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Abstract

The revolution of Internet together with the progression in computer technology
makes it easy for institutions to collect unprecedented amount of personal data. This
pervasive data collection rally coupled with the increasing necessity of sharing of it
raised a lot of concerns about privacy. Widespread usage of data mining techniques,
enabling institutions to extract previously unknown and strategically useful information
from huge collections of data sets, and thus gain competitive advantages, has also
contributed to the fears about privacy.

One method to ensure privacy during disclosure is to selectively hide or generalize
the confidential information. However, with data mining techniques it is now possible
for an adversary to predict hidden or generalized confidential information using the rest
of the disclosed data set. We concentrate on one such possible threat, classification,
which is a data mining technique widely used for prediction purposes, and propose
algorithms that modify a given microdata set either by inserting unknown values (i.e.
deletion) or by generalizing the original values to prevent both probabilistic and decision
tree classification based inference.

To evaluate the proposed algorithms we experiment with real-life data sets. Re-
sults show that proposed algorithms successfully suppress microdata and prevent both
probabilistic and decision tree classification based inference. The hybrid versions of the
algorithms, which aim to suppress a confidential data value against both classification
models, block the inference channels with substantially less side effects. Similarly, the
enhanced versions of the algorithms, which aim to suppress multiple confidential data
values, reduce the side effects by nearly 50%.
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Özet

İnternet devrimi ve bilgisayar teknolojisinin ilerlemesi ile birlikte, kurumların daha
önce benzeri görülmemiş miktarda kişisel veri toplaması mümkün olmuştur. Yaygınlaşan
veri toplama aktiviteleri, artan veri paylaşma ihtiyacı ile birleştiğinde veri mahremiyeti
ile ilgili endişeleri tetiklemiştir. Ayrıca kurumların oldukça büyük veri setlerinden
önceden bilinmeyen ancak stratejik olarak faydalı bilgileri bulmasını sağlayan veri maden-
ciliği tekniklerinin yaygınlaşması da mahremiyetle ilgili endişeleri arttırmıştır.

Veri paylaşımı esnasında mahremiyeti sağlamanın bir yolu gizlenmesi gereken veri
alanlarının tek tek saklanması ya da genellenmesidir. Ancak, veri madenciliği teknikleri
ile kötü niyetli kullanıcıların verinin geri kalanını kullanarak, saklanmış ya da genel-
lenmiş veri alanlarını tahmin etmesi mümkün olmaktadır. Bu tez kapsamında popüler
tahminsel veri madenciliği tekniklerinden biri olan sınıflandırmaya odaklanılarak, ver-
ilen bir veri setini gerek veri alanlarını silerek gerekse genelleyerek güncelleyen, olasılıksal
ve karar ağacı kökenli sınıflandırma tekniklerine dayalı çıkarımları önleyen algoritmalar
önerilmektedir.

Önerilen algoritmaların performansları gerçek veri setleri kullanılarak test edilmiştir.
Test sonuçları, önerilen algoritmaların veri setlerini başarıyla baskıladığını ve hem
olasılıksal hem de karar ağacı kökenli sınıflandırma tekniklerine dayalı çıkarımları en-
gellediğini göstermiştir. Algoritmaların aynı anda hem olasılıksal hem de karar ağacı
kökenli sınıflandırma tekniklerine dayalı çıkarımları önleyen melez sürümleri, gizli ver-
ileri çok daha az yan etki ile saklamayı başarmıştır. Benzer şekilde, algoritmaların
birden fazla gizli veri alanını saklamayı hedefleyen gelişmiş sürümlerinin, yan etkileri
%50 civarında azalttığı gözlenmiştir.
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Chapter 1

INTRODUCTION

This chapter introduces the main issue addressed and the necessary background for the

thesis. A brief description of our approaches and the outline of the structure of the

thesis are provided.

1.1 Background and Motivation

In tandem with the advances in networking and storage technologies, the private sec-

tor as well as the public sector has increased their efforts to gather, manipulate, and

commodify information on a large scale. Non-governmental organizations collect large

amounts of personal information about their customers or members for many reasons

including better customer relationship management and high-level decision making.

Public safety, on the other hand, is the major motivation for large-scale personal in-

formation collection efforts initiated by governmental organizations. This pervasive

data harvesting efforts coupled with the increasing need to share the data with other

institutions or with public raised concerns about privacy[3]. Privacy is the ability of

an individual to prevent information about himself becoming known to other people

without his approval [4]. More specifically, it is the right of individuals to have the

control over the data they provide. This includes controlling (1) how the data is going

to be used, (2) who is going to use it, and (3) for what purpose.

1



Table 1.1: Academic Health Medical Records

Name Zipcode Gender Age Indigestion Chest Palpitation Diagnosis
Pain

Alice 90302 Female 29 Y N Y Dyspepsia
Bob 90410 Male 22 N Y Y Angina Pectoris
John 90301 Male 27 Y N N Dyspepsia
Lisa 90310 Female 43 Y N N Gastritis
Chris 90301 Male 52 N Y Y Gastritis
Leo 90410 Male 47 Y Y Y Angina Pectoris
Prue 90305 Female 30 N N Y Angina Pectoris
Joe 90402 Male 36 N Y Y Angina Pectoris
Ross 90301 Male 52 Y Y Y Gastritis

Widespread usage of powerful data analysis tools and data mining techniques, en-

abling institutions to extract previously unknown and strategically useful information

from huge collections of data sets, and thus gain competitive advantages, has also con-

tributed to the fears about privacy. Data mining techniques can be used for many

reasons including but not limited to national security warning and national security

decision making [1] for government agencies, and providing better business intelligence

and customer relationship management for enterprises. On the other hand, they can

also be used by adversaries to infer hidden confidential, i.e. sensitive, information about

individuals from the disclosed data sets, and thus pose a great threat to privacy. The

security and privacy threats due to use of data mining techniques was first pointed out

by O’Leary [43] and was discussed further in a symposium on knowledge discovery in

databases and personal privacy [44; 33; 45; 51]. Since then, privacy issues have become

one of the most important aspects of database and data mining research.

Example 1. Consider an on-line federation of hospitals and research organizations

collaborating with each other, named HealthFed. Each federated hospital collects

medical records of their patients together with their privacy preferences, and interacts

with research organizations within the federation to share this information. In partic-

ular, assume that the city clinic Academic Health and Academic Research Institute,

both being part of the HealthFed federation, collaborate with each other for research

purposes. More specifically, Academic Health shares patients’ medical records with

2



Table 1.2: Academic Health Medical Records Shared with Academic Research Institute

Zipcode Gender Age Indigestion Chest Palpitation Diagnosis

Pain

90302 Female 29 Y N Y Dyspepsia

90410 Male 22 N Y Y ?

90301 Male 27 Y N N Dyspepsia

90310 Female 43 Y N N Gastritis

90301 Male 52 N Y Y Gastritis

90410 Male 47 Y Y Y Angina Pectoris

90305 Female 30 N N Y Angina Pectoris

90402 Male 36 N Y Y Angina Pectoris

90301 Male 52 Y Y Y Gastritis

Academic Research Institute after ensuring the privacy preferences of each patient are

satisfied. Table 1.1 shows a set of such patients who gave consent to Academic Health to

disclose their medical records to third parties for research purposes provided that their

Name attribute is removed before disclosure. However, Bob, knowing that it might

still be possible to link his medical records with other data sources through potentially

identifying attributes like gender, zipcode, and age, required not only his name but

also his diagnosis information to be hidden before disclosure. Therefore, Academic

Health removed not only the Name attribute but also the diagnosis information from

Bob’s medical records before sharing it, as shown in Table 1.2. Unfortunately, given

these medical records, Academic Research Institute can easily find Bob’s diagnosis to

be Angina Pectoris using a predictive data mining technique called classification.

1.2 Our Approaches

In this work, we address this particular problem of privacy preserving microdata disclo-

sure. We assume that each individual might have different preferences regarding to their

privacy. Therefore, the confidential attributes might differ for each individual. In such

a setting, one method to ensure privacy while disclosing a microdata set is to selectively

hide (i.e. replace with a symbol denoting unknown) or generalize the confidential data

3
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Focus of This Thesis

Regression

Figure 1.1: Main Focus Areas of This Thesis

values. This method ensures privacy from a micro-level perspective. But, this is not

the case for the macro-level perspective, as with powerful data analysis tools and data

mining techniques it is now possible for an adversary to predict hidden or generalized

confidential information using the rest of the disclosed data set. We concentrate on

one such possible threat, classification, which is a data mining technique widely used

for prediction purposes, and propose algorithms that modify a given microdata set to

prevent both probabilistic and decision tree classification based inference. We select

Näıve Bayesian and ID3 as typical representatives of probabilistic and decision tree

classifiers respectively, and develop our algorithms accordingly. Apart from avoiding

different inference types, the algorithms proposed either employ different modification

strategies or different downgrade strategies as pointed out in Figure 1.1.

More specifically, we design and implement the following algorithms which employ

different modification and downgrade strategies, and aim to avoid either probabilistic

or decision tree classification based inference.

1. The DECP and INCP algorithms suppress a single confidential data value against

Näıve Bayesian classifier. These two algorithms downgrade the Näıve Bayesian

classifier by identifying a set of data values from the rest of the data set that might

4



cause confidential information to be inferred, and deleting them (i.e. replacing

them with a special symbol indicating unknown).

2. The DROPP and HID3 algorithms suppress a single confidential data value against

Näıve Bayesian and ID3 classifiers respectively. These two algorithms downgrade

the microdata tuple containing the confidential data value. They identify a set

of data values from the microdata tuple itself that might cause confidential infor-

mation to be inferred, and delete them.

3. The DECP-G and INCP-G algorithms suppress a single confidential data value

against Näıve Bayesian classifiers. These two algorithms downgrade the Näıve

Bayesian classifiers by identifying a set of data values from the rest of the data

set that might cause confidential information to be inferred, and generalizing

them.

4. The DROPP-G and HID3-G algorithms suppress a single confidential data value

against Näıve Bayesian and ID3 classifiers respectively. These two algorithms

downgrade the microdata tuple containing the confidential data value. They

identify a set of data values from the microdata tuple itself that might cause

confidential information to be inferred, and generalize them.

5. The e-DECP and e-DROPP algorithms suppress multiple confidential data values

against Näıve Bayesian classifiers using the deletion modification strategy.

6. The e-DECP-G and e-DROPP-G algorithms suppress multiple confidential data

values against Näıve Bayesian classifiers using the generalization modification

strategy.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, a brief introduction

to learning classifiers from a given training data set is given. We then formally define

5



the problem of suppressing microdata to prevent classification based inference, and give

a brief survey of the related work on privacy preserving data disclosure. In Chapter 3,

we present the microdata suppression algorithms that prevent classification based infer-

ence using the deletion modification strategy. We describe in detail how we downgrade

(i) the Naive Bayesian Classifier, and (ii) the microdata tuple to prevent inference of a

confidential data value. In Chapter 4, we present the microdata suppression algorithms

that prevent classification based inference using the generalization modification strat-

egy. We describe in detail how we downgrade (i) the Naive Bayesian Classifier, and (ii)

the microdata tuple to prevent inference of a confidential data value. Then, we present

the performance evaluation results of the proposed algorithms in Chapter 5. Finally,

we conclude the thesis in Chapter 6 where a summary and conclusions from this study

are given. Some interesting future research problems are also addressed in Chapter 6.

6



Chapter 2

PRELIMINARY CONCEPTS AND RELATED

WORK

This chapter provides preliminary definitions and problem formulations for this thesis.

First, we describe the microdata suppression problem. Then, we define the modification

and downgrade strategies for microdata suppression. Next, we provide the metrics

that are used evaluate the proposed algorithms. Finally, we examine related work in

literature on protecting privacy while disclosing microdata.

2.1 Problem Formulation

Let Λ = {α1 , α2 , ..., αn} be the set of attributes with associated domains1 V α1
, V α2

,...,

V αn
, and extended domains2 eV α1

, eV α2
, ..., eV αn

respectively. Let D = {d1 , d2 , ..., dm}

be the microdata set where each tuple di ∈ eV α1
× eV α2

× ...× eV αn
is an ordered list

of values.

For each attribute αj ∈ Λ, there is a mapping αj [di ] : eV α1
×eV α2

×...×eV αn
→ eV αj

from eV α1
× eV α2

× ... × eV αn
into the extended domain eV αj

. The mapping αj [di ]

1The domain of an attribute is represented by a finite set of discrete values excluding the unknown
(i.e. null) value denoted by ν.

2The extended domain of an attribute is represented by a finite set of discrete values including the
unknown (i.e. null) value denoted by ν such that eV αj

= V αj
∪ {ν}.
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represents the value of attribute αj of microdata tuple di .

Similarly, for each microdata set D, there is a mapping D[constraint] : D → S ∈ 2D

from D = {d1 , d2 , ..., dm} into S ∈ 2D . The mapping D[constraint] represents the set of

all tuples satisfying the constraint, expressed in conjunctive normal form, on attribute

values. Examples of valid constraint expressions include the following:

• α1 [d] = val1 ,

• ¬ α1 [d] = val1 ,

• αi [d] = vali ∧ ¬ αj [d] = valj , and

• α1 [d] = val1 ∧ α2 [d] = val2 ∧ ... ∧ αn [d] = valn .

Definition 2.1. Classifiers(Σ). Σ denotes the set of all classifiers that aims to

predict the value of a single attribute, i.e. the target attribute3 ατ , in terms of the

predictor attributes4.

Each classifier ς ∈ Σ is defined in the context of a training data set and a target

attribute. For example, a classifier of type Näıve Bayesian (i.e. NB) built using the

data set D with ατ ∈ Λ as the target attribute is denoted as ςnb
D ,ατ . If the type of the

classifier, the training data set or the target attribute is unknown or not relevant in a

given context, then a special symbol ⊥ is used instead of the respective symbol. For

example, ς⊥
D ,ατ denotes the set of all classifiers built using the data set D with ατ ∈ Λ

as the target attribute. Following the training phase, each classifier ς ∈ Σ can be viewed

as a function that takes a microdata tuple and predicts the most probable value of the

target attribute based on other attributes’ values. For example, if ς ∈ ς⊥
⊥,ατ then

ς : (eV α1
× eV α2

× . . . × eV αn
) → V ατ

.

Definition 2.2. Näıve Bayesian Classifier(Σnb). Let the jth attribute value of tuple

di , that is αj [di ], is unknown. According to Bayes’ theorem the probability that αj [di ]

3Also called the class attribute or the dependent attribute
4Also called the independent attributes
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has value v ∈ V αj
is equal to the posterior probability of v conditioned on di and is

given by

p(v|di) =
p(v)p(di |v)

p(di)
(2.1)

where p(v) and p(di) are the prior probabilities of v and di respectively, and p(di |v) is

the posterior probability of di conditioned on v. Näıve Bayesian classifier is a prob-

abilistic classifier based on Bayes’ theorem with the class conditional independence

assumption, that is, the effect of an attribute value on another attribute (i.e. class

attribute) is independent of the values of the remaining attributes. Due to class con-

ditional independence assumption, we can rewrite the posterior probability p(di |v) as

follows:

p(di |v) =
∏

j−1
k=1p(αk [di ]|v)

∏

n
k=j+1p(αk [di ]|v) (2.2)

The Näıve Bayesian Classifier ςnb
D−d i ,αj built using D − di as the training data set

will predict the most probable value for αj [di ] as vπ ∈ V αj
if and only if the following

condition holds:

p(vπ|di) > p(v|di) | ∀v ∈ V αj
− vπ (2.3)

Since p(di) is same for all v ∈ V αj
, it can be ignored as shown below:

p(vπ)p(di |vΠ ) > p(v)p(di |v) | ∀v ∈ V αj
− vπ (2.4)

Definition 2.3. ID3 Classifier (Σid3 ) Let αj [di ] be unknown. The ID3 classifier

ς id3
D−d i ,αj built using D − di as the training data set is a decision tree where each

internal node represents a decision node, each branch represents an outcome of the

decision and each leaf node represents a possible value v ∈ V αj
for αj [di ]. Such a

classifier will predict the most probable value for αj [di ] as vπ ∈ V αj
if and only if the

test of the remaining attributes of di against the decision tree leads a path from the root

node to a leaf node labeled with vπ.

Definition 2.4. Suppressing a Confidential Data Value. Let D′ be the microdata

set after applying a set of modifications to D. The confidential data value αj [di ] will be

suppressed with respect to D′, if and only if there exist no classifiers that can correctly
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predict the confidential data value.

ς(di
′) 6= αj [di ] ∀ς ∈ ς⊥

D ′−d i
′,αj (2.5)

In this work, we relax the above statement such that there exists no Näıve Bayesian or

ID3 classifier that can correctly predict the confidential data value.

ς(di
′) 6= αj [di ] ∀ς ∈ ςnb

D ′−d i
′,αj ∪ ς id3

D ′−d i
′,αj (2.6)

2.2 Modification Strategies for Microdata Suppres-

sion

There are two possible modification strategies that can be adopted to address the

microdata suppression problem.

Modification Strategy 1. Deleting an Attribute Value. This modification

scheme, also referred to as hiding, involves replacement of attribute values, includ-

ing the confidential data value(s), with a special symbol denoting the unknown (i.e.

null) value ν. Replacing attribute values with ν results in uncertainty in the micro-

data set. For example, in the simplest case of a binary attribute, an unknown value

can be either 0 or 1. Assuming that the value was 0 will contribute to the resulting

classification model in a contradicting way compared to the assumption that it was 1.

By carefully hiding instances of certain attributes, we can decrease the precision of the

classification models which can then be used to predict the confidential data values.

Definition 2.5. Taxonomy. A taxonomy T i for an attribute αi is a tree structured

concept hierarchy in the form of a partially ordered set (eV αi
,≺), where eV αi

is the

extended domain that enumerates all possible attribute values of αi , and ≺ is the partial

order that specifies is-a relationships among attribute values in eV αi
. Figure 2.1 shows

the taxonomy for the disease attribute.
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Figure 2.1: Disease Taxonomy

Modification Strategy 2. Generalizing an Attribute Value. Let us assume that

T = {T 1 , T 2 , ..., T n} represents the ordered set of taxonomies associated with attributes

Λ = {α1 , α2 , ..., αn} respectively. This modification scheme involves generalization of

attribute values, including the confidential data value(s), using the set of taxonomies

T .

2.3 Downgrade Strategies for Microdata Suppres-

sion

There are two possible downgrade strategies that can be adopted to address the micro-

data suppression problem.

Downgrade Strategy 1. Classification Model Downgrade. Let D be the original

microdata set with the confidential data value αj [di ]. Classification model downgrade

aims to transform the original microdata set D to D′ which satisfies the following

constraints:

i. The confidential data value αj [di ] is either deleted or generalized,

ii. The tuple containing the confidential data value is not modified. The only

11



exception to this is the confidential data value which is either deleted or

generalized,

∀α ∈ Λ − αj , α[di
′] = α[di ]

iii. The remaining tuples of the microdata set are modified if and only if there

exists at least one classifier that can correctly predict the actual confidential

data value,

D − di 6= D′ − di
′, iff ∃ς ∈ ς⊥

D−d i ,αj ς(di) = αj [di ]

iv. There exists no classifiers that can correctly predict the actual confidential

data value using the modified microdata set.

∀ς ∈ ς⊥
D ′−d i

′,αj ς(di
′) 6= αj [di ]

This scheme aims at downgrading all classification models ς ∈ ς⊥
D ′−d i

′,αj by modifying

the tuples d ∈ D − di .

Downgrade Strategy 2. Microdata Tuple Downgrade. Let D be the original

microdata set with the confidential data value αj [di ]. Microdata tuple downgrade aims

to transform the original microdata set D to D′ which satisfies the following constraints:

i. The confidential data value αj [di ] is either deleted or generalized,

ii. Remaining attribute values of the tuple containing the confidential data

value are modified if and only if there exists at least one classifier that can

correctly predict the actual confidential data value,

∃α ∈ Λ − αj , α[di
′] 6= α[di ], iff ∃ς ∈ ς⊥

D−d i ,αj ς(di) = αj [di ],

iii. The remaining tuples of the microdata set, which constitute the training

data set for classifier construction, are not modified,

D − di = D′ − di
′
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iv. The classifiers built using the modified microdata set are the same as the

ones built using the original data set,

ς⊥
D ′−d i

′,αj = ς⊥
D−d i ,αj

v. There exists no classifiers that can correctly predict the actual confidential

data value using the modified microdata tuple.

∀ς ∈ ς⊥
D−d i ,αj , ς(di

′) 6= αj [di ]

Unlike the classification model downgrade, this scheme downgrades only the microdata

tuple containing the confidential data value di , such that the classifiers ς ∈ ς⊥
D−d i ,αj

cannot correctly predict the confidential data value αj [di ].

2.4 Evaluation Measures

The two important issues in microdata suppression are; (1) minimization of informa-

tion loss enabling further use of the modified microdata set, and (2) maximization of

uncertainty enabling protection of confidential data values from classification based in-

ference. In the following, seven metrics for measuring information loss and uncertainty

incurred by the suppression process are introduced respectively.

2.4.1 Information Loss Metrics

Within the scope of this thesis, three different metrics are used to measure the informa-

tion loss: the Direct Distance, Sum of Kullback Leibler Distances and Average Change

in Mutual Information.

The Direct Distance, the simplest of all information loss metrics, basically counts

the number of attribute values hidden during the suppression process.
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Definition 2.6. Direct Distance. Let D and D′ be the original and modified mi-

crodata sets respectively. The direct distance between D and D′ can be defined as the

number of non-matching attribute values.

DD(D,D′) =
∑

i=1
m

∑

j=1
ndistij (2.7)

where

distij =







0 if αj [di ] = αj [di
′]

1 otherwise

The second information loss metric, utilized within the scope of this thesis, is the Sum

of Kullback Leibler Distances. This metric measures the information loss in terms of

the distance between the first order probability distributions of the original and the

modified microdata sets.

Definition 2.7. Kullback Leibler Distance. Let D and D′ be the original and mod-

ified microdata sets respectively. Let α ∈ Λ be an attribute with probability distribution

pα in D and pα
′ in D′. The Kullback Leibler distance between D and D′ in terms of

attribute α can be defined as the distance between the first order probability distributions

of α in D and D′.

KLD(D,D′) = D(pα||pα
′) =

∑

v∈V α
pα(v)log

pα(v)

pα
′(v)

(2.8)

Definition 2.8. Sum of Kullback Leibler Distances. Let D and D′ be the original

and modified microdata sets respectively. The sum of Kullback Leibler distances between

D and D′ over all attributes α ∈ Λ can be defined as follows.

SKLD(D,D′) =
∑

α∈ΛD(pα||pα
′) (2.9)

The last information loss metric, utilized within the scope of this thesis, is the Average

Change in Mutual Information. This metric measures the information loss by finding

the average change in joint probability distributions of all attributes.
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Definition 2.9. Mutual Information. Let αk ∈ Λ and αl ∈ Λ be two attributes

of the microdata set D with probability distributions pαk
and pαl

respectively, and joint

probability distribution pαk ,αl
. The mutual information between αk and αl in D, mea-

suring their mutual dependence, can be defined as follows.

ID(αk , αl) = D(pαk ,αl
||pαk

pαl
)

=
∑

vk∈V αk

∑

v l∈V αl
pαk ,αl

(vk , vl)log
pαk ,αl

(vk , vl)

pαk
pαl

(2.10)

Definition 2.10. Average Change in Mutual Information. Let D and D′ be

the original and modified microdata sets respectively. The average change in mutual

information over all attributes α ∈ Λ can be defined as follows.

ACMI(D,D′) =
2
∑

i=1
n
∑

j=i
n ID (αi ;αj )

ID′ (αi ;αj )

n(n − 1)
(2.11)

2.4.2 Uncertainty Metrics

The Sum of Conditional Entropies is used to measure the uncertainty introduced into

the modified microdata set.

Definition 2.11. Conditional Entropy. Let D and D′ be the original and modified

microdata sets respectively, and α ∈ Λ be an attribute. Let Xα
D on eV α be a random

variable with instances α[d1 ], α[d2 ], ..., α[dm ] and probability distribution pα. Let Xα
D ′

on eV α be a random variable with instances α[d1
′], α[d2

′], ..., α[dm
′] and probability

distribution pα
′. The conditional entropy of Xα

D given Xα
D ′

can be defined as follows.

H(Xα
D |Xα

D ′

) = −
∑

v∈V α

∑

v ′∈eV α
p(v, v′)log(p(v|v′)) (2.12)

Definition 2.12. Sum of Conditional Entropies. Let D and D′ be the original

and modified microdata sets respectively. The sum of conditional entropies of D given
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D′ can be defined as follows.

SCE(D,D′) =
∑

α∈ΛH(Xα
D |Xα

D ′

) (2.13)

The detailed descriptions of the information theoretic metrics introduced in this section

can be found in [11].

2.5 Related Work

The problem of protecting privacy while disclosing public-use data sets were previously

investigated in the context of statistical databases (SDBs) as the statistical disclosure

limitation problem (also referred to as the inference problem)[5].The statistics literature,

motivated by the need to publish statistical data sets with one or more contingency

tables containing aggregate statistics, focused on identifying and protecting sensitive

cells which may lead to derivation of aggregate confidential information. An extensive

survey of statistical database security can be found in [5] and more recent work on

disclosure control in statistical databases can be found in [17; 22]. According to [5] the

methods proposed for securing SDBs from inference attacks can be mainly classified into

four categories:conceptual, query restriction, data perturbation and output perturbation.

Conceptual approaches include techniques that detect and remove inference channels

during the database design mainly at the conceptual data model level. Query restriction

approaches provide protection by restricting the query set size, controlling the overlap

among successive queries, or making query results of small size unavailable to users of

the database. On the other hand, data perturbation approaches introduce noise in the

data by transforming the original database into a perturbed one. These approaches

either replace the whole data set with a new one coming from the same probability

distribution or perturb some of the attribute values once and for all. Finally, the

output perturbation approaches perturb the answer to queries while leaving the data

in the database unchanged.
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One popular disclosure protection approach is cell suppression [12; 49]. Cell suppres-

sion consists of two sub-approaches:primary suppression and secondary (i.e. comple-

mentary) suppression. The basic idea of primary cell suppression is to find all sensitive

cells that might cause confidential information to be disclosed from the released statis-

tical data set and replace them by a symbol indicating the suppression. Yet primary

suppression itself is not enough to protect the sensitive cells due to inference channels

existing in the data set. In order to reach the desired protection for sensitive cells,

other cells, i.e. marginal totals, containing nonconfidential information that might lead

to inference of suppressed sensitive cells also needs to be suppressed; this is called

secondary (complementary) cell suppression. Moreover, while finding a set of comple-

mentary suppressions protecting all sensitive cells, the information loss associated with

the suppressed entries have to be minimized. This combinatorial optimization problem

is known as the Cell Suppression Problem (CSP) in statistics literature. Since CSP be-

longs to the class of NP-hard problems [25; 31; 32], many heuristic methods have been

proposed including but not limited to [12; 23; 24; 32; 49] (see [61] for more references)

to address the problem. CSP problem is similar to the Microdata Suppression Problem

(MSP) that this work tries to address. Nevertheless, the methodologies used to address

these problems are quite different due to the difference in the types of data sets they

are trying to protect. In statistical data sets, inference results from the marginal totals

given along with the data itself. On the other hand, in microdata sets inference results

from the statistical correlations between attributes like income and education.

Another popular disclosure protection approach that belongs to data perturbation

family is microaggregation [20; 26; 34; 36; 41; 50; 52; 59]. Different from cell suppres-

sion, microaggregation aims at protecting numeric microdata by clustering individual

records into small aggregates and replacing actual values of individual records by group

means prior to publication. As Ferrer et al. pointed out in his work [20], microaggre-

gation assumes that confidentiality rules in use allow publication of microdata sets if

the individual records correspond to groups of k or more individuals. While an efficient

polynomial algorithm exists for optimal univariate microaggregation [26], microaggre-

gation of multivariate data guaranteeing minimum information loss is known to be
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NP-hard [41]. Hence, several heuristic methods have been proposed [20; 50; 34] to

address this problem. Recently, new heuristics employing genetic algorithms have been

proposed to further lower the information loss [36; 52]. Moreover, microaggregation has

been extended to handle categorical data by means of employing different clustering al-

gorithms [59]. Different from MSP problem, microaggregation assumes all respondents

contributed to the microdata set have the same privacy preferences. It is meaningful

to use microaggregation in such a setting where sensitive attributes are the same for all

respondents. Nevertheless, if respondents’ privacy preferences differ then it will result

unnecessary attribute values to be generalized meaning more information loss.

The security and privacy issues arising from the inference problem, which results in

private-sensitive data to be inferred from public-insensitive data, has also been invasti-

gated by multilevel secure databases research [30; 39; 46; 53; 54] and general purpose

databases research [9; 13; 14; 28]. Methods proposed within the database context

mainly focus on detection and removal of meta-data (i.e. database constraints like

functional and multi-valued dependencies) based inferences either during database de-

sign [14; 27; 39; 54] or during query time [15; 53; 57]. However, they do not take into

account the statistical correlations among database attributes which can be discovered

by various data mining techniques and hence result in imprecise inferences like the rule

‘A implies B’ with 25% confidence.

There are also other approaches investigating the privacy issues arising during micro-

data disclosure within the scope of anonymization problem. K-anonymity, [47; 48; 55],

being one of those approaches, aims at preserving the anonymity during the data dis-

semination process using generalizations and suppressions on potentially identifying

portions of the data set. While k-anonymity protects against identity disclosure, it is

insufficient to prevent attribute disclosure. To address this limitation of k-anonymity,

Machanavajjhala et al. [37] recently introduced a new notion of privacy, called `-

diversity, which requires that the distribution of a sensitive attribute in each equiva-

lence class has at least well-represented values. One problem with `-diversity is that

it is limited in its assumption of adversarial knowledge. It is possible for an adversary
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to gain information about a sensitive attribute as long as s/he has information about

the global distribution of this attribute. Li et al. [35] addresses this particular problem

by t-closeness which formalizes the idea of global background knowledge by requiring

that the distribution of a sensitive attribute in any equivalence class is close to the

distribution of the attribute in the overall table (i.e., the distance between the two dis-

tributions should be no more than a threshold t). This effectively limits the amount of

individual-specific information an observer can learn. Other approaches addressing the

anonymization problem include [18; 19; 29; 42; 37; 35]. In his work [29], Iyengar uses

suppression and generalization approaches to satisfy privacy constraints. Moreover, he

examines the tradeoff between privacy and information loss within different data usage

contexts and proposes a genetic algorithm to find the optimal anonymization. On the

other hand, in [42] Øhrn et al. uses boolean reasoning, and in [18; 19] Ferrer et al. uses

microaggregation to address the anonymization problem. Besides the fact that these ap-

proaches successfully preserve privacy through anonymization, none of them addresses

the inference threat to privacy due to data mining approaches. Therefore, they do

not directly apply to MSP. Moreover, similar to the microaggregation, anonymization

approaches assume that each respondent who contributes to the microdata set has the

same privacy preferences, i.e. wants to be anonymous, which is not realistic.

Another approach, proposed by Wang et al. [60], addresses the threats caused by

data mining abilities, using a template-based approach. The proposed approach aims

to (1) preserve the information for a given classification analysis, and (2) limit the

usefulness of unwanted sensitive inferences, i.e. classification rules, that may be derived

from the data. More specifically, it focuses on suppressing sensitive rules, instead of

sensitive data values.

The work closest to ours is proposed by Chang et al.[10]. In his work, Chang

proposes a new paradigm for dealing with the inference problem, which combines the

application of decision tree analysis with the concept of parsimonious downgrading. He

shows how classification models can be used to predict suppressed confidential data

values and concludes that some feedback mechanism is needed to protect suppressed
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data values against classification models.
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Chapter 3

SUPPRESSING MICRODATA TO PREVENT

CLASSIFICATION BASED INFERENCE USING

DELETION

As pointed in Section 2, hiding a confidential data value alone may not be enough to

protect it, in case the whole data set is going to be disclosed. This results from the

fact that an adversary can build a classification model using the rest of the data set

as the training data set and s/he could use it to predict the actual confidential data

value. In order to avoid such attacks, we propose four algorithms suppressing only one

confidential data value at a time, against two popular classifier types: probabilistic and

decision tree classifiers, as shown in Figure 3. We have selected Näıve Bayesian and

ID3 as typical representatives of probabilistic and decision tree classifiers respectively,

and developed our heuristics accordingly. Moreover, we propose enhancement to two of

the proposed algorithms to suppress multiple confidential data values with fewer side

effects.
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Figure 3.1: Taxonomy of Microdata Suppression Algorithms using Deletion Modifica-
tion Technique

3.1 Suppression Against Probabilistic Classification

Models

In the following, we present three algorithms for preventing probabilistic classification

based inference. The proposed algorithms aim to suppress a confidential data value,

such that it is no longer among the Top-1 Probable value set.

Definition 3.1. Top-k Probable. Let αj [di ] be confidential, thus be replaced by ν.

The Näıve Bayesian Classifier ςnb
D−d i ,αj built using D− di as the training data set will

predict the Top-k Probable value set for αj [di ] as Ωk
αj [d i ] ⊆ V αj

. The Top-k Probable

value set satisfies the following constraints.

i. It’s size is equal to k.
∣

∣Ωk
αj [d i ]

∣

∣ = k (3.1)

ii. The probability of αj [di ] being equal to the least probable value in the Top-k Probable

value set is greater than the probability of αj [di ] being equal to the most probable value

among the remaining attribute values.

p(ω|di) > p(v|di) | ∀v ∈ V αj
− Ωk

αj [d i ] ∧ ω ∈ Ωk
αj [d i ] (3.2)

The proposed suppression algorithms aim at either reducing p(αj [di ]|di) below that
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of a randomly selected attribute, called the Random Next Best Guess, among Top-k

Probable value set or increasing the probability of a set of selected attributes, called

the Next Best Guess Set, above p(αj [di ]|di).

Definition 3.2. Random Next Best Guess. The random next best guess, vrnbg ∈

V αj
, is a randomly selected value from V αj

satisfying the following conditions.

i. It is different from αj [di ].

vrnbg 6= αj [di ] (3.3)

ii. It is among the Top-k Probable value set.

vrnbg ∈ Ωk
αj [d i ] (3.4)

iii. The probability of αj
th attribute of di being equal to vrnbg is smaller than that of

confidential data value αj [di ] and greater than zero.

p(αj [di ]|di) > p(vrnbg |di) > 0 (3.5)

Definition 3.3. Next Best Guess Set. The next best guess set, Snbg ⊆ Ωk
αj [d i ], for

microdata tuple di is the set of all attribute values v ∈ Ωk
αj [d i ] − αj [di ] satisfying the

following condition.

Snbg =
{

v|v ∈ Ωk
αj [d i ] − αj [di ] ∧ p(v|di) ≥ p(vrnbg |di)

}

(3.6)

3.1.1 DECP Algorithm

The DECP algorithm aims at suppressing the confidential data value αj [di ] so that

it cannot be correctly predicted by the downgraded classification model ςnb
D ′−d i ,αj . It

accomplishes its goal by decreasing the probability p(αj [di ]|di) below that of the random

next best guess vrnbg .
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Definition 3.4. Maximum Impact Attribute. The attribute with maximum impact

on p(αj [di ]|di), denoted by αMI
αj [d i ], is the one that satisfies the following conditions.

αMI
αj [d i ] = arg min α∈Λ (|D[αj [d] = αj [di ] ∧ α[d] = α[di ]] − di |)

∧ |D[αj [d] = αj [di ] ∧ α[d] = α[di ]] − di | > 1 (3.7)

Definition 3.5. Maximum Impact Data Values. The maximum impact data

values are the instances of αMI
αj [d i ] in tuples d ∈ D[αj [d] = αj [di ] ∧ αMI

αj [d i ][d] =

αMI
αj [d i ][di ]] excluding di .

In each iteration, the DECP algorithm identifies the maximum impact attribute

αMI
αj [d i ] and modifies the tuples d, such that d ∈ D[αj [d] = αj [di ] ∧ αMI

αj [d i ][d] =

αMI
αj [d i ][di ]] − di , by replacing αMI

αj [d i ][d] with ν until the goal is achieved, that is

until p(αj [di ]|di) becomes less than p(vrnbg |di). Each such replacement results in the

maximum possible reduction in p(αj [di ]|di), thus requiring less number of modifications.

Theorem 3.1. Let αMI
αj [d i ] be the maximum impact attribute satisfying Equation (3.7).

Then, every replacement of a maximum impact data value with ν causes the maximum

decrease in p(αj [di ]|di), thus resulting in fewer data values to be modified.

Proof: Let us first find the effect of replacing a maximum impact data value with ν

on p(αj [di ]) p(di |αj [di ]). Remember that, since p(di) is same for all v ∈ V αj
, it can be

ignored when calculating p(αj [di ]|di).

p(αj [di ]|di) =
p(αj [di ])p(di |αj [di ])

p(di)
∼= p(αj [di ])p(di |αj [di ])

∼= p(αj [di ])p(αMI
αj [d i ][di ]|αj [di ])

×
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ])

Let us assume that;

• F
αj [d i ],αMI

αj [di ] be the size of the microdata set D[αj [d] = αj [di ] ∧ αMI
αj [d i ][d]
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= αMI
αj [d i ][di ]] − di , and

• Fαj [d i ] be the size of the microdata set D[αj [d] = αj [di ]] − di .

Single replacement of a maximum impact data value causes p(αMI
αj [d i ][di ]|αj [di ]) to

decrease from
F

αj [di ],αMI
αj [di ]

F αj [di ]
to

F
αj [di ],αMI

αj [di ]
−1

F αj [di ]
. This, in turn decreases p(di |αj [di ]) by

F
αj [di ],αMI

αj [di ]
−1

F
αj [di ],αMI

αj [di ]
as shown below.

p′(di |αj [di ]) =
∏

α∈Λ−{αj ,αMI
αj [di ]}p′(α[di ]|αj [di ]) × p′(αMI

αj [d i ][di ]|αj [di ])

=
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ]) ×

F
αj [d i ],αMI

αj [di ] − 1

Fαj [d i ]

=
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ]) ×

F
αj [d i ],αMI

αj [di ] − 1

Fαj [d i ]

×
F

αj [d i ],αMI
αj [di ]

F
αj [d i ],αMI

αj [di ]

=
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ]) × p(αMI

αj [d i ][di ]|αj [di ])

×
F

αj [d i ],αMI
αj [di ] − 1

F
αj [d i ],αMI

αj [di ]

= p(di |αj [di ]) ×
F

αj [d i ],αMI
αj [di ] − 1

F
αj [d i ],αMI

αj [di ]

Now let us assume that there is another attribute αk which decreases p(αj [di ]|di) more

than that of αMI
αj [d i ]. This implies the following.

Fαj [d i ],αk
− 1

Fαj [d i ],αk

<
F

αj [d i ],αMI
αj [di ] − 1

F
αj [d i ],αMI

αj [di ]

(Fαj [d i ],αk
− 1)F

αj [d i ],αMI
αj [di ] < (F

αj [d i ],αMI
αj [di ] − 1)Fαj [d i ],αk

Fαj [d i ],αk
< F

αj [d i ],αMI
αj [di ]

which contradicts the definition of Maximum Impact Attribute. So, we can conclude that

every replacement of a maximum impact data value with ν causes the highest decrease

in p(αj [di ]|di) which in turn implies that the number of data values that should be

modified is minimal¤
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The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm verifies the need for suppression. It finds p(v|di) for all v ∈ V αj
and checks

the truth value of the following assertion:

p(αj [di ]|di) > p(v|di)|∀v ∈ V αj
− αj [di ] (3.8)

If Assertion (3.8) is true, it picks a random next best guess vrnbg from V αj
. Next, in each

iteration it finds the maximum impact attribute αMI
αj [d i ] and replaces the maximum

impact data values by ν as long as p(αj [di ]|di) > p(vrnbg |di). After proccessing all

maximum impact attributes, it re-checks the truth value of Assertion (3.8). If Assertion

(3.8) is still true, it reverts all changes and deletes the tuple di from the microdata set.

An overview of the algorithm is provided in Figure 3.1.1.

If |V αj
| = 2 is true, then suppressing the confidential data value might result in

an adversary guessing it correctly with 100% confidence. Therefore, the decision to

suppress a confidential data value is randomized for the case where |V αj
| = 2. This

results in an adversary guessing the actual confidential data value with 50% confidence

which is the maximum uncertainty that can be achieved under such circumstances.

Lemma 3.1. Let αj [di ] be the confidential data value, n be the number of attributes

and N be the number of tuples in D[αj [d] = αj [di ]] − di . Then, the upper bound for

the number of data values that can be modified by the DECP algorithm is equal to

(n − 1)(N − 1).

Proof: The DECP algorithm modifies the maximum impact data values from the tu-

ples d ∈ D[αj [d] = αj [di ] ∧ αMI
αj [d i ][d] = αMI

αj [d i ][di ]] − di . As D[αj [d] = αj [di ] ∧

αMI
αj [d i ][d] = αMI

αj [d i ][di ]] ⊆ D[αj [d] = αj [di ]], the number of tuples that can be mod-

ified for each maximum impact attribute is bounded by N − 1. At each iteration,

the DECP algorithm picks a different maximum impact attribute and replaces the in-

stances of this attribute with ν. Since, there are n − 1 different alternatives for a

maximum impact attribute, we can conclude that the DECP algorithm can replace at

most (n − 1)(N − 1) data values with ν for suppressing a confidential data value ¤
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INPUT: D, the microdata set
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

Find probabilities p(v|di ) for all v ∈ V αj

If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] {
If |V αj | = 2

Randomly decide whether or not to continue suppression

Pick a random next best guess vrnbg among Ωk
αj [d i ]

While p(αj [di ]|di ) > p(vrnbg |di ) and candidates for maximum impact attribute exist {

Find the maximum impact attribute αMI
αj [d i ]

Find the maximum impact data values

Count = |D[αj [d] = αj [di ] ∧ αMI
αj [d i ][d] = αMI

αj [d i ][di ]]|
While p(αj [di ]|di ) > p(vrnbg |di ) and Count > 1 {

Replace the next data value in maximum impact data values with ν

p(αj [di ]|di )∗ = Count−1
Count

Count = Count − 1
}

}
If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] {

Revert all changes
Delete microdata tuple di

}
Else

Replace αj [di ] with ν
}

END
ATTRIBUTE FindMaximumImpactAttributeForDECP(D,di ,αj ) {

count = |D|
For each attribute α ∈ Λ − αj {

countα = number of all tuples d ∈ D − di satisfying the constraint
αj [d] = αj [di ] ∧ α[d] = α[di ]

If countα < count and countα > 1{
count = countα
αMI

αj [d i ] = α
}

}

return αMI
αj [d i ]

}

Figure 3.2: Pseudocode of DECP Algorithm

Example 2. Now, let us illustrate how the DECP algorithm suppresses Bob’s confi-

dential diagnosis.

Step 1. Initially, the Näıve Bayesian classification model is constructed to find the prob-

abilities p(v|di) for all v ∈ V αj
= {dyspepsia, angina pectoris, gastritis}. The Na- ı̈ve

Bayesian classification model constructed using the medical records of Table 1.2 is shown

in Table 3.1. According to the model p(dyspepsia|d2 ) = 0, p(angina pectoris|d2 ) = 1
6
,

and p(gastritis|d2 ) = 1
18

.

Step 2. The probability p(angina pectoris|d2 ) is greater than both p(dyspepsia|d2 ) and
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Table 3.1: Näıve Bayesian Classification Model Constructed Using the Medical Records
Shown in Table 1.2

p(Symptom|Diagnosis)
Diagnosis p(Diagnosis) Indigestion Chest Pain Palpitation p(Diagnosis|d2 )
Dyspepsia 2/8 0 0 1/2 0
Gastritis 3/8 1/3 2/3 2/3 1/18

Angina Pectoris 3/8 2/3 2/3 1 1/6

p(gastritis|d2 ). As Bob’s diagnosis can be correctly predicted, the suppression process

starts.

Step 3. Let’s assume that gastritis is selected as the random next best guess. From

this point on the DECP algorithm will try to decrease p(angina pectoris|d2 ) below

p(gastritis|d2 ).

Step 4. To select the maximum impact attribute, the counts for each symptom attribute

is found as follows;

• countI = |D[diagnosis[d] = diagnosis[d2 ] ∧ indigestion[d] = indigestion[d2 ]]| = 2

• countCP = |D[diagnosis[d] = diagnosis[d2 ] ∧ chestpain[d] = chestpain[d2 ]]| = 2

• countP = |D[diagnosis[d] = diagnosis[d2 ] ∧ palpitation[d] = palpitation[d2 ]]| = 3

Both indigestion and chest pain attributes have the minimum count. Therefore, they

are the candidates for the maximum impact attribute. Let’s assume that indigestion is

selected as the maximum impact attribute.

Step 5. All tuples d satisfying the constraint indigestion [d] = N ∧ diagnosis[d] =

angina pectoris are found. Tuples 7 and 8 satisfy the mentioned constraint.

Step 6. The indigestion attribute is hidden from tuple 7. With this replacement

p(angina pectoris|d2 ) decreases by 1
2

to 1
12

. As p(angina pectoris|d2 ) is still greater

than p(gastritis|d2 ), the suppression process continues with the next maximum impact

attribute which is chest pain.
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Table 3.2: Academic Health Medical Records After DECP Execution

Zipcode Gender Age Indigestion Chest Palpitation Diagnosis
Pain

90302 Female 29 Y N Y Dyspepsia
90410 Male 22 N Y Y ?
90301 Male 27 Y N N Dyspepsia
90310 Female 43 Y N N Gastritis
90301 Male 52 N Y Y Gastritis
90410 Male 47 Y ? Y Angina Pectoris
90305 Female 30 ? N Y Angina Pectoris
90402 Male 36 N Y Y Angina Pectoris
90301 Male 52 Y Y Y Gastritis

Step 7. All tuples d satisfying the constraint chestpain[d] = Y ∧ diagnosis[d] =

angina pectoris are found. Tuples 6 and 8 satisfy the mentioned constraint.

Step 8. The chest pain attribute is hidden from tuple 6. With this replacement

p(angina pectoris|d2 ) decreases by 1
2

to 1
24

. As p(angina pectoris|d2 ) is smaller than

p(gastritis|d2 ), the suppression process stops. The resulting microdata set can be seen

in Table 3.2.

3.1.2 INCP Algorithm

The INCP algorithm aims at suppressing the confidential data value αj [di ], so that it

cannot be correctly predicted by the downgraded classification model ςnb
D ′−d i ,αj . It

accomplishes its goal, as its name implies, by increasing the probabilities p(v|di) for all

v in the next best guess set,Snbg , above p(αj [di ] | di).

For each v ∈ Snbg , the INCP algorithm identifies the tuples d ∈ D[αj [d] = v] having

no common attribute value with di and modifies them by replacing αj [d] with ν in order

to increase p(v|di).

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm verifies the need for suppression. It finds p(v|di) for all v ∈ V αj
and checks

the truth value of Assertion (3.8).If Assertion (3.8) is true, it picks a random next
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INPUT: D, the microdata set
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

Find probabilities p(v|di ) for all v ∈ V αj

If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] {
If |V αj | = 2

Randomly decide whether or not to continue suppression

Pick a random next best guess vrnbg among Ωk
αj [d i ]

Snbg = All attribute values v ∈ V αj satisfying p(v|di ) ≥ p(vrnbg |di )
For each v ∈ Snbg {

While p(αj [di ]|di ) > p(v|di ) and D[αj [d] = v] 6= empty {
T = next tuple in D[αj [d] = v]
If T ∩ di = empty {

Replace αj [T ] with ν
Recalculate probabilities p(v|di ) for all v ∈ V αj

}
}

}
If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ]

Run algorithm DECP
Else

Replace αj [di ] with ν
}

END

Figure 3.3: Pseudocode of INCP Algorithm

best guess vrnbg from V αj
and forms Snbg by finding the attribute values v ∈ V αj

satisfying p(v|di) ≥ p(vrnbg |di). Next, for each v ∈ Snbg , the algorithm finds the tuples

d ∈ D[¬ α1 [d] = α1 [di ] ∧ . . . ∧ ¬ αj−1 [d] = αj−1 [di ] ∧ αj [d] = v ∧ ¬ αj+1 [d] =

αj+1 [di ] ∧ . . . ∧ ¬ αn [d] = αn [di ]] and modifies them by replacing αj [d] with ν until

the goal is achieved, that is until p(v|di) becomes less than or equal to p(αj [di ]|di).

After proccessing all attribute values v ∈ Snbg , it re-checks the truth value of Assertion

(3.8). If Assertion (3.8) is still true, then DECP algorithm is executed to complete the

algorithm. An overview of the algorithm is provided in Figure 3.1.2.

Lemma 3.2. Let αj [di ] be the confidential data value, m be the number of tuples in

D and N be the number of tuples in D[αj [d] = αj [di ]] − di . Assuming that there are

enough number of tuples that can be used for the suppression process (i.e. no need for

executing DECP), the upper bound for the number of data values that can be modified

by the INCP algorithm is equal to m − N − 1 − |Snbg |.

Proof: The INCP algorithm modifies the tuples d ∈ D[¬ α1 [d] = α1 [di ] ∧ . . . ∧
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¬ αj−1 [d] = αj−1 [di ] ∧ αj [d] = v ∧ ¬ αj+1 [d] = αj+1 [di ] ∧ . . . ∧ ¬ αn [d] = αn [di ]]

for each v ∈ Snbg . In the worst case, Snbg contains all possible values of attribute αj

except αj [di ]. This implies
∑

v∈Snbg
|D[αj [d] = v]| = m − N − 1. Moreover, due to the

definition of next best guess set and random next best guess the probability p(v|di) for

each v ∈ Snbg must be greater than zero. This implies that, in the worst case there exists

at least one tuple which has the same data values with di (except αj ) for each v ∈ Snbg .

So, we can conclude that the INCP algorithm can replace at most m − N − 1 − |Snbg |

data values with ν for suppressing a confidential data value ¤

Example 3. Now, let us illustrate how the INCP algorithm suppresses Bob’s confi-

dential diagnosis.

Step 1. Initially, the Näıve Bayesian classification model is constructed to find the

probabilities p(v|di) for all v ∈ V αj
= {dyspepsia, angina pectoris, gastritis}. The Na-

ı̈ve Bayesian classification model constructed using the medical records of Table 1.2 is

shown in Table 3.1. According to the model the probabilities are p(dyspepsia|d2 ) = 0,

p(angina pectoris|d2 ) = 1
6
, and p(gastritis|d2 ) = 1

18
.

Step 2. The probability p(angina pectoris|d2 ) is greater than both p(dyspepsia|d2 ) and

p(gastritis|d2 ). As Bob’s diagnosis can be correctly predicted, the suppression process

starts.

Step 3. Let’s assume that gastritis is selected as the random next best guess. From

this point on, the INCP algorithm will try to increase p(gastritis|d2 ) above p(an-

ginapectoris|d2 ).

Step 4. All tuples d which has no common symptoms with Bob among D[diagnosis[d] =

gastritis] is found. Tuple 4 satisfies the mentioned constraint.

Step 5. The diagnosis attribute is hidden from tuple 4. After this replacement,

p(gastritis|d2 ) increases to 1
7
, and p(angina pectoris|d2 ) increases to 4

21
. As p(angina

pectoris|d2 ) is still greater than p(gastritis|d2 ), the suppression process continues.

Step 6. Since there are no more tuples which has no common symptoms with Bob
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Table 3.3: Academic Health Medical Records After INCP Execution

Zipcode Gender Age Indigestion Chest Palpitation Diagnosis
Pain

90302 Female 29 Y N Y Dyspepsia
90410 Male 22 N Y Y ?
90301 Male 27 Y N N Dyspepsia
90310 Female 43 Y N N ?
90301 Male 52 N Y Y Gastritis
90410 Male 47 Y Y Y Angina Pectoris
90305 Female 30 ? N Y Angina Pectoris
90402 Male 36 N Y Y Angina Pectoris
90301 Male 52 Y Y Y Gastritis

among D[diagnosis[d] = gastritis], the suppression process continues with the DECP

execution.

Step 7. To select the maximum impact attribute, the counts for each symptom attribute

is found as follows;

• countI = |D[diagnosis[d] = diagnosis[d2 ] ∧ indigestion[d] = indigestion[d2 ]]| = 2

• countCP = |D[diagnosis[d] = diagnosis[d2 ] ∧ chestpain[d] = chestpain[d2 ]]| = 2

• countP = |D[diagnosis[d] = diagnosis[d2 ] ∧ palpitation[d] = palpitation[d2 ]]| = 3

Both indigestion and chest pain attributes have the minimum count. Therefore, they

are the candidates for the maximum impact attribute. Let’s assume that indigestion is

selected as the maximum impact attribute.

Step 8. All tuples d satisfying the constraint indigestion [d] = N ∧ diagnosis[d] =

angina pectoris are found. Tuples 7 and 8 satisfy the mentioned constraint.

Step 9. The indigestion attribute is hidden from tuple 7. With this replacement

p(angina pectoris|d2 ) decreases by 1
2

to 2
21

. As p(angina pectoris|d2 ) is smaller than

p(gastritis|d2 ), the suppression process stops. The resulting microdata can be seen in

Table 3.3.
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3.1.3 DROPP Algorithm

The DROPP algorithm aims at suppressing the confidential data value αj [di ], so that it

cannot be correctly predicted by the classification model ςnb
D−d i ,αj . It aims at dropping

the probability p(αj [di ]|di) below that of the random next best guess vrnbg , so that it

cannot be correctly predicted by the classification model ςnb
D−d i ,αj . Unlike DECP

and INCP algorithms, it achieves its goal by downgrading the tuple di , instead of

downgrading classification model ςnb
D−d i ,αj .

The algorithm employs the following modified definition of Maximum Impact At-

tribute.

Definition 3.6. Maximum Impact Attribute. The attribute with maximum impact

on p(αj [di ]|di), denoted by αMI
αj [d i ], is the one that satisfies the following conditions.

αMI
αj [d i ] = arg max α∈Λ

(

|D[αj [d] = αj [di ] ∧ α[d] = α[di ]] − di |

|D[αj [d] = vrnbg ∧ α[d] = α[di ]]|

)

∧ p(αMI
αj [d i ][di ]|αj [di ]) > p(αMI

αj [d i ][di ]|vrnbg) (3.9)

Definition 3.7. Maximum Impact Data Value. The maximum impact data value

is the instance of maximum impact data attribute αMI
αj [d i ] in tuple di .

It must be noted that, the maximum impact data values have a higher probability of

occurrence in tuples d ∈ D[αj [d] = αj [di ]]− di than that of tuples d ∈ D[αj [d] = vrnbg ].

Therefore, they are the key to decrease p(αj [di ]|di) below p(vrnbg |di).

In each iteration, the DROPP algorithm identifies αMI
αj [d i ] and modifies the tuple

di by replacing αMI
αj [d i ][di ] with ν until the goal is achieved, that is until p(αj [di ]|di)

becomes less than p(vrnbg |di). Each such replacement results in the maximum possible

reduction in
p(αj [di ]|di )

p(vrnbg |di )
, thus requiring less number of modifications.

Theorem 3.2. Let αMI
αj [d i ] be the maximum impact attribute satisfying Equation (3.9).

Then, every replacement of a maximum impact data value with ν causes the maximum

decrease in
p(αj [di ]|di )

p(vrnbg |di )
, thus resulting in fewer data values to be modified.
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Proof: Let us first find the effect of replacing a maximum impact data value with ν on

p(αj [di ]|di) and p(vrnbg |di) . Remember that, since p(di) is same for all v ∈ V αj
, it can

be ignored when calculating p(αj [di ]|di).

p(αj [di ]|di) =
p(αj [di ])p(di |αj [di ])

p(di)
∼= p(αj [di ])p(di |αj [di ])

∼= p(αj [di ])p(αMI
αj [d i ][di ]|αj [di ])

×
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ])

Similarly,

p(vrnbg |di) =
p(vrnbg)p(di |vrnbg)

p(di)
∼= p(vrnbg)p(di |vrnbg)

∼= p(vrnbg)p(αMI
vrnbg [di ]|vrnbg)

×
∏

α∈Λ−{αj ,αMI
vrnbg}p(α[di ]|vrnbg)

Let the size of the microdata set D[αj [d] = αj [di ] ∧ αMI
αj [d i ][d] = αMI

αj [d i ][di ]] − di be

F
αj [d i ],αMI

αj [di ] and the size of the microdata set D[αj [d] = αj [di ]]−di be Fαj [d i ]. Let the

size of the microdata set D[αj [d] = vrnbg ∧ αMI
αj [d i ][d] = αMI

αj [d i ][di ]] be F
vrnbg ,αMI

αj [di ]

and the size of the microdata set D[αj [d] = vrnbg ] be F vrnbg
. Replacement of the

maximum impact data value causes
p(αj [di ]|di )

p(vrnbg |di )
to decrease by

F vrnbg

F αj [di ]
×

F
αj [di ],αMI

αj [di ]

F
vrnbg ,αMI

αj [di ]
as

shown below.

p′(αj [di ]|di) ∼= p′(αj [di ])p
′(di |αj [di ])

∼= p(αj [di ])
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ])

∼= p(αj [di ]|di)
Fαj [d i ]

F
αj [d i ],αMI

αj [di ]
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p′(vrnbg |di) ∼= p′(vrnbg)p
′(di |vrnbg)

∼= p(vrnbg)
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|vrnbg)

∼= p(vrnbg |di)
F vrnbg

F
vrnbg ,αMI

αj [di ]

p′(αj [di ]|di)

p′(vrnbg |di)
=

p(αj [di ]|di)
F αj [di ]

F
αj [di ],αMI

αj [di ]

p(vrnbg |di)
F vrnbg

F
vrnbg ,αMI

αj [di ]

=
p(αj [di ]|di)

p(vrnbg |di)

Fαj [d i ]

F vrnbg

F
vrnbg ,αMI

αj [di ]

F
αj [d i ],αMI

αj [di ]

p(αj [di ]|di )

p(vrnbg |di )

p′(αj [di ]|di )

p′(vrnbg |di )

=
F vrnbg

Fαj [d i ]

F
αj [d i ],αMI

αj [di ]

F
vrnbg ,αMI

αj [di ]

Now let us assume that there is another attribute αk which decreases
p(αj [di ]|di )

p(vrnbg |di )
more

than that of αMI
αj [d i ]. This implies the following:

F vrnbg

Fαj [d i ]

Fαj [d i ],αk

F vrnbg ,αk

>
F vrnbg

Fαj [d i ]

F
αj [d i ],αMI

αj [di ]

F
vrnbg ,αMI

αj [di ]

Fαj [d i ],αk

F vrnbg ,αk

>
F

αj [d i ],αMI
αj [di ]

F
vrnbg ,αMI

αj [di ]

However, this contradicts the definition of Maximum Impact Attribute. So, we can

conclude that every replacement of a maximum impact data value with ν causes the

highest decrease in
p(αj [di ]|di )

p(vrnbg |di )
which in turn implies that the number of data values that

should be modified is minimal¤

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm verifies the need for suppression. It finds p(v|di) for all v ∈ V αj
and checks

the truth value of Assertion (3.8). If Assertion (3.8) is true, it picks a random next best

guess vrnbg from V αj
. Next, in each iteration it finds the maximum impact attribute

αMI
αj [d i ] and replaces the maximum impact data value αMI

αj [d i ][di ] by ν. After each

iteration, it re-checks the truth value of Assertion (3.8) to decide whether to continue

execution. If Assertion (3.8) is still true after all possible maximum impact attributes

are processed, it reverts all changes and deletes the tuple di from the microdata set.
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INPUT: D, the microdata set
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

Find probabilities p(v|di ) for all v ∈ V αj

If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] {
If |V αj | = 2

Randomly decide whether or not to continue suppression

Pick a random next best guess vrnbg among Ωk
αj [d i ]

While p(αj [di ]|di ) > p(vrnbg |di ) and candidates for maximum impact attribute exist {

Find the maximum impact attribute αMI
αj [d i ]

Replace the maximum impact data value αMI
αj [d i ][di ] with ν

Recalculate probabilities p(v|di ) for all v ∈ V αj

}
If p(αj [di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] {

Revert all changes
Delete microdata tuple di

}
Else

Replace αj [di ] with ν
}

END
ATTRIBUTE FindMaximumImpactAttributeForDROPP(D,di ,αj ,vrnbg ) {

ratio = 0
countαj [d i ] = number of all tuples d ∈ D − di satisfying the constraint αj [d] = αj [di ]

countvrnbg
= number of all tuples d ∈ D satisfying the constraint αj [d] = vrnbg

For each attribute α ∈ Λ − αj {

countα
αj [d i ] = number of all tuples d ∈ D − di satisfying the constraint

αj [d] = αj [di ] ∧ α[d] = α[di ]
countα

vrnbg = number of all tuples d ∈ D satisfying the constraint αj [d] = vrnbg ∧ α[d] = α[di ]

p(α[di ]|αj [di ]) = countα
αj [di ]

countαj [di ]
, p(α[di ]|vrnbg ) = countα

vrnbg

countvrnbg

If countα
αj [d i ]/countα

vrnbg > ratio and p(α[di ]|αj [di ]) > p(α[di ]|vrnbg ){

ratio = countα
αj [d i ]/countα

vrnbg

αMI
αj [d i ] = α

}
}

return αMI
αj [d i ]

}

Figure 3.4: Pseudocode of DROPP Algorithm

An overview of the algorithm is provided in Figure 3.4.

Lemma 3.3. Let αj [di ] be the confidential data value and n be the number of attributes.

Then, the upper bound for the number of data values that can be modified by the DROPP

algorithm is equal to n − 1.

Proof: The DROPP algorithm modifies only tuple di which has n − 1 data values

excluding the confidential data value. So, we can conclude that the DROPP algorithm

can replace at most n − 1 data values with ν for suppressing a confidential data value

¤
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Example 4. Now, let us illustrate how the DROPP algorithm suppresses Bob’s confi-

dential diagnosis.

Step 1. Initially, the Näıve Bayesian classification model is constructed to find the

probabilities p(v|di) for all v ∈ V αj
= {dyspepsia, angina pectoris, gastritis}. The Na-

ı̈ve Bayesian classification model constructed using the medical records of Table 1.2 is

shown in Table 3.1. According to the model the probabilities are p(dyspepsia|d2 ) = 0,

p(angina pectoris|d2 ) = 1
6
, and p(gastritis|d2 ) = 1

18
.

Step 2. The probability p(angina pectoris|d2 ) is greater than both p(dyspepsia|d2 ) and

p(gastritis|d2 ). As Bob’s diagnosis can be correctly predicted, the suppression process

starts.

Step 3. Let’s assume that gastritis is selected as the random next best guess. From

this point on, the DROPP algorithm will try to drop p(angina pectoris|d2 ) below

p(gastritis|d2 ).

Step 4. To select the maximum impact attribute, the following counts and ratios are

found;

• countI
AP = |D[diagnosis[d] = angina pectoris∧indigestion[d] = indigestion[d2 ]]| = 2

• countI
G = |D[diagnosis[d] = gastritis∧ indigestion[d] = indigestion[d2 ]]| = 1

• countCP
AP = |D[diagnosis[d] = angina pectoris∧ chest pain[d] = chest pain[d2 ]]| = 2

• countCP
G = |D[diagnosis[d] = gastritis∧ chest pain[d] = chest pain[d2 ]]| = 2

• countP
AP = |D[diagnosis[d] = angina pectoris∧ palpitation[d] = palpitation[d2 ]]| = 3

• countP
G = |D[diagnosis[d] = gastritis∧ palpitation[d] = palpitation[d2 ]]| = 2

• ratioI = 2

• ratioCP = 1

• ratioP = 3/2
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Table 3.4: Academic Health Medical Records After DROPP Execution

Zipcode Gender Age Indigestion Chest Pain Palpitation Diagnosis
90302 Female 29 Y N Y Dyspepsia
90410 Male 22 ? Y ? ?
90301 Male 27 Y N N Dyspepsia
90310 Female 43 Y N N Gastritis
90301 Male 52 N Y Y Gastritis
90410 Male 47 Y Y Y Angina Pectoris
90305 Female 30 N N Y Angina Pectoris
90402 Male 36 N Y Y Angina Pectoris
90301 Male 52 Y Y Y Gastritis

Indigestion has the maximum ratio. Therefore, it is selected as the maximum impact

attribute.

Step 5. The indigestion attribute is hidden from tuple 2. With this replacement

p(angina pectoris|d2 ) increases to 1
4
, and p(gastritis|d2 ) increases to 1

6
. As p(angina

pectoris|d2 ) is still greater than p(gastritis|d2 ), the suppression process continues with

the next maximum impact attribute which is palpitation.

Step 6. The palpitation attribute is hidden from tuple 2. With this replacement

p(angina pectoris|d2 ) remains the same, but p(gastritis|d2 ) increases to 1
4
. As p(angina

pectoris|d2 ) is equal to p(gastritis|d2 ), the suppression process stops. The resulting

microdata set can be seen in Table 3.4.

3.2 Suppression Against Decision Tree Classifica-

tion Models

In the following, we present the HID3 algorithm for preventing decision tree classifica-

tion based inference using deletion. Although we have used ID3 in our experiments, the

proposed algorithm can be used to suppress a confidential data value from any decision

tree algorithm.
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3.2.1 HID3 Algorithm

The HID3 algorithm aims at suppressing the confidential data value αj [di ], so that the

ID3 classifier ς id3
D−d i ,αj cannot correctly predict its actual value. Similar to the DROPP

algorithm, it achieves its goal by downgrading the microdata tuple di containing the

confidential data value.

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm builds the decision tree using D − di and verifies the need for suppression.

If ς id3
D−d i ,αj can correctly predict the confidential data value, it calls the recursive

ID3Hide function. Then, the ID3Hide function checks whether the root node is a

leaf or not. If it is a leaf and its value is different from the confidential data value

αj [di ] it returns true, which in turn terminates the recursive function successfully. Or

else, it returns false. If the root node is not a leaf, then it finds the most probable

value vπ ∈ V αj
for αj [di ], and checks whether vπ is equal to αj [di ] or not. If the most

probable value vπ is not equal to the actual confidential data value αj [di ] it returns true.

Otherwise, it further explores the child nodes of the root in order to suppress αj [di ].

Let the decision attribute of the root node be αroot , the most common child of the root

(i.e. the child with highest training population) be childMC and the child containing

αroot [di ] be childMatch . If αroot [di ] = ν or childMatch = childMC it tries to suppress the

confidential data value using childMC . Or else, it uses childMatch for suppression. After

exploring all possible sub-branches, if the algorithm fails to suppress the confidential

data value, it reverts all changes and deletes the tuple di from the microdata set. An

overview of the algorithm is provided in Figure 3.5.

If |V αj
| = 2 is true, then suppressing the confidential data value might result in

an adversary guessing it correctly with 100% confidence. Therefore, the decision to

suppress a confidential data value is randomized for the case where |V αj
| = 2. This

results in an adversary guessing the actual confidential data value with 50% confidence

which is the maximum uncertainty that can be achieved under such circumstances.

Lemma 3.4. Let αj [di ] be the confidential data value and n be the number of attributes.
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INPUT: D, the microdata set
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value

OUTPUT: D′, the new data set
BEGIN

Replace the confidential data value αj [di ] with ν
Build the decision tree using ID3
If vπ = αj [di ] {

If |V αj | = 2
Randomly decide whether or not to continue suppression

If ID3Hide(root of the decision tree) == false

Delete microdata tuple di

}
END
BOOL ID3Hide(root) {

If root is a leaf return root.value 6= αj [di ]
If vπ 6= αj [di ] return true

αroot = decision attribute of the root
childMC = most common child of the root
childMatch = child containing the value αroot [di ]
If αroot [di ] = ν return ID3Hide(childMC )
Else If childMC = childMatch {

Replace αroot [di ] with ν
If ID3Hide(childMC ) return true

Else {
Revert changes to αroot [di ]
return false

}
}
Else If ID3Hide(childMatch ) return true

Else {
Replace αroot [di ] with ν
If ID3Hide(childMC ) return true

Else {
Revert changes to αroot [di ]
return false

}
}

Figure 3.5: Pseudocode of HID3 Algorithm

Then, the upper bound for the number of data values that can be modified by the HID3

algorithm is equal to n − 1.

Proof: The HID3 algorithm modifies only tuple di which has n−1 data values excluding

the confidential data value. So, we can conclude that the HID3 algorithm can replace

at most n − 1 data values with ν for suppressing a confidential data value ¤

Example 5. For this specific example, let us assume Bob does not have any chest pain

and illustrate how the HID3 algorithm suppresses his confidential diagnosis.

Step 1. Initially, the ID3 classification model shown in Figure 5 is constructed based

on the medical records shown in Table 1.2.
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Indigestion

Y N

Chest Pain

Y N

Node 1

Category % n

Angina Pectoris 37,5 3

Dyspepsia 25,0 2

Gastritis 37,5 3

Total 100,0 8

Node 3

Category % n

Angina Pectoris 25,0 1

Dyspepsia 50,0 2

Gastritis 25,0 1

Total 50,0 4

Node 2

Category % n

Angina Pectoris 50,0 2

Dyspepsia 0,0 0

Gastritis 50,0 2

Total 50,0 4

Node 5

Category % n

Angina Pectoris 100,0 1

Dyspepsia 0,0 0

Gastritis 0,0 0

Total 12,5 1

Node 4

Category % n

Angina Pectoris 0,0 0

Dyspepsia 66,7 2

Gastritis 33,3 1

Total 37,5 3

Palpitation

Y N

Node 7

Category % n

Angina Pectoris 0,0 0

Dyspepsia 50,0 1

Gastritis 50,0 1

Total 25,0 1

Node 6

Category % n

Angina Pectoris 0,0 0

Dyspepsia 100,0 1

Gastritis 0,0 0

Total 12,5 1

Figure 3.6: Decision Tree Constructed Using the Medical Records Shown in Table 1.2

Step 2. Starting from the root=node 1, the ID3Hide function checks whether it is

possible to correctly predict Bob’s diagnosis. Since Bob’s diagnosis can be correctly

predicted using the path chest pain = N ∧ indigestion = N , the suppression process

starts.

Step 3. Using the whole microdata the ID3Hide function checks whether the majority

of the tuples have chest pain = N . Since, the number of tuples having chest pain = N

is equal to the number of tuples having chest pain = Y , the function calls itself with

root=node 3.

Step 4. Starting from the subtree root=node 3, the ID3Hide function checks whether it

is possible to correctly predict Bob’s diagnosis. Since Bob’s diagnosis can be correctly

predicted using the path indigestion = N , the suppression process continues.

Step 5. Using only the tuples with chest pain = N , the ID3Hide function checks

whether the majority of the tuples have indigestion = N . Since, the number of tuples

having indigestion = N is smaller than the number of tuples having indigestion = Y ,
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Table 3.5: Academic Health Medical Records After HID3 Execution

Zipcode Gender Age Indigestion Chest Pain Palpitation Diagnosis
90302 Female 29 Y N Y Dyspepsia
90410 Male 22 ? Y Y ?
90301 Male 27 Y N N Dyspepsia
90310 Female 43 Y N N Gastritis
90301 Male 52 N Y Y Gastritis
90410 Male 47 Y Y Y Angina Pectoris
90305 Female 30 N N Y Angina Pectoris
90402 Male 36 N Y Y Angina Pectoris
90301 Male 52 Y Y Y Gastritis

the function calls itself with root=node 5.

Step 6. As node 5 is a leaf, the ID3Hide function checks whether the most probable

value, i.e. angina pectoris, and the confidential diagnosis are equal or not. As they are

equal, the function returns from the recursive call signaling an unsuccessful run.

Step 7. As the recursive call to ID3Hide was unsuccessful, the current node’s attribute,

i.e. the indigestion attribute, is hidden from Bob’s tuple. Next, the function calls itself

with root=node 4, as tuples with indigestion = Y constitute the majority among tuples

with chest pain = N .

Step 8. Starting from the subtree root=node 4, the ID3Hide function checks whether

it is possible to correctly predict Bob’s diagnosis. Since Bob’s diagnosis cannot be

correctly predicted using the path palpitation = Y , the suppression process stops. The

resulting microdata set can be seen in Table 3.5.

3.3 Suppression of Multiple Confidential Data Val-

ues

In the following, we present the enhanced versions of DECP and DROPP algorithms

for preventing probabilistic classification based inference. The proposed algorithms aim
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to reduce to side-effects while suppressing multiple confidential data values.

3.3.1 e-DECP Algorithm

The enhanced DECP algorithm aims at suppressing multiple confidential data values

so that none of them can be correctly predicted by the downgraded classification model

ςnb
D ′,αj . The proposed algorithm reduces the side-effects of the original DECP algo-

rithm when (1) all confidential data values belong to a single attribute, and (2) all

confidential data values have the same value.

The algorithm works as follows: Let αj be the confidential attribute, S ⊂ D be the

set of tuples for which αj , satisfying the constraint αj [d] = conf value for all d ∈ S,is

confidential. As the first step, the algorithm replaces all confidential data values with

ν. Then, it identifies the candidate maximum impact data values, and initializes their

primary and secondary impacts. The primary impact is the number of tuples which

will be affected (i.e. the probabilities will be affected) if an instance of the maximum

impact data value is replaced with ν. The secondary impact, on the other hand is the

number of tuples that support both the confidential data value (i.e. αj = conf value)

and maximum impact data value. Next, for each tuple d ∈ S, the need for suppression

is verified by finding p(v|d) for all v ∈ V αj
and checking the truth value of the following

assertion:

p(αj [d]|d) > p(v|d)|∀v ∈ V αj
− αj [d] (3.10)

If Assertion (3.10) is true for a tuple d ∈ S, it picks a random next best guess vrnbg
d ,

from V αj
. Next, the candidate maximum impact data values are sorted. Different from

the original DECP, which uses only the secondary impact to determine which maximum

impact data value to use, e-DECP also uses the primary impact in order to guarantee

suppression of maximum number of confidential data values with a single iteration.

With maximum impact values sorted, the rest of the execution is quite similar to the

original DECP which involves replacement of maximum impact data value instances,

re-calculation of probabilities and re-checking of Assertion (3.10). An overview of the
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INPUT: D, the microdata set
αj , the attribute containing the confidential data values
S, the set of tuples for which αj is confidential
conf value, the value of confidential attribute αj ∈ S

OUTPUT: D′, the new data set
BEGIN

For each tuple d ∈ S
Replace the confidential data value of d with ν

For each attribute α ∈ Λ − αj {
For each possible value of vα ∈ V α {
Create the maximum impact data value candidate MIV [α][vα]
Set MIV [α][vα].primary impact to 0
Set MIV [α][vα].secondary impact to |D[αj [d] = conf value ∧ α[d] = vα]|

}
For each tuple d ∈ S {

Find probabilities p(v|d) for all v ∈ V αj

If Not (p(αj [d]|d) > p(v|d)|∀v ∈ V αj − αj [d]) Remove d from S
Else If |V αj | = 2
Randomly decide whether to suppress the confidential data value and remove d from S

if decision = ‘not suppress’
If d ∈ S {

Pick a random next best guess vrnbg
d among Ωk

αj [d]

For each attribute α ∈ Λ − αj

Increment MIV [α][α[d]].primary impact by 1
}

}
Sort MIV first by primary impact in descending order, then by secondary impact in ascending order
For each maximum impact value miv ∈ MIV {

While |S| > 0 and miv.secondary impact > 1 {
Replace the next instance of miv with ν
miv.secondary impact −−
For each tuple d ∈ S {
Update p(αj [d]|d)
If p(αj [d]|d) ≤ p(vrnbg

d |d) Remove d from S
}

}
If |S| = 0 break

}
END

Figure 3.7: Pseudocode of e-DECP Algorithm

algorithm is provided in Figure 3.7.

3.3.2 e-DROPP Algorithm

The enhanced DROPP algorithm aims at suppressing multiple confidential data values

so that none of them can be correctly predicted by the corresponding classification

models ςnb
D ,α. The proposed algorithm reduces the side-effects of the original DROPP

algorithm when all confidential data values belong to a single tuple.

The algorithm works as follows: Let di be the tuple containing all confidential data
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values, and S be the set of attributes containing a confidential data value in di . As

the first step, the algorithm verifies the need for suppression for each confidential data

value. More specifically, for each α ∈ S, it finds p(v|di) where v ∈ V α and checks the

truth value of the following assertion:

p(α[di ]|di) > p(v|di)|∀v ∈ V α − α[di ] (3.11)

If Assertion (3.11) is true, it picks a random next best guess vrnbg
vα from V α. Next,

it identifies the candidate maximum impact data values, and initializes their impacts

on each confidential value. To identify the maximum impact data value in each it-

eration, the impacts of candidates are averaged and sorted. With maximum impact

values sorted, the rest of the execution is quite similar to the original DROPP which

involves replacement of maximum impact data value instances from di , re-calculation

of probabilities and re-checking of Assertion (3.11). An overview of the algorithm is

provided in Figure 3.8.

3.4 Discussion on the Effectiveness of Proposed Al-

gorithms

The motivation of the suppression algorithms presented in this section is to make a

given set of confidential data values non-discoverable, while minimizing the effect on

the usefulness of the data for purposes other than predicting the confidential data

values. But how can we make sure that an adversary would not be able to predict the

suppressed confidential data values? Certainly this might be a problem if randomization

is not employed in various stages of the algorithms. Let us assume that an adversary

knows not only D′, the transformed microdata set, but also V αj
, the domain of the

confidential data value αj [di ], and analyze how randomization avoids prediction of the

actual confidential data value. First, let us assume that a modified version of DECP

is used in order to suppress the confidential data value αj [di ]. This version of DECP
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INPUT: D, the microdata set
di , the tuple containing the confidential data values
S, the set of attributes containing a confidential data value in di

OUTPUT: D′, the new data set
BEGIN

For each attribute α ∈ S {
Replace the confidential data value in α[di ] with ν
Find probabilities p(v|di ) for all v ∈ V α

If Not p(α[di ]|di ) > p(v|di )|∀v ∈ V αj − αj [di ] Remove α from S
Else If |V α| = 2
Randomly decide whether to suppress the confidential data value and remove α from S

if decision = ‘not suppress’

Pick a random next best guess vrnbg
α among Ωk

α[d i ]

For each non confidential attribute α′

If α′[di ]! = ν {
Create the maximum impact data value candidate MIV [α][α′]
Set MIV [α′][α].αMI to α′

Set MIV [α′][α].impact to
|D[α[d]=α[di ]∧α′[d]=α′[di ]]−di |
|D[α[d]=vrnbg∧α′[d]=α′[di ]]|

}
}
For each non confidential attribute α′

Find average impact MIV [α′].average impact
Sort maximum impact attributes by average impact in descending order
For each maximum impact value miv ∈ MIV {

Replace the maximum impact data value miv.αMI [di ] with ν
For each confidential attribute α ∈ S {
Update the probabilities
If p(α[di ]|di ) ≤ p(vrnbg

α|di ) Remove α from S
}
If |S| = 0 break

}
END

Figure 3.8: Pseudocode of e-DROPP Algorithm

aims at decreasing p(αj [di ]|di) below that of the next best guess vnbg instead of vrnbg .

Definition 4.1. Next Best Guess. The next best guess, vnbg ∈ V αj
, is a randomly

selected value from V αj
satisfying the following conditions.

i. It is different from αj [di ],

vnbg 6= αj [di ] (3.12)

ii. It is among the top-2 probable set,

vnbg ∈ Ω2
αj [d i ] (3.13)

iii. The probability of αj
th attribute of di being equal to vnbg is smaller than that of

confidential data value αj [di ] and greater than zero.

p(αj [di ]|di) > p(vnbg |di) > 0 (3.14)
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This leads to a change in the ordering of the top-2 probable set Ω2
αj [d i ] = {αj [di ], vnbg}.

Knowing this fact, an adversary can predict the actual confidential data value to be

the one with the second highest probability in Ω2
αj [d i ] with a confidence equal to the

success rate of the algorithm. That is to say, if the success rate of the algorithm is

100%, then the adversary can predict the actual confidential data value with 100%

confidence. This problem exists not only in DECP but also in INCP and DROPP

algorithms. Therefore, the random next best guess is employed during suppression in

order to reduce the confidence of an adversary predicting the actual confidential value

as shown below.

Confidence =
SuccessRate

k
(3.15)

The second issue, that is inherent in all suppression algorithms, occurs when |V αj
| = 2.

Let us assume that the decision to suppress the confidential data value αj [di ] is not

randomized when |V αj
| = 2. In this case, the algorithms will try to suppress the

confidential data value with the maximum possible success rate. Knowing this fact, an

adversary can predict the actual confidential data value to be the one with the second

highest probability in V αj
with a confidence equal to the success rate of the algorithm.

In order to avoid such attacks, we randomly decide to suppress a confidential data value

for microdata sets with |V αj
| = 2.

Another issue is the effectiveness of the suppression algorithms against different

classification models. Remember that two of the proposed algorithms, the DECP and

INCP algorithms, aim at downgrading the classification model by modifying D−di . In

the first method, the probability of resemblance of the tuple containing the confidential

data value to other tuples d ∈ D satisfying αj [d] = αj [di ] is reduced. And, in the latter

method the probability of resemblance of the tuple containing the confidential data

value to the tuples d ∈ D satisfying αj [d] 6= αj [di ] is increased. On the other hand,

the DROPP and HID3 algorithms aim at downgrading the microdata tuple containing

the confidential data value. Both methods find the attributes that enable correct pre-

diction of the actual confidential value and hide them from the tuple containing the

confidential data value. As a result, the probability of similarity of the tuple contain-
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ing the confidential data value to the other tuples d ∈ D satisfying αj [d] = αj [di ] is

reduced. Since all classification methods tend to find the target attribute value of a

tuple based on its resemblance to other tuples in the training data set, the proposed

suppression algorithms are expected to achieve their goal even when used with other

classification methods. In order to verify this, we measured the effectiveness of each

algorithm against both Näıve Bayesian, ID3 and SVM classification. The results can

be found in Chapter 5.

The final issue that needs to be discussed is the side effects of the proposed algo-

rithms which is related to the number of attribute values hidden excluding the confiden-

tial data value. Remember that, for each suppression algorithm we derived an upper

bound for the number of attribute values that will be modified in the previous section.

According to these derivations we can conclude the following;

i. The upper bound for the number of data values that can be modified by

the INCP algorithm depends on m, the number of tuples in D,

ii. The upper bound for the number of data values that can be modified by

the DROPP and HID3 algorithms depends on n, the number of attributes

in D,

iii. The upper bound for the number of data values that can be modified by

the DECP algorithm depends on n∗m, the number of attributes in D times

the number of tuples in D,

Now, let us assume that m >> n. In this case, the worst case performance of the

DROPP and HID3 algorithms should be much better than the worst case performance

of the DECP and INCP algorithms with respect to the side effects. However, for data

sets satisfying n >> m, e.g. gene expression data, the worst case performance of the

INCP algorithm will outperform the DECP, DROPP and HID3 algorithms with respect

to the side effects. Note that the DECP algorithm will perform slightly worse than the

other algorithms, as in both cases either m or n loses its significance with respect to

the other term.
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Chapter 4

SUPPRESSING MICRODATA TO PREVENT

CLASSIFICATION BASED INFERENCE USING

GENERALIZATION

Besides deletion, as presented in Section 3, we have proposed four algorithms to suppress

a confidential data value using the generalization modification strategy. The proposed

algorithms aim at suppressing only one confidential data value at a time, against two

popular classifier types: probabilistic and decision tree classifiers, as shown in Figure

4.1. We select Näıve Bayesian and ID3 as typical representatives of probabilistic and

decision tree classifiers respectively, and developed our heuristics accordingly. More-

over, we propose enhancement to two of the proposed algorithms to suppress multiple

confidential data values with fewer side effects.

4.1 Suppression Against Probabilistic Classification

Models

In the following, we first explain how we calculate the class conditional frequencies in

presence of taxonomies, then we present three suppression algorithms preventing prob-

abilistic classification based inference using generalization. The proposed algorithms
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Microdata Suppression Using Generalization

Against Probabilistic Classifiers

DECP-G INCP-G DROPP-G

Against Decision 

Tree Classifiers

HID3-G

Classification Model 

Downgrade
Microdata Tuple Downgrade

Figure 4.1: Taxonomy of Microdata Suppression Algorithms using Generalization Mod-
ification Technique

aim to suppress a confidential data value, such that it is no longer among the Top-1

Probable value set.

Definition 4.1. Top-k Probable. Let αj [di ] be confidential, and thus generalized by

λ levels using the taxomomy Tαj
. The Näıve Bayesian Classifier built using D[αj [d] =

Generalize(αj [di ], λ, Tαj
) ∨ Descendant(αj [d], Generalize(αj [di ], λ, Tαj

)) − di as the

training data set will predict the Top-k Probable value set for αj [di ] as Ωk
αj [d i ] ⊆ V αj

.

The Top-k Probable value set satisfies the following constraints.

i. It’s size is equal to k.
∣

∣Ωk
αj [d i ]

∣

∣ = k (4.1)

ii. Every ω ∈ Ωk
αj [d i ] should be a descendant of generalized αj [di ].

Descendant(ω,Generalize(αj [di ], λ, Tαj
)) (4.2)

iii. The probability of αj [di ] being equal to the least probable value in the Top-k Probable

value set is greater than the probability of αj [di ] being equal to the most probable value

among the remaining attribute values.

p(ω|di) > p(v|di) | ∀v ∈ V αj
− Ωk

αj [d i ] ∧ Descendant(v,Generalize(αj [di ], λ, Tαj
))

∧ ω ∈ Ωk
αj [d i ] (4.3)
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The proposed suppression algorithms aim at either reducing p(αj [di ]|di) below that of

an attribute selected randomly from the Top-k Probable value set, called the Random

Next Best Guess, or increasing the probability of a set of attributes selected from the

Top-k Probable value set, called the Next Best Guess Set, above p(αj [di ]|di).

Definition 4.2. Random Next Best Guess(RNBG). The random next best guess,

vrnbg ∈ V αj
, is a randomly selected value from V αj

satisfying the following conditions.

i. It is different from αj [di ].

vrnbg 6= αj [di ] (4.4)

ii. It is among the Top-k Probable value set.

vrnbg ∈ Ωk
αj [d i ] (4.5)

iii. The probability of αj
th attribute of di being equal to vrnbg is smaller than that of

confidential data value αj [di ] and greater than zero.

p(αj [di ]|di) > p(vrnbg |di) > 0 (4.6)

Definition 4.3. Next Best Guess (NBG) Set. The next best guess set, Snbg ⊆

Ωk
αj [d i ], for microdata tuple di is the set of all attribute values v ∈ Ωk

αj [d i ] − αj [di ]

satisfying the following condition.

Snbg =
{

v|v ∈ Ωk
αj [d i ] − αj [di ] ∧ p(v|di) ≥ p(vrnbg |di)

}

(4.7)

4.1.1 Calculation of Class Conditional Frequency Counts

In order to calculate the class conditional frequency counts in presence of taxonomies, we

adopt the expectation maximization algorithm proposed by Zhang et al. [62]. Given an

attribute value taxonomy Tαi
for attribute αi ∈ Λ, the proposed algorithm constructs
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INPUT: D, the training data set
T αi , the taxonomy set attribute αi ∈ Λ

OUTPUT: CCFC(T αi ), the class conditional frequency counts for αi ∈ Λ
BEGIN

For each node node ∈ T αi {
Create the corresponding node in CCFC(T αi )
CCFC(T αi ).node.count=|D[αi = node.value]|

}
Starting from the leaves of CCFC(T αi ) aggregate node.count upwards
Starting from the root of CCFC(T αi ) propogate node.count downwards according to the

observed distribution among its children
Return CCFC(T αi )

END

Figure 4.2: Calculation of Class Conditional Frequency Counts in Presence of a Tax-
onomy by Zhang et al.

a tree of class conditional frequency counts CCFC(Tαi) such that (i) there is a one-

to-one correspondence between the nodes of the taxonomy Tαi
and the nodes of the

corresponding CCFC(Tαi
), (ii) the class conditional frequency count associated with

a non leaf node,i.e. non-primitive value, of CCFC(Tαi
) is equal to the sum of the class

conditional frequency counts associated with its direct descendants. When all the tuples

in the data set D are fully specified, i.e. all attribute values are primitive, construction

of CCFC(Tαi
) for each attribute αi ∈ Λ is straightforward. First, the class conditional

frequency counts associated with each of the primitive values of αi is identified from

the data set D. Then, identified class conditional frequency counts are used recursively

to compute the class conditional frequency counts associated with non-primitive values

of αi . When some of the data are partially specified, i.e. some attribute values are

already generalized, and therefore non-primitive, the two step approach illustrated in

Figure 4.2 is used to construct CCFC(Tαi
). First, an upward pass aggregating the

class conditional frequency counts based on the specified attribute values in the data

set is realized. Then, the counts associated with partially specified attribute values are

propagated down through the tree, augmenting the counts at lower levels according to

the distribution of values along the branches based on the subset of the data for which

the corresponding values are fully specified.

Example 6. Let us illustrate estimation of class conditional frequency counts using a

simple example. On the nausea symptom taxonomy shown in Figure 4.3-(a), we first
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Figure 4.3: Estimation of class conditional frequency counts.(a) Initial counts associ-
ated with each attribute value showing the number of positively labeled instances. (b)
Aggregation of counts upwards from each node to its ancestors. (c) Distribution of
counts of a partially specified attribute value downwards among descendant nodes. (d)
Updating the estimated frequency counts for all attribute values.

mark each attribute value with a count showing the total number of instances having

that specific value as their nausea symptom. Then, we aggregate the counts upwards

from each node to its ancestors. For example, in Figure 4.3-(b), the two counts 6 and

4 on primitive attribute values 1 and 2 add up to 10 as the count for Low. As we

already have 5 instances which have their nausea symptom specified as Low, the two

counts (5 and 10) aggregate towards the root. Next, we distribute the counts of a

generalized attribute values downwards according to the distributions of values among

their descendant nodes. For example, 5, the count of instances which have their nausea

symptom specified as Low, is propagated down as 3 and 2 to descendant nodes 1 and

2 (See Figure 4.3-(c) for values in parentheses). Finally, we update the estimated

frequency counts for all attribute values as shown in Figure 4.3-(d).
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
MaxLevel, the maximum depth among the taxonomy sets
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

vactual = αj [di ]
λαj = 1
While λαj <= FindMaxLevel(T, αj ) {

αj [di ] = Generalize(vactual , λαj , T αj , k)
If success =DECP-G(D, T, vactual , di , αj , λαj , MaxLevel) break
Increment λαj by 1

}
If not success Delete tuple di

END
BOOL DECP-G(D,T ,vactual ,di ,αj ,λαj ,MaxLevel,k) {

V candidate = all v ∈ V αj satisfying Generalize(v, λαj , T αj ) = αj [di ]
Find probabilities p(v|di ) for all v ∈ V candidate

If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate {
If |V candidate | = 2 {

Randomly decide whether or not to continue suppression
Return true

}

Select top-k from V candidate to form Ωk
αj [d i ]

Pick a random next best guess vrnbg among Ωk
αj [d i ]

λ = 1
While λ <= MaxLevel {

While p(vactual |di ) > p(vrnbg |di ) and candidates for maximum impact attribute exist {

Find maximum impact attribute αMI
αj [d i ] for current level λ

Find maximum impact data values

F 1 = |D[αj [d] = vactual ∧ αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T )]|

F 2 = |D[αj [d] = vactual ∧ Descendant(αMI
αj [d i ],λ,T [d],

Generalize(αMI
αj [d i ],λ,T [di ], λ, T ))]|

F 3 = |D[αj [d] = vactual ∧ Descendant(αMI
αj [d i ],λ,T [d],

Generalize(αMI
αj [d i ],λ,T [di ], λ − 1, T )]|

generalizedMIDV = Generalize(αMI
αj [d i ],λ,T [di ], λ, T )

While p(αj [di ]|di ) > p(vrnbg |di ) and (count1 > 1 or λ > 1) {
Replace the next data value in maximum impact data values with generalizedMIDV

p(αj [di ]|di )∗ = F 1+F 3−1
F 1 +F 3

× F 2

F 2−1

Decrement F 1 and F 2 by 1
}

}
Increment λ by 1

}
}
If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate Revert all changes and return false
Return true

}
ATTRIBUTE FindMaximumImpactAttributeForDECP-G(D,T ,vactual ,di ,αj ,λ) {

ratio = |D|
For each attribute α ∈ Λ − αj {

F 1 = |D[αj [d] = vactual ∧ α[d] = Generalize(α[di ], λ − 1, T α)]|
F 2 = |D[αj [d] = vactual ∧ Descendant(α[d], Generalize(α[di ], λ, T α))]|
F 3 = |D[αj [d] = vactual ∧ Descendant(α[d], Generalize(α[di ], λ − 1, T α)]|

ratio′ = F 1+F3−1
F 1 +F 3

× F 2

F 2−1

If ratio′ < ratio and (F 1 > 1 or λ > 1) {

ratio = F 1+F 3−1
F 1+F 3

× F 2

F 2−1

αMI
αj [d i ],λ,T = α

}
}

Return αMI
αj [d i ],λ,T

}

Figure 4.4: Pseudocode of DECP-G Algorithm
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4.1.2 DECP-G Algorithm

The DECP-G algorithm aims at suppressing the confidential data value αj [di ] via gen-

eralization so that it cannot be correctly predicted by the downgraded classification

model ςnb
D ′−d i ,αj . It accomplishes its goal by decreasing the probability p(αj [di ]|di)

below that of the random next best guess vrnbg .

Definition 4.4. Maximum Impact Attribute for DECP-G. Let F 1 ,F 2 and F 3

denote the original frequency count of tuples satisfying the following constraints respec-

tively α[d] = Generalize(α[di ], λ − 1, T ), Descendant(α[d], Generalize(α[di ], λ, T )) =

True, and Descendant(α[d], Generalize(α[di ], λ − 1, T )) = True among the dataset

D[αj [d] = αj [di ]] − di . The attribute with maximum impact on p(αj [di ]|di), when gen-

eralized by λ levels, denoted by αMI
αj [d i ],λ,T , is the one that satisfies the following con-

dition.

αMI
αj [d i ],λ,T = arg min α∈Λ

(

F 1 + F 3 − 1

F 1 + F 3

×
F 2

F 2 − 1

)

(|D[αj [d] = αj [di ] ∧ α[d] = Generalize (α[di ], λ − 1, Tα)] − di | > 1∨λ > 1)

(4.8)

Definition 4.5. Maximum Impact Data Values. The maximum impact data

values are the instances of αMI
αj [d i ],λ,T in tuples d ∈ D[αj [d] = αj [di ]∧αMI

αj [d i ],λ,T [d] =

Generalize(αMI
αj [d i ],λ,T [di ], λ − 1, Tα] excluding di .

In each iteration, the DECP-G algorithm (i) identifies the maximum impact at-

tribute αMI
αj [d i ],λ,T for the current generalization level λ, and (ii) modifies the tuples

d ∈ D[αj [d] = αj [di ]∧αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ− 1, Tα)]− di , by

generalizing αMI
αj [d i ],λ,T [d] λ levels until the goal is achieved, that is until p(αj [di ]|di)

becomes less than p(vrnbg |di). Each such generalization results in the maximum possible

reduction in p(αj [di ]|di), thus requiring less number of generalizations.

Theorem 4.1. Let αMI
αj [d i ],λ,T be the maximum impact attribute for level λ satisfying

the equation (4.8). Then, every generalization of a maximum impact data value from
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level λ − 1 to λ causes the maximum decrease in p(αj [di ]|di), thus resulting in fewer

data values to be modified.

Proof: Let us first find the effect of generalizing a maximum impact data value on

p(αj [di ]) p(di |αj [di ]). Remember that, since p(di) is same for all v ∈ V αj
, it can be

ignored when calculating p(αj [di ]|di).

p(αj [di ]|di) =
p(αj [di ])p(di |αj [di ])

p(di)
∼= p(αj [di ])p(di |αj [di ])

∼= p(αj [di ])p(αMI
αj [d i ][di ]|αj [di ])

×
∏

α∈Λ−{αj ,αMI
αj [di ]}p(α[di ]|αj [di ])

Let us assume that;

• F̄ 0 be the updated frequency count of tuples satisfying αj [d] = αj [di ] among D

excluding di ,

• F̄ 1 be the updated frequency count of tuples satisfying the following constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ, T )

among D[αj [d] = αj [di ]] excluding di ,

• F 1 be the original frequency count of tuples satisfying the following constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T )

among D[αj [d] = αj [di ]] excluding di ,

• F 2 be the original frequency count of tuples satisfying the following constraint;

Descendant(αMI
αj [d i ],λ,T [d], Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T ))

among D[αj [d] = αj [di ]] excluding di ,
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• F 3 be the original frequency count of tuples satisfying the following constraint;

Descendant(αMI
αj [d i ],λ,T [d], Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T ))

among D[αj [d] = αj [di ]] excluding di , and

• c be the difference between the updated frequency count F̄ 1 and F 1 + F 3 .

Single generalization of a maximum impact data value from level λ − 1 to λ causes

p(αMI
αj [d i ],λ,T [di ]|αj [di ]) to decrease from

1+
F1
F3

+c
F1 +F3
F2 F3

F̄ 0
to

1+
F1−1

F3
+(c+1)

F1 +F3−1
(F2−1)F3

F̄ 0
. This,

in turn decreases p(di |αj [di ]) by F 1+F 3−1
F 1+F 3

× F 2

F 2−1
as shown below.

p′(di |αj [di ]) =
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p′(α[di ]|αj [di ])p

′(αMI
αj [d i ],λ,T [di ]|αj [di ])

=
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|αj [di ])

1 + F 1−1
F 3

+ (c + 1)F 1+F 3−1
(F 2−1)F 3

F̄ 0

=
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|αj [di ])

F 1 + F 3 − 1

F 2 − 1

F 2 + c

F 3 F̄ 0

=
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|αj [di ])

F 1 + F 3 − 1

F 2 − 1

F 2 + c

F 3 F̄ 0

×
1 + F 1

F 3
+ cF 1+F 3

F 2F 3

1 + F 1

F 3
+ cF 1+F 3

F 2F 3

=
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|αj [di ])

F 1 + F 3 − 1

F 2 − 1

F 2 + c

F 3

×
p(αMI

αj [d i ][di ]|αj [di ])

1 + F 1

F 3
+ cF 1+F 3

F 2F 3

=
F 1 + F 3 − 1

F 2 − 1

F 2 + c

F 3

F 2

F 1 + F 3

F 3

F 2 + c
p(di |αj [di ])

=
F 1 + F 3 − 1

F 1 + F 3

F 2

F 2 − 1
p(di |αj [di ])

Let us assume that there is another attribute αk which decreases p(αj [di ]|di) more than

that of αMI
αj [d i ],λ,T . This implies the following;

F 1 ,αk
+ F 3 ,αk

− 1

F 1 ,αk+F3 ,αk

F 2 ,αk

F 2 ,αk
− 1

<
F

1 ,αMI
αj [di ],λ,T + F

3 ,αMI
αj [di ],λ,T − 1

F
1 ,αMI

αj [di ],λ,T + F
3 ,αMI

αj [di ],λ,T

F
2 ,αMI

αj [di ],λ,T

F
2 ,αMI

αj [di ],λ,T − 1

However, this contradicts the definition of Maximum Impact Attribute. Therefore, we

can conclude that every generalization of a maximum impact data value causes the
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highest decrease in p(αj [di ]|di) which in turn implies that the number of data values

that should be modified is minimal¤

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm backs up the confidential data value αj [di ] as vactual , and generalizes it to

the next level. Then, it verifies the need for suppression. It first finds the candidate

set for the confidential data value, V candidate , which includes all v ∈ V αj
satisfying

the constraint Generalize(v, levelαj
, Tαj

) = αj [di ]. Then, it finds p(v|di) for all v ∈

V candidate and checks the truth value of the following assertion:

p(vactual |di) > p(v|di)|∀v ∈ V candidate (4.9)

If Assertion (4.11) is true, it picks a random next best guess vrnbg from V candidate and

sets the level of generalization to 1. Next, in each iteration it finds the maximum impact

attribute αMI
αj [d i ],λ,T for the current level λ and generalizes the maximum impact data

values by λ levels as long as p(αj [di ]|di) > p(vrnbg |di). After processing all maximum

impact attributes, it re-checks the truth value of Assertion (4.9). If Assertion (4.9) is

still true, then it increments the current level of generalization by 1 and repeats the

generalization process until there are no levels left for generalization. After processing

all levels and maximum impact attributes, it re-checks the truth value of Assertion (4.9).

If Assertion (4.9) is still true, then it reverts all changes, generalizes the confidential

value to the next level, and repeats the above steps until either the confidential data

value is successfully suppressed or there are no levels left to generalize the confidential

data value. Finally, if the algorithm is not successful, i.e. the confidential data value

cannot be suppressed, then tuple di is deleted from the microdata set. An overview of

the algorithm is provided in Figure 4.4.

If |V candidate | = 2 is true, then suppressing the confidential data value might result

in an adversary guessing it correctly with 100% confidence. Therefore, the decision to

suppress a confidential data value is randomized for the case where |V candidate | = 2. This

results in an adversary guessing the actual confidential data value with 50% confidence

which is the maximum uncertainty that can be achieved under such circumstances.
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Table 4.1: Academic Health Medical Records to be Shared with Academic Research
Institute

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 5 2 Dyspepsia
4 5 4 Mid-High 4 Dyspepsia
5 2 3 3 5 Dyspepsia
3 3 3 4 2 Dyspepsia
2 2 5 3 3 Dyspepsia
4 4 3 2 4 Dyspepsia
3 4 3 3 3 Gastritis
5 2 4 4 2 Gastritis
3 3 4 4 3 Gastritis
3 2 4 5 5 Gastritis
4 5 2 3 5 Gastritis
4 3 3 2 4 Gastritis
3 2 3 2 3 S.I. Ulcer
5 2 2 3 4 S.I. Ulcer
4 3 2 2 2 S.I. Ulcer
3 4 5 3 4 S.I. Ulcer
4 3 3 4 5 S.I. Ulcer
4 4 3 3 4 Dyspepsia

Lemma 4.1. Let αj [di ] be the confidential data value, n be the number of attributes

and N be the number of tuples in D[αj [d] = αj [di ]] − di . Then, the upper bound for

the number of data values that can be modified by the DECP-G algorithm is equal to

(n − 1)(N − 1).

Proof: The DECP-G algorithm modifies the maximum impact data values from the

tuples d ∈ D[αj [d] = αj [di ] ∧ αMI
αj [d i ][d] = αMI

αj [d i ][di ]] − di . As D[αj [d] = αj [di ] ∧

αMI
αj [d i ][d] = αMI

αj [d i ][di ]] ⊆ D[αj [d] = αj [di ]], the number of tuples that can be

modified for each maximum impact attribute is bounded by N − 1. At each iteration,

the DECP-G algorithm picks a different maximum impact attribute and generalizes the

instances of this attribute. Since, there are n − 1 different alternatives for a maximum

impact attribute, we can conclude that the DECP-G algorithm can change at most

(n − 1)(N − 1) data values for suppressing a confidential data value ¤

Example 7. Table 4.1 shows a set of patient records to be disclosed to third parties for
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Table 4.2: Academic Health Medical Records to be Shared with Academic Research
Institute

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 5 2 Dyspepsia
4 5 4 Mid-High 4 Dyspepsia
5 2 3 3 5 Dyspepsia
3 3 3 4 2 Dyspepsia
2 2 5 3 3 Dyspepsia
4 4 3 2 4 Dyspepsia
3 4 3 3 3 Gastritis
5 2 4 4 2 Gastritis
3 3 4 4 3 Gastritis
3 2 4 5 5 Gastritis
4 5 2 3 5 Gastritis
4 3 3 2 4 Gastritis
3 2 3 2 3 S.I. Ulcer
5 2 2 3 4 S.I. Ulcer
4 3 2 2 2 S.I. Ulcer
3 4 5 3 4 S.I. Ulcer
4 3 3 4 5 S.I. Ulcer
4 4 3 3 4 Gastric Disease

research purposes. The diagnosis of the last patient, i.e. d18 , is confidential. Therefore,

it is generalized one level up as shown in Table 4.2. Now, let us illustrate how the

DECP-G algorithm suppresses the confidential diagnosis.

Step 1. Initially, the confidential diagnosis is generalized one level up as shown in Table

4.2.

Step 2. Next, the Näıve Bayesian classification model is constructed to find the prob-

abilities p(v|di) for all v ∈ V candidate = {dyspepsia, gastritis}. The Näıve Bayesian

classification model constructed using the medical records of Table 4.2 is shown in Ta-

ble 4.3. According to the model the probabilities are p(dyspepsia|d18 ) = 0, 0058, and

p(gastritis|d18 ) = 0, 0005.

Step 3. The probability p(dyspepsia|d18 ) is greater than p(gastritis|d18 ). As the con-

fidential diagnosis can be correctly predicted, the suppression process starts.

Step 4. Since the size of V candidate is equal to 2, it is randomly decided whether to
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Table 4.3: Näıve Bayesian Classification Model Constructed During the Run of DECP-
G Algorithm

p(Symptom|Diagnosis)
Step Diagnosis p(Diagnosis) I CP P N B p(Diagnosis|d18 )

2 Dyspepsia 6/12 3/6 2/6 3/6 2, 5/6 2/6 0, 00579
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

8 Dyspepsia 6/12 3/6 2/6 3/6 5/18 2/6 0, 00386
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

10 Dyspepsia 6/12 3/6 1, 5/6 3/6 5/18 2/6 0, 00289
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

12 Dyspepsia 6/12 3/6 1, 5/6 3/6 5/18 1, 5/6 0, 00217
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

14 Dyspepsia 6/12 3/6 1, 5/6 2, 5/6 5/18 1, 5/6 0, 00181
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

15 Dyspepsia 6/12 3/6 1, 5/6 5/18 5/18 1, 5/6 0, 00121
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

17 Dyspepsia 6/12 4/9 1, 5/6 5/18 5/18 1, 5/6 0, 00107
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

18 Dyspepsia 6/12 2/6 1, 5/6 5/18 5/18 1, 5/6 0, 00080
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

21 Dyspepsia 6/12 2/6 2/9 5/18 5/18 1, 5/6 0, 00071
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

23 Dyspepsia 6/12 2/6 2/9 5/18 5/18 2/9 0, 00064
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

25 Dyspepsia 6/12 7, 5/24 2/9 5/18 5/18 2/9 0, 00060
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

26 Dyspepsia 6/12 5/18 2/9 5/18 5/18 2/9 0, 00053
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

28 Dyspepsia 6/12 5/18 2/9 1, 6/6 5/18 2/9 0, 00051
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

continue with the suppression or not. Let us assume that it has been decided to continue

with the suppression process.

Step 5. Let us assume that gastritis is selected as the random next best guess. From this

point on the DECP-G algorithm will decrease p(dyspepsia|d18 ) below p(gastritis|d18 ).

Step 6. To select the maximum impact attribute, the ratios for each symptom attribute

is found as shown in Table 4.4. The nausea symptom has the minimum ratio. Therefore,

it is selected as the maximum impact attribute.

Step 7. All tuples d satisfying the constraint nausea [d] = 3∧diagnosis[d] = dyspepsia
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Table 4.4: Ratios Calculated to Determine the Maximum Impact Attribute for DECP-G

Step Result Indigestion Chest Pain Palpitation Nausea Burning
6 F 1 3 2 3 2 2

F 2 4 3 5 4 3
F 3 0 0 0 0 0

6 Ratio 8/9 3/4 10/12 4/6 3/4
19 F 1 2 1 2 2 1

F 2 5 4 6 6 4
F 3 2 2 3 3 2

19 Ratio 15/16 8/9 24/25 24/25 8/9

is found. Tuples 3 and 5 satisfy the mentioned constraint.

Step 8. The nause attribute of tuple 3 is generalized one level up. With this replacement

p(dyspepsia|d18 ) decreases by 4
6

to 0, 00386. As p(dyspepsia|d18 ) is still greater than

p(gastritis|d18 ), the suppression process continues with the next maximum impact

attribute which is chest pain.

Step 9. All tuples d satisfying the constraint chestpain[d] = 4 ∧ diagnosis[d] =

dyspepsia is found. Tuples 2 and 6 satisfy the mentioned constraint.

Step 10. The chest pain attribute of tuple 2 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 3
4

to 0, 00289. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is burning.

Step 11. All tuples d satisfying the constraint burning[d] = 4∧diagnosis[d] = dyspepsia

is found. Tuples 2 and 6 satisfy the mentioned constraint.

Step 12. The burning attribute of tuple 2 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 3
4

to 0, 00217. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is palpitation.

Step 13. All tuples d satisfying the constraint palpitation[d] = 3 ∧ diagnosis[d] =

dyspepsia is found. Tuples 3,4 and 6 satisfy the mentioned constraint.
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Step 14. The palpitation attribute of tuple 3 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 10
12

to 0, 00181. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact value.

Step 15. The palpitation attribute of tuple 4 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 4
6

to 0, 00121. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is indigestion.

Step 16. All tuples d satisfying the constraint indigestion[d] = 4 ∧ diagnosis[d] =

dyspepsia is found. Tuples 1,2 and 6 satisfy the mentioned constraint.

Step 17. The indigestion attribute of tuple 1 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 8
9

to 0, 00107. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact value.

Step 18. The indigestion attribute of tuple 2 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 3
4

to 0, 00080. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next level

λ = 2.

Step 19. To select the maximum impact attribute, the ratios for each symptom attribute

is found as shown in Table 4.4. The chest pain symptom has the minimum ratio.

Therefore, it is selected as the maximum impact attribute.

Step 20. All tuples d satisfying the constraint chestpain[d] = H ∧ diagnosis[d] =

dyspepsia is found. Tuple 1 satisfies the mentioned constraint.

Step 21. The chest pain attribute of tuple 1 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 8
9

to 0, 00071. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is burning.
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Table 4.5: Academic Health Medical Records Shared with Academic Research Institute
after Execution of DECP-G

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

Mid-High Mid-High 2 5 2 Dyspepsia
Mid-High 5 4 Mid-High Mid-High Dyspepsia

5 2 ? Mid-High 5 Dyspepsia
3 3 Mid-High 4 2 Dyspepsia
2 2 5 3 3 Dyspepsia
4 4 3 2 4 Dyspepsia
3 4 3 3 3 Gastritis
5 2 4 4 2 Gastritis
3 3 4 4 3 Gastritis
3 2 4 5 5 Gastritis
4 5 2 3 5 Gastritis
4 3 3 2 4 Gastritis
3 2 3 2 3 S.I. Ulcer
5 2 2 3 4 S.I. Ulcer
4 3 2 2 2 S.I. Ulcer
3 4 5 3 4 S.I. Ulcer
4 3 3 4 5 S.I. Ulcer
4 4 3 3 4 Gastric Disease

Step 22. All tuples d satisfying the constraint burning[d] = H ∧ diagnosis[d] =

dyspepsia is found. Tuple 2 satisfies the mentioned constraint.

Step 23. The burning attribute of tuple 2 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 8
9

to 0, 00064. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is indigestion.

Step 24. All tuples d satisfying the constraint indigestion[d] = H ∧ diagnosis[d] =

dyspepsia is found. Tuples 1 and 2 satisfy the mentioned constraint.

Step 25. The indigestion attribute of tuple 1 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 15
16

to 0, 00060. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact value.

Step 26. The indigestion attribute of tuple 2 is generalized one level up. With this
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replacement p(dyspepsia|d18 ) decreases by 8
9

to 0, 00053. As p(dyspepsia|d18 ) is still

greater than p(gastritis|d18 ), the suppression process continues with the next maximum

impact attribute which is palpitation.

Step 27. All tuples d satisfying the constraint palpitation[d] = MH ∧ diagnosis[d] =

dyspepsia is found. Tuples 3 and 4 satisfy the mentioned constraint.

Step 28. The palpitation attribute of tuple 3 is generalized one level up. With this

replacement p(dyspepsia|d18 ) decreases by 24
25

to 0, 00051. As p(dyspepsia|d18 ) is equal

to p(gastritis|d18 ), the suppression process stops.

The resulting microdata set can be seen in Table 4.5.

4.1.3 INCP-G Algorithm

The INCP-G algorithm aims at suppressing the confidential data value αj [di ], so that

it cannot be correctly predicted by the downgraded classification model ςnb
D ′−d i ,αj . It

accomplishes its goal, as its name implies, by increasing the probabilities p(v|di) for all

v in the next best guess set,Snbg , above p(αj [di ] | di).

For each v ∈ Snbg , the INCP-G algorithm identifies the tuples d ∈ D[αj [d] = v]

having no common attribute value with di and modifies them by generalizing αj [d] in

order to increase p(v|di).

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm verifies the need for suppression. It finds p(v|di) for all v ∈ V candidate and

checks the truth value of Assertion (4.9). If Assertion (4.9) is true, it picks a random

next best guess vrnbg from V candidate , forms Snbg by finding the attribute values v ∈

V candidate satisfying p(v|di) ≥ p(vrnbg |di), and sets the level of generalization to 1. Next,

for each v ∈ Snbg , the algorithm finds the tuples d ∈ D[¬ α1 [d] = α1 [di ] ∧ . . . ∧

¬ αj−1 [d] = αj−1 [di ] ∧ αj [d] = v ∧ ¬ αj+1 [d] = αj+1 [di ] ∧ . . . ∧ ¬ αn [d] = αn [di ]] and

modifies them by generalizing αj [d] by λ levels until the goal is achieved, that is until

p(v|di) becomes less than or equal to p(αj [di ]|di). After processing all levels, it re-
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
MaxLevel, the maximum depth among the taxonomy sets
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

vactual = αj [di ]
λαj = 1
While λαj <= FindMaxLevel(T, αj )
{

αj [di ] = Generalize(vactual , λαj , T αj )
If success =INCP-G(D, T, vactual , di , αj , λαj , MaxLevel, k)

break
Increment λαj by 1

}
If not success

Run algorithm DECP-G
END
BOOL INCP-G(D,T ,vactual ,di ,αj ,λαj ,MaxLevel,k)

{
V candidate = all v ∈ V αj satisfying Generalize(v, λαj , T αj ) = αj [di ]
If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate

{
If |V candidate | = 2
{

Randomly decide whether or not to continue suppression
Return true

}

Select top-k from V candidate to form Ωk
αj [d i ]

Pick a random next best guess vrnbg among Ωk
αj [d i ]

Snbg = All attribute values v ∈ Ωk
αj [d i ] satisfying p(v|di ) ≥ p(vrnbg |di )

λ = 1
While λ <= MaxLevel
{

For each v ∈ Snbg

{
While p(αj [di ]|di ) > p(v|di ) and D[αj [d] = Generalize(v, λ − 1, T αj )] 6= empty
{

t = next tuple in D[αj [d] = Generalize(v, λ − 1, T αj )]
If t ∩ di = empty
{

αj [t] = Generalize(v, λ, T αj )
Recalculate probabilities p(v|di ) for all v ∈ V candidate

}
}

}
Increment λ by 1

}
}
If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate

{
Revert all changes
Return false

}
Return true

}

Figure 4.5: Pseudocode of INCP-G Algorithm
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checks the truth value of Assertion (4.9). If Assertion (4.9) is still true, then it reverts

all changes, generalizes the confidential data value to the next level, and repeats the

above steps until either the confidential data value is successfully suppressed or there

are no levels left to generalize the confidential data value. Finally, if the algorithm

is not successful, i.e. the confidential data value cannot be suppressed, then DECP-G

algorithm is executed to complete the suppression process. An overview of the algorithm

is provided in Figure 4.1.3.

Lemma 4.2. Let αj [di ] be the confidential data value, m be the number of tuples in

D and N be the number of tuples in D[αj [d] = αj [di ]] − di . Assuming that there are

enough number of tuples that can be used for the suppression process (i.e. no need for

executing DECP), the upper bound for the number of data values that can be modified

by the INCP-G algorithm is equal to m − N − 1 − |Snbg |.

Proof: The INCP-G algorithm modifies the tuples d ∈ D[¬ α1 [d] = α1 [di ] ∧ . . . ∧

¬ αj−1 [d] = αj−1 [di ] ∧ αj [d] = v ∧ ¬ αj+1 [d] = αj+1 [di ] ∧ . . . ∧ ¬ αn [d] = αn [di ]]

for each v ∈ Snbg . In the worst case, Snbg contains all possible values of attribute αj

except αj [di ]. This implies
∑

v∈Snbg
|D[αj [d] = v]| = m − N − 1. Moreover, due to the

definition of next best guess set and random next best guess the probability p(v|di)

for each v ∈ Snbg must be greater than zero. This implies that, in the worst case

there exists at least one tuple which has the same data values with di (except αj ) for

each v ∈ Snbg . So, we can conclude that the INCP algorithm can generalize at most

m − N − 1 − |Snbg | data values for suppressing a confidential data value ¤

Example 8. Now, let us illustrate how the INCP-G algorithm suppresses the confi-

dential diagnosis.

Step 1. Initially, the confidential diagnosis is generalized one level up as shown in Table

4.2.

Step 2. Next, the Näıve Bayesian classification model is constructed to find the prob-

abilities p(v|di) for all v ∈ V candidate = {dyspepsia, gastritis}. The Näıve Bayesian

classification model constructed using the medical records of Table 4.2 is shown in Ta-
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Table 4.6: Näıve Bayesian Classification Model Constructed During the Run of INCP-G
Algorithm

p(Symptom|Diagnosis)
Step Diagnosis p(Diagnosis) I CP P N B p(Diagnosis|d18 )

2 Dyspepsia 6/12 3/6 2/6 3/6 2, 5/6 2/6 0, 00579
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

7 Dyspepsia 6, 5̃4/12 3/6, 5̃4 2/6, 5̃4 3/6, 5̃4 2, 5/6, 5̃4 2/6, 5̃4 0, 00409
Gastritis 5, 4̃5/12 2/5, 4̃5 1/5, 4̃5 2/5, 4̃5 2/5, 4̃5 1/5, 4̃5 0, 00075

8 Dyspepsia 7, 2/12 3/7, 2 2/7, 2 3/7, 2 2, 5/7, 2 2/7, 2 0, 00279
Gastritis 4, 8/12 2/4, 8 1/4, 8 2/4, 8 2/4, 8 1/4, 8 0, 00126

9 Dyspepsia 8/12 3/8 2/8 3/8 2, 5/8 2/8 0, 00183
Gastritis 4/12 2/4 1/4 2/4 2/4 1/4 0, 00260

ble 4.6. According to the model the probabilities are p(dyspepsia|d18 ) = 0, 0058, and

p(gastritis|d18 ) = 0, 0005.

Step 3. The probability p(dyspepsia|d18 ) is greater than p(gastritis|d18 ). As the con-

fidential diagnosis can be correctly predicted, the suppression process starts.

Step 4. Since the size of V candidate is equal to 2, it is randomly decided whether to

continue with the suppression or not. Let us assume that it has been decided to continue

with the suppression process.

Step 5. Let us assume that gastritis is selected as the random next best guess. From this

point on the INCP-G algorithm will increase p(gastritis|d18 ) above p(dyspepsia|d18 ).

Step 6. All tuples which has no common symptoms with d18 among D[diagnosis =

gastritis] is found. Tuples 8,9 and 10 satisfy the mentioned constraint.

Step 7. The diagnosis attribute of tuple 8 is generalized to Gastric Disease. After this

generalization, p(gastritis|d18 ) increases to 0, 00075, and p(dyspepsia|d18 ) decreases

to 0, 00409. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues.

Step 8. The diagnosis attribute of tuple 9 is generalized to Gastric Disease. After this

generalization, p(gastritis|d18 ) increases to 0, 00126, and p(dyspepsia|d18 ) increases

to 0, 00279. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression
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Table 4.7: Academic Health Medical Records Shared with Academic Research Institute
after Execution of INCP-G

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 5 2 Dyspepsia
4 5 4 Mid-High 4 Dyspepsia
5 2 3 3 5 Dyspepsia
3 3 3 4 2 Dyspepsia
2 2 5 3 3 Dyspepsia
4 4 3 2 4 Dyspepsia
3 4 3 3 3 Gastritis
5 2 4 4 2 Gastric Disease
3 3 4 4 3 Gastric Disease
3 2 4 5 5 Gastric Disease
4 5 2 3 5 Gastritis
4 3 3 2 4 Gastritis
3 2 3 2 3 S.I. Ulcer
5 2 2 3 4 S.I. Ulcer
4 3 2 2 2 S.I. Ulcer
3 4 5 3 4 S.I. Ulcer
4 3 3 4 5 S.I. Ulcer
4 4 3 3 4 Gastric Disease

process continues.

Step 9. The diagnosis attribute of tuple 10 is generalized to Gastric Disease. After this

generalization, p(gastritis|d18 ) increases to 0, 00260, and p(dyspepsia|d18 ) increases to

0, 00183. As p(dyspepsia|d18 ) is smaller than p(gastritis|d18 ), the suppression process

stops.

The resulting microdata set can be seen in Table 4.7.

4.1.4 DROPP-G Algorithm

The DROPP-G algorithm aims at suppressing the confidential data value αj [di ], so

that it cannot be correctly predicted by the classification model ςnb
D−d i ,αj . It aims at

dropping the probability p(αj [di ]|di) below that of the random next best guess vrnbg ,

so that it cannot be correctly predicted by the classification model ςnb
D−d i ,αj . Unlike
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
MaxLevel, the maximum depth among the taxonomy sets
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

vactual = αj [di ]
λαj = 1
While λαj <= FindMaxLevel(T, αj ) {

αj [di ] = Generalize(vactual , λαj , T αj )
If success =DROPP-G(D, T, vactual , di , αj , λαj , MaxLevel, k)

break
Increment λαj by 1

}
If not success

Delete tuple di

END
BOOL DROPP-G(D,T ,vactual ,di ,αj ,λαj ,MaxLevel,k) {

V candidate = all v ∈ V αj satisfying Generalize(v, λαj , T αj ) = αj [di ]
Find probabilities p(v|di ) for all v ∈ V candidate

If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate {
If |V candidate | = 2 {

Randomly decide whether or not to continue suppression
Return true

}

Select top-k from V candidate to form Ωk
αj [d i ]

Pick a random next best guess vrnbg among Ωk
αj [d i ]

λ = 1
While λ <= MaxLevel {

While p(vactual |di ) > p(vrnbg |di ) and candidates for maximum impact attribute exist {

Find maximum impact attribute αMI
αj [d i ] for current level

αMI
αj [d i ][di ] = Generalize(αMI

αj [d i ][di ], λ, T αMI
)

Recalculate probabilities p(v|di ) for all v ∈ V candidate

}
Increment λ by 1

}
}
If p(vactual |di ) > p(v|di ) | ∀v ∈ V candidate Revert all changes and return false
Return true

}
ATTRIBUTE FindMaximumImpactAttributeForDROPP-G(D,T ,vactual ,di ,αj ,vrnbg ,λ) {

ratio = 0
For each attribute α ∈ Λ − αj {

F̄ α,vrnbg ,λ = updated frequency count of tuples satisfying

D[αj [d] = vrnbg ∧ α[d] = Generalize(α[di ], λ, T α)]
F̄ α,vrnbg ,λ−1 = updated frequency count of tuples satisfying

D[αj [d] = vrnbg ∧ α[d] = Generalize(α[di ], λ − 1, T α)]
F̄ α,vactual ,λ

= updated frequency count of tuples satisfying
D[αj [d] = vactual ∧ α[d] = Generalize(α[di ], λ, T α)]

F̄ α,vactual ,λ−1 = updated frequency count of tuples satisfying
D[αj [d] = vactual ∧ α[d] = Generalize(α[di ], λ − 1, T α)]

ratio′ =
F̄ α,vrnbg ,λ

F̄ α,vrnbg ,λ−1
×

F̄ α,vactual ,λ−1

F̄ α,vactual ,λ

If ratio′ > ratio {
ratio = ratio′

αMI
αj [d i ],λ,T = α

}
}

Return αMI
αj [d i ],λ,T

}

Figure 4.6: Pseudocode of DROPP-G Algorithm
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DECP-G and INCP-G algorithms, it achieves its goal by downgrading the tuple di ,

instead of downgrading classification model ςnb
D−d i ,αj .

The algorithm employs the following modified definition of Maximum Impact At-

tribute.

Definition 4.6. Maximum Impact Attribute for DROPP-G. Let us assume that

F̄α,v ,λ denote the updated frequency count of tuples satisfying the following constraint

αj [d] = v ∧ α[d] = Generalize(α[di ], λ, T ). The attribute with maximum impact on

p(αj [di ]|di), denoted by αMI
αj [d i ],λ,T , is the one that satisfies the following condition.

αMI
αj [d i ],λ,T = arg max α∈Λ

(

F̄α,vrnbg ,λ

F̄α,vrnbg ,λ−1

×
F̄α,αj [d i ],λ−1

F̄α,αj [d i ],λ

)

(4.10)

Definition 4.7. Maximum Impact Data Value. The maximum impact data value

is the instance of maximum impact data attribute αMI
αj [d i ],λ,T in tuple di .

In each iteration, the DROPP-G algorithm identifies αMI
αj [d i ],λ,T and modifies

the tuple di by generalizing αMI
αj [d i ],λ,T [di ] until the goal is achieved, that is until

p(αj [di ]|di) becomes less than p(vrnbg |di). Each such replacement results in the maxi-

mum possible reduction in
p(αj [di ]|di )

p(vrnbg |di )
, thus requiring less number of modifications.

Theorem 4.2. Let αMI
αj [d i ],λ,T be the maximum impact attribute satisfying Equation

(4.10). Then, generalization of the maximum impact data value causes the maximum

decrease in
p(αj [di ]|di )

p(vrnbg |di )
, thus resulting in fewer data values to be modified.

Proof: Let us first find the effect of generalizing a maximum impact data value on

p(αj [di ]|di) and p(vrnbg |di) . Remember that, since p(di) is same for all v ∈ V αj
, it can

be ignored when calculating p(αj [di ]|di).

p(αj [di ]|di) =
p(αj [di ])p(di |αj [di ])

p(di)
∼= p(αj [di ])p(di |αj [di ])

∼= p(αj [di ])p(αMI
αj [d i ],λ,T [di ]|αj [di ])

×
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|αj [di ])
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Similarly,

p(vrnbg |di) =
p(vrnbg)p(di |vrnbg)

p(di)
∼= p(vrnbg)p(di |vrnbg)

∼= p(vrnbg)p(αMI
αj [d i ],λ,T [di ]|vrnbg)

×
∏

α∈Λ−{αj ,αMI
αj [di ],λ,T}p(α[di ]|vrnbg)

Let us assume that;

• F̄ vrnbg
be the updated frequency count of tuples satisfying the following constraint

D[αj [d] = vrnbg ] excluding di ,

• F̄αj [d i ] be the updated frequency count of tuples satisfying the following constraint

D[αj [d] = αj [di ]] excluding di ,

• F̄
αMI

αj [di ],λ,T ,vrnbg ,λ
be the updated frequency count of tuples satisfying the follow-

ing constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ, T )

among D[αj [d] = vrnbg ] excluding di ,

• F̄
αMI

αj [di ],λ,T ,vrnbg ,λ−1
be the updated frequency count of tuples satisfying the fol-

lowing constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T )

among D[αj [d] = vrnbg ] excluding di ,

• F̄
αMI

αj [di ],λ,T ,αj [d i ],λ
be the updated frequency count of tuples satisfying the follow-

ing constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ, T )

among D[αj [d] = αj [di ]] excluding di , and
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• F̄
αMI

αj [di ],λ,T ,αj [d i ],λ−1
be the updated frequency count of tuples satisfying the fol-

lowing constraint;

αMI
αj [d i ],λ,T [d] = Generalize(αMI

αj [d i ],λ,T [di ], λ − 1, T )

among D[αj [d] = αj [di ]] excluding di .

Replacement of the maximum impact data value causes
p(αj [di ]|di )

p(vrnbg |di )
to change by

F̄
αMI

αj [di ],λ,T
,αj [di ],λ

F̄
αMI

αj [di ],λ,T
,αj [di ],λ−1

×
F̄

αMI
αj [di ],λ,T

,vrnbg ,λ−1

F̄
αMI

αj [di ],λ,T
,vrnbg ,λ

as shown below.

p′(αj [di ]|di) ∼= p′(αj [di ])p
′(di |αj [di ])

∼= p(αj [di ])
∏

α∈Λ−{αj ,αMI ′
αj [di ]}p(α[di ]|αj [di ])

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ

F̄αj [d i ]

∼= p(αj [di ])
∏

α∈Λ−{αj ,αMI ′
αj [di ]}p(α[di ]|αj [di ])

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ

F̄αj [d i ]

×
F̄

αMI
αj [di ],λ,T ,αj [d i ],λ−1

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ−1

∼= p(αj [di ]|di)
F̄

αMI
αj [di ],λ,T ,αj [d i ],λ

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ−1

p′(vrnbg |di) ∼= p′(vrnbg)p
′(di |vrnbg)

∼= p(vrnbg)
∏

α∈Λ−{αj ,αMI ′
αj [di ]}p(α[di ]|vrnbg)

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ

F̄ vrnbg

∼= p(vrnbg)
∏

α∈Λ−{αj ,αMI ′
αj [di ]}p(α[di ]|vrnbg)

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ

F̄ vrnbg

×
F̄

αMI
αj [di ],λ,T ,vrnbg ,λ−1

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ−1

∼= p(vrnbg |di)
F̄

αMI
αj [di ],λ,T ,vrnbg ,λ

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ−1

Now let us assume that there is another attribute αk which decreases
p(αj [di ]|di )

p(vrnbg |di )
more

than that of αMI
αj [d i ],λ,T . This implies the following:

F̄αk ,αj [d i ],λ

F̄αk ,αj [d i ],λ−1

F̄αk ,vrnbg ,λ−1

F̄αk ,vrnbg ,λ

<
F̄

αMI
αj [di ],λ,T ,αj [d i ],λ

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ−1

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ−1

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ
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F̄αk ,αj [d i ],λ−1

F̄αk ,αj [d i ],λ

F̄αk ,vrnbg ,λ

F̄αk ,vrnbg ,λ−1

>
F̄

αMI
αj [di ],λ,T ,αj [d i ],λ−1

F̄
αMI

αj [di ],λ,T ,αj [d i ],λ

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ

F̄
αMI

αj [di ],λ,T ,vrnbg ,λ−1

However, this contradicts the definition of Maximum Impact Attribute. So, we can

conclude that every generalization of the maximum impact data value causes the highest

decrease in
p(αj [di ]|di )

p(vrnbg |di )
which in turn implies that the number of data values that should

be modified is minimal¤

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the

algorithm backs up the confidential data value αj [di ] as vactual , and generalizes it to

the next level. Then, it verifies the need for suppression. It first finds the candidate

set for the confidential data value, V candidate , which includes all v ∈ V αj
satisfying

the constraint Generalize(v, levelαj
, Tαj

) = αj [di ]. Then, it finds p(v|di) for all v ∈

V candidate and checks the truth value of the following assertion:

p(vactual |di) > p(v|di)|∀v ∈ V candidate (4.11)

If Assertion (4.11) is true, it picks a random next best guess vrnbg from V candidate and

sets the level of generalization to 1. Next, in each iteration it finds the maximum im-

pact attribute αMI
αj [d i ] for the current level λ and generalizes the maximum impact

data value by λ levels as long as p(αj [di ]|di) > p(vrnbg |di). After each iteration, it

re-checks the truth value of Assertion (4.11) to decide whether to continue execution

or not. If Assertion (4.11) is still true after all possible maximum impact attributes are

processed, it increments the current level of generalization by 1 and repeats the gen-

eralization process until there are no levels left for generalization. After processing all

levels and maximum impact attributes, it re-checks the truth value of Assertion (4.11).

If Assertion (4.11) is still true, then it reverts all changes, generalizes the confidential

value to the next level, and repeats the above steps until either the confidential data

value is successfully suppressed or there are no levels left to generalize the confidential

data value. Finally, if the algorithm is not successful, i.e. the confidential data value
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cannot be suppressed, then tuple di is deleted from the microdata set. An overview of

the algorithm is provided in Figure 4.6.

If |V candidate | = 2 is true, then suppressing the confidential data value might result

in an adversary guessing it correctly with 100% confidence. Therefore, the decision to

suppress a confidential data value is randomized for the case where |V candidate | = 2. This

results in an adversary guessing the actual confidential data value with 50% confidence

which is the maximum uncertainty that can be achieved under such circumstances.

Lemma 4.3. Let αj [di ] be the confidential data value and n be the number of attributes.

Then, the upper bound for the number of data values that can be modified by the DROPP-

G algorithm is equal to n − 1.

Proof: The DROPP-G algorithm modifies just the tuple di which has n − 1 data

values excluding the confidential data value. So, we can conclude that the DROPP-G

algorithm can generalize at most n − 1 data values for suppressing a confidential data

value ¤

Example 9. Now, let us illustrate how the DROPP-G algorithm suppresses the con-

fidential diagnosis.

Step 1. Initially, the confidential diagnosis is generalized one level up as shown in Table

4.2.

Step 2. Next, the Näıve Bayesian classification model is constructed to find the prob-

abilities p(v|di) for all v ∈ V candidate = {dyspepsia, gastritis}. The Näıve Bayesian

classification model constructed using the medical records of Table 4.2 is shown in Ta-

ble 4.8. According to the model the probabilities are p(dyspepsia|d18 ) = 0, 0058, and

p(gastritis|d18 ) = 0, 0005.

Step 3. The probability p(dyspepsia|d18 ) is greater than p(gastritis|d18 ). As the con-

fidential diagnosis can be correctly predicted, the suppression process starts.

Step 4. Since the size of V candidate is equal to 2, it is randomly decided whether to
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Table 4.8: Näıve Bayesian Classification Model Constructed During the Run of
DROPP-G Algorithm

p(Symptom|Diagnosis)
Step Diagnosis p(Diagnosis) I CP P N B p(Diagnosis|d18 )

2 Dyspepsia 6/12 3/6 2/6 3/6 2, 5/6 2/6 0, 00579
Gastritis 6/12 2/6 1/6 2/6 2/6 1/6 0, 00051

7 Dyspepsia 6/12 3/6 2/6 3/6 2, 5/6 3/6 0, 00868
Gastritis 6/12 2/6 1/6 2/6 2/6 3/6 0, 00154

8 Dyspepsia 6/12 3/6 2/6 5/6 2, 5/6 3/6 0, 01447
Gastritis 6/12 2/6 1/6 5/6 2/6 3/6 0, 00386

9 Dyspepsia 6/12 3/6 3/6 5/6 2, 5/6 3/6 0, 02170
Gastritis 6/12 2/6 2/6 5/6 2/6 3/6 0, 00772

10 Dyspepsia 6/12 3/6 3/6 5/6 5/6 3/6 0, 04340
Gastritis 6/12 2/6 2/6 5/6 5/6 3/6 0, 01929

11 Dyspepsia 6/12 3/6 4/6 5/6 5/6 3/6 0, 05787
Gastritis 6/12 2/6 3/6 5/6 5/6 3/6 0, 02894

13 Dyspepsia 6/12 5/6 4/6 5/6 5/6 3/6 0, 07234
Gastritis 6/12 6/6 3/6 5/6 5/6 3/6 0, 05787

14 Dyspepsia 6/12 5/6 5/6 5/6 5/6 3/6 0, 09645
Gastritis 6/12 6/6 6/6 5/6 5/6 3/6 0, 11574

continue with the suppression or not. Let us assume that it has been decided to continue

with the suppression process.

Step 5. Let us assume that gastritis is selected as the random next best guess. From this

point on the DROPP-G algorithm will drop p(dyspepsia|d18 ) below p(gastritis|d18 ).

Step 6. To select the maximum impact attribute, the ratios for each symptom attribute

is found for λ = 1 as shown in Table 4.9. The burning symptom has the maximum

ratio. Therefore, it is selected as the maximum impact attribute.

Step 7. The burning attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 00868, and p(gastritis|d18 ) increases to

0, 00154. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues with the next maximum impact attribute which is palpitation.

Step 8. The palpitation attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 01447, and p(gastritis|d18 ) increases to

0, 00386. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression
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Table 4.9: Ratios Calculated to Determine the Maximum Impact Attribute for DROPP-
G

Step Result Indigestion Chest Pain Palpitation Nausea Burning
6 F̄α,Gastritis,1 3 2 5 5 3

F̄α,Gastritis,0 2 1 2 2 1
F̄α,Dyspepsia,1 4 3 5 5 3
F̄α,Dyspepsia,0 3 2 3 2, 5 2

6 Ratio 9/8 4/3 15/10 25/20 6/3
12 F̄α,Gastritis,2 6 4 6 6 5

F̄α,Gastritis,1 3 2 5 5 3
F̄α,Dyspepsia,2 5 4 6 6 4
F̄α,Dyspepsia,1 4 3 5 5 3

12 Ratio 24/15 12/8 1 1 15/12

process continues with the next maximum impact attribute which is chest pain.

Step 9. The chest pain attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 02170, and p(gastritis|d18 ) increases to

0, 00772. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues with the next maximum impact attribute which is nausea.

Step 10. The nausea attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 04340, and p(gastritis|d18 ) increases to

0, 01929. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues with the next maximum impact attribute which is indigestion.

Step 11. The indigestion attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 05787, and p(gastritis|d18 ) increases to

0, 02894. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues with the next level λ = 2.

Step 12. To select the maximum impact attribute, the ratios for each symptom attribute

is found for λ = 2 as shown in Table 4.9. The indigestion symptom has the maximum

ratio. Therefore, it is selected as the maximum impact attribute.

Step 13. The indigestion attribute of tuple 18 is generalized one level up. With this
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Table 4.10: Academic Health Medical Records Shared with Academic Research Institute
after Execution of DROPP-G

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 5 2 Dyspepsia
4 5 4 Mid-High 4 Dyspepsia
5 2 3 3 5 Dyspepsia
3 3 3 4 2 Dyspepsia
2 2 5 3 3 Dyspepsia
4 4 3 2 4 Dyspepsia
3 4 3 3 3 Gastritis
5 2 4 4 2 Gastritis
3 3 4 4 3 Gastritis
3 2 4 5 5 Gastritis
4 5 2 3 5 Gastritis
4 3 3 2 4 Gastritis
3 2 3 2 3 S.I. Ulcer
5 2 2 3 4 S.I. Ulcer
4 3 2 2 2 S.I. Ulcer
3 4 5 3 4 S.I. Ulcer
4 3 3 4 5 S.I. Ulcer

Mid-High Mid-High Mid-High Mid-High High Gastric Disease

generalization p(dyspepsia|d18 ) increases to 0, 07234, and p(gastritis|d18 ) increases to

0, 05787. As p(dyspepsia|d18 ) is still greater than p(gastritis|d18 ), the suppression

process continues with the next maximum impact attribute which is chest pain.

Step 14. The chest pain attribute of tuple 18 is generalized one level up. With this

generalization p(dyspepsia|d18 ) increases to 0, 09645, and p(gastritis|d18 ) increases to

0, 11574. As p(dyspepsia|d18 ) is smaller than p(gastritis|d18 ), the suppression process

stops.

The resulting microdata set can be seen in Table 4.10.
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4.2 Suppression Against Decision Tree Classifica-

tion Models

In the following, we present the HID3-G algorithm for preventing decision tree clas-

sification based inference using generalization. Although we have used ID3 in our

experiments, the proposed algorithm can be used to suppress a confidential data value

from any decision tree algorithm.

4.2.1 HID3-G Algorithm

The HID3-G algorithm aims at suppressing the confidential data value αj [di ], so that

the ID3 classifier ς id3
D−d i ,αj cannot correctly predict its actual value. Similar to the

DROPP-G algorithm, it achieves its goal by downgrading the microdata tuple di con-

taining the confidential data value.

The algorithm works as follows: Let αj [di ] be confidential. As the first step, the algo-

rithm backs up the confidential data value αj [di ] as vactual , and generalizes it to the next

level. Then, it verifies the need for suppression. It first finds the candidate set for the

confidential data value, V candidate , which includes all v ∈ V αj
satisfying the constraint

Generalize(v, levelαj
, Tαj

) = αj [di ]. Then, it builds the decision tree using the training

data set D[αj = v] − di where v ∈ V candidate and verifies the need for suppression. If

ς id3
D [αj =v ]−d i |v∈V candidate ,αj can correctly predict the confidential data value it calls the

recursive ID3Hide function. The ID3Hide function first checks whether the root node

is a leaf or not. If it is a leaf, and its value is different from the actual confidential data

value vactual it returns true, which in turn terminates the recursive function successfully.

Or else, it returns false. If the root node is not a leaf, then it finds the most probable

value vπ ∈ V candidate for αj [di ], and checks whether vπ is equal to vactual or not. If

the most probable value vπ is not equal to the actual confidential data value αj [di ],

it returns true. Otherwise, it further explores the child nodes of the root in order to
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suppress αj [di ]. Let the decision attribute of the root node be αroot , the most common

child of the root (i.e. the child with highest training population) be childMC and the

children matching αroot [di ] ranked with respect to their matching training population

(in descending order) be childrenMatch . If αroot [di ] = ν then it tries to suppress the

confidential data value using the most probable child node childrenMatch [0] which is ac-

tualy equal to childMC . Or else, it identifies the current generalization level of αroot [di ]

and the maximum level of generalization for αroot . Until the current generalization level

is greater than or equal to the maximum allowed level it repeats the following; It first

checks whether childrenMatch [0] is equal to childMC or not.If it is then it generalizes

αroot [di ] one level up, reidentifies the childrenMatch , and recursively tries to suppress us-

ing the child node childrenMatch [0] which is equal to childMC . Otherwise, it recursively

tries to suppress using the child node childrenMatch [0]. If the supression does not suc-

ceed, then it generalizes αroot [di ] one level up and reidentifies the childrenMatch . After

exploring all possible sub-branches, if the algorithm fails to suppress the confidential

data value, it reverts all changes and deletes the tuple di from the microdata set. An

overview of the algorithm is provided in Figure 4.7.

If |V αj
| = 2 is true, then suppressing the confidential data value might result in

an adversary guessing it correctly with 100% confidence. Therefore, the decision to

suppress a confidential data value is randomized for the case where |V αj
| = 2. This

results in an adversary guessing the actual confidential data value with 50% confidence

which is the maximum uncertainty that can be achieved under such circumstances.

Lemma 4.4. Let αj [di ] be the confidential data value and n be the number of attributes.

Then, the upper bound for the number of data values that can be modified by the HID3-G

algorithm is equal to n − 1.

Proof: The HID3-G algorithm modifies just the tuple di which has n − 1 data values

excluding the confidential data value. So, we can conclude that the HID3-G algorithm

can generalize at most n − 1 data values for suppressing a confidential data value ¤

Example 10. For this specific example, let us assume that the decision tree built using
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
di , the tuple containing the confidential data value
αj , the attribute containing the confidential data value

OUTPUT: D′, the new data set
BEGIN

vactual = αj [di ]
λαj = 1
While λαj <= FindMaxLevel(T, αj ) {

αj [di ] = Generalize(vactual , λαj , T αj )
V candidate = all v ∈ V αj satisfying Generalize(v, λαj , T αj ) = αj [di ]
root=Build the decision tree using ID3(D[αj [d] = v] − di |v ∈ V candidate)
vπ =Classify(root, di )
If vπ = vactual {

If |V candidate | = 2 {
Randomly decide whether or not to continue suppression
Return true

}
If success =ID3Hide(root, T, vactual , di )

break
}
Increment λαj by 1

}
If not success

Delete tuple di

END
BOOL ID3Hide(root, T, vactual , di )
{

If root is a leaf return root.value 6= vactual

vπ =Classify(root, di )
If vπ 6= vactual return true

αroot = decision attribute of the root
childMC = most common child of the root
childrenMatch = children matching αroot [di ] ranked wrt. training set size
If αroot [di ] = ν return ID3Hide(childrenMatch [0])
Else {

λ =Current generalization level of αroot

MaxLevel =FindMaxLevel(T, αroot )
Do {

If childMC <> childrenMatch [0]
If ID3Hide(childrenMatch [0]) return true

Else {
Increment λ by 1
Generalize(αroot [di ], λ, T αroot )
childrenMatch = children containing all possible values of αroot [di ] ranked wrt. their training set size

}
Else {

Increment λ by 1
Generalize(αroot [di ], λ, T αroot )
If ID3Hide(childrenMatch [0]) return true

}
}
While λ < MaxLevel
Revert changes to αroot [di ]
return false

}

Figure 4.7: Pseudocode of HID3-G Algorithm

81



Nausea

1;2 3;4;5 1;2 3;4;5

Nausea

Burning

1;2 3 4 5

Node 5

Category % n

Dyspepsia 0,0 0

Gastritis 100,0 4

Total 20,0 4

Node 6

Category % n

Dyspepsia 100,0 3

Gastritis 0,0 0

Total 15,0 3

Node 7

Category % n

Dyspepsia 100,0 2

Gastritis 0,0 0

Total 10,0 2

Node 8

Category % n

Dyspepsia 0,0 0

Gastritis 100,0 3

Total 15,0 3

Node 4

Category % n

Dyspepsia 40,0 2

Gastritis 60,0 3

Total 25,0 5

Node 3

Category % n

Dyspepsia 100,0 4

Gastritis 0,0 0

Total 20,0 4

Node 2

Category % n

Dyspepsia 42,8 3

Gastritis 57,2 4

Total 35,0 7

Node 1

Category % n

Dyspepsia 25,0 1

Gastritis 75,0 3

Total 20,0 4

Node 0

Category % n

Dyspepsia 50,0 10

Gastritis 50,0 10

Total 100,0 20

Figure 4.8: An Example Decision Tree

the training data set is as shown in 4.8, and the tuple with confidential diagnosis is

as shown Table 4.11 Now, let us illustrate how the HID3-G algorithm suppresses the

confidential diagnosis.

Step 1. Initially, the confidential diagnosis is generalized one level up as Gastric

Disease.

Step 2. Next, the ID3 classification model is constructed using the tuples whose

diagnosis ∈ {dyspepsia, gastritis}. Let us assume that the decision tree built using

the training data set is as shown in 4.8. According to the model vπ = dyspepsia.

Step 3. As the confidential data value can be correctly predicted,the suppression process

starts.

Step 4. Since the size of V candidate = {dyspepsia, gastritis} is equal to 2, it is randomly

decided whether to continue with the suppression or not. Let us assume that it has

been decided to continue with the suppression process.

Table 4.11: Tuple Whose Confidential Diagnosis To Be Suppressed By HID3-G

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 3 3 Dyspepsia
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Step 5. Starting from the root=node 0, the ID3Hide function checks whether it is

possible to correctly predict the confidential diagnosis or not. Since it can be correctly

predicted using the path burning = 3∧nausea = 3, the suppression process continues.

Step 6. The most common child node of the root and the matching child node are both

found to be node 2.

Step 7. Since the matching child is equal to the most common child node of the root,

the burning attribute is generalized one level up, and ID3Hide function is recursively

called with root=node 2.

Step 8. Starting from the subtree root=node 2, the ID3Hide function checks whether it

is possible to correctly predict the confidential diagnosis or not. Since the diagnosis can

be correctly predicted using the path nausea = 3, the suppression process continues.

Step 9. The most common child node of the root and the matching child node are

found to be node 5 and node 6 respectively.

Step 10. Since the matching child is not equal to the most common child node of the

root, the ID3Hide function is recursively called with the matching child root=node 6.

Step 11. Since the root=node 6 is a leaf node, and its value is equal to the actual

confidential data value, False is returned from the recursive ID3Hide call.

Step 12. Since the recursive call to ID3Hide is not successful, nausea attribute is

generalized one level up to be Mid-High.

Step 13. The matching child node is found to be node 6.

Step 14. Since the matching child is not equal to the most common child node of the

root, the ID3Hide function is recursively called with the matching child root=node 6.

Step 15. As root=node 6 is a leaf, the ID3Hide function checks whether the most

probable value, i.e. dyspepsia, and the confidential diagnosis are equal or not. As they

are equal, the function returns from the recursive call signaling an unsuccessful run.
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Step 16. Since the recursive call to ID3Hide is not successful, the nausea attribute is

generalized one level up to be ?.

Step 17. The matching children nodes are found to be node 5 and node 6.

Step 18. As, the first matching child is equal to the most common child node of the

root, the ID3Hide function is recursively called with the most common child root=node

5.

Step 19. As root=node 5 is a leaf, the ID3Hide function checks whether the most

probable value, i.e. gastritis, and the confidential diagnosis are equal or not. Since they

are not equal, the function returns from the recursive call signaling a successful run.

The resulting microdata tuple can be seen in Table 4.12.

Table 4.12: Tuple Whose Confidential Diagnosis Suppressed By HID3-G

Indigestion Chest Palpitation Nausea Burning Diagnosis
Pain

4 4 2 ? Mid-High Gastric Disease

4.3 Suppression of Multiple Confidential Data Val-

ues

In the following, we present the enhanced versions of DECP-G and DROPP-G algo-

rithms for preventing probabilistic classification based inference. The proposed algo-

rithms aim to reduce to side-effects while suppressing multiple confidential data values.

4.3.1 e-DECP-G Algorithm

The enhanced DECP-G algorithm aims at suppressing multiple confidential data val-

ues, so that none of them can be correctly predicted by the downgraded classification
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model ςnb
D ′,αj . The proposed algorithm reduces the side-effects of the original DECP-G

algorithm when (1) all confidential data values belong to a single attribute, and (2) all

confidential data values have the same value.

The algorithm works as follows: Let αj be the confidential attribute, S ⊂ D be the

set of tuples for which αj , satisfying the constraint αj [d] = conf value for all d ∈ S,is

confidential. As the first step, the algorithm generalizes all confidential data values one

level up. Then, it identifies the candidate maximum impact data values, and initializes

their primary and secondary impacts along with counts. The primary impact is the

number of tuples which will be affected (i.e. the probabilities will be affected) if an

instance of the maximum impact attribute is generalized. The secondary impact, on

the other hand is the ratio that is used to determine the maximum impact attribute.

Next, for each tuple d ∈ S, the need for suppression is verified by finding p(v|d) for all

v ∈ V candidate and checking the truth value of the following assertion:

p(αj [d]|d) > p(v|d)|∀v ∈ V candidate − αj [d] (4.12)

If Assertion (4.12) is true for a tuple d ∈ S, it picks a random next best guess vrnbg
d ,

from V candidate . Next, the candidate maximum impact data values are sorted. Different

from the DECP-G, which uses only the secondary impact to determine which maximum

impact data value to use, e-DECP-G also uses the primary impact in order to guarantee

suppression of maximum number of confidential data values with a single iteration.

With maximum impact values sorted, the rest of the execution is quite similar to the

original DECP-G which involves replacement of maximum impact data value instances,

re-calculation of probabilities and re-checking of Assertion (4.12). An overview of the

algorithm is provided in Figure 4.9.

4.3.2 e-DROPP-G Algorithm

The enhanced DROPP-G algorithm aims at suppressing multiple confidential data val-

ues at a time so that none of them can be correctly predicted by the corresponding
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
MaxLevel, the maximum depth among the taxonomy sets
S, the set of tuples for which αj is confidential
αj , the attribute containing the confidential data values
conf value, the value of confidential attribute αj ∈ S
k, degree of suppression

OUTPUT: D′, the new data set
BEGIN

vactual = conf value
λαj = 1
While λαj <= FindMaxLevel(T, αj ) {

For each tuple d ∈ S
αj [d] = Generalize(vactual , λαj , T αj , k)

e-DECP-G(D, T, vactual , S, αj , λαj , MaxLevel) break
Increment λαj by 1

}
For each tuple d ∈ S

Delete tuple d
END
BOOL e-DECP-G(D,T ,vactual ,di ,αj ,λαj ,MaxLevel,k)

{
λ = 1
While λ <= MaxLevel {

For each attribute α ∈ Λ − αj {
For each possible value of vα ∈ V α {

Create the maximum impact data value candidate MIV [α][vα]
Set MIV [α][vα].primary impact to 0
F 1 = |D[αj [d] = vactual ∧ α[d] = Generalize(vα, λ − 1, T α)]|
F 2 = |D[αj [d] = vactual ∧ Descendant(α[d], Generalize(vα, λ, T α))]|
F 3 = |D[αj [d] = vactual ∧ Descendant(α[d], Generalize(vα, λ − 1, T α)]|

Set MIV [α][vα].secondary impact = F 1+F3−1
F 1 +F 3

× F 2

F 2−1

Set MIV [α][vα].count = F 1

}
V candidate = all v ∈ V αj satisfying Generalize(v, λαj , T αj ) = αj [S[0]]
For each tuple d ∈ S {

Find probabilities p(v|d) for all v ∈ V candidate

If not p(vactual |d) > p(v|d) | ∀v ∈ V candidate Remove d from S
Else If |V candidate | = 2

Randomly decide whether to suppress the confidential data value and remove d from S
if decision = ‘not suppress’

If d ∈ S {

Select top-k from V candidate to form Ωk
αj [d]

Pick a random next best guess vrnbg among Ωk
αj [d]

For each attribute α ∈ Λ − αj

Increment MIV [α][α[d]].primary impact by 1
}

}
Sort MIV first by primary impact in descending order, then by secondary impact in ascending order
For each maximum impact value miv ∈ MIV {

While |S| > 0 and (miv.count > 1 or λ > 1) {
Generalize the next instance of miv
miv.count −−
For each tuple d ∈ S {

Update p(αj [d]|d)
If p(αj [d]|d) ≤ p(vrnbg

d |d) Remove d from S
}

}
If |S| = 0 break

}
}

}

Figure 4.9: Pseudocode of e-DECP-G Algorithm
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classification models ςnb
D ,α. The proposed algorithm reduces the side-effects of the

original DROPP-G algorithm when all confidential data values belong to a single tuple.

The algorithm works as follows: Let [di ] be the tuple containing multiple confidential

data values, and S be the set of attributes containing a confidential data value in di .

As the first step, the algorithm verifies the need for suppression for each confidential

data value. More specifically, for each α ∈ S, it finds p(v|di) where v ∈ V candidate and

checks the truth value of the following assertion:

p(α[di ]|di) > p(v|di)|∀v ∈ V candidate − α[di ] (4.13)

If Assertion (4.13) is true, it picks a random next best guess vrnbg
α from V candidate .

Next, it identifies the candidate maximum impact data values, and initializes their

impacts on each confidential value. To identify the maximum impact data value in each

iteration, the impacts of candidates are averaged and sorted. With maximum impact

values sorted, the rest of the execution is quite similar to the original DROPP-G which

involves generalization of maximum impact data value instances of di , re-calculation

of probabilities and re-checking of Assertion (4.13). An overview of the algorithm is

provided in Figure 4.10.
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INPUT: D, the microdata set
T , the taxonomy set for each attribute
MaxLevel, the maximum depth among the taxonomy sets
di , the tuple containing the confidential data value
S, the set of attributes containing a confidential data value in di

k, degree of suppression
OUTPUT: D′, the new data set
BEGIN

For each attribute α ∈ S
vactual

α = α[di ]
λS = 1
While λS <= MaxLevel {

λ = 1
While λ <= MaxLevel {

For each attribute α ∈ S {
α[di ] = Generalize(vactual

α, λS , T α)
V candidate

α = all v ∈ V α satisfying Generalize(v, λS , T α) = α[di ]
Find probabilities p(v|di ) for all v ∈ V candidate

α

If not p(vactual
α|di ) > p(v|di )|∀v ∈ V candidate

α Remove α from S
Else If |V candidate

α| = 2
Randomly decide whether to suppress the confidential data value and remove α from S

if decision = ‘not suppress’

Select top-k from V candidate
α to form Ωk

α[d i ]

Pick a random next best guess vrnbg
α among Ωk

α[d i ]

For each non confidential attribute α′

If α′[di ]! = ν {
Create the maximum impact data value candidate MIV [α][α′]
Set MIV [α′][α].αMI to α′

F̄ α′,vrnbg
α,λ = updated frequency count of tuples satisfying

D[α[d] = vrnbg
α ∧ α′[d] = Generalize(α′[di ], λ, T α′ )]

F̄ α′,vrnbg
α,λ−1 = updated frequency count of tuples satisfying

D[α[d] = vrnbg
α ∧ α′[d] = Generalize(α′[di ], λ − 1, T α′ )]

F̄ α′,vactual
α,λ = updated frequency count of tuples satisfying

D[α[d] = vactual
α ∧ α′[d] = Generalize(α′[di ], λ, T α′ )]

F̄ α′,vactual
α,λ−1 = updated frequency count of tuples satisfying

D[α[d] = vactual
α ∧ α′[d] = Generalize(α′[di ], λ − 1, T α′ )]

Set MIV [α′][α].impact to
F̄ α′,vrnbg

α,λ

F̄ α′,vrnbg
α,λ−1

×
F̄ α′,vactual

α,λ−1

F̄ α′,vactual
α,λ

}
}

}
For each non confidential attribute α′

Find average impact MIV [α′].average impact
Sort maximum impact attributes by average impact in descending order
For each maximum impact value miv ∈ MIV {

Generalize the maximum impact data value miv.αMI [di ] by λ levels
For each confidential attribute α ∈ S {

Update the probabilities
If p(α[di ]|di ) ≤ p(vrnbg

α|di ) Remove α from S
}
If |S| = 0 break

}
If |S| = 0 break
Increment λ by 1

}
If |S| = 0 break
Increment λS by 1

}
If |S| > 0 Delete tuple di

END

Figure 4.10: Pseudocode of e-DROPP-G Algorithm
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Chapter 5

EXPERIMENTAL RESULTS

This chapter presents the experimental results. The primary objective of the experi-

ments is to compare the suppression algorithms in terms of their CPU time performance,

rate of success, information loss, and uncertainty.

5.1 Data Sets and Implementation Details

In order to conduct the experiments we selected two data sets from the University

of California at Irvine repository [2]; the Wisconsin Breast Cancer [38] and the Car

Evaluation data set. Table 5.1 provides a description of the data sets including the

number of instances, the number of attributes, and the number of unknowns.

We implemented the proposed algorithms using the C++ programming language.

To evaluate the performance of the algorithms, we performed experiments on a 2.67

GHz Intel PC with 4GB of memory running the Windows 7 operating system. As the

Table 5.1: Data Sets Used In the Experiments

Data Set No. of Instances No. of Attributes No. of Unknowns

Wisconsin Breast Cancer 699 10 16

Car Evaluation 1728 7 0
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Table 5.2: Average Execution Times of Proposed Algorithms

Average Execution Time (in ms)

Data Set DECP INCP DROPP HID3

W. Breast Cancer 0,129 0,127 0,131 0,129

Car Evaluation 0,036 0,036 0,037 0,036

DECP-G INCP-G DROPP-G HID3-G

W. Breast Cancer 0,159 0,160 0,169 0,159

suppression algorithms contain random components, the experimental results presented

are averages of five realizations unless stated otherwise. Moreover, in order to illustrate

the power of the algorithms we choose to suppress confidential data values for which

the domain size of the corresponding attribute is greater than 2.

5.2 Results and Analysis Of Algorithms

In this study, we first measured the average execution times required to suppress a

confidential data value. In order to find the average execution times, we suppressed

a data value from each instance of the data sets and averaged the CPU time results.

The results, as depicted in Table 5.2, show that the suppression algorithms performed

remarkably similar with respect to execution time.

Another performance criterion is the percent of successful suppressions. The sup-

pression process is successful if and only if the confidential data value is suppressed

without deleting the microdata tuple containing it. For each suppression algorithm, we

first measured the percent of successful suppressions against the algorithm’s primary1

classification model. As illustrated in Table 5.3, the proposed algorithms successfully

suppressed all confidential data values with respect to their primary classification model.

Next, we investigated the correctness of the following hypotheses:

1Näıve Bayesian classification model for DECP, INCP, DROPP, DECP-G, INCP-G, and DROPP-G
algorithms, and ID3 classification model for HID3 and HID3-G algorithms.
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Table 5.3: Success of Proposed Algorithms Against Different Classification Models

Classification Percent of Successful Suppressions

Data Set Model DECP INCP DROPP HID3

Näıve Bayesian 100% 100% 100% 84%

W. Breast Cancer ID3 77% 75% 90% 100%

SVM 41% 41% 89% 86%

Näıve Bayesian 100% 100% 100% 65%

Car Evaluation ID3 86% 84% 85% 100%

SVM 65% 56% 88% 80%

DECP-G INCP-G DROPP-G HID3-G

Näıve Bayesian 100% 100% 100% 81%

W. Breast Cancer ID3 74% 73% 85% 100%

SVM 40% 39% 87% 84%

Hypothesis 5.1. Algorithms suppressing confidential data values against probabilistic

classification models also block the decision tree classification based inference.

Hypothesis 5.2. Algorithms suppressing confidential data values against decision tree

classification models also block the probabilistic classification based inference.

Hypothesis 5.3. Algorithms suppressing confidential data values against probabilis-

tic or decision tree classification models also block inference based on more complex

classification models(e.g. SVM).

We measured the percent of successful suppressions achieved by each algorithm

against (1) its secondary2 classification model, and (2) SVM using the Joachim’s SVM-

Struct3 [58], as it is a more powerful classification technique. As illustrated in Table

5.3, the proposed algorithms exceeded a success rate of 65% against their secondary

classification models, thus proving the correctness of Hypotheses 5.1 and 5.2. For SVM,

the success rates range from 39% to 89%. This proves that the proposed algorithms

still protect confidential data values against more powerful classification techniques.

2ID3 classification model for DECP, INCP, DROPP, DECP-G, INCP-G, and DROPP-G algorithms,
and Näıve Bayesian classification model for HID3 and HID3-G algorithms.

3Linear kernel has been used while training.
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Figure 5.1: Average Direct Distance Results of Proposed Algorithms

The next performance criterion is the information loss caused by the suppression

algorithms. We used three evaluation metrics in order to measure the information

loss: the Direct Distance, Sum of Kullback Leibler Distances, and Average Change

in Mutual Information. The details of these information loss metrics can be found in

Section 2.4.1. As a benchmark, we used the Näıve Row Deletion (NRD) algorithm. The

NRD algorithm suppresses a confidential data value via deleting the microdata tuple to

which it belongs, i.e. replacing each and every data value forming the microdata tuple,

including the confidential data value, with ν.

The first information loss metric we used was the average direct distance which

measures the average number of changes introduced due to suppression of a single con-

fidential data value. The average direct distance results for the suppression algorithms

are shown in Figure 5.1. As can be seen from the figure, the HID3 and HID3-G algo-

rithms cause the least amount of information loss in terms of average direct distance

followed by the DROPP and DROPP-G algorithms. Actually, all of these algorithms

are bounded by the NRD algorithm, as they aim at downgrading the microdata tuple

instead of the classification models. On the other hand, the DECP, INCP, DECP-G and

INCP-G algorithms perform relatively worse than the others, as they aim at downgrad-

ing the classification model instead. Since DECP-G, INCP-G, DROPP-G, and HID3-G

aim at minimizing the level of generalization per attribute value, they perform slightly

worse than their deletion counterparts.

Apart from the average direct distance, we also measured the total direct distance
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Figure 5.2: Total Direct Distance Results of Proposed Algorithms

versus the number of confidential data values suppressed. We realized this experiment

for two sets of confidential data values one randomly selected from the Wisconsin Breast

Cancer data set and one randomly selected from the Car Evaluation4 data set. The

same set of confidential data values are used throughout the rest of the experiments

measuring the information loss and uncertainty. The results are shown in Figure 5.2.

Among suppression algorithms employing deletion strategy, the HID3 algorithm causes

the least amount of information loss in terms of direct distance followed by the DROPP,

INCP, and DECP algorithms. The ordering is similar among suppression algorithms

employing generalization strategy. However, these algorithms perform slightly worse

4Since the domain size of the attributes are small, this data set cannot be used to test the perfor-
mance of suppression algorithms employing generalization modification strategy.
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than their deletion counterparts.

The second information loss metric we used was the sum of Kullback Leibler dis-

tances which measures the distance between the first order probability distributions

of the original and the new data sets. The performance of suppression algorithms in

terms of sum of Kullback Leibler distances is shown in Figure 5.3. Among suppression

algorithms employing deletion strategy, the HID3 algorithm causes the least amount of

information loss in terms of sum of Kullback Leibler distances followed by the DROPP,

INCP, and DECP algorithms. Unlike the direct distance, the algorithms employing

generalization modification strategy perform better than their deletion counterparts

with respect to sum of Kullback Leibler distances.
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Figure 5.3: Sum of Kullback Leibler Distance Results of Proposed Algorithms
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Figure 5.4: Average Change in Mutual Information Results of Proposed Algorithms

The last information loss metric we used was the average change in mutual in-

formation which measures the average distance between the second order probability

distributions of the original and modified data sets. The performance of suppression al-

gorithms in terms of average change in mutual information is shown in Figure 5.4. The

results show that; (1) the HID3-G and HID3 algorithms distort correlations least fol-

lowed by the DROPP-G, DROPP, INCP-G, INCP, DECP-G, and DECP algorithms,

and (2) algorithms downgrading the classification model prevent inference of confi-

dential data values better than the ones downgrading the tuple itself, as they distort

correlations within the data sets, (3) algorithms employing generalization modification

strategy perform better than their deletion counterparts.
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Figure 5.5: Sum of Conditional Entropy Results of Proposed Algorithms

The final performance criterion is the uncertainty introduced by the suppression

algorithms. We used the sum of conditional entropies in order to measure the expected

value of uncertainty introduced into the modified data sets. The performance of sup-

pression algorithms in terms of sum of conditional entropies is shown in Figure 5.5.

The results show that; (1) the HID3-G and HID3 algorithms introduce the least un-

certainty followed by the DROPP-G, DROPP, INCP-G, INCP, DECP-G, and DECP

algorithms, and (2) algorithms downgrading the classification model prevent inference

of confidential data values better than the ones downgrading the tuple itself, as they

cause more uncertainty within the data sets, (3) algorithms employing generalization

modification strategy introduce less uncertainty than their deletion counterparts.
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We can summarize the presented experimental results as follows:

1. There is a tradeoff between the rate of successful suppressions and the information

loss caused by the suppression process.

2. The DECP and DECP-G algorithms achieve the highest success rate while causing

the highest amount of information loss and uncertainty. This justifies Lemma 3.1

and Lemma 4.1 which state that the upper bound for the number of data values

that can be modified by these algorithms is equal to (n − 1)(N − 1) < nm.

3. The INCP and INCP-G algorithms achieve the second highest success rate while

causing the second highest information loss and uncertainty. It is followed by the

DROPP, DROPP-G, HID3 and HID3-G algorithms. This ordering is completely

due to (1) the characteristics of the Wisconsin Breast Cancer and Car Evaluation

data sets satisfying the inequality m >> n, i.e. the number of transactions is

much more than the number of attributes, and (2) the upper bounds for the

number of data values that can be modified by the algorithms. For a data set

satisfying the inequality n >> m, the order of success, information loss, and

uncertainty will be reversed.

4. The success rate of algorithms employing generalization strategy is similar to their

deletion counterparts.

5. The information loss caused by algorithms employing generalization strategy is

less than their deletion counterparts. The only exception to this is the direct dis-

tance: algorithms employing generalization strategy change more attribute values

than the one employing deletion strategy. Since DECP-G, INCP-G, DROPP-G,

and HID3-G aim at minimizing the level of generalization per attribute value,

they perform slightly worse than their deletion counterparts in terms of direct

distance.
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Figure 5.6: Average Direct Distance Results of Hybrid Algorithms

5.3 Results and Analysis of Hybrid Algorithms

In this study, we merged each Näıve Bayesian suppression algorithm with the Decision

Tree suppression algorithms in a round robin fashion5, to demonstrate the performance

of the hybrid algorithms against both classification models.

First, we measured the percent of successful suppressions achieved by each hybrid

algorithm against both classification models. The hybrid algorithms successfully sup-

pressed all confidential data values with respect to both classification models, and

achieved 100% success rate. Next, we measured the average direct distance for the hy-

brid algorithms as shown in Figure 5.6. The HID3+DROPP and HID3-G+DROPP-G

algorithms cause the least amount of information loss in terms of average direct distance

followed by the HID3+INCP, HID3-G+INCP-G, HID3+DECP, and HID3-G+DECP-G

algorithms.

5.4 Results and Analysis of Enhanced Algorithms

In this study, we also enhanced the DECP, DECP-G, DROPP, and DROPP-G algo-

rithms to suppress multiple confidential data values, and thus introduce less side effects.

5For example, for HID3+DECP hybrid algorithm, first the HID3 algorithm is executed to suppress
the confidential data value against decision tree classification based inference. Then, the DECP al-
gorithm is executed to suppress the confidential data value against probabilistic classification based
inference.
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In order to demonstrate the performance of the enhanced algorithms compared to the

original ones, we used two new sets of randomly chosen confidential data values. The

first set of confidential data values is used to compare the performance of DECP vari-

ants, while the second set is used to compare the performance of DROPP variants.

Using these two sets we measured the total number of changes introduced due to sup-

pression of multiple confidential data values. As shown in Figure 5.7, the enhanced

algorithms performed remarkably better than the original versions, and reduced the

side-effects by nearly 50%.
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Figure 5.7: Total Direct Distance Results of Enhanced Algorithms on W. Breast Cancer
Data Set
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Chapter 6

SUMMARY AND CONCLUSION

In tandem with the advances in networking and storage technologies, the private sector

as well as the public sector has increased their efforts to gather, manipulate, and com-

modify information on a large scale. These pervasive data harvesting efforts coupled

with the increasing need to share the data with other institutions or with public raised

concerns about privacy. Widespread usage of powerful data analysis tools and data

mining techniques, enabling institutions to extract previously unknown and strategi-

cally useful information from huge collections of data sets, and thus gain competitive

advantages, has also contributed to the fears about privacy. Data mining techniques

can be used for many reasons including but not limited to national security warning

and national security decision making [1] for government agencies, and providing bet-

ter business intelligence and customer relationship management for enterprises. On the

other hand, they can also be used by adversaries to infer hidden confidential informa-

tion about individuals from the disclosed data sets, and thus pose a great threat to

privacy.

In this dissertation, we have precisely formulated the problem of suppressing a

confidential data item, and designed algorithms to avoid probabilistic and decision tree

classification based inference. We have selected Näıve Bayesian and ID3 as typical

representatives of probabilistic and decision tree classifiers respectively, and developed

our algorithms accordingly. More specifically we have designed and implemented the
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following algorithms:

1. The DECP and INCP algorithms suppress a single confidential data value against

Näıve Bayesian classifiers. These two algorithms downgrade the Näıve Bayesian

classifiers using the deletion modification strategy. Details of DECP and INCP

algorithms are also presented in [7;8].

2. The DROPP and HID3 algorithms suppress a single confidential data value against

Näıve Bayesian and ID3 classifiers respectively. These two algorithms downgrade

the microdata tuple containing the confidential data value using the deletion mod-

ification strategy. Details of DROPP and HID3 algorithms are also presented in

[7;8].

3. The DECP-G and INCP-G algorithms suppress a single confidential data value

against Näıve Bayesian classifiers. These two algorithms downgrade the Näıve

Bayesian classifiers using the generalization modification strategy.

4. The DROPP-G and HID3-G algorithms suppress a single confidential data value

against Näıve Bayesian and ID3 classifiers respectively. These two algorithms

downgrade the microdata tuple containing the confidential data value using the

generalization modification strategy.

5. The e-DECP and e-DROPP algorithms suppress multiple confidential data values

against Näıve Bayesian classifiers using the deletion modification strategy.

6. The e-DECP-G and e-DROPP-G algorithms suppress multiple confidential data

values against Näıve Bayesian classifiers using the generalization modification

strategy.

Our experimental results presented in this dissertation have shown that:

• The proposed algorithms are able to suppress confidential data values, so that

they cannot be predicted by their target classification models.
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• The proposed algorithms are also able to block the inference channels introduced

by other classification models.

• The hybrid versions of the algorithms are able to block the inference channels in-

troduced by Näıve Bayesian and ID3 classifiers with substantially less side effects.

• Similarly, the generalization versions of the algorithms distort the microdata less

when compared to their deletion counterparts.

• The enhanced versions of the algorithms are able to suppress multiple confidential

data values and reduce the side effects by 50%.

6.1 Future Work

Some promising directions for future work include:

1. Development of suppression algorithms to avoid different classification algorithms

based inference. Specifically, it would be interesting to design variants of suppres-

sion algorithms against Bag-of-words classifiers, Bayesian Networks, Logistic Re-

gression Classifiers, and Hyperplane classifiers (Perceptron, Winnow Perceptron,

and Support Vector Machines).

2. Development of algorithms to suppress multiple confidential data values that are

not necessarily instances of the same attribute, or do not have the same value, or

do not belong to the same tuple.

3. Development of a generic suppression technique which employs information the-

oretic concepts for distorting the microdata. Such a technique should be able to

avoid any classification algorithm based inference.

4. Development of suppression algorithms to handle evolving (i.e. continuously up-

dated) microdata.
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5. Development of suppression algorithms that can hide confidential data values

from horizontally or vertically distributed microdata.
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