

COMPACT, FLEXIBLE AND FAST COPROCESSOR DESIGN FOR ELLIPTIC

CURVE PAIRING OPERATION ON RECONFIGURABLE HARDWARE

by

ERTUĞRUL MURAT

Submitted to the Graduate School of Engineering and

Natural Sciences in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2011

COMPACT, FLEXIBLE AND FAST COPROCESSOR DESIGN FOR

ELLIPTIC CURVE PAIRING OPERATION ON RECONFIGURABLE

HARDWARE

APPROVED BY:

Associate Prof. Dr. Erkay Savaş:

(Thesis Advisor)

Associate Prof. Dr. Albert Levi:

Associate Prof. Dr. Cem Güneri:

Associate Prof. Dr. Yücel Saygın:

Assistant Prof. Dr. Selim Balcısoy:

DATE OF APPROVAL: ……………….

© Ertuğrul Murat 2011

All Rights Reserved

iv

ABSTRACT

Proposal of Identity-Based cryptography by Shamir in 1984 opened a new area

for researchers. Failing to provide a feasible implementation of identity based

encryption (IBE), Shamir developed a signature scheme, whereby signatures can be

verified by publicly available information such as signer’s identity. Since the first

efficient implementation of IBE realized using pairing operation on elliptic curves due

to Boneh and Franklin a plethora of papers has been published and many studies have

been conducted covering different aspects of pairing-based cryptography. Today,

pairing is used in many cryptographic applications including, identity based

cryptography, key exchange protocols, short signatures, anonymous signatures and in

many other newly emerging protocols and schemes. Also, pairing is still a developing

research field yielding important challenges for the research community.

Pairing computation involves fairly complicated operations compared to

classical symmetric and asymmetric cryptosystems. Multitudes of pairing types have

been proposed after its first appearance in the literature. Also, each of them involves

selection of many parameters such as the choice of the underlying field and its

characteristics, order of the embedding degree, type of the elliptic curve etc. Therefore,

different types of optimisations are possible rendering selection process extremely

difficult. Because of the abundance of choices, for an efficient pairing implementation

many criteria have to be examined. For instance, selection of pairing type, construction

of finite fields and elliptic curves, coordinate systems to represent points on the curve

and algorithms and architecture for arithmetic operations play a crucial role on the

performance of the specific implementation of the pairing-based cryptography.

 A multitude of implementations regarding to pairing-based cryptography have

been proposed in the literature. However, most of them are software realizations; the

reason being is the complexity of the overall system. Some hardware implementations

have already been proposed, but most of them are very specific, therefore lacks

flexibility and scalability. Due to the complexity of the system, some researches advice

to use dedicated implementations for specific set of parameters even in software,

limiting the flexibility of the implementation further.

v

 In this thesis, we propose a very generic, flexible and compact hardware co-

processor for all kinds of pairing implementations intended for implementation on

reconfigurable devices (e.g. FPGA). Our co-processor supports all types of pairing

operations with different parameter classes via making use of highly-optimized

hardware implementations of basic arithmetic operations common not only to pairing

operations, but also to elliptic curve cryptography and other public key cryptography

algorithms. Our design utilizes the idea of hardware-software co-design concept. To

accelerate pairing computation we implement some units responsible for performing the

most time-consuming operations as a generic, but highly optimized hardware circuits,

whereas we prefer to implement some complex parts (unworthy of hardware resources)

in low-level software of micro-instructions. Although we use two arithmetic cores

running concurrently, our design still manages to be compact thanks to its careful and

generic design.

vi

ÖZET

Kimlik-temelli kriptografik sistemin 1984’te Shamir tarafından ortaya

atılmasıyla, araştırmacılar için yeni bir kapı aralanmış oldu. Kimlik-temelli şifreleme

işlemi için uygulanabilir bir algoritma önermeyen Shamir, imzanın geçerliliğinin

imzalayanın herkese açık bilgileriyle, örneğin kimliği, doğrulanabildiği uygulanabilir

bir elektronik imzalama sistemi geliştirdi. Kimlik-temelli şifrelemenin ilk uygulanabilir

örneğinin Boneh ve Frankin tarafından eliptik eğriler üzerinde tanımlanmış eşleme

(pairing) işlemi ile verilmesinden bu yana, kriptografi alanında eşleme temelli pek çok

çalışmalar yapılıp, yayınlar çıktı. Günümüzde eşleme operasyonu pek çok kriptografik

uygulamada kullanılmaktadır, kimlik temelli kriptografik sistemler, anahtar değişim

protokolleri, kısa imzalar, anonim imzalar ve yeni gelişen pek çok protokol ve

uygulama bunların arasındadır. Özet olarak kriptografik eşleme, içerisinde çözülmesi

gereken birçok problemi barındıran ve halen gelişen bir araştırma alanıdır.

Eşleme operasyonu klasik simetrik ve asimetrik kriptografik sistemlere göre

oldukça karmaşıktır. Đlk eşleme operasyonunun geliştirilmesinden bu yana eşleme

operasyonunun birçok sayıda türevi çıkmıştır. Her bir türev kullanılan cebrik cismin

seçimi ve onun karakteristiği, yerleştirme derecesi gibi birçok parametre

kullanmaktadır. Bundan dolayı parametre seçim sürecini oldukça zorlaştıran bir hayli

optimizasyon bulunmaktadır. Seçenek bolluğundan dolayı etkili bir eşleme operasyonu

gerçeklemesi için pek çok ölçüt incelenmelidir. Örneğin, eşleme işleminin tipi, uygun

cebrik cismin ve eliptik eğrinin seçimi, kullanılacak koordinat sisteminin, algoritmaların

ve aritmetik operasyonlar için donanım mimarilerinin seçimi gibi konular eşleme

operasyonunun etkin gerçeklenmesinde önemli rol oynamaktadır.

Literatürde pek çok eşleme işlemi gerçeklemesi mevcuttur; fakat bunların çoğu

salt yazılımsal gerçeklemelerdir. Bunun sebebi gerçeklenen operasyonun

karmaşıklığıdır. Bunlar dışında bazı donanımsal gerçeklemeler mevcutsa da bunların

çoğu çok özelleşmiş uygulamalardır ve bu nedenle esneklik ve ölçeklenirlikten

yoksundur. Operasyonun karmaşıklığından dolayı bazı araştırmacılar verimli bir

gerçeklemeye sahip olmak için yazılımsal dahi olsa, tasarımın esnekliğini sınırlayarak,

özelleşmiş tasarımlara gidilmesini salık vermektedir.

vii

 Bu tezde, programlanabilir donanım cihazlarında gerçekleştirilmek üzere, her

türde eşleme operasyonları için çok esnek, genel ve kompakt bir yardımcı-işlemci

tasarımı sunulmaktadır. Geliştirilen tasarım, değişik parametre sınıflarında her eşleme

operasyonu türevini desteklemektedir. Bunu yaparken sadece eşleme operasyonu için

değil, diğer birçok asimetrik anahtarlı şifreleme sistemlerinde de kullanılan temel

aritmetik operasyonları gerçekleyen son derece optimize edilmiş donanımsal işlevsel

birimler kullanmaktadır. Tasarımda ortaya koyduğumuz yaklaşım, yazılım ve

donanımın ortak kullanımıdır. Eşleme operasyonunu hızlandırmak için en çok zaman

harcayan operasyonlar parametrik ve oldukça optimize donanımsal birimler olarak

gerçeklenirken, karmaşık operasyonlar (kısıtlı donanım kaynaklarını verimli olarak

kullanamayan) mikro-operasyonlar vasıtasıyla yazılımsal olarak gerçeklenmiştir.

Tasarımda her ne kadar eş zamanlı çalışan ve aritmetik işlemleri gerçekleyen iki-

çekirdek kullanılsa da, dikkatli tasarım ve esnek yapı sayesinde tasarım karşılaştırmalı

olarak az yer kaplamaktadır.

viii

Dedicated to my family…

ix

x

ACK�OWLEDGEME�TS

I would like to present my special thanks to my thesis advisor, Associate Prof.

Dr. Erkay Savaş for his valuable mentorship, not only about this thesis but also for his

guidance in general manner. He helped me in all points that I cannot make progress. For

all the difficult corners of this thesis he became very elucidative. I also thank to

members of my thesis jury, Associate Prof. Dr. Albert Levi, Associate Prof. Dr. Cem

Güneri, Associate Prof. Dr. Yücel Saygın and Assistant Prof. Dr. Selim Balcısoy, for

very useful suggestions on my thesis. Besides I would like to thank to Ersin Öksüzoğlu

for sharing his valuable work, Mongomery multiplier, with me. I also sincerely thank to

Ali Can Atıcı for all his helps during design process.

Last but not least, I thank to my family for their unlimited support. They are the

ones who helped me stay where I stay in all respects. I do not forget the friends whom I

did not count the names but who are always with me and fortify me. I thank to all.

xi

Table of Contents

1 I�TRODUCTIO� ... 1

2 U�DERLYI�G FPGA ARCHITECTURE & BACKGROU�D I�FORMATIO� 4

2.1 UNDERLYING FPGA ARCHITECTURE .. 4

2.2 BACKGROUND INFORMATION ON ALGEBRAIC STRUCTURES ... 8

2.2.1 Finding Tate Pairing Parameters .. 10

2.2.2 Finding Elliptic Curve .. 11

2.2.3 Polynomial Arithmetic for ��� ... 14

2.2.4 Elliptic Curve Arithmetic on Projective Coordinates ... 16

2.2.5 Line Evaluation Function ... 17

2.2.6 Final Exponentiation .. 18

3 PARAMETRIC A�D COMPACT IMPLEME�TATIO� OF HARDWARE

COPROCESSOR FOR PAIRI�G O� FPGA ... 21

3.1 ARITHMETIC CORE & INVERSION UNIT ... 26

3.1.1 Arithmetic Core ... 26

3.1.1.1 Multiplication Module ... 28

3.1.1.2 Addition/Subtraction/Shifter Module ... 31

3.1.2 Inverter Controller ... 32

3.1.2.1 Montgomery Inverter Module .. 34

3.1.2.1.1 Montgomery Modular Inversion Algorithm .. 35

3.1.2.1.2 Montgomery Inverter Architecture .. 38

3.1.2.1.3 Implementation Results of the Inverter Unit and Other Metrics .. 42

3.2 PROGRAM AND DATA MEMORY .. 46

3.2.1 Program Memory ... 46

3.2.2 Data Memory ... 49

3.3 THE CONTROLLER ... 50

3.4 THE TOP CONTROLLER ... 54

3.5 DEBUGGING OF THE HARDWARE ... 56

4 CO�CLUSIO� A�D COMPARISO� ... 57

REFERE�CES .. 60

APPE�DIX ... 64

xii

List of Terms and Symbols

� ACIU: Arithmetic core and inversion unit.

� ASIC: Application Specific Integrated Circuit

� BMC: Block of micro code.

� BRAM : Block RAM; hardwired RAM in FPGA.

� CIOS: Coarsely Integrated Operand Scanning

� DLP: Discrete logarithm problem.

� DMA: Direct memory access

� DSP48A1: Hardwired arithmetic unit in FPGA

� DSS: Digital Signature Standard

� FDEU: Fetch decode and execute unit.

� FPGA: Field Programmable Gate Array

� LSW: Least significant word. If a variable is thought as sequence of words

having same bit size each, then LSW defines the least significant word.

� LUT: Both stands for number of LUTs and look up tables: Boolean function

generators in FPGA

� M: Modulus

� m: bit size of modulus.

� ms: milliseconds: 10-3 seconds.

� MF: Maximum frequency; achievable maximum frequency in an FPGA design.

� MM: Montgomery multiplier: A special multiplier specialized for hardware.

� MSW: Most significant word.

xiii

� Opcode: Operation code. This is the part of the micro code which defines what

kind of operation to be executed.

� PAR: Place and route: Last step in the implementation before embedding the

core.

� REG: Flip flop numbers used in a design.

� T: Total time to complete the operation

� TA: Time are product; LUT*T/1000

� us: microseconds: 10-6 seconds.

� WL: Word length; bit size of a processing word.

xiv

List of Figures

FIGURE 1: CO��ECTIO� OF SLICES [6] .. 6

FIGURE 2: I�TER CLB CARRY PROPAGATIO� [6] ... 6

FIGURE 3: GE�ERAL OVERVIEW OF THE PROCESSOR ARCHITECTURE 24

FIGURE 4: ARITHMETIC CORE I/O I�TERFACE .. 27

FIGURE 5: MO�TGOMERY MULTIPLIER I/O I�TERFACE .. 30

FIGURE 6: MODULAR ADDITIO� ARCHITECTURE ... 31

FIGURE 7: MODULAR ADDITIO� I/O I�TERFACE ... 32

FIGURE 8: I�VERTER CO�TROLLER I/O I�TERFACE ... 33

FIGURE 9: U/V PART OF THE I�VERTER .. 39

FIGURE 10: R/S PART OF THE I�VERTER ... 41

FIGURE 11: I/O I�TERFACE OF PROGRAM MEMORY .. 49

FIGURE 12: I/O I�TERFACE OF DATA MEMORY .. 50

FIGURE 13: FLOW DIAGRAM OF STATE MACHI�E OF THE CO�TROLLER 52

FIGURE 14: I/O I�TERFACE OF CO�TROLLER ... 53

FIGURE 15: I/O I�TERFACE A�D I��ER ABSTRACTIO� OF TOP CO�TROLLER 55

xv

List of Tables

TABLE 1: �� A�D �� VALUES FOR DISCRIMI�A�T [33] .. 12

TABLE 2: OPCODES A�D THEIR DEFI�ITIO�S FOR ARITHMETIC CORE 28

TABLE 3: PAR RESULTS USI�G DISTRIBUTED RAM U�DER AREA OPTIMIZATIO� 43

TABLE 4: PAR RESULTS USI�G DISTRIBUTED RAM U�DER SPEED OPTIMIZATIO� 43

TABLE 5: PAR RESULTS USI�G BRAM U�DER AREA OPTIMIZATIO�................................ 44

TABLE 6: PAR RESULTS USI�G BRAM U�DER SPEED OPTIMIZATIO� 44

TABLE 7: COMPARISO� WITH A PREVIOUS WORK USI�G SAME FPGAS 45

TABLE 8: FORMAT OF THE MICRO-I�STRUCTIO� .. 46

TABLE 9: I/O PORT DEFI�ITIO�S FOR THE FIRST FDEU .. 54

TABLE 10: PAR RESULTS FOR CO-PROCESSOR IMPLEME�TI�G TATE PAIRI�G 58

TABLE 11: COMPARISO� RESULTS .. 59

xvi

List of Algorithms

ALGORITHM 1: BKLS TATE PAIRI�G ALGORITHM [4].. 9

ALGORITHM 2: FI�DI�G THE CURVE A�D GE�ERATOR POI�T [33] 13

ALGORITHM 3: FI�DI�G A POI�T � OF ORDER 	 [33] ... 14

ALGORITHM 4: IMPLEME�TATIO� OF KARATSUBA METHOD O� ��
 15

ALGORITHM 5: IMPLEME�TATIO� OF KARATSUBA METHOD O� ��� 16

ALGORITHM 6: ��
 I�VERSIO� USI�G �� I�VERSIO�... 19

ALGORITHM 7: ��� I�VERSIO� USI�G ��
 I�VERSIO� .. 20

ALGORITHM 8: CIOS MO�TGOMERY MULTIPLICATIO� METHOD [42] 29

ALGORITHM 9: ALMMO�I�V(A, M) (PHASE I) [49] ... 36

ALGORITHM 10: MO�I�V(R, M, K) (PHASE II) [49] ... 37

1

1 Introduction

Most commonly accepted definition of the pairing operation is as follows: Pairing

is a bilinear map which is defined from �
 × �� to ��, (�
 × �� → ��), where �
 and
�� are usually additive groups implemented on elliptic curves and �� is multiplicative

group [3]. Pairing is first introduced to cryptographic community by Menezes et al.,

with a destructive example, MOV attack [1]. In their study, they propose a method for

converting discrete logarithm problem, which is defined over an elliptic curve on a

finite field ��, to the discrete logarithm problem over an extension field ���∗ . However,

real take off in pairing is realized with application of pairing to the identity-based

cryptography (IBC) by Boneh and Franklin [2]. Since then, pairing has been a very

active research topic with multitude of papers published every year. Pairing is mainly

used in IBC, certificate-less cryptosystem, in key agreement protocols [10], [11] and

many new cryptographic applications [12].

Many pairing types are proposed in the literature [13], [14], [15]. Also many

optimization methods are proposed for operations in pairings to efficiently implement it

in hardware and software [16], [17], [13]. However, most studies are about software

implementations of pairings [18], [19], [20]. There are some publications which aim

hardware realizations, but they are few in number and besides, it is very difficult to find

common points among them to make a fair comparison. This is due to the fact that, each

implementation uses a special type of pairing or special parameters. There is a multitude

of parameters that affect the efficiency and scalability of a pairing implementation; both

in hardware or software. Some of the parameters includes: type of the curve, type of the

coordinate systems used for elliptic curve point representation, underlying field, and

extension degree of the fields, and even hamming weight of an input variable [3].

2

In this thesis, we design a general-purpose pairing coprocessor for arbitrary elliptic

curves and embedding degrees targeted for reconfigurable hardware implementation.

We propose a balanced mixture of hardware-software methods and architectures for

realization of pairing operation. It aims to use advantages of both software and

hardware. While hardware is very efficient in realizing some dedicated operations that

constitute the computational bottleneck of the pairing operation (e.g. field

multiplication), it is a valuable resource and cannot be easily spent on complex

operations, which are not worthy of hardware resources. At this point software remedies

the situation by providing cost-effective solutions to complex operations, even though it

is not as fast as hardware. We aim to propose an architecture that can fit into small and

old fashioned FPGAs, like Xilinx Spartan 3S400 [21]; and when used with very modest

middle range FPGAs, like Xilinx Spartan-6SLX45T [5], there remains plenty of

implementation space for other purposes. However, being small is not the only goal of

the design; an acceptable speed performance is required. Our processor employs two

arithmetic cores, which provide shorter operation time by using parallelization. In

addition to these, our design is parametric and very flexible. It provides trade-off

between area and speed in a very wide spectrum. According to design privileges, design

can be easily changed from an area-efficient design to speed-efficient design. Variables

that facilitate the flexibility of our design are listed below:

� Word Length (WL): Our processor operates over variables of words similar to

a general-purpose CPU. However, our word size is changeable. This

parameter defines the bit length of the word.

� Input Length (IL): Some dedicated hardware implementations are designed to

operate on a constant input size. However, our design can easily be adapted to

work on different input lengths. This parameter defines the total bit length of

the longest input variable (e.g modulus in modular arithmtetic).

� Pipeline Stage Number (PSN): This parameter defines the total number of

pipeline stages used in multiplier for the underlying prime field, which is an

important part of the design.

Main subject of this study is a pairing processor, as previously mentioned, since

many parameters affect the efficiency of pairing operation. We also need suitable

parameters and curves to work on.

3

Pairing operation can be realized over certain classes of elliptic curves satisfying

some special parameters, as explained in [4], and detailed in the next chapter, are known

as pairing-friendly elliptic curves. Pairing operation involves arithmetic over an

extension field, thus we have to decide and find a suitable elliptic curve and extension

field to use in our implementations.

In addition, we also have to be careful about the efficiency and security of the

system. One parameter that directly affects the security and efficiency of the system is

the bit length of prime integer (the modulus) for the field over which we construct our

elliptic curve. As bit length of the modulus increases, arithmetic operations begin to

slow down, but security increases. Another factor that affects the security and speed is

the embedding degree of elliptic curve, which is also the degree of irreducible

polynomial that the extension field is built upon. As embedding degree gets bigger that

can increase the security level, complexity of arithmetic operations in the extension

field increases.

One of the optimizations to reduce the execution time of pairing is proposed for

extension field multiplication. We use Karatsuba-Ofman [22] algorithm to reduce

multiplication time in the extension field. Before completing pairing operation, an

exponentiation operation has to be done on extension field. Here again we use an

optimized method to considerably decrease the total exponentiation time.

Pairing is an operation defined over elliptic curves whereby choice of the

coordinate systems is important for efficiency reasons. For example, in affine

coordinate system during elliptic curve point addition and point doubling, a division

operation has to be performed. But the division is very time consuming operation.

Therefore, we have to choose a coordinate system that does not need division. We

prefer to use Jacobian mixed projective coordinate system as it needs no division

operation during point addition and point doubling. Moreover, it exhibits better

performance than other projective coordinate systems.

In the next section we provide the details about the underlying FPGA architecture,

selection of elliptic curves, extension field operations and elliptic curve arithmetic

operations. Also Tate pairing is explained in detail and some optimization techniques

are discussed to reduce the overall running time of the algorithm.

4

2 Underlying FPGA Architecture & Background
Information

In this section we provide information about the structure of the FPGA which we

use to implement our co-processor architecture. Also we give information about pairing

operation in general and Tate pairing in particular. We choose to implement our design

in Spartan-6SLX45T, due to the fact that it is a low-cost middle-range FPGA, meaning

it does not have abundance of logic resources like high-end FPGA devices, but has a

modest level of logic resources close to low-end FPGA devices [5]. Another reason is

that Xilinx Spartan-6 family members are optimized for low power consumption. In the

following subsection underlying FPGA architecture is discussed.

2.1 Underlying FPGA Architecture

Spartan-6 provides low power solutions with its 45 nm manufacturing technology.

It provides low power consumption with high performance with the help of its 1.2 V

core voltage. Compared to the previous members of Spartan family, its power

consumption is as low as half of theirs. Also, it provides moderate logic resources [5].

One member of the Spartan-6 family, Spartan-6SLX45T, is 84.4$ today, whereas a

cheap and older FPGA, Spartan-3S400 costs about 31$ [7]. However, Spartan-6 has five

to six times more logic resources than Spartan-3. Therefore, cost of per logic unit in

Spartan-6 is lower than the cheapest FPGA. Hence Spartan-6 offers the best price-

performance ratio compared to the older Spartan family. If we look at all the

advantages, Spartan-6 appears as a good choice for low-cost, low-power embedded

cryptographic applications, which necessitate considerably complicated operations.

5

Understanding architecture and capabilities of underlying FPGA architecture is

essential for efficient designs. This is only possible provided that complete insight of

FPGA attributes is available to make right decisions about the design.

There are several special building blocks inside the Xilinx Spartan-6 FPGA,

which we use in our design. These are configurable logic blocks (CLBs), block RAMs

(BRAM) and digital signal processor units (DSP48A1s). These components provide

flexibility in the design and efficient use of resources.

CLBs are the main reconfigurable logic block of the FPGA. One CLB contains

two slices and every slice contains four look-up tables (LUTs) and eight flip-flops.

LUTs are mostly known as Boolean function generators of the FPGA. However, they

can also serve as RAM and shift register. LUTs in Spartan-6 have six inputs and two

output ports. These LUTs are, in fact, composed of two smaller, five-input LUTs.

Therefore, with one LUT either two five-input logic functions or a six-input logic

function can be realized. There are several types of slices; SLICEX, SLICEL and

SLICEM. Differences between them are as follows: SLICEX is the simplest one, where

LUTs are only capable of realizing logic functions. It does not contain arithmetic

structure, nor can it be used as shifter or RAM. SLICEL contains carry-logic and its

LUTs can be combined to construct large multiplexers. SLICEM is the most functional

one. In addition to the functions in SLICEL, LUTs in SLICEM can be used as

distributed RAM and shifter. Both SLICEL and SLICEM feature carry look-ahead logic

for fast addition operation. By default, addition is implemented using carry look-ahead

adder logic in the FPGA. Thus, we do not use any structure other than the one

automatically inferred by the FPGA for addition. Trying to implement addition by using

other logic resources does not result in a better adder due to the fact that default adder

type of FPGA is already carry look-ahead adder, moreover it is placed into a specialized

area. What is meant by specialized area is that logic elements used in carry generation

have very low latency values.

Since there are four LUTs in a slice, a 4-bit adder/subtractor is easily realized

within a slice. For operands larger than four bits, a special structure reduces the latency

in carry generation path. Normally, slices in a CLB are not directly connected to each

other; they are connected to a switching matrix outside the FPGA, as can be seen in

6

CLB

Slice(1)

Slice(0)

CIN

CLB

Slice(1)

Slice(0)

CIN

CLB

Slice(1)

Slice(0)

CIN

CLB

Slice(1)

Slice(0)

CIN

COUT COUT

COUT COUT

Figure 1. After switching matrix, they connect to global routing resources; then

appropriate routing is achieved.

Figure 1: Connection of Slices [6]

However in the case of carry propagation, carry output of one slice directly connects to

the carry input of the other slice. Hence, fast propagation of carry is possible. This

situation is depicted in Figure 2.

Figure 2: Inter CLB Carry Propagation [6]

Switch

Matrix

CLB

Slice(1)

Slice(0)

CIN

COUT

7

The feature related to carry propagation is not new to Spartan-6, while it exists

even in older Spartan-3 family; the implementation is much faster in Spartan-6.

LUTs have many other useful features. LUTs can be configured to construct wide

multiplexers. As previously mentioned, LUTs in Spartan-6 have six inputs which enable

us to realize a (4 × 1) multiplexer in one LUT. Thus, when using multiplexers equal or

smaller than (4 × 1), only one LUT is used. It is important to keep this property in mind

and trying not to use larger multiplexers than (4 × 1). For example, when a (5 × 1)
multiplexer is used logic usage doubles rather than a linear increase. To implement

multiplexers having sizes between (5 × 1) to (8 × 1), we need the same amount of

LUTs, which is double of (4 × 1) in this case. We understand that this is important

especially when we think about multiplexers used in large data buses. Number of

multiplexer utilized for one bit switching is multiplied with size of bus in a multiplexer

used in bus switching.

Another important feature of LUTs is that they can be configured as distributed

RAM. However, only LUTs in SLICEMs can be used as RAM. These LUTs have some

additional attributes that enable them to act like a RAM. They have inputs for data as

well as a write enable. Thus in most basic version, they can be configured as single port,

64 × 1 RAM with synchronous write and asynchronous read. Nevertheless, their output

can be made synchronous by using the flip-flops in SLICEM. RAM, that is constructed

using LUTs are called distributed RAM. Distributed RAM and BRAM can be employed

interchangeably [6].

BRAMs are hardwired memory blocks inside the FPGA. They have synchronous

read/write operations. A BRAM can have different widths and depths. Wider BRAMs

are automatically formed by the implementation tool. BRAMs are utilized generally

when a need for high memory usage arises. Especially when big variables are used, like

in our case and generally in most cryptographic applications, employing of BRAMs

saves significant amount of logic resources. BRAMs have fixed places in the FPGA

which is actually physically in the middle of FPGA. This may cause some unexpected

latency in some cases when circuit is placed away from the BRAMs. In these cases

outputs and inputs of the BRAMs should be registered [8].

DSP48A1 is a special hardwired block for arithmetic and logic operations. There

are equivalent functional units in older versions of FPGAs. It contains hardwired and

8

pipelined adders/subtractors and multipliers. In our design we use 18 × 18 hardwired
multipliers. We do not use hardwired adders/subtractors inside of DSP48A1, since

CLBs also have specialized carry logic as explained previously. Moreover using

DSP48A1 for addition/subtraction may cause some extra delay due to routing to

resources. To overcome this problem registered inputs and outputs are usually used. In

this case registers adds extra clock cycles at each access of source and this increases the

overall processing time. This is not worthwhile in case of adder/subtractor. On the other

hand, since implementing multiplier with logic resources consumes too much area, we

use DSP48A1 units for performing multiplication [9].

2.2 Background Information on Algebraic Structures

�
 and �� are two additive groups and �� is a multiplicative group. And let all of

them have a group order r, which can be further assumed to be prime number. Then

pairing is a map defined as follows: : �
 × �� → �� , which satisfies the following
properties, given that " is a generator of �
 and # is a point on ��, which is linearly
independent of " [23]:

1. Bilinearity: For all ", $ ∈ �
 and for all #, & ∈ ��
 (" + $, #) = (", #) × ($, #)
 (", # + &) = (", #) × (", &)

 ()", #) = (", #)* +,- (",)#) = (", #)*
where × denotes the multiplication in ��.

2. �on-degeneracy: For all " ∈ �
 − /01, there exists some # ∈ �� such that;
 (", #) ≠ 1 and for all # ∈ �� − /01, there exists some " ∈ �
 such that;

 (", #) ≠ 1
Tate pairing over elliptic curves is one type of the pairing operation that can be

calculated efficiently and satisfies the aforementioned properties. " and # are chosen as

follows: Let �3 is a prime field and 4(�3) is curve over that field. Let 5 be a prime such

that, there exists a point on the elliptic curve 4(�3) with order of r.

Moreover 5 | #(4(�3)) [24] where #(4(�3)) denotes the number points on the elliptic

curve. Let 8 be the smallest number satisfying 5 | 9: − 1, and 5 ∤ 9< − 1 for 1 ≤ > < 8

9

[25]. The integer k is referred as the embedding degree of 4(�3). Set of the points on
4(�3) of order 5 is denoted as 4@�3AB5C. Then " ∈ 4@�3AB5C and # ∈ 4@�3�A are the
inputs of the Tate pairing operation. More precisely, Tate pairing is defined as a map

 : 4@�3AB5C × 4@�3�A → �3�∗ /(�3�∗)E and considered as the evaluation of a rational
function FG , whose divisor is -)H(FG) = 5B"C − 5B∞C (B∞C is point at infinity), such
that:

 (", #) = FG(JK)3�L
/E,

where JK~B#C − B∞C is the divisor for # [24] (for more information about divisors see

[26]).

The most efficient implementations for pairing computation use Miller’s

algorithm proposed in [27], which evaluates the rational function FG at point #. Tate

pairing algorithm consists of elliptic curve and polynomial arithmetic operations over

finite fields. Without any optimizations, the computation becomes prohibitively time-

consuming. One of the algorithms that computes Tate pairing efficiently is BKLS

algorithm [28], as described in Algorithm 1.

Algorithm 1: BKLS Tate Pairing Algorithm [4]

Inputs: ", # ∈ 4 and 5 ∈ N
 O ← ", F ← 1
Output: FE,G(#)Q�RS

T

1. for) = Ulg (5)X − 2 to 0
2. F ← F� ∗ >�,�(#)
3. O ← B2CO
4. if 5* = 1 then
5. F ← F ∗ >�,G(#)
6. O ← " + O
7. end if

8. end for

9. F ← FQ�RS
T

Many possible optimizations exist for Algorithm 1. Some optimizations are

possible for arithmetic operations over �3� , for evaluation of line computation

function >Z,[(\) (steps 2 and 5), for elliptic curve operations (point addition and point

10

doubling) (steps 3 and 6) and for final exponentiation operation (step 9). Moreover even

selection of proper 5 value can be included into these optimizations.

Potential optimizations are explained in the next subsection. But prior to this

finding the appropriate elliptic curve and pairing parameters are detailed since Tate

pairing performance also depends on these parameters.

2.2.1 Finding Tate Pairing Parameters

 We choose to operate on a field with embedding degree being 8 = 4. Although
another embedding degree can be selected for different security requirements we

believe that this degree provides optimum security-complexity trade-off. Security of a

pairing operation depends on two parameters: The bit size of the subgroup in elliptic

curve, which is >]^�5, and the bit size of extension field, which is 8 ∗ >]^�9 . Values of
these parameters should be chosen according to the best known attack towards them.

Most successful attack for elliptic curve discrete logarithm problem (ECDLP) is

Pollard-_ technique whose complexity is `(√5) [29]. On the other hand best attack to
prime extension fields, �3�, is index-calculus method whose complexity is given by;

`(b3�(1/3)) and b3�(1/3) = de((32/9)
/� ∗ (>]^ 9:)
/� ∗ (>]^>]^ 9:)�/�) [31].

According to NIST suggestions [30] for 80 bit security it is proper to choose 5 as a 160-
bit integer and 9: as 1024-bit integer. We choose 5 as 160 bits and 9 as 256 bits for 80
bits security following the NIST’s advice. However choosing the bit length is only one

aspect of the task, since all together 5, 9 and 8 should satisfy some equations explained

as in section 2.2. We use the following formulas proposed in [32] to find appropriate

5, 9 values for 8 = 4.
g(d) = −4d�

5(d) = 4dh + 4d� + 2d� + 2d + 1

9(d) = 1
3 (16di + 8dh + 4d� + 4d� + 4d + 1)

Some other formulas can be used but above equations give the whole set of

elliptic curves whose embedding degree 8 = 4 and having a discriminant value equals

11

to 3 (as explained in subsequent sections). With the help of a software program using

these equations for desired bit lengths, 5 and 9 values can be found. Note that both and
 5 and 9 are prime numbers, so for each value found, primality test have to be run.

Another point to note is that extension fields are built using irreducible

polynomials whereas 9 is just the prime of the field so we have to choose an irreducible

polynomial. Since degree of our extension field is 8 = 4 then the degree of the

irreducible polynomial should be 4. We choose a small irreducible polynomial in the

form of d: − j to simplify the extension field arithmetic operations. In our case j is 2
since it is a small number and moreover multiplying a number with 2 means shifting it

to the left by 1 bit, which is a very easy operation compared to multiplication. Thus,

another constraint is added to check when pricking a suitable 9 : To make d: − 2
irreducible polynomial, 2 should be quadratic non-residue in modulo 9 . In the

equations, g(d) represents the trace of elliptic curve. As can be remembered 5 should
divide #4(�3), which is equal to 9 + 1 − g. This variable is used in finding elliptic
curve in next section.

2.2.2 Finding Elliptic Curve

After finding 9, 5 and g values we can build an ordinary elliptic curve using
these parameters. We use following elliptic curve equation: k� ≡ d� + + ∗ d +
m (n]- 9), where + = +o ∗ 8p and m = mo ∗ 8q . To find elliptic curve variables +, m,
IEEE 1363 standard [33], which defines standards for elliptic curve cryptography, is

used. According to the standard for a given discriminant +o and mo values are

predetermined and 8p and 8q values are random. Since we already choose our

discriminant value as 3, +o and mo values are known. Table 1 shows the values of +o
and mo for given discriminants:

12

D �� ��
1 1 0
2 -30 56
3 0 1
7 -35 98
11 -264 1694

Table 1: +o and mo Values for Discriminant [33]

We define another variable, 8′, for finding proper elliptic curve. This value
comes from Hasse’s theorem; 8′ ∗ 5 = #4(�3) = 9 + 1 − g since we know the right
hand side of the equation we can compute 8′ and curve parameters can be calculated

using 9, 8s, 5 and +o, mo. Note that 8′ has no relation with embedding degree 8. Curve
parameters and generator point of #4(�3), ", can be found using Algorithm 2 defined in

IEEE 1363.

13

Algorithm 2: Finding the Curve and Generator Point [33]

Inputs: EC parameters e, 5 and 8′ and coefficients +o, mo
Output: A curve E modulo 9 and a generator point " on E
 with order 5, or a “wrong order” message
1. Select an integer t s.t. 0 < t < 9
2. If D = 1, then + ← +ot n]- 9 and m ← 0; if D=3 then + ← 0

and m ← mot n]- 9 . Otherwise, + ← +ot� n]- 9 and m ←
mot� n]- 9

3. Look for a point " of order 5 on the curve k� = d� + + ∗
d + m (n]- 9) via A.11.3

4. If the output of A.11.3 is “wrong order”, then output

the message “wrong order” and stop

5. Output the coefficient +, m and the point ".
Selection of t in the first step of the algorithm relies
on the kind of coefficients wanted. For instance:

- If D≠1 or 3, and it is wanted + = −3, then t is taken
as the solution to +ot� ≡ −3 (n]- 9) if there exists.
If does not exists or selection of t causes a message
“wrong order”, then choose another curve as follows.

If 9 ≡ 3 (n]- 4) and the result was “wrong order” then
choose – t n]- 9 instead of t ; the result leads to a
curve with + = −3 and the right order. If no solution
t exists, or if 9 ≡ 1 (n]- 4) , then repeat A.14.4.1

with another root of the reduced class polynomial.

The ratio of roots leading to a curve with + = −3 and
the right order is roughly one-half if 9 ≡ 3 (n]- 4) ,
and one-quarter if 9 ≡ 1 (n]- 4).

- If there is no restriction on coefficients, then

choose t at random. If it turns out “wrong order”,
then repeat the algorithm till a set of parameters

+, m and " is obtained. This occurs for half the

values of t , unless D=1 (one quarter of values) or
D=3 (one-sixth of values)

14

For Step 3 of Algorithm 2, where a base point is found, is given in Algorithm 3.

Algorithm 3: Finding a Point " of Order 5 [33]
Inputs: A prime 5, a positive integer 8′ not divisible
 by 5, an elliptic curve 4(�3)
Output: If #(4(�3)) = 8′5, a " on 4 with order 5, If not,
 “wrong order” message

1. Generate a random point " (not B∞C) on 4
2. " ← 8′"
3. If " = B∞C then go to step 1
4. "′ ← 5"
5. If "s ≠ B∞C then output “wrong order” and stop
6. Return "

Using the Algorithms 2 and 3 an elliptic curve 4(�3) and a generator point " is
found. As can be remembered there is no constraint on the point #, other than being

linearly independent of ". Thus, it is easy to find a # point for starting the Tate pairing

operation [23].

2.2.3 Polynomial Arithmetic for ���

The values F and >Z,[(#) in Algorithm 1 are in �3�. Thus there are considerably

high numbers of polynomial operations for arithmetic of �3� . Most time-consuming

operation of them is the inversion; but due to the algorithm used [4], denominator

elimination can be applied. At the end of the Miller’s loop (for loop) in the Algorithm

1, denominator of the variableF goes to 1. Thus, there is no need to perform inversion

during the Miller’s loop. Therefore multiplication stands as the most time consuming

operation in the Miller’s loop. We use an optimized method, called Karatsuba

multiplication method [22], to reduce the number of �3 multiplications used to

perform �3� multiplications. The method is summarized as follows [34]. Let v and w be

polynomials of degree 8 − 1, with 8 coefficients:

v(d) = x +*d*
:L

*yo
, w(d) = x m*d*

:L

*yo

15

For each) = 0,1, … . . , 8 − 1 the terms J* ≔ +*m* are computed. Also, for } =
1, 2, … , 28 − 3 and for all ~ and g given ~ + g = } and g > ~ ≥ 0 the following terms

are calculated

J�,� ≔ (+� + +�)(m� + m�)
Afterwards, �(d) = v(d)w(d) = ∑ �*d*�:L�*yo can be calculated as follows:

�o = Jo , ��:L� = J:L

�*(d) = � ∑ J�,� −���y*;����o ∑ (J� + J�)���y*;����o , F]5]--); 0 <) < 28 − 2
∑ J�,� − ∑ (J� + J�)���y*;����o���y*;����o + J*/�, F]5 H ,); 0 <) < 28 − 2�

Rightness of the formula and its complexity are discussed in [35]. This method

requires `(1/2(8� + 8)) multiplications in�3 while classical method requires `(8�) to
perform one �3� multiplication.

In calculation of �3� multiplication we use two Karatsuba multiplications

recursively. First we calculate �3� multiplication using �3 multiplication, for which

explicit formulas used, when 8 = 2, is given in Algorithm 4. We build �3� over �3 as
�3� = �3BdC/(d� − j), where j is a quadratic non-residue in �3.

Algorithm 4: Implementation of Karatsuba method on �3�

Inputs: + = +o + +
), m = mo + m
)
Output: � = + ∗ m where � = �o + �
).
1. g
 = +omo
2. g� = +
m

3. g� = jg�
4. �o = g
 + g� = +omo + j+
m

5. g� = g
 + g� = +omo + +
m

6. g
 = +
 + +o
7. g� = m
 + mo
8. gh = g
g� = (+o + +
)(mo + m
)
9. �
 = gh − g� = (+o + +
)(mo + m
) − (+omo + +
m
)

- Total cost of the operation: 4�3 multiplication + 5�3
addition

Then we implement �3� multiplication using �3� multiplications. �3� field is

built upon �3� field using tower construction. �3� = �3�BkC/(k� − �) and �3� =

16

�3BdC/(d� − j) where) = �j ∈ �3� and � =) where � = √) = √� ∈ �3�. This type of

construction is called tower field. The tower field construction makes things easier in

extension field operations. Thus, we can effectively build �3� operations over �3�

operations. The method for �3� multiplication is given in Algorithm 5.

Algorithm 5: Implementation of Karatsuba method on �3�

Inputs: v = vo + v
�, B= wo + w
�; vo, v
, wo, w
 ∈ �3�
Output: � = v ∗ w where � = �o + �
�; �o, �
 ∈ �3�
1. O
 = vowo
2. O� = v
w

3. O� = �O� =)@g�,o + g�,
)A = jg�,
 + g�,o)
4. �o = O
 + O� = vowo + �v
w

5. O� = O
 + O� = vowo + v
w

6. O
 = v
 + vo
7. O� = w
 + wo
8. Oh = O
O�
9. �
 = Oh − O�

- Total cost of the operation: 3�3� multiplication + 1�3
multiplication + 5�3� addition

2.2.4 Elliptic Curve Arithmetic on Projective Coordinates

We use Jacobian mixed coordinate system since in Algorithm 1, point " is in
affine coordinate system. This coordinate system is more effective than other projective

coordinate systems in terms of overall (both doubling and addition) operation count

[45]. Another reason for using projective coordinate systems is to eliminate division

(inversion), which is the most time consuming operation, in affine coordinate systems.

A point O = (d
, k
, �
) in projective coordinate system corresponds to the point

" = (d
/�
�, k
/�
�) in affine coordinate system. Point doubling formulas for point

v = (dZ, kZ, �Z) for the curve k� = d� + +d + m is given as follows. � = 2v =
(d� , k� , ��) then ��Z = 3dZ� + +�Zh where ��Z is slope of tangent.

d� = ��Z� − 8dZkZ�

k� = ��Z(4dZkZ� − d�) − 8kZh

�� = 2kZ�Z

17

Addition formula for points v = (dZ, kZ, �Z) and w = (d[, k[, 1) where � = v + w =
(d� , k� , ��) and �Z,[= (kZ − �Z�k[) is the slope of line vw.

�� = (�Z�d[− dZ)�Z

d� = (kZ−�Z�k[)� − (�Z�d[+ dZ)(dZ − �Z�d[)�

k� = ����Z,[(���d[− ��d�) − ���k[

 Please note that denominators of the results are not given because, denominator of F
goes to 1 at the end of the algorithm thanks to denominator elimination property. So we

never compute denominators.

2.2.5 Line Evaluation Function

The function denoted by >Z,[(#) in Algorithm 1 is known as line evaluation

function. Geometrically it is the distance between the point # and the line that intersects

the points v and w [36]. Formulas related to >Z,[(#) and >Z,Z(#) are given as follows:
>Z,[(#) = @yQzA� − yAAzC − �Z,[(xQzA� − xAzA)

Formula for >Z,Z(#) is the same as above except that ��Z is used instead of �Z,[.
As might be remembered # = (dK , kK) is in 4(�3�), and therefore, line computation

involves arithmetic in 4(�3�), which is costly. However, there is a trick to make the

computation of line evaluation much easier. Instead of using the full point # on 4(�3�),
we can use the twist of 4(�3�) in a smaller field such as 4′(�3�/�), where - is a proper
integer that divides 8. The elliptic curve 4′(�3�/�) can be called as the twist of 4(�3�)
if there exists an isomorphism between them such that �: 4′(�3�/�) → 4(�3�) [37].
Since our embedding degree is 4 we can choose - as 2 and in this case twist is named as

quadratic twist, which is defined as follows:

 4′(�3�): k� = d� + +�L�d + m�L�, +, m ∈ �3; � ∈ �3�

where � is a quadratic non-residue in �3� thus √� ∈ �3� and the isomorphism is given

by [38]:

18

�� : � 4′(�3�) → 4(�3�)
(d, k) → (d�, k��/�)�

Thus by using the twist curve, we can choose coordinates of the point # on �3� instead

of choosing them on �3�. The twisted coordinates kK′ , dK′ ∈ �3� are the coordinates on

twist such thatkK′ = (0 + 0)) + (kKS�
′ + kK_

′))� and dK′ = @dK��

′ + dK�S
′)A + (0 + 0)�

where � = √) = √� ∈ �3� as can be remembered from section 2.2.3. So the line

evaluation formula given above can be expressed as below:

>Z,[(#) = @−�Z,[zA�xsQ − xAzA�Z,[− zCyAA + @zA�zCy′QAI
Note that an element of �3� is represented as vo + v
� where vo, v
 ∈ �3�.

2.2.6 Final Exponentiation

Final exponentiation in Step 9 of Algorithm 1, F ← F(3�L
)/E, can be reduced to
two smaller hard exponentiations with the help of property described in [16]. Exponent

(9h − 1)/5 is separated into two parts; (9� − 1) and (9� + 1)/5 . The method for

performing the final exponentiation using these two parts is described below.

Let’s write F = �o + ��
 such that �o, �
¡ �3� . We can handle the first exponent

operations with (9� − 1) as follows:
g = F3�L
 = (�o + ��
)3�L

 = (�o + ��
)3�(�o + ��
)L

 = @�o + �3��
 A(�o + ��
)L

 = (�o − ��
)(�o + ��
)L
 [16].

If we include the other exponent (9� + 1)/5 we obtain
F(3�L
)/E = g(3��
)/E = g:S3�:�,

where 8
 = B(9� + 1)/5C/9 , 8� = B(9� + 1)/5C n]- 9 and g ¡ �3� , g = (Oo + �O
)
such that Oo, O
¡�3�.

19

The first part of g:S3�:� can be calculated as follows:

~ = g3 = (Oo + �O
)3 = (Oo3 + �3O
3)
 = @goo3 +)3go
3 A + �3(g
o3 +)3g

3)
 = (goo −)go
) + �3(g
o −)g

)
where �3 = �3L
� and �5 = �3L
 = (��): =): ∈ ���.

~ = (goo −)go
) + �5 ∗ (g
o −)g

) ∗ � = &o + �&

Finally we have

F(3�L
)/E = ~:S ∗ g:�.

Two small exponentiations with exponents 8
 and 8� are realized separately with basic
binary exponentiation method [39] or using simultaneous exponentiation algorithm.

During calculation of variable g, one �3� inversion is computed. A �3� inversion

can be reduced into �3� inversion and couple of multiplication in the subfield �3� .

Since we use tower construction for extension fields, one inversion in �3�, in turn, can

be written in terms of an inversion in �3 as described in Algorithm 6.

Algorithm 6: �3� Inversion Using �3 Inversion
Inputs: + = +o − +
), +o, +
¡��
Output: m = +L
, b = bo + b
i
1. g
 = +
+

2. g� = jg

3. g
 = +o+o
4. g� = g
 − g�
5. gh = g�L

6. mo = +ogh
7. m
 = −+
gh

- Total cost of the operation: 5�3 multiplication + 1�3
inversion + 2�3 addition

Finally, a �3� inversion is realized using a �3� inversion as described in Algorithm 7.

20

Algorithm 7: �3� Inversion Using �3� Inversion

Inputs: v = vo + v
�; vo, v
 ∈ �3�
Output: w = vL
, B = Bo + B
I such that wo, w
 ∈ �3�
1. O
 = v
v

2. O� = �O

3. O
 = vovo
4. O� = O
 − O�
5. Oh = O�L

6. wo = voOh
7. O
 = −v

8. w
 = O
Oh

- Total cost of the operation: 5�3� multiplication +
1�3� inversion + 2�3� addition

In the following section hardware architecture of the design is explained.

21

3 Parametric and Compact Implementation of
Hardware Coprocessor for Pairing on FPGA

Public key cryptosystems such as elliptic curve and pairing-based cryptography

require complicated arithmetic operations. For example an ��
 multiplication requires 3

�� multiplications and several �� additions and if the extension degree is increased, the
operation becomes much more complex and time consuming. For instance, if the

extension degree is increased to four, a multiplication on ��� requires 12 ��
multiplications. Since operations on extension fields are too complicated and require a

diverse set of operations in the subfields, separate implementation of each operation in

hardware may require prohibitively high logic area which makes software

implementation preferable.

If implementation of these operations is realized on dedicated hardware, ASIC, for

mostly speed concerns, it has some disadvantages compared to reconfigurable solutions

as enumerated in the following:

1. Probably, the most problematic part of ASIC design is its cost; production of

an ASIC design is many times more expensive than production of a design on

FPGA, depending on the volume of the production.

2. Production of ASIC designs takes again much longer than making a design

usable on FPGA (time-to-market factor).

3. Design and improvement of ASIC implementations takes much longer

compared to the FPGA alternative.

4. If security levels or overall system architecture changes, ASIC no longer can

be used and a new design and production are required.

22

5. As name implies, it is most of the time “dedicated” and cannot be used for any

other purposes.

In this design, we make use of both the advantage of software and the flexibility of

reconfigurable hardware designs. As indicated above, separate implementations of

extension field operations may require too much logic area. Moreover, if the design

choices change for some reasons (e.g. security, performance, compatibility), a specific

unit computing a particular operation can become obsolete and requires re-design. For

instance, if a dedicated unit is designed for solely �3� multiplication, and when the

design is modified from �3� to �3¥ it becomes useless. Instead, we design and

implement a programmable coprocessor on FPGA having basic arithmetic logic

operation unit in its center, which is highly optimized for the target device. Thus, by

changing the program of the coprocessor, many different operations can be performed

on a simple reconfigurable hardware.

Our coprocessor is designed mainly for pairing operations; several pairing types

such as Tate, Ate, on arbitrary elliptic curves can be calculated by simply changing the

program of the processor. There is no need to change the hardware design. Other

cryptographic calculations can also be implemented but some changes in state machines

of the control circuit are needed. It is worth to note that, adapting processor for most of

the other types of cryptographic applications can be realized by just modifying the

control state machine, not all the design. So even if this processor is designed

essentially for pairing operation, it can be adjusted for other applications with relatively

small effort compared to designing it from the scratch. At this point we can see the

advantages of this design over the pure software and ASIC solutions:

1. It is relatively cheap and easy to design, test and implement when compared to

ASIC realizations.

2. It can be reconfigurable easily for different applications and design

preferences whereas, ASIC cannot be.

3. It is much faster than software and it saves valuable CPU time for other

operations

Performance and flexibility of the design is supported by the underlying

architecture. General architecture of the design can be grouped into five parts: i)

23

arithmetic logic unit with modular inversion block, ii) fetch-decode-execute unit, iii) top

controller, iv) program memory and v) data memory. Sub-modules of the processor can

be briefly described as follows:

� Arithmetic Core & Inversion Unit (ACIU): Arithmetic core is composed of

a modular adder-subtractor unit and a Montgomery multiplier unit. We have

two arithmetic cores in the design, which makes our processor dual-core. In

addition, we have a single inversion unit that computes multiplicative inverses

in �3.

� Fetch-Decode-Execute Unit (FDEU): This unit controls the program

memory, data memory and ACIU. Since we have two arithmetic cores, to

make it fully parallel we used two FDEU, each of which is connected to one

ACIU.

� Top Controller: Top controller is the state machine that defines the

characteristic of the processor. Namely, we design our top controller

specifically for pairing operation. And for other kinds of applications it has to

be modified but except for this module, other parts can still be used without

any modification. There exists only one top controller that controls all the sub-

modules.

� Program Memory: As the name indicates, this is the memory where the

program code (it will be referred as “micro-code”) is stored. To make use of

full parallelism, this part is also instantiated for each FDEU.

� Data Memory: This part constitutes register banks used to store program data.

Similar to program memory, each FDEU has its own data memory. Naturally,

data transfers among FDEUs are allowed to combine the result of each core to

a single one.

To summarize, a specialized Top Controller unit commands FDEUs to execute a

block program (can be referred as function or micro-code henceforth), then FDEUs

fetch that program (micro)-instructions from the program memory. After instructions

are fetched, the FDEUs parse the instructions into three parts: Operation type, address

of the operands and the address of which the operation result will be written. Then

FDEU fetches the required data from the data memory and commands ACIU to execute

24

a given operation with given data. When ACIU finishes its operation, the result is sent

to the data memory area which is pointed by the instruction. General overview of the

co-processor architecture is depicted in Figure 3.

Figure 3: General Overview of the Processor Architecture

In Figure 3, bold lines represent a bus which carries both data bits and the control

signals, the thin lines denotes buses that carry only control signals.

There are some other points that need further explanation. Firstly, inverter is

capsulated into a controller and it has a separate program ROM. Secondly, FDEUs are

encapsulated into a single controller unit. And eventually, FDEUs do not have direct

connection with the data memory; instead they only have control lines. These are

adopted design preferences here and will be clarified in the subsequent chapters.

Top controller informs the controller to execute a specific block of micro-code

(BMC). If a function is parallelizable and if it is coded in a parallel manner, then for that

function there will be a micro-code in both of the program memories for the

corresponding block of the code. So when commands come from top controller, FDEUs

25

read the corresponding BMC from the program ROM and begin to execute them in a

parallel manner. Program memory is filled by the programmer with micro-code of the

processor before the execution. Data input is transferred to the controller via program

memory. The controller does not directly handle the input and the output data to ACIUs;

rather it handles the switching of data. Thus, ACIU can read and write data directly,

which is much faster. This method can be considered as micro-DMA (direct memory

access). We add the word “micro” because in normal DMA, the processor does not

participate in data transfer and thus can deal with other processes while peripherals

makes memory access faster. But in our case, the data transfer happens within the

processor, hence the name micro-DMA. Yet, if we consider the controller as a

processor, we can say that this method makes data access faster for ACIUs through a

shortcut to the data memory. Although controller starts the transfer operation, it does

not carry data blocks over itself to ACIU.

After the execution is performed by the ACIUs, the controller returns a done signal

to the top controller which becomes ready for the next functions. At the end of all

operations, top controller raises a finish flag and result is accessible in the

predetermined address of the data memory. Last, but not least point is about the choice

of RAM type to implement data memory. It is designed as dual port RAM, which

allows simultaneous read operations. The reason that makes this choice is important is

related to the arithmetic core. Since, the arithmetic cores use two operands for most

operations, such as multiplication, addition and subtraction, it requires that operands be

ready at both input ports at the same time. So, dual port RAM is a compact solution for

the requirement.

ACIU includes multiplier, adder/subtractor/shifter and inverter. In fact, multiplier

and inverter unit could be implemented by using just adder/subtractor/shifter unit, but

this case would have two drawbacks. First, writing a program for the processor for this

purpose would be too complicated. Secondly, total execution time for a cryptographic

operation would be affected badly although working frequency does not change. What

makes the execution time longer is that the control mechanism and data transfer cycle at

each step of the multiplication and inversion algorithms. Especially, when we consider

that the size of operands is around hundreds of bits, the effort needed for data transfer

cycles would be prohibitively high. Because of this reason, multiplication and inversion

26

units are realized in hardware in highly optimized fashion. Detailed description of each

sub module is explained in the following sections.

3.1 Arithmetic Core & Inversion Unit

ACIU composed of two main parts: arithmetic cores and inversion controller.

These two parts are detailed in following two sub sections.

3.1.1 Arithmetic Core

Arithmetic core composed of two components: multiplier and adder/subtractor/

shifter block. Instead of making a separate shifter, adder is also used as a shifter. Before

going further into details of the sub modules, we explain general overview of the

arithmetic core itself and I/O signals that belong to the core.

Arithmetic core is designed to present a user friendly interface to the controller

and to gain speedup during the most common instructions. Arithmetic core

accommodates a state machine between the controller and operation units as an

interface. With the help of this interface, the controller can communicate easily and

efficiently with the arithmetic cores. The controller interacts with the arithmetic cores

using commands which also constitute the opcode part of the micro code. The controller

sends its command and then adjusts the data memory address to provide the appropriate

operands to the arithmetic cores. After the result is found, data is written to indicated

part of the data memory directly by the arithmetic core, which also sends a signal to the

controller to indicate that operation is completed. I/O interface of the arithmetic core is

depicted in Figure 4.

27

Figure 4: Arithmetic Core I/O Interface

Pre-stored values that are constant and frequently used during the operations

should be stored in the arithmetic core before the execution of any operation. Therefore,

pre-stores values are kept in a RAM inside of the arithmetic core. Storing these values

inside the arithmetic core reduces the load over the controller per operation. For

example, the controller is saved from loading the modulus at every operation.

As can be seen in Figure 4, the controller interface is pretty simple; controller

should load the “opcode” along with an “enable” signal. This signal takes one clock

period. An additional input is used to tell the arithmetic core whether to make addition

or subtraction.

Data is fed into the core directly from the data memory. Decision about the

location of data is made by the controller. After opcode is stored in the core, operands

come from the data memory with the help of switching of the controller. Finally, when

the result is produced it is directly written in the data memory by the core. Again the

data bus switched to the correct location by the controller just after the loading of

opcode. Only a signal is sent to the controller to indicate that the operation is finished.

Determining the possible opcodes is the focal point in the arithmetic core design.

The operations that are performed often are made an opcode. For example, if squaring is

executed many times or if it might be used frequently in other applications, then

squaring can be made an opcode. Thus, we get rid of read and write cycles every time in

Arithmetic Core

mod_inv_we

mod_inv_data

mod_we

mod_data

a_param_we

a_param_data

Pre-stored

values

comp_type_we

comp_type

add_option

Controller

interface

result_we

result_data Outputs

operand_we

op_a_data

op_b_data

Data

Inputs

28

certain and commonly used operations. Again, there is a trade-off between time and

area. If this kind of optimization were not made in the opcode selection, the core would

be much simpler. However we prefer to improve the execution time of the overall

system. Below a list of opcodes is given in Table 2.

Opcode Definition

0000 Idle: Do nothing

0001 � = + × m : Regular multiplication

0010 � = + + m : Regular addition
0011 � = + + + : Regular shift left once
0100 � = 3 ∗ (+ ∗ m): First + × m, then two addition
0101 +� × m, m� × +, +�
0110 v ∗ + ∗ m v is elliptic curve coefficient a in k� = d� + +d + m
0111 � = 2 ∗ + ∗ m : Multiply then add

Table 2: Opcodes and their Definitions for Arithmetic Core

Arithmetic core can take a new opcode when it finishes the current operation. It

is not allowed to load new opcode during an operation. Operands are fed into the core

word by word and all the sub modules process the data on word-basis. Size of words is

changeable. As can be seen from the Table 2, four bits are reserved for the opcode while

most significant bit is always zero. This is optional part. Opcodes can be extended with

some changes in the core logic for different kinds of applications. Detailed explanation

about the building blocks of the core is given in the following subsections.

3.1.1.1 Multiplication Module

Since Montgomery [40] offered one of the most efficient methods for hardware

multiplication, this block is designed to implement Montgomery multiplication.

Selection of this block as a Montgomery multiplier (MM), affects also the choice of

inverter and the way data is given to circuit. The MM produce a result for given inputs

“a” and “b”, ¦¦(+, m, ¦) = + × m × $L
 (n]- ¦), where $ is constant and usually

29

chosen as $ = 2§¨©ª<ª� q*� <«¬­�®. For this reason, our arithmetic units accepts operands

in Montgomery domain (i.e. + × $ instead of just +,) to avoid information loss.

The MM is taken from a previous work [41]. It is a generic architecture and

uses Coarsely Integrated Operand Scanning (CIOS) Montgomery Multiplication

algorithm:

Algorithm 8: CIOS Montgomery Multiplication Method [42]

Inputs: a[j], b[j]: jth. word of operands (w bits each)

 M[j]: jth. word of modulus (w bits each)

 k: Number of words in the operands and modulus

 W: 2
w
, C: carry, S: sum

 M[0]
-1
: multiplicative inverse

1
 of M[0]

 || : used for concatenation

 t := 0

Output: t[i]:= intermediate and final results

1. for i=0 to k-1

2. C :=0

3. for j=0 to k-1

4. C||S := t[j] + a[j] × b[i] + C

5. t[j] := S

6. C||S := t[k] + C

7. t[k] := S

8. t[k+1] := C

9. C := 0

10. z := t[0] × (-M[0]
-1
) mod W

11. C||S := t[0] + M[0] × z

12. for j=1 to k-1

13. C||S := t[j] + M[j] × z + C

14. t[j-1] := S

15. C||S := t[k] + C

16. t[k-1] := S

17. t[k] := t[k+1] + C

The CIOS method is a word based method as can be seen in Algorithm 8. It

takes and processes the operands word by word and it forms the result in the same

1 “Least significant word of inverse M” in mod 2r, where 2

r-1 < M < 2r

30

manner. The CIOS is one of the most efficient algorithms for implementing the MM on

FPGA [42].

Algorithm 8 is implemented in a pipelined manner to take advantage of

parallelism and to speed up the design in FPGA. It makes use of hardwired multiplier

blocks in the FPGA thus, both gains from logic area and provides acceleration in

multiplication operations. The design is very flexible and parametric. Number of

pipeline stages, number of bits in each word and number of words in operands can be

adjustable. Therefore it provides time-area trade-off. For example, area can be reduced

by decreasing both the number of pipeline stages and the number of bits a word. In

return, the total execution time increases. This kind of design is very helpful for

adjusting overall time-area trade-off because multiplication is the most commonly used

operation in the pairing. Changes in its timing characteristics affect total timing of the

application in a substantial manner. In Figure 5, I/O interface of the multiplication unti

is given:

Figure 5: Montgomery Multiplier I/O Interface

Pre-stored values are stored into the module before the calculation starts. Each

input operand has separate load inputs. Thus, for some operations as indicated in the

opcode, such as “0101”, as one operand from previous calculation remains intact, the

other operand takes a new value. Address input specifies the address in the RAM where

the operands are stored. This input is automatically increased by the arithmetic core.

When calculation finishes, the result becomes available with an active write enable

signal. Output of the multiplier is switched as indicated in the opcode by the core.

Multiplier

M[0]_inv

modulus_data

modulus_we

op_a_data

op_a_we

op_b_data

op_b_we

result_we

result_data Outputs
Pre-stored
values

Arithmetic

Core

Interface

address

31

3.1.1.2 Addition/Subtraction/Shifter Module

All three modules (i.e. adder, subtractor and shifter) are realized in the same

unit. Although it is normal to have adder and subtractor together, we prefer to

implement shifter using addition. This has two reasons: Firstly, it makes the control

circuit simpler, secondly even if we use normal shifter, we need a modular adder since

we must guarantee that after shift operation result may have to be reduced since this is a

modular shift operation (i.e. shift operation in F°). Inner structure of the modular adder

is given in Figure 6.

Figure 6: Modular Addition Architecture

Figure 6 is an illustration of modular addition, and in case of the subtraction

operation, the adder (+) and subtractor (-) units are switched. Operation immediately

starts with the load of operands. Operands are added and stored into RAM 1 and

modulus is subtracted from the addition of the operands and stored into the RAM 2.

Both operands and the modulus fed into the module word by word, and carry-out from

the previous word is fed into the next word as carry-in. After all the words are

exhausted, carry-out of the last word is examined. If the result of subtraction with the

modulus M (i.e. a + b - M) is negative then, it is concluded that + + m < ¦ and result in

result mux

result

operand a

operand b

m
odulus

Result

RAM 1

Result

RAM 2

32

the RAM 1 is valid and vice versa otherwise. The reason of using two RAMs is

providing the result immediately after the data load finishes.

We use registers between the two adders to break the long delay in the critical

path. Other than that we do not make anything to speed up the adders. This is due to the

fact that, while synthesizing the adder the router automatically places the logic around

the fast carry propagate lines hence, it does not create a bottleneck for the design.

Adder is also parametric like the other parts of the design. Input word bit

length and the total input word number can be adjusted. I/O interface of the adder is

shown in Figure 7.

Figure 7: Modular Addition I/O Interface

The “option” input is used to alternate from subtractor to adder; the “start”

input is used to start the output stream. This input is utilized to postpone the output in

case of such a need occurs in timing adjustment. To start an operation, the modulus and

the operand data should be given with an active write enable signal. For every operation

modulus data is fed into the module and start signal is adjusted automatically by the

core.

3.1.2 Inverter Controller

Inversion is used in the final exponentiation part of the pairing. Although it is

not used many times, it plays a critical role to reduce the execution time spent on the

final exponentiation. The execution time of extension field exponentiation is halved if a

dedicated inversion unit is used. We prefer to add an inverter unit to make use of the

op_a_data

op_b_data

Adder/Subtractor/

Shifter

data_we

modulus_data

start

option

result_we

result

33

advantage it brings in timing with the cost of some logic area. Since inversion is a rare

operation, instead of inserting it to the arithmetic core we build a single inversion unit.

During the execution of a functional block for inversion operation, control of the

data memory is left to the inverter controller. Inverter controller possesses its own

internal program ROM. Every time it is notified by the controller, it executes the micro

code coming up next. It reads data and writes the result to the specified addresses.

The structure of the inverter controller is highly simple. It has a state machine to

control the read/write operations to the data memory and it switches data in and out of

the inversion. The I/O interface of the inverter controller is given together with inner

block diagram in Figure 8.

Figure 8: Inverter Controller I/O Interface

Inverter controller starts operation with the active “start” signal from the

controller. It reads micro code from the ROM and sends the address of data to be read to

the data memory. After the result is obtained it is written to the data memory, then the

controller is sent a an active “done” signal.

Inverter controller has two sub modules; ROM and inverter. ROM is either

synthesized with “Block RAM (BRAM)”, which is a hardwired RAM in the FPGA, or

is synthesized using “Distributed RAM”, which is a RAM constructed of look-up tables

(logic elements) in the FPGA. We picked distributed RAM since, usually work load of

the inverter is low and thus it does not need a large memory to store the micro code.

Certainly, inversion circuit is the most important part. It is detailed in the following

subsection.

Inverter

Inverter Controller

ROM

modulus_we

modulus

data_we

data

data_re

data_index

data_which_core

result_we

result_index

result_which_core

result

done

Pre-stored
values

From data
memory

start From
controller

To data
memory

To
controller

34

3.1.2.1 Montgomery Inverter Module

Modular inversion is widely used in cryptographic applications particularly in

public-key crypto-system. For instance, during the calculation of private key in Digital

Signature Standard [43] and in RSA [44] and in elliptic curve cryptography, [46]-[48], it

is commonly used. For this reason, inversion module is a must for not just pairing

operation but also for a cryptographic processor. Thus, we design a low area and

parametric modular inverter optimized for FPGA devices. During the design, to

eliminate the delays of long carry chains, we favor the word-based design and move

away from full precision adders and subtractors. We process the data similar to a

general-purpose computer, on word-basis and we make use of the advantage of the

FPGA. We use the Montgomery modular inversion algorithm to make it compatible

with the Montgomery multiplier. We tested efficiency of the design on Xilinx Spartan-6

FPGA, which is a new generation of low cost FPGA with low power consumption.

Implementation results show the design reaches frequencies higher than 200 MHz with

a few hundreds of logic resources.

Modular inverse on modulo ¦, where ¦ is an odd prime, is defined as follows:

If �, d ∈ B1, ¦ − 1C and � ∗ d ≡ 1 (n]- ¦) then, � and d are multiplicative inverse of

each other in modulo ¦ . It is displayed as d ≡ �L
 (n]- ¦) [50]. Montgomery

inverse algorithm is first proposed by Kaliski [49], which works fine with MM.

Generally inversion is used together with other arithmetic operations in

cryptography. By looking at its usage ratios in overall application, satisfying high

working frequency with high area usage is not acceptable for the inverter design. Since,

it is usually not timing bottleneck for most cryptographic applications. On the other

hand, its working frequency should not be lower than the multiplier unit in order not to

reduce the entire working frequency of the system. As a result, the aims are a low area

and a fast inverter module.

In this design, input is handled as an array of words instead of full precision,

where each word is taken into operation at every clock cycle. Also the output is

produced word by word. Benefit of using word-based implementation is apparent in

size of the registers and adder/subtractors used. While keeping the size of the circuit

small, it also raises the frequency with reduced carry-chain lengths in the adders.

35

Besides this, we can make use of BRAMs for storage of variables in place of registers.

In the same manner, this choice reduces the total logic source usage of the inverter

circuit.

Our design has some superiority over the full precision design. Despite the fact

that full precision design can complete the overall calculation in a shorter time, it

consumes vast amount of logic resources and achieves very low working frequencies.

This leaves a very limited area to realize essential part of the design. In addition to this,

low frequencies create a need for another clock source to drive the lower frequency part

of the circuit. Without doubt, this will result in a more complex and a hard to handle

design. Our design demonstrates that, the word-based architecture covers more than 10

times less logic resources, moreover it can work at 3 to 4 times higher clock frequencies

than half precision structures. We realize a parametric design that can be re-

synthesizable for any word length and input size. Thus, parametric design provides

flexibility to meet the implementation constraints. We describe the Montgomery

inversion algorithm in detail in the following section.

3.1.2.1.1 Montgomery Modular Inversion Algorithm

Let ¦ be an odd integer and + is an integer such that, + ∈ B1, ¦ − 1C and if
the equation holds: + × d ≡ 1(n]- ¦). It can be expressed as below:

d ∶= ¦]-�,H(+) ≡ +L
(n]- ¦).
It is important to note that multiplicative inverse of + only exists if + and ¦ are

coprime.

A Montgomery modular inverse algorithm is proposed by Kaliski based on

extended binary GCD approach [49], [51]. The Montgomery multiplicative inverse of

an integer is expressed as follows:

² ∶= ¦],�,H(+ ∗ 2§) = +L
 ∗ 2§ (n]- ¦).
Here n stands for bit length of the modulus ¦. The Montgomery inversion algorithm is

composed of two main phases. These phases are described in Algorithm 9 and

Algorithm 10, respectively.

36

Algorithm 9: AlmMonInv(a, M) (Phase I) [49]

Inputs: + ¡ B1, ¦ − 1C
 ¦: modulus

 ³ ← ¦, H ← +, 5 ← 0, ~ ← 1, 8 ← 0
Output: 5 and 8, satisfied that 5 = +L
 × 2: (n]- ¦) and
 n ≤ 8 ≤ 2n

1. while H > 0 do
2. if u is even then

3. ³ ← ª
� , ~ ← 2 × ~

4. else if v is even then

5. H ← ´
� , 5 ← 2 × 5

6. else if ³ > H then
7. ³ ← ªL´

� , 5 ← 5 + ~, ~ ← 2 × ~
8. else ³ ≤ H
9. H ← ´Lª

� , ~ ← 5 + ~, 5 ← 2 × 5
10. end if

11. 8 ← 8 + 1
12. end while

13. if 5 ≥ ¦ then

14. 5 ← 5 − ¦

15. end if;

16. return ¦ − 5, 8

The output of the “Algorithm 9” is described as 5 ∶= v>n¦],�,H(+, ¦) =
+L
 × 2: (n]- ¦), where n ≤ 8 ≤ 2n. The output of the first phase is also known as

the almost Montgomery inverse of + with respect to modulus ¦. If �W stands for

number of words in the modulus then our design takes �W+4 clock cycles to complete

one iteration of the while loop. Since phase I is iterated k times, then it takes totally

8 × (µ¶ + 4) clock cycles to complete the loop. After while loop, two more iterations

are needed to calculate the remaining steps. Thus, it takes (8 + 2) × (µ¶ + 4) clock
cycles to finish the phase I of the inversion. The result of the first phase is then

transformed to the Montgomery domain by several iterations in the second phase of the

algorithm, which is depicted in Algorithm 10.

37

Algorithm 10: MonInv(r, M, k) (Phase II) [49]

Inputs: 5, ¦ and 8 from AlmMonInv
Output: d, satisfiying d = +L
 × 2�§ (n]- ¦)
1. for) = 1 g] (2n − 8) do
2. 5 ← 5 ≪ 1
3. if 5 ≥ ¦ then

4. 5 ← 5 − ¦

5. end if

6. end for

7. return d ← 5

As can be seen phase II takes (2n − 8) iterations. The number of iterations

depends on the value k, which is the output of the first phase. However, total number of

iterations in phase I and phase II is constant and it is 2n. As a result, total processing

time of the implementation is about (2n + 2) ∗ (µ¶ + 4). Each iteration in phase II
does not take µ¶ + 4 periods, but sometimes it takes µ¶ + 3 clock cycles. Therefore
2n ∗ (µ¶ + 4) clock cycles will be a more accurate formula to approximate the

execution time of the inversion operation.

To summarize, if an integer + is given in Montgomery domain, i.e. + ×
2§ (n]- ¦) , the output of the first phase is:

v>n¦],�,H(+ × 2§, ¦) = (+ × 2§)L
 × 2: ≡ +L
 × 2:L§ (n]- ¦).
The second phase clearly multiplies the result with 2�§L: (n]- ¦) to put it back in the
Montgomery domain as follows:

+L
 × 2:L§ × 2�§L: (n]- ¦) ≡ +L
 × 2§ (n]- ¦).
If the result is needed in the normal domain, i.e. a transformation from +L
 × 2§ to +L

is required, it suffices to multiply the result by 1 , using a Mongomery multiplier.

Consequently, we obtain got ¦¦(+L
 × 2§, 1) = +L
 × 2§ × 1 × 2L§ ≡
+L
 (n]- ¦). In the following section, inner structure of the inverter is explained.

38

3.1.2.1.2 Montgomery Inverter Architecture

Proposed inverter has a parametric design, in the sense that word size can be

adjusted to scale the architecture into desired size or frequency requirements. In other

words, we offer to operate on changeable word size instead of operating on all or half of

the input bit size as proposed in [52] according to the design criteria. Thus, we provide

an obvious increase in operating frequency. Among the factors to accelerate the design

is reduced carry-chain length in adders/subtractors and fewer number of connections

between CLBs. In addition, reduced word size also decreases the register and LUT

usage resulting in lower area consumption. Furthermore, logic area usage is decreased

more by using BRAMs for the storage of variables during operation. Nonetheless, our

design is synthesizable by using either distributed RAM or BRAMs. Implementation

results with and without BRAMs are given in the further sections.

Most time consuming part of the operation is the first phase of the algorithm

(Algorithm 9) that dictates the main structure of the architecture. Second phase of the

algorithm (Algorithm 10) is accomplished over the same architecture by adding some

signals for control purpose. The while loop in Algorithm 9 is the most dominant

segment in the first phase, hence the architecture is mainly shaped depending on this

segment. All data inputs of all modules are size of WL, where WL stands for desired bit

length for a word.

Inverter is realized using multiplexers, adders/subtractors and RAMs to store

the variables. RAMs operate like FIFO (first-in first-out) structure. Firstly, least

significant word (LSW) is stored in a RAM. While reading the RAM, first LSW of the

variable is read back and finally most significant word (MSW) of the variable is

obtained. Operation is controlled using select inputs of multiplexers and read/write

enables of RAMs. First part of the algorithm is separated into two parts: i) u/v and ii)

r/s. These parts are depicted Figure 9 and Figure 10, respectively. Execution of the first

part of the algorithm is influenced depending on whether “u” or “v” is even or they are

both odd numbers.

Before the execution of the first phase, the modulus value is stored in the

“RAM_M” and operation starts with data load signal, which is named as “Inv_in_we”.

When this signal is received, the modulus is read and stored in the “RAM u” as its

39

initial value. The values of zero and one is stored to the “RAM r” and “RAM s”,

respectively as initial values. After loading initial values, while loop starts with “r_sig”,

which is the read signal of RAMs. Every iteration of the “while loop” (and “for loop”,

in the second phase) is performed with “r_sig” signal. Write enable signals “w_sig0” to

“w_sig2” are sequentially shifted version of the signal “r_sig”. Proper write enable

signal is chosen according to the delay of data path. All RAMs used in the design are

dual-port RAMs, which allow simultaneous read and write operations from different

addresses. Thus at each iteration of Algorithm 9 (steps 1 - 12), RAM read/write

operations can be performed in less clock cycles compared to the case of using single

port RAMs.

Figure 9: U/V Part of the Inverter

While reading data with “r_sig” signal, the least significant bit is examined to

decide if the number is odd or even. If one of the numbers (u or v) is even, then after the

read of first word of the variables we can decide to execute upper half of the while loop.

But if none of the numbers are even, we should compare them to determine which is

greater. After this “u>v” or “v>u” part of the while loop is executed.

in in

>> 1

w
_s
ig
1 >> 1

ramUV_out ramU_out

in

out

RAM
uv

in

out

RAM
u

re

we

re

we

in

out

RAM
vu

in

out

RAM
v

re

we

re

we

ra
m
U
V
_o

ut

ra
m
M
_o

ut

out

u_
ne
w

in

out

u_new

u_
ne
w

v_
ne
w

ramVU_out ramV_out

v_change u_change
0 1 0 1

ra
m
V
U
_o

ut

In
v_

in
_v

out

v_
ne
w

v_
ne
w

u_
ne
w

r_sig

In
v_

in
_w

e

w
_s
ig
2

in

out

v_new In
v_

in
_w

e_
d

w
_s
ig
1

w
_s
ig
2

w_sig2

40

However, deciding which number is greater than other is not an as easy as

deciding whether they are even or not since it is not sufficient to examine just the LSW

of a variable. Instead, all words of the variables are needed. For instance, it is required

first to read all words of the variables to decide which one smaller. Then, reading them

again to subtract the smaller from larger is overly time-consuming process. In that case,

for the one iteration of the while loop, two read operations have to be performed. To

eliminate these overly complicated operations, we add one more subtractor to the

circuit. If both numbers are odd, then “u-v” and “v-u” operations are performed in

parallel and result of each is stored in two separate RAMs (i.e. RAM uv or RAM vu) .

Afterwards, these two results are checked. Naturally, the positive result is valid which is

used as the new value of either “u” or “v”. The valid data is selected using “u_change”

and “v_change” signals. For instance, if valid “v” value is “RAM vu” for now, then

“v_change” value is set to ‘1’ and it is set to ‘0’ vice versa. If upper half of the while

loop have to be executed, then “u/2” or “v/2” values are stored in either “RAM u” or

“RAM v”. “u_new” and “v_new” lines stand for “u/2” and “v/2” values. Current values

in RAMs are processed in one right shifter unit, which divides the current values by 2.

We perform ³/2 − H/2 instead of (³ − H)/2 for the lower half of the while loop. But
this does not cause a data loss, since in the lower part of the loop both numbers are odd.

There is an important point to note. “RAM uv” and “RAM vu” are continuously filled

with new difference values of “u-v” and “v-u” respectively. Therefore, the valid data is

has to be copied to the other RAM. “ramUV_out” and “ramVU_out” signals are added

to the input of “RAM u” and “RAM v” for that reason.

Loop in the first part of the algorithm ends when the value “v” reaches to

zero. If conditional structure in the algorithm is carefully examined, it can be seen that

algorithm only terminates after u is subtracted from v (therefore u is smaller or equal).

Therefore, input of the “RAM vu” is connected to a zero comparator unit. Zero

comparator units detects zero value and raises a flag when zero value is stored to the

RAM to terminate the execution of the while loop.

41

Figure 10: R/S Part of the Inverter

Variables “r” and “s” change depending on the values of “u” and “v” during

the execution of the while loop. If upper half of the while loop executes, new values of

“r” and “s”, “r_new” and “s_new”, are processed by one-bit left shifter (multiplier by

2). “RAM r” and “RAM s” are continuously updated with shifted values of “r” and “s”.

“RAM rs” stores the 5 + ~ value when lower half of the while loop executes. After
deciding whether ³ or H bigger than the other, value stored in “RAM rs” updates either

u or v. If the value stored in “RAM rs” is used to update the variable 5, “r_change” flag
is set to one. The same rule applies for “s_change” flag. The adder/subtractor in the

input of the “RAM rs” operate as an adder for the while loop and as subtractor

afterwards. Two registers are put in front of the adder/subtractor to reduce the critical

path delay. Second phase of the inversion operation (Algorithm 10) is realized using

“RAM rs”, “RAM r” and “RAM M”. At each iteration of the “for” loop in the second

phase the shifted value of 5 is stored to “RAM r”, and the value 2 × 5 − ¦ is stored to

the “RAM rs”. If stored value to the “RAM rs” is negative then valid 5 value is in
“RAM r” and in “RAM rs”, otherwise.

ra
m
M
_o

ut

RAM
s

w
_s
ig
1

in

out

RAM
rs

in

out

RAM
r

re

we

re

we

ot
he
rs
 =
>
 ‘
0’

r_
ne
w

ramRS_out

s_change r_change
0 1

In
v_

in
_s

s_
ne
w

r_sig

in
out

in
out

in

out

re

we

1 0

ramR_mux_out ramS_mux_out

+/-
ra
m
R
_m

ux
_o

ut

ra
m
R
_m

ux
_o

ut

ra
m
R
_m

ux
_o

ut

ra
m
S
_m

ux
_o

ut

ra
m
M
_o

ut

ra
m
M
_o

ut

ra
m
M
_o

ut

<< 1
in

out

r_new

<< 1
in

out

s_new

r_
ne
w

w
_s
ig
1

w
_s
ig
1

w
_s
ig
2

‘0
’

In
v_

in
_w

e

‘0
’

w
_s
ig
1

w
_s
ig
2

‘0
’

In
v_

in
_w

e

in

out

RAM
M

re

we

In
v_

in
_m

od
ul
u

In
v_

in
_m

od
ul
us
_w

e

In
v_

in
_w

e

w
_s
ig
0

r_
si
g0

42

We use dual port RAMs, which enables to read and write at the same time,

despite that one iteration takes (µ¶ + 4) clock cycles. The delay of four clock cycles
are due to the following: RAMs are synchronous read/write RAMs, thus when enable

signal rises, data to read becomes available at the output after one cycle. One cycle is

lost at the shifter modules and one at the input registers of the adder/subtractor. One

more cycle is consumed after the subtraction. Deciding whether the result is negative or

not, occurs after subtraction taken place. Thus in total, we spend four more cycles

additionally. Implementation results of the design are given in the followings.

3.1.2.1.3 Implementation Results of the Inverter Unit and Other Metrics

Implementation results are given using ISE Design Suite 12.1 for target

device Spartan-6SX45T FPGA (XC6SLX45T-3FGG484). Synthesizer presents two

optimization methods for the design, one of them is speed and the other one is area

optimization. In addition to these, we placed and routed the design utilizing both BRAM

and distributed RAM to see how they affect area and speed results of the

implementation. Spartan-6 FPGAs presents hardwired adder/subtractor modules;

nevertheless we prefer not to use them. It have several reasons. Firstly the provided

carry-chain lines are fast enough. And secondly since our design is word based, not

much logic source is spent for adders. And lastly, it provides compatibility with other

FPGAs.

Register and LUT usage are metrics for area coverage. If BRAM are used,

additional constant eight BRAMs are added to the resource list. Logic resource usage is

directly proportional to the chosen WL. This is an expected result since WL increases

sizes of multiplexers, adders and registers. However achievable maximum frequency is

not directly related with WL until a certain word size is reached. Negative effect of WL

over frequency begins to appear after around 40 bits of word size. A suitable value for

WL can be chosen for given design constraints, i.e. area usage, maximum working

frequency and total completion time. For total execution time, previously given formula

can be used: 2n ∗ (µ¶ + 4) ∗ �>]�8 e 5)]- = 2n ∗ (µ¶ + 4) ∗ 1/¦� . Best area

result is obtained under area optimization preference and using BRAM. Best speed

result is obtained using under speed optimization preference using distributed RAM. All

results are obtained from ISE Design Suite 12.1 after PAR process. Results are

43

enumerated in Tables 3, 4, 5, and 6, where m, WL, REG, LUT, MF, T, and TA denotes

the bit size, word length, register usage, LUT usage, maximum clock frequency

achieved, execution time, and time-area product, respectively.

m WL REG LUT MF T (us) TA

64 8 233 266 199,46 7,70 2,05

64 16 360 376 188,22 5,44 2,05

64 32 631 643 181,99 4,22 2,71

128 8 251 277 191,25 26,77 7,42

128 16 378 389 185,47 16,56 6,44

128 32 649 652 170,22 12,03 7,84

256 8 269 296 188,24 97,92 28,98

256 16 396 399 178,43 57,39 22,90

256 32 667 665 168,49 36,47 24,25

512 8 288 352 185,33 375,72 132,25

512 16 414 420 175,86 209,62 88,04

512 32 685 674 166,87 122,73 82,72

1024 8 306 519 184,19 1467,70 761,74

1024 16 433 522 174,19 799,49 417,34

1024 32 703 695 165,32 445,97 309,95

Table 3: PAR Results Using Distributed RAM Under Area Optimization

m WL REG LUT MF T (us) TA

64 8 242 305 243,64 6,30 1,92

64 16 371 413 229,79 4,46 1,84

64 32 657 693 252,24 3,04 2,11

128 8 264 329 234,1 21,87 7,20
128 16 390 433 235,01 13,07 5,66

128 32 679 698 252,24 8,12 5,67

256 8 287 359 232,66 79,22 28,44

256 16 404 436 216,14 47,38 20,66

256 32 678 696 217,92 28,19 19,62

512 8 289 399 191,04 364,49 145,43
512 16 432 476 228,75 161,15 76,71

512 32 698 715 216,47 94,61 67,65

1024 8 329 650 231,08 1169,88 760,42

1024 16 444 587 222,11 627,00 368,05

1024 32 723 738 223,15 330,40 243,83

Table 4: PAR Results Using Distributed RAM Under Speed Optimization

44

m WL REG LUT MF T (us) TA

64 8 170 202 200,04 7,68 1,55

64 16 233 282 192,37 5,32 1,50

64 32 376 424 199,53 3,85 1,63

128 8 188 212 193,51 26,46 5,61
128 16 251 295 189,18 16,24 4,79

128 32 394 462 172,67 11,86 5,48

256 8 206 235 193,51 95,25 22,38

256 16 269 304 181,77 56,33 17,13

256 32 412 476 170,82 35,97 17,12

512 8 224 259 190,19 366,12 94,82
512 16 287 323 179 205,94 66,52

512 32 430 485 169,08 121,13 58,75

1024 8 242 286 192,75 1402,52 401,12

1024 16 305 347 173,19 804,11 279,03

1024 32 448 506 167,44 440,32 222,80

Table 5: PAR Results Using BRAM Under Area Optimization

m WL REG LUT MF T (us) TA

64 8 175 233 204,43 7,51 1,75

64 16 237 313 204,43 5,01 1,57

64 32 379 479 204,43 3,76 1,80

128 8 189 236 204,43 25,05 5,91

128 16 253 330 204,43 15,03 4,96

128 32 398 501 204,43 10,02 5,02

256 8 207 259 204,43 90,16 23,35

256 16 274 334 204,43 50,09 16,73

256 32 418 523 204,43 30,05 15,72

512 8 224 287 190,76 365,02 104,76

512 16 287 336 192,18 191,82 64,45

512 32 437 530 204,43 100,18 53,10

1024 8 242 308 194,36 1390,90 428,40

1024 16 307 376 187,58 742,42 279,15

1024 32 456 571 204,43 360,65 205,93

Table 6: PAR Results Using BRAM Under Speed Optimization

Maximum frequency results are given in terms of MHz. Total working time

is calculated using the formula 2n ∗ (µ¶ + 4) ∗ 1/¦� . Time-area product is

calculated using the formula b¸O ∗ O/1000 . As one can observe from the tables

showing the PAR results using distributed RAM (i.e. Tables 3 and 5), surprisingly

45

maximum achievable frequency remains almost unchanged with the word length. This

is because of delay in the adder until around word size of 40 bits does not exceed the

delay of the state machine implementing the control circuit. Small fluctuations in

maximum frequency are due to the changes in path delay caused by checking for total

word count.

On the other hand, PAR results using BRAM shows less fluctuations in maximum

clock frequency especially for speed optimization case (Table 6). This is due to the fact

that there is a bigger delay incurred in the output of BRAM. The BRAMs have constant

locations inside the FPGA, which are usually in the middle of the FPGA. And therefore,

when the main part of the circuit is placed it generally becomes far away from BRAMs.

There occurs a large net delay, which exceeds any inner delay caused by the controller

or adder circuit. To overcome this situation, outputs and inputs of the BRAM should be

registered which adds two more cycle of latency to usual read/write cycle of RAM. This

approach may increase the maximum working frequency but on the other hand it also

increases total execution time.

We compared our design with a previous implementation that utilizes half

precision functional unit [52] using the same FPGA (Virtex XCV2000e-6bg560) with

[52]. Our design clearly outperforms the reference design in terms of logic area usage

and achievable maximum frequency.

Design Size Area (Slices) Max. Freq. (MHz)

Our 8bit x 8 218 73,89
[52] 32 bit x 2 549 61,97

Our 8bit x 16 235 76,36
[52] 64 bit x 2 1023 46,8

Our 8bit x 32 255 72,54
[52] 128 bit x 2 2022 34,73

Our 8bit x 64 256 75,02
[52] 256 bit x 2 3481 18,15

Table 7: Comparison With a Previous Work Using Same FPGAs

An early version of the work can be found in [53]. In the new version, some

improvements on total area usage is achieved while we lose some performance in

46

maximum working frequency. However in most cases, especially the one uses BRAMs,

time area product is improved.

3.2 Program and Data Memory

Both program and data memories are realized using RAM inside the FPGA

device. Depending on the implementation constraints, distributed or block RAM can be

used. However, we prefer to use BRAM since both program and data memories store

large amounts of data. Program is stored into the program memory manually before

synthesis, and it does not change during the execution. Thus, program memory acts as

ROM, instead of RAM. Data memory stores the current values for desired variables. It

acts like a register bank. Each core has its own program and data memory. We separated

the memories to achieve full parallelism. If the same RAMs are used for each core, then

one core should have waited while one core were reading. Moreover control structure of

the memory would be more complex. Structure of program and data memory is detailed

in the subsequent sections.

3.2.1 Program Memory

As previously indicated program memory is a read-only memory. Program of

each core is stored before the synthesis. One program memory utilizes one BRAM but it

is addressed into different segments. Each segment is a block program specified for one

function. The top controller tells controller to execute code block in BRAM, then

controller processes each block line by line. After all the block is finished the controller

notifies the top controller. We have a predefined format for micro-instructions in the

program memory, which is illustrated in Table 8.

Opcode
Adder/

Subtractor

Op
A

Core

Op A
Index

Op
B

Core

Op B
Index

Result
Index

Wait
For
Core

�otify
Core

4 bits 1 bit 1 bit
X bits
(5 bits
default)

1 bit
X bits
(5 bits
default)

X bits
(5 bits
default)

1 bit 1 bit

 Table 8: Format of the Micro-Instruction

47

Definitions related to the micro-instruction are given followings:

� Opcode: This is already defined in Table 2. This is the operation code that is

to be sent to ACIU.

� Adder/Subtractor: Since the same hardware is used for both addition and

subtraction, this part defines whether to perform addition or subtraction

operation. It will act like adder when this value is ‘0’ and as subtractor,

otherwise.

� Op A Core: Cores not always operate with operands in their data memory,

sometimes they take operands from data memory of other core. This one bit

command defines whether the first operand is in data memory of first core or

the second. If the value is ‘0’, operand is in the first core, and in the second

core, otherwise.

� Op A Index: This defines address of the data memory from which the operand

is read. Index is a pointer for the address value. Its size is generic but for this

application we use it as five bits since we use thirty-two registers.

� Op B Core: Same as “Op A Core”.

� Op B Index: Same as “Op B Index”.

� Result Index: This defined the register address where the result of the

operation is written. Result of each core is written to its own data memory

thus, we do not need to specify core number. Again it has a generic size

likewise “Op A Index”.

� Wait For Core: When this value is set to ‘1’, the corresponding FDEU in the

controller executes the current micro-instruction, but does not fetch the next

micro-instruction. The FDEU waits for a notify core signal (that will come

from the other FDEU) before fetching the next instruction. This signal is used

to stop execution of the current FDEU (precisely the arithmetic core) and to

give the control of its data memory to the other core. This way, we allow one

core to access the results in the memory of the other core while the other waits

until the memory access operation is completed.

48

� �otify Core: When this value is ‘1’, after the execution of current micro-

instruction, one FDEU sends a notify signal to the other FDEU releasing it

from the “wait for core” state.

Most attention needs to be paid to the timing of the Notify Core and Wait For

Core signals. Firstly, the programmer who develop the micro-codes for the cores to

execute, needs to know when to stop and wait to prevent overwrite of the data of one

core that will be needed in subsequent clock cycles by the other core. Secondly, we

need to know when to notify. In other words, this must not be before the result becomes

available so that we must not try to read the data before it is ready. Moreover, we should

not make the other core wait longer than necessary. The ideal case for wait and notify

chain can be as follows: Data required by one core is generated by the other core and

the latter core enters the wait state. Just after that the former core reads desired data

from memory of the latter core it notifies the waiting core causing its release from the

wait state. To achieve perfect timing the programmer needs to know execution times of

micro-instructions.

There can be alternative techniques for inter-core data exchange to simplify the

programmer interface. But, a bad alternative is given first to explain the intricate issues

in data dependency occurring across the cores. For instance, if a core were to place the

other core in “wait for core” state whenever it needs a result from the latter, there would

be come complications which are harder to resolve. The fact that it is difficult for a core

to know when the other core reaches to the point where the desired result is produced

complicates the programming processes.

A successful alternative can be as follows: Before they start executing their

micro-codes, cores tell each other which variables they need. Therefore, there are two

tasks for two cores: First when these variables are produced, generator core notifies the

other core and places itself in “wait” state. Secondly, the core in need of a variable

places itself in “wait” state when it reaches to the point in the program where it needs

the variable from the other core. When notify signal comes from generator core

meaning that the desired variable is available, the latter core leaves the “wait” state,

reads the variable, and signals the generator to release it from “wait” state. Naturally,

some precautions have to be taken to prevent dead locks, whereby both cores place

themselves into wait state since they need each others’ variables. Although this method

49

Program

Memory

code_re

block_index

micro_code

offers a more user friendly interface for programmer, its hardware implementation is

overly complicated. Each core has to monitor the values which are in the desired list of

the other core necessitating a check of results of execution of every instruction.

Therefore, we prefer to place burden in the programmer side to make the hardware

faster and cheaper. Difficulties in developing the codes for the cores are easy to resolve

since the programmer can utilize a simple software implementation in high-level

language when planning to schedule the micro-codes.

More details about solutions to prevent dead lock are given in Section 3.3. Here

we only provide the part relevant to the programmer. The I/O interface of the program

memory is given below Figure 11.

Figure 11: I/O Interface of Program Memory

If “code_re” is active then next micro instruction is given to the controller. During the

read of a micro-code for a specific function, “block_index” remains constant.

3.2.2 Data Memory

Data memory is the module where all variables during the program execution

are stored. Similar to the program memory, it is divided into abstract segments. Each

segment has a constant index. Access to segments is possible using these index

numbers. Number of segments in a data memory is generic, thus it can be changed

easily. However we use as little segment as possible to efficiently use the whole RAM

area. I/O interface of the data memory is given in Figure 12.

50

Figure 12: I/O Interface of Data Memory

The data memory is constructed as dual port RAM, which allows synchronous read

operations from different addresses. Thanks to this property, we do not need to use two

different RAMs to read first operand and second operand in parallel. Data is stored in

the specified address (using “data_index” input) when “data_we” is active. Then

required operands are read with “op_a_index” and “op_b_index” signals when

“op_x_re” is active. It is sufficient to hold “op_x_re” active for one clock cycle, and

then data memory makes available the variables at “op_a_data” and “op_b_data”

outputs with active valid signals.

3.3 The Controller

The controller is the module which manages the arithmetic cores, program and

data memory units. It is responsible of ensuring the correct execution of the micro-code.

In fact, to put it simply the controller is akin to a fetch-decode-execute unit. There are

two FDEUs inside the controller. To accelerate the communication between FDEUs,

they are packed into one module. An FDEU is a state machine and inner states of FDEU

are explained below:

� Initial State: Initial values of inner variables are set and FDEU waits for a

new block of micro-code from the top controller. When top controller gives

the index of new block to be executed, this index is used to access the micro-

code in the program memory and FDEU proceeds to “check other core” state.

� Check Other Core State: This state is designed to prevent a possible

collision during memory accesses. In case of two FDEUs try to read operands

from the same data memory, a collision may occur in accessing to data

Data

Memory

op_a_data_valid

op_b_data_valid

op_a_data

op_b_data

op_a_re

op_a_index

op_b_re

op_b_index

data_we

data_index

data

51

memory. As pointed out earlier, the programmer handles the “wait” and

“notify” states correctly to prevent a collision of this type. However, there can

still be a collision since the hardware is designed in such a way that a core

always reads the others core’s data memory with notify signal. Therefore, if an

FDEU needs to access the memory of other core two consecutive times for

two variables, the latter core is released from the wait state after the first

access. Consequently, the latter core continues execution and may access its

data memory at the same time with the former core resulting in a collision. To

prevent this kind of error from happening, “check other core” state is added

before “read operand state”. In this state, the core checks the state of the other

core. If the other core is in read state then, the core waits for it to finish. If

both cores are in this state than we give priority to the first core to avoid dead

lock. If the cores are a state other than read state, then it continues to execute

normally and passes to “load opcode” state.

� Load Opcode State: This state reads the next micro-instruction to execute

from the program memory. The number of micro-instruction that have been

executed is counted in this state to check if the current program is finished.

This state also sends the operation type to the ACIU. After micro-instruction is

read and opcode is loaded to ACIU, it proceeds to “read operand” state.

� Read Operand State: Depending on micro-instruction, this state reads

corresponding registers from the data memory. It waits until all words of the

operand are written in ACIU, then “wait for result” state is loaded.

� Wait For Result State: As name indicates, here FDEU waits for result of

operation is written to the data memory. After that it checks for “wait for core”

and “notify core” flags. If one of them is active it branches to the suitable

state.

� Wait For Core State: In this state FDEU waits for a notify signal from other

FDEU or a done signal from inverter controller. As can be remembered

inverter has its own controller and program ROM. During the execution of an

inversion operation, both cores are placed in “wait for core” state and they

both send a notice signal to inverter controller to start. Thus, the inverter

52

Initial State
-Set Initial
Values

New block
to execute?

Yes

�o

Check Other
Core State

Is other core in
“Read Operand
State”?

Yes

�o

Load Opcode
State

Read Operand
State

Wait for
Result State

�o Wait or �otify

Command

Wait for Core
State

Wait Command

�otify Core
State

�otify Command

A
ll
 I
n
st
ru

ct
io
n
s
E
xe
cu

te
d

finishes its calculation, it sends a “done” signal which enables both FDEU to

wake up. After this, they both proceed to the “check other core” state.

� �otify Core State: This state generate the notify signal for the other FDEU.

After that, FDEU goes to “check other core” state.

Flow diagram of the state machine is depicted in Figure 13.

Figure 13: Flow Diagram of State Machine of the Controller

53

I/O interface of the controller is given in Figure 14.

Figure 14: I/O Interface of Controller

In Figure 13, I/O signals of controller are given whereby only signals relating to

FDEU1 are shown for sake of simplicity. In fact, all signals with suffix “_1” have

versions for FDEU2 as well. Definitions of the I/O ports for the first FDEU is given in

Table 9. Similar I/O ports exist for the second FDEU.

block_data_1

Controller

block_done

block_re_1

block_index_1

opcode_we_1

opcode_1

add/sub_opt_1

op_a_re_1

op_a_core_1

op_a_index_1

inverter_en_1

To Program
Memory

To
Arithmetic
Core

op_b_re_1

op_b_core_1

op_b_index_1

To Data
Memory

To Inverter
Controller

To Top
Controller block_we

block_index

op_we_1

result_we_1

inversion_done_1

From Top
Controller

From
Program
Memory

From
Data
Memory

From
Arithmetic
Core

From
Inverter
Controller

Similar
Signals
Exist For
2.nd
FDEU

Similar
Signals
Exist For
2.nd
FDEU

54

I/O Port Definition

block_index Defines which block of micro-code to be executed

block_we When active, block_index is stored to the controller

block_data_1 Micro-instruction read from program memory of 1st. FDEU

op_we_1
Feed-back signal used to indicate if operands are read from data

memory

result_we_1
Feed-back signal used to indicate if result of the operation is

written to data memory

inversion_done_1 Indicates if inversion is finished

block_done Indicates that execution of block of micro code is finished

block_index_1
Indicates which block of micro-code is to be read from the 1 st.

program memory

block_re_1
When active, micro-instructions, which belongs to

"block_index_1", are read in order from the 1 st. program
memory

opcode_1 Defines the operation code for 1 st. ACIU

opcode_we_1 When active, "opcode_1" is fed into 1 st. ACIU

add/sub_opt_1
Defines if the adder/subtractor unit in 1 st. ACIU will be used

as adder or subtractor

op_a_re_1
Read enable signal (controlled by the 1 st. FDEU) for the first

operand.

op_a_core_1
Defines whether the first operand is in the 1 st. data memory or

in 2 nd.

op_a_index_1
Defines the address (controlled by the 1 st. FDEU) of the first

operand

op_b_re_1
Read enable signal (controlled by the 1 st. FDEU) for the

second operand.

op_b_core_1
Defines whether the second operand is in the 1 st. data memory

or in 2 nd.

op_b_index_1
Defines the address (controlled by the 1 st. FDEU) of the

second operand

inverter_en_1 Signal (controlled by the 1 st. FDEU) used to start inverter

Table 9: I/O Port Definitions for the First FDEU

3.4 The Top Controller

Top controller is the only part of the design specific for a given application. Other

parts of the processor may be used in other applications directly. But the top controller

has to be modified to implement other cryptographic or other pairing operations. The

55

Control
and data
lines

State

Machine

RAM

r

exp_1

exp_2

Top Controller block_we

block_index

all_finished

block_done

ram_we

ram_data

ram_index_en

ram_index

To
Controller

To User

From
Controller

From
User

top controller informs the controller to execute a block of micro-code. A cryptographic

application is first divided into computational segments for each of which a micro-code

block is developed. These micro-code blocks are placed in the program memory.

Therefore, the top controller should be designed in such a way that these micro-code

blocks are given to the FDEUs in proper order. Consequently, the top controller should

be re-designed for every application. We explain the design of the top controller for

Algorithm 1.

We construct two blocks of micro-code inside the “for” loop in Algorithm 1 (steps

1-8). The first block represents the operations to be performed when 5* = 1 (steps 2 and
3 of Algorithm 1) and the other represents the operations when 5* = 0 (steps 4 and 5 of
Algorithm 1). The top controller controls the “for” loop and the final exponentiation

operation (step 9 of Algorithm 1). Variables related to the “for” loop (5) and final
exponentiation (e: − 1/5) are stored in the inner RAMs of top controller. Then the top

controller shifts r by one bit (step 1 of Algorithm 1) and informs the controller module

with the micro-code block to execute. When “done” signal is received from the

controller, the top controller shifts r again and sends next block of micro-code. After the

for loop terminates, it instructs the controller to execute block of code related to the

final exponentiation. Finally, the top controller raises a finish flag indicating that the

final result is ready. Inner abstraction and I/O interface of top controller is depicted in

Figure 14.

Figure 15: I/O Interface and inner abstraction of top controller

Only one block RAM used to store variables of the top controller. Each variable is

addressed with a separate index. Before starting of execution, variables needed for the

top controller have to be stored. Using “ram_index_en” and “ram_index” signals, initial

variables are written in the RAM, whereby “ram_index” are set to the address of the

56

location of the corresponding variable in the RAM. During the write operations, data is

applied to the “ram_data” with “ram_we” signal being set active. Another module or a

separate circuit using the pairing coprocessor can perform these operations. After the

actual operation (e.g. Tate pairing) is completed, “all_finished” flag is set active. One

block of code actually contains the parts for both cores which are marked by the

programmer to assign them to the cores. The entire program installed on the processor is

given block by block in the Appendix.

3.5 Debugging of the Hardware

For test purposes, Tate pairing algorithm is implemented using MIRACL C++

crypto library. We added print-outs for the intermediate results, such as the result of line

evaluation function, output of each iteration of the Miller loop and intermediate and

final steps of the final exponentiation. After all design and HDL coding are finished, we

run behavioral simulation with the input values used in MIRACL implementation. We

compared our results with MIRACL outputs to fix the bugs in HDL implementation.

However, behavioral simulation takes around 30 minutes to complete and after each fix

it takes too long to complete the simulation for the new implementation. To remedy the

slowness in hardware debugging, we developed an emulator for the hardware in Java

language. We run the Java program and observed that its output and all intermediate

results match with those of the hardware simulation. Then, we continued testing with

the Java emulator and MIRACL to match the results of both of them. By this way we

were able to find the bugs in a shorter time compared to previous method. Then we

transferred the changes we made in the Java emulator to the hardware implementation.

Finally, we run behavioral simulation and MIRACL and we observed that all the results

are matched.

57

4 Conclusion and Comparison

We design a general purpose pairing processor for FPGAs. Our design is a

parametric, very flexible and a very compact implementation. It can even fit into one

(Spartan-3s400) of the very old fashioned and small FPGAs (see Table 9). Also it

performs higher working frequency compared to the similar work [54].

During improvement process, we made behavioral unit tests for each sub-module of

the design and for overall design using ISIM and ModelSim simulation environment.

After behavioral simulation we tried our design on real hardware (Xilinx ML402

Evaluation Board) using 100MHz clock source. We see that our design works correctly.

Our design can be easily modified to work on different types of pairing operations.

Among many pairing operation types we chose to implement Tate pairing [4] using the

parameters given in the MIRACL crypto library. We use the elliptic curve:

k� = d� − 3d + w

w = 364450518177934192404424328677091614072588218039367457522428451192010880
2552.We use the modulus, ¦ = 330834540866291994040950336878685123996049234435
07663357865684465927197075453 . We constructed quadratic field �3� − j using

j = −2. We choose the 5 variable in the Algorithm 1 as 5 = 25803063399904061661127
976311108304689363428717269 . The generator point " in Algorithm 1 whose

coordinates are on �3 is chosen as follows.

"º = 640227261954506466835518614091388818629251204730213225696365875116607958
2595

58

"» = 28254754033408250554059692191573938416208433265366188619199440543745885
796792
The point Q in Algorithm 1, which is on �3�, is chosen as follows:

#º�,S = 202468240713654861785554933261760322244078402596801989724654122093464

266322,
#º�,� = 0,
#ºS,� = 0,
#ºS,S = 0,
#»S,� = 139159510539237898486697191650467806305180186022574981390954112029811

03667335,
#»S,S = 879873655279966654546263390920582730997142969899536448244002331049178

1584610,
#»�,� = 0,
#»�,S = 0.

By using the parameters above, after running placement-and-routing (PAR) for the

target device, we obtain the following results for a prime q of 255 bits, where r is 160

bits prime integer and 80 bit of security is intended. The word size is chosen as 15 bits

to utilize the hardwired multipliers. Total running time of the Tate pairing is found to be

28.65ms, 54.92% of which is spent on the Miller loop, using a clock frequency of

132.49 MHz. The design consumes 4829 registers, 7583 LUTs and 4 BRAMs. Our

results can be seen in Table 9.

m WL REG Slice LUT MF T(ms) Security FPGA

256 4 1557 2394 4424 78 ? 80 Spartan3s400

255 15 4293 - 6198 132.49 28.65 80 Spartan 6

255 15 4321 6071 10362 128.68 29.49 80 Virtex 4

 Table 10: PAR Results for Co-processor Implementing Tate Pairing

59

We implemented design for both Spartan-6 and Virtex-4 for comparison purposes as

shown in Table 9. In a recent PhD thesis published in June 2011 [54], the author

proposes a similar architecture. The author provides implementation results for 128 bits

security on Virtex 4 (xc4vlx200). It achieves a maximum clock frequency of 50 MHz

and 35.3 ms completion time. Although it performs higher security level, it is clear that

our design outperforms in terms of maximum achievable working frequency and logic

area usage. It is important to note that, since our design is word based, logic area usage

of our design does not increase significantly with increase of modulus size, instead total

completion time of our design increases with the modulus bit sizes. Thus we can still

say that for improved security level our logic area usage will increase slightly and our

achievable maximum frequency can decrease slightly. Anyway, it will be better in terms

of MF and logic area usage compared to [54] even for 128 bit security. Also we give

comparison with an ASIC design satisfying 128 bits security [55]. Even if this design is

ASIC, our design outperforms clearly in terms of logic usage.

Design WL REG Slice LUT MF T(ms) Security FPGA

Our(255) 15 4829 - 7583 132.49 28.65 80 Spartan 6

Our(255) 15 4856 6551 11241 128.68 29.49 80 Virtex 4

[54] - 27k 52k 101k 50 35.3 128 Virtex 4

[55] - - 97k - 338 34.4 128
ASIC-
130nm

Table 11: Comparison Results

60

References

[1] A. J. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic curve logarithms to
logarithms in a finite field,” IEEE Trans. Info. Theory, 39:1639–1646, 1993.

[2] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, SIAM Journal of

Computing, 32(3):586-615, 2003.

[3] J. Fan, F. Vercauteren, and I. Verbauwhede, “Efficient Hardware Implementation of Fp-
arithmetic for Pairing-Friendly Curves”, IEEE Transaction on Computers, 2011.

[4] A. Devegili, M. Scott, and R. Dahab, “Implementing Cryptographic Pairings over Barreto-
Naehrig Curves”, Pairing 2007, volume 4575 of Lecture �otes in Computer Science, pages 197–
207. Springer,2007.

[5] Xilinx Company, “Spartan-6 family overview”, http://www.xilinx.com/support/documentation
/ds160.pdf, 3 March 2010.

[6] Xilinx Company, “Spartan-6 fpga configurable logic block user guide”,http://www.xilinx.com/
support/documentation/user guides/ug384.pdf, 23 February 2010.

[7] Digi-Key Corporation, http://search.digikey.com/scripts/DkSearch/dksus.dll?Cat=2556262&k=
XC6SLX45T, 1 August 2011.

[8] Xilinx Company, “IP Processor Block Ram (BRAM) Block”,http://www.xilinx.com/support
/documentation/ip_documentation/bram_block.pdf, 1 August 2011.

[9] Xilinx Company, “Spartan-6 FPGA DSP48A1 Slice User Guide”,http://www.xilinx.com/support
/documentation/user_guides/ug389.pdf, 1 August 2011.

[10] R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing”, 2000 Symposium on
Cryptography and Information Security-SCIS 2000, pages 26-28,Okinawa, Japan, Jan.2000.

[11] A. Joux, “A one round protocol for tripartite DiffieCHellman”, A�TS-4: Algorithmic �umber
Theory. Springer-Verlag, volume 1838 of Lecture �otes in Computer Science, pp. 385-394.

Springer-Verlag, 2000.

[12] Website of Department of Computer Science City University of Hong Kong,
http://www.cs.cityu.edu.hk/~ecc/ home.htm, 1 August 2011.

[13] S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate pairing”, In Algorithm
�umber Theory Symposium - A�TS V, volume 2369 of Lecture �otes in Computer Science, pp.

324-337. Springer-Verlag, 2002.

61

[14] R. Granger, F. Hess, R. Oyono, N. Th´eriault, and F. Vercauteren, “Ate pairing on hyperelliptic
curves”, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture �otes in
Computer Science, pp. 430–447. Springer-Verlag, 2007.

[15] N. P. Smart, “An identity based authenticated key agreement protocol based on the weil
pairing”, Electronics Letters, 38:630–632, 2002.

[16] M. Scott and P. S. L. M. Barreto, “Compressed pairings”, In Crypto 2004, 2004.

[17] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic curve traces for
FR-reduction”, IEICE Transactions on Fundamentals, E84-A(5):1234 – 1243, 2001.

[18] D. F. Aranha, J. L´opez, and D. Hankerson, “High-speed parallel software implementation of the
ηT pairing”, CT-RSA 2010, L�CS 5985, pp. 89–105. Springer, 2010.

[19] P. Grabher, J. Großschadl, and D. Page, “On software parallel implementation of cryptographic
pairings”, SAC 2008. L�CS 5381, pp. 35-50, 2008.

[20] J. L. Beuchat, J. E. G. Diaz, S. Mitsunari, E. Okamoto, F. R. Henriquez, and T. Teruya, “High-
speed software implementation of the optimal ate pairing over Barreto-Naehrig curves”, Pairing
2010, L�CS 6487, pp. 21–39, 2010.

[21] Xilinx Company, “Spartan-3 FPGA Family Data Sheet”, http://www.xilinx.com/support/
documentation/data_sheets/ds099.pdf, 1 August 2011.

[22] A. Karatsuba and Y. Ofman, "Multiplication of Many-Digital Numbers by Automatic
Computers", Proceedings of the USSR Academy of Sciences 145: 293–294, 1962.

[23] M. Scott, “Computing the Tate pairing”, CT-RSA, volume 3376 of Lecture �otes in Computer
Science, pages 293-304. Springer-Verlag, 2005.

[24] G. M. Bertoni , L. Chen, P. Fragneto, K. A. Harrison, G. Pelosi, “Computing tate pairing on
smartcards”, http://www.st.com/stonline/products/families/smartcard/ches2005v4.pdf, 2005.

[25] S. Chatterjee, P. Sarkar, and R. Barua, “Efficient computation of Tate pairing in projective
coordinate over general characteristic fields”, ICISC 2004, L�CS 3506, pp. 168-181, 2005.

[26] J. H. Silverman, “The arithmetic of elliptic curves”, Springer GTM 106, 1986.

[27] V. S. Miller, “The Weil pairing, and its efficient calculation”, Journal of Cryptology, 17(4):235–
261, September 2004.

[28] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing-based
cryptosystems”, In CRYPTO 2002, number 2442 in Lecture �otes in Computer Science, pp.
354–369, Springer-Verlag, Berlin Heidelberg, 2002.

[29] N. E. Mrabet, S. Ionica and N. Guillermin, “Pairing computation at 192 bits level security”,
http://www.ai.univ-paris8.fr/~elmrabet/Article/articlek15v14.pdf, 2011.

62

[30] Recommendations for Key Management, Special Publication 800-57 Part 1, 2007.

[31] L. Hitt, “On the minimal embedding field.” In Pairing-Based Cryptography — Pairing 2007,

Springer L�CS 4575, pp. 294–301, 2007.

[32] D. Freeman, M. Scott, and E. Teske, “A Taxonomy of Pairing-Friendly Elliptic Curves”, Journal
of Cryptology, 23(2):224–280, 2010.

[33] IEEE P1363. Standard Specifications for Public Key Cryptography. IEEE, 2000.

[34] C. H. Lim, H. S. Hwang, “Fast Implementation of Elliptic Curve Arithmetic in GF (e§)”, Proc.
PKC, L�CS 1751, 2000.

[35] A. Weimerskirch, and C. Paar, “Generalizations of the Karatsuba Algorithm for Efficient
Implementations”, http://www.crypto.ruhr−uni−bochum.de/imperia/md/content/texte/kaweb.pdf,
2003.

[36] M. Scott, “On the Efficient Implementation of Pairing-Based Protocols”, Cryptology ePrint
Archive, Report 2011/334, 2011.

[37] J. C. Bajard and N. E. Mrabet, “Pairing in cryptography: an arithmetic point of view”,
http://www.ai.univ-paris8.fr/~elmrabet/Presentation/SPIE07_talk_ELMRABET.pdf, 2007.

[38] Y. Nogami, M. Akane, Y. Sakemi, Y. Morikawa, “Efficient Pairings on Twisted Elliptic Curve”,
ICCIT '08. Third International Conference on, 2008.

[39] D. M. Gordon, “A survey of fast exponentiation methods”, Journal of Algorithms 27, 129–146.
ISS� 0196-6774, 1998.

[40] P. L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computation, vol.

44, pp.519-521, 1985.

[41] E. Oksuzoglu, E. Savas, “Parametric, Secure and Compact Implementation of RSA on FPGA”,
Reconfigurable Computing and FPGAs, 2008.

[42] C. McIvor, M. Mcloone, J. N. McCanny, A. Daly, W. Marnane, “Fast Montgomery Modular
Multiplication and RSA Cryptographic Processor Architectures”, 37th Annual Asilomar
Conference on Signals, Systems and Computers, California , 2003.

[43] NIST, “Digital Signature Stantard (DSS)”, FIPS PUB186-2, 2000.

[44] J. J. Quisquater and C. Couvreur, “Fast decipherment algorithm for RSA public-key
cryptosystem”, Electronics Letters, vol. 18, pp. 905–907, 1982.

[45] D. Hankerson, A. J. Menezes, Scott Vanstone, Guide to Elliptic Curve Crptography, Springer,
Norwell, 2004.

[46] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, Norwell,
MA, USA, 1994.

63

[47] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, vol. 48, pp. 203–209,
January 1987.

[48] T. Kobayashi, “Fast modular inversion algorithm to match any operation unit”, IEICE TRA�S.
FU�DAME�TALS, vol. 82, no. 5, pp. 733–740, 1999.

[49] B. S. Kaliski, “The montgomery inverse and its applications”, IEEE Trans. Comput., vol. 44, no.
8, pp. 1064–1065, 1995.

[50] D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Addison-
Wesley, 1998.

[51] E. Savas and C. K. Koc, “The montgomery modular inverse revisited”, IEEE Trans. Computers,
vol. 49, no. 7, pp. 763–766, 2000.

[52] E. Popovici, A. Daly, W. Marnane, “Fast modular inversion in the montgomery domain on
reconfigurable logic”, Proc. of ISSC, pp. 362–367, 2003.

[53] E. Murat, S. Kardaş, E. Savaş, “Scalable and Efficient FPGA implementation of Montgomery
Inversion “, Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications,
2011.

[54] S. Ghosh, D. Mukhopadhyay, and D.R. Chowdhury, “High Speed Flexible Pairing
Cryptoprocessor on FPGA Platform”, In Pairing 2010, volume 6487 of Lecture �otes in
Computer Science, pp. 450–466, 2010.

[55] D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg,D. Auras, G. Ascheid,
R. Leupers, R. Mathar, and H. Meyr, “Designing an ASIP for Cryptographic Pairings over
Barreto-Naehrig Curves”, In CHES 2009, volume 5747 of Lecture �otes in Computer Science,
pp. 254–271. Springer, 2009.

64

Appendix

Computing of F ← F� ∗ >�,�(#) +,- O ← O + O
F = F0 + F1.I = (f0,0 + i.f0,1) + (f1,0 + i.f1,1).I

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 t0’ = Xa
t1 = f0,1 t1’ = Ya
t2 = f1,0 t2’ = Za
t3 = f1,1 t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
 t30’ = Fr Frobenious Real
 t31’ = i.Fr Frobenious Imaginary

 F^2 13M, 28A Lt,t(Q) 17M, 5A

t7 = t0.t0 T1 = F0.F0 t8’ = 3.t0’.t0’
t8 = t1.t1 t9’ = (t2’)^3 Za^3
t9 = β.t8 t10’ = t9’.t2’
t10 = t7 + t9 T1 Real t10’ = t10’.a
t9 = t7 + t8 t8’= t8’ + t10’ λa,a
t7 = t0 + t1 t10’ = 2.t1’.t2’ Zc, Do not

overwrite
t8 = t0 + t1 t11’= t5’.t9’
t7 = t7.t8 t11’ = t11’.t10’ Lt,t(Q)1,0
t11 = t7 – t9 T1 Imaginary t11’ = t7’ – t11’
t7 = t2.t2 T2 = F1.F1 t12’ = t6’.t9’
t8 = t3.t3 t12’ = t12’.t10’ Lt,t(Q)1,1
t9 = β.t8 t12’ = t7’- t12’
t12 = t7 + t9 T2 Real t13’ = t0’.t2’
t9 = t7 + t8 t13’ = t8’.t13’ λa,a.Xa.Za
t7 = t2 + t3 t14’ = t3’.t9’ Wait For Core

0
t8 = t2 + t3
t7 = t7.t8
t13 = t7 –t9 T2 Imaginary
t14 = β.t13 T3 = γ.T2 =

i(t2,0 +
i.t2,1)=β.t2,1
+ i.t2,0

T3 Real

t15 = t6 + t12 T3 Imaginary
t16= t10+t14 C0 = T1 + T3 C0 Real
t17= t11+t15 C0 Imaginary

65

t14= t10+t12 T3 = T1 + T2 T3 Real
t15= t11+t13 T3 Imaginary
t10= t0 + t2 T1 = F0 + F1 T1 Real
t11= t1 + t3 T1 Imaginary
t12= t0 + t2 T2 = F0 + F1 T2 Real
t13= t1 + t3 T2 Imaginary
t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t0 = t16 + t6 C1 = T4-T3 C0 0,0
t1 = t17 + t6 C0 0,1
t2 = t18 – t14 C1 1,0
t3 = t19 – t15 C1 1,1

 Doubling 5M, 6A
t10 = t6 + t0’ Xa
t11 = t6 + t1’ Ya
t7 = t6 + t8’ λa,a / Notify

Core 1

t11 = 2.t11.t11 t14’ = t14’.t8’ Real
t10 = 2.t10.t11 t15’ = t4’.t9’
t8 = t7.t7 t15’ = t15’.t8’ Imaginary /

Lt,t(Q)0,1
t9 = 2.t10 t16’ = t1’.t10’
t8 = t8 – t9 Xc t14’ = t13’ –

t14’

t10 = t10 – t8 t14’ = t14’ –
t16’

t10 = t10.t7 t14’ = t7’ –t14’ Lt,t(Q)0,0 /
Wait For Core
0

t11 = 2.t11.t11
t10 = t10 – t11 Yc
t20 = t6 + t14’ Lt,t(Q)0,0
t21 = t6 + t15’ Lt,t(Q)0,1 /

Notify Core1

t6 = t6 + t6 Dummy Wait For
Core 1

t17’ = t7’ + t2 F 1,0

 t18’ = t7’ + t3 F 1,1
 t0’ = t8 + t7’
 t1’ = t10 + t7’
 t2’ = t10’ + t7’
 t7’ = t7’ + t7’ Dummy Notify Core 0
 f^2.Lt,t(Q) f^2.Lt,t(Q)
t7 = t0.t20 T1 = A0.B0 A0 -> f, B0-

>Lt,t(Q)
t8’ = t17’.t11’ T2 = A1.B1 A1 -> f, B1-

>Lt,t(Q)
t8 = t1.t21 t9’ = t18’.t12’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’ = t8’ + t10’ T2 Real
t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t0 + t1 t8’ = t17’ + t18’

66

t8 = t20 + t21 t9’ = t11’ + t12’
t7 = t7.t8 t8 ‘ = t8’.t9’
t11 = t7 – t9 T1 Imaginary

/ Wait For
Core 1

t20’ = t8’ – t10’ T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0 +
i.t2,1)=β.t2,1
+ i.t2,0

T3 Real

 t22’ = t7’ + t19’ T3 Imaginary
/ Notify Core
0

t6 = t6 + t6 Dummy t7’ = t7’ + t7’ Dummy Wait For Core
0

t6 = t6 + t6 Dummy
t16 = t10 + t21’ C0 = T1 + T3 C0 Real
t17 = t11 + t22’ C0 Imaginary
t14 = t10 + T19’ T3 = T1 + T2 T3 Real
t15 = t11 + t20’ T3 Imaginary

/ Notify Core
1

t10 = t0 + t2 T1 = A0 + A1 T1 Real t19’ = t11’ +
t14’

T2 = B0 + B1 T2 Real

t11 = t1 + t3 T1 Imaginary t20’ = t12’ +
t15’

 T2 Imaginary
/ Wait For
Core 0

t7 = t10.t19’ T4 = T1.T2
t8 = t11.t20’ Notify Core 1
t9 = β.t8 t21’ = t19’+t20’ Wait For Core

0
t18 = t7 + t9 T4 Real
t9 = t7 + t8 Notify Core 1
t7 = t10 + t11 t7’ = t7’ + t7’ Dummy To provide

enough
latency for
Acore0

t7 = t7.t21’ DONE
t19 = t7 – t9 T4 Imaginary
t0 = t16 + t6 C1 = T4-T3 C0 0,0
t1 = t17 + t6 C0 0,1
t2 = t18 – t14 C1 1,0
t3 = t19 – t15 C1 1,1
 DONE

Computing of F ← F ∗ >�,G(#) +,- O ← " + O

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 t0’ = Xa
t1 = f0,1 t1’ = Ya
t2 = f1,0 t2’ = Za
t3 = f1,1 t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real

67

t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
 t30’ = Fr Frobenious Real
 t31’ = i.Fr Frobenious Imaginary

 T+P Lt,p(Q)

t6 = t6 + t6 Dummy t7’ = t7’ + t7’ Dummy Wait For

Core 0
t7 = t6 + t0’ Xa
t8 = t6 + t1’ Ya
t9 = t6 + t2’ Za / Notify

Core 1

t10 = t9.t9 t8’ = t0’.t2’ Wait For
Core 0

t11 = t10.t9 Notify Core 1
t12 = t11.t5 t9’ = t7’ + t11 Za^3 / Wait

For Core 0
t12 = t12-t8 λa,b / Notify

Core 1

t10 = t10.t4 t10’ = t7’ + t12 λa,b
t10 = t10 – t7 t11’ = t8’.t10’
t13 = t9.t10 Zc / Wait For

Core 1
t12’ = t9’.t10’

 t7’ = t7’ + t7’ Dummy
 t13’ = t7’ + t13 Zc / Notify

Core 0
t14 = t10.t10 t14’ = t3’.t12’ Real
t15 = t14.t10 t15’ = t4’.t12’ Imaginary
t14 = t14.t7 t16’ = t1’.t13’
t10 = t12.t12 t14’ = t11’ –

t14’

t16 = t15 +t14 t14’ = t14’ –
t16’

 Lt,p(Q)0,0

t16 = t16 + t14 t15’ = t7’ –
t15’

 Lt,p(Q)0,1

t10 = t10 –t16 Xc t9’ = t9’.t13’
t14 = t14 – t10 t11’ = t5’.t9’ Lt,p(Q)1,0
t12 = t12.t14 t12’ = t6’.t9’ Lt,p(Q)1,1 /

Wait For
Core 0

t14 = t15.t8
t12 = t12 – t14 Yc
t20 = t6 + t14’ Lt,t(Q)0,0
t21 = t6 + t15’ Lt,t(Q)0,1 /

Notify Core1

t6 = t6 + t6 Dummy Wait For
Core 1

t17’ = t7’ + t2 F 1,0

 t18’ = t7’ + t3 F 1,1
 t0’ = t7’ + t10
 t2’ = t7’ + t13’
 t1’ = t7’ + t12 Notify Core 0
 f.Lt,p(Q) f.Lt,p(Q)

68

t7 = t0.t20 T1 = A0.B0 A0 -> f, B0-
>Lt,t(Q)

t8’ = t17’.t11’ T2 = A1.B1 A1 -> f, B1-
>Lt,t(Q)

t8 = t1.t21 t9’ = t18’.t12’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’ = t8’ +

t10’
 T2 Real

t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t0 + t1 t8’ = t17’ +

t18’

t8 = t20 + t21 t9’ = t11’ +
t12’

t7 = t7.t8 t8 ‘ = t8’.t9’
t11 = t7 – t9 T1 Imaginary

/ Wait For
Core 1

t20’ = t8’ –
t10’

 T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0+i.t2,1)=β.t2,1
+ i.t2,0

T3 Real

 t22’ = t7’ +
t19’

 T3 Imaginary
/ Notify Core
0

t6 = t6 + t6 Dummy t7’ = t7’ + t7’ Dummy Wait For
Core 0

t6 = t6 + t6 Dummy
t16 = t10 +
t21’

C0 = T1 +
T3

C0 Real

t17 = t11 +
t22’

 C0 Imaginary

t14 = t10 +
T19’

T3 = T1 + T2 T3 Real

t15 = t11 +
t20’

 T3 Imaginary
/ Notify Core
1

t10 = t0 + t2 T1 = A0 +
A1

T1 Real t19’ = t11’ +
t14’

T2 = B0 + B1 T2 Real

t11 = t1 + t3 T1 Imaginary t20’ = t12’ +
t15’

 T2 Imaginary
/ Wait For
Core 0

t7 = t10.t19’ T4 = T1.T2
t8 = t11.t20’ Notify Core 1
t9 = β.t8 t21’ =

t19’+t20’
 Wait For

Core 0
t18 = t7 + t9 T4 Real
t9 = t7 + t8 Notify Core 1
t7 = t10 + t11 DONE
t7 = t7.t21’
t19 = t7 – t9 T4 Imaginary
t0 = t16 + t6 C1 = T4-T3 C0 0,0
t1 = t17 + t6 C0 0,1
t2 = t18 – t14 C1 1,0
t3 = t19 – t15 C1 1,1
 DONE

Final exponentiation part 1

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanatio

n

69

t0 = f0,0 loop output t0’ = Xa
t1 = f0,1 loop output t1’ = Ya
t2 = f1,0 loop output t2’ = Za
t3 = f1,1 loop output t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
 t30’ = Fr Frobenious Real
 t31’ = i.Fr Frobenious Imaginary

 B = (F0 +

IF1)^-1

t7 = t2.t2 T1 = A1.A1 t7’ = t7’ + t7’ Dummy Wait For
Core 0

t8 = t3.t3
t9 = β.t8
t10 = t7 + t9 T1 Real
t9 = t7 + t8
t7 = t2 + t3
t8 = t2 + t3
t7 = t7.t8
t11 = t7 – t9 T1 Imaginary
t12 = β.t11 T2 = γ.T1 =

(β.t1,1 +
i.t1,0)

T2 Real

t13 = t6 + t10 T2 Imaginary
t7 = t0.t0 T1 = A0.A0
t8 = t1.t1
t9 = β.t8
t10 = t7 + t9 T1 Real
t9 = t7 + t8
t7 = t0 + t1
t8 = t0 + t1
t7 = t7.t8
t11 = t7 – t9 T1 Imaginary
t14 = t10 – t12 T3 = T1-T2 T3 Real
t15 = t11 – t13 T3 Imaginary
t7 = t15.t15 T4 = T3^-1
t8 = β.t7
t7 = t14.t14
t9 = t7 – t8 Wait For Core

1

t9 = t9^-1 This step is executed by Inverter
Controller, it does not exist in
program memory of the
controller

t18 = t14.t9 T4 Real t7’ = t7’ + t7’ Dummy Wait For

70

Core 0
t19 = t15.t9
t19 = t6 – t19 T4 Imaginary
t7 = t0.t18 B0 = A0.T4
t8 = t1.t19
t9 = β.t8
t20 = t7 + t9 B0,0
t9 = t7 + t8
t7 = t0 + t1
t8 = t18 + t19
t7 = t7.t8
t21 = t7 – t9 B0,1
t10 = t6 – t2 T1 = -A1 T1 Real
t11 = t6 – t3 T1 Imaginary
t7 = t10.t18 B1 = T1.T4
t8 = t11.t19
t9 = β.t8
t22 = t7 + t9 B1,0
t9 = t7 + t8
t7 = t10 + t11
t8 = t18 + t19
t7 = t7.t8
t23 = t7 – t9 B1,1
 B.F

F=(F0 +I(-F1)

t2 = t6 – t2 Generate (-F1)
t3 = t6 – t3 Generate (-F1)
t7 = t0.t20 T1 = F0.B0
t8 = t1.t21
t9 = β.t8
t10 = t7 + t9 T1 Real
t9 = t7 + t8
t7 = t0 + t1
t8 = t20 + t21
t7 = t7.t8
t11 = t7 – t9 T1 Imaginary
t7 = t2.t22 T2 = F1.B1
t8 = t3.t23
t9 = β.t8
t12 = t7 + t9 T2 Real
t9 = t7 + t8
t7 = t2 + t3
t8 = t22 + t23
t7 = t7.t8
t13 = t7 – t9 T2 Imaginary
t14 = β.t13 T3 = γ.T2 =

i(t2,0+i.t2,1)=
β.t2,1 + i.t2,0

T3 Real

t15 = t6 + t12 T3 Imaginary
t16= t10+t14 C0 = T1 + T3 C0 Real
t17= t11+t15 C0 Imaginary
t14= t10+t12 T3 = T1 + T2 T3 Real
t15= t11+t13 T3 Imaginary
t10= t0 + t2 T1 = F0 + F1 T1 Real
t11= t1 + t3 T1 Imaginary
t12= t20 + t22 T2 = B0 + B1 T2 Real
t13= t21 + t23 T2 Imaginary

71

t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t0 = t16 + t6 C1 = T4-T3 C0 0,0 Prepare

Exponentiation
s^k1

t1 = t17 + t6 C0 0,1
t2 = t18 – t14 C1 1,0
t3 = t19 – t15 C1 1,1 /

Notify Core 1

t6 + t6 = t6 Dummy Wait For Core
1

t8’ = t7’ + t2

 t9’ = t7’ + t3
 Fr.(f1,0 + i.(-

f1,1))

 t12’ = t7’ – t9’
 t13’ = t30’.t8’
 t14’ = t31’.t12’
 t15’ = β.t14’
 t18’=t13’ + t15’ S1,0
 t15’= 13’ + t14’
 t13’= t30’ +

t31’

 t14’ = t8’ + t12’
 t13’ = t13’.t14’
 t19’ =t13’– t15’ S1,1 /

Notify Core
0

t20 = t6 + t0 S0,0 DONE
t21 = t6 – t1 S0,1
t22 = t6 + t18’ S1,0
t23 = t6 + t19’ S1,1
t24 = t30 + t6 Z0,0
t25 = t6 + t6 Z0,1
t26 = t6 + t6 Z1,0
t27 = t6 + t6 Z1,1
 DONE

Exponentiation case for bit=’1’

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 BF result t0’ = Xa
t1 = f0,1 BF result t1’ = Ya
t2 = f1,0 BF result t2’ = Za
t3 = f1,1 BF result t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0

72

t31 = β t28’ = a
 t29’ = β
t20 = S0,0 t30’ = Fr Frobenious Real
t21 = S0,1 t31’ = i.Fr Frobenious Imaginary
t22 = S1,0
t23 = S1,1
t24 = Z0,0
t25 = Z0,1
t26 = Z1,0
t27 = Z1,1
 Z = Z^2 Z = Z^2
t6 = t6 + t6 Dummy Wait For Core

1
t7’ = t7’ + t7’ Dummy

 t17’ = t7’ + t26
 t18’ = t7’ + t27 Notify Core 0
t7 = t24.t24 T1 = Z0.Z0 t8’ = t17’.t17’ T2 = Z1.Z1
t8 = t25.t25 t9’ = t18’.t18’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’ = t8’ + t10’ T2 Real / T3

Imaginary
t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t24 + t25 t8’ = t17’ + t18’
t8 = t24 + t25 t9’ = t17’ + t18’
t7 = t7.t8 t8 ‘ = t8’.t9’
t11 = t7 – t9 T1 Imaginary/

Wait For Core
1

t20’ = t8’ – t10’ T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0 +
i.t2,1)=β.t2,1
+ i.t2,0

T3 Real /
Notify Core 0

t16= t10+t21’ C0 = T1 + T3 C0 Real t7’ = t7’ + t7’ Dummy Wait For Core
0

t17= t11+t19’ C0 Imaginary
t14= t10+t19’ T3 = T1 + T2 T3 Real
t15= t11+t20’ T3 Imaginary
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real
t11 = t25 + t27 T1 Imaginary
t12= t24 + t26 T2 = Z0 + Z1 T2 Real
t13= t25 + t27 T2 Imaginary
t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t24 = t16 + t6 C1 = T4-T3 Z0 0,0
t25 = t17 + t6 Z0 0,1
t26 = t18 – t14 Z1 1,0
t27 = t19 – t15 Z1 1,1 /

Notify Core 1

t6 = t6 + t6 Dummy Wait For Core
1

t17’ = t7’ + t26

 t18’ = t7’ + t27

73

 t22’ = t7’ + t22
 t23’ = t7’ + t23 Notify Core 0
 Z = Z.S Z = Z.S
t7 = t24.t20 T1 = Z0.S0 t8’ = t17’.t22’ T2 = Z1.S1
t8 = t25.t21 t9’ = t18’.t23’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’ = t8’ + t10’ T2 Real / T3

Imaginary
t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t24 + t25 t8’ = t17’ + t18’
t8 = t20 + t21 t9’ = t22’ + t23’
t7 = t7.t8 t8 ‘ = t8’.t9’
t11 = t7 – t9 T1 Imaginary/

Wait For Core
1

t20’ = t8’ – t10’ T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0 +
i.t2,1)=β.t2,1
+ i.t2,0

T3 Real /
Notify Core 0

t16= t10+t21’ C0 = T1 + T3 C0 Real DONE
t17= t11+t19’ C0 Imaginary
t14= t10+t19’ T3 = T1 + T2 T3 Real
t15= t11+t20’ T3 Imaginary
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real
t11 = t25 + t27 T1 Imaginary
t12= t20 + t22 T2 = S0 + S1 T2 Real
t13= t21 + t23 T2 Imaginary
t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t24 = t16 + t6 C1 = T4-T3 Z0 0,0
t25 = t17 + t6 Z0 0,1
t26 = t18 – t14 Z1 1,0
t27 = t19 – t15 Z1 1,1
 DONE

Exponentiation case for bit=’0’

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 t0’ = Xa
t1 = f0,1 t1’ = Ya
t2 = f1,0 t2’ = Za
t3 = f1,1 t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
t20 = S0,0 t30’ = Fr Frobenious Real

74

t21 = S0,1 t31’ = i.Fr Frobenious Imaginary
t22 = S1,0
t23 = S1,1
t24 = Z0,0
t25 = Z0,1
t26 = Z1,0
t27 = Z1,1
 Z = Z^2 Z = Z^2
t6 = t6 + t6 Dummy Wait For Core

1
t7’ = t7’ + t7’ Dummy

 t17’ = t7’ + t26
 t18’ = t7’ + t27 Notify Core 0
t7 = t24.t24 T1 = Z0.Z0 t8’ = t17’.t17’ T2 = Z1.Z1
t8 = t25.t25 t9’ = t18’.t18’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’ = t8’ + t10’ T2 Real / T3

Imaginary
t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t24 + t25 t8’ = t17’ + t18’
t8 = t24 + t25 t9’ = t17’ + t18’
t7 = t7.t8 t8 ‘ = t8’.t9’
t11 = t7 – t9 T1 Imaginary/

Wait For Core
1

t20’ = t8’ – t10’ T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0 +
i.t2,1)=β.t2,1
+ i.t2,0

T3 Real /
Notify Core 0

t16= t10+t21’ C0 = T1 + T3 C0 Real DONE
t17= t11+t19’ C0 Imaginary
t14= t10+t19’ T3 = T1 + T2 T3 Real
t15= t11+t20’ T3 Imaginary
t10 = t24 + t26 T1 = Z0 + Z1 T1 Real
t11 = t25 + t27 T1 Imaginary
t12= t24 + t26 T2 = Z0 + Z1 T2 Real
t13= t25 + t27 T2 Imaginary
t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t24 = t16 + t6 C1 = T4-T3 Z0 0,0
t25 = t17 + t6 Z0 0,1
t26 = t18 – t14 Z1 1,0
t27 = t19 – t15 Z1 1,1
 DONE

Changing the places of variables, for powering t.

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 BF result t0’ = Xa
t1 = f0,1 BF result t1’ = Ya

75

t2 = f1,0 BF result t2’ = Za
t3 = f1,1 BF result t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
t20 = S0,0 t30’ = Fr Frobenious Real
t21 = S0,1 t31’ = i.Fr Frobenious Imaginary
t22 = S1,0
t23 = S1,1
t24 = Z0,0 s^k1
t25 = Z0,1 s^k1
t26 = Z1,0 s^k1
t27 = Z1,1 s^k1
t20 = t6 + t0 t7’ = t7’ + t7’ Dummy Wait For Core

0
t21 = t6 + t1
t22 = t6 + t2
t23 = t6 + t3
t0 = t6 + t24
t1 = t6 + t25
t2 = t6 + t26
t3 = t6 + t27
t24 = t30 + t6 Z0,0
t25 = t6 + t6 Z0,1
t26 = t6 + t6 Z1,0
t27 = t6 + t6 Z1,1 / Notify

Core 1

 DONE DONE

Last operation of exponentiation: F(3�L
)/E = ~:S ∗ g:�

 ACORE 0 ACORE 1
Micro Code Operation Explanation Micro Code Operation Explanation
t0 = f0,0 s^k1 t0’ = Xa
t1 = f0,1 s^k1 t1’ = Ya
t2 = f1,0 s^k1 t2’ = Za
t3 = f1,1 s^k1 t3’ = xq0,0 Real
t4 = Xb t4’ = xq0,1 Imaginary
t5 = Yb t5’ = yq1,0 Real
t6 = 0 t6’ = yq1,1 Imaginary
t30 = 1 t7’ = 0
t31 = β t28’ = a
 t29’ = β
t20 = S0,0 t30’ = Fr Frobenious Real
t21 = S0,1 t31’ = i.Fr Frobenious Imaginary
t22 = S1,0
t23 = S1,1
t24 = Z0,0 t^k0
t25 = Z0,1 t^k0
t26 = Z1,0 t^k0
t27 = Z1,1 t^k0
t6 = t6 + t6 Dummy t7’ = t7’ + t7’ Dummy Wait For

Core 0
t20 = t6 + t0

76

t21 = t6 + t1
t22 = t6 + t2
t23 = t6 + t3 Notify Core 1
t6 = t6 + t6 Dummy Wait For

Core 1
t17’ = t7’+ t26

 t18’ = t7’+ t27
 t22’ = t7’+ t22
 t23’ = t7’+ t23 Notify Core 0

 S.T S.T
t7 = t24.t20 T1 = S0.T0 t8’ = t17’.t22’ T2 = S1.T1
t8 = t25.t21 t9’ = t18’.t23’
t9 = β.t8 t10’ = β.t9’
t10 = t7 + t9 T1 Real t19’=t8’+ t10’ T2 Real / T3

Imaginary
t9 = t7 + t8 t10’ = t8’ + t9’
t7 = t24 + t25 t8’= t17’+ t18’
t8 = t20 + t21 t9’=t22’ + t23’
t7 = t7.t8 t8 ‘= t8’.t9’
t11 = t7 – t9 T1

Imaginary/
Wait For
Core 1

t20’=t8’ – t10’ T2 Imaginary

 t21’ = β.t20’ T3 = γ.T2 =
i(t2,0+i.t2,1)=β.t2,1
+ i.t2,0

T3 Real /
Notify Core 0

t16= t10+t21’ C0 = T1 + T3 C0 Real DONE
t17= t11+t19’ C0 Imaginary
t14= t10+t19’ T3 = T1 + T2 T3 Real
t15= t11+t20’ T3 Imaginary
t10 = t24 +
t26

T1 = T0 + T1 T1 Real

t11 = t25 +
t27

 T1 Imaginary

t12= t20 + t22 T2 = S0 + S1 T2 Real
t13= t21 + t23 T2 Imaginary
t7 = t10.t12 T4 = T1.T2
t8 = t11.t13
t9 = β.t8
t18= t7 + t9 T4 Real
t9 = t7 + t8
t7 = t10 + t11
t8 = t12 + t13
t7 = t7.t8
t19 = t7 – t9 T4 Imaginary
t0 = t16 + t6 C1 = T4-T3 f0 0,0
t1 = t17 + t6 f0 0,1
t2 = t18 – t14 f1 1,0
t3 = t19 – t15 f1 1,1
 DONE

