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I would never step on to the sunlight, thanks for taking me outside of the house every once
in a while and staying in with me when I didn’t want to leave.

Finally, I want to thank my family, to whom I owe everything. Thanks dad for making
me the man I am today by setting an example and helping me trying to get there. Thank
you mom for believing in me when even I didn’t believe in myself, I am proud to be your
son. My brother, thank you for stocking the fridge with my favorites for my home visits.
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Mustafa Şahin
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Arama, Benzetimli Tavlama.

Özet

Bu çalışmada Parçalanabilir Yüklü Toplama ve Dağıtma Araç Rotalama Problemi (MPDPSL)
ele alınmıştır. Bu problem, bire bir Toplama ve Dağıtma Probleminin bir yükün farklı
araçlar tarafından ya da bir araç tarafından birden çok seferde sağlanabildiği bir uzantısıdır.
Uygulamada, yükün fiziksel olarak parçalanabildiği alanlarda, parçalanabilir dağıtım geçerli
bir seçenek olarak 3. taraf lojistik işletmelerinin kurye servislerinde kullanılmaktadır.
Aynı zamanda bu problemin, yüklerin sabit bir maliyet tarafından dışarıdan bir firma
tarafından taşınabildiği (MPDPSL-O) ve rotaların depo olmadan döngüsel olduğu (MPDPSL-
C) iki varyantı ele alınmıştır. Problemin ve iki varyantının çözümünde tabu arama ve
benzetimli tavlamanın güçlü yönlerini buluşturan bir sezgisel algoritma geliştirilmiştir.
Yazında yer alan bir problem kümesi üzerinde yapılan deneyler sonucunda, sezgiselin
makul sürelerde iyi sonuçlar verdiği saptanmıştır. Yazındaki başka bir problem kümesi
için ise ilk sonuçlar ortaya konmuştur ve parçalanabilir yükün dağıtım ağının yapısına
bağlı olarak sağladığı faydalar incelenmiştir. Çeşitli maliyet yapıları altında dışarıdan
teminin potansiyel faydalarını incelemek amacıyla MPDPSL ve MPDPSL-O karşılaştırılmıştır.
Son olarak, MPDPSL-C için gerçek bir vaka çözülmüştür.
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Industrial Engineering, Master’s Thesis, 2011

Thesis Supervisor: Asst. Prof. Dr. Güvenç Şahin
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Abstract

In this study, we consider the Multi-vehicle One-to-one Pickup and Delivery Problem
with Split Loads (MPDPSL). This problem is a generalization of the one-to-one Pickup
and Delivery Problem (PDP) where each load can be served by multiple vehicles as well
as multiple stops by the same vehicle. In practice, split deliveries is a viable option in
many settings where the load can be physically split, such as courier services of third
party logistics operators. We also consider two other variants of the problem where it
is possible to outsource the pickup and delivery requests for a fixed charge (MPDPSL-
O) and where the routes are cyclic without depot (MPDPSL-C). We propose an efficient
heuristic that combines the strengths of Tabu Search and Simulated Annealing for the
solution of MPDPSL and its variants. Results from experiments on a problem set in
the literature indicate that the heuristic is capable of producing good quality solutions
in reasonable time, we present first results on another problem set in the literature and
discuss the merits of load splitting with respect to the network distribution. We compare
the results of MPDPSL and MPDPSL-O in order to illustrate the potential benefits of
outsourcing under various outsourcing cost schemes. Finally, we present a solution for a
real life case of MPDPSL-C.
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Chapter 1

Introduction

The Pickup and Delivery Problem has attracted the interest of various researchers in the
last three decades (see e.g. recent surveys by Cordeau et al.[4], Gribkovskaia and Laporte
[7]). PDP consists of finding the least cost route of a single vehicle which picks up a
load from an origin and delivers it to its destination. If each origin is associated with a
single destination, making up a pickup-delivery (p-d) pair, the problem is called one-to-
one PDP. This version of PDP differs from the other two variants in the literature: The
many-to-many PDP where a commodity may be picked up at one of many origins and
then delivered to one of many destinations, and the one-to-many-to-one PDP where all
loads to be picked-up and delivered originate at a common depot (Cordeau et al. [4]).
In a conventional PDP setting, each p-d pair is visited by a single vehicle. We study the
version where the load of a p-d pair can be split between multiple vehicles and/or multiple
stops of the same vehicle. The single vehicle version of this problem, namely the Pickup
and Delivery Problem with Split Loads (PDPSL) was first introduced by Nowak et al.
[10].

The Multi-vehicle One-to-one Pickup and Delivery Problem with Split Loads
(MPDPSL), which is a generalization of PDPSL, has not been widely studied in the lit-
erature; though the possibility of load splitting exists in many PDP settings. Nowak et
al. [10] describe the less-than-truckload service of a third-party logistics company where
load splitting results in significant benefits. Similar savings might be achieved in other ar-
eas where loads can be split among multiple vehicles, such as bulk product transportation
by ship, where each load is already packaged into multiple containers, or courier services
that deliver multiple packages between the same origin-destination pair. As long as loads
can be physically split between vehicles, MPDPSL can lead to savings over the classical
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PDP by reducing the unused vehicle capacity.
Nowak et al. [10] have shown that the optimal load size for splitting is just above

one half of a truckload and demonstrated the relation between the benefit of split loads
and the problem characteristics on the third-party logistics case study. The benefit of split
loads and the problem characteristics that are affected most by load splitting have been
experimentally analyzed in their subsequent work (Nowak et al. [11]). They have empiri-
cally observed that up to 30% savings in route cost can be achieved when the demands are
distributed between 51% and 60% of the truckload (vehicle capacity). Other factors that
increase the benefit of split loads are the number of loads available at a common location
for pickup or delivery and the average distance from an origin to a destination relative to
the distance from origin to origin and destination to destination. They have also observed
that an increase in these two factors result in an increase in the benefit of split loads.

The split load case is also considered within the VRP context. The well-known Split
Delivery Vehicle Routing Problem (SDVRP) tries to find a set of minimum cost routes for
a fleet of capacitated homogeneous vehicles available to serve a set of customers. Each
customer can be visited more than once and the demand of each customer may be greater
than the vehicle capacity. The earliest papers on SDVRP trace back to the work by Dror
and Trudeau [6]. In a more recent work, Archetti et al. [1] provide an extensive empirical
analysis on the benefit of splitting deliveries for the classical VRP. For a recent survey on
SDVRP, we refer to Archetti and Speranza [2].

To the best of our knowledge, there is no other work in the literature that deals
with the multi-vehicle extension of PDPSL. The motivation of this work is to present
MPDPSL, and then to introduce our Tabu Embedded Simulated Annealing (TESA) algo-
rithm specially tailored for this problem. Computational experiments are performed on
both PDPSL test problems and split load versions of PDP instances from the literature.
We also study two variants of MPDPSL:

• in MPDPSL with outsourcing option, it is possible to outsource any p-d request for
a fixed charge,

• in MPDPSL with cyclic routes, the routes are cyclic and there are no vehicle depots.

Our main contributions in this work are as follows:

• we introduce a generalized version of PDPSL with multiple vehicles;

• a metaheuristic algorithm is designed to solve MPDPSL;
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• we perform computational experiments to

– show the efficiency and effectiveness of our algorithm,

– analyze the benefit of split loads for the multi-vehicle problem with different
network structures;

• we report the first results on a set of MPDPSL test problems;

• we introduce two variants of the MPDPSL and tweak our existing algorithm for
these problems;

• we perform computational experiments to

– analyze the benefit of the outsourcing option, and

– introduce results for a real life case of cyclic routes.

The remainder of this work is organized as follows. In Chapter 2, we introduce a
mixed integer programming formulation for MPDPSL. In Chapter 3, we discuss the de-
tails of TESA heuristic algorithm presented for MPDPSL. We present the results of com-
putational experiments in Section 3.7. Then we introduce the variants of MPDPSL in
Chapter 4 and Chapter 5 and the respective computational analysis in Section 4.2 and
Section 5.2. Finally, we close with concluding remarks in Chapter 6.
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Chapter 2

Mathematical Model for MPDPSL

MPDPSL is defined on a directed graph G = (V,A). The vertex set is partitioned as
V = {P,D, {0, 2n + 1}}. For a given set of n pickup-delivery pairs, P = {1, 2, . . . , n}
is the set of pickup vertices and D = {n+ 1, . . . , 2n} is the set of delivery vertices where
i and n+ i represent the pickup and delivery vertices for load i respectively; {0, 2n+ 1}
includes two copies of the depot location. The set of arcs are defined as follows A =

{(i, j) : i = 0, j ∈ P} ∪ {i, j ∈ P ∪D, i 6= j, i 6= n+ j} ∪ {(i, j) : i ∈ D, j = 2n+ 1}.
K = {1, 2, . . . ,m} denotes the set of available vehicles. For each vertex i ∈ P , qi
denotes the p-d request quantity where qi+n = −qi. Each vehicle k ∈ K has a capacity
of Q. We assume that the load of any p-d pair can be provided by a single vehicle, i.e.
qi ≤ Q, ∀i ∈ P . dij is the travel distance associated with arc (i, j) ∈ A, and L is the
maximum travel distance of vehicle route. xkij ∈ {0, 1}, ∀i, j ∈ V, ∀k ∈ K denotes a
binary decision variable: xkij = 1 if arc (i, j) is used by vehicle k; 0, otherwise. yki ∈ [0, 1],
∀i ∈ V, ∀k ∈ K denotes the fraction of demand of p-d pair (i, n + i) satisfied by vehicle
k. lki denotes the load of vehicle k ∈ K after visiting vertex i ∈ V , and lk0 = lk2n+1 = 0.
uki and wk

i , ∀i ∈ V, ∀k ∈ K are supporting decision variables used to calculate the
precedence and distance traveled respectively. The resulting mixed integer programming
model for MPDPSL is as follows:
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Minimize
∑
k∈K

∑
i∈V

∑
j∈V

dijx
k
ij (2.1)

subject to
∑
k∈K

yki = 1 ∀i ∈ P ∪D (2.2)∑
j∈P∪D

xkij =
∑

j∈P∪D

xkji ∀i ∈ P ∪D, ∀k ∈ K (2.3)∑
i∈P∪{2n+1}

xk0i = 1 ∀k ∈ K (2.4)

∑
i∈D∪{0}

xki,2n+1 = 1 ∀k ∈ K (2.5)

yki ≤
∑

j∈P∪D

xkij ≤Myki ∀i ∈ P ∪D, ∀k ∈ K (2.6)

yki ≤
∑

j∈P∪D

xkji ≤Myki ∀i ∈ P ∪D, ∀k ∈ K (2.7)∑
j∈P∪D

xkij =
∑

j∈V−{0}

xki+n,j ∀i ∈ P, ∀k ∈ K (2.8)

∑
j∈V−{2n+1}

xkji =
∑

j∈P∪D

xkj,i+n ∀i ∈ P, ∀k ∈ K (2.9)

lki − lkj +Qxkij + ykj qj ≤ Q ∀i ∈ P, ∀j ∈ P ∪D,

∀k ∈ K (2.10)

yki qi ≤ lki ≤ Q
∑

j∈P∪D

xkij ∀i ∈ P, ∀k ∈ K (2.11)

0 ≤ lki ≤ (Q+ qi)
∑

j∈P∪D

xkij ∀i ∈ D, ∀k ∈ K (2.12)

lk0 = lk2n+1 = 0 ∀k ∈ K (2.13)

uki − ukj + (M − 1)xkij

+ (M − 3)xkji ≤M − 2 ∀i ∈ V − {2n+ 1},

∀j ∈ V − {0},∀k ∈ K (2.14)

uki ≤ (M − 1)− (M − 3)xk0i

−
∑

j∈P∪D

xkij ∀i ∈ P ∪D, ∀k ∈ K (2.15)
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uki ≤ uki+n − 1 ∀i ∈ P, ∀k ∈ K (2.16)

wk
i − wk

j + (L+ dij)x
k
ij

+ (L− dji)xkji ≤ L ∀i ∈ V, ∀j ∈ V ∀k ∈ K (2.17)

wk
0 = 0 ∀k ∈ K (2.18)

wk
2n+1 ≤ L ∀k ∈ K (2.19)

xkij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k ∈ K (2.20)

yki ∈ [0, 1] ∀i ∈ P ∪D, ∀k ∈ K (2.21)

0 ≤ lki ≤ Q ∀i ∈ V, ∀k ∈ K (2.22)

uki ∈ [0, 2n+ 1] ∀i ∈ V, ∀k ∈ K (2.23)

wk
i ≥ 0 ∀i ∈ V, ∀k ∈ K (2.24)

The objective function, (2.1), calculates the total distance traveled by all vehicles.
Constraint (2.2) ensures that the demand of a p-d pair is fully satisfied. With constraint
(2.3), when an arc enters a vertex, another arc must leave that vertex. Constraints (2.4) and
(2.5) ensure that an arc leaves and enters the depot for all vehicles. By constraints (2.6)
and (2.7), a vertex is visited if a fraction or all of its demand is picked up or delivered.
Constraints (2.8) and (2.9) ensure that an arc must enter/leave its corresponding delivery
point if an arc enters/leaves a pickup point. Constraints (2.10) - (2.13) calculate the load of
the vehicle ensuring that the load is below the capacity at all times and a vehicle is empty
while leaving and entering the depot. Constraints (2.14) - (2.16) represent the precedence
relations: Constraint (2.14) establishes the order between two vertices when one vertex is
visited right before the other. Constraint (2.15) assigns the vertex visited right after depot
with the smallest order. Constraint (2.16) ensures that a delivery point is not visited before
its corresponding pickup point. Constraints (2.17) calculates the distance traveled up to
each vertex by aggregating the distances from depot. Constraint (2.18) sets the distance
traveled to zero at the beginning of the route and constraint (2.19) ensures that the total
distance traveled at the route is less than the maximum distance allowed L. Constraints
(2.20) - (2.24) are the domain constraints for the decision variables.

MPDPSL relates to PDP to a great extent since both models have coupling and prece-

dence constraints. A coupling constraint ensures that a delivery vertex is visited when its
corresponding pickup vertex is visited and vice versa. A precedence constraint ensures
that a delivery vertex is not visited before its corresponding pickup request. PDP is known
to be NP-Hard (Lenstra and Kan [8]) and MPDPSL contains PDP as a special case, hence,
MPDPSL is also NP-Hard. Therefore, we have no hope of solving large scale instances
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of MPDPSL to optimality in reasonable time as the problem becomes intractable very
quickly. In the proposed mixed integer programming model, splitting a p-d request in
the same route is not allowed since allowing it would require a more complex model and
would increase the computational time. Limiting the maximum number of splits would
also lessen the computational burden; however, even after limiting the maximum number
of splits to two, we are not able solve instances with more than 6-7 pairs in reasonable
time. To sum up, MPDPSL is even more complicated and more challenging to solve to
optimality than VRP and PDP, therefore, we recourse to heuristics.
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Chapter 3

MPDPSL Heuristic

We propose a Tabu Embedded Simulated Annealing (TESA) heuristic for MPDPSL. The
heuristic utilizes features of both tabu search and simulated annealing to search the solu-
tion space efficiently. In the literature, tabu search and simulated annealing methods have
been used together in metaheuristic algorithms. Li et al. [9] and Thangiah et al. [14]
use simulated annealing to obtain non-tabu neighbor solutions for the Vehicle Routing
Problem with Time Windows (VRPTW). Osman [12] employs this approach to solve the
Generalized Assignment Problem. Our approach follows the footsteps of Li et. al. [9]
and Thangiah et. al. [14]; we use a simulated annealing-like procedure to select among
a set of possible eliticized moves while searching the neighborhood of a current solution.
In particular, in order to jump to a neighboring solution, we do not necessarily choose to
apply the best possible move; we consider a list of good moves, and use a randomized
procedure to select a move from this list. The simulated annealing procedure is employed
to direct the randomization scheme.

The heuristic starts by creating an initial solution using a variant of the savings heuris-
tic by Clarke and Wright [3]. This solution is then improved by searching neighboring
solutions through a variety of moves, including insertion of a p-d pair into a different
route, split of a p-d pair between routes as well as insertion and swap of route segment(s)
that consist of multiple p-d pairs. The search neighborhoods to be used in a metaheuristic
are very critical to the efficiency of the algorithm. This is especially true for an MPDPSL
heuristic where the neighborhoods are potentially very large due to many possible ways
of splitting a load between available routes.

The heuristic algorithm subsequently goes through a series of improvement phases
following the initialization with a feasible solution. In each phase, the solution is im-
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proved by searching new solutions in the corresponding neighborhood of the particular
phase. In the remainder of this chapter, we first give the details of the initial solution
heuristic and the improvement phases before we discuss the overall algorithm.

While discussing the details of the algorithm, we represent a solution S = {R1, R2, . . .

, R|S|} as a collection of routes R that consist of pickup and delivery stops. We prefer to
use the term stop instead of pickup and delivery points since we can split a p-d request.
Therefore, we refer to each pickup and delivery point, split or otherwise, as a stop. A p-d
pair consists of a pickup stop and the corresponding delivery stop with indices p and d.
s(x) denotes the savings function whereas c(x) is the cost function. For instance, s(p−d)

denotes the decrease in route length obtained by removing the pair p-d from its current
route.

s(p− d) = dp′p + dpp′′ − dp′p′′ + dd′d + ddd′′ − dd′d′′

where p′ and d′ denote the stops before p and d, p′′ and d′′ denote the stops after p and d
respectively.

c(R) denotes the cost of route R and c(S) denotes the cost of the solution S. We
define block as a route segment that starts and ends with an empty vehicle. While there
may be several blocks within a route, a route may also consist of a single block. B denotes
a block and `B denotes the location where B is inserted.

3.1 Initial Solution Heuristic

The heuristic algorithm starts by creating an initial solution. This initial solution, which
is based on the savings algorithm by Clarke and Wright [3], does not contain any split
loads. In parallel with the original savings algorithm, we first create a solution where
each p-d pair is initially served by a separate vehicle route of the form (0, pi, di, 0). We
then compute a savings value for every pair of pickup point pi and delivery point di such
that

s(di, pj) = ddi0 + d0pj − ddipj ∀i 6= j ∈ P

The savings value is the difference in total route length when the routes that serve the two
points di and pj are combined into a single route. Next, we sort the pairs in non-increasing
order of their savings. Starting from the first pair on the list, we merge the routes that visit
the pairs with positive savings while ensuring the feasibility of the resulting routes with
respect to vehicle capacity and the maximum travel distance. Finally, we carry out an
improvement step where the pickup point pi and delivery point di are moved forward and
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backward respectively in the merged route provided that such a move results in further
savings.

3.2 Insert/Split Phase

We improve a given solution through subsequent moves in the insert/split neighborhood.
A neighboring solution in this neighborhood is constructed by removing a p-d pair from
its current route and either inserting the entire load into a different route or splitting it
between two routes. Each iteration corresponds to a feasible move that does not violate
the precedence, vehicle capacity and route length constraints. We limit the number of
splits for a given p-d pair to a maximum of k and since there are infinitely many ways to
split a load between two routes, we use up the excess capacity in one route and split the
remaining demand to the other route. In a feasible solution, there are at most 2nk stops.
Thus, for a given p-d pair, there are O(n2) ways of inserting the pair into two positions
in another route, and O(n4) ways of splitting the pair between two other routes. As a
result, the computational complexity of evaluating the entire insert/split neighborhood for
a particular p-d pair and identifying the best insert/split move among all p-d pairs are in
O(n4) and O(n5), respectively.

Since computational complexity of an insert/split move for a particular p-d pair is
very high, it is quite time consuming to evaluate all p-d pairs at every iteration. In order
to avoid this excessive computational burden, we evaluate the insert/split neighborhood
using a binary heap implementation to improve the average computational performance.
While the worst-case behavior of the binary heap implementation is the same (O(n5)),
our computational experience indicates that the average running time is only O(n3 log n),
which is significantly better than the original implementation. (A detailed description
of the binary heap implementation and its computational complexity can be found in
Appendix A.)

In order to select the p-d pair to be inserted/split in each iteration, we first evaluate
the insert/split neighborhood for all p-d pairs to determine the best Nmove non-tabu moves
that result in the smallest change in total route length (∆C) value for each pair as a result
of the move. Note that a positive ∆C value corresponds to an increase in the route length.

The tabu structure in this algorithm consists of four components: the route length,
the number of stops and the number of vehicles in the visited solution, as well as the
p-d pair inserted/split to create that solution. The reason for using such a complex tabu
structure is due to the special property of the test problems by Nowak et al.[10]. In
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these test problems, all p-d pairs are generated from a limited set of pickup and delivery
points. Since there are many nodes that share the same pickup and delivery coordinates,
conventional tabu structures that keep track of involved node(s) are rendered ineffective
for these test problems. Using the multi-dimensional tabu structure that keeps track of
the features of the visited solution (in addition to the move applied to reach that solution)
allows the algorithm to identify previously visited solutions correctly and avoids visiting
them repeatedly later on.

Once we create a list of the top Nmove non-tabu moves with the lowest ∆C values
among all feasible insert and split moves for every p-d pair, we employ a simulated an-
nealing based selection criterion to select one candidate move for each p-d pair. In a con-
ventional simulated annealing algorithm, a move is selected with a probability e−∆C/temp,
where temp denotes the current temperature of the simulated-annealing-like randomized
selection procedure. The average value of ∆C may fluctuate significantly between p-d
pairs. Therefore, the acceptance probability of a move with an average ∆C value also
changes widely. To prevent this, we use the following approach: For each p-d pair, we
first calculate the average ∆C value for the best Nmove non-tabu moves in the neighbor-
hood. Then, a temperature temp is calculated such that the probability of accepting an
average move is Pr. Finally, a move is selected randomly among the Nmove moves; this
move is accepted with a probability of e−∆C/temp. If the current move is rejected, then
another move is selected randomly from the list. If none of the moves is accepted then the
best move is selected. Insert/Split(S, (p, d), P r) function (provided in Appendix A) at
line 8 of Algorithm 1 returns the selected move as described.

After the candidate moves for each p-d pair are determined in this fashion between
lines 7 - 15 of Algorithm 1, the move to be implemented is selected randomly out of the
best Npair p-d pairs with moves resulting in the highest ∆C values.

Following each insert/split move, we check if the solution can be improved by merging
any pickup or delivery stops for the p-d pair involved in this move. This corrective move
exploits an optimality condition for MPDPSL.
Optimality Condition. In an optimal solution of MPDPSL where the distance matrix

satisfies the triangular inequality, multiple pickup (delivery) stops of a p-d pair cannot

exist on the same vehicle route without a delivery (pickup) stop of the same p-d pair in

between.

We can show that a reduction in route length can be achieved for solutions that do
not satisfy the optimality condition by eliminating all but the last (first) pickup (delivery)
without violating the capacity constraints. After each insert/split move, we check whether
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the above condition is violated for the p-d pair under consideration and merge multiple
stops into one wherever possible. In the case of multiple pickup stops of the same p-d
pair, the entire load is picked up at the last stop, eliminating all other pickup stops and
resulting in a reduction of route length. Conversely, all deliveries but the first one are
eliminated for the case of multiple delivery stops without a pickup of the same load in
between.

The insert/split phase is terminated after no improvement can be achieved over the
best solution for a consecutive Niter1 iterations.

Algorithm 1 Insert/SplitPhase
1: Input: Sc, Niter1

2: Output: Sb //Sb denotes the best solution
3: Sb ← Sc //Sc denotes the current solution
4: T ← ∅ //T denotes the list of best Npair insert/split moves
5: i← 0
6: while i < Niter1 do
7: for all (p, d) ∈ Sc do
8: if c(Insert/Split(Sc, (p, d), P r)) < c(maxCost(T )) then
9: if |T | = Npair then

10: T ← T −maxCost(T ) and T ← T ∪ Insert/Split(Sc, (p, d), P r)
//maxCost(T ) returns the insert/split position(s) with the largest cost from
the list T

11: else
12: T ← T ∪ Insert/Split(Sc, (p, d), P r)
13: end if
14: end if
15: end for
16: Select a pair (p∗, d∗) randomly from T
17: Implement selected insert/split move for (p∗, d∗)
18: Check Optimality Condition and update Sc if necessary
19: if c(Sc) < c(Sb) then
20: Sb ← Sc

21: i← 0
22: else
23: i← i+ 1
24: end if
25: end while
26: return Sb
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3.3 Intra-Route Phase

On a feasible vehicle route, if a pickup node is shifted towards its corresponding delivery
node, or a delivery node is shifted towards its pickup node, the precedence and capac-
ity constraints will not be violated. Therefore, a pickup (delivery) node can be shifted
towards its delivery (pickup) node, as long as the shift does not violate the route length
constraint. The intra-route phase exploits this property within the blocks. For each block,
the heuristic considers shifting all pickup nodes forward and all delivery nodes backward
in the route, starting from the first node in the block. If a decrease in route length can be
achieved, the move is implemented and the heuristic proceeds with the next block.

3.4 Block Insert Phase

In one iteration of the block insert phase, a block of consecutive pickup and delivery
stops is removed from its current route and inserted into a new route as a whole. The
capacity and precedence constraints remain intact when a block is removed from a route
and inserted into another. Therefore, only route length constraints need to be checked to
ensure the feasibility of solutions in this neighborhood. This phase is terminated after
no improvement can be achieved over the current best solution for a consecutive Niter2

iterations.
The pseudocode of the block insert phase is provided in Algorithm 2. BlockInsert(S)

function (provided in Appendix A) at line 7 of Algorithm 2 returns the block insert move
that results in the lowest ∆C value and the corresponding block insert move is performed
at line 8 of Algorithm 2. In the worst case, a solution may contain nk blocks, each
containing a single p-d pair. In this case, there would be nk different positions where
the block can be inserted, resulting in O(n) moves in the neighborhood of a particular
block. Thus, for a given solution, selecting the block insert move that results in the most
route length reduction is O(n2). Compared to the insert/split neighborhood, evaluating
the block insert neighborhood is very fast.

3.5 Block Swap Phase

The neighborhood of this phase consists of solutions that are obtained by swapping the
routes of two blocks and inserting those blocks at the best possible positions on their
new routes. Similar to the block insert move, block swap moves also do not violate the

13



Algorithm 2 BlockInsertPhase
1: Input: Sc, Niter2 // Sc denotes the current solution
2: Output: Sb // Sb denotes the best solution
3: Sb ← Sc

4: i← 0
5: c(Sb)← c(Sc)
6: while i < Niter2 do
7: [B∗, `B

∗
]← BlockInsert(Sc)

8: UpdateSolution(Sc, B
∗, `B

∗
)

9: if C(Sc) < C(Sb) then
10: Sb ← Sc

11: i← 0
12: else
13: i← i+ 1
14: end if
15: end while
16: return Sb

precedence and capacity constraints. It suffices to check only the route length constraints
to create feasible moves. In each iteration of the block swap phase, the block swap move
that yields the lowest ∆C value is identified and implemented. The block swap phase
is as well terminated when no improvement can be achieved over the best solution for a
consecutive Niter3 iterations.

The pseudocode of the block swap phase is provided in Algorithm 3. BlockSwap(S)

function (provided in Appendix A) at line 7 of Algorithm 3 returns two blocks to be
swapped and the positions to be inserted in their respective routes. In a feasible solution,
there are O(n2) possible block swaps, and the computational complexity of determining
the best position for a block is O(n). Therefore, computational complexity of selecting
the pair of blocks that yield the most route length reduction is O(n3).

3.6 Tabu Embedded Simulated Annealing (TESA) Algo-
rithm

TESA Algorithm (pseudocode provided in Algorithm 4) begins by creating an initial so-
lution as described in Section 3.1, then it goes through several improvement phases de-
scribed in Sections 3.2, 3.3, 3.4 and 3.5.

The termination of the subsequent improvement phases depends on the value of Pr,
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Algorithm 3 BlockSwapPhase
1: Input: Sc, Niter3 // Sc denotes the current solution
2: Output: Sb // Sb denotes the best solution
3: Sb ← Sc

4: i← 0
5: c(Sb)← c(Sc)
6: while i < Niter3 do
7: [B′, B′′, `B

′
, `B

′′
]← BlockSwap(Sc)

8: UpdateSolution(Sc, B
′, B′′, `B

′
, `B

′′
)

9: if c(Sc) < c(Sb) then
10: Sb ← Sc

11: i← 0
12: else
13: i← i+ 1
14: end if
15: end while
16: return Sb

Algorithm 4 TESA Algorithm
1: Input: Niter1, Niter2, Niter3, Nmove, Npair, P r
2: Output: Sb

3: Sb ← InitialSolutionHeuristic()
4: while Pr > 0.1 do
5: Sb ← Insert/SplitPhase(Sb, Niter1, P r)
6: Sb ← IntraRouteHeuristic(Sb)
7: Sb ← BlockInsertPhase(Sb, Niter2)
8: Sb ← BlockSwapPhase(Sb, Niter3)
9: Pr ← βPr

10: end while
11: return Sb
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the selection probability employed in the insert/split phase. For a given value of Pr, the
algorithm executes the four phases described above subsequently before it decreases Pr
by a factor of β < 1. This step is parallel to the reduction of the temperature by a cooling
factor in a conventional simulated annealing algorithm. At the beginning of the algorithm,
the probability of selecting inferior solutions is quite high, which allows the search to
diversify and avoid the local minima. As the algorithm progresses, the probability of
selecting inferior solutions decreases gradually, so that the algorithm converges to a good
solution. After Pr is decreased, the algorithm starts with the insert/split phase which takes
the solution from block swap phase as an input. However, if the solution is not improved
in the intra-route phase, the block insert phase and the block swap phase, the insert/split
phase takes the same solution from its previous execution. In order to improve diversity,
if no improvement is achieved during the intra-route phase, the block insert phase and
the block swap phase, the insert/split phase takes the solution obtained after tabu list size
number of iterations of the block swap phase as an input.

The first version of the algorithm only consisted of a straightforward implementation
of the insert/split phase with tabu search. Rather than choosing from a pool of good
quality moves with simulated annealing algorithm, only the best move is chosen for a
given p-d. There were three alternatives for selecting the p-d for insert/split:

Exhaustive. The p-d pair resulting with the best ∆C value is selected.

Best Deletion Saving. The p-d pair with the best deletion saving, i.e. the p-d
resulting with the most cost reduction after it is removed from its route, is selected.

Random. The p-d pair for insert/split move is selected randomly.

Out of these alternatives, even though exhaustive approach yielded the best results, its
computational complexity for one iteration is O(n5), as opposed to O(n4) for the other
alternatives since the selection of the p-d has a time complexity ofO(n) for the exhaustive

approach and O(1) for the others.
We also tried to benchmark the performance of tabu search against a Hill Climbing

heuristic that terminates when no improving move is found.
This experimental study indicated that tabu search is as much likely as the hill climb-

ing heuristic to get stuck in a local optimum. This observation motivated us to employ
some kind of randomization scheme.

In a conventional simulated annealing algorithm, a neighbor from all of the neighbor-
hood solutions is selected randomly and implemented if it is accepted based on a selection
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criterion. A fitness function determines the quality of the solution and returns the likeli-
hood of that solution to be accepted. In our case, it would be extremely time consuming
to evaluate all of the neighboring solutions. Therefore, we use the list approach where the
selection criterion is implemented on the best Nmove non-tabu results in order to ensure
that the algorithm does not spend time in parts of the solution space that are not reward-
ing. For small values of Nmove, the algorithm runs with the risk of revisiting the same
solutions; utilizing a tabu structure ensures that the algorithm does not revisit the same
solution. This overcomes one of the major weaknesses of simulated annealing, that it
lacks any memory features to track previously visited solutions and the solution quality
improves considerably after the introduction of the probabilistic selection criterion. The
resulting algorithm combines powerful features of both tabu search and simulated anneal-
ing. The computational results reported in the next section demonstrate that this algorithm
is capable of producing good solutions for MPDPSL in reasonable time.

3.7 Computational Results

3.7.1 Parameter Tuning for TESA Algorithm

Our preliminary experiments indicate that five of the parameters used in TESA algorithm
have a significant impact on both solution quality and CPU time: Niter1, Niter2, Niter3,
Npair andNmove. For the purpose of parameter tuning, we only consider these parameters.
To simplify the experimental design, we use, in a given setting, the same values for the
maximum number of nonimproving iterations in any phase, i.e. Niter1 for the Insert/Split
phase and Niter2 for Block Insert phase and Niter3 for Block Swap phase; we denote this
parameter as Niter. Nmove determines the size of the list that keeps the least costly moves
for a selected p-d pair; the likelihood of selecting a poor quality move increases as Nmove

gets larger. Npair determines the size of the list that keeps the best pairs for the current
solution in implementing a move (lines 9 - 10 of Algorithm 1). Similarly, when Npair gets
larger, the likelihood of selecting an inferior pair is increased.

The computational study for these parameters is conducted with the multi-vehicle
version of the randomly generated problems in Nowak et al. [10]. Parameter tuning is
done for the set of problems of 100 p-d requests with a load range of 0.51-0.6 truckload.
For Niter ∈ {25, 50, 75, 100, 125}, Nmove ∈ {5, 7, 10, 15}, and Npair ∈ {1, 3, 5, 7, 10},
we conduct the tuning study for 100 possible parameter settings. For a given setting, the
algorithm is restarted 20 times. Based on preliminary tests, the value of β is set to 1/3

17



throughout the experiment. To evaluate the quality of a parameter setting, we use the
average improvement attained over the route length of the initial solution with no splits
(see Section 3.1) as the effectiveness measure and the average CPU time as the efficiency
measure. Computational experiments are conducted on a single core of a computer with
Intel Core2Quad Q8200 @2.33 gHz CPU and 3.46gB of RAM.

According to the results of our study:

• The most influential parameter is the maximum number of nonimproving itera-
tions, Niter, as the improvement in the route length increases by 2% when Niter is
increased from 25 to 125. On the other hand, The solution quality changes by only
0.2% between the best and the worst settings of Npair and Nmove. The CPU time
also increases when the value of each of these three parameters is increased.

• When the effect of each parameter is inspected individually (see Figures 3.1, 3.2,
3.3), Niter = 125, Nmove = 10 and Npair = 5 appears to be the best setting of
parameters.

• Inspecting the combined effect of Niter and Npair (see Figure 3.5), and the com-
bined effect of Niter and Nmove (see Figure 3.4), it is clear that the effect of Niter

overweighs and best results are attained when Niter is as large as possible (i.e.
Niter = 125). According to the combined effect of Nmove and Npair in Figure 3.6,
Nmove = 15 and Npair = 3 yields the best solution quality. Thus, when the com-
bined effect is considered, the best setting for all three parameters appears to be
Niter = 125, Nmove = 15 and Npair = 3.

Figure 3.1: Improvement in route length versus CPU time for different values of Niter.
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Figure 3.2: Improvement in route length versus CPU time for different values of Npair.

Figure 3.3: Improvement in route length versus CPU time for different values of Nmove.

Taking into account the trade-off between the improvement in the route length and
CPU time, it would be more reasonable to set the value of Niter based on the availability
of computing power. In essence, one might prefer a smaller value ofNiter if the computing
resources are restricted and CPU time is an important concern. The values of Npair and
Nmove are dependent on the problem size, i.e. the number of p-d requests. Therefore,
we adjust the values of these parameters in proportion to the number of p-d requests in a
given instance.

Another important parameter that affects the CPU time is the number of restarts. We
do not include this parameter directly in the parameter tuning study. Instead, we use
each restart as a sampling procedure since each restart of the algorithm randomizes the
selection of moves. A high number of restarts increases the likelihood of diversification
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Figure 3.4: Combined effect of Niter and Npair on the improvement in route length.

Figure 3.5: Combined effect of Niter and Nmove on the improvement in route length.

among the obtained solutions. In order to validate this anticipation, we closely investigate
the improvement pattern through the restarts of the algorithm over a maximum of 100
restarts. In Figure 3.7, we show the route length obtained at every restart of the algorithm
along with the best route length obtained until after that restart. In these three examples,
we observe that the best route length is obtained at restart 23 (in part (a)), restart 47 (in part
(b)) and restart 96 (in part (c)). This observation validates the significance of restarts and
the effect of randomization on the solution quality through the diversification mechanism
induced by restarts. It is clear that the solution quality might improve when more effort
is spent by increasing the number of restarts. As in the case of Niter, one should consider
the trade-off between the CPU time and number of restarts with respect to the availability
of computing resources.
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Figure 3.6: Combined effect of Nmove and Npair on the improvement in route length.

(a)

(b)
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(c)

Figure 3.7: The pattern of route length improvement through the restarts of the algorithm.

3.7.2 Computational Experiments on Test Problems

Nowak et al. [10] have investigated the improvement in route length when splits are
allowed over the route length of the solution with no splits. The aim of their analysis
is to show that one may benefit from splitting some p-d requests (i.e. stopping at the
origin and destination of the requests more than once) instead of visiting the p-d pair
only once as in the traditional setting of PDP. In this study, we extend Nowak et al.’s
analysis to the multiple vehicle version of the problem. Moreover, we analyze the benefit
of splitting loads on other PDP instances from the literature. As detailed below, Nowak
et al.’s instances have special characteristics that do not exist in other PDP settings. In
order to explore the impact of problem characteristics on the benefit of splitting loads,
we use another set of problem instances adopted from Ropke and Pisinger [13] whose
characteristics are significantly different. We also verify the quality of our algorithm
through a comparative analysis against the PDP results given in Nowak et al. [10]. Since
these results are for the single vehicle case, we convert our solutions to a single route
using a very simple algorithm.

Below, we describe the two problem sets used in our analysis and how they are adapted
to create instances for MPDPSL:

1. The first set consists of the randomly generated problems in Nowak et al. [10].
In generating this set of problems, the authors have used the following idea: they
randomly generate a set of pickup points and another set of delivery points; then,
they create a set of p-d requests from every pickup point to every delivery point.
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As a result, a p-d request is still one-to-one but there are multiple deliveries from a
pickup location as well to a delivery location. In addition, Nowak et al. considers
a single-vehicle problem which constructs a single route as a solution. Since we
study the multi-vehicle case, our solution consists of multiple routes, one for each
vehicle. This setting requires introducing a maximum route length restriction for
each vehicle route. For each problem instance from Nowak et al., we introduce a
maximum route length as a function of the distances between points.

2. In a traditional PDP setting, each physical pickup point is usually associated with
a single delivery point. In this respect, the problems in Nowak et al. may not
be considered as representative of a traditional PDP setting in terms of the spatial
distribution of the pickup and delivery points. For problems that are more repre-
sentative of a traditional PDP setting, we resort to Ropke and Pisinger [13]. In this
set of problems, all p-d requests are generated one-to-one between a randomly gen-
erated pickup point and a randomly generated delivery point. Ropke and Pisinger
suppose that each vehicle starts the route from a designated point considered to be
the vehicle’s depot. However, in MPDPSL we suppose that there exists only one
depot from where all vehicles start their routes. Therefore, based on the network
data in Ropke and Pisinger’s instances, we have created a single vehicle depot at the
center of the two-dimensional space on which the points are generated randomly.
The maximum route length is used as specified in this study.

To the best of our knowledge, for both sets of problems, the results presented in this
section are the first results for MPDPSL in the literature.

3.7.3 Analysis of the Benefit Obtained by Split Loads

In Nowak et al. [10], the benefit obtained by splitting loads is studied for different load
size intervals. Their results clearly show that the improvement in the route length is
closely related to the size of the loads. When the loads are within 0.51-0.60 of vehicle
capacity, the improvement in the route length is more significant compared to other ranges
of the load size. We want to understand if this finding is still true when the problem is
solved for multiple vehicles instead of a single vehicle. For this analysis, we solve each
problem instance using two versions of our algorithm: the original version that allows
split loads and a modified version which does not perform any split moves.

In Table 3.1, we present the percentage improvement in the route length for the algo-
rithm with splits over that of the no-split version for the three problem sets in Nowak et
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Number of Location Average
Requests Set Imp. (%) Average

75 1 33,11 32,04
2 30,81
3 32,21

100 1 33,09 32,45
2 32,01
3 32,26

125 1 32,28 32,07
2 31,54
3 32,38

Table 3.1: Improvement in the route length obtained by split loads for problems in Nowak
et al. [10] for a load size range of [0.51-0.6] truckload.

al. [10]. The improvement in the route length is more than 30% on average when the load
size range is 0.51-0.60. The observed level of improvement is in line with Nowak et al.’s
findings where the improvements are around 25% for the same load size range.

In order to study the benefit of splitting loads in a more traditional PDP setting where
the pickup and delivery points are distributed over the service area, we solve the problems
in Ropke and Pisinger [13] to obtain both the split and no-split route lengths. To observe
the difference in route length improvement between different load size ranges, we have
studied the load range 0.25-1.00 (using the loads in the original problem data) and the
load range 0.51-0.60 (for which we have generated new load data randomly). Complete
results are given in Tables B.1-B.4 of Appendix B. For the problems with 50, 100 and 250
requests, we attain the best results over 20 restarts while the problems with 500 requests
is solved only with five restarts and with Niter = 10 due to excessive CPU time for a
single restart of the algorithm. The resulting CPU times are provided in Tables B.5 - B.6
of Appendix C. A summary of results grouped by the number of requests and load size of
problem instances is presented in Figure 3.8. In this figure, we observe that

• the improvement in route length for the load range 0.51-0.60 is more significant
when compared to the load range 0.25-1.00, and

• the improvement in route length increases as the problem size increases.
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Figure 3.8: Effect of the load range on the improvement in route length.

A comparison among the two load ranges help us conclude that the improvement in
route length due to split loads is more significant when the load range is just above one
half of a truck load (0.51-0.60) compared to a much wider load range. This observation
is in parallel with the empirical analysis in Nowak et al.[10]. Yet, it is also clear that this
difference becomes more significant as the problem size increases and the magnitude of
improvement is not as much as it is observed in Nowak et al. Therefore, in addition to the
load range size, we observe that

• spatial distribution of the pickup and delivery requests and

• number of p-d requests in the problem

also play an important role on the level of improvement in route length. In Nowak et
al., although the problem is a one-to-one PDP, each pickup (delivery) point is associated
with several requests. In the problems by Ropke and Pisinger [13], each pickup (delivery)
point is associated with only one delivery (pickup) point. We also note that the observed
improvement is not due to the algorithm used to solve the problems as the level of im-
provement in Nowak et al.’s experimental results is around 25-30% while it is in the range
of 30-33% in ours. In addition, we suspect that the multi-vehicle version of the problem
may be even more prone to improvements obtained by split loads.

The importance of spatial distribution becomes even more apparent when we look into
the results from the Ropke and Pisinger [13] instances in more detail. These instances are
designed in three categories according to the spatial distribution of the pickup and delivery

25



locations: uniform, semi-clustered and clustered. In Figure 3.9, we display the improve-
ment in route length both by load size and problem category. While the importance of
load size is clear in this figure, one can observe that the benefit of split loads is also af-
fected significantly by the problem category. The largest improvement in route length is
realized for clustered data, especially for larger problem sizes. Although the difference
between semi-clustered and uniform data is not very significant for small problems, as the
number of p-d pairs in the problem increase, semi-clustered problems also benefit greatly
from splitting loads.

Overall, the results indicate that the benefit to be gained from load splitting is more
pronounced for problems with clustered data, even when the clustering is partial. In
clustered problems, vehicle routes also tend to appear in clusters, which increases the
likelihood of having multiple vehicle routes in close vicinity which facilitates load split-
ting. Similarly, the number of splitting options are higher for larger problem sizes. This
observation may help explain the results obtained for problem instances from different
categories and problem sizes.

Figure 3.9: Effect of the load range and spatial distribution of points on the improvement
in route length.

We also note that this is the first study to report results on the problems in Ropke and
Pisinger [13] for the case of split loads.

3.7.4 Comparative Analysis of Algorithm Performance

We evaluate the performance of our algorithm on the single vehicle version of the problem
using a comparative analysis against the results presented in Nowak et al. [10]. The aim
of our analysis is two-fold; we want to
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• validate the quality/strength of our algorithm in order to justify the use of our algo-
rithm in obtaining the results in Section 3.7.3, and

• show that our algorithm has the potential to be used for the single vehicle case by
demonstrating an improvement upon the results obtained in Nowak et al. [10].

We particularly note that our algorithm is designed for the multiple vehicle version, and
we do not make a special effort to tailor it to solve the single vehicle case. In order to
obtain a single vehicle route from the multi-vehicle solution of the algorithm, we use a
very simplistic greedy approach. Among all vehicle routes in the solution, we identify the
two that yield the maximum route length decrease when merged into a single route. After
merging these two routes, at every iteration we add a new route to the combined route
such that the incremental route length increase is minimized. The procedure stops when
all routes are merged into a single vehicle route.

For the three sets of problem instances (i.e. 75,100,125-request sets), we solve the
single vehicle problems with the load factor 0.51-0.60; the results are presented in Tables
3.2-3.4. To make a fair comparison, we account for the difference in the computing
power of our computer with the one used in Nowak et al. [10]. For this purpose, we
present our results with two different levels of computational effort. In the scaled time
approach, for each problem set, we scale the average CPU time reported in Nowak et al.
by the difference in the computing power of the computers using the method presented
in Dongarra [5]. As our computer is two times more efficient than the one in Nowak et
al., we use half of the average CPU time reported in Nowak et al. as the scaled time. In
the equal time approach, we use as much CPU time as reported in Nowak et al. without
any scaling. In Tables 3.2-3.4, the first three columns describe the problem characteristics
(Location Set and Load Size Set) based on Nowak et al. and the length of the route
obtained with their algorithm. The fourth and fifth columns respectively show the length
of the route and percentage improvement over Nowak et al.’s solution using the scaled
time approach. The sixth and seventh columns show the same results when the CPU time
is not scaled.

According to computational experiments reported in Tables 3.2-3.4, we obtain the
following results:

• For the problem set with 75 requests,

– in scaled time (12.75 minutes), we have improved the route length of 9 prob-
lems (out of 15) and the average improvement is 2.10% while we are only
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Problem (Nowak et al.) Scaled Time Equal Time
Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 3830.123 3840.602 -0.27 3840.602 -0.27
1 2 3857.117 3859.936 -0.07 3828.613 0.74
1 3 3810.502 3831.256 -0.54 3809.375 0.03
1 4 3799.324 3833.559 -0.90 3833.559 -0.90
1 5 3868.957 3887.298 -0.47 3855.453 0.35
2 1 3313.483 3171.766 4.28 3171.766 4.28
2 2 3296.364 3162.015 4.08 3144.403 4.61
2 3 3203.245 3210.825 -0.24 3199.044 0.13
2 4 3266.417 3180.605 2.63 3180.605 2.63
2 5 3332.589 3188.812 4.31 3146.602 5.58
3 1 4058.369 3990.376 1.68 3954.308 2.56
3 2 4172.418 3926.42 5.90 3926.42 5.90
3 3 4090.647 3934.566 3.82 3934.566 3.82
3 4 4110.389 3936.68 4.23 3936.68 4.23
3 5 4052.233 3925.661 3.12 3908.682 3.54

9 2.10 13 2.48

Table 3.2: Results for the single vehicle problems with 75 requests from Nowak et al.
[10].

0.90% away from the best known solution in the worst case;

– in equal time (25.50 minutes), we have improved the route length of 13 prob-
lems and the average improvement is 2.48 %.

• For the problem set with 100 requests,

– in scaled time (25.60 minutes), we have improved the route length of 13 prob-
lems (out of 15) and the average improvement is 3.30% while we are only
0.82% away from the best known solution in the worst case;

– in equal time (56.20 minutes), we have improved the route length of 14 prob-
lems and the average improvement is 3.60 %.

• For the problem set with 125 requests,

– in scaled time (47.95 minutes), we have improved the route length of 13 prob-
lems (out of 15) and the average improvement is 4.45% while we are 1.37%
away from the best known solution in the worst case;

– in equal time (95.90 minutes), we have improved the route length of 14 prob-
lems and the average improvement is 4.71%.

These results indicate that we have improved most of the route lengths reported in
Nowak et al. [10] even with an algorithm which is not tailored for the single vehicle
version. Therefore, our algorithm can be considered as an efficient and effective algorithm
for solving not only the multiple vehicle but also the single vehicle problems as well.
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Problem (Nowak et al.) Scaled Time Equal Time
Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 5073.395 5016.763 1.12 5014.602 1.16
1 2 5036.547 5077.608 -0.82 5077.608 -0.82
1 3 5029.381 5033.059 -0.07 5024.470 0.10
1 4 5012.974 4965.867 0.94 4965.867 0.94
1 5 5130.154 5022.422 2.10 5022.422 2.10
2 1 4450.058 4249.250 4.51 4216.749 5.24
2 2 4484.466 4302.366 4.06 4302.366 4.06
2 3 4473.387 4292.695 4.04 4268.062 4.59
2 4 4424.569 4283.759 3.18 4259.868 3.72
2 5 4559.259 4272.694 6.29 4247.892 6.83
3 1 5294.367 5029.347 5.01 5029.347 5.01
3 2 5371.740 5158.324 3.97 5127.881 4.54
3 3 5216.797 5149.056 1.30 5115.153 1.95
3 4 5467.788 5132.782 6.13 5132.782 6.13
3 5 5572.472 5141.317 7.74 5097.744 8.52

13 3.30 14 3.60

Table 3.3: Results for the single vehicle problems with 100 requests from Nowak et al.
[10].

Problem (Nowak et al.) Scaled Time Equal Time
Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 6020.046 5924.608 1.59 5924.608 1.59
1 2 5938.943 6020.369 -1.37 6008.256 -1.17
1 3 5977.69 5929.926 0.80 5929.926 0.80
1 4 6138.936 6022.086 1.90 6017.348 1.98
1 5 6024.26 6028.898 -0.08 5996.25 0.46
2 1 5717.536 5452.732 4.63 5410.327 5.37
2 2 5745.378 5494.878 4.36 5470.25 4.79
2 3 5667.263 5456.303 3.72 5456.303 3.72
2 4 5778.58 5428.613 6.06 5409.127 6.39
2 5 5780.014 5471.003 5.35 5430.16 6.05
3 1 6934.046 6322.772 8.82 6272.689 9.54
3 2 6918.162 6318.539 8.67 6318.539 8.67
3 3 6607.296 6330.95 4.18 6330.95 4.18
3 4 7239.787 6412.622 11.43 6404.65 11.54
3 5 6776.373 6320.865 6.72 6320.865 6.72

13 4.45 14 4.71

Table 3.4: Results for the single vehicle problems with 125 requests from Nowak et al.
[10].
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Chapter 4

MPDPSL with Outsourcing Option

In most business practices, seasonality and volatility of demand play a great role on the
logistics decisions of a company. Instead of having a fleet on standby large enough for
the busiest time of the month or the year, most logistics and courier companies use the
outsourcing option for some of their shipments. Therefore, they are able to manage the
same amount of demand with a much smaller fleet. On the other hand, even when the
company has adequate resources, sometimes, it is simply more cost efficient to outsource
because of the network conditions or the nature of demand.

In the MPDPSL with Outsourcing Option (MDPDPSL-O), we have, for any p-d pair,
the option of outsourcing for a fixed charge. If a p-d pair is chosen for outsourcing then it
would not be visited in any of the routes in the solution and the fixed charge for outsourc-
ing is added to the objective function value. In addition to the model presented in Chapter
2, the modified mathematical model becomes,

Minimize
∑
k∈K

∑
i∈V

∑
j∈V

dijx
k
ij +

∑
i∈P

fizi (4.1)

subject to
∑
k∈K

yki + zi = 1 ∀i ∈ P ∪D (4.2)

zi = zi+n ∀i ∈ P (4.3)

zi ∈ {0, 1} ∀i ∈ P ∪D (4.4)

where zi, ∀i ∈ P ∪ D, denotes a binary decision variable; zi = 1 if demand of i is
outsourced; 0, otherwise. fi, ∀i ∈ P , denotes the fixed charge of outsourcing the demand
of i. The modified objective function (4.1) has an additional term,

∑
i∈P fizi that adds the
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outsourcing cost to the transportation cost. Constraint (4.2) is also modified to ensure that
the demand is either satisfied by the company or outsourced while constraint (4.3) ensures
that when a pickup stop is outsourced, its corresponding delivery stop is outsourced as
well. Constraint (4.4) is the domain constraint for zi, ∀i ∈ P ∪ D. The rest of the
constraints from the model presented in Chapter 2 are also in effect.

4.1 Modified TESA Algorithm for MPDPSL-O

We already have an efficient and effective algorithm for MPDPSL, and we can modify
the algorithm for this problem by a few simple tweaks. The decision of outsourcing a p-d
pair is not much different than the decision of which route/s to insert/split the pair. We
modify the insert/split neighborhood in order to consider the outsourcing option, when
we are searching for a position to insert/split a p-d pair. If the outsourcing option is cost
effective and can compete with other insert/split positions, then it is inserted to the list
from which we choose the move to be implemented, thus having a chance of selection.

In the TESA Algorithm (see Algorithm 4), recall that Pr denotes the probability of
an average quality move to be accepted. In this respect, during the early stages of the
algorithm, even if the outsourcing option is cost efficient, it might not be chosen. How-
ever, once Pr gets smaller as the algorithm progresses, if the outsourcing option is cost
efficient as opposed to the other moves, it will have a better chance of being selected. On
the other hand, once we choose to outsource a p-d pair, the solution is not stuck with that
decision throughout the algorithm. As in the original algorithm where each p-d pair is
considered for insert/split positions, we consider each p-d pair in the modified algorithm
as well. Even after we chose to outsource a p-d pair, we can still search for insert/split
positions. Therefore, if we can find a suitable position, any outsourced pair can go back
to the solution.

The algorithm usually chooses to outsource pairs with advantageous fixed charges.
However, because of the randomness in the algorithm, it is not guaranteed that such pairs
will be outsourced. As an addition to the original algorithm, we incorporate a correction
phase to further improve the solution. After the final solution is reached, we check if
outsourcing those pairs would result in an improvement in the objective function value
for each pair in the final solution. If we can improve the objective function value, we
remove those pairs from the routes in the solution and utilize the outsourcing option.
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4.2 Computational Results

For most companies, in-house cost for carrying the demand is readily available but out-
sourcing cost might not always be at hand. However, since the outside carrier will travel
the distance from the pick-up point to the delivery point in order to carry the demand, it
would not be inaccurate to assume that the fixed charge for that p-d pair will be somewhat
proportional to the distance between the pickup and delivery points. Considering that
the vehicles of the outside carrier might have to leave and return to a depot location, we
generate fixed charges for the problem instances from Ropke and Pisinger [13], using the
following schemes.

Direct Distance. We suppose that it is not important for the company from where
the vehicle of the outside carrier reaches the pickup point and to where it retreats
after delivering the demand to the delivery point. Therefore, we only take the dis-
tance between the pickup and delivery points, and the fixed charge for outsourcing
becomes a function of dpd as,

fi = αdpidi , ∀i ∈ P.

Triangular Distance. We suppose that the vehicle of the outside carrier leaves from
a depot location and retreats to the depot after picking the demand from the pickup
point and delivering it to the delivery point. Therefore, we calculate the distance
from the depot to the pickup point plus the distance from the pickup point to the
delivery point and finally the distance from the delivery point to the depot, and the
fixed charge for outsourcing becomes a function of dpd as,

fi = γ(d0pi + dpidi + ddi2n+1), ∀i ∈ P.

Note that dij denotes the distance between i and j and α and γ denote constant
scalars.

The costs generated according to these schemes may not match the cost scheme of an
outside carrier; however, we will observe the whether behavior of the algorithm changes
under these different cost schemes. Also, by using alternative values for scalers α and
γ, we will create scenarios when the outsourcing cost is lower and higher relative to the
company’s in-house transportation cost.

32



4.2.1 Parametric Settings for MPDPSL-O

We treat the outsourcing option as any other move in the original algorithm. Therefore,
the basic principles and dynamics of the original algorithm remains intact. We do not
tamper with the original parameters of the algorithm discussed in Section 3.7.1. The
computational performance is not our main concern at this point, and we care about the
solution structure and effectiveness.

When a company has outsourcing options, it faces tactical decisions concerning the
fleet size and a cost-effective pricing scheme for the outsourcing option. In order to
analyze the effect of the outsourcing cost on the solutions, we prepare scenarios based on
different outsourcing cost schemes. We assume that the results of the original algorithm
without the outsourcing option is the in-house cost of the company for satisfying all the
requests using its own resources. For the problem instance p, let c(Sp) be the objective
function value obtained by the original TESA Algorithm for the solution Sp. Then for
instance p, α and γ values are calculated as follows:

α =
ωc(Sp)∑n
j=1 dpjdj

,

γ =
ωc(Sp)∑n

j=1(d0pj + dpjdj + ddj2n+1)
.

where ω denotes a constant scalar for c(Sp).
The outsourcing cost plays a crucial role on the solution structure and the number of

p-d pairs outsourced. In order to analyze the effect of lower and higher outsourcing costs
as opposed to the in-house cost, we use three different cost schemes where the sum of
outsourcing fixed charges (

∑
i∈P fi) is

• less than c(Sp),

• equal to c(Sp) and

• more than c(Sp).

We set ω ∈ {0.75, 1.0, 1.25} so that the sum of fixed charges would fit these cost schemes.
If we choose to outsource all pairs, we would have to pay

∑
i∈P fi = ωc(Sp). For exam-

ple, when ω = 0.75, ∑
i∈P

fi = 0.75c(Sp)

in the case of the first cost scheme.
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4.2.2 Benchmarking MPDPSL-O Solutions with MPDPSL Solutions

We conduct our experiments for MPDPSL-O on Ropke and Pisinger [13] instances. We
test our algorithm on the problems with load ranges 0.25-1 and 0.51-0.60 for both direct

and triangular distance schemes. The aggregated results from 50, 100, 250 and 500 pair
instances are presented in Tables 4.1 - 4.4 where Outs.(%) denotes the percentage of
the pairs outsourced and Imp.(%) denotes the improvement obtained with MPDPSL-O
solution with respect to MPDPSL solution.

ω 0.75 1 1.25
0.25-1 Outs. (%) Imp. (%) Outs. (%) Imp. (%) Outs. (%) Imp. (%)

50 83.17 25.62 29.50 10.89 13.50 5.36
100 78.08 26.07 31.25 10.85 12.42 4.99
250 83.43 26.16 32.67 9.98 10.73 3.75
500 89.07 25.81 38.55 7.93 10.82 2.41

Average 83.44 25.91 32.99 9.91 11.87 4.13

Table 4.1: Results for 0.25-1 load range with triangular distance scheme from Ropke and
Pisinger. [13].

ω 0.75 1 1.25
0.25-1 Outs. (%) Imp. (%) Outs. (%) Imp. (%) Outs. (%) Imp. (%)

50 93.17 25.24 37.50 9.36 17.33 4.01
100 92.17 24.97 38.08 8.04 15.50 2.61
250 94.17 24.58 34.90 6.10 11.67 1.70
500 98.97 24.82 34.50 3.41 7.67 0.41

Average 94.62 24.90 36.25 6.73 13.04 2.18

Table 4.2: Results for 0.25-1 load range with direct distance scheme from Ropke and
Pisinger. [13].

ω 0.75 1 1.25
0.51-0.60 Outs. (%) Imp. (%) Outs. (%) Imp. (%) Outs. (%) Imp. (%)

50 87.50 25.09 27.67 9.46 9.83 4.21
100 79.08 25.02 23.92 8.89 8.17 4.01
250 84.50 24.55 21.10 6.81 7.10 2.71
500 85.47 24.68 30.23 5.71 7.37 1.46

Average 84.14 24.84 25.73 7.72 8.12 3.10

Table 4.3: Results for 0.51-0.60 load range with triangular distance scheme from Ropke
and Pisinger. [13].

Let us now look at the impact of different cost schemes on the total cost of the solu-
tions:

• Recall that for ω = 0.75, the cost of outsourcing all pairs in any instance pwould be
around 0.75c(Sp). Therefore, by outsourcing all pairs when ω = 0.75, the algorithm
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ω 0.75 1 1.25
0.51-0.60 Outs. (%) Imp. (%) Outs. (%) Imp. (%) Outs. (%) Imp. (%)

50 91.00 24.52 33.67 8.56 14.17 2.72
100 89.42 24.09 30.33 6.52 13.00 2.56
250 87.10 22.68 26.23 4.76 9.60 1.37
500 97.23 23.83 24.50 1.67 6.63 -0.25

Average 91.19 23.78 28.68 5.38 10.85 1.60

Table 4.4: Results for 0.51-0.60 load range with direct distance scheme from Ropke and
Pisinger. [13].

could improve by 25%. However, because of the principles of the algorithm, it
tries to improve by inserting and splitting. That is the reason why, though very
close, the algorithm usually cannot improve by 25% on average. On the other hand,
in some cases, we can observe that the algorithm combines its strengths and the
advantageous fixed charges to improve beyond 25% on average.

• When ω = 1.0, outsourcing all pairs for any instance p would result in an objective
function value around c(Sp). However, it is clear that by making use of the out-
sourcing option for 25− 33% of all pairs, the algorithm improves MPDPSL results
by 5− 10%.

• When ω = 1.25, outsourcing option is very expensive since outsourcing all pairs
would result in an objective function value around 1.25c(Sp) for any instance p.
In that case, one would expect the objective function values for MPDPSL-O and
MPDPSL would be more or less the same since almost none of the pairs would be
outsourced due to the expensive outsourcing option. However, the algorithm is still
able to improve by 1 − 4% since it utilizes the outsourcing option on 10 − 13% of
all pairs.

It is evident that the algorithm on average improves more with the triangular distance
scheme than the direct distance scheme for all ω values even though the triangular dis-
tance scheme outsources less than the direct distance scheme. We believe that the main
reason for this outcome lies in the structure of the cost scheme: the pricing scheme of the
outsourcing option with triangular distances and the pricing scheme of the algorithm are
not quite alike. This creates a discrepancy between the fixed charges and the transporta-
tion cost of the algorithm for most pairs. We may claim that; the outside carrier underes-
timates or overestimates the fixed charges, and the algorithm takes advantage of this fact.
On the other hand, with the direct distance scheme, the pricing of the outsourcing option
is more similar to the pricing scheme of the algorithm, therefore it is more challenging for
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the algorithm to take advantage of the discrepancy between the transportation cost and the
oursourcing cost. As a result, the algorithm improves more with the triangular distance
scheme even though it outsources less number of p-d pairs.

The load ranges and number of p-d pairs also play an important role on the level
of improvement attained with outsourcing. The algorithm improves more in the 0.25-1
load range than in the 0.51-0.60 load range. Also, as the number of pairs get larger, the
improvement diminishes. There are two possible reasons of these outcomes:

• the original algorithm is more attuned to splitting in the 0.51-0.60 load range, and

• the original algorithm performs better with more pairs.

As we compare the results of the modified algorithm MPDPSL-O with those of the origi-
nal algorithm for MPDPSL, it is clear that the modified algorithm improves better in the
0.25-1.0 load range and with less number of pairs where there is more room to improve.
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Chapter 5

MPDPSL with Cycles without Depot

Through our communications with an international maritime transportation agency, we
have realized that part of their transportation network problem can be modeled as a vari-
ant of MPDPSL that has cyclic routes but no depot location. Hence, we call this problem
MPDPSL with Cyclic Routes without Depot (MPDPSL-C). In their transportation net-
work, most vessels work on a cyclic route of ports throughout a certain period of time.
For example, a vessel visits port A, moves to port B and so on and so forth, following a
series of several port visits, it then comes back to portA after a month and may repeat this
cycle 12 times in a year. At the beginning of each term (season, year, etc.), new cycles
(routes) are published and these cycles are determined by the demand information from
the previous terms. Therefore, we can perceive those cycles as tactical decisions to be
made.

Creating cycles is the essence of the problem though not the extent of it. With given
demand information for a set of pickup and delivery pairs and known vessel capacities,
the algorithm could be employed to generate cyclic routes. However, generating cycles
only deals with one part of the problem; in order to solve the whole problem, we realize
that we have to address the following issues as well:

• The amount of demand between different pairs of ports varies significantly. For
instance, the demand from port A to port B might be 1 container while the demand
from port C to port D might be as much as 4000 containers. In our case-study,
including all the demand in the input would result in a MPDPSL-C instance having
nearly 560 pairs; however, excluding the demand with less than 50 containers re-
sults in an instance with 208 pairs. In our implementation, we choose to eliminate
smaller amount of demand. Therefore, the range of the amount of the demand in-
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cluded in the MPDPSL-C input turns out to be an important decision as it affects
the number of pairs in the problem which in turn changes the computational effort
and implementability of the solution.

• In MPDPSL-C, we may assume that all vessels have the same capacity. In real life
however, there are bunch of vessels available with various capacity. Obtaining a
MPDPSL-C solution with our algorithm, we also have to make sure that the demand
figures can be satisfied by the available vessels.

• Even though there is a limit to the maximum cycle length, MPDPSL-C solution
does not always contain cycles that are close to the limit. The demand information
is given for a fixed period of time. For instance, if a vessel has a cycle length of two
months with the demands calculated for one month, the cycle must be adjusted so
that the demands fit to the cycle length.

In order to solve the problem, we need to implement a larger framework in which we
iteratively solve the MPDPSL-C problem by updating the obtained cycles to integrate the
eliminated p-d pairs with less amount of demand and adjusting the cycles with respect
to the vessel capacities. The framework should be designed in such a way that at each
iteration the solution obtained for the modified problem with equal vessel capacities is
closer to a realistic solution that can be implemented. However, in this study, we only
illustrate the solution of a MPDPSL-C with given demand info and equal capacities.

In this network problem, we have ports that can be both pickup and delivery points at
the same time. In order to comprehend this structure clearly, let us consider a hypothetical
cyclic route containing the ports A, B, C and D as shown in Figure 5.1, and let the
quantity of p-d requests among these ports be as shown in Table 5.1. Let us denote the
units of request from port i to port j by qij . For example, we have a request of qAB = 10

units from port A to port B while we have a request of qBA = 7 units from port B to port
A. Even though we have only four ports in this cycle, we actually have eight p-d requests
that are to be satisfied.
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A

B

C

D

Figure 5.1: An example for a cyclic route with four ports

In the example in Figure 5.1, the vessel starts from port A picking up (qAB + qAD) = 15

units of load and moves on to port B delivering qAB = 10 units and picking up (qBA +

qBC) = 15 units. Then, it moves on to port C delivering qBC = 8 and picking up
(qCA + qCD) = 10, arrives at port D delivering (qAD + qCD) = 9 and picking up (qDB +

qDC) = 11. It finally completes the cycle at portA. Note that the requests for a previously
visited port is carried on to the next cycle.

A B C D
A - 10 - 5
B 7 - 8 -
C 6 - - 4
D - 6 5 -

Table 5.1: p-d requests for the cycle in Figure 5.1

Generating the MPDPSL-C representation of this cyclic route is an easy task. For the
cycle in Figure 5.1 and requests in Table 5.1, we create the MPDPSL-C representation
shown in Table 5.2.

The cycle in Figure 5.1 is also equivalent to the MPDPSL-C representation in Figure 5.2
where each port is represented by multiple copies of the port each of which corresponds
to a request associated with the port.
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Pickup Point Delivery Point Request
pAB dAB qAB

pAD dAD qAD

pBA dBA qBA

pBC dBC qBC

pCA dCA qCA

pCD dCD qCD

pDB dDB qDB

pDC dDC qDC

Table 5.2: MPDPSL-C representation of the cycle in Figure 5.1

pAB pAD

dCA dBA

A

dDB pBA

dAB pBC

dBC dDC

pCD pCA

pDC dAD

pDB dCD

B

C

D

Figure 5.2: MPDPSL-C representation of the cycle in Figure 5.1

5.1 Modified TESA Algorithm for MPDPSL-C

As we create MPDPSL-C instances from the company’s network, we have to reconcile
the differences between MPDPSL and MPDPSL-C and modify our TESA Algorithm ac-
cordingly. Then, we will be able to solve a real life problem with real life data.

There are two main differences between the algorithmic implementations of MPDPSL
and MPDPSL-C:

• the routes do not start and end at a depot location, and

• precedence constraints are not necessarily in effect.
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The fact that routes do not start and end at a depot location does not have a significant
effect on the principles of the TESA algorithm. However, lack of precedence constraints
results in the absence of blocks in the routes. This renders the Block Insert and Block

Swap phases ineffective. In MPDPSL, precedence constraints ensure that a route starts
and ends with an empty vehicle, and we rely on this property while making use of blocks
in the routes. In MPDPSL-C on the other hand, a vehicle may never be fully unloaded
because the request of a port visited in one cycle may be carried over to the next cycle.
Therefore, we may not utilize the block structure and need to eliminate the Block Insert,
Block Swap and Intra Route phases from the algorithm. However, the Insert/Split phase,
which is the core phase of the algorithm, works fine with the elimination of the precedence
constraints and the depot location.

5.2 Computational Results

As we carry out a detailed parameter tuning for TESA algorithm on the Insert/Split phase
parameters, we do not experiment with these parameters again and employ the same pa-
rameter settings for the modified TESA algorithm.

Employing the real life data provided to us by an international maritime transportation
agency, we manage to solve an instance of MPDPSL-C with 122 p-d pairs distributed
among 27 international ports. The demand range is set between 50 and 1500 containers
and we assume all vessels have a capacity of 1500 containers. The maximum distance
allowed per vessel is set to 7680 nautical miles assuming that a vessel can voyage 20 days
a month for 24 hours a day with 16 knots/hour. The computational time for this instance
is close to 2 minutes per restart. The cycle lengths, excess capacity for the cycles and
the number of ports visited in the cycles for this MPDPSL-C instance are provided in
Table 5.3. The solution has 16 vessels and an example of a cycle with five ports from the
solution is given in Figure 5.3. Note that the average cycle length is close to 3650 knots,
which takes almost two weeks of voyage but the demand is calculated for one month. In
the solution framework, we have to adjust the demand and the cycle lengths; and, we have
to ensure that we can accommodate the demand by the vessels available.
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Cycle Cycle Length Excess Capacity Number of
(knots) (containers) Ports

1 2860 115 6
2 2441 1 4
3 3323 0 5
4 2706 8 4
5 4253 11 8
6 4298 17 6
7 3601 106 6
8 3807 0 5
9 3738 0 8

10 2951 0 5
11 3194 36 4
12 4461 7 9
13 2224 112 5
14 3656 9 6
15 5224 0 9
16 5369 3 10

Average 3631.63 26.56 6.25

Table 5.3: Results from an MPDPSL-C instance

At the current stage, we have shown that an MPDPSL-C instance can be solved with
some minor modifications on our original TESA algorithm. As a result, this part of the
study only prepares the background and necessary tools for the larger algorithmic frame-
work that is to be designed for the solution of a real life MPDPSL-C instance.

Figure 5.3: A cyclic route from the real life instance of MPDPSL-C
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Chapter 6

Concluding Remarks

In this study, we present an efficient heuristic for MPDPSL. To the best of our knowl-
edge, this is the first algorithm in the literature for the multi-vehicle version of the prob-
lem. To solve this problem, we develop a meta-heuristic algorithm where we combine
the strengths of Tabu Search and Simulated Annealing to obtain an algorithm that ex-
hibits both intensification and diversification capabilities. Due to the many possible ways
of splitting a load among vehicle routes, search neighborhoods for MPDPSL are of high
computational complexity. In our heuristic algorithm implementation, we employ a bi-
nary heap to search the neighborhoods efficiently and avoid excessive computation times.

This work also presents two sets of test problems that are obtained by modifications to
test instances for similar problems in the literature. Results on these problems can serve
as benchmark for future research on MPDPSL. Since no computational results are avail-
able on MPDPSL, we compare the solution quality of our heuristic with Nowak et al’s
[10] results on the single vehicle version. Even though our heuristic is not designed for
this version, we demonstrate that it is capable of producing comparable and mostly higher
quality solutions in comparable CPU time. In the absence of any benchmark results on
the second problem set derived from the Ropke and Pisinger [13] instances, we present
the first results and explore the benefit of split loads on this new set which has different
characteristics than the first one. We observe that load splitting provides significant bene-
fits on these instances as well; however, the benefits are relatively small compared to the
first problem set. We attribute the difference to the spatial distribution of the pickup and
delivery points in the two problem sets. Based on our observations on the two problem
sets, we conclude that both load size range and spatial distribution of the pickup and de-
livery points are important factors in the magnitude of benefits that can be obtained from
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split loads. Our study expands the findings of Nowak et al. on the benefit of split loads
to the multiple vehicle version of the problem. We hope that these results draw attention
to the potential savings that can be achieved by allowing load splits in many application
areas of PDP.

Outsourcing, as an idea, has been around for a long time. However, in contemporary
business practices, even third party logistics operators outsource some of their operations
to a fourth party. In that respect, we define the MPDPSL with Outsourcing Option and
modify our existing algorithm to obtain results for a problem set in the literature. We
observe that the outsourcing option has significant potential based on the experiments
we conduct on various cost schemes. We claim that when the pricing scheme of the
company is different than that of the outside carrier, benefits obtained from outsourcing
are significantly higher than when the pricing schemes of the company and the outside
carrier are similar to each other.

We had a chance to observe the transportation network of an international maritime
transportation agency and based on their network, we present MPDPSL with cyclic routes
without depot. We modify our existing algorithm to match the structures of MPDPSL-C
and present results on a real life case. In the future, we hope to utilize our MPDPSL-
C algorithm in a larger framework to solve a real life problem with a few additional
constraints that we have not discussed in this study.

While the proposed heuristic offers promising results, it is still worthwhile to explore
exact solution approaches for the solution of MPDPSL. Experience from earlier work
on similar problems suggests that exact approaches will be limited to producing optimal
solutions for only very small size problems. Still, these solutions can serve as benchmark
results to evaluate the performance of heuristics. Moreover, ideas from exact solution
approaches can be utilized to build effective heuristics and lower bounds for the same
problem. This is an avenue of research that we hope to pursue in the future.
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Appendix A

Algorithm Description and Computational Com-
plexity Analysis

A.1 Notation

A pair (p, d) consists of a pickup stop and the corresponding delivery stop with indices p
and d. The (possibly partial) load quantity of pair (p, d) is qp. s(p, d) denotes the decrease
in route length obtained by removing the pair (p, d) from its current route. A solution

S = {R1, R2, . . . , R|S|} is a collection of routes R that consist of pickup and delivery
stops. c(R) denotes the cost of route R and c(S) denote the cost of the solution S. The
tuple <`p1,`

d
2>− <`p2,`

d
2> denotes the new pickup and delivery positions for pair (p, d)

to be split into two such that part of the load is picked up and delivered after positions
`p1 and `d1, respectively and the remainder is picked up and delivered after positions `p2
and `d2, respectively. If the pair (p, d) is inserted rather than split, then the pickup stop
is inserted after `p1, the delivery stop is inserted after `d1 and <`p2,`

d
2> = ∅. c(<`p,`d>)

is the cost of inserting p and d after the position `p and `d, respectively. Note that by
triangular inequality, s(p, d) and c(<̀ p,`d>) are always nonnegative. Finally, r(<̀ p,`d>)

is the residual vehicle capacity for inserting p and d after position `p and `d, respectively.

A.2 Software Architecture and Data Structure

TESA Algorithm is implemented in C++ programming language. There are four main
classes in the software architecture, namely Stop, Block, Route and Solution. Stop class
consists of several attributes like index, demand et cetera and corresponds to a single node
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of a p-d pair in the network. In Block, there are several Stop objects constituting a route
segment. Route class consists of Stop objects and Solution class consists of Route objects.
There are also several functions in these classes in order to insert/delete a Stop to/from
a Route, calculate the objective function value and access/update the attributes of a Stop

object.
The Stops in a Route are stored in a doubly linked-list which allows us to insert/delete

in O(1) time. Since accessing an element in a linked-list is in O(|R|), where |R| denotes
the size of the route, we came up with a structure that allows us to access any Stop in a
Route in O(1). In order to access, delete or insert an element in a linked-list in C++ , one
should use a special pointer called an iterator. An iterator points to the corresponding
element in the list and by incrementing the iterator, one can access the next element.
Therefore, in order to find an element, we should scan the list starting from the first
element, which can take up to O(|R|). However, if we somehow store the iterator of an
element then we can access to that element without scanning the whole list. Since the
number of splits allowed for a Stop is limited, we have an upper bound on the maximum
number of Stops in a Solution, which is 2nk. Consequently, we can create an array of
iterators at the size of this upper bound and access any iterator by using the index of the
corresponding Stop. Accessing an element in an array by index is in O(1) and accessing
an element in a list by using an iterator is also in O(1), so accessing an element in the list
by index is in O(1) + O(1) = O(1). Note that this structure is the equivalent of a hash

table where the node indices are used instead of a hash function.
We also implemented a Binary Heap in order to improve the average running time

of the Insert/Split phase. The function makeHeap() is used for creating a new heap
H . Let minimum(H) denotes the function returning the pointer of the element with the
minimum key value. Also, let insert(H, x) and extractMin(H) denote the functions for
inserting the element x to H and deleting the element with the minimum key value while
returning the pointer of this element.

A.3 Insert/Split Phase

The detailed pseudocode for selecting a candidate move for a given pair (p, d) is provided
in Algorithm 5. Note that minInsert(T ) is a function that returns the tuple <̀ p,`d>− ∅
where <`p,`d> is the best position where entire load qp can be inserted and function
minSplit(T ) returns the best two split positions <̀ p

1,`
d
2>− <̀ p

2,`
d
2> where load qp can be

served in two partial shipments on the list T . The time complexity proofs for the worst
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Algorithm 5 Insert/Split

1: Input: S, (p, d), P r //S: Solution, (p,d): Selected pair
2: Output: <̀ p

1,`
d
2>− <̀ p

2,`
d
2> //Best position for insert or split

3: H ← makeHeap() //H: Binary heap of <̀ p,`d> with key c(<̀ p,`d>)
4: T ← ∅ //T: An array of <̀ p,`d>
5: SimList← ∅ //SimList: An array of <̀ p

1,`
d
2>− <̀ p

2,`
d
2>

6: ChosenMove← ∅ //Initialize chosen move
7: isMoveChosen← false
8: for all Ri ∈ S do
9: for all r(<̀ p,`d>) > 0 ∈ Ri do

10: if c(<̀ p,`d>) + c(Ri) ≤ D then
11: insert(H, <̀ p,`d>)
12: end if
13: end for
14: end for
15: while H 6= ∅ and |SimList| ≤ Nmove do
16: if r(minimum(H)) ≥ qp and <̀ p,`d> is not TABU then
17: SimList← SimList ∪ extractMin(H)
18: else
19: for all <̀ p,`d> ∈ T do
20: if r(minimum(H)) + r(<`p,`d>) ≥ qp and minimum(H)− <`p,`d>

is not TABU and c(bestSplit(SimList)) > c(minimum(H)) + c(<̀ p,`d>)
then

21: SimList← SimList ∪ (minimum(H)− <̀ p,`d>)
22: end if
23: end for
24: insert(T, extractMin(H))
25: end if
26: end while
27: temp← CalculateTemperature(Pr)
28: ChosenMove← bestMove(SimList)
29: while isMoveChosen = false do
30: Extract a <̀ p

1,`
d
2>− <̀ p

2,`
d
2> randomly from SimList

31: prob← generateProbability() //Generate a number ∈ (0, 1)
32: ∆C ← c(<̀ p

1,`
d
2>− <̀ p

2,`
d
2>)− s(<̀ p

1,`
d
2>− <̀ p

2,`
d
2>)

33: if prob ≤ e−∆C/temp then
34: ChosenMove←<̀ p

1,`
d
2>− <̀ p

2,`
d
2>

35: isMoveChosen = true
36: end if
37: end while
38: return chosenMove
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and best cases of this phase are as follows.

Proposition 1 The worst case running time of the Insert/Split Phase is in O(n5) and the

best case running time is in Ω(n3).

Proof.
Worst Case Analysis. Since there are n pairs, the upper bound on the number of stops is
2nk, where k denotes the maximum number of splits allowed for one p-d pair. Between
lines 8-14 of Algorithm 5, we check for all possible positions <̀ p,`d> such that `p comes
before `d, which takes exactly

|Ri|+ (|Ri| − 1) + . . .+ 1 =
|Ri|(|Ri|+ 1)

2
∀Ri ∈ S

operations for one route. Since one operation is in O(1), for one route the complexity
is in Θ(|Ri|2). For a particular solution S, i.e. ∀Ri ∈ S, it takes

∑
Ri∈S

Θ(|Ri|2)

which is in O(n2), since

∑
Ri∈S

|Ri| ≤ 2nk and
∑
Ri∈S

|Ri|2 ≤

(∑
Ri∈S

|Ri|

)2

≤ (2nk)2

In the worst case, for each loop between 9-13, we insert an element to the Binary Heap
created at the beginning of the every iteration. Since inserting an element to a heap is in
O(log |H|), the entire loop takes up to O(n2 log n2) = O(n22 log n) = O(n2 log n).

The loop between 15-26 continues until the heap is empty. Since the size of the heap
is in O(n2) and there is an inner loop between 19-23 that compares each element in the
array T with the current minimum(H), during the entire loop, O(n2 + (n2 − 1) + . . .+

1) = O(n4) comparisons are made. Each comparison takes O(1) and minimum(H) also
takes O(1). Also, there is an extractMin(H) operation at each iteration, which takes
O(log |H|). Therefore, the entire loop takes up to O(n2 log n2 + n4) = O(n4). However,
this is only for one selected pair (p,d), since there are O(n) pairs to be considered, the
worst case running time of the Insert/Split Phase is in O(n)(O(n2 log n) + O(n4)) =

O(n5).
Best Case Analysis. For the loop between 8-14, we still have to examine O(n2)

positions <̀ p,`d>, however, due to the distance and capacity constraints, there might not
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be O(n2) elements in the heap. In fact, it is possible that there is no element in the heap,
which makes the loop between 15-26 run in Ω(1). Again, there areO(n) pairs to consider,
so, in the best case, the running time of the Insert/Split Phase is in O(n)Ω(n2) = Ω(n3).

Even though we have a worst case running time of O(n5), computational experiments
showed that on average, there are O(n) elements in the heap, which makes the average
running time of the phase O(n)(O(n2 log n) +O(n2)) = O(n3 log n).

A.4 Block Insert Phase

As discussed before, a block is a route segment starting and ending with an empty vehicle,
there might be several blocks in a route or sometimes a route itself might be a single
block. In one iteration of this phase, a block B∗ is selected from the solution and inserted
to another location `B∗ such that s(B∗) − c(`B

∗
) is largest. Since the capacity and the

precedence constraints remain intact between block movements, only the route length
constraint is taken into consideration. A pseudocode for BlockInsert(Sc) is provided in
Algorithm 6.

Algorithm 6 BlockInsert
1: Input: Sc // S: Solution
2: Output: B∗, `B∗ // Selected block and the best position
3: B∗ ← ∅ // Initialize selected block
4: `B

∗ ← ∅ // Initialize best position
5: for all B ∈ Sc do
6: for all `B ∈ Sc do
7: if c(`B) + c(R`B) ≤ D then
8: if c(`B)− s(B) < c(`B

∗
)− s(B∗) then

9: B∗ ← B
10: `B

∗ ← `B

11: end if
12: end if
13: end for
14: end for
15: return B∗, `B

∗
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A.5 Block Swap Operator

In one iteration of this phase, two blocks B′ − B′′ are selected and they are inserted into
each other’s routes such that (s(B′) + s(B′′))− (c(`B

′
) + c(`B

′′
)) is largest. Note that `B′

and `B′′ denote the best possible locations in these routes for B′ and B′′ respectively. A
pseudocode for BlockSwap(Sc) is provided in Algorithm 7.

Algorithm 7 BlockSwap
1: Input: Sc // S: Solution
2: Output: B′, B′′, `B′ , `B′′ // Selected blocks and the best positions
3: B′ ← ∅ // Initialize selected block
4: B′′ ← ∅ // Initialize selected block
5: `B

′ ← ∅ // Initialize best position
6: `B

′′ ← ∅ // Initialize best position
7: for all Bi ∈ Sc do
8: for all Bj, i 6= j ∈ Sc do
9: for all `Bi ∈ RBj

do
10: if c(`Bi) + c(RBj

) ≤ D then
11: if c(`Bi)− s(Bi) < c(`B

′
)− s(B′) then

12: B′ ← Bi

13: `B
′ ← `Bi

14: end if
15: end if
16: end for
17: for all `Bj ∈ RBi

do
18: if c(`Bj) + c(RBi

) ≤ D then
19: if c(`Bj)− s(Bj) < c(`B

′′
)− s(B′′) then

20: B′′ ← Bj

21: `B
′′ ← `Bj

22: end if
23: end if
24: end for
25: end for
26: end for
27: return B′, B′′, `B

′
, `B

′′
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Appendix B

Results of Ropke and Pisinger Problem Instances

B.1 Split vs. No-split Solutions

Load Range 0.25-1 0.51-0.60
Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 17621.60 15899.60 15973.60 0.46 17539.60 16791.20 16926.50 0.80
B 18404.10 16351.30 16327.10 -0.15 17123.00 17115.50 17076.30 -0.23
C 15707.80 14475.70 14486.50 0.07 15051.00 14956.00 15000.60 0.30
D 16779.30 15367.60 15348.40 -0.13 16546.00 16290.00 16248.60 -0.25
E 12047.50 11118.10 11191.90 0.66 12423.00 11397.50 12149.70 6.19
F 12463.40 9979.03 10013.70 0.35 11026.30 9532.59 10779.90 11.57
G 10814.60 9876.62 9902.91 0.27 10875.00 9665.06 10742.60 10.03
H 9215.82 8670.63 8770.05 1.13 9218.57 9199.58 9202.81 0.04
I 15875.90 13241.60 13448.50 1.54 14935.80 14469.40 14592.70 0.84
J 14671.50 12927.10 12957.00 0.23 13576.30 13200.20 13201.00 0.01

K 14411.40 12685.20 12762.50 0.61 13097.80 12759.30 13086.90 2.50
L 15561.00 13958.00 14067.80 0.78 15727.10 14867.80 14919.90 0.35

Average 0.48 2.67

Table B.1: Results of the problems in Ropke and Pisinger [13] with 50 nodes comparing
the tour length of split solutions versus no-split solutions.
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Load Range 0.25-1 0.51-0.60
Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 31003.40 26274.60 26182.10 -0.35 28913.30 27301.20 28122.90 2.92
B 31383.90 25395.60 25618.00 0.87 28466.60 27090.10 28289.20 4.24
C 31959.80 25876.20 25919.30 0.17 27925.80 27221.30 27657.50 1.58
D 31939.40 28295.30 28606.70 1.09 30084.10 28574.70 29725.00 3.87
E 18055.40 16102.10 16361.50 1.59 17595.20 15320.00 17549.00 12.70
F 19714.40 15702.40 15691.70 -0.07 18159.30 17574.20 18071.70 2.75
G 19964.10 14756.20 15104.70 2.31 17884.60 14888.40 17709.20 15.93
H 21055.10 16711.90 17291.90 3.35 19042.60 16259.70 19017.50 14.50
I 28674.20 24899.10 25235.30 1.33 27931.70 24994.40 27288.60 8.41
J 25719.10 22611.80 22655.70 0.19 24220.30 23025.50 23517.60 2.09

K 31055.50 23187.30 23440.20 1.08 26920.40 24509.00 26331.20 6.92
L 26584.20 21961.90 22172.10 0.95 24795.60 23994.70 24100.30 0.44

Average 1.04 6.36

Table B.2: Results of the problems in Ropke and Pisinger [13] with 100 nodes comparing
the tour length of split solutions versus no-split solutions.

Load Range 0.25-1 0.51-0.60
Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 68806.60 57872.80 58704.50 1.42 64657.40 58847.60 64091.80 8.18
B 65680.40 55707.90 56200.40 0.88 63230.90 57559.10 62719.00 8.23
C 66912.80 57003.80 57681.00 1.17 63353.50 57495.90 62594.90 8.15
D 66896.50 58744.30 59335.40 1.00 64698.60 59396.70 64426.30 7.81
E 41316.30 30138.20 30502.30 1.19 37890.80 31736.80 37506.20 15.38
F 36325.20 29185.90 30153.70 3.21 33552.50 27596.00 33192.00 16.86
G 38698.30 30068.50 30626.50 1.82 34876.50 29421.80 34632.20 15.04
H 38990.90 30414.00 31320.20 2.89 36151.50 31911.50 35752.20 10.74
I 62167.30 50830.60 51338.80 0.99 57721.30 50154.80 56830.80 11.75
J 67448.80 54355.60 55120.80 1.39 61133.20 53636.20 60668.30 11.59

K 62832.40 51120.50 51949.00 1.59 57895.90 50084.40 57012.90 12.15
L 67103.90 53828.60 54631.40 1.47 63662.70 54393.40 62504.20 12.98

Average 1.58 11.57

Table B.3: Results of the problems in Ropke and Pisinger [13] with 250 nodes comparing
the tour length of split solutions versus no-split solutions.

Load Range 0.25-1 0.51-0.60
Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 122227.00 107933.00 109432.00 1.37 117079.00 106674.00 116736.00 8.62
B 130599.00 114731.00 116553.00 1.56 124167.00 110881.00 123336.00 10.10
C 130003.00 110639.00 111894.00 1.12 120185.00 109181.00 119672.00 8.77
D 131867.00 112940.00 114494.00 1.36 121301.00 109746.00 120482.00 8.91
E 90946.60 67132.20 70243.70 4.43 82358.30 63068.40 81880.80 22.98
F 97917.70 73073.30 75601.10 3.34 90732.80 68829.70 89849.90 23.39
G 99146.70 72823.80 76561.80 4.88 91885.90 70038.80 91386.90 23.36
H 82228.20 62928.10 65960.10 4.60 76734.40 60568.50 76288.90 20.61
I 115321.00 94473.60 97124.40 2.73 108329.00 93178.20 107403.00 13.24
J 123209.00 101738.00 103359.00 1.57 113252.00 96984.80 112239.00 13.59

K 121653.00 103395.00 105728.00 2.21 114033.00 97429.50 113463.00 14.13
L 120380.00 102316.00 104367.00 1.97 115473.00 98102.70 114510.00 14.33

Average 2.59 15.16

Table B.4: Results of the problems in Ropke and Pisinger [13] with 500 nodes comparing
the tour length of split solutions versus no-split solutions.
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B.2 Computational Times

Table B.5: CPU time per restart (in seconds) to solve the problems when the load size
range is 0.25-1.

Number of requests 50 100 250 500
Problem Split No-split Split No-split Split No-split Split No-split

A 3.4 2.8 19.9 17.4 202.1 186.7 673.8 661.4
B 2.9 2.3 18.9 17.2 189.9 165.2 620.0 582.2
C 3.3 2.8 22.5 18.6 202.3 191.6 603.2 615.6
D 2.8 2.3 20.2 18.4 184.8 178.1 638.2 634.0
E 5.5 4.1 44.8 41.2 658.6 359.2 1286.4 1061.2
F 4.0 2.0 51.8 25.6 815.6 505.0 1293.0 1101.2
G 4.8 3.4 34.3 30.7 621.8 396.6 1221.6 1200.6
H 6.1 4.8 41.9 39.2 849.8 414.5 1876.0 1915.0
I 3.5 2.5 29.6 22.5 297.7 236.2 985.2 925.8
J 5.0 4.4 31.5 25.0 298.0 234.0 811.2 796.8

K 3.3 2.8 19.5 14.3 348.6 285.4 751.0 778.8
L 2.7 2.1 32.1 19.2 255.1 179.7 870.8 778.6

Average 3.9 3.0 30.6 24.1 410.3 277.7 969.2 920.9

Table B.6: CPU time per restart (in seconds) to solve the problems when the load size
range is 0.51-0.60.

Number of requests 50 100 250 500
Problem Split No-split Split No-split Split No-split Split No-split

A 4.5 4.2 25.1 31.8 287.3 320.7 2124.6 954.8
B 4.3 4.5 19.4 34.4 253.0 314.4 2374.2 718.4
C 4.5 5.0 34.0 37.8 299.5 323.1 1985.8 1144.4
D 4.3 4.0 19.0 28.8 356.1 344.5 2247.0 849.4
E 7.6 6.3 74.7 56.4 3174.6 868.9 10860.4 2090.6
F 7.4 6.3 95.8 70.1 1123.1 912.7 10815.8 2051.4
G 6.2 7.6 50.1 50.9 1089.3 1672.8 11101.8 1604.0
H 11.2 9.1 57.9 67.5 939.5 704.5 16763.8 2586.0
I 5.8 5.3 32.4 38.0 468.2 322.0 5075.4 1485.6
J 6.5 5.4 37.5 46.2 448.8 345.2 4698.0 1183.6

K 2.3 5.5 30.4 40.4 537.5 325.4 4539.6 1250.8
L 4.4 3.9 49.3 35.1 392.3 372.5 5996.2 1241.0

Average 5.7 5.6 43.8 44.8 780.8 568.9 6548.6 1430.0
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