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ABSTRACT 

Proposal of Identity-Based cryptography by Shamir in 1984 opened a new area 

for researchers. Failing to provide a feasible implementation of identity based 

encryption (IBE), Shamir developed a signature scheme, whereby signatures can be 

verified by publicly available information such as signer’s identity. Since the first 

efficient implementation of IBE realized using pairing operation on elliptic curves due 

to Boneh and Franklin a plethora of papers has been published and many studies have 

been conducted covering different aspects of pairing-based cryptography. Today, 

pairing is used in many cryptographic applications including, identity based 

cryptography, key exchange protocols, short signatures, anonymous signatures and in 

many other newly emerging protocols and schemes. Also, pairing is still a developing 

research field yielding important challenges for the research community.  

Pairing computation involves fairly complicated operations compared to 

classical symmetric and asymmetric cryptosystems. Multitudes of pairing types have 

been proposed after its first appearance in the literature. Also, each of them involves 

selection of many parameters such as the choice of the underlying field and its 

characteristics, order of the embedding degree, type of the elliptic curve etc. Therefore, 

different types of optimisations are possible rendering selection process extremely 

difficult. Because of the abundance of choices, for an efficient pairing implementation 

many criteria have to be examined. For instance, selection of pairing type, construction 

of finite fields and elliptic curves, coordinate systems to represent points on the curve 

and algorithms and architecture for arithmetic operations play a crucial role on the 

performance of the specific implementation of the pairing-based cryptography.  

 A multitude of implementations regarding to pairing-based cryptography have 

been proposed in the literature. However, most of them are software realizations; the 

reason being is the complexity of the overall system. Some hardware implementations 

have already been proposed, but most of them are very specific, therefore lacks 

flexibility and scalability. Due to the complexity of the system, some researches advice 

to use dedicated implementations for specific set of parameters even in software, 

limiting the flexibility of the implementation further.  
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 In this thesis, we propose a very generic, flexible and compact hardware co-

processor for all kinds of pairing implementations intended for implementation on 

reconfigurable devices (e.g. FPGA). Our co-processor supports all types of pairing 

operations with different parameter classes via making use of highly-optimized 

hardware implementations of basic arithmetic operations common not only to pairing 

operations, but also to elliptic curve cryptography and other public key cryptography 

algorithms. Our design utilizes the idea of hardware-software co-design concept. To 

accelerate pairing computation we implement some units responsible for performing the 

most time-consuming operations as a generic, but highly optimized hardware circuits, 

whereas we prefer to implement some complex parts (unworthy of hardware resources) 

in low-level software of micro-instructions. Although we use two arithmetic cores 

running concurrently, our design still manages to be compact thanks to its careful and 

generic design.  
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ÖZET 

Kimlik-temelli kriptografik sistemin 1984’te Shamir tarafından ortaya 

atılmasıyla, araştırmacılar için yeni bir kapı aralanmış oldu. Kimlik-temelli şifreleme 

işlemi için uygulanabilir bir algoritma önermeyen Shamir, imzanın geçerliliğinin 

imzalayanın herkese açık bilgileriyle, örneğin kimliği, doğrulanabildiği uygulanabilir 

bir elektronik imzalama sistemi geliştirdi. Kimlik-temelli şifrelemenin ilk uygulanabilir 

örneğinin Boneh ve Frankin tarafından eliptik eğriler üzerinde tanımlanmış eşleme 

(pairing) işlemi ile verilmesinden bu yana, kriptografi alanında eşleme temelli pek çok 

çalışmalar yapılıp, yayınlar çıktı. Günümüzde eşleme operasyonu pek çok kriptografik 

uygulamada kullanılmaktadır, kimlik temelli kriptografik sistemler, anahtar değişim 

protokolleri, kısa imzalar, anonim imzalar ve yeni gelişen pek çok protokol ve 

uygulama bunların arasındadır. Özet olarak kriptografik eşleme, içerisinde çözülmesi 

gereken birçok problemi barındıran ve halen gelişen bir araştırma alanıdır. 

Eşleme operasyonu klasik simetrik ve asimetrik kriptografik sistemlere göre 

oldukça karmaşıktır. Đlk eşleme operasyonunun geliştirilmesinden bu yana eşleme 

operasyonunun birçok sayıda türevi çıkmıştır. Her bir türev kullanılan cebrik cismin 

seçimi ve onun karakteristiği, yerleştirme derecesi gibi birçok parametre 

kullanmaktadır. Bundan dolayı parametre seçim sürecini oldukça zorlaştıran bir hayli 

optimizasyon bulunmaktadır. Seçenek bolluğundan dolayı etkili bir eşleme operasyonu 

gerçeklemesi için pek çok ölçüt incelenmelidir. Örneğin, eşleme işleminin tipi, uygun 

cebrik cismin ve eliptik eğrinin seçimi, kullanılacak koordinat sisteminin, algoritmaların 

ve aritmetik operasyonlar için donanım mimarilerinin seçimi gibi konular eşleme 

operasyonunun etkin gerçeklenmesinde önemli rol oynamaktadır. 

Literatürde pek çok eşleme işlemi gerçeklemesi mevcuttur; fakat bunların çoğu 

salt yazılımsal gerçeklemelerdir. Bunun sebebi gerçeklenen operasyonun 

karmaşıklığıdır. Bunlar dışında bazı donanımsal gerçeklemeler mevcutsa da bunların 

çoğu çok özelleşmiş uygulamalardır ve bu nedenle esneklik ve ölçeklenirlikten 

yoksundur. Operasyonun karmaşıklığından dolayı bazı araştırmacılar verimli bir 

gerçeklemeye sahip olmak için yazılımsal dahi olsa, tasarımın esnekliğini sınırlayarak, 

özelleşmiş tasarımlara gidilmesini salık vermektedir.  
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 Bu tezde, programlanabilir donanım cihazlarında gerçekleştirilmek üzere, her 

türde eşleme operasyonları için çok esnek, genel ve kompakt bir yardımcı-işlemci 

tasarımı sunulmaktadır. Geliştirilen tasarım, değişik parametre sınıflarında her eşleme 

operasyonu türevini desteklemektedir. Bunu yaparken sadece eşleme operasyonu için 

değil, diğer birçok asimetrik anahtarlı şifreleme sistemlerinde de kullanılan temel 

aritmetik operasyonları gerçekleyen son derece optimize edilmiş donanımsal işlevsel 

birimler kullanmaktadır. Tasarımda ortaya koyduğumuz yaklaşım, yazılım ve 

donanımın ortak kullanımıdır. Eşleme operasyonunu hızlandırmak için en çok zaman 

harcayan operasyonlar parametrik ve oldukça optimize donanımsal birimler olarak 

gerçeklenirken, karmaşık operasyonlar (kısıtlı donanım kaynaklarını verimli olarak 

kullanamayan) mikro-operasyonlar vasıtasıyla yazılımsal olarak gerçeklenmiştir. 

Tasarımda her ne kadar eş zamanlı çalışan ve aritmetik işlemleri gerçekleyen iki-

çekirdek kullanılsa da, dikkatli tasarım ve esnek yapı sayesinde tasarım karşılaştırmalı 

olarak az yer kaplamaktadır. 
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1 Introduction 

Most commonly accepted definition of the pairing operation is as follows: Pairing 

is a bilinear map which is defined from �
 × �� to ��, (�
 × �� → ��), where �
 and 
�� are usually additive groups implemented on elliptic curves and �� is multiplicative 

group [3]. Pairing is first introduced to cryptographic community by Menezes et al., 

with a destructive example, MOV attack [1]. In their study, they propose a method for 

converting discrete logarithm problem, which is defined over an elliptic curve on a 

finite field ��, to the discrete logarithm problem over an extension field ���∗ . However, 

real take off in pairing is realized with application of pairing to the identity-based 

cryptography (IBC) by Boneh and Franklin [2]. Since then, pairing has been a very 

active research topic with multitude of papers published every year. Pairing is mainly 

used in IBC, certificate-less cryptosystem, in key agreement protocols [10], [11] and 

many new cryptographic applications [12].     

Many pairing types are proposed in the literature [13], [14], [15]. Also many 

optimization methods are proposed for operations in pairings to efficiently implement it 

in hardware and software [16], [17], [13]. However, most studies are about software 

implementations of pairings [18], [19], [20]. There are some publications which aim 

hardware realizations, but they are few in number and besides, it is very difficult to find 

common points among them to make a fair comparison. This is due to the fact that, each 

implementation uses a special type of pairing or special parameters. There is a multitude 

of parameters that affect the efficiency and scalability of a pairing implementation; both 

in hardware or software. Some of the parameters includes: type of the curve, type of the 

coordinate systems used for elliptic curve point representation, underlying field, and 

extension degree of the fields, and even hamming weight of an input variable [3].      
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In this thesis, we design a general-purpose pairing coprocessor for arbitrary elliptic 

curves and embedding degrees targeted for reconfigurable hardware implementation. 

We propose a balanced mixture of hardware-software methods and architectures for 

realization of pairing operation. It aims to use advantages of both software and 

hardware. While hardware is very efficient in realizing some dedicated operations that 

constitute the computational bottleneck of the pairing operation (e.g. field 

multiplication), it is a valuable resource and cannot be easily spent on complex 

operations, which are not worthy of hardware resources. At this point software remedies 

the situation by providing cost-effective solutions to complex operations, even though it 

is not as fast as hardware. We aim to propose an architecture that can fit into small and 

old fashioned FPGAs, like Xilinx Spartan 3S400 [21]; and when used with very modest 

middle range FPGAs, like Xilinx Spartan-6SLX45T [5], there remains plenty of 

implementation space for other purposes. However, being small is not the only goal of 

the design; an acceptable speed performance is required. Our processor employs two 

arithmetic cores, which provide shorter operation time by using parallelization. In 

addition to these, our design is parametric and very flexible. It provides trade-off 

between area and speed in a very wide spectrum. According to design privileges, design 

can be easily changed from an area-efficient design to speed-efficient design. Variables 

that facilitate the flexibility of our design are listed below: 

� Word Length (WL): Our processor operates over variables of words similar to 

a general-purpose CPU. However, our word size is changeable. This 

parameter defines the bit length of the word. 

� Input Length (IL): Some dedicated hardware implementations are designed to 

operate on a constant input size. However, our design can easily be adapted to 

work on different input lengths. This parameter defines the total bit length of 

the longest input variable (e.g modulus in modular arithmtetic). 

� Pipeline Stage Number (PSN): This parameter defines the total number of 

pipeline stages used in multiplier for the underlying prime field, which is an 

important part of the design. 

Main subject of this study is a pairing processor, as previously mentioned, since 

many parameters affect the efficiency of pairing operation. We also need suitable 

parameters and curves to work on.        
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Pairing operation can be realized over certain classes of elliptic curves satisfying 

some special parameters, as explained in [4], and detailed in the next chapter, are known 

as pairing-friendly elliptic curves. Pairing operation involves arithmetic over an 

extension field, thus we have to decide and find a suitable elliptic curve and extension 

field to use in our implementations.  

In addition, we also have to be careful about the efficiency and security of the 

system. One parameter that directly affects the security and efficiency of the system is 

the bit length of prime integer (the modulus) for the field over which we construct our 

elliptic curve. As bit length of the modulus increases, arithmetic operations begin to 

slow down, but security increases. Another factor that affects the security and speed is 

the embedding degree of elliptic curve, which is also the degree of irreducible 

polynomial that the extension field is built upon. As embedding degree gets bigger that 

can increase the security level, complexity of arithmetic operations in the extension 

field increases.   

One of the optimizations to reduce the execution time of pairing is proposed for 

extension field multiplication. We use Karatsuba-Ofman [22] algorithm to reduce 

multiplication time in the extension field. Before completing pairing operation, an 

exponentiation operation has to be done on extension field. Here again we use an 

optimized method to considerably decrease the total exponentiation time. 

Pairing is an operation defined over elliptic curves whereby choice of the 

coordinate systems is important for efficiency reasons. For example, in affine 

coordinate system during elliptic curve point addition and point doubling, a division 

operation has to be performed. But the division is very time consuming operation. 

Therefore, we have to choose a coordinate system that does not need division. We 

prefer to use Jacobian mixed projective coordinate system as it needs no division 

operation during point addition and point doubling. Moreover, it exhibits better 

performance than other projective coordinate systems. 

In the next section we provide the details about the underlying FPGA architecture, 

selection of elliptic curves, extension field operations and elliptic curve arithmetic 

operations. Also Tate pairing is explained in detail and some optimization techniques 

are discussed to reduce the overall running time of the algorithm. 
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2 Underlying FPGA Architecture & Background 
Information 

In this section we provide information about the structure of the FPGA which we 

use to implement our co-processor architecture. Also we give information about pairing 

operation in general and Tate pairing in particular. We choose to implement our design 

in Spartan-6SLX45T, due to the fact that it is a low-cost middle-range FPGA, meaning 

it does not have abundance of logic resources like high-end FPGA devices, but has a 

modest level of logic resources close to low-end FPGA devices [5]. Another reason is 

that Xilinx Spartan-6 family members are optimized for low power consumption. In the 

following subsection underlying FPGA architecture is discussed. 

2.1 Underlying FPGA Architecture 

Spartan-6 provides low power solutions with its 45 nm manufacturing technology. 

It provides low power consumption with high performance with the help of its 1.2 V 

core voltage. Compared to the previous members of Spartan family, its power 

consumption is as low as half of theirs. Also, it provides moderate logic resources [5]. 

One member of the Spartan-6 family, Spartan-6SLX45T, is 84.4$ today, whereas a 

cheap and older FPGA, Spartan-3S400 costs about 31$ [7]. However, Spartan-6 has five 

to six times more logic resources than Spartan-3. Therefore, cost of per logic unit in 

Spartan-6 is lower than the cheapest FPGA. Hence Spartan-6 offers the best price-

performance ratio compared to the older Spartan family. If we look at all the 

advantages, Spartan-6 appears as a good choice for low-cost, low-power embedded 

cryptographic applications, which necessitate considerably complicated operations.  
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Understanding architecture and capabilities of underlying FPGA architecture is 

essential for efficient designs. This is only possible provided that complete insight of 

FPGA attributes is available to make right decisions about the design. 

There are several special building blocks inside the Xilinx Spartan-6 FPGA, 

which we use in our design. These are configurable logic blocks (CLBs), block RAMs 

(BRAM) and digital signal processor units (DSP48A1s). These components provide 

flexibility in the design and efficient use of resources.  

CLBs are the main reconfigurable logic block of the FPGA. One CLB contains 

two slices and every slice contains four look-up tables (LUTs) and eight flip-flops. 

LUTs are mostly known as Boolean function generators of the FPGA. However, they 

can also serve as RAM and shift register. LUTs in Spartan-6 have six inputs and two 

output ports. These LUTs are, in fact, composed of two smaller, five-input LUTs. 

Therefore, with one LUT either two five-input logic functions or a six-input logic 

function can be realized. There are several types of slices; SLICEX, SLICEL and 

SLICEM. Differences between them are as follows: SLICEX is the simplest one, where 

LUTs are only capable of realizing logic functions. It does not contain arithmetic 

structure, nor can it be used as shifter or RAM. SLICEL contains carry-logic and its 

LUTs can be combined to construct large multiplexers. SLICEM is the most functional 

one. In addition to the functions in SLICEL, LUTs in SLICEM can be used as 

distributed RAM and shifter. Both SLICEL and SLICEM feature carry look-ahead logic 

for fast addition operation. By default, addition is implemented using carry look-ahead 

adder logic in the FPGA. Thus, we do not use any structure other than the one 

automatically inferred by the FPGA for addition. Trying to implement addition by using 

other logic resources does not result in a better adder due to the fact that default adder 

type of FPGA is already carry look-ahead adder, moreover it is placed into a specialized 

area. What is meant by specialized area is that logic elements used in carry generation 

have very low latency values.  

Since there are four LUTs in a slice, a 4-bit adder/subtractor is easily realized 

within a slice. For operands larger than four bits, a special structure reduces the latency 

in carry generation path. Normally, slices in a CLB are not directly connected to each 

other; they are connected to a switching matrix outside the FPGA, as can be seen in 
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Figure 1. After switching matrix, they connect to global routing resources; then 

appropriate routing is achieved.  

 

 

 

 

 

 

 

Figure 1: Connection of Slices [6] 

However in the case of carry propagation, carry output of one slice directly connects to    

the carry input of the other slice. Hence, fast propagation of carry is possible. This 

situation is depicted in Figure 2.  

 

 

 

 

 

 

 

 

Figure 2: Inter CLB Carry Propagation [6] 
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The feature related to carry propagation is not new to Spartan-6, while it exists 

even in older Spartan-3 family; the implementation is much faster in Spartan-6.  

LUTs have many other useful features. LUTs can be configured to construct wide 

multiplexers. As previously mentioned, LUTs in Spartan-6 have six inputs which enable 

us to realize a (4 × 1) multiplexer in one LUT. Thus, when using multiplexers equal or 

smaller than (4 × 1), only one LUT is used. It is important to keep this property in mind 

and trying not to use larger multiplexers than (4 × 1). For example, when a (5 × 1) 
multiplexer is used logic usage doubles rather than a linear increase. To implement 

multiplexers having sizes between (5 × 1) to (8 × 1), we need the same amount of 

LUTs, which is double of   (4 × 1) in this case. We understand that this is important 

especially when we think about multiplexers used in large data buses. Number of 

multiplexer utilized for one bit switching is multiplied with size of bus in a multiplexer 

used in bus switching.  

Another important feature of LUTs is that they can be configured as distributed 

RAM. However, only LUTs in SLICEMs can be used as RAM. These LUTs have some 

additional attributes that enable them to act like a RAM. They have inputs for data as 

well as a write enable. Thus in most basic version, they can be configured as single port, 

64 × 1 RAM with synchronous write and asynchronous read. Nevertheless, their output 

can be made synchronous by using the flip-flops in SLICEM. RAM, that is constructed 

using LUTs are called distributed RAM. Distributed RAM and BRAM can be employed 

interchangeably [6].  

BRAMs are hardwired memory blocks inside the FPGA. They have synchronous 

read/write operations. A BRAM can have different widths and depths. Wider BRAMs 

are automatically formed by the implementation tool. BRAMs are utilized generally 

when a need for high memory usage arises. Especially when big variables are used, like 

in our case and generally in most cryptographic applications, employing of BRAMs 

saves significant amount of logic resources. BRAMs have fixed places in the FPGA 

which is actually physically in the middle of FPGA. This may cause some unexpected 

latency in some cases when circuit is placed away from the BRAMs. In these cases 

outputs and inputs of the BRAMs should be registered [8].   

DSP48A1 is a special hardwired block for arithmetic and logic operations. There 

are equivalent functional units in older versions of FPGAs. It contains hardwired and 
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pipelined adders/subtractors and multipliers. In our design we use 18 × 18 hardwired 
multipliers. We do not use hardwired adders/subtractors inside of DSP48A1, since 

CLBs also have specialized carry logic as explained previously. Moreover using 

DSP48A1 for addition/subtraction may cause some extra delay due to routing to 

resources. To overcome this problem registered inputs and outputs are usually used. In 

this case registers adds extra clock cycles at each access of source and this increases the 

overall processing time. This is not worthwhile in case of adder/subtractor. On the other 

hand, since implementing multiplier with logic resources consumes too much area, we 

use DSP48A1 units for performing multiplication [9].   

2.2 Background Information on Algebraic Structures 

�
 and  �� are two additive groups and �� is a multiplicative group. And let all of 

them have a group order r, which can be further assumed to be prime number. Then 

pairing is a map defined as follows:  : �
 × �� → �� , which satisfies the following 
properties, given that " is a generator of �
 and # is a point on ��, which is linearly 
independent of " [23]: 

1. Bilinearity:  For all ", $ ∈  �
 and for all #, & ∈ �� 
 (" + $, #) =  (", #) ×  ($, #) 
 (", # + &) =   (", #) ×  (", &) 

 ()", #) =  (", #)* +,-  (", )#) =  (", #)* 
where × denotes the multiplication in ��. 

2. �on-degeneracy: For all " ∈ �
 − /01,  there exists some # ∈ ��  such that; 
 (", #) ≠ 1  and for all # ∈ �� − /01,  there exists some " ∈ �
  such that; 

 (", #) ≠ 1 
Tate pairing over elliptic curves is one type of the pairing operation that can be 

calculated efficiently and satisfies the aforementioned properties. " and  # are chosen as 

follows: Let �3 is a prime field and 4(�3) is curve over that field. Let 5 be a prime such 

that, there exists a point on the elliptic curve 4(�3)  with order of r. 

Moreover 5 | #(4(�3)) [24] where #(4(�3)) denotes the number points on the elliptic 

curve. Let 8 be the smallest number satisfying 5 | 9: − 1, and 5 ∤  9< − 1 for 1 ≤ > < 8 
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[25]. The integer k is referred as the embedding degree of 4(�3). Set of the points on 
4(�3) of order 5 is denoted as 4@�3AB5C. Then " ∈ 4@�3AB5C and # ∈ 4@�3�A are the 
inputs of the Tate pairing operation. More precisely, Tate pairing is defined as a map  

 : 4@�3AB5C × 4@�3�A → �3�∗ /(�3�∗ )E  and considered as the evaluation of a rational 
function  FG , whose divisor is -)H(FG) = 5B"C − 5B∞C (B∞C is point at infinity), such 
that: 

 (", #) = FG(JK)3�L
/E, 

where   JK~B#C − B∞C is the divisor for # [24] (for more information about divisors see 

[26]).   

The most efficient implementations for pairing computation use Miller’s 

algorithm proposed in [27], which evaluates the rational function FG  at point #. Tate 

pairing algorithm consists of elliptic curve and polynomial arithmetic operations over 

finite fields. Without any optimizations, the computation becomes prohibitively time-

consuming. One of the algorithms that computes Tate pairing efficiently is BKLS 

algorithm [28], as described in Algorithm 1. 

Algorithm 1: BKLS Tate Pairing Algorithm [4] 

Inputs: ", # ∈ 4 and 5 ∈ N  
        O ← ", F ← 1 
Output: FE,G(#)Q�RS

T  

1. for ) = Ulg (5)X − 2 to 0 
2.    F ← F� ∗ >�,�(#) 
3.    O ← B2CO 
4.    if 5* = 1 then 
5.       F ← F ∗ >�,G(#) 
6.       O ← " + O 
7.    end if 

8. end for 

9. F ← FQ�RS
T  

  

Many possible optimizations exist for Algorithm 1. Some optimizations are 

possible for arithmetic operations over  �3� , for evaluation of line computation 

function >Z,[(\) (steps 2 and 5), for elliptic curve operations (point addition and point 
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doubling) (steps 3 and 6) and for final exponentiation operation (step 9). Moreover even 

selection of proper 5 value can be included into these optimizations.    

Potential optimizations are explained in the next subsection. But prior to this 

finding the appropriate elliptic curve and pairing parameters are detailed since Tate 

pairing performance also depends on these parameters. 

2.2.1 Finding Tate Pairing Parameters 

 We choose to operate on a field with embedding degree being 8 = 4. Although 
another embedding degree can be selected for different security requirements we 

believe that this degree provides optimum security-complexity trade-off. Security of a 

pairing operation depends on two parameters: The bit size of the subgroup in elliptic 

curve, which is >]^�5, and the bit size of extension field, which is 8 ∗ >]^�9 . Values of 
these parameters should be chosen according to the best known attack towards them. 

Most successful attack for elliptic curve discrete logarithm problem (ECDLP) is 

Pollard-_ technique whose complexity is `(√5) [29]. On the other hand best attack to 
prime extension fields,  �3�, is index-calculus method whose complexity is given by; 

`(b3�(1/3))  and b3�(1/3) =  de((32/9)
/� ∗ (>]^ 9:)
/� ∗ (>]^>]^ 9:)�/�)  [31]. 

According to NIST suggestions [30] for 80 bit security it is proper to choose 5 as a 160-
bit integer and 9: as 1024-bit integer. We choose 5 as 160 bits and 9 as 256 bits for 80 
bits security following the NIST’s advice. However choosing the bit length is only one 

aspect of the task, since all together 5, 9 and 8 should satisfy some equations explained 

as in section 2.2. We use the following formulas proposed in [32] to find appropriate 

5, 9 values for 8 = 4. 
g(d) = −4d� 

5(d) = 4dh + 4d� + 2d� + 2d + 1 

9(d) = 1
3 (16di + 8dh + 4d� + 4d� + 4d + 1) 

Some other formulas can be used but above equations give the whole set of 

elliptic curves whose embedding degree 8 = 4 and having a discriminant value equals 
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to 3 (as explained in subsequent sections). With the help of a software program using 

these equations for desired bit lengths,  5 and  9 values can be found. Note that both and 
 5 and  9 are prime numbers, so for each value found, primality test have to be run.  

Another point to note is that extension fields are built using irreducible 

polynomials whereas 9 is just the prime of the field so we have to choose an irreducible 

polynomial. Since degree of our extension field is 8 = 4  then the degree of the 

irreducible polynomial should be 4. We choose a small irreducible polynomial in the 

form of d: − j to simplify the extension field arithmetic operations. In our case j is 2 
since it is a small number and moreover multiplying a number with 2 means shifting it 

to the left by 1 bit, which is a very easy operation compared to multiplication. Thus, 

another constraint is added to check when pricking a suitable 9 : To make  d: − 2 
irreducible polynomial, 2 should be quadratic non-residue in modulo  9 . In the 

equations, g(d) represents the trace of elliptic curve. As can be remembered 5 should 
divide #4(�3), which is equal to 9 + 1 − g. This variable is used in finding elliptic 
curve in next section.  

2.2.2 Finding Elliptic Curve 

After finding 9, 5  and g  values we can build an ordinary elliptic curve using 
these parameters. We use following elliptic curve equation: k� ≡ d� + + ∗ d +
m (n]- 9), where + = +o ∗ 8p  and m = mo ∗ 8q . To find elliptic curve variables +, m, 
IEEE 1363 standard [33], which defines standards for elliptic curve cryptography, is 

used. According to the standard for a given discriminant  +o  and  mo  values are 

predetermined and  8p  and 8q  values are random. Since we already choose our 

discriminant value as 3,  +o and mo values are known. Table 1 shows the values of  +o 
and mo for given discriminants: 
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D  ��  ��  
1 1 0 
2 -30 56 
3 0 1 
7 -35 98 
11 -264 1694 

 

Table 1:  +o and mo Values for Discriminant [33] 

We define another variable,  8′, for finding proper elliptic curve. This value 
comes from Hasse’s theorem; 8′ ∗ 5 = #4(�3) = 9 + 1 − g  since we know the right 
hand side of the equation we can compute 8′ and curve parameters can be calculated 

using 9, 8s, 5 and +o, mo. Note that 8′ has no relation with embedding degree 8. Curve 
parameters and generator point of #4(�3), ", can be found using Algorithm 2 defined in 

IEEE 1363. 
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Algorithm 2: Finding the Curve and Generator Point [33] 

Inputs: EC parameters e, 5 and 8′ and coefficients +o, mo  
Output: A curve E modulo 9 and a generator point " on E                      
        with order 5, or a “wrong order” message 
1. Select an integer t s.t. 0 < t < 9 
2. If D = 1, then + ← +ot n]- 9 and m ← 0; if D=3 then  + ← 0 

and m ← mot n]- 9 . Otherwise,  + ← +ot� n]- 9  and m ←
mot� n]- 9   

3. Look for a point " of order 5 on the curve k� = d� + + ∗
d + m (n]- 9)  via A.11.3 

4. If the output of A.11.3 is “wrong order”, then output 

the message “wrong order” and stop 

5. Output the coefficient +, m and the point ". 
Selection of t in the first step of the algorithm relies 
on the kind of coefficients wanted. For instance: 

- If D≠1 or 3, and it is wanted + = −3, then t is taken 
as the solution to +ot� ≡ −3 (n]- 9)  if there exists. 
If does not exists or selection of t causes a message 
“wrong order”, then choose another curve as follows. 

If 9 ≡ 3 (n]- 4) and the result was “wrong order” then 
choose – t n]- 9  instead of  t ; the result leads to a 
curve with + = −3 and the right order. If no solution 
t  exists, or if 9 ≡ 1 (n]- 4) , then repeat A.14.4.1 

with another root of the reduced class polynomial. 

The ratio of roots leading to a curve with + = −3 and 
the right order is roughly one-half if 9 ≡ 3 (n]- 4) , 
and one-quarter if 9 ≡ 1 (n]- 4). 

- If there is no restriction on coefficients, then 

choose t  at random. If it turns out “wrong order”, 
then repeat the algorithm till a set of parameters 

+, m  and "  is obtained. This occurs for half the 

values of t , unless D=1 (one quarter of values) or 
D=3 (one-sixth of values)       
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For Step 3 of Algorithm 2, where a base point is found, is given in Algorithm 3. 

Algorithm 3: Finding a Point " of Order 5 [33] 
Inputs: A prime 5, a positive integer 8′ not divisible         
        by 5, an elliptic curve 4(�3) 
Output: If #(4(�3)) = 8′5, a " on 4 with order 5, If not,      
        “wrong order” message 

1. Generate a random point " (not B∞C) on 4 
2. " ← 8′" 
3. If " = B∞C then go to step 1 
4. "′ ← 5" 
5. If "s ≠ B∞C then output “wrong order” and stop 
6. Return " 
 

Using the Algorithms 2 and 3 an elliptic curve 4(�3) and a generator point " is 
found. As can be remembered there is no constraint on the point #, other than being 

linearly independent of ". Thus, it is easy to find a # point for starting the Tate pairing 

operation [23]. 

2.2.3 Polynomial Arithmetic for ��� 

The values F and >Z,[(#) in Algorithm 1 are in �3�. Thus there are considerably 

high numbers of polynomial operations for arithmetic of  �3� . Most time-consuming 

operation of them is the inversion; but due to the algorithm used [4], denominator 

elimination can be applied. At the end of the Miller’s loop (for loop) in the Algorithm 

1, denominator of the variableF goes to 1. Thus, there is no need to perform inversion 

during the Miller’s loop. Therefore multiplication stands as the most time consuming 

operation in the Miller’s loop. We use an optimized method, called Karatsuba 

multiplication method [22], to reduce the number of  �3  multiplications used to 

perform �3� multiplications. The method is summarized as follows [34]. Let v and w be 

polynomials of degree 8 − 1, with 8 coefficients:   

v(d) = x +*d*
:L


*yo
, w(d) = x m*d*

:L


*yo
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For each ) = 0,1, … . . , 8 − 1  the terms J* ≔  +*m*  are computed. Also, for } =
1, 2, … , 28 − 3 and for all ~ and  g given ~ + g = } and g > ~ ≥ 0 the following terms 

are calculated  

J�,� ≔ (+� + +�)(m� + m�) 
Afterwards, �(d) = v(d)w(d) = ∑ �*d*�:L�*yo  can be calculated as follows:  

�o = Jo , ��:L� = J:L
 

�*(d) = � ∑ J�,� −���y*;����o ∑ (J� + J�)���y*;����o , F]5 ]-- ); 0 < ) < 28 − 2
∑ J�,� − ∑ (J� + J�)���y*;����o���y*;����o + J*/�, F]5  H , ); 0 < ) < 28 − 2�  

Rightness of the formula and its complexity are discussed in [35]. This method 

requires `(1/2(8� + 8)) multiplications in�3 while classical method requires `(8�) to 
perform one  �3� multiplication.  

In calculation of �3�  multiplication we use two Karatsuba multiplications 

recursively. First we calculate �3�  multiplication using �3  multiplication, for which 

explicit formulas used, when 8 = 2, is given in Algorithm 4. We build  �3� over �3 as 
�3� = �3BdC/(d� − j), where j is a quadratic non-residue in �3.  

Algorithm 4: Implementation of Karatsuba method on �3� 

Inputs: + = +o + +
), m = mo + m
)  
Output: � = + ∗ m where � = �o + �
). 
1. g
 =  +omo 
2. g� =  +
m
 
3. g� =  jg� 
4. �o =  g
 + g� = +omo + j+
m
 
5. g� =  g
 + g� = +omo + +
m
 
6. g
 =  +
 + +o 
7. g� =  m
 + mo 
8. gh =  g
g� = (+o + +
)(mo + m
) 
9. �
 =  gh − g� = (+o + +
)(mo + m
) − ( +omo + +
m
) 

- Total cost of the operation: 4�3 multiplication + 5�3 
addition 

 

Then we implement �3�  multiplication using �3�  multiplications. �3�  field is 

built upon �3�  field using tower construction. �3� = �3�BkC/(k� − �)  and �3� =
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�3BdC/(d� − j) where ) = �j ∈ �3� and � = ) where � = √) = √� ∈ �3�. This type of 

construction is called tower field. The tower field construction makes things easier in 

extension field operations. Thus, we can effectively build �3�  operations over �3� 

operations. The method for �3� multiplication is given in Algorithm 5.  

Algorithm 5: Implementation of Karatsuba method on �3� 

Inputs: v = vo + v
�, B= wo + w
�;  vo, v
, wo, w
  ∈ �3�  
Output: � = v ∗ w where � = �o + �
�;  �o, �
  ∈ �3�    
1. O
 =  vowo 
2. O� =  v
w
 
3. O� =  �O� = )@g�,o + g�,
)A = jg�,
 + g�,o) 
4. �o =  O
 + O� = vowo + �v
w
 
5. O� =  O
 + O� = vowo + v
w
 
6. O
 =  v
 + vo 
7. O� =  w
 + wo 
8. Oh =  O
O� 
9. �
 =  Oh − O� 

- Total cost of the operation: 3�3� multiplication + 1�3 
multiplication + 5�3� addition 

2.2.4 Elliptic Curve Arithmetic on Projective Coordinates 

We use Jacobian mixed coordinate system since in Algorithm 1, point " is in 
affine coordinate system. This coordinate system is more effective than other projective 

coordinate systems in terms of overall (both doubling and addition) operation count 

[45]. Another reason for using projective coordinate systems is to eliminate division 

(inversion), which is the most time consuming operation, in affine coordinate systems. 

A point O = (d
, k
, �
)  in projective coordinate system corresponds to the point 

" = (d
/�
�, k
/�
�) in affine coordinate system. Point doubling formulas for point 

v = (dZ, kZ, �Z)  for the curve  k� = d� + +d + m  is given as follows. � = 2v =
(d� , k� , ��) then ��Z = 3dZ� + +�Zh where ��Z is slope of tangent.  

d� = ��Z� − 8dZkZ� 

k� = ��Z(4dZkZ� − d�) − 8kZh 

�� = 2kZ�Z 



17 
 

Addition formula for points v = (dZ, kZ, �Z) and w = (d[, k[, 1)  where � = v + w =
(d� , k� , ��) and �Z,[ = (kZ − �Z�k[) is the slope of line vw. 

�� = (�Z�d[ − dZ)�Z 

d� = (kZ−�Z�k[)� − (�Z�d[ + dZ)(dZ − �Z�d[)� 

k� = ����Z,[(���d[ − ��d�) − ���k[ 

 Please note that denominators of the results are not given because, denominator of F 
goes to 1 at the end of the algorithm thanks to denominator elimination property. So we 

never compute denominators. 

2.2.5 Line Evaluation Function 

The function denoted by >Z,[(#) in Algorithm 1 is known as line evaluation 

function. Geometrically it is the distance between the point # and the line that intersects 

the points v and w [36]. Formulas related to >Z,[(#)  and >Z,Z(#) are given as follows: 
>Z,[(#) = @yQzA� − yAAzC − �Z,[(xQzA� − xAzA) 

Formula for >Z,Z(#)  is the same as above except that ��Z is used instead of �Z,[. 
As might be remembered # = (dK , kK) is in 4(�3�), and therefore, line computation 

involves arithmetic in 4(�3�), which is costly. However, there is a trick to make the 

computation of line evaluation much easier. Instead of using the full point # on 4(�3�), 
we can use the twist of 4(�3�) in a smaller field such as 4′(�3�/�), where - is a proper 
integer that divides 8. The elliptic curve 4′(�3�/�) can be called as the twist of  4(�3�) 
if there exists an isomorphism between them such that �:  4′(�3�/�)  → 4(�3�) [37]. 
Since our embedding degree is 4 we can choose - as 2 and in this case twist is named as 

quadratic twist, which is defined as follows: 

 4′(�3�): k� = d� + +�L�d + m�L�, +, m ∈ �3;  � ∈ �3� 

where � is a quadratic non-residue in �3� thus √� ∈ �3� and the isomorphism is given 

by [38]: 
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�� : �  4′(�3�) →  4(�3�)
(d, k) → (d�, k��/�)� 

Thus by using the twist curve, we can choose coordinates of the point # on �3� instead 

of choosing them on �3�. The twisted coordinates kK′ , dK′ ∈ �3�  are the coordinates on 

twist such thatkK′ = (0 + 0)) + (kKS�
′ + kK_

′ ))�  and dK′ = @dK��

′ + dK�S
′ )A + (0 + 0)� 

where � = √) = √� ∈ �3�  as can be remembered from section 2.2.3. So the line 

evaluation formula given above can be expressed as below: 

>Z,[(#) = @−�Z,[zA�xsQ − xAzA�Z,[ − zCyAA + @zA�zCy′QAI 
Note that an element of �3� is represented as vo +  v
� where  vo, v
 ∈  �3�. 

2.2.6 Final Exponentiation 

Final exponentiation in Step 9 of Algorithm 1, F ← F(3�L
)/E, can be reduced to 
two smaller hard exponentiations with the help of property described in [16]. Exponent 

(9h − 1)/5  is separated into two parts; (9� − 1)  and  (9� + 1)/5 . The method for 

performing the final exponentiation using these two parts is described below. 

Let’s write F = �o + ��
  such that  �o, �
¡ �3� . We can handle the first exponent 

operations with (9� − 1) as follows: 
g = F3�L
 = (�o + ��
 )3�L
 

           = (�o + ��
 )3�(�o + ��
 )L
   

                                         = @�o + �3��
 A(�o + ��
 )L
 

                                                                 = (�o − ��
 )(�o + ��
 )L
  [16]. 

If we include the other exponent (9� + 1)/5 we obtain     
F(3�L
)/E = g(3��
)/E = g:S3�:�, 

where  8
 = B(9� + 1)/5C/9 ,  8� = B(9� + 1)/5C n]- 9  and  g ¡ �3� , g = (Oo + �O
) 
such that Oo, O
¡�3�. 
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The first part of g:S3�:� can be calculated as follows: 

~ = g3 = (Oo + �O
)3 = (Oo3 + �3O
3) 
                                                                             = @goo3 + )3go
3 A + �3(g
o3 + )3g

3 ) 
                                                                             = (goo − )go
) + �3(g
o − )g

) 
where �3 =  �3L
� and �5 = �3L
 = (��): = ): ∈ ���. 

~ = (goo − )go
) + �5 ∗ (g
o − )g

) ∗ � = &o + �&
 

Finally we have  

F(3�L
)/E = ~:S ∗ g:�. 

Two small exponentiations with exponents 8
 and 8� are realized separately with basic 
binary exponentiation method [39] or using simultaneous exponentiation algorithm.  

During calculation of variable g, one �3� inversion is computed. A �3� inversion 

can be reduced into �3�  inversion and couple of multiplication in the subfield �3� . 

Since we use tower construction for extension fields, one inversion in �3�, in turn, can 

be written in terms of an inversion in �3 as described in Algorithm 6. 

Algorithm 6: �3� Inversion Using �3 Inversion 
Inputs: + = +o − +
), +o, +
¡��  
Output: m = +L
, b = bo + b
i   
1. g
 =  +
+
 
2. g� =  jg
 
3. g
 =  +o+o 
4. g� =  g
 − g� 
5. gh =  g�L
 
6. mo =  +ogh 
7. m
 =  −+
gh 

- Total cost of the operation: 5�3 multiplication + 1�3 
inversion + 2�3 addition 

 

Finally, a �3� inversion is realized using a �3� inversion as described in Algorithm 7. 
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Algorithm 7: �3� Inversion Using �3� Inversion 

Inputs: v = vo + v
�; vo, v
 ∈ �3�   
Output: w = vL
, B = Bo + B
I  such that wo, w
 ∈ �3� 
1. O
 =  v
v
 
2. O� =  �O
 
3. O
 =  vovo 
4. O� =  O
 − O� 
5. Oh =  O�L


 

6. wo =  voOh 
7. O
 = −v
 
8. w
 =  O
Oh 

- Total cost of the operation: 5�3�  multiplication + 
1�3� inversion + 2�3� addition 

 

In the following section hardware architecture of the design is explained. 
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3 Parametric and Compact Implementation of 
Hardware Coprocessor for Pairing on FPGA 

Public key cryptosystems such as elliptic curve and pairing-based cryptography 

require complicated arithmetic operations. For example an ��
 multiplication requires 3 

�� multiplications and several �� additions and if the extension degree is increased, the 
operation becomes much more complex and time consuming. For instance, if the 

extension degree is increased to four, a multiplication on ���  requires 12 �� 
multiplications. Since operations on extension fields are too complicated and require a 

diverse set of operations in the subfields, separate implementation of each operation in 

hardware may require prohibitively high logic area which makes software 

implementation preferable.  

If implementation of these operations is realized on dedicated hardware, ASIC, for 

mostly speed concerns, it has some disadvantages compared to reconfigurable solutions 

as enumerated in the following: 

1. Probably, the most problematic part of ASIC design is its cost; production of 

an ASIC design is many times more expensive than production of a design on 

FPGA, depending on the volume of the production. 

2. Production of ASIC designs takes again much longer than making a design 

usable on FPGA (time-to-market factor). 

3. Design and improvement of ASIC implementations takes much longer 

compared to the FPGA alternative. 

4. If security levels or overall system architecture changes, ASIC no longer can 

be used and a new design and production are required. 
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5. As name implies, it is most of the time “dedicated” and cannot be used for any 

other purposes. 

In this design, we make use of both the advantage of software and the flexibility of 

reconfigurable hardware designs. As indicated above, separate implementations of 

extension field operations may require too much logic area. Moreover, if the design 

choices change for some reasons (e.g. security, performance, compatibility), a specific 

unit computing a particular operation can become obsolete and requires re-design. For 

instance, if a dedicated unit is designed for solely �3�  multiplication, and when the 

design is modified from �3�  to �3¥  it becomes useless. Instead, we design and 

implement a programmable coprocessor on FPGA having basic arithmetic logic 

operation unit in its center, which is highly optimized for the target device. Thus, by 

changing the program of the coprocessor, many different operations can be performed 

on a simple reconfigurable hardware.  

Our coprocessor is designed mainly for pairing operations; several pairing types 

such as Tate, Ate, on arbitrary elliptic curves can be calculated by simply changing the 

program of the processor. There is no need to change the hardware design. Other 

cryptographic calculations can also be implemented but some changes in state machines 

of the control circuit are needed. It is worth to note that, adapting processor for most of 

the other types of cryptographic applications can be realized by just modifying the 

control state machine, not all the design. So even if this processor is designed 

essentially for pairing operation, it can be adjusted for other applications with relatively 

small effort compared to designing it from the scratch. At this point we can see the 

advantages of this design over the pure software and ASIC solutions: 

1. It is relatively cheap and easy to design, test and implement when compared to 

ASIC realizations. 

2. It can be reconfigurable easily for different applications and design 

preferences whereas, ASIC cannot be. 

3. It is much faster than software and it saves valuable CPU time for other 

operations 

Performance and flexibility of the design is supported by the underlying 

architecture. General architecture of the design can be grouped into five parts: i) 
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arithmetic logic unit with modular inversion block, ii) fetch-decode-execute unit, iii) top 

controller, iv) program memory and v) data memory. Sub-modules of the processor can 

be briefly described as follows: 

� Arithmetic Core & Inversion Unit (ACIU): Arithmetic core is composed of 

a modular adder-subtractor unit and a Montgomery multiplier unit. We have 

two arithmetic cores in the design, which makes our processor dual-core. In 

addition, we have a single inversion unit that computes multiplicative inverses 

in �3.  

� Fetch-Decode-Execute Unit (FDEU): This unit controls the program 

memory, data memory and ACIU. Since we have two arithmetic cores, to 

make it fully parallel we used two FDEU, each of which is connected to one 

ACIU. 

� Top Controller: Top controller is the state machine that defines the 

characteristic of the processor. Namely, we design our top controller 

specifically for pairing operation. And for other kinds of applications it has to 

be modified but except for this module, other parts can still be used without 

any modification. There exists only one top controller that controls all the sub-

modules. 

� Program Memory: As the name indicates, this is the memory where the 

program code (it will be referred as “micro-code”) is stored. To make use of 

full parallelism, this part is also instantiated for each FDEU. 

� Data Memory: This part constitutes register banks used to store program data. 

Similar to program memory, each FDEU has its own data memory. Naturally, 

data transfers among FDEUs are allowed to combine the result of each core to 

a single one. 

To summarize, a specialized Top Controller unit commands FDEUs to execute a 

block program (can be referred as function or micro-code henceforth), then FDEUs 

fetch that program (micro)-instructions from the program memory. After instructions 

are fetched, the FDEUs parse the instructions into three parts: Operation type, address 

of the operands and the address of which the operation result will be written. Then 

FDEU fetches the required data from the data memory and commands ACIU to execute 
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a given operation with given data. When ACIU finishes its operation, the result is sent 

to the data memory area which is pointed by the instruction. General overview of the 

co-processor architecture is depicted in Figure 3. 

Figure 3: General Overview of the Processor Architecture 

In Figure 3, bold lines represent a bus which carries both data bits and the control 

signals, the thin lines denotes buses that carry only control signals.  

There are some other points that need further explanation. Firstly, inverter is 

capsulated into a controller and it has a separate program ROM. Secondly, FDEUs are 

encapsulated into a single controller unit. And eventually, FDEUs do not have direct 

connection with the data memory; instead they only have control lines. These are 

adopted design preferences here and will be clarified in the subsequent chapters.  

Top controller informs the controller to execute a specific block of micro-code 

(BMC). If a function is parallelizable and if it is coded in a parallel manner, then for that 

function there will be a micro-code in both of the program memories for the 

corresponding block of the code. So when commands come from top controller, FDEUs 
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read the corresponding BMC from the program ROM and begin to execute them in a 

parallel manner. Program memory is filled by the programmer with micro-code of the 

processor before the execution. Data input is transferred to the controller via program 

memory. The controller does not directly handle the input and the output data to ACIUs; 

rather it handles the switching of data. Thus, ACIU can read and write data directly, 

which is much faster. This method can be considered as micro-DMA (direct memory 

access). We add the word “micro” because in normal DMA, the processor does not 

participate in data transfer and thus can deal with other processes while peripherals 

makes memory access faster. But in our case, the data transfer happens within the 

processor, hence the name micro-DMA. Yet, if we consider the controller as a 

processor, we can say that this method makes data access faster for ACIUs through a 

shortcut to the data memory. Although controller starts the transfer operation, it does 

not carry data blocks over itself to ACIU.  

After the execution is performed by the ACIUs, the controller returns a done signal 

to the top controller which becomes ready for the next functions. At the end of all 

operations, top controller raises a finish flag and result is accessible in the 

predetermined address of the data memory. Last, but not least point is about the choice 

of RAM type to implement data memory. It is designed as dual port RAM, which 

allows simultaneous read operations. The reason that makes this choice is important is 

related to the arithmetic core. Since, the arithmetic cores use two operands for most 

operations, such as multiplication, addition and subtraction, it requires that operands be 

ready at both input ports at the same time. So, dual port RAM is a compact solution for 

the requirement.  

ACIU includes multiplier, adder/subtractor/shifter and inverter. In fact, multiplier 

and inverter unit could be implemented by using just adder/subtractor/shifter unit, but 

this case would have two drawbacks. First, writing a program for the processor for this 

purpose would be too complicated. Secondly, total execution time for a cryptographic 

operation would be affected badly although working frequency does not change. What 

makes the execution time longer is that the control mechanism and data transfer cycle at 

each step of the multiplication and inversion algorithms. Especially, when we consider 

that the size of operands is around hundreds of bits, the effort needed for data transfer 

cycles would be prohibitively high. Because of this reason, multiplication and inversion 
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units are realized in hardware in highly optimized fashion. Detailed description of each 

sub module is explained in the following sections.  

3.1 Arithmetic Core & Inversion Unit 

ACIU composed of two main parts: arithmetic cores and inversion controller. 

These two parts are detailed in following two sub sections.  

3.1.1 Arithmetic Core 

Arithmetic core composed of two components: multiplier and adder/subtractor/ 

shifter block. Instead of making a separate shifter, adder is also used as a shifter. Before 

going further into details of the sub modules, we explain general overview of the 

arithmetic core itself and I/O signals that belong to the core. 

Arithmetic core is designed to present a user friendly interface to the controller 

and to gain speedup during the most common instructions. Arithmetic core 

accommodates a state machine between the controller and operation units as an 

interface. With the help of this interface, the controller can communicate easily and 

efficiently with the arithmetic cores.  The controller interacts with the arithmetic cores 

using commands which also constitute the opcode part of the micro code. The controller 

sends its command and then adjusts the data memory address to provide the appropriate 

operands to the arithmetic cores. After the result is found, data is written to indicated 

part of the data memory directly by the arithmetic core, which also sends a signal to the 

controller to indicate that operation is completed. I/O interface of the arithmetic core is 

depicted in Figure 4. 
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Figure 4: Arithmetic Core I/O Interface 

Pre-stored values that are constant and frequently used during the operations 

should be stored in the arithmetic core before the execution of any operation. Therefore, 

pre-stores values are kept in a RAM inside of the arithmetic core. Storing these values 

inside the arithmetic core reduces the load over the controller per operation. For 

example, the controller is saved from loading the modulus at every operation. 

As can be seen in Figure 4, the controller interface is pretty simple; controller 

should load the “opcode” along with an “enable” signal. This signal takes one clock 

period. An additional input is used to tell the arithmetic core whether to make addition 

or subtraction. 

Data is fed into the core directly from the data memory. Decision about the 

location of data is made by the controller. After opcode is stored in the core, operands 

come from the data memory with the help of switching of the controller. Finally, when 

the result is produced it is directly written in the data memory by the core. Again the 

data bus switched to the correct location by the controller just after the loading of 

opcode. Only a signal is sent to the controller to indicate that the operation is finished. 

Determining the possible opcodes is the focal point in the arithmetic core design. 

The operations that are performed often are made an opcode. For example, if squaring is 

executed many times or if it might be used frequently in other applications, then 

squaring can be made an opcode. Thus, we get rid of read and write cycles every time in 
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certain and commonly used operations. Again, there is a trade-off between time and 

area. If this kind of optimization were not made in the opcode selection, the core would 

be much simpler. However we prefer to improve the execution time of the overall 

system. Below a list of opcodes is given in Table 2. 

Opcode Definition 

0000 Idle: Do nothing 

0001 � =  + × m : Regular multiplication 

0010 � =  + + m : Regular addition 
0011 � =  + + + : Regular shift left once 
0100 � =  3 ∗ (+ ∗ m): First + × m, then two addition 
0101 +� × m, m� × +, +�  
0110 v ∗ + ∗ m v is elliptic curve coefficient a in  k� = d� + +d + m 
0111 � =  2 ∗ + ∗ m : Multiply then add 

 

Table 2: Opcodes and their Definitions for Arithmetic Core 

Arithmetic core can take a new opcode when it finishes the current operation. It 

is not allowed to load new opcode during an operation. Operands are fed into the core 

word by word and all the sub modules process the data on word-basis. Size of words is 

changeable. As can be seen from the Table 2, four bits are reserved for the opcode while 

most significant bit is always zero. This is optional part. Opcodes can be extended with 

some changes in the core logic for different kinds of applications. Detailed explanation 

about the building blocks of the core is given in the following subsections. 

3.1.1.1 Multiplication Module 

Since Montgomery [40] offered one of the most efficient methods for hardware 

multiplication, this block is designed to implement Montgomery multiplication. 

Selection of this block as a Montgomery multiplier (MM), affects also the choice of 

inverter and the way data is given to circuit. The MM produce a result for given inputs 

“a” and “b”, ¦¦(+, m, ¦) = + × m × $L
 (n]- ¦), where $ is constant and usually 
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chosen as $ =  2§¨©ª<ª� q*� <«¬­�®. For this reason, our arithmetic units accepts operands 

in Montgomery domain (i.e. + × $ instead of just +,) to avoid information loss.  

The MM is taken from a previous work [41]. It is a generic architecture and 

uses Coarsely Integrated Operand Scanning (CIOS) Montgomery Multiplication 

algorithm: 

Algorithm 8: CIOS Montgomery Multiplication Method [42] 

Inputs: a[j], b[j]: jth. word of operands (w bits each) 

        M[j]: jth. word of modulus (w bits each) 

        k: Number of words in the operands and modulus 

        W: 2
w
, C: carry, S: sum  

        M[0]
-1
: multiplicative inverse

1
 of M[0]  

        || : used for concatenation 

        t  := 0 

Output: t[i]:= intermediate and final results 

         

1. for i=0 to k-1 

2.   C :=0 

3.   for j=0 to k-1  

4.     C||S := t[j] + a[j] × b[i] + C   

5.     t[j] := S 

6.   C||S   := t[k] + C 

7.   t[k]   := S 

8.   t[k+1] := C 

9.   C      := 0 

10.   z      := t[0] × (-M[0]
-1
) mod W

   
 

11.   C||S := t[0] + M[0] × z 

12.   for j=1 to k-1 

13.     C||S   := t[j] + M[j] × z + C     

14.     t[j-1] := S                

15.   C||S   := t[k] + C 

16.   t[k-1] := S 

17.   t[k]   := t[k+1] + C 

 

The CIOS method is a word based method as can be seen in Algorithm 8. It 

takes and processes the operands word by word and it forms the result in the same 

                                                 
1 “Least significant word of inverse M”  in mod 2r, where 2

r-1 < M < 2r 
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manner. The CIOS is one of the most efficient algorithms for implementing the MM on 

FPGA [42]. 

Algorithm 8 is implemented in a pipelined manner to take advantage of 

parallelism and to speed up the design in FPGA. It makes use of hardwired multiplier 

blocks in the FPGA thus, both gains from logic area and provides acceleration in 

multiplication operations. The design is very flexible and parametric. Number of 

pipeline stages, number of bits in each word and number of words in operands can be 

adjustable. Therefore it provides time-area trade-off. For example, area can be reduced 

by decreasing both the number of pipeline stages and the number of bits a word. In 

return, the total execution time increases. This kind of design is very helpful for 

adjusting overall time-area trade-off because multiplication is the most commonly used 

operation in the pairing. Changes in its timing characteristics affect total timing of the 

application in a substantial manner. In Figure 5, I/O interface of the multiplication unti 

is given: 

 

 

 

 

 

 

 

Figure 5: Montgomery Multiplier I/O Interface 

Pre-stored values are stored into the module before the calculation starts. Each 

input operand has separate load inputs. Thus, for some operations as indicated in the 

opcode, such as “0101”, as one operand from previous calculation remains intact, the 

other operand takes a new value. Address input specifies the address in the RAM where 

the operands are stored. This input is automatically increased by the arithmetic core. 

When calculation finishes, the result becomes available with an active write enable 

signal. Output of the multiplier is switched as indicated in the opcode by the core.  
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3.1.1.2 Addition/Subtraction/Shifter Module 

All three modules (i.e. adder, subtractor and shifter) are realized in the same 

unit. Although it is normal to have adder and subtractor together, we prefer to 

implement shifter using addition. This has two reasons: Firstly, it makes the control 

circuit simpler, secondly even if we use normal shifter, we need a modular adder since 

we must guarantee that after shift operation result may have to be reduced since this is a 

modular shift operation (i.e. shift operation in F°). Inner structure of the modular adder 

is given in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Modular Addition Architecture 

Figure 6 is an illustration of modular addition, and in case of the subtraction 

operation, the adder (+) and subtractor (-) units are switched. Operation immediately 

starts with the load of operands. Operands are added and stored into RAM 1 and 

modulus is subtracted from the addition of the operands and stored into the RAM 2. 

Both operands and the modulus fed into the module word by word, and carry-out from 

the previous word is fed into the next word as carry-in. After all the words are 

exhausted, carry-out of the last word is examined. If the result of subtraction with the 

modulus M (i.e. a + b - M) is negative then, it is concluded that + + m < ¦ and result in 
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the RAM 1 is valid and vice versa otherwise. The reason of using two RAMs is 

providing the result immediately after the data load finishes.  

We use registers between the two adders to break the long delay in the critical 

path. Other than that we do not make anything to speed up the adders. This is due to the 

fact that, while synthesizing the adder the router automatically places the logic around 

the fast carry propagate lines hence, it does not create a bottleneck for the design.  

Adder is also parametric like the other parts of the design. Input word bit 

length and the total input word number can be adjusted. I/O interface of the adder is 

shown in Figure 7.   

 

 

 

 

 

 

Figure 7: Modular Addition I/O Interface 

The “option” input is used to alternate from subtractor to adder; the “start” 

input is used to start the output stream. This input is utilized to postpone the output in 

case of such a need occurs in timing adjustment. To start an operation, the modulus and 

the operand data should be given with an active write enable signal. For every operation 

modulus data is fed into the module and start signal is adjusted automatically by the 

core. 

3.1.2 Inverter Controller 

Inversion is used in the final exponentiation part of the pairing. Although it is 

not used many times, it plays a critical role to reduce the execution time spent on the 

final exponentiation. The execution time of extension field exponentiation is halved if a 

dedicated inversion unit is used. We prefer to add an inverter unit to make use of the 
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advantage it brings in timing with the cost of some logic area. Since inversion is a rare 

operation, instead of inserting it to the arithmetic core we build a single inversion unit.  

During the execution of a functional block for inversion operation, control of the 

data memory is left to the inverter controller. Inverter controller possesses its own 

internal program ROM. Every time it is notified by the controller, it executes the micro 

code coming up next. It reads data and writes the result to the specified addresses.  

The structure of the inverter controller is highly simple. It has a state machine to 

control the read/write operations to the data memory and it switches data in and out of 

the inversion. The I/O interface of the inverter controller is given together with inner 

block diagram in Figure 8. 

 

 

    

 

 

  

 

Figure 8: Inverter Controller I/O Interface 

Inverter controller starts operation with the active “start” signal from the 

controller. It reads micro code from the ROM and sends the address of data to be read to 

the data memory. After the result is obtained it is written to the data memory, then the 

controller is sent a an active “done” signal. 

Inverter controller has two sub modules; ROM and inverter. ROM is either 

synthesized with “Block RAM (BRAM)”, which is a hardwired RAM in the FPGA, or 

is synthesized using “Distributed RAM”, which is a RAM constructed of look-up tables 

(logic elements) in the FPGA. We picked distributed RAM since, usually work load of 

the inverter is low and thus it does not need a large memory to store the micro code. 

Certainly, inversion circuit is the most important part. It is detailed in the following 

subsection.    
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3.1.2.1 Montgomery Inverter Module 

Modular inversion is widely used in cryptographic applications particularly in 

public-key crypto-system. For instance, during the calculation of private key in Digital 

Signature Standard [43] and in RSA [44] and in elliptic curve cryptography, [46]-[48], it 

is commonly used. For this reason, inversion module is a must for not just pairing 

operation but also for a cryptographic processor. Thus, we design a low area and 

parametric modular inverter optimized for FPGA devices. During the design, to 

eliminate the delays of long carry chains, we favor the word-based design and move 

away from full precision adders and subtractors. We process the data similar to a 

general-purpose computer, on word-basis and we make use of the advantage of the 

FPGA. We use the Montgomery modular inversion algorithm to make it compatible 

with the Montgomery multiplier. We tested efficiency of the design on Xilinx Spartan-6 

FPGA, which is a new generation of low cost FPGA with low power consumption. 

Implementation results show the design reaches frequencies higher than 200 MHz with 

a few hundreds of logic resources.  

Modular inverse on modulo ¦, where ¦ is an odd prime, is defined as follows: 

If �, d ∈ B1, ¦ − 1C  and � ∗ d ≡ 1 (n]- ¦) then, � and d are multiplicative inverse of 

each other in modulo  ¦ . It is displayed as d ≡  �L
 (n]- ¦)  [50]. Montgomery 

inverse algorithm is first proposed by Kaliski [49], which works fine with MM.  

Generally inversion is used together with other arithmetic operations in 

cryptography. By looking at its usage ratios in overall application, satisfying high 

working frequency with high area usage is not acceptable for the inverter design. Since, 

it is usually not timing bottleneck for most cryptographic applications. On the other 

hand, its working frequency should not be lower than the multiplier unit in order not to 

reduce the entire working frequency of the system. As a result, the aims are a low area 

and a fast inverter module. 

In this design, input is handled as an array of words instead of full precision, 

where each word is taken into operation at every clock cycle. Also the output is 

produced word by word.  Benefit of using word-based implementation is apparent in 

size of the registers and adder/subtractors used. While keeping the size of the circuit 

small, it also raises the frequency with reduced carry-chain lengths in the adders. 
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Besides this, we can make use of BRAMs for storage of variables in place of registers. 

In the same manner, this choice reduces the total logic source usage of the inverter 

circuit.  

Our design has some superiority over the full precision design. Despite the fact 

that full precision design can complete the overall calculation in a shorter time, it 

consumes vast amount of logic resources and achieves very low working frequencies. 

This leaves a very limited area to realize essential part of the design. In addition to this, 

low frequencies create a need for another clock source to drive the lower frequency part 

of the circuit. Without doubt, this will result in a more complex and a hard to handle 

design. Our design demonstrates that, the word-based architecture covers more than 10 

times less logic resources, moreover it can work at 3 to 4 times higher clock frequencies 

than half precision structures. We realize a parametric design that can be re-

synthesizable for any word length and input size. Thus, parametric design provides 

flexibility to meet the implementation constraints. We describe the Montgomery 

inversion algorithm in detail in the following section.  

3.1.2.1.1 Montgomery Modular Inversion Algorithm 

Let ¦ be an odd integer and + is an integer such that, + ∈ B1, ¦ − 1C and if 
the equation holds: + × d ≡ 1(n]- ¦). It can be expressed as below: 

d ∶= ¦]-�,H(+) ≡ +L
(n]- ¦). 
It is important to note that multiplicative inverse of +  only exists if +  and ¦  are 

coprime. 

A Montgomery modular inverse algorithm is proposed by Kaliski based on 

extended binary GCD approach [49], [51]. The Montgomery multiplicative inverse of 

an integer is expressed as follows: 

² ∶= ¦],�,H(+ ∗ 2§) =  +L
 ∗ 2§ (n]- ¦). 
Here n stands for bit length of the modulus ¦. The Montgomery inversion algorithm is 

composed of two main phases. These phases are described in Algorithm 9 and 

Algorithm 10, respectively. 
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Algorithm 9: AlmMonInv(a, M) (Phase I)  [49] 

Inputs: + ¡ B1, ¦ − 1C 
        ¦: modulus 

        ³ ← ¦, H ← +, 5 ← 0, ~ ← 1, 8 ← 0 
Output: 5 and 8, satisfied that 5 =  +L
 × 2: (n]- ¦) and    
        n ≤ 8 ≤ 2n      

1. while H > 0 do 
2.   if u is even then 

3.     ³ ← ª
� , ~ ← 2 × ~ 

4.   else if v is even then 

5.     H ← ´
� , 5 ← 2 × 5 

6.   else if ³ > H then 
7.     ³ ← ªL´

� , 5 ← 5 + ~, ~ ← 2 × ~ 
8.   else ³ ≤ H 
9.     H ← ´Lª

� , ~ ← 5 + ~, 5 ← 2 × 5 
10.   end if 

11.   8 ← 8 + 1 
12. end while 

13. if 5 ≥ ¦ then 

14.   5 ← 5 − ¦ 

15. end if; 

16. return ¦ − 5, 8 
 

The output of the “Algorithm 9” is described as 5 ∶= v>n¦],�,H(+, ¦) =
+L
 × 2: (n]- ¦), where n ≤ 8 ≤ 2n. The output of the first phase is also known as 

the almost Montgomery inverse of +  with respect to modulus ¦.  If �W stands for 

number of words in the modulus then our design takes �W+4 clock cycles to complete 

one iteration of the while loop. Since phase I is iterated k times, then it takes totally 

8 × (µ¶ + 4) clock cycles to complete the loop. After while loop, two more iterations 

are needed to calculate the remaining steps. Thus, it takes (8 + 2) × (µ¶ + 4) clock 
cycles to finish the phase I of the inversion. The result of the first phase is then 

transformed to the Montgomery domain by several iterations in the second phase of the 

algorithm, which is depicted in Algorithm 10.  
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Algorithm 10: MonInv(r, M, k) (Phase II) [49] 

Inputs: 5, ¦ and 8 from AlmMonInv 
Output: d, satisfiying d =  +L
 × 2�§ (n]- ¦) 
1. for ) = 1 g] (2n − 8) do 
2.    5 ← 5 ≪ 1 
3.    if 5 ≥ ¦ then 

4.       5 ← 5 − ¦ 

5.    end if 

6. end for 

7. return d ← 5 
 

As can be seen phase II takes  (2n − 8) iterations. The number of iterations 

depends on the value k, which is the output of the first phase. However, total number of 

iterations in phase I and phase II is constant and it is 2n. As a result, total processing 

time of the implementation is about (2n + 2) ∗ (µ¶ + 4). Each iteration in phase II 
does not take µ¶ + 4 periods, but sometimes it takes µ¶ + 3 clock cycles. Therefore 
2n ∗ (µ¶ + 4)  clock cycles will be a more accurate formula to approximate the 

execution time of the inversion operation. 

To summarize, if an integer +  is given in Montgomery domain, i.e. + ×
2§ (n]- ¦) , the output of the first phase is: 

v>n¦],�,H(+ × 2§, ¦) =  (+ × 2§)L
 × 2: ≡  +L
 × 2:L§ (n]- ¦). 
The second phase clearly multiplies the result with 2�§L: (n]- ¦) to put it back in the   
Montgomery domain as follows: 

+L
 × 2:L§ × 2�§L: (n]- ¦) ≡ +L
 × 2§ (n]- ¦). 
If the result is needed in the normal domain, i.e. a transformation from +L
 × 2§ to +L
 
is required, it suffices to multiply the result by 1 , using a Mongomery multiplier. 

Consequently, we obtain got ¦¦(+L
 × 2§, 1) =  +L
 × 2§ × 1 × 2L§ ≡
+L
 (n]- ¦). In the following section, inner structure of the inverter is explained. 
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3.1.2.1.2 Montgomery Inverter Architecture          

Proposed inverter has a parametric design, in the sense that word size can be 

adjusted to scale the architecture into desired size or frequency requirements. In other 

words, we offer to operate on changeable word size instead of operating on all or half of 

the input bit size as proposed in [52] according to the design criteria. Thus, we provide 

an obvious increase in operating frequency. Among the factors to accelerate the design 

is reduced carry-chain length in adders/subtractors and fewer number of connections 

between CLBs. In addition, reduced word size also decreases the register and LUT 

usage resulting in lower area consumption. Furthermore, logic area usage is decreased 

more by using BRAMs for the storage of variables during operation. Nonetheless, our 

design is synthesizable by using either distributed RAM or BRAMs. Implementation 

results with and without BRAMs are given in the further sections.      

Most time consuming part of the operation is the first phase of the algorithm 

(Algorithm 9) that dictates the main structure of the architecture. Second phase of the 

algorithm (Algorithm 10) is accomplished over the same architecture by adding some 

signals for control purpose. The while loop in Algorithm 9 is the most dominant 

segment in the first phase, hence the architecture is mainly shaped depending on this 

segment. All data inputs of all modules are size of WL, where WL stands for desired bit 

length for a word. 

Inverter is realized using multiplexers, adders/subtractors and RAMs to store 

the variables. RAMs operate like FIFO (first-in first-out) structure. Firstly, least 

significant word (LSW) is stored in a RAM. While reading the RAM, first LSW of the 

variable is read back and finally most significant word (MSW) of the variable is 

obtained. Operation is controlled using select inputs of multiplexers and read/write 

enables of RAMs. First part of the algorithm is separated into two parts: i) u/v and ii) 

r/s. These parts are depicted Figure 9 and Figure 10, respectively. Execution of the first 

part of the algorithm is influenced depending on whether “u” or “v” is even or they are 

both odd numbers.  

Before the execution of the first phase, the modulus value is stored in the 

“RAM_M” and operation starts with data load signal, which is named as “Inv_in_we”. 

When this signal is received, the modulus is read and stored in the “RAM u” as its 
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initial value. The values of zero and one is stored to the “RAM r” and “RAM s”, 

respectively as initial values. After loading initial values, while loop starts with “r_sig”, 

which is the read signal of RAMs. Every iteration of the “while loop” (and “for loop”, 

in the second phase) is performed with “r_sig” signal. Write enable signals “w_sig0” to 

“w_sig2” are sequentially shifted version of the signal “r_sig”. Proper write enable 

signal is chosen according to the delay of data path. All RAMs used in the design are 

dual-port RAMs, which allow simultaneous read and write operations from different 

addresses. Thus at each iteration of Algorithm 9 (steps 1 - 12), RAM read/write 

operations can be performed in less clock cycles compared to the case of using single 

port RAMs. 

 

Figure 9: U/V Part of the Inverter 

While reading data with “r_sig” signal, the least significant bit is examined to 

decide if the number is odd or even. If one of the numbers (u or v) is even, then after the 

read of first word of the variables we can decide to execute upper half of the while loop. 

But if none of the numbers are even, we should compare them to determine which is 

greater. After this “u>v” or “v>u” part of the while loop is executed.  
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However, deciding which number is greater than other is not an as easy as 

deciding whether they are even or not since it is not sufficient to examine just the LSW 

of a variable. Instead, all words of the variables are needed. For instance, it is required 

first to read all words of the variables to decide which one smaller. Then, reading them 

again to subtract the smaller from larger is overly time-consuming process. In that case, 

for the one iteration of the while loop, two read operations have to be performed. To 

eliminate these overly complicated operations, we add one more subtractor to the 

circuit. If both numbers are odd, then “u-v” and “v-u” operations are performed in 

parallel and result of each is stored in two separate RAMs (i.e. RAM uv or RAM vu) . 

Afterwards, these two results are checked. Naturally, the positive result is valid which is 

used as the new value of either “u” or “v”. The valid data is selected using “u_change” 

and “v_change” signals. For instance, if valid “v” value is “RAM vu” for now, then 

“v_change” value is set to ‘1’ and it is set to ‘0’ vice versa. If upper half of the while 

loop have to be executed, then “u/2” or “v/2” values are stored in either “RAM u” or 

“RAM v”. “u_new” and “v_new” lines stand for “u/2” and “v/2” values. Current values 

in RAMs are processed in one right shifter unit, which divides the current values by 2. 

We perform ³/2 −  H/2 instead of (³ − H)/2 for the lower half of the while loop. But 
this does not cause a data loss, since in the lower part of the loop both numbers are odd. 

There is an important point to note. “RAM uv” and “RAM vu” are continuously filled 

with new difference values of “u-v” and “v-u” respectively. Therefore, the valid data is 

has to be copied to the other RAM. “ramUV_out” and “ramVU_out” signals are added 

to the input of “RAM u” and “RAM v” for that reason.   

Loop in the first part of the algorithm ends when the value “v” reaches to 

zero. If conditional structure in the algorithm is carefully examined, it can be seen that 

algorithm only terminates after u is subtracted from v (therefore u is smaller or equal). 

Therefore, input of the “RAM vu” is connected to a zero comparator unit. Zero 

comparator units detects zero value and raises a flag when zero value is stored to the 

RAM to terminate the execution of the while loop. 
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Figure 10: R/S Part of the Inverter 

Variables “r” and “s” change depending on the values of “u” and “v” during 

the execution of the while loop. If upper half of the while loop executes, new values of 

“r” and “s”,  “r_new” and “s_new”, are processed by one-bit left shifter (multiplier by 

2). “RAM r” and “RAM s” are continuously updated with shifted values of “r” and “s”. 

“RAM rs” stores the 5 + ~ value when lower half of the while loop executes. After 
deciding whether ³ or H bigger than the other, value stored in “RAM rs” updates either 

u or v. If the value stored in “RAM rs” is used to update the variable 5, “r_change” flag 
is set to one. The same rule applies for “s_change” flag. The adder/subtractor in the 

input of the “RAM rs” operate as an adder for the while loop and as subtractor 

afterwards. Two registers are put in front of the adder/subtractor to reduce the critical 

path delay. Second phase of the inversion operation (Algorithm 10) is realized using 

“RAM rs”, “RAM r” and “RAM M”. At each iteration of the “for” loop in the second 

phase the shifted value of 5 is stored to “RAM r”, and the value 2 × 5 − ¦ is stored to 

the “RAM rs”. If stored value to the “RAM rs” is negative then valid 5 value is in 
“RAM r” and in “RAM rs”, otherwise.  
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We use dual port RAMs, which enables to read and write at the same time, 

despite that one iteration takes (µ¶ + 4) clock cycles. The delay of four clock cycles 
are due to the following: RAMs are synchronous read/write RAMs, thus when enable 

signal rises, data to read becomes available at the output after one cycle. One cycle is 

lost at the shifter modules and one at the input registers of the adder/subtractor. One 

more cycle is consumed after the subtraction. Deciding whether the result is negative or 

not, occurs after subtraction taken place. Thus in total, we spend four more cycles 

additionally. Implementation results of the design are given in the followings.  

3.1.2.1.3 Implementation Results of the Inverter Unit and Other Metrics  

Implementation results are given using ISE Design Suite 12.1 for target 

device Spartan-6SX45T FPGA (XC6SLX45T-3FGG484). Synthesizer presents two 

optimization methods for the design, one of them is speed and the other one is area 

optimization. In addition to these, we placed and routed the design utilizing both BRAM 

and distributed RAM to see how they affect area and speed results of the 

implementation. Spartan-6 FPGAs presents hardwired adder/subtractor modules; 

nevertheless we prefer not to use them. It have several reasons. Firstly the provided 

carry-chain lines are fast enough. And secondly since our design is word based, not 

much logic source is spent for adders. And lastly, it provides compatibility with other 

FPGAs.  

Register and LUT usage are metrics for area coverage. If BRAM are used, 

additional constant eight BRAMs are added to the resource list. Logic resource usage is 

directly proportional to the chosen WL. This is an expected result since WL increases 

sizes of multiplexers, adders and registers. However achievable maximum frequency is 

not directly related with WL until a certain word size is reached. Negative effect of WL 

over frequency begins to appear after around 40 bits of word size. A suitable value for 

WL can be chosen for given design constraints, i.e. area usage, maximum working 

frequency and total completion time. For total execution time, previously given formula 

can be used:  2n ∗ (µ¶ + 4) ∗ �>]�8 e 5)]- = 2n ∗ (µ¶ + 4) ∗ 1/¦� . Best area 

result is obtained under area optimization preference and using BRAM. Best speed 

result is obtained using under speed optimization preference using distributed RAM. All 

results are obtained from ISE Design Suite 12.1 after PAR process. Results are 
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enumerated in Tables 3, 4, 5, and 6, where m, WL, REG, LUT, MF, T, and TA denotes 

the bit size, word length, register usage, LUT usage, maximum clock frequency 

achieved, execution time, and time-area product, respectively.  

m WL REG LUT MF T (us) TA 

64 8 233 266 199,46 7,70 2,05 

64 16 360 376 188,22 5,44 2,05 

64 32 631 643 181,99 4,22 2,71 

128 8 251 277 191,25 26,77 7,42 

128 16 378 389 185,47 16,56 6,44 

128 32 649 652 170,22 12,03 7,84 

256 8 269 296 188,24 97,92 28,98 

256 16 396 399 178,43 57,39 22,90 

256 32 667 665 168,49 36,47 24,25 

512 8 288 352 185,33 375,72 132,25 

512 16 414 420 175,86 209,62 88,04 

512 32 685 674 166,87 122,73 82,72 

1024 8 306 519 184,19 1467,70 761,74 

1024 16 433 522 174,19 799,49 417,34 

1024 32 703 695 165,32 445,97 309,95 

Table 3: PAR Results Using Distributed RAM Under Area Optimization 

 

m WL REG LUT MF T (us) TA 

64 8 242 305 243,64 6,30 1,92 

64 16 371 413 229,79 4,46 1,84 

64 32 657 693 252,24 3,04 2,11 

128 8 264 329 234,1 21,87 7,20 
128 16 390 433 235,01 13,07 5,66 

128 32 679 698 252,24 8,12 5,67 

256 8 287 359 232,66 79,22 28,44 

256 16 404 436 216,14 47,38 20,66 

256 32 678 696 217,92 28,19 19,62 

512 8 289 399 191,04 364,49 145,43 
512 16 432 476 228,75 161,15 76,71 

512 32 698 715 216,47 94,61 67,65 

1024 8 329 650 231,08 1169,88 760,42 

1024 16 444 587 222,11 627,00 368,05 

1024 32 723 738 223,15 330,40 243,83 

Table 4: PAR Results Using Distributed RAM Under Speed Optimization 
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m WL REG LUT MF T (us) TA 

64 8 170 202 200,04 7,68 1,55 

64 16 233 282 192,37 5,32 1,50 

64 32 376 424 199,53 3,85 1,63 

128 8 188 212 193,51 26,46 5,61 
128 16 251 295 189,18 16,24 4,79 

128 32 394 462 172,67 11,86 5,48 

256 8 206 235 193,51 95,25 22,38 

256 16 269 304 181,77 56,33 17,13 

256 32 412 476 170,82 35,97 17,12 

512 8 224 259 190,19 366,12 94,82 
512 16 287 323 179 205,94 66,52 

512 32 430 485 169,08 121,13 58,75 

1024 8 242 286 192,75 1402,52 401,12 

1024 16 305 347 173,19 804,11 279,03 

1024 32 448 506 167,44 440,32 222,80 

Table 5: PAR Results Using BRAM Under Area Optimization 

m WL REG LUT MF T (us) TA 

64 8 175 233 204,43 7,51 1,75 

64 16 237 313 204,43 5,01 1,57 

64 32 379 479 204,43 3,76 1,80 

128 8 189 236 204,43 25,05 5,91 

128 16 253 330 204,43 15,03 4,96 

128 32 398 501 204,43 10,02 5,02 

256 8 207 259 204,43 90,16 23,35 

256 16 274 334 204,43 50,09 16,73 

256 32 418 523 204,43 30,05 15,72 

512 8 224 287 190,76 365,02 104,76 

512 16 287 336 192,18 191,82 64,45 

512 32 437 530 204,43 100,18 53,10 

1024 8 242 308 194,36 1390,90 428,40 

1024 16 307 376 187,58 742,42 279,15 

1024 32 456 571 204,43 360,65 205,93 

Table 6: PAR Results Using BRAM Under Speed Optimization 

 

Maximum frequency results are given in terms of MHz. Total working time 

is calculated using the formula  2n ∗ (µ¶ + 4) ∗ 1/¦� . Time-area product is 

calculated using the formula b¸O ∗ O/1000 . As one can observe from the tables 

showing the PAR results using distributed RAM (i.e. Tables 3 and 5), surprisingly 
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maximum achievable frequency remains almost unchanged with the word length. This 

is because of delay in the adder until around word size of 40 bits does not exceed the 

delay of the state machine implementing the control circuit. Small fluctuations in 

maximum frequency are due to the changes in path delay caused by checking for total 

word count.  

On the other hand, PAR results using BRAM shows less fluctuations in maximum 

clock frequency especially for speed optimization case (Table 6). This is due to the fact 

that there is a bigger delay incurred in the output of BRAM. The BRAMs have constant 

locations inside the FPGA, which are usually in the middle of the FPGA. And therefore, 

when the main part of the circuit is placed it generally becomes far away from BRAMs. 

There occurs a large net delay, which exceeds any inner delay caused by the controller 

or adder circuit. To overcome this situation, outputs and inputs of the BRAM should be 

registered which adds two more cycle of latency to usual read/write cycle of RAM. This 

approach may increase the maximum working frequency but on the other hand it also 

increases total execution time. 

We compared our design with a previous implementation that utilizes half 

precision functional unit [52] using the same FPGA (Virtex XCV2000e-6bg560) with 

[52]. Our design clearly outperforms the reference design in terms of logic area usage 

and achievable maximum frequency.  

Design Size Area (Slices) Max. Freq. (MHz) 

Our 8bit x 8 218 73,89 
[52] 32 bit x 2 549 61,97 
        

Our 8bit x 16 235 76,36 
[52] 64 bit x 2 1023 46,8 
        

Our 8bit x 32 255 72,54 
[52] 128 bit x 2 2022 34,73 
        

Our 8bit x 64 256 75,02 
[52] 256 bit x 2 3481 18,15 

 

Table 7: Comparison With a Previous Work Using Same FPGAs 

An early version of the work can be found in [53]. In the new version, some 

improvements on total area usage is achieved while we lose some performance in 
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maximum working frequency. However in most cases, especially the one uses BRAMs, 

time area product is improved.  

3.2 Program and Data Memory 

Both program and data memories are realized using RAM inside the FPGA 

device. Depending on the implementation constraints, distributed or block RAM can be 

used. However, we prefer to use BRAM since both program and data memories store 

large amounts of data. Program is stored into the program memory manually before 

synthesis, and it does not change during the execution. Thus, program memory acts as 

ROM, instead of RAM. Data memory stores the current values for desired variables. It 

acts like a register bank. Each core has its own program and data memory. We separated 

the memories to achieve full parallelism. If the same RAMs are used for each core, then 

one core should have waited while one core were reading. Moreover control structure of 

the memory would be more complex. Structure of program and data memory is detailed 

in the subsequent sections. 

3.2.1 Program Memory 

As previously indicated program memory is a read-only memory. Program of 

each core is stored before the synthesis. One program memory utilizes one BRAM but it 

is addressed into different segments. Each segment is a block program specified for one 

function. The top controller tells controller to execute code block in BRAM, then 

controller processes each block line by line. After all the block is finished the controller 

notifies the top controller. We have a predefined format for micro-instructions in the 

program memory, which is illustrated in Table 8. 

Opcode 
Adder/     

Subtractor 

Op 
A 

Core 

Op A 
Index 

Op 
B 

Core 

Op B 
Index 

Result 
Index 

Wait 
For 
Core 

�otify 
Core 

4 bits 1 bit 1 bit 
X bits      
(5 bits 
default) 

1 bit 
X bits      
(5 bits 
default) 

X bits      
(5 bits 
default) 

1 bit 1 bit 

 Table 8: Format of the Micro-Instruction  
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Definitions related to the micro-instruction are given followings: 

� Opcode: This is already defined in Table 2. This is the operation code that is 

to be sent to ACIU. 

� Adder/Subtractor: Since the same hardware is used for both addition and 

subtraction, this part defines whether to perform addition or subtraction 

operation. It will act like adder when this value is ‘0’ and as subtractor, 

otherwise. 

� Op A Core: Cores not always operate with operands in their data memory, 

sometimes they take operands from data memory of other core. This one bit 

command defines whether the first operand is in data memory of first core or 

the second. If the value is ‘0’, operand is in the first core, and in the second 

core, otherwise. 

� Op A Index: This defines address of the data memory from which the operand 

is read. Index is a pointer for the address value. Its size is generic but for this 

application we use it as five bits since we use thirty-two registers. 

� Op B Core: Same as “Op A Core”. 

� Op B Index: Same as “Op B Index”. 

� Result Index: This defined the register address where the result of the 

operation is written. Result of each core is written to its own data memory 

thus, we do not need to specify core number. Again it has a generic size 

likewise “Op A Index”. 

� Wait For Core: When this value is set to ‘1’, the corresponding FDEU in the 

controller executes the current micro-instruction, but does not fetch the next 

micro-instruction. The FDEU waits for a notify core signal (that will come 

from the other FDEU) before fetching the next instruction. This signal is used 

to stop execution of the current FDEU (precisely the arithmetic core) and to 

give the control of its data memory to the other core. This way, we allow one 

core to access the results in the memory of the other core while the other waits 

until the memory access operation is completed.  
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� �otify Core: When this value is ‘1’, after the execution of current micro-

instruction, one FDEU sends a notify signal to the other FDEU releasing it 

from the “wait for core” state.  

Most attention needs to be paid to the timing of the Notify Core and Wait For 

Core signals. Firstly, the programmer who develop the micro-codes for the cores to 

execute, needs to know when to stop and wait to prevent overwrite of the data of one 

core that will be needed in subsequent clock cycles by the other core. Secondly, we 

need to know when to notify. In other words, this must not be before the result becomes 

available so that we must not try to read the data before it is ready. Moreover, we should 

not make the other core wait longer than necessary. The ideal case for wait and notify 

chain can be as follows: Data required by one core is generated by the other core and 

the latter core enters the wait state. Just after that the former core reads desired data 

from memory of the latter core it notifies the waiting core causing its release from the 

wait state. To achieve perfect timing the programmer needs to know execution times of 

micro-instructions.  

There can be alternative techniques for inter-core data exchange to simplify the 

programmer interface. But, a bad alternative is given first to explain the intricate issues 

in data dependency occurring across the cores. For instance, if a core were to place the 

other core in “wait for core” state whenever it needs a result from the latter, there would 

be come complications which are harder to resolve. The fact that it is difficult for a core 

to know when the other core reaches to the point where the desired result is produced 

complicates the programming processes.   

A successful alternative can be as follows: Before they start executing their 

micro-codes, cores tell each other which variables they need. Therefore, there are two 

tasks for two cores: First when these variables are produced, generator core notifies the 

other core and places itself in “wait” state. Secondly, the core in need of a variable 

places itself in “wait” state when it reaches to the point in the program where it needs 

the variable from the other core. When notify signal comes from generator core 

meaning that the desired variable is available, the latter core leaves the “wait” state, 

reads the variable, and signals the generator to release it from “wait” state. Naturally, 

some precautions have to be taken to prevent dead locks, whereby both cores place 

themselves into wait state since they need each others’ variables. Although this method 
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Program 

Memory 

code_re 

block_index 

micro_code 

offers a more user friendly interface for programmer, its hardware implementation is 

overly complicated. Each core has to monitor the values which are in the desired list of 

the other core necessitating a check of results of execution of every instruction. 

Therefore, we prefer to place burden in the programmer side to make the hardware 

faster and cheaper. Difficulties in developing the codes for the cores are easy to resolve 

since the programmer can utilize a simple software implementation in high-level 

language when planning to schedule the micro-codes.   

More details about solutions to prevent dead lock are given in Section 3.3. Here 

we only provide the part relevant to the programmer. The I/O interface of the program 

memory is given below Figure 11.  

 

 

 

Figure 11: I/O Interface of Program Memory 

If “code_re” is active then next micro instruction is given to the controller. During the 

read of a micro-code for a specific function, “block_index” remains constant. 

3.2.2 Data Memory 

Data memory is the module where all variables during the program execution 

are stored. Similar to the program memory, it is divided into abstract segments. Each 

segment has a constant index. Access to segments is possible using these index 

numbers. Number of segments in a data memory is generic, thus it can be changed 

easily. However we use as little segment as possible to efficiently use the whole RAM 

area. I/O interface of the data memory is given in Figure 12. 
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Figure 12: I/O Interface of Data Memory 

The data memory is constructed as dual port RAM, which allows synchronous read 

operations from different addresses. Thanks to this property, we do not need to use two 

different RAMs to read first operand and second operand in parallel. Data is stored in 

the specified address (using “data_index” input) when “data_we” is active. Then 

required operands are read with “op_a_index” and “op_b_index” signals when 

“op_x_re” is active. It is sufficient to hold “op_x_re” active for one clock cycle, and 

then data memory makes available the variables at “op_a_data” and “op_b_data” 

outputs with active valid signals.  

3.3 The Controller 

The controller is the module which manages the arithmetic cores, program and 

data memory units. It is responsible of ensuring the correct execution of the micro-code. 

In fact, to put it simply the controller is akin to a fetch-decode-execute unit. There are 

two FDEUs inside the controller. To accelerate the communication between FDEUs, 

they are packed into one module. An FDEU is a state machine and inner states of FDEU 

are explained below: 

� Initial State: Initial values of inner variables are set and FDEU waits for a 

new block of micro-code from the top controller. When top controller gives 

the index of new block to be executed, this index is used to access the micro-

code in the program memory and FDEU proceeds to “check other core” state. 

� Check Other Core State: This state is designed to prevent a possible 

collision during memory accesses. In case of two FDEUs try to read operands 

from the same data memory, a collision may occur in accessing to data 

Data  
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op_a_data_valid 

op_b_data_valid 
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memory. As pointed out earlier, the programmer handles the “wait” and 

“notify” states correctly to prevent a collision of this type. However, there can 

still be a collision since the hardware is designed in such a way that a core 

always reads the others core’s data memory with notify signal. Therefore, if an 

FDEU needs to access the memory of other core two consecutive times for 

two variables, the latter core is released from the wait state after the first 

access. Consequently, the latter core continues execution and may access its 

data memory at the same time with the former core resulting in a collision. To 

prevent this kind of error from happening, “check other core” state is added 

before “read operand state”. In this state, the core checks the state of the other 

core. If the other core is in read state then, the core waits for it to finish. If 

both cores are in this state than we give priority to the first core to avoid dead 

lock. If the cores are a state other than read state, then it continues to execute 

normally and passes to “load opcode” state. 

� Load Opcode State: This state reads the next micro-instruction to execute 

from the program memory. The number of micro-instruction that have been 

executed is counted in this state to check if the current program is finished. 

This state also sends the operation type to the ACIU. After micro-instruction is 

read and opcode is loaded to ACIU, it proceeds to “read operand” state. 

� Read Operand State: Depending on micro-instruction, this state reads 

corresponding registers from the data memory. It waits until all words of the 

operand are written in ACIU, then “wait for result” state is loaded. 

� Wait For Result State: As name indicates, here FDEU waits for result of 

operation is written to the data memory. After that it checks for “wait for core” 

and “notify core” flags. If one of them is active it branches to the suitable 

state. 

� Wait For Core State: In this state FDEU waits for a notify signal from other 

FDEU or a done signal from inverter controller. As can be remembered 

inverter has its own controller and program ROM. During the execution of an 

inversion operation, both cores are placed in “wait for core” state and they 

both send a notice signal to inverter controller to start. Thus, the inverter 
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finishes its calculation, it sends a “done” signal which enables both FDEU to 

wake up. After this, they both proceed to the “check other core” state. 

� �otify Core State: This state generate the notify signal for the other FDEU. 

After that, FDEU goes to “check other core” state.    

Flow diagram of the state machine is depicted in Figure 13. 

 

Figure 13: Flow Diagram of State Machine of the Controller 
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I/O interface of the controller is given in Figure 14.  

 

Figure 14: I/O Interface of Controller 

In Figure 13, I/O signals of controller are given whereby only signals relating to 

FDEU1 are shown for sake of simplicity. In fact, all signals with suffix “_1” have 

versions for FDEU2 as well. Definitions of the I/O ports for the first FDEU is given in 

Table 9. Similar I/O ports exist for the second FDEU. 

 

 

 

 

 

 

 

block_data_1 

Controller 

block_done 

block_re_1 

block_index_1 

opcode_we_1 

opcode_1 

add/sub_opt_1 

op_a_re_1 

op_a_core_1 

op_a_index_1 

inverter_en_1 

To Program 
Memory 

To 
Arithmetic 
Core 

op_b_re_1 

op_b_core_1 

op_b_index_1 

To Data 
Memory 

To Inverter 
Controller 

To Top 
Controller block_we 

block_index 

op_we_1 

result_we_1 

inversion_done_1 

From Top 
Controller 

From 
Program 
Memory 

From 
Data 
Memory 

From 
Arithmetic 
Core 

From 
Inverter 
Controller 

Similar 
Signals 
Exist For 
2.nd   
FDEU 

Similar 
Signals 
Exist For 
2.nd  
FDEU 



54 
 

I/O Port Definition 

block_index Defines which block of micro-code to be executed 

block_we When active, block_index is stored to the controller 

block_data_1 Micro-instruction read from program memory of 1st. FDEU 

op_we_1 
Feed-back signal used to indicate if operands are read from data 

memory 

result_we_1 
Feed-back signal used to indicate if result of the operation is 

written to data memory 

inversion_done_1 Indicates if inversion is finished 

block_done Indicates that execution of block of micro code is finished 

block_index_1 
Indicates which block of micro-code is to be read from the 1 st. 

program memory 

block_re_1 
When active, micro-instructions, which belongs to 

"block_index_1", are read in order from the 1 st. program 
memory 

opcode_1 Defines the operation code for 1 st. ACIU 

opcode_we_1 When active, "opcode_1" is fed into 1 st. ACIU 

add/sub_opt_1 
Defines if the adder/subtractor unit in 1 st. ACIU will be used 

as adder or subtractor 

op_a_re_1 
Read enable signal (controlled by the 1 st. FDEU) for the first 

operand.  

op_a_core_1 
Defines whether the first operand is in the 1 st. data memory or 

in 2 nd. 

op_a_index_1 
Defines the address (controlled by the 1 st. FDEU) of the first 

operand 

op_b_re_1 
Read enable signal (controlled by the 1 st. FDEU) for the 

second operand.  

op_b_core_1 
Defines whether the second operand is in the 1 st. data memory 

or in 2 nd. 

op_b_index_1 
Defines the address (controlled by the 1 st. FDEU) of the 

second operand 

inverter_en_1 Signal (controlled by the 1 st. FDEU) used to start inverter 

Table 9: I/O Port Definitions for the First FDEU 

3.4 The Top Controller 

Top controller is the only part of the design specific for a given application. Other 

parts of the processor may be used in other applications directly. But the top controller 

has to be modified to implement other cryptographic or other pairing operations. The 
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top controller informs the controller to execute a block of micro-code. A cryptographic 

application is first divided into computational segments for each of which a micro-code 

block is developed.  These micro-code blocks are placed in the program memory. 

Therefore, the top controller should be designed in such a way that these micro-code 

blocks are given to the FDEUs in proper order. Consequently, the top controller should 

be re-designed for every application. We explain the design of the top controller for 

Algorithm 1.  

We construct two blocks of micro-code inside the “for” loop in Algorithm 1 (steps 

1-8). The first block represents the operations to be performed when 5* = 1 (steps 2 and 
3 of Algorithm 1) and the other represents the operations when 5* = 0 (steps 4 and 5 of 
Algorithm 1). The top controller controls the “for” loop and the final exponentiation 

operation (step 9 of Algorithm 1). Variables related to the “for” loop (5) and final 
exponentiation (e: − 1/5) are stored in the inner RAMs of top controller. Then the top 

controller shifts r by one bit (step 1 of Algorithm 1) and informs the controller module 

with the micro-code block to execute. When “done” signal is received from the 

controller, the top controller shifts r again and sends next block of micro-code. After the 

for loop terminates, it instructs the controller to execute block of code related to the 

final exponentiation. Finally, the top controller raises a finish flag indicating that the 

final result is ready. Inner abstraction and I/O interface of top controller is depicted in 

Figure 14.                                                                              

 

 

 

 

 

Figure 15: I/O Interface and inner abstraction of top controller 

Only one block RAM used to store variables of the top controller. Each variable is 

addressed with a separate index. Before starting of execution, variables needed for the 

top controller have to be stored. Using “ram_index_en” and “ram_index” signals, initial 

variables are written in the RAM, whereby “ram_index” are set to the address of the 
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location of the corresponding variable in the RAM. During the write operations, data is 

applied to the “ram_data” with “ram_we” signal being set active. Another module or a 

separate circuit using the pairing coprocessor can perform these operations. After the 

actual operation (e.g. Tate pairing) is completed, “all_finished” flag is set active. One 

block of code actually contains the parts for both cores which are marked by the 

programmer to assign them to the cores. The entire program installed on the processor is 

given block by block in the Appendix. 

3.5 Debugging of the Hardware 

For test purposes, Tate pairing algorithm is implemented using MIRACL C++ 

crypto library. We added print-outs for the intermediate results, such as the result of line 

evaluation function, output of each iteration of the Miller loop and intermediate and 

final steps of the final exponentiation. After all design and HDL coding are finished, we 

run behavioral simulation with the input values used in MIRACL implementation. We 

compared our results with MIRACL outputs to fix the bugs in HDL implementation. 

However, behavioral simulation takes around 30 minutes to complete and after each fix 

it takes too long to complete the simulation for the new implementation. To remedy the 

slowness in hardware debugging, we developed an emulator for the hardware in Java 

language. We run the Java program and observed that its output and all intermediate 

results match with those of the hardware simulation. Then, we continued testing with 

the Java emulator and MIRACL to match the results of both of them. By this way we 

were able to find the bugs in a shorter time compared to previous method. Then we 

transferred the changes we made in the Java emulator to the hardware implementation. 

Finally, we run behavioral simulation and MIRACL and we observed that all the results 

are matched. 
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4 Conclusion and Comparison 

We design a general purpose pairing processor for FPGAs. Our design is a 

parametric, very flexible and a very compact implementation. It can even fit into one 

(Spartan-3s400) of the very old fashioned and small FPGAs (see Table 9). Also it 

performs higher working frequency compared to the similar work [54].  

During improvement process, we made behavioral unit tests for each sub-module of 

the design and for overall design using ISIM and ModelSim simulation environment. 

After behavioral simulation we tried our design on real hardware (Xilinx ML402 

Evaluation Board) using 100MHz clock source. We see that our design works correctly. 

Our design can be easily modified to work on different types of pairing operations. 

Among many pairing operation types we chose to implement Tate pairing [4] using the 

parameters given in the MIRACL crypto library. We use the elliptic curve: 

k� = d� − 3d + w 

w = 364450518177934192404424328677091614072588218039367457522428451192010880 
2552.We use the modulus, ¦ = 330834540866291994040950336878685123996049234435 
07663357865684465927197075453 . We constructed quadratic field �3� − j  using 

j = −2. We choose the 5 variable in the Algorithm 1 as 5 = 25803063399904061661127 
976311108304689363428717269 . The generator point "  in Algorithm 1 whose 

coordinates are on �3 is chosen as follows. 

"º = 640227261954506466835518614091388818629251204730213225696365875116607958 
2595 
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"» = 28254754033408250554059692191573938416208433265366188619199440543745885 
796792 
The point Q in Algorithm 1, which is on �3�, is chosen as follows: 

#º�,S = 202468240713654861785554933261760322244078402596801989724654122093464 

266322, 
#º�,� = 0, 
#ºS,� = 0, 
#ºS,S = 0, 
#»S,� = 139159510539237898486697191650467806305180186022574981390954112029811 

03667335, 
#»S,S = 879873655279966654546263390920582730997142969899536448244002331049178 

1584610, 
#»�,� = 0, 
#»�,S = 0. 

By using the parameters above, after running placement-and-routing (PAR) for the 

target device, we obtain the following results for a prime q of 255 bits, where r is 160 

bits prime integer and 80 bit of security is intended. The word size is chosen as 15 bits 

to utilize the hardwired multipliers. Total running time of the Tate pairing is found to be 

28.65ms, 54.92% of which is spent on the Miller loop, using a clock frequency of 

132.49 MHz. The design consumes 4829 registers, 7583 LUTs and 4 BRAMs. Our 

results can be seen in Table 9. 

m WL REG Slice LUT MF T(ms) Security FPGA 

256 4 1557 2394 4424 78 ? 80 Spartan3s400 

255 15 4293 - 6198 132.49 28.65 80 Spartan 6 

255 15 4321 6071 10362 128.68 29.49 80 Virtex 4 

 Table 10: PAR Results for Co-processor Implementing Tate Pairing 
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We implemented design for both Spartan-6 and Virtex-4 for comparison purposes as 

shown in Table 9. In a recent PhD thesis published in June 2011 [54], the author 

proposes a similar architecture. The author provides implementation results for 128 bits 

security on Virtex 4 (xc4vlx200). It achieves a maximum clock frequency of 50 MHz 

and 35.3 ms completion time. Although it performs higher security level, it is clear that 

our design outperforms in terms of maximum achievable working frequency and logic 

area usage. It is important to note that, since our design is word based, logic area usage 

of our design does not increase significantly with increase of modulus size, instead total 

completion time of our design increases with the modulus bit sizes. Thus we can still 

say that for improved security level our logic area usage will increase slightly and our 

achievable maximum frequency can decrease slightly. Anyway, it will be better in terms 

of MF and logic area usage compared to [54] even for 128 bit security. Also we give 

comparison with an ASIC design satisfying 128 bits security [55]. Even if this design is 

ASIC, our design outperforms clearly in terms of logic usage.  

Design WL REG Slice LUT MF T(ms) Security FPGA 

Our(255) 15 4829 - 7583 132.49 28.65 80 Spartan 6 

Our(255) 15 4856 6551 11241 128.68 29.49 80 Virtex 4 

[54] - 27k 52k 101k 50 35.3 128 Virtex 4 

[55] - - 97k - 338 34.4 128 
ASIC-
130nm 

Table 11: Comparison Results 
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Appendix 

Computing of F ← F� ∗ >�,�(#) +,- O ← O + O 
F = F0 + F1.I = (f0,0 + i.f0,1) + (f1,0 + i.f1,1).I 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation Explanation 
t0 = f0,0    t0’ = Xa   
t1 = f0,1   t1’ = Ya   
t2 = f1,0   t2’ = Za   
t3 = f1,1   t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
   t30’ = Fr Frobenious Real 
   t31’ = i.Fr Frobenious Imaginary 
      
      
      
      
 F^2 13M,  28A  Lt,t(Q)  17M,  5A 
      
t7 = t0.t0 T1 = F0.F0  t8’ = 3.t0’.t0’   
t8 = t1.t1   t9’ = (t2’)^3  Za^3 
t9 = β.t8   t10’ = t9’.t2’   
t10 = t7 + t9  T1 Real t10’ = t10’.a   
t9 = t7 + t8   t8’= t8’ + t10’  λa,a 
t7 = t0 + t1   t10’ = 2.t1’.t2’  Zc, Do not 

overwrite 
t8 = t0 + t1   t11’=  t5’.t9’   
t7 = t7.t8   t11’ = t11’.t10’  Lt,t(Q)1,0 
t11 = t7 – t9  T1 Imaginary t11’ = t7’ – t11’   
t7 = t2.t2 T2 = F1.F1  t12’ =  t6’.t9’   
t8 = t3.t3   t12’ = t12’.t10’  Lt,t(Q)1,1 
t9 = β.t8   t12’ = t7’- t12’   
t12 = t7 + t9  T2 Real t13’ = t0’.t2’   
t9 = t7 + t8   t13’ = t8’.t13’  λa,a.Xa.Za 
t7 = t2 + t3   t14’ = t3’.t9’  Wait For Core 

0 
t8 = t2 + t3      
t7 = t7.t8      
t13 = t7 –t9  T2 Imaginary    
t14 = β.t13 T3 = γ.T2 = 

i(t2,0 + 
i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real    

t15 = t6 + t12  T3 Imaginary    
t16= t10+t14 C0 = T1 + T3 C0 Real    
t17= t11+t15  C0 Imaginary    
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t14= t10+t12 T3 = T1 + T2 T3 Real    
t15= t11+t13  T3 Imaginary    
t10= t0 + t2 T1 = F0 + F1 T1 Real    
t11= t1 + t3  T1 Imaginary    
t12= t0 + t2 T2 = F0 + F1 T2 Real    
t13= t1 + t3  T2 Imaginary    
t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t0 = t16 + t6 C1 = T4-T3 C0 0,0    
t1 = t17 + t6  C0 0,1    
t2 = t18 – t14  C1 1,0    
t3 = t19 – t15  C1 1,1    
      
 Doubling 5M,  6A    
t10 = t6 + t0’  Xa    
t11 = t6 + t1’  Ya    
t7 = t6 + t8’  λa,a / Notify 

Core 1 
   

t11 = 2.t11.t11   t14’ = t14’.t8’  Real  
t10 = 2.t10.t11   t15’ = t4’.t9’   
t8 = t7.t7   t15’ = t15’.t8’  Imaginary / 

Lt,t(Q)0,1 
t9 = 2.t10   t16’ = t1’.t10’   
t8 = t8 – t9  Xc t14’ = t13’ – 

t14’  
  

t10 = t10 – t8   t14’ = t14’ – 
t16’ 

  

t10 = t10.t7   t14’ = t7’ –t14’  Lt,t(Q)0,0 / 
Wait For Core 
0 

t11 = 2.t11.t11      
t10 = t10 – t11  Yc    
t20 = t6 + t14’  Lt,t(Q)0,0    
t21 = t6 + t15’  Lt,t(Q)0,1 / 

Notify Core1 
   

t6 = t6 + t6 Dummy  Wait For 
Core 1 

t17’ = t7’ + t2  F  1,0 

   t18’ = t7’ + t3  F  1,1  
   t0’ = t8 + t7’   
   t1’ = t10 + t7’   
   t2’ = t10’ + t7’   
   t7’ = t7’ + t7’ Dummy  Notify Core 0 
 f^2.Lt,t(Q)   f^2.Lt,t(Q)  
t7 = t0.t20 T1 = A0.B0 A0 -> f, B0-

>Lt,t(Q) 
t8’ = t17’.t11’ T2 = A1.B1 A1 -> f, B1-

>Lt,t(Q) 
t8 = t1.t21   t9’ = t18’.t12’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’ = t8’ + t10’  T2 Real 
t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t0 + t1   t8’ = t17’ + t18’   
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t8 = t20 + t21   t9’ = t11’ + t12’   
t7 = t7.t8   t8 ‘ = t8’.t9’   
t11 = t7 – t9  T1 Imaginary 

/ Wait For 
Core 1 

t20’ = t8’ – t10’  T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0 + 
i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real 

   t22’ = t7’ + t19’  T3 Imaginary 
/ Notify Core 
0 

t6 = t6 + t6 Dummy  t7’ = t7’ + t7’ Dummy  Wait For Core 
0 

t6 = t6 + t6 Dummy     
t16 = t10 + t21’ C0 = T1 + T3 C0 Real    
t17 = t11 + t22’  C0 Imaginary    
t14 = t10 + T19’ T3 = T1 + T2 T3 Real    
t15 = t11 + t20’  T3 Imaginary 

/ Notify Core 
1 

   

t10 = t0 + t2 T1 = A0 + A1 T1 Real t19’ = t11’ + 
t14’ 

T2 = B0 + B1 T2 Real 

t11 = t1 + t3  T1 Imaginary t20’ = t12’ + 
t15’ 

 T2 Imaginary 
/ Wait For 
Core 0 

t7 = t10.t19’ T4 = T1.T2     
t8 = t11.t20’  Notify Core 1    
t9 = β.t8   t21’ = t19’+t20’  Wait For Core 

0 
t18 = t7 + t9  T4 Real    
t9 = t7 + t8  Notify Core 1    
t7 = t10 + t11   t7’ = t7’ + t7’ Dummy To provide 

enough 
latency for 
Acore0 

t7 = t7.t21’    DONE  
t19 = t7 – t9  T4 Imaginary    
t0 = t16 + t6 C1 = T4-T3 C0 0,0    
t1 = t17 + t6  C0 0,1    
t2 = t18 – t14  C1 1,0    
t3 = t19 – t15  C1 1,1    
 DONE     
      
 

 
 
Computing of        F ← F ∗ >�,G(#) +,- O ← " + O 
         
 ACORE 0   ACORE 1  
Micro Code Operation  Explanation Micro Code Operation  Explanation 
t0 = f0,0    t0’ = Xa   
t1 = f0,1   t1’ = Ya   
t2 = f1,0   t2’ = Za   
t3 = f1,1   t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
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t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
   t30’ = Fr Frobenious Real 
   t31’ = i.Fr Frobenious Imaginary 
      
      
      
      
 T+P   Lt,p(Q)  
      
t6 = t6 + t6 Dummy  t7’ = t7’ + t7’ Dummy Wait For 

Core 0 
t7 = t6 + t0’  Xa    
t8 = t6 + t1’  Ya    
t9 = t6 + t2’  Za / Notify 

Core 1 
   

t10 = t9.t9   t8’ = t0’.t2’  Wait For 
Core 0 

t11 = t10.t9  Notify Core 1    
t12 = t11.t5   t9’ = t7’ + t11  Za^3 / Wait 

For Core 0 
t12 = t12-t8  λa,b / Notify 

Core 1 
   

t10 = t10.t4   t10’ = t7’ + t12  λa,b 
t10 = t10 – t7   t11’ = t8’.t10’   
t13 = t9.t10  Zc / Wait For 

Core 1 
t12’ = t9’.t10’   

   t7’ = t7’ + t7’ Dummy  
   t13’ = t7’ + t13  Zc / Notify 

Core 0  
t14 = t10.t10   t14’ = t3’.t12’  Real 
t15 = t14.t10   t15’ = t4’.t12’  Imaginary 
t14 = t14.t7   t16’ = t1’.t13’   
t10 = t12.t12   t14’ = t11’ – 

t14’ 
  

t16 = t15 +t14   t14’ = t14’ – 
t16’ 

 Lt,p(Q)0,0 

t16 = t16 + t14   t15’ = t7’ – 
t15’ 

 Lt,p(Q)0,1 

t10 = t10 –t16  Xc t9’ = t9’.t13’   
t14 = t14 – t10   t11’ = t5’.t9’  Lt,p(Q)1,0 
t12 = t12.t14   t12’ = t6’.t9’  Lt,p(Q)1,1 / 

Wait For 
Core 0 

t14 = t15.t8      
t12 = t12 – t14  Yc     
t20 = t6 + t14’  Lt,t(Q)0,0    
t21 = t6 + t15’  Lt,t(Q)0,1 / 

Notify Core1 
   

t6 = t6 + t6 Dummy  Wait For 
Core 1 

t17’ = t7’ + t2  F  1,0 

   t18’ = t7’ + t3  F  1,1  
   t0’ = t7’ + t10   
   t2’ = t7’ + t13’   
   t1’ = t7’ + t12  Notify Core 0 
 f.Lt,p(Q)   f.Lt,p(Q)  
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t7 = t0.t20 T1 = A0.B0 A0 -> f, B0-
>Lt,t(Q) 

t8’ = t17’.t11’ T2 = A1.B1 A1 -> f, B1-
>Lt,t(Q) 

t8 = t1.t21   t9’ = t18’.t12’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’ = t8’ + 

t10’ 
 T2 Real 

t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t0 + t1   t8’ = t17’ + 

t18’ 
  

t8 = t20 + t21   t9’ = t11’ + 
t12’ 

  

t7 = t7.t8   t8 ‘ = t8’.t9’   
t11 = t7 – t9  T1 Imaginary 

/ Wait For 
Core 1 

t20’ = t8’ – 
t10’ 

 T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0+i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real 

   t22’ = t7’ + 
t19’ 

 T3 Imaginary 
/ Notify Core 
0 

t6 = t6 + t6 Dummy  t7’ = t7’ + t7’ Dummy  Wait For 
Core 0 

t6 = t6 + t6 Dummy     
t16 = t10 + 
t21’ 

C0 = T1 + 
T3 

C0 Real    

t17 = t11 + 
t22’ 

 C0 Imaginary    

t14 = t10 + 
T19’ 

T3 = T1 + T2 T3 Real    

t15 = t11 + 
t20’ 

 T3 Imaginary 
/ Notify Core 
1 

   

t10 = t0 + t2 T1 = A0 + 
A1 

T1 Real t19’ = t11’ + 
t14’ 

T2 = B0 + B1 T2 Real 

t11 = t1 + t3  T1 Imaginary t20’ = t12’ + 
t15’ 

 T2 Imaginary 
/ Wait For 
Core 0 

t7 = t10.t19’ T4 = T1.T2     
t8 = t11.t20’  Notify Core 1    
t9 = β.t8   t21’ = 

t19’+t20’ 
 Wait For 

Core 0 
t18 = t7 + t9  T4 Real    
t9 = t7 + t8  Notify Core 1    
t7 = t10 + t11    DONE  
t7 = t7.t21’      
t19 = t7 – t9  T4 Imaginary    
t0 = t16 + t6 C1 = T4-T3 C0 0,0    
t1 = t17 + t6  C0 0,1    
t2 = t18 – t14  C1 1,0    
t3 = t19 – t15  C1 1,1    
 DONE     
 

Final exponentiation part 1 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation  Explanatio

n 
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t0 = f0,0   loop output t0’ = Xa   
t1 = f0,1  loop output t1’ = Ya   
t2 = f1,0  loop output t2’ = Za   
t3 = f1,1  loop output t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
   t30’ = Fr Frobenious Real 
   t31’ = i.Fr Frobenious Imaginary 
      
      
      
      
      
      
      
      
      
 B = (F0 + 

IF1)^-1 
    

t7 = t2.t2 T1 = A1.A1  t7’ = t7’ + t7’ Dummy Wait For 
Core 0 

t8 = t3.t3      
t9 = β.t8      
t10 = t7 + t9  T1 Real    
t9 = t7 + t8      
t7 = t2 + t3      
t8 = t2 + t3      
t7 = t7.t8      
t11 = t7 – t9  T1 Imaginary    
t12 = β.t11 T2 = γ.T1 = 

(β.t1,1 + 
i.t1,0) 

T2 Real    

t13 = t6 + t10  T2 Imaginary    
t7 = t0.t0 T1 = A0.A0     
t8 = t1.t1      
t9 = β.t8      
t10 = t7 + t9  T1 Real    
t9 = t7 + t8      
t7 = t0 + t1      
t8 = t0 + t1      
t7 = t7.t8      
t11 = t7 – t9  T1 Imaginary    
t14 = t10 – t12 T3 = T1-T2 T3 Real    
t15 = t11 – t13  T3 Imaginary    
t7 = t15.t15 T4 = T3^-1     
t8 = β.t7      
t7 = t14.t14      
t9 = t7 – t8  Wait For Core 

1 
   

t9 = t9^-1 This step is executed by Inverter 
Controller, it does not exist in 
program memory of the 
controller 

   

t18 = t14.t9  T4 Real t7’ = t7’ + t7’ Dummy Wait For 
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Core 0 
t19 = t15.t9      
t19 = t6 – t19  T4 Imaginary    
t7 = t0.t18 B0 = A0.T4     
t8 = t1.t19      
t9 = β.t8      
t20 = t7 + t9  B0,0    
t9 = t7 + t8      
t7 = t0 + t1      
t8 = t18 + t19      
t7 = t7.t8      
t21 = t7 – t9  B0,1    
t10 = t6 – t2 T1 = -A1 T1 Real    
t11 = t6 – t3  T1 Imaginary    
t7 = t10.t18 B1 = T1.T4     
t8 = t11.t19      
t9 = β.t8      
t22 = t7 + t9  B1,0    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t18 + t19      
t7 = t7.t8      
t23 = t7 – t9  B1,1    
 B.F 

F=(F0 +I(-F1) 
    

t2 = t6 – t2 Generate (-F1)     
t3 = t6 – t3 Generate (-F1)     
t7 = t0.t20 T1 = F0.B0     
t8 = t1.t21      
t9 = β.t8      
t10 = t7 + t9  T1 Real    
t9 = t7 + t8      
t7 = t0 + t1      
t8 = t20 + t21      
t7 = t7.t8      
t11 = t7 – t9  T1 Imaginary     
t7 = t2.t22 T2 = F1.B1     
t8 = t3.t23      
t9 = β.t8      
t12 = t7 + t9  T2 Real    
t9 = t7 + t8      
t7 = t2 + t3      
t8 = t22 + t23      
t7 = t7.t8      
t13 = t7 – t9  T2 Imaginary     
t14 = β.t13 T3 = γ.T2 = 

i(t2,0+i.t2,1)=
β.t2,1 + i.t2,0 

T3 Real    

t15 = t6 + t12  T3 Imaginary    
t16= t10+t14 C0 = T1 + T3 C0 Real    
t17= t11+t15  C0 Imaginary    
t14= t10+t12 T3 = T1 + T2 T3 Real    
t15= t11+t13  T3 Imaginary    
t10= t0 + t2 T1 = F0 + F1 T1 Real    
t11= t1 + t3  T1 Imaginary    
t12= t20 + t22 T2 = B0 + B1 T2 Real    
t13= t21 + t23  T2 Imaginary    
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t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t0 = t16 + t6 C1 = T4-T3 C0 0,0  Prepare 

Exponentiation 
s^k1 

 

t1 = t17 + t6  C0 0,1    
t2 = t18 – t14  C1 1,0    
t3 = t19 – t15  C1 1,1  / 

Notify Core 1 
   

t6 + t6 = t6 Dummy Wait For Core 
1 

t8’ = t7’ + t2   

   t9’ = t7’ + t3   
    Fr.(f1,0 + i.(-

f1,1)) 
 

   t12’ = t7’ – t9’   
   t13’ = t30’.t8’   
   t14’ = t31’.t12’   
   t15’ = β.t14’   
   t18’=t13’ + t15’  S1,0 
   t15’= 13’ + t14’   
   t13’= t30’ + 

t31’ 
  

   t14’ = t8’ + t12’   
   t13’ = t13’.t14’   
   t19’ =t13’– t15’  S1,1 / 

Notify Core 
0 

t20 = t6 + t0  S0,0  DONE  
t21 = t6 – t1  S0,1    
t22 = t6 + t18’  S1,0    
t23 = t6 + t19’  S1,1    
t24 = t30 + t6  Z0,0    
t25 = t6 + t6  Z0,1    
t26 = t6 + t6  Z1,0    
t27 = t6 + t6  Z1,1    
 DONE     
      
 

Exponentiation case for bit=’1’ 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation  Explanation 
t0 = f0,0   BF result t0’ = Xa   
t1 = f0,1  BF result t1’ = Ya   
t2 = f1,0  BF result t2’ = Za   
t3 = f1,1  BF result t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
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t31 = β   t28’ = a   
   t29’ = β   
t20 = S0,0   t30’ = Fr Frobenious Real 
t21 = S0,1   t31’ = i.Fr Frobenious Imaginary 
t22 = S1,0      
t23 = S1,1      
t24 = Z0,0      
t25 = Z0,1      
t26 = Z1,0      
t27 = Z1,1      
 Z = Z^2   Z = Z^2  
t6 = t6 + t6 Dummy Wait For Core 

1 
t7’ = t7’ + t7’ Dummy  

   t17’ = t7’ + t26   
   t18’ = t7’ + t27  Notify Core 0 
t7 = t24.t24 T1 = Z0.Z0  t8’ = t17’.t17’ T2 = Z1.Z1  
t8 = t25.t25   t9’ = t18’.t18’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’ = t8’ + t10’  T2 Real / T3 

Imaginary 
t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t24 + t25   t8’ = t17’ + t18’   
t8 = t24 + t25   t9’ = t17’ + t18’   
t7 = t7.t8   t8 ‘ = t8’.t9’   
t11 = t7 – t9  T1 Imaginary/ 

Wait For Core 
1 

t20’ = t8’ – t10’  T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0 + 
i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real / 
Notify Core 0 

t16= t10+t21’ C0 = T1 + T3 C0 Real t7’ = t7’ + t7’ Dummy Wait For Core 
0 

t17= t11+t19’  C0 Imaginary    
t14= t10+t19’ T3 = T1 + T2 T3 Real    
t15= t11+t20’  T3 Imaginary    
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real    
t11 = t25 + t27  T1 Imaginary    
t12= t24 + t26 T2 = Z0 + Z1 T2 Real    
t13= t25 + t27  T2 Imaginary    
t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t24 = t16 + t6 C1 = T4-T3 Z0 0,0    
t25 = t17 + t6  Z0 0,1    
t26 = t18 – t14  Z1 1,0    
t27 = t19 – t15  Z1 1,1 / 

Notify Core 1 
   

t6 = t6 + t6 Dummy Wait For Core 
1 

t17’ = t7’ + t26   

   t18’ = t7’ + t27   
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   t22’ = t7’ + t22   
   t23’ = t7’ + t23  Notify Core 0 
 Z = Z.S   Z = Z.S  
t7 = t24.t20 T1 = Z0.S0  t8’ = t17’.t22’ T2 = Z1.S1  
t8 = t25.t21   t9’ = t18’.t23’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’ = t8’ + t10’  T2 Real / T3 

Imaginary 
t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t24 + t25   t8’ = t17’ + t18’   
t8 = t20 + t21   t9’ = t22’ + t23’   
t7 = t7.t8   t8 ‘ = t8’.t9’   
t11 = t7 – t9  T1 Imaginary/ 

Wait For Core 
1 

t20’ = t8’ – t10’  T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0 + 
i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real / 
Notify Core 0 

t16= t10+t21’ C0 = T1 + T3 C0 Real  DONE  
t17= t11+t19’  C0 Imaginary    
t14= t10+t19’ T3 = T1 + T2 T3 Real    
t15= t11+t20’  T3 Imaginary    
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real    
t11 = t25 + t27  T1 Imaginary    
t12= t20 + t22 T2 = S0 + S1 T2 Real    
t13= t21 + t23  T2 Imaginary    
t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t24 = t16 + t6 C1 = T4-T3 Z0 0,0    
t25 = t17 + t6  Z0 0,1    
t26 = t18 – t14  Z1 1,0    
t27 = t19 – t15  Z1 1,1     
 DONE     
 

Exponentiation case for bit=’0’ 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation  Explanation 
t0 = f0,0    t0’ = Xa   
t1 = f0,1   t1’ = Ya   
t2 = f1,0   t2’ = Za   
t3 = f1,1   t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
t20 = S0,0   t30’ = Fr Frobenious Real 
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t21 = S0,1   t31’ = i.Fr Frobenious Imaginary 
t22 = S1,0      
t23 = S1,1      
t24 = Z0,0      
t25 = Z0,1      
t26 = Z1,0      
t27 = Z1,1      
 Z = Z^2   Z = Z^2  
t6 = t6 + t6 Dummy Wait For Core 

1 
t7’ = t7’ + t7’ Dummy  

   t17’ = t7’ + t26   
   t18’ = t7’ + t27  Notify Core 0 
t7 = t24.t24 T1 = Z0.Z0  t8’ = t17’.t17’ T2 = Z1.Z1  
t8 = t25.t25   t9’ = t18’.t18’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’ = t8’ + t10’  T2 Real / T3 

Imaginary 
t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t24 + t25   t8’ = t17’ + t18’   
t8 = t24 + t25   t9’ = t17’ + t18’   
t7 = t7.t8   t8 ‘ = t8’.t9’   
t11 = t7 – t9  T1 Imaginary/ 

Wait For Core 
1 

t20’ = t8’ – t10’  T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0 + 
i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real / 
Notify Core 0 

t16= t10+t21’ C0 = T1 + T3 C0 Real  DONE  
t17= t11+t19’  C0 Imaginary    
t14= t10+t19’ T3 = T1 + T2 T3 Real    
t15= t11+t20’  T3 Imaginary    
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real    
t11 = t25 + t27  T1 Imaginary    
t12= t24 + t26 T2 = Z0 + Z1 T2 Real    
t13= t25 + t27  T2 Imaginary    
t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t24 = t16 + t6 C1 = T4-T3 Z0 0,0    
t25 = t17 + t6  Z0 0,1    
t26 = t18 – t14  Z1 1,0    
t27 = t19 – t15  Z1 1,1     
 DONE     
 

Changing the places of variables, for powering t. 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation  Explanation 
t0 = f0,0   BF result t0’ = Xa   
t1 = f0,1  BF result t1’ = Ya   
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t2 = f1,0  BF result t2’ = Za   
t3 = f1,1  BF result t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
t20 = S0,0   t30’ = Fr Frobenious Real 
t21 = S0,1   t31’ = i.Fr Frobenious Imaginary 
t22 = S1,0      
t23 = S1,1      
t24 = Z0,0  s^k1    
t25 = Z0,1  s^k1    
t26 = Z1,0  s^k1    
t27 = Z1,1  s^k1    
t20 = t6 + t0   t7’ = t7’ + t7’ Dummy  Wait For Core 

0 
t21 = t6 + t1      
t22 = t6 + t2      
t23 = t6 + t3      
t0 = t6 + t24      
t1 = t6 + t25      
t2 = t6 + t26      
t3 = t6 + t27      
t24 = t30 + t6  Z0,0    
t25 = t6 + t6  Z0,1    
t26 = t6 + t6  Z1,0    
t27 = t6 + t6  Z1,1  / Notify 

Core 1 
   

 DONE   DONE  
 

Last operation of exponentiation: F(3�L
)/E = ~:S ∗ g:� 

 ACORE 0   ACORE 1  
Micro Code Operation Explanation Micro Code Operation  Explanation 
t0 = f0,0   s^k1 t0’ = Xa   
t1 = f0,1  s^k1 t1’ = Ya   
t2 = f1,0  s^k1 t2’ = Za   
t3 = f1,1  s^k1 t3’ = xq0,0  Real 
t4 = Xb   t4’ = xq0,1  Imaginary 
t5 = Yb   t5’ = yq1,0  Real 
t6 = 0   t6’ = yq1,1  Imaginary 
t30 = 1   t7’ = 0   
t31 = β   t28’ = a   
   t29’ = β   
t20 = S0,0   t30’ = Fr Frobenious Real 
t21 = S0,1   t31’ = i.Fr Frobenious Imaginary 
t22 = S1,0      
t23 = S1,1      
t24 = Z0,0  t^k0    
t25 = Z0,1  t^k0    
t26 = Z1,0  t^k0    
t27 = Z1,1  t^k0    
t6 = t6 + t6 Dummy  t7’ = t7’ + t7’ Dummy  Wait For 

Core 0 
t20 = t6 + t0      
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t21 = t6 + t1      
t22 = t6 + t2      
t23 = t6 + t3  Notify Core 1    
t6 = t6 + t6 Dummy Wait For 

Core 1 
t17’ = t7’+ t26   

   t18’ = t7’+ t27   
   t22’ = t7’+ t22   
   t23’ = t7’+ t23  Notify Core 0 
      
 S.T   S.T  
t7 = t24.t20 T1 = S0.T0  t8’ = t17’.t22’ T2 = S1.T1  
t8 = t25.t21   t9’ = t18’.t23’   
t9 = β.t8   t10’ = β.t9’   
t10 = t7 + t9  T1 Real t19’=t8’+ t10’  T2 Real / T3 

Imaginary 
t9 = t7 + t8   t10’ = t8’ + t9’   
t7 = t24 + t25   t8’= t17’+ t18’   
t8 = t20 + t21   t9’=t22’ + t23’   
t7 = t7.t8   t8 ‘= t8’.t9’   
t11 = t7 – t9  T1 

Imaginary/ 
Wait For 
Core 1 

t20’=t8’ – t10’  T2 Imaginary 

   t21’ = β.t20’ T3 = γ.T2 = 
i(t2,0+i.t2,1)=β.t2,1 
+ i.t2,0 

T3 Real / 
Notify Core 0 

t16= t10+t21’ C0 = T1 + T3 C0 Real  DONE  
t17= t11+t19’  C0 Imaginary    
t14= t10+t19’ T3 = T1 + T2 T3 Real    
t15= t11+t20’  T3 Imaginary    
t10 = t24 + 
t26 

T1 = T0 + T1 T1 Real    

t11 = t25 + 
t27 

 T1 Imaginary    

t12= t20 + t22 T2 = S0 + S1 T2 Real    
t13= t21 + t23  T2 Imaginary    
t7 = t10.t12 T4 = T1.T2     
t8 = t11.t13      
t9 = β.t8      
t18= t7 + t9  T4 Real    
t9 = t7 + t8      
t7 = t10 + t11      
t8 = t12 + t13      
t7 = t7.t8      
t19 = t7 – t9  T4 Imaginary    
t0 = t16 + t6 C1 = T4-T3 f0 0,0    
t1 = t17 + t6  f0 0,1    
t2 = t18 – t14  f1 1,0    
t3 = t19 – t15  f1 1,1     
 DONE     
 


