
ESTIMATION OF ENVIRONMENTAL LIGHTING FROM
HUMAN FACE FOR ILLUMINATION OF AUGMENTED

REALITY SCENES

Emre Koç

Submitted to the Graduate School of Sabancı University
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2011

ii

c© Emre Koç 2011

All Rights Reserved

ESTIMATION OF ENVIRONMENTAL LIGHTING FROM
HUMAN FACE FOR ILLUMINATION OF AUGMENTED

REALITY SCENES

Emre Koç

EECS, M.Sc. Thesis, 2011

Thesis Supervisor: Assist. Prof. Dr. Selim BALCISOY

Keywords: Augmented Reality, Illumination, Real-time Rendering, Spherical
Harmonics

Abstract

In this thesis, we propose a method to solve a common problem in augmented
reality domain; estimating light sources in an outdoor scene and lighting virtual
objects accordingly. As a basis of our method we developed a framework based
on estimation of environmental lighting from well defined objects, specifically
human faces. The method is tuned for outdoor use, and the algorithm is further
enhanced to illuminate virtual objects exposed to direct sunlight.

In the first part of this thesis, we propose a novel lighting estimation technique
where we assume a user is looking straight to mobile devices camera. This tech-
nique extracts information from input images to calculate possible light sources
to pass to the rendering stage.

In the second part of this thesis, we propose a lighting model which uses the
output from our lighting estimation in order to make objects appear as they are
lit correctly by the sun light. This model uses a mathematical technique called
Spherical Harmonics Lighting for real-time realistic rendering.

iv

ESTIMATION OF ENVIRONMENTAL LIGHTING FROM
HUMAN FACE FOR ILLUMINATION OF AUGMENTED

REALITY SCENES

Emre Koç

EECS, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Yrd. Doç. Dr. Selim BALCISOY

Keywords: Arttırılmış Gerçeklik, Işıklandırma, Gerçek Zamanlı Görselleme,
Küresel Harmonikler

Özet

Bu tez, arttırılmış gerçeklik ortamlarında ortak bir sorun olan, çevresel ışıkların
analizi ve sahneye konulacak cisimlerin bu ışık bilgisine göre ışıklandırılmasına
uygun bir metod sunuyor.Bu metodun temelinde arttırılmış gerçeklik uygula-
malarında şekli belirli cisimlerden, özellikle insan yüzü, çevresel ışıkların anal-
izini yapan bir yapı mevcuttur. Metod özellikle dış mekan kullanımı için düzenlenmiş
ve doğrudan güneş ışığı tarafından aydınlatılan objeleri gerçeklemek için ayarlanmıştır.

Tezin ilk kısmında, mobil cihaza doğrudan bakan bir insanın yüzünden çevresel
ışık bilgisinin nasıl çıkarılacağı anlatılmaktadır. Bu teknik ön kameradan gelen
resimleri muhtemel ışık kaynaklarına bakarak analiz etmektedir.

Tezin ikinci kısmında ise ilk aşamada elde edilen ışık yön bilgisini kullanarak
gerçek zamanlı ve görsel kalitesi yüksek bir biçimde sanal cisim görsellenme
tekniği anlatılmaktadır. Bu model Küresel Harmonik Işıklandırması adında matem-
atiksel bir teknik kullanmaktadır.

v

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Se-
lim Balcısoy for his patience, continuous support and excellent guidance. Our
brainstorming sessions are very valuable for me where we created ideas for my
academic papers and my thesis.

I have been honored to have Yücel Saygın, Albert Levi, Erkay Savaş and
Gözde Ünal as members of my thesis committee. I am grateful for their valuable
review and comments on the thesis.

I would like to thank all my colleagues in Computer Graphics Laboratory
who contributed immensely to my personal and professional life. I specially
thank Çağatay Turkay, Selçuk Sümengen, Mustafa Tolga Eren and Ceren Kayalar
for their continuous support in my research. I would like to thank Uraz Cengiz
Türker, Serdar Adali, Farhood Negin and Murat Çelik Cansoy for their great
friendship and support.

Thanks to all my friends and colleagues for their support. I am very grateful
for the time spent with the friends and memories. I also thank my friends from
Gravi Ltd, Tolga Birdal, Emrah Bala and Bulut Karakaya for their inspirations
during my studies.

Finally, I would like to thank my family for always loving and supporting me
on my way through my 20 years of education. Their deep patience and guidance
led me to my success in academic studies.

vi

Contents

1 Introduction 1

2 Related Work & Background 3
2.1 Light Source Estimation . 3
2.2 Lighting Virtual Objects . 6
2.3 Mobile Technology . 7

2.3.1 Mobile Devices . 8
2.3.2 Augmented Reality . 9

2.4 Motivation . 12

3 Estimating Light Directions 14
3.1 Face Detection and Pose Estimation 14

3.1.1 faceAPI Tracking . 14
3.1.2 OpenCV Face Detection 15

3.2 Estimating Azimuth and Zenith Angles 16
3.2.1 Clustering Intensity Vectors 19

3.3 Light Direction Projection . 20

4 Lighting Virtual Objects 22
4.1 Spherical Harmonics . 23
4.2 Skylight Model and Tone Mapping 29

5 Case Study 31
5.1 Controlled Environment Tests 31
5.2 Outdoor Tests . 32
5.3 Discussion on System Performance 34

6 Conclusion and Future Work 37

vii

List of Figures

2.1 Sony Ericsson W900i with two sided camera (left), NVIDIA GoGorce
4800 graphics processor running a real-time 3D Demo [?] . . . 8

2.2 Using the Augmented Reality Interface (Left),Virtual Shared White
Board (Right) [?] . 11

3.1 faceAPI tracking in 3D space (left), face texture output (right) . 15
3.2 HSL color space contains lightness information and RGB space

defines a color by using three main colors [?] (left), Applying bi-
lateral filter to lightness image gives very smooth lightness image
without any high frequency texture details (right) 17

3.3 A spherical coordinate system with zenith direction Z and az-
imuth axis A. The point has radius r = 4, zenith angle θ = 70◦,
and azimuth ϕ = 130◦ [?] . 18

3.4 Matching Normal map with captured and bilateral filtered image. 18
3.5 Clustering of k-means algorithm does not allow membership func-

tions to have floating point values (Left), FCM allows a point to
belong to one or more clusters. 19

3.6 Yaw, Pitch and Roll on a Virtual Reality Head Mounted Display 21

4.1 How High is The Tennis Player? [?] 22
4.2 Rendering outputs with Spherical Harmonics. Rendering output

with no light in OpenGL (a), Diffuse lighting in OpenGL (b),
Diffuse Lighting with Spherical Harmonics (c), Diffuse Lighting
with Occlusion information (d) 28

5.1 Controlled Environment Test Image Sequence 32
5.2 Face Images taken in different sky conditions 33
5.3 Virtual Object rendered in different lighting conditions. Color

values are similar to the grass colors which our object have simi-
lar color. 34

viii

5.4 Rendering with only sun light configuration with Preetham sky-
light model (a), Reference sun position and angle from camera
direction (b), Reference face image for light direction extraction (c) 35

ix

List of Tables

2.1 OpenGL ES supported device list 10

5.1 Real Measured Light Directions (R), value returned by our esti-
mation (A) and absolute error (E) for the zenith φ and azimuth θ
angles in the scene. Test images are marked with their respective
letters in Figure 5.1 . 32

5.2 Light Source direction estimation for images in Figure 5.2 . . . 33

x

Chapter 1

Introduction

Virtual Object Lighting constitute a critical component in Augmented Reality

(AR) applications. Today it is common to see many AR applications in web sites,

desktop applications and mobile devices. In order to increase the feeling of reality

in an AR scene, virtual objects should be lit realistically by using the information

from the surrounding environment. In this thesis, we propose methods to solve

two distinct issues in AR domain. First of these issues is extracting illumination

information from human face in an outdoor scene and second one is the lighting

of virtual objects realistically by using the extracted lighting information.

The core element of our methods is a framework which uses Lambertian sur-

face properties to extract lighting information from a predefined geometry, which

is specifically human face in our solution. This framework contains a face detec-

tion solution in order to place face model to the input image. After placing the

model we use the framework to extract light directions and process sensor data so

that real world light directions and light intensity information can be calculated

correctly.

Environmental lighting is essential for realistic perception of augmented real-

ity scenes; therefore extracting lighting information from predefined objects has

always been an interesting problem for the graphics community. A recent survey

by Swan and Gabbard [?] discusses the effects of lighting and shadows on users

1

perception of reality and depth. Augmented reality applications that provide only

tracking a coded marker or tracking a surface, do not provide a real depth feeling

to users. It is also hard to extract lighting information by using predefined objects

like a mirrored ball in outdoor applications. Hence, we need a tool which will al-

low us to get information about the environmental lighting which neither depends

on any special object, which users do not carry mostly with themselves, for light

source detection nor depends on the visibility of sky, a large area of ground or

some nearby objects in order to get a reference lighting and shadow estimation.

To help users who are investigating their surrounding environment from a screen,

an AR system should be able to detect lighting information dynamically and up-

date the virtual objects lighting and shadow information in real-time. Our moti-

vation is to find a light estimation technique that can extract lighting information

for a scene while user investigates the given outdoor area.

Outline of the rest of the thesis is as follows: In Chapter 2, we give an

overview of previous research on both light direction estimation and virtual ob-

ject lighting techniques. In Chapter 3, we define how our light estimation system

work and its basis. Chapter 4 explains how we efficiently light objects on a mo-

bile system with estimated light directions. Chapter 5 shows test results for the

proposed system. Finally on Chapter 6, we summarize our results and propose

some future work on the framework.

2

Chapter 2

Related Work & Background

Both of light source estimation from a given geometry and lighting in augmented

reality involve extensive literatures. Therefore, we will review these both fields

under two main titles.

2.1 Light Source Estimation

Several light source estimation techniques have been proposed in the literature.

We will try to review them according to their technique on how to capture light

information from the environment.

Light source detection from a predefined geometry is the main technique for

most of the previous works. Previously, there were extensive studies about shape

and reflectance recovery by using the method shape from shading [?, ?, ?, ?]. But

these studies did not extend to recovering illumination information from an ob-

ject with known shape and reflectance but focus on light direction. Sato et al. [?]

proposed a technique to handle this problem with the help of cast shadows of an

object to a scene. This method works on scenes with cast shadows but there were

no extension to extraction of light information only from a non-convex object.

Due to the difficulty of the problem, most studies involve several assumptions.

Jensen et al. [?] proposed a solution to solve real-time image based lighting

problem for outdoor augmented reality scenes where the illumination conditions

3

are dynamically changing. They created some constraints and assumptions like

no precipitation as they heavily depend on surface reflectance in the environment.

Apart from that what makes this system hard to adapt in different environments is

that they need a 3D model of the scene with an HDR environment map recorded

in the centre of the scene. Even though they do not require a detailed 3D model,

even a rough model for a new environment is hard to create in mobile augmented

reality scenarios.

Different group of researchers are interested in resolving the photometric

problem, estimating light source direction in real-time by using specific shiny

object, most popularly mirrored balls [?]. Debevec [?] proposed a technique to

capture scene radiance and global illumination in order to have correct lighting

for virtual objects. Even though the technique presented have realistic visual

quality renders, using a mirror ball and correctly placing it in the center of a

scene to capture HDR images takes a long time to setup and cannot accommo-

date lighting changes in real-time. A recent and interesting study by Tominaga

et al. [?] estimate the illuminant spectra of an omni-directional light distribution

from the images of a camera aiming at a mirrored ball. They proposed algorithms

to measure spectral radiance distributions in an outdoor scene. By extracting ra-

diance distributions, they achieve a realistic representation of both sky and sun

but again the problem of using a hard-to-find mirrored ball arises in mobile out-

door augmented reality. Kanbara et al. [?] proposed a technique for real-time

estimation of light source environment in an augmented reality system. They

used a marker tracking system that contains a small black mirrored ball. Even

though this method allows real-time tracking of the light changes it is not fea-

sible in a large augmented reality setup like excavation sites. Since light source

estimation depends on the small mirrored ball, environment effects such as dust

or mud might occlude the clear reflections on its surface.

4

Another group of researchers studied light source estimation from a scene by

using fish-eye lens cameras. Yoo et al. [?] captures light information by using

a 185 degree fish-eye lens and Neutral density filter (NDF) to have no changes

in hue of color rendition by modifying intensity of all wavelengths or colors of

light equally. They stated that lighting maps can be extracted precisely by using

fish eye lenses with NDF. Frahm et al. [?] extended the method of using fish-eye

lens camera for light estimation to use in a multi-camera system of a TV stu-

dio. They proposed a fish-eye camera image segmentation system that defines

3D camera positions in a stage so that they can lit virtual objects correctly as they

really appear in the scene. Both of these fish-eye camera models can give very

detailed information about lighting information in a scene but they are hard to

setup and hard to maintain since the main perquisite is they should always face

light sources. This constraint makes them impractical for rapidly changing mo-

bile augmented reality applications.

Estimating light information from human eye is also a well studied topic.

Tsumura et al. [?] determines where the light source is by using the reflections in

the image of the eye. They propose a method that uses reflectivity of human eye to

capture up to three light sources. In [?], they present a detailed analysis about the

characteristics of the cornea image of an eye which was taken by a catadioptric

(mirror + lens) imaging system. They show that geometric parameters of the

corneal system are suitable for environment map extraction from a single image.

Wang et al. [?] improves this technique by separating corneal reflections in an

image of human irises. They estimate illumination from the surrounding scene by

using human iris features such as chromaticity and illumination correspondence

between two irises. Even though extracting environment map from eye seems

feasible in indoor scenes, it becomes infeasible in outdoor scenes where direct

sunlight comes into the eye.

Estimating lighting information from human face was studied for cancelling

5

out lighting variations in order to enhance the performance of face detection/recognition

applications [?, ?]. Basri et al. [?] shown a low-dimensional linear subspace

which is effective for face recognition by using spherical harmonics basis. They

used spherical harmonics for representing lighting information on human face.

Lee et al. [?] proposed a technique for estimating directional lighting in uncal-

ibrated images of faces in frontal pose. They estimated the principal lighting

direction by using least-squares formulation with Labertian illumination model.

Their technique uses surface normals as light direction vectors and they assume

light direction does not change with intensity information in each pixel, which is

same as our assumption.

2.2 Lighting Virtual Objects

Rendering realistic light in real-time has been a long challenge in computer graph-

ics community. There have been several methods for calculating shading like

Phong interpolation [?], normal-vector interpolation shading [?], per-fragment

lighting [?]. Most of these techniques can be implemented faster than real-time

in current graphics hardware. Even though these models can shade virtual objects

correctly for a viewer to have a depth perception, they are unable to simulate oc-

clusion of light and shadow casting. Williams proposed a solution to shadow cal-

culations [?] called shadow mapping. This method allowed graphics community

to have complex shadows even for dense geometries or curved surfaces. [?] ex-

tended this technique by proposing Percentage-Closer Soft Shadows. They used

a filtering technique to make shadow maps look more natural with soft edges.

Although calculating soft shadows runs in real-time, having more realistic scenes

requires powerful display cards and programmable pipeline capabilities. When

the lighting requirements extend to area lights and inter-reflections between ob-

jects, we might need to take off-line rendering methods into consideration. Monte

Carlo ray tracing [?] [?], radiosity [?], or multi-pass rendering [?] that calculates

lighting information by summing up intensities from multiple point light sources.

6

These methods are able to provide higher visual quality than standard lighting

methods in computer graphics but they are costly and their complexity increase

proportionally with included lights in the scene.

Spherical Harmonics Lighting (SHL) was introduced to graphics community

by Sloan et al. [?]. They introduced a method that transforms low-frequency

incident lighting to transferred radiance which includes shadows, occlusions and

inter-reflections. They defined these transferred functions in low-order spheri-

cal harmonics. They even extended this work by compressed per-point transfer

matrices from a high-dimensional surface signal by clustered principal compo-

nent analysis [?]. Green explained the underlying mathematics of the proposed

method and expressed several details about spherical harmonics lighting that the

original paper did not cover and this paper was the main guide of our rendering

system development [?]. These methods opened a new way of defining global

illumination in computer graphics. Previous techniques allowed realistic render-

ings with several assumptions but they mostly capture light information from a

limited angle. SHL allows dynamic changes in light and even dynamically mov-

ing objects.

2.3 Mobile Technology

Technology drives the innovation, so what is very expensive few years before is

easy to buy for a few hundred dollars. This progress increased the availability

of common hardware needed for computer graphics applications. Also the com-

monness of sensors, gyroscopes and GPS chips increased so much that they are

very easy to find in most of the recent mobile devices. Even though the tech-

nology renews itself rapidly users had problems with systems that contain new

technologies that lack user guidance.

7

2.3.1 Mobile Devices

Processing power is the main need for having extensive graphics quality both for

games and visual applications. Since the power comes from both CPU and GPU,

they play a very crucial role in developing advanced visualizations. Even though

the mobile phones are not a very brand new technology, which is first introduced

by Dr Martin Cooper of Motorola in 1973 [?], transition from ordinary phones

that can just send and receive phone calls, to smart phones that have extensive

processing power, both from their CPU and graphics processor, changed how

end-users use their mobile devices. For instance Sony Ericsson W900i, launched

in 2005, was the first mobile phone to have a real graphics processing chip named

NVIDIA GoForce 4800.

Figure 2.1: Sony Ericsson W900i with two sided camera (left), NVIDIA
GoGorce 4800 graphics processor running a real-time 3D Demo [?]

Having mobile graphics processor allowed developers to work on applica-

tions that use special hardware features such as auxiliary buffers or specialized

API calls. Also having a camera built in a phone emerged very later than the

first mobile phone that allow just phone calls. Since initial internal cameras had

a very poor quality, they were only used as a MMS (Multi Media Messaging)

sending tool which cannot capture much detail from a scene. With the advance-

ments in CMOS technology phone manufacturers integrated more megapixels in

to mobile devices. As the technology got cheaper phone manufacturers are able

to place two cameras in one device one points to user and other one pointing op-

posite direction, ex. Nokia 6280 in 2005. Even though this new camera setup

8

opened a new era for mobile phones to have video conferencing, there are still

problems in software side that make developing applications for mobile phones

not easy. Starting from smart phones manufacturers integrated OpenGL capabil-

ities, however the initial versions did not cover extensive features. (See Table 2.1

on page 10)

Even after having several smart phone models in the market, without a com-

munity for developers and a robust SDK , mobile software market stayed as a

niche topic that only some researchers worked on to build advanced applications.

Of course, there has been research going on especially for windows mobile plat-

forms like HP iPAQ but the applications are mostly limited to academic com-

munity and even though the innovation in those applications are extensive, they

could not find any distribution in market because of the platform [?]. With the

release of iPhone in 2007, smart phone market got into a new era of large displays

with multi-touch capabilities. In the same year Google Inc. announced Android

platform to several mobile phone manufacturers and the first device hit on market

was HTC Dream on 22 October 2008 [?]. With the help of new development

platforms and application stores, mobile software development became popular

as never before and users started to investigate new applications that use avail-

able hardware extensively. For instance Layar which is a company found in 2009

developed a mobile augmented reality browser that partner companies are able to

put their location aware content to real world coordinates. Users are now able to

browse even real estate posts around them with help of AR.

2.3.2 Augmented Reality

Having a virtual reality system was first introduced by Sutherland in 1966 by the

invention of head mounted display [?]. Later in 1990, Tom Caudell expressed

the phrase ’Augmented Reality’ in Boing when helping workers to assembly ca-

bles into aircraft. Rosenberg [?] developed the first functioning AR system called

”Virtual Fixtures” and demonstrated its benefits to human performance. Most of

9

OpenGL ES 1.0

• Official 3D graphics API of the operating systems Android and Sym-
bian

• Supported by the PlayStation 3 as one of official graphics APIs (the
other one being low level libgcm library), the PlayStation 3 also in-
cludes several features of OpenGL ES 2.0

• Supported by QNX

OpenGL ES 1.1

• Supported by Android 1.6

• Supported by iOS for iPad, iPhone, and iPod Touch

• Supported by the BlackBerry 5.0 operating system series, however, only
BlackBerry Storm 2, BlackBerry Curve 8530 and later models have the
needed hardware.

• Supported for Palm webOS, using the Plug-in Development Kit

• Supported by the Nintendo 3DS

OpenGL ES 2.0

• Supported by the iPad, iPhone 3GS or later, and iPod Touch 3rd gener-
ation and later

• Supported by the Android platform since Android 2.2

• Supported by the Android platform NDK since Android 2.0

• Supported by the BlackBerry PlayBook

• 3D Library of the Pandora console

• Chosen for WebGL: OpenGL for web browsers

• Supported by some new Nokia mobile phones, such as the Maemo
based Nokia N900 and the Symbian based Nokia N8

• Supported by various Samsung mobile phones, including the Galaxy S
and Wave

• Supported for Palm webOS, using the Plug-in Development Kit

• Supported by the Archos Internet tablets: Archos 70 IT, Archos 101 IT

Table 2.1: OpenGL ES supported device list

10

the previous AR systems are based on information display in a spatial domain.

Having extensive graphics in real-time was a challenge with the low process-

ing power in hand. With the technical developments in graphics processors they

started to be able to render 3D scenes faster. Also pose estimation in a real scene

was a major problem. Knowledge about the camera calibration parameters and

position tracking of the object in 3D Euclidean space was needed to correlate

target position between subsequent frames [?] [?]. Durlach et al. [?] concluded

that position tracking with magnetic markers are prone to noise and may not be

enough for real correlation of virtual and real images. That’s why there is a need

for an image based method for the final fine tuning. Kato et al. introduced a sys-

tem that allows tracking of fiducial markers and a calibration method for optical

see-through HMD based on the marker tracking [?].

Figure 2.2: Using the Augmented Reality Interface (Left),Virtual Shared White
Board (Right) [?]

11

2.4 Motivation

There are several methods proposed both for exporting light source direction and

illumination of virtual objects in a real scene. These methods motivated us to

develop an augmented reality framework that works on a specific scenario where

a user points a mobile device, which has double sided camera, to a field where

user wants to inspect any kind of virtual content. Primarily we needed a light

source estimator that will work on a specific object, mainly human face, and do

not depend on expensive math calculations. Secondly, since most of the previous

work on light source estimation works on a single image or a series of images

which are consequently taken, they did not need a light space projection between

two different cameras. So we needed sensor information on how our mobile

device is placed in real world in order to relate extracted light information with

the augmented view. Third, in out-door scenes sun is the main light source, so we

wanted to know in which direction the sun is coming to our scene. Fourth, there

is a need to know where we will put our virtual objects in the view of the back

facing camera, so there should be a tracking mechanism involved. Last, we need

to illuminate virtual objects in an augmented reality setup to make them seem as

if they are in the same scene.

In order to suffice these requirements in a framework, we eliminated light

source estimation techniques that take very long time and need extensive geome-

try information about the scene. We focused on estimating light source automat-

ically, without having any user interaction or requesting any information from

user. Since we defined our system to work on mobile environment, we put con-

straint on the mobile device hardware to have Digital Compass, Gyroscope and

two-sided camera setup which are very common in recent end-user phones and

tablets. Even though we made some tests in indoor controlled environment, there

is a need to assume that a light source is placed distantly. Our assumption is that

our face and virtual object that will be placed has the same illumination prop-

12

erties. So we defined our system to work only for daylight configuration in an

outdoor scene and we used a tracking system that works with square markers.

In practical terms we wanted to build a framework that can be used in scenar-

ios where users navigate through outdoor environment for information retrieval.

For instance using this framework in an excavation site can help archaeologists to

investigate that site with correct depth perception with the help of realistic light-

ing of virtual objects. Having a depth perception is a crucial feature in virtual

object rendering in augmented reality which we explained in detail 4. By having

a correct depth perception archaeologists can use this framework for virtual ob-

ject placement on the excavation site. Usage of this system can also be extended

to historical site visitors to show how a demolished historical building would be

seen in that time of the year.

13

Chapter 3

Estimating Light Directions

In this section we will introduce the light source estimation engine which consti-

tutes the core of our outdoor lighting framework. First, we will describe how we

place our face model to front-facing camera view and then we will continue with

explaining the light direction estimation procedure.

3.1 Face Detection and Pose Estimation

Even though detecting faces is straight forward with in an outdoor scene, light

variations can make this process an ill-posed problem. We investigated two dif-

ferent systems for tracking of human face.

3.1.1 faceAPI Tracking

Seeing Machines is an award winning company with a focus on vision based

human machine interfaces [?]. One of their successful products is the faceAPI

which tracks human face in real-time by option to export face image that is being

tracked. Even though this system works correctly when light is evenly distributed

to face, it stops tracking when light conditions change. For instance, in the case

of a user rotating around him for 360 degrees, even though the tracker which is

based on image features continues to function, face texture output is suspended.

14

Figure 3.1: faceAPI tracking in 3D space (left), face texture output (right)

3.1.2 OpenCV Face Detection

OpenCV is a library of programming functions for real time computer vision [?].

Object detector of OpenCV works with a classifier that can detect any type of

object with the given training set. Classifier is trained with a few hundreds of

sample views of a particular object like face, car etc. and it can find the trained

object if it exists in the image. It is of course hard for this system to work on

all kinds of configurations. But classifier works well with precomputed data for a

human face, since we limited our system to specific constraints. These constraints

are:

• User should be guided to look at a specified position on the screen

• Only rotation on z axis is allowed. (axis that is perpendicular to screen)

• Distance between user’s face and mobile device should be limited

We do not have any other assumptions for this system. We know that our user

is directly looking at mobile device screen and front-facing camera is placed very

close to the screen. So we assume that the distance of a user face from the camera

is between 20 cm 80 cm. Cascaded Haar classifier also allows capturing left and

15

right eyes position separately. We defined a condition to get face rotation from

the image as follows by using Equation 3.1.

βHead =


arctan 2(PRy − PLy , PRx − PLx) if PRx > PCxandPLx < PCx

arctan 2(PLy − PRy , PLx − PRx) if PRx < PCxandPLx > PCx

0 otherwise
(3.1)

Where β represents ’Roll’ of user head, PC is the center position of face re-

gion and PR and PL are right and left eye positions respectively. In this definition

as the classifier can output rotations up to 25 degrees, from the conducted exper-

iments, we can say that in most cases the system can detect roll angles up to 15

degrees.

3.2 Estimating Azimuth and Zenith Angles

In this section we will show how we compute azimuth and zenith angles from

a given input image by using our prior knowledge of human face geometry. In

an outdoor setup we know that in a daylight configuration, we expect to see the

direct sunlight’s specular component on a user’s face. One problem can be the

occlusion of clouds which will have a direct effect on the specular component’s

visibility. We defined a similar approach to [?] by defining each light with an

unknown luminance Lj and unknown unit direction ωj, j = 1 · · ·N and we also

assume human face as a Lambertian surface. We start by converting color domain

of our image from RGB color space to HLS color space (See Figure 3.2 left side)

where HLS stands for hue, saturation and lightness. Now we have a single chan-

nel image that contains lightness information invariant from hue and saturation

information.

Even though the image is invariant from the color information, it may contain

high frequency variations on its texture. We apply bilateral filtering to remove any

16

Figure 3.2: HSL color space contains lightness information and RGB space
defines a color by using three main colors [?] (left), Applying bilateral filter to
lightness image gives very smooth lightness image without any high frequency

texture details (right)

high frequency variations on the face texture [?]. Since we have a smooth face

model that contains lighting information and our assumption about the surface is

Lambertian. From the Lambertian Cosine Law, a lambertian surface will have

the same apparent brightness from any angle that it is viewed. But we know that

our camera is placed as parallel as possible to user’s face since face detection will

not work otherwise, so we propose a technique for this specific scenario where a

ray traced from our pinhole camera to users face reflected by that surface normal

approximates light direction more accurately. This scenario hold especially when

light is received from angles in the range [π..2π], which are azimuth angles where

light is coming from back side of user’s head. If we were to assume N to show

the direction of light, azimuth angles would be in range [0..π] which will not be

enough to approximate light vectors coming from back side.

For the lighting of virtual objects we use light directions in spherical coordi-

nates so we can define light direction by our reflection vector for each pixel with

the following formula

r =
√
x2 + y2 + z2

θ = cos−1
(z
r

)
ϕ = tan−1

(y
x

) (3.2)

where θ denotes angle of light from the z up axis, ϕ defines the angle of light

17

in projected to horizontal x-y plane. x, y and z are the values of a vector that is

the reflection of vector coming from the camera by the surface normal at given

pixel. r = 1 since we use normalized vectors.

Figure 3.3: A spherical coordinate system with zenith direction Z and azimuth
axis A. The point has radius r = 4, zenith angle θ = 70◦, and azimuth ϕ = 130◦

[?]

As we have two spherical coordinates in the face plane and intensity for each

pixel, we cluster these spherical coordinates with respect to their magnitude and

see if we have any light source other than sun light.

Figure 3.4: Matching Normal map with captured and bilateral filtered image.

In order to simplify clustering of vectors we will assume that our base in-

tensity value is the average intensity in the face texture. This assumption may

fail in a perfect diffuse lighting environment during an overcast day but in that

condition we can only use a dim ambient light for the object. Masking the input

vectors by thresholding the input image leaves only the vectors that have higher

18

intensity from the specific direction and we call these as Intensity Vectors defined

in spherical coordinates.

3.2.1 Clustering Intensity Vectors

The notion of k-means clustering is suitable for grouping a set of points but we

assume that in the case where we have more than one light source or a high

intensity reflection from a different direction than sun light, any pixel in the image

may be lit by the two light sources. We borrow the idea of Fuzzy C-Means (FCM)

which was developed by [?] [?] allows one piece of data to belong to two or more

clusters.

Figure 3.5: Clustering of k-means algorithm does not allow membership
functions to have floating point values (Left), FCM allows a point to belong to

one or more clusters.

We do not know how many light sources that are reflecting through the user’s

face so we assume there is only sun light in the scene and intensity vectors should

point close to that direction. Calculating standard deviation of azimuth angle

gives how diverse are the light vectors distributed in the scene. Azimuth angle

defines the light direction rotated in z axis; in our conducted tests with our mo-

bile platform, by using 85 different images we concluded that having a standard

deviation larger than 20 degrees shows user’s face is lit by another strong light

source. During the initial calculation of standard deviation on azimuth angle, in

the case where the value is large, we initialize FCM with cluster count two. We

repeat this step for each cluster till we get an acceptable standard deviation.

Diversity in zenith angle is not a straightforward feature to extract as azimuth

19

angle. In the case where we have one sun light and a very strong reflection from

a floor it would be very hard to distinguish the large intensity distribution of sun

light from reflection of the floor in the same azimuth angle. In order to capture any

extreme lighting conditions where there is a strict distinction between intensity

vectors, we apply a separate FCM process by starting with 2 clusters as explained

with azimuth clustering. In the first iteration, we check for mean angle differences

between two clusters. If the mean value difference is larger than defined angle

limit parameter of our algorithm, which we defined as 30 degrees during our tests,

it is possible to conclude that we have a separate light source coming through a

different angle, it is left to the application programmer to define the limits of

cluster count and angle difference limit for zenith angles.

3.3 Light Direction Projection

Projection of light direction from front-facing camera to back-facing camera is

one of the fundamental features of our system. In previous chapter we have shown

that we can find azimuth and zenith angles from the face image but these values

are in the coordinate space of mobile devices front-facing camera. In order to

map these spherical coordinates to real world coordinates, we need to use some

sensor information available as a requirement in our mobile device.

Sensor initialization plays a crucial role in determining how the mobile de-

vice is positioned in world coordinates. Digital compass streams information

about device rotation with respect to world’s true north. Even though the sensor

is accurate, there is a need to make sure that device is positioned perpendicular

to the vector coming from the center of our planet. In this stage we can con-

tinue with the initialization of gyroscope. Gyroscope is a device for measuring

orientation that we can use it to track rotations in three dimensions Yaw, Pitch

and Roll (See Figure 3.6). Since the only available data from the gyroscope is

amount of change in orientation, there is a need to initialize Yaw axis by fixed ro-

tation information which is the compass direction. We need to inform users about

20

Figure 3.6: Yaw, Pitch and Roll on a Virtual Reality Head Mounted Display

the initialization process and guide them to place the device perpendicularly to

world’s axis by using the accelerometer information. As this process is done once

for each execution of the software it does not affect usability of the system.

Knowing the device orientation in real world space allows us to project light-

ing information captured from the front-facing camera to real world coordinates

with the predicted intensities.

21

Chapter 4

Lighting Virtual Objects

Working on a mobile platform requires further optimizations for having real-time

rendering rates as a result of lower CPU and GPU power. In previous augmented

reality applications most of the work has been done on how people can use this

new technology in different environments [?]. In those applications researchers

defined how the interaction with augmented reality system should be defined [?].

Figure 4.1: How High is The Tennis Player? [?]

Shadow mapping is an essential component for a user to understand where

an object is placed and at what height and depth it resides. As stated in [?],

shadows are effective for recognizing spatial relationships in the depth direction.

The effect was especially significant in the case of monocular display where there

are no stereo spatial cues. Such a result underlines the importance of shadow

casting for depth perception. Since we are working on a single display mobile

22

device, users can only understand the depth information by using shadows (See

Figure 4.1).

4.1 Spherical Harmonics

Real-time lighting in a mobile device requires an efficient method for realistic

rendering. There are implementations that can visualize any type of graphics

realistically but they work very slowly due to low frequency of mobile processors

[?]. Lighting equation is formed by a complex integral that calculates all light

formation in continuous domain.

L(x, ~ω0) = Le(x, ~ω0) +

∫
S

fr(x, ~ωi → ~ω0)L(x′, ~ωi)G(x, x′)V (x, x′)dωi (4.1)

Where

L(x, ~ω0) = the intensity reflected from position x in direction ω0

Le(x, ~ω0) = the light emitted from x by this object itself

fr(x, ~ωi → ~ω0) = the BRDF of the surface at point x, transforming in-

coming light ωi to reflected light ω0

L(x′, ~ωi) = light from x′ on another object arriving along ωi

G(x, x′) = the geometric relationship between x and x′

V (x, x′) = a visibility test, returns 1 if x can see x′, 0 otherwise

Bidirectional reflectance distribution function which is abbreviated as BRDF

in Equation 4.1 is a four-dimensional function that defines how a light vector is

reflected on an opaque surface. It’s parameters are incoming light direction ωi,

outgoing light direction ωo defined in surface normal space for each azimuth an-

gle ϕ and zenith angle θ which makes it four dimensional. For realistic rendering

of objects BRDF property can be used to include detailed surface properties but

23

it adds a complex pre-calculation routine to rendering system. Memory require-

ments increase as we need to store detailed reflectance properties for each vertex.

Since we work on mobile environment, we left integration of BRDF as a future

work.

Calculation of the lighting equation integral in a mobile real-time augmented

reality environment is time consuming and we need to make some simplifica-

tions. For shiny scenes it is convenient to use cube maps for reflections that seem

realistic. However, this type of rendering still accounts a simple diffuse lighting

model which only outputs a color depending on the incoming light direction, sur-

face normal and surface’s material diffuse color. In order to have shadows in a

virtual scene, geometry information needs to be used. As described in [?] casting

shadows of curved geometries can be accomplished by using a multi-pass algo-

rithm where in each step a depth texture taken from the light’s point of view needs

to be transformed to cameras view space. After the transformation, shadows are

calculated by comparing each depth value of current view with the transformed

depth values and marking pixels which do not have equal depths as shadowed.

Shadow mapping techniques have been improved after the first proposition of

the algorithm but mobile device hardware and OpenGL ES specification did not

develop as fast as graphics hardware available for personal computers. For a brief

definition of OpenGL ES support on mobile devices please see Table 2.1. In our

system we assumed that our system will support OpenGL ES 1.1. Since we have

a limited computing power we need to use techniques that are fast to calculate

and require as little special feature of the hardware as possible.

Spherical Harmonics Lighting (SHL) presented [?] allows us to compress

lighting information for a given model in an efficient way. Spherical harmonics

(SH) are special types of basis functions which can be used to reconstruct any

function. This type of feature is analogous to Fourier transform which works over

the unit circle for one-dimensional functions (See Equation 4.2) where a) shows

reconstructing with basis functions in one dimension and b) shows approximation

24

using spherical harmonics projection. SH contains a large set of mathematical

definitions which we will cover only the crucial points in this chapter, for more

information about the details of SHL please refer to [?].

f(x) = lim
n→∞

n∑
i=0

ciBi(x) f̃(s) =
n∑

l=0

l∑
m=−l

cml y
m
l (s) =

n2∑
i=0

ciyi(s)

where where (4.2)

ci =

∫
D

f(x)Bi(x)dx cml =

∫
s

f(s)yml (s)ds

a) b)

where yml (s) represents Associated Legendre Polynomials with two argu-

ments l and m. l defined as band index and takes positive integer values. We

can also define reconstruction equation with 1D indexing and rewrite summation

in range [0..N2]. These polynomials defined over range [−1, 1] and they return

real numbers. For each band polynomials are orthogonal w.r.t. a constant term

and between bands they are orthogonal with a different constant. This allows

us to calculate coefficients required for real-time reconstruction by multiplying

Legendre polynomials with our lighting function f(s).

Reconstruction process is a time consuming computation defined continu-

ously over a sphere. In order to compute SH coefficients we will use a mathemat-

ical tool called Monte Carlo Estimator (MCE). Integral estimation of any function

f can be computed by summing the product of the value of that function at sample

points by the value of the probability density function p (Equation 4.3.a). If we

also assume that sample points that we take around a sphere are uniform, equa-

tion will be as simple as the function f sampled at uniform sample points divided

by a weight (Equation 4.3.b).

25

E[f(x)] =

∫
f(x)dx =

∫
f(x)

p(x)
p(x)dx

≈ 1

N

N∑
i=1

f(xi)

p(xi)
(a)

≈ 1

N

N∑
i=1

f(xi)w(xi) (b)

=
4π

N

N∑
i=1

f(xi) (c)

(4.3)

As we are considering a set of integration over a surface of a unit sphere,

sample points should be distributed over the surface uniformly. Since we know

that the surface are of unit sphere is 4π our weighting function becomes constant

as equal to the area of the unit sphere (Equation 4.3.c). Now we can define Monte

Carlo integration for SH coefficients as follows

ci =
4π

N

N∑
j=1

f(xj)yi(xj) (4.4)

here ci represents a coefficient that we can use to approximate our lighting

function. These coefficients are stored for each vertex in our model. For N bands

we have N2 coefficients.

So we can define a simplified version of the rendering equation as

L(x) =
ρx
π

∫
Ω

Li(x, ωi)V (ωi)max(Nx · ωi, 0)dωi (4.5)

Where

Li(x, ωi) = incoming light at point x along vector ωi

ρx = the surface albedo at point x

Nx = the surface normal at point x

V (ωi) = a visibility test, returns 1 if ray is not blocked by self, 0 otherwise

26

So the transfer function for each vertex becomes

MDS = V (ωi)max(N · ωi, 0) (4.6)

Algorithm 1 Pseudo code for calculating vertex color values by using coefficients
for i = 0→ NumOfSamples do
Hs← DOT (sample[i].vec, normal)
if Hs > 0 then

if SelfShadow(pos, sample[i].vec) = 0 then
for j = 0→ NumOfCoefficients do
Intensity ← Hs ∗ sample[i].coeff [j]
ResultRed[j] = Intensity ∗MaterialRed
ResultGreen[j] = Intensity ∗MaterialGreen
ResultBlue[j] = Intensity ∗MaterialBlue

end for
end if

end if
end for
Factor ← Area/NumOfSamples
for i = 0→ NumOfCoefficients do
CoeffRed[i] = ResultRed[i] ∗ Factor
CoeffGreen[i] = ResultGreen[i] ∗ Factor
CoeffBlue[i] = ResultBlue[i] ∗ Factor

end for

The main property of SH Lighting which allows us to use it on most of the

mobile platforms available today is that, it is very easy to define global light-

ing, shadow and occlusion information by using SH coefficients. We only need

to store required coefficients within each vertex so that for each rendering step

lighting information can be constructed by multiplying the computed light coef-

ficients with vertex coefficients. Since we multiply all coefficients as much as

the samples that are calculated along a sphere, it is straightforward to have light

intensity information for all light directions by using the orthogonality feature of

SH. Rotation in SH domain is not straightforward as in Cartesian coordinate sys-

tem and we want to rotate SH coefficients to define light direction. One downside

of having a need to rotate SH coefficients is, for each object in the scene we need

to rotate light coefficients specifically to that object. Also having more than one

light source increases the computation need for each object but there is an oppor-

27

tunity to cache rotated coefficients in case of a static scene for each object that is

being rendered is mostly static. (See Figure 4.2).

(a) (b)

(c) (d)

Figure 4.2: Rendering outputs with Spherical Harmonics. Rendering output with
no light in OpenGL (a), Diffuse lighting in OpenGL (b), Diffuse Lighting with

Spherical Harmonics (c), Diffuse Lighting with Occlusion information (d)

Lighting in computer graphics can be achieved with different types of meth-

ods. We tried to show the difference between SH Lighting and standard OpenGL

lighting in Figure 4.2. In standard lighting in OpenGL with only ambient light-

ing present, we can only see the outlines of objects. By adding diffuse lighting,

we can perceive the shading and surface information of objects correctly as com-

pared to Figure 4.2a. Calculating diffuse lighting without any shadow calculation

in SHL is more efficient than using default OpenGL lighting since we reuse the

calculated parameters from SH coefficients in each frame. Even though we see

the surface structure, we cannot be sure about the depth of objects. As we can

see in Figure 4.1, shadow information allows us to perceive depth information

correctly. So we use spherical harmonics coefficients which are calculated by

28

considering the parameter V (ωi) in 4.5. This gives us both shadow and occlusion

information for objects in the scene (See Figure 4.2d).

4.2 Skylight Model and Tone Mapping

Lighting from sunlight needs a robust skylight model. We used Preetham [?]

skylight model for which was explained in detail for spherical harmonics lighting

in [?]. Output of Preetham skylight model gives High Dynamic Range (HDR)

color. We implemented Reinhard tone mapper [?] for tone mapping HDR values

to visible range. Most of HDR calculation is done in image domain where a

virtual scene is rendered to a render target that supports 16 bit Floating point

values. Then algorithm for tone mapping is applied to pixels. We implemented

this system for per-vertex color calculation.

We approximate the key of the scene by using Equation 4.7.

L̄ω =
1

N
exp(

∑
i

log(δ + Lω(i))) (4.7)

Where Lω(i) is the ”world” luminance for vertex i, N is the total number of

pixels in the image and δ is a small value to avoid the singularity that occurs if

vertices exist that do not receive any light. As mentioned in [?], if the scene has a

normal-key we would like to map this to middle-grey of the displayed image by

using Equation 4.8.

L(i) =
α

L̄ω

Lω(i) (4.8)

Where L(i) is a scaled luminance and α = 0.18 called exposure. For low-key

and high-key vertex colors they allowed α to be changed as proportional to 0.18.

We used this average luminance value to tone-map HDR colors with Equation

4.9.

29

Ld(i) =
L(i)(1 + L(i)

L2
whitepoint

)

1 + L(i)
(4.9)

We did not implement automatic dodging-and-burning feature explained in

the paper, which controls how very high luminance appear as blurry. From our

tests in an outdoor environment with diffuse object above formula gives accept-

able results. Implementing automatic dodging-and-burning also requires convo-

lution operations which Reinhard implemented by using multiplication in FFT

domain. Even though this gives better results in highlights it adds more complex-

ity to each frames render routine.

30

Chapter 5

Case Study

We run our defined methods on several input images which are taken various

times of the day. Development of our methods started with a Sony VAIO UX

Micro PC which had double sided camera setup but no sensors attached built-in.

Since we needed sensor information along the input images and recently the most

common tablet platform emerged as iPad, we decided to collect data by using it.

Switching target platform which has a totally different development environment

during our research had a side effect that we did not have libraries to be compiled

for that platform. So we gathered all images by using two sided camera built in

to iPad and read sensor information in order to process them on a PC. In order

to make sure our system is cross-platform compatible we only used open-source

libraries which can be ported to any mobile platform.

5.1 Controlled Environment Tests

In order to see our system’s performance clearly we captured several images in

a controlled environment where we specify the light direction with only a single

light source without any reflections from other surfaces.

These tests are performed on Macbook Pro with the built in i-Sight camera.

OpenCV face detector runs at 25 fps and applying bilateral filtering to face region

detected slows down the capture rate to 15-20 fps where capturing gets slower as

31

Figure 5.1: Controlled Environment Test Image Sequence

the face image regions occupies a larger area. Results show that for controlled

light environments where light source is not infinite as sun light, highlights on

the image can mislead the algorithms since there are two separate peak points in

the image as a result of very close lighting. From the algorithmic perspective we

can treat these types of differences as different light sources or we can limit FCM

clustering and take the average of the light directions for a single light.

φ θ

Image A
R 110◦ 160◦

A 88.54◦ 175.2◦

E 22.54◦ 15.2◦

Image B
R 10◦ 90◦

A 21.3◦ 101.50◦

E 11.3◦ 11.50◦

Image C
R 110◦ 140◦

A 95.48◦ 144.7◦

E 14.52◦ 4.7◦

Table 5.1: Real Measured Light Directions (R), value returned by our estimation
(A) and absolute error (E) for the zenith φ and azimuth θ angles in the scene.

Test images are marked with their respective letters in Figure 5.1

5.2 Outdoor Tests

We also made tests in outdoor environment in order to measure the performance

of the algorithm with sunlight. In outdoor, our system works as expected since the

32

sunlight comes from an infinitive direction. The main problem with this approach

is having an overcast day where clouds cover the intensity of the sun. Cameras

available in mobile environments use auto-adjustments for exposure setting and

for now we can only obtain the camera parameters via EXIF information em-

bedded in JPEG files. As a parameter for global light intensity we use exposure

value from embedded image information and define exposure in HDR lighting

in inverse-proportion. Mapping between camera and HDR exposure level are

not exact representations. So it is expected that we have some inconsistencies in

object lighting due to overcast weather conditions.

The difference between intensity images in a strong day light and a full over-

cast sky shown in Figure 5.2. Rendering with the input light directions using SHL

can be seen in Figure 5.3.

(a) (b) (c)

Figure 5.2: Face Images taken in different sky conditions

Image A Image B Image C
φ θ φ θ φ θ

R 51.81◦ 99.96◦ 51.81◦ 99.96◦ 52.56◦ 241.55◦

A 75.4◦ 105.7◦ 87.9◦ 125.23◦ 32.2◦ 182.8◦

E 23.59◦ 5.74◦ 36.09◦ 25.27◦ 19.61◦ 59.47◦

Table 5.2: Light Source direction estimation for images in Figure 5.2

33

A B C

Figure 5.3: Virtual Object rendered in different lighting conditions. Color values
are similar to the grass colors which our object have similar color.

5.3 Discussion on System Performance

Detecting outdoor lighting from a single image can have many side effects de-

pending on the weather conditions. We have tested and demonstrated our method

in strong, mid and low direct sun light. Performance in different weather con-

ditions like snow, storm or sky covered with dense clouds are not evaluated so

there is no data available for those scenarios. However our system is capable of

extracting lighting direction in a mobile augmented reality scenario. Sensor re-

sults are measured very precisely for testing purposes and any kind of drifting in

sensor results are neglected during tests. Since our assumption is that user look

directly to our mobile device screen, software cannot detect a correct direction

in case if there is a head rotation in other z-axis. As can be seen from 5.2c in

a totally overcast weather our software’s rate of error increases dramatically in

azimuth direction (See Table 5.2 Image C θ value).

This is a result of full diffuse lighting in sky which distributes light evenly so

that extracting a direction is generally impossible. Exposure level is an indication

of such scenarios where we detect a large standard deviation in light directions

and the exposure level is slower than a direct sun light scene. In the case where we

have a large standard deviation and intensities in the image are not high as direct

sunlight configuration we decrease the used SH coefficient bands to 2 where first

34

(a) (b)

(c)

Figure 5.4: Rendering with only sun light configuration with Preetham skylight
model (a), Reference sun position and angle from camera direction (b),

Reference face image for light direction extraction (c)

35

band defines ambient color and second band defines diffuse color. Having more

bands allows us to capture more detail for both shadow and lighting but in full

overcast scenes the detail needed for lighting coefficients is less.

36

Chapter 6

Conclusion and Future Work

Our contributions in this thesis can be summarized as:

• We proposed a new technique on how to extract lighting information from

a real scene by using human face.

• We proposed a complete system to handle augmented reality illumination

in outdoor scenes.

• Our system is build on top of most common open-source libraries like

OpenCV and ARToolkit. These libraries have been ported to different mo-

bile platforms which allows our system to be integrated easily to different

hardware.

• Our system allows mobile application programmers to use recent hardware

in mobile devices for real-time augmented reality applications.

Our work is a novel method to capture a simplified illumination model in real-

time. This model can be extended to more complex lighting calculations by using

a robust 3D face tracker system. Future works may include:

• Developing a complete mobile application that contains all proposed fea-

tures built-in on an Android or iPad device.

• Implementing Spherical Harmonics Lighting for dynamically changing ob-

jects.

37

• Conducting several user studies in various locations and different times

of the year in order to detect lighting errors in different sky and weather

conditions.

In this thesis we aimed to propose a real-time light extraction method specifi-

cally tuned for mobile devices. This system can is easy to integrate into different

platform while requiring minimal hardware.

38

	Introduction
	Related Work & Background
	Light Source Estimation
	 Lighting Virtual Objects
	Mobile Technology
	Mobile Devices
	Augmented Reality

	Motivation

	Estimating Light Directions
	Face Detection and Pose Estimation
	faceAPI Tracking
	OpenCV Face Detection

	Estimating Azimuth and Zenith Angles
	Clustering Intensity Vectors

	Light Direction Projection

	Lighting Virtual Objects
	Spherical Harmonics
	Skylight Model and Tone Mapping

	Case Study
	Controlled Environment Tests
	Outdoor Tests
	Discussion on System Performance

	Conclusion and Future Work

