equal to 3. Throughout, we will also denote C, and X,, by C and X, respectively,

for simplicity.

2.1 The Group G(Px)

Let G denote the automorphism group of C. In this section, we will determine the
subgroup
G(Pyx) ={0 € G| 0(Px) = Py}, (2.1)

where P, is the unique pole of x, y, z in Pc. Recall that A denotes the automorphism

group of the Hermitian function field, which is given in (1.31).

Theorem 2.1.1. Fvery automorphism o € A(Rw) of H can be extended to an

automorphism 6 € G(Py,) in exactly % ways, and the set
A(Rw) = {6 € G| 6] € A(Rx)} (2.2)

is a subgroup of G(Py) of order (1;—+11q3(q2 —1).
Proof. Recall that 0 € A(Rw) is of the form (cf. Eqn. 1.29)

oy)=ay+b o(z)=a"z+ably +c, (2.3)
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where a € IF;‘Q, beFp, c?+c=0b" We want to show that o can be extended to

an automorphism ¢ : C — C. We set

N . a"+1

6(z) =dz with d 1T =a, (2.4)
where d is an element in the algebraic closure of F.. Since a € F .2» we have

2 q

47T — (@)D () (2.5)

This implies that d € K. We now need show that ¢ preserves the equations (1.38)
and (1.39). As gy is an automorphism of H, & preserves (1.38). Regarding Eqn.
(1.39), we have

. 2 2 ., 41 q"+1

o(y" —y) = (ay +0)" —(ay +b) = aly” —y) =o(z ) = (dz) . (2.6)
Since we have d'#1 = a, Eqn. (2.6) turns into the original equation. Thus, ¢ is an
automorphism of C. Moreover, by Lemma 1.1.1 we have 6 € G(Py,) as Py is totally
ramified in C/H. Since |A(Rs)| = ¢*(¢*> — 1) and each automorphism in A(R,) can

be extended in qq"T’Lll different ways, the proof is finished. m

Our aim is to show that A(R.) = G(Ps). The following lemma will be impor-

tant for our proof.

Lemma 2.1.1. {1,y,...,y% '} is an integral basis of X /K (2) at the places L € Py
with L # (2 = o), and {1,x,...,x97'} is an integral basis of C/X at the places
T e Py withT # Tx.

Proof. Let P € Pc with P # Py, T € Py with P|T and L € Pg(.) with T'|L. Since

all places P # P, are unramified in the extension C/K(z) (cf. Section 1.3), we have

d(P|T) = d(T|L) = 0. (2.7)

n

Let f(t) =t —t — 2#1 be the minimal polynomial of y over K(z), and g(t) =

t4 4+t — 97! be the minimal polynomial of x over X. Then, we have
d(P|T) =vp(g (x)) =0 and d(T|L) =vr(f (y) =0. (2.8)

Hence by [13, Theorem 3.5.10|, we have that {1,y, ...,yqz’l} is an integral basis of
X /K(z) at the place L, and {1, z,...,27" '} is an integral basis of C/X at the place
T. ]
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Before passing to the next lemma, recall that the pole divisors of x, y and z in
C are as follows

q"+1
q+1

(2)oo = (" + 1) P, (Y)oo = (P, (2)oo = ¢*Pso. (2.9)

Proposition 2.1.1. For any m > 0, the set

. n 1
B = {arly]zk li(g" + 1)+ (q L q) + kq® < m with
q

0<i<q—-10<j<¢—1 and k>0} (2.10)

is a K-basis for L(mP,). Moreover, the elements in B have pairwise distinct pole

orders at P.

Proof. All the elements in £(mP,,) have either no pole or just a unique pole at P,

with pole order at most m. Let
Lo = | L(mPy) (2.11)
m>0
be the set of elements of C which do not have a pole outside P,,. Clearly,
Le= () Or= () ( [) O»r). (2.12)
PeP¢,P#Poo TePx ,T#Too P€ePe,P|T
For every T' € Py with T # Ty, one has
qg—1
(| Or=E 0 (2.13)
PePe,P|T =0

by [13, Corollary 3.3.5] and Lemma 2.1.1. Therefore,

q—1
N or=( () O (2.14)
PePe,P#Ps i=0 TEPx,T#Too
Likewise,
-1 A
ﬂ OT = ﬂ ( ﬂ OT) = ( ﬂ OL)y].
TEPx, T#T 5 LEP (), L#(z=00) TePx,T|L J=0  LePg(.,L#(z=00)

(2.15)

In the rational function field K(z), the intersection

N o (2.16)

LePy (), L#(z=00)
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is equal to the polynomial ring K|[z]. So, we have

g—1 ¢%—1 q—1 ¢%2—1
t= N 0=@BB( N o) -PBHY
PePc,P#Px i=0 j=0 LePg (., L#(2=00) i=0 j=0
(2.17)
Hence, every element w € £(mPx) can be written in the form
w = Z agrr'y’ 2", (2.18)

irjok
where a;; € K and 0 < i < ¢g—1,0 < j < ¢*—1, k > 0. It remains to
show that the elements of the form z'y/z* have pairwise distinct pole orders at
P... For this, we need to prove the following statement for any 4,4, k,4,j ,k with

0<i,i<qg—1,0<j,j <¢*—1andk,k >0:

e (@'Y 2N) Fop (Y 2N ) i (6,5 k) £ (5K (2.19)
Equivalently,
. q"+1 3 g+ 1 r3 . AR
i(q"+ 1)+ +k i (q"+ 1)+ +k if (2,7, k i,7,k).
(q )Jq+1q ¢ #iq )Jq+1q q (i, 5, k) # (0,5, k)
(2.20)
Assume that 0<i,i <g—1,0<7,j <q¢*—1, k, k' >0 and that
i(q" + 1) +jqn i 1q + k=14 (¢"+1) +j'qn * 1q + k¢ (2.21)
qg+1 qg+1
Eqn. (2.21) implies that i = 7' mod ¢ and hence i = i . Now, we have
.C]n +1 3 X C]n +1 13
+ kg = 1K, 9.22
Stk =i etk (2.22)
which yields
qn + 1 2 L qn + 1 I 9
——+t k¢ =) ——+kq". 2.23
Sy the =itk (2.23)
It follows from Eqn. (2.23) that
"+1 gt +1
jq + =7 ¢+ mod ¢°. (2.24)
q+1 qg+1

This implies that j = j mod ¢?, which means j = j'. Hence, we also have k = k. [

Corollary 2.1.1. For any n > 3, the pole numbers of Py, are

n

. g+ 1
i(g" +1) +
fir 0+t

q+kg i, 5,k €N with 0<i<q,0<j<q, kzo}.
(2.25)
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Corollary 2.1.2. (i) The set of elements {1, 2} forms a K-basis for L(¢*Px) for
n>5. Forn =3, {l,y,2} is a basis for L(¢*Px).
(i1) For n > 3, a K-basis for L (q HqP > is {1,y,2,...,2"} with

3 qn 1 3

(7ii) For n > 3, a K-basis for L((¢" + 1)Px) is {1, z, 2, ..., 2°,y,yz, ...,yz"} with

3<q”+1

S — <(r+1)q¢ and s¢®<q"+1<(s+1)¢" (2.27)

Proof. We will use Proposition 2.1.1.

(i) We want to find the elements z'y’2* such that i(¢"™ + 1) —l—jqq:llq +kqg® < ¢®. We
have i = 0. If k =0and n > 3 then j =0, and if £ = 0 and n = 3 then 7 = 0 or
j = 1. This gives the desired result.

(ii) For the inequality i(¢"™ + 1) + j<+t q+1 Lo+ kg® < “:11% we have again i = 0. If
j =1then £k =0, and if j = 0 then k£ can take the values 1,2, ...,r with r as in
Eqn. (2.26).

(iii) Regarding the inequality i(¢" + 1) + ]qq:llq +kq® < ¢"+1, we have i = 0 or
t=1. If : =1 then 7 and k are both zero. If i =0 then j=0o0rj=1 Ifj =0
then k can be 1,..., s, where s is as in Eqn. (2.27). If j = 1 then we have kq¢® < q:f

and hence k can be 1,2, ..r with r as in Eqn. (2.27).
O

Lemma 2.1.2. Let F/K be a function field. For P € Pr and 0 € Aut(F/K) with
o(P) = P, we have o(L(mP)) = L(mP) for any m > 0.

Proof. Since ¢ is an automorphism and o(P) = P, we clearly have o(Q) # P for
any place ) € P that is different from P. Therefore, for a € L(mP) we have

-m ,ifQ =P
0 ,if@#P.

Hence, o(a) € L(mP) which implies that o(L(mP)) C L(mP). Since o is a K-linear

volo(a)) = ve-1(q)(a) =

bijection, it preserves the dimension of £L(mP). Hence, o(L(mP)) = L(mP). O

The following theorem is the main result of this section.
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Theorem 2.1.2. For n > 3, the mapping

is an epimorphism and its kernel is Gal(C/H).

Proof. First, we will show that ¢ maps G(Px) to A(R). Any automorphism
6 € G(Px) maps the L spaces in Corollary 2.1.2 into themselves by Lemma 2.1.2.
So, 6(x) € L((¢"+1)Px), 6(y) € E(Q%POO) and 6(z) € L(¢*P,). Since a basis

for £(q*P4,) depends on the value of n (cf. Corollary 2.1.2), we have two cases:
Case 1 n > 5: By Corollary 2.1.2 and Lemma 2.1.2, any ¢ € G(Py) has to satisfy

6(z)=dz+e o(y) =ay+ P(z) (2.28)
o(z) = hx + apy + a1yz + ... + a,yz" + B(2), (2.29)

where a,d, e, h,ay,...,a, € K, and ¢>deg P(z) < q;r—ﬁl% ¢r < %, ¢®deg B(z) <
q" + 1.

Note that x,y, z and their images under ¢ must have the same pole orders at P...
Therefore, a,d and h must be different from 0. If we plug (2.28) and (2.29) in the
defining equations (1.38) and (1.39) of C, we obtain the following:

(dz + e)% = (ay)? — ay + P(2)* — P(2) (2.30)

(ha)?+ (agy)? ... + (a,yz") 1+ B(2)! +hx +agy + ... +a,yz" + B(2) = (ay+ P(z))*™!
(2.31)
Since ¢ is an automorphism of C, Eqns. (2.30) and (2.31) must yield the original
g
Eqns. (1.38) and (1.39) up to a nonzero factor in K. So, we compare these equations.
We first consider the term e(dz)qﬁiﬁlf1 on the left hand side of Eqn. (2.30). Since
Pdeg P(z) < € — 1 and ¢* £ — 1, it is impossible to get a term in z of

q+1 q+1

degree q;r_+11 — 1 on the right hand side of the equation. So, we have e = 0. If

P(2)” — P(z) # 0, then the right hand side of (2.30) contains z-terms which do
not exist on the left hand side. So, P(2)? — P(2) = 0 and hence P(z) = b € Fp.
Therefore,

" +1

(dz) 7 = (ay)” — ay, (2.32)
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which implies that dF =a? =a by Eqn. (1.39).

Regarding Eqn. (2.31), since there is no term in Eqn. (1.38) containing the terms

Y12 for 0 < i < r and iqg < q;r_+117 we have a; = ... = a, = 0. As Eqn. (1.38) does
not contain any term containing z and deg B(z) < %, B(z) must be a constant

polynomial i.e. B(z) = ¢ for some ¢ € K. Note, in particular, that 6(H) C ‘H and

hence |y is an automorphism of H. So, Eqn. (2.31) becomes
(ha)?+(agy)?+c+hr+agy+c = (ay+b)"™ = (ay) +(ay)b+ably+btt. (2.33)

This yields
A +c=b" h=h=a"" ay=ab (2.34)

Therefore, any 6 € G(Py,) is of the form
6(z)=dz o6(y)=ay+b (2.35)

6(z) = a’™ 'z + ably + ¢, (2.36)

n+1
where a € F7,, b € Fpe, ¢ + ¢ = b+ and d' 7T = a. So, we have 1(6) = |y =0 €

A(Ry) for n > 5.

Case 2 n = 3: We will use the same procedure. 6(y),d(x) are of the same form

as in Eqns. (2.28) and (2.29). For (z), we have

0(z) =dz4+uy+e with duee K,d#0. (2.37)

If we apply ¢ to Eqn. (1.39), we get

q"+1

(dz 4 uy +e) 71 = (ay)” —ay + P(2)" — P(z). (2.38)

q"41
q+1

If we consider the term (uy + e)(dz) " on the left hand side of (2.38), we see
that u = e = 0 and P(z) = b € Fp2. Then, we reduce to the case n > 5 and the
same argument can be given.

We have proved that ¢(6) € A(R«) for any n > 3. 1 is obviously a homomor-

phism, and it is onto by Theorem 2.1.1. The kernel of 1 consists of the extensions

of the identity automorphism of H, and these automorphisms are of the form
o(z) =dz with d'vt = 1. (2.39)
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The set such automorphisms form the Galois group of the Kummer extension C/H

by Proposition 1.1.1. This completes the proof. m

2.2 P_ is a Weierstrass Point of C

In this section, we will show that P, is a Weierstrass point of C. We will also
describe the places which have the same pole numbers as P,,. We start with the

following Lemma.

Lemma 2.2.1. The extension C/K(z) is Galois for any n > 3. The Galois group

of this extension consists of automorphisms of the form
oly)y=y+b ox)=zc+bly+c od(z) =z, (2.40)
where b € F 2 and ¢ + ¢ = bt

Proof. Tt is enough to check that ¢ preserves the defining equations (1.38) and (1.39)
of C. Note that ¢|y € A(Rw) by (1.29). Thus, ¢ preserves Eqn. (1.38). Regarding
Eqn. (1.39), we have

" +1 " +1

Gy —y) =+ )T —(y+b) =y’ —y=6(r ") =z L, (2.41)

So, ¢ is an automorphism of C. The number of such automorphisms is ¢>. As the
degree of the extension C/K(z) is also ¢®, C/K(z) is Galois, and its automorphisms
are described by (2.40). O

The following Lemma will be our main tool in determining the rational places

which have the same pole numbers as P...

Lemma 2.2.2. [15, Page 625] Let P be a rational place of C. Then, k is a gap
number for P if and only if there exists t € L(W) such that vp(t) = k—1, where W

18 a canonical divisor of C whose support does not contain P.
Now we need to have a canonical divisor.
Lemma 2.2.3. (2¢(C) — 2)Px is a canonical divisor of C.

Proof. We consider the extension C/K(z). By |13, Eqn. (4.37)|, the divisor of the
differential dz is

(d2) = —2(2)e0 + Dif f(C/K(2)). (2.42)
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Since (dz) is canonical divisor, we have deg(dz) = 2¢(C) — 2. We have observed in
Chapter 1 that P, is the only ramified place in C/K(z), and P is the only pole of
z. Therefore, the support of the divisor (dz) only contains the rational place P..

Hence, (dz) = (2¢9(C) — 2) Px. O

Remark 2.2.1. For 0 € Aut(F/K) and P € Pp, P and o(P) have the same pole
numbers and the same degrees. Motivated by this, we would like to determine the

rational places of C which have the same pole numbers as P...

Lemma 2.2.4. For n > 5, Py is the only degree one place of C with the pole

numbers given in (2.25).

Proof. Consider any rational place P, of C that is different from P,,. Our aim is to
show that ¢® is a gap number at P,,.. Since ¢* is a pole number at P, , our result

will follow.

Since (2g(C) — 2) Py, is a canonical divisor of C and P, is not in its support, it

is enough to find a function ¢t € L£((2¢(C) — 2)Ps,) such that vp, (t) = ¢> — 1 (cf.

abc

Lemma 2.2.2). We know by our analysis in Section 1.3 that P, is the only ramified
place in C/K(z). Hence,

V(2 = )77 = (¢ = De(Puel(z = ¢)) = ¢* - 1, (2.43)

where (z — ¢) € Pk is the place lying below Py.. It is clear that P, is the only

pole of (z — ¢)?*~! in C. Moreover,
vpo (2= 0771 = (¢" = De(Pal(z = ) = —(¢* = 1)¢” (2.44)
where (z = 00) € Pg(.) is the infinite place lying below P,. For n > 5, we have
*(¢°—1)<29(C) =2 = (g —1)(¢""" +¢" —2) -2 (2.45)
Hence (z — ¢)9’ "' € £((29(C) — 2)Ps) and the proof is finished. O

Now, for n = 3 we determine the rational places of C that have the same pole

numbers as P, . We will need the following Lemma.

Lemma 2.2.5. For n = 3, every automorphism of H can be extended to C.
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Proof. The automorphism group of H over K is generated by the group A(R,) and
the involution automorphism w given by (1.30) (cf. Remark 1.2.3). We know by
Theorem 2.1.1 that every automorphism o € A(R+) can be extended to C for any
n > 3. So, for n = 3 it is enough to show that the involution w can be extended
to an automorphism w of C. For n = 3, we can extract from the defining equations

(1.38) and (1.39) that

A=y =y
3 2
= (" -y —y)
_ (yq+1)q2 _ (yq+1)";+—+f — (yT)e 4yt
3
= (@ +2)" — (27 +2)F — (@7 + )7 + (29 + @)

Hence, we have C = K(z, z) with

g+1

O =0 g — (a4 ) T (2.46)
We define the map w which extends w by
(=) = - (247)
w(z) = —. :
x
It is easy to see that w preserves Eqn. (2.46):
3 3 a®+1 3 @+
20T g 4y 241\ Tzt x— (274 x) e 548
xq3+1 B xq3+1 - mq-l-l - xq3+1 ( ’ )
So, w is a automorphism of C with |y = w. n

Lemma 2.2.6. For n = 3, the set of degree one places which have the same pole
numbers as P 1s

S = {Puo | a € F2} U{Py}. (2.49)

Proof. Tt follows from the defining equations of C that the set of places of C lying
above (z = 0) € Px.) is {Pao | @ € F2} (see also Figures 1.3 and 1.4). Since the
extension C/K (z) is Galois (Lemma 2.2.1), these places have the same pole number

distribution (cf. Remark 2.2.1) for n > 3. Moreover, for n = 3 the elements z and 2
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are prime elements of Pyog and P, respectively. Since the involution automorphism
w of C take z to £, we have

W(Pogo) = Peo. (2.50)

Hence, by Remark 2.2.1, all the places in S have the same pole numbers for n = 3.
We want to show that no other rational place of C has the same pole numbers.

Now, consider the rational places P, with a € F 6\F,2. Note that all such places
are unramified over Fs(z), Fyo(y) and Fye(2) (cf. Figure 1.5). We set & = = — q,
y=y—band Z =z — c and rewrite Eqn. (1.39) as

41

(Z+o)T = (G +b)7" — (5 +D), (2.51)

3,1
where ¢'o71 = b7 — b. Observe that we have

3 3 3 3
(2+ c)qq%l1 =1+ (2 +e) = ST L sty E cquJrll, (2.52)

where Z-terms are ordered with respect to their degrees. So, we can rewrite Eqn.

2.51 as

B4 3
a

PR e 2 A P
zcatl T Y= —2

N L A A L (2.53)

341
We set t = scoit ! 4 y. Applying strict triangle inequality on the right side, we
conclude

VP, (1) = ¢ (2.54)
We can replace the term x¢ + x in (2.46) by y?™! to obtain
19 4= gy (2.55)
If we write the above equation in variables z, y, and Z, we obtain
~ 3 ~

(@ +a)” +(E+a)=(G+b)T T+ (2+)7 T, (2.56)

where a?’ 4+ a = b’ +! + ¢’+1. Hence, Eqn. (2.56) becomes

F—0Tg == 3T 4T g 4 s 4 L (2.57)

We set
u:=x -0y — "z (2.58)

26



We have vp, (u) = vp,, (=27 +b§%" +§7+ 27 429°+1) > ¢3 by triangle inequality.

Since u has unique pole at P, of order ¢* + 1 (cf. Eqn. (2.9)), we have
vp, (u)=¢ or wvp, (u)=q¢ +1. (2.59)
Note that u € L((29(C) — 2) Py,) since
vp (u) = —(¢* +1) > —¢° +2¢° — ¢* + 2.

Hence if vp, (u) = ¢* then ¢* + 1 is a gap number at Py, (¢f. Lemma 2.2.2).

abc

However ¢* + 1 is a pole number for P.,. Now suppose vp, (u) = ¢* + 1. We set

s = ut? 2R = (5 — Ty — cq32)(zc%*1 4 )72t a2, (2.60)

Note that vp_(s) = —(¢* —2¢ + 1)¢® — (¢* + 1)(q — 1) by strict triangle inequality.

Moreover, P, is the only pole of s. Since

—(¢*—2¢+1)¢*=(’+1)(q—1) = =(¢"—¢"+¢—1) > —(29(C)-2) = —(¢"—2¢*+¢°-2)

(2.61)
holds for any ¢ > 2, we have s € £(2¢(C) — 2)P.,). By (2.54), we have
Upue(s) = (®+1)+(¢" —2¢+1)g+ (¢ 2)
= 2 —2¢°+2¢—1
= 2’ —¢+q) -1
Hence, 2¢° — 2¢* + 2q is a gap number for P,,.. Since q;TJrllq = ¢ —¢®+qis apole
number at P,,, we conclude the proof. O

Automorphism Group of C: As before G denotes Aut(C/K). As seen in the
proof of Theorem 2.1.2, the subgroup G(Px) of G consists of automorphisms of the
form

o(x)=atr +ably+c o(y)=ay+b o(z)=dz, (2.62)

where a € )y, b € Fpe, cl4c = patt, AT = q. We also know, by Lemma 2.2.5, that
the elements in the automorphism group A =< A(R),w > of H can be extended
to C for n = 3. Let A denote the set of all these extensions. The following is our

main result.
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Theorem 2.2.1. (i) For n > 5, we have G = G(Px).
(ii) For n =3, we have G = A.

Proof. (i) By Remark 2.2.1 and Lemma 2.2.4, any automorphism ¢ € G must map

P, to itself. So, G = G(Px).

(ii) Consider the fixed fields of G and its subgroup Gal(C/K(z)) in C/K, which are
C% and K(z), respectively. Places Py € Pe (with a € F,2) lie over (z = 0) € Pgyy).
Moreover, The involution @ maps Py to Ps. Since C/CY is Galois, places in the
set S = {Puo | a € Fp2} U{Py} lie over some place ) € Pcc. Furthermore, there is

no other place in C which lie over ) by Lemma 2.2.6. Hence, we have
G| = |G(Po)l(¢* +1) = |A] (2.63)

This completes the proof.
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CHAPTER 3

SOME SUBFIELDS OF C

In this chapter, we will describe some subgroups of the automorphism group G of C
and find the genera of the fixed fields corresponding to these subgroups. For n > 5,
the automorphism group of C is exactly the group G(Px) by Theorem 2.2.1. So, we
will concentrate on the subgroups of G(Px). Note that a large class of subfields of

C for n = 3 was found in [4].

3.1 Preliminaries

Let U be a subgroup of G(Ps), and CY the fixed field corresponding to U. In
this section, we will describe the computation of the genus of CV. We start with
investigating the different exponents and ramification indices of the places in the

extension C/C%=). Consider, as before, the following set of places in Pe:

S={Puwo|aecFp}U{Ps}. (3.1)
For the element
an73 3 2
t= .
—, (32)
we have
vp(t) = —¢"°¢ — (—¢"—1) =1 (3.3)

by (2.9). Thus, ¢ is a prime element for P,,. If @) is the place lying below P, then
by Theorem 1.1.1, we have

d(P|Q) = > wvp (o(t)—1). (3.4)

id£o€G
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For the summands, we have

vp (U(lf) _ t) - < (dz)q - 4" )

atlz +ably+c¢  x

20 (d  — att e — ably — c)
= v
Foe z(a® 1tz + ably + c)

n—3

= up (27) Fop (A 'z — a® 'z — ably — ¢) — vp (2)
—vp, (a4 ably + ¢)
= —¢"+op (A" z —a™ 'z —aby — o) + (¢" + 1) + (¢" + 1),
where a € Fl,, b € Fpe, ¢ 4 c = b7, PR So, this value depends on
vp, (x(dq”_3 — a®™h) — ably — c). If d7"* # %', then the valuation is —(¢" + 1).

If d4"° = q9*!, then we also have d4"° = d4"+!, which yields
40T = . (3.5)

Note that ¢" —¢"? + 11 ¢*" — 1 = [F5,|. Hence d = 1, in which case a = 1 as well.

So, for a = d = 1, we have

S _anrl 7 b O
VP, (dqn 3$ — a‘]+1x o abqy _ C) — ,I)Poo(_abqy . C) _ q+1 q ?A
07 b == O
Hence,
T+l a=d=1b#0
UPOO(O'(t)—t): qn_|_2’ a:d:1,b:O (3.6)
17 else.

Lemma 3.1.1. The places in S are the only ramified places of C in the extension

C/CETP=) it

o2 st
e(Px) = (¢°—1)g S (3.7)
@+ —q-1D(¢"+1)
d(Py) = p— 1 (3.8)
e(Puo) = (q—1)(¢"+1), d(Puo)=(q—1)(¢"+1)—1. (3.9)

Proof. Note that G(Ps,) is the decomposition group of P, in the extension C/C% (7).

Since P, is rational we have f(Py) = 1 in C/C%"=). Hence, we have (cf. Eqn.

(1.11))
34" +1

e(Px) = |G(Px)| = (¢* — 1)q 1

(3.10)
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By (3.4) and (3.6), we have

q" +1
qg+1

aaazzmkﬂm( —H)+m—mw+m

+((q2 s S 1)

qg+1

= L@ =0+ =D+ )+ - ) + (P + =)= ¢
= %( St —g—1)—1.

In the extension H/HA(F=) the set of ramified places of H apart from R, is
T ={Raw|a€Fp} (see |7, Page 149|). (3.11)

Note that [H : HAF=)] = A(R,) = ¢*(¢> — 1). There are ¢ places of the form
(3.11) in H with f(R.) = 1. Hence,

(> —1) = ¢’ e(Rap)
and we have
e(Ryp) = q2 —1.

Recall that the set of all ramified rational places of C, except for P, in C/H is
{Puo | @ € F2}. The places of H in T are exactly the places lying below this set
(see Figures 1.3 and 1.4).

Since

C: COP*)] = |G(Px)| = ¢*(g* — 1)

[ | =1G(Px)l = ¢(q )qJrl
and

n+1

CH] [ HAR = L2 32 1),

[C:H] ] | ¢ (¢" — 1)
we have C¢F=) = HAF=)  Hence,

" +1
e(Pa) = T ). (3.12)

Since the ramification is tame, we immediately obtain the different exponent. Using
Eqn. (1.44), which defines C over K(x), we see that a nonrational place of C does
not ramify in C/H. By [7, Page 149|, the places {Rq | a € Fp2} are the only
ramified places in H/HAP =), Hence, a higher degree place in C cannot ramify in

C/CE =), O
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We will associate each automorphism in G(Px) given by (2.62) with a quadruple
la,b,c,d]. Then

G(Px) = {la,b,¢,d] | a € Fia,b € B, ¥ + ¢ = b 451 = a}. (3.13)
The group structure of G(Py,) is as follows:
[ah bl, C1, dl].[ag, bQ, Co, dg] = [CL16L2, a2b1 + bQ, ag+101 + agbgbl + Co, dldg] (314)

id = [1,0,0,1] (3.15)
[a,b,c,d]™ =[a"t, —a™'b, a~ @t d~'] (3.16)

By Lemma 2.2.1, the subgroup Gal(C/K(z)) of G(P,) has order ¢3. Since G;(Py)
is normal in G(Py) with order relatively prime to ¢ (cf. Lemma 1.1.3), we have

|G1(Px)| = ¢* as well. Uniqueness of G1(P,) implies that
G1(Py) = Gal(C/K(2)) = {[1,b,¢,1]|b € Fpeo, b = ¢ + c}. (3.17)

Our next goal is to investigate C/CY for a subgroup U of G(Ps,). If [U| = p“m with
ptm, U has a p-Sylow subgroup U of order p*. Since G;(Ps) is the unique p-Sylow
subgroup of G(P.), U is also contained in G (Ps). Hence,

UNG(Py) =T. (3.18)

Moreover, if U has another p-Sylow subgroup U’, then by the same argument U is
contained in G1(P.). But, this would imply that |U N G1(Px)| > p*, which is a

contradiction. We fix the following notation.
Vo ={beFp| thereis c € Fp such that [1,b,c,1] € U}.
Wy={ceFpg|[1,0,¢1] € U}
T={Rw € Py |aclFp}
L=UNGa(C/H).

J={0€ A(Ry) | o =0|y forsome 6 € U}.
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Note that Vy; is the image of the homomorphism

1,b,¢,1] +— b.

Moreover, Wy is in one-to-one correspondence with the kernel of this homomor-

phism. Hence, we have
| U |=mp",| Vi |=p",| Wy |=p* with w=v+w for some v and w. (3.19)

We now apply Hurwitz genus formula to the extension C/CY. Since all ramified
places of C in the extension C/C%P=) are in S, we have
(q= 1" +¢" = ¢*) —2=mp"(29(CY) = 2) +d(P) + DY d(P). (3.20)
PES,P#Px
By (3.4) and (3.6), we have
d(Px) = Y wvp(o(t)—1)
id#6€U
q"+1
— W 1 n + 2 + vtw _ w
0024 00 ) (T

+ 1) + mp* — p*(3.21)
Note that Py € S is tamely ramified in C/CY. Since f(Pu0) = 1, we have

pte(Pao) = |G(Faso)|
Hence, by Lemma 1.1.3, we have
G1(Puo) = Go(Puyo) = -+ - = {id}. (3.22)
Hence,

Y dP)= > (IG(P)|-1)= > HPeS|P#Px,d(P)=P}
P€ES,P#Pso P€ES,P#Pso id£6€U
(3.23)

The following lemma describes how to calculate the expression in (3.23).

Lemma 3.1.2. Let U be a subgroup of G(Px) as above. Then we have

Y |PeS|P#Py,6(P)=Pl|=(IL|-1)¢+|L| > {ReT|o(R) =R}
id£6€U id#oe]

(3.24)
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Proof. Since L is a subgroup of U, we can write U as a disjoint union of its cosets

mod L as

i=1

U=LU (U AZ») : (3.25)

WhereT:%—1andAizﬁiL:{&iu|u€L}forsome6i€U\L. For P €S
and p € Gal(C/H) we have u(P) = P since the places in S are totally ramified in
C/H. So, we have

Y. HPeS|P#P.6(P)=P}=(L-1)(S—1])= (L] - 1)¢’. (3.26)

idAoEL

Moreover, for 6 € U \ L we have 6u(P) = ¢(P) = P if and only if 6|x(R) = R,
where R € Py is the unique place lying below P. So, for each 1 <1 < r — 1, we
have

Y HPeS|P#Pe6(P)=P} =|LI- {ReT|&il(R) = R}.  (3.27)

5’6141'

This completes the proof.

We also have (see [7, Theorem 4.4])

> |REeT|o(R) = R|=mp"+d(gp" —p") — qp", (3.28)
id#oed

where |J| = mp" for some m < m and d = ged(m, ¢ + 1).

Some Subgroups of G(P.): Recall that n > 5 is an odd integer. We now
determine some subgroups U of G(P.). In the literature |2, 7|, certain subgroups
of A(Ry) in the automorphism group of H have been described. These subgroups

consist of automorphisms
[a,b,c] € A(Ry) with " =1 (3.29)

for some p and possible extra conditions on b and c¢. Our aim is to extend such

subgroups J of A(Ry) to a subgroup J of G(Ps) in a way that
J N Gal(C/H) = {id}. (3.30)
Then, for a subgroup I of Gal(C/H), we will set
U:i=1xJ. (3.31)
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In this case, U N Gal(C/H) ~ 1.

Consider a subgroup J C A(R.) with ged <u, q;+_+11> = 11in (3.29). We define
Ji={la,b,c,d] | dFT = a,d" = 1}. (3.32)

Let R(p) be the set of uth roots of unity in F2. Then the homomorphism

R(p) — R(w)
& — §:++11

is a bijection as gcd <u, %) = 1. This implies that there is a unique d € Fen

with ¥ = q and d* = 1. Hence, |.J| = |J|. With our previous notation, we have
|L| = |I] and |U| = |L||J]. This will be the setting in Examples 3.2.1 through 3.2.9

in the next section.

3.2 Examples

Note that Gal(C/H) is a cyclic group of order q;—ﬁl. Hence there exists a subgroup

I of Gal(C/H) of order ¢, for each divisor ¢ of qq"+_+11' Throughout, we assume that
q=r".

Example 3.2.1. Let p be an odd prime and v,w be integers 0 < v < k — 1,

0 < w < k such that w is an integer. Then, by |7, Theorem 3.2| and its
proof there exists a subgroup J of A(R) of order p*™. For C/CY, we have by

(3.21)

d(Px) = (p¥ = 1)(¢" +2) + (" — p)( + 1)+ pT —pPTr. (3.33)

q+1
By Lemma 3.1.2 and Eqn. (3.28), we also have

> d(P)=(t—1)¢" (3.34)

PeS,P#P

Now, we apply Hurwitz genus formula (cf. Eqn. (3.20)) to C/CY and obtain

(q= (¢ +q" = ¢*) —2=(29(C") = 2)p"™ +d(P) + Y d(P). (3.35)
PES,P#Ps
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Then

n n é V4w V4w w w, N qun+1
"= q" =+ —2=29CT)p — T "+ PVt + pt 1
" +1 3 3

T 24— P

q+1 q q q

So, we have

' H L]

QCUEU-FQU: n+2+2_wn_w_
9(C”)tp A Pt T e Y

+ E + fpv—i—w

= ¢+ D"+ )+ q;:_rll (p" = p"™) + L = ¢°)
- q(;ill (P(q+1) = p“(g+ 1) +p“ — p"™™) + L(p"*™ — ¢*)
= QQ J_Lll (* + ¢ — )+ (Y — ).
Hence,
g(CcY) = L@+ —p™ = ple) + L(pTH — q?’). (3.36)

20 prtw
Example 3.2.2. For p = 2 and for all v an w with 0 < v < w < k, there exists
a subgroup J of A(R.) with order 2" by [7, Corollary 3.4.ii]. Calculations for
g(CY) are the same as in Example 3.2.1. We replace p by 2 and obtain

g"+1 (q + q —gutw _ 2wq) +€(2v+w _ (]3)

U q+1
9(C”) = (ovtwtl (3.37)
Example 3.2.3. For p = 2 and for all integers v, w satisfying
2 —1 k
wlk, w|v, vl|2k 1<v<k and S 1|(2 +1), (3.38)

there is a subgroup J of A(R.) of order 20+ for any v with 0 < v < v (see [7,
Corollary 3.4.i, Corollary 3.4.iii] and their proofs). In order to calculate g(CY), it is
sufficient to replace p and v in Example 3.2.1 by 2 and v', respectively. We obtain

J(cV) = T -2 =2 U2 — )

(v +w+1 <3'39>

Example 3.2.4. We assume that p # 2. Let s be the order of p in (Z/mZ)* and

order of p in (Z/FZ)*) if m is even

s if  m  is odd.
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Let m be a divisor of ¢ — 1. Then, for every 0 < v < k with s | v, and for every
0 <w<k—1with r | w A(Rs) has a subgroup J of order mp“** by [2, Theorem
1]. We have

w n V+W w qn+1 V+Ww w V-+W V+W
d(Px) = (0" = 1)(¢"+2)+ (p"™ —p )(q+1 + 1)+ (p° = p*) + mlp'T — p.
(3.40)

and
> d(P) = (L= 1)¢* + L(mp"™ + d(qp” — p"T) — qp"), (3.41)

PeS,P#Px

where d = ged(m, ¢+ 1). Now, we apply Hurwitz genus formula to C/CY and obtain

qn+2 _»qn _»q3_+>q2__ 2 = (QQ(CLU __2)ﬂ1€pv+u1%_7n£pv+u)+_£(dqpv__»dpv+u)_»qpv)
" +1

+¢"p" 4+ 2p" — ¢" — 2+ H—l(p”“” —p¥) +mlp"
——
We have
29(CY)ymep"t = qn(qQ—pw)Jr(qQ—pw)Jrq; jll (p*—p"*) =l +dgp’ —dp*™* —qp®).
Hence,
/() = (" + 1)(¢ = p*) + (L) (p — p**) — U(q® + dgp* — dp™+ — ")

2mlpvtw

Example 3.2.5. Let m > 1, d > 1 and 0 < w < k be integers satisfying:

(i) m|(¢*—1) and d = ged(m, q + 1)

(i7) Let s :=min{r > 1| p" =1 mod (m/d)} an assume that s divides w.

Then, there exists a subgroup J of A(R.,) of order mp* by |7, Proposition 4.6] and
its proof. This subgroup consists of the elements in the form [a, 0, ¢] with a™ = 1.

q"+1
q+1

Assume that ged(m, ) = 1. Computation of g(CV) is same as in Example 3.2.4

for v =0 i.e.,

d(Peo) = (p* — 1)(¢" +2) +mtp” — p” (3.43)
and
Y d(P) = (¢ 1)¢* +mp” +dg — dp” —q, (3.44)
PeS,P#Py

where d = ged(m, g + 1). So, we have

(" +1)(¢* — p*) — U + dg — dp” — q)
20mp® '

g(c”) = (3.45)
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Example 3.2.6. We assume that p # 2. Let m be a divisor of (¢> — 1) with m not
dividing ¢ — 1. Let s and r be the order of p in (Z/mZ)* and (Z/"Z)*, respectively.
Then, by [2, Theorem 2| there exists a subgroup J of A(R.) of order mp*t* if the
following conditions hold:

(i) 0 <v<k,v|2k vikand sfv

(i) 5 <w < kand r|w.

By the same calculations as in Example 3.2.4, we have

(" + 1)(¢* = p*) + () B” = p°) — £q® + dgp? — dp*™ — qp")

20mpvtw ’
(3.46)

g(C”) =

where d = ged(m, ¢+ 1).

Example 3.2.7. For p =2, let s | kand 0 < h <s. Then foreach 1 <v <k -1
with v = s + h, and for each s < w < k — 1, there exists a subgroup J of A(R,) of

order 2°*% when the value 28-*=1(2¥=* — 1) is an integer (|2, Theorem 4]). We have

U Qq_:‘ll (q + q —gutw _ 2wq) + €(2v+w _ q3)
g(c ) - fov+w+l ’

(3.47)

Example 3.2.8. Let k£ be even number such that 4 does not divide k. Let s be an
odd integer with s | k and 0 < h < s. Then, for each 1 < v < k — 1, such that
v = 25+ h, and for all 2s < w < k — 1 there exists a 2-subgroup J of A(R) of
order 27 when 2"7V"1(2"" — 1) is an integer (|2, Theorem 5|). We have

. QQ_:-ll (q + q — utw _ 2wq) + €<2v+w _ q3)
g(c ) {ov+w+1 '

(3.48)

Example 3.2.9. Let £ = 2°t with ¢, € N and t > 3 odd. For each divisor j of
t, let h; be the order of 2 in (Z/tZ)* and r; = # where @ is the Euler function.
Then for all 1 < w <k — 2 such that w = 2°[1+ 37, ., [;h;] with 0 < 1; <, there
exists a 2-subgroup of A(Ry,) of order p*™* with v = w + 1 (|2, Theorem 6]). Then

by the same calculations as in example 3.2.1 for p = 2 and v = w + 1, we have

o Qq_:‘ll (q + q — 2w+l _ 2wq) + 6(221”4_1 _ C]3)
9(C") = /22wt2 :

(3.49)

Remark 3.2.1. (i) For n = 3, genera of the subfields that we described in these
examples coincide with the genera of the subfields corresponding to the subgroups

of G(Px) that were found in [4].
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(ii) Our examples yield some new genera for the set M(¢?) (cf. Eqn. (1.24)) which
are different from those obtained in [2]|, [4] and [7]. Below, we list some of new

genera for ¢ = 3°,2'°, 3% All of these numbers are obtained from Example 3.2.1.

g=3" : 301,963

g=2% . 7656,3572,1530, 714, 1735, 1506, 702, 300, 140, 341, 743, 156, 72, 77, 35.

g=3% : 11235,78723,19680, 24601, 2115, 528, 661, 144, 2808, 3511, 4131, 1032,
1291, 181, 291,99, 31, 24.
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