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Abstract

This study adresses the Robust Gate Assignment Problem (RGAP) for the case
of both homogeneous and heterogeneous gates. Due to the increased traffic and
congestion at airports, scientific approaches to operational problems have gained
importance in the airline industry. Operations planning has a vital importance in
this environment. One of the most important problem types for the airport man-
agement is the well known gate assignment problem (GAP). In this study, a column
generation (CG) algorithm is proposed to solve GAP and the algorithm is formu-
lated as a linear programming relaxation of the set covering problem. The pricing
subproblem (PSP) for the CG approach is represented with a network structure and
solved using the shortest path algorithm. Results show that for both homogeneous
and heterogeneous instances, the proposed CG algorithm provides optimal LP so-
lutions according to the idle time of variance robustness measure. Insert capability
suggested by Dorndorf [1] is also investigated as a robustness measure and com-
pared to variance of idle time. A computational study performed on data sets from
Bolat [2] indicate that the two robustness measures are negatively correlated.



DAYANIKLI KAPI ATAMA PROBLEMİ İÇİN KOLON TÜRETME YÖNTEMİ
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Tez Danışmanı:
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Özet

Bu çalışmada, homojen ve heterojen kapılı durumlar için Dayanıklı Kapı Atama
Problemi incelenmiştir. Havaalanlarında artan trafik tıkanıklığı nedeniyle, havay-
olu sektöründe operasyonel sorunlara bilimsel yaklaşımlar önem kazanmıştır. Bu
ortamda operasyonel planlama hayati bir öneme sahiptir. Havaalanı yönetimi için
en önemli problem türlerinden biri de kapı atama problemidir. Bu çalışmada sütun
türetme yöntemi, küme kapsama probleminin bir doğrusal programlama rahatlat-
ması olarak formüle edilmiştir. Sütun türetme yaklaşımı için fiyatlandırma alt prob-
lemi bir ağ yapısı ile temsil edilip en kısa yol yöntemi kullanılarak çözülmüştür.
Dayanıklılık ölçütü olarak atıl zaman varyansı kullanıldığında hem homojen hem
de heterojen örnekleri için en iyi çözümler bulunmuştur. Dorndorf [1] tarafından
önerilen ekleme kabiliyeti dayanıklılık ölçütü incelenmiş ve atıl zaman varyansı ile
karşılaştırılmıştır. Bolat [2] veri kümeleri üzerinden yapılan sayısal çalışmalar bu iki
dayanıklılık ölçütü arasında negatif bağlantı olduğunu göstermektedir.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

As air transport volume increases year by year, people travel much longer distances

by large aircrafts and they fly more frequently with cheaper deals. Although the rise

in demand for air transportation has also increased the cash flow for airline compa-

nies and airports, their costs have also been inflated with growing industry needs.

Due to the increased traffic and congestion at airports, scientific approaches to oper-

ational problems at airports have gained importance. The right solution techniques

for these problems create competitive advantage for the companies. Companies need

fast and effective solutions for many different types of air traffic related problems.

Consequently, airport management problems have been studied extensively in the

operational research literature especially in the recent years. Airport operations

planning gained a vital importance in this environment. One of the most important

problems in airport operations is the well-known gate assignment problem (GAP).

In GAP, there are a number of flights that arrive at an airport and need to be

assigned to a set of available gates, where aircrafts reside until their next departure.

Flights and gates might have specifications and restrictions in terms of size, termi-

nals, functions and other resources [1]. Along with these, there are two main hard

constraints of this problem [3]:

• flights cannot overlap with each other (conflicting flights constraint), and

• each flight should be assigned to one and only one gate (gate coverage con-

straint).

Additionally, there can be several other limitations in a GAP in terms of airline

1



Figure 1.1: Representation of the gate assignment process

rules and airport management regulations. Some of these additional constraints

can be associated with aircraft and gate size, consecutive flight assignment rules or

some legally enforced restrictions. When these additional constraints are imposed

on to the problem, they complicate the problem and may require novel solution

methodologies. There are several different objective types [1] used within the gate

assignment literature, which also leads to a variety of formulations and new solution

approaches.

A very important characteristic of the real life GAP is the frequent changes in

the problem environment and resources. Operational delays are common attributes

of the airline industry with unpredicted weather conditions and strong security reg-

ulations. As expected, robustness gains great importance in gate assignment under

these challenging conditions. Airport managements spend large amounts of money

for effective planning systems. An approach that creates robust solutions can im-

prove management’s ability to react in this unstable environment.

With a large number of flights and huge airports, there are many alternative ways

of assigning aircrafts to gates. They need an effective solution approach to choose

from the large set of feasible solutions. In this thesis, we study two alternative mea-

sures to create robust gate assignments and propose a set covering type formulation

for easy representation of these measures. A set covering model for the problem can

be formulated easily, but to reach an optimal solution we need to enumarate all gate

schedules. Creating all possible schedules is not a time efficient or even a feasible

approach for large problems in real life. To surpass these entanglements we present
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an easy to implement and effective column generation (CG) approach.

1.1 Contributions

The primary purpose of this thesis is to propose an effective, simple and unified

solution approach to GAP with both homogeneous and heterogeneous gates. The

following is a list of the contributions of this study:

• While there are efficient algorithms for the homogeneous GAP, the heteroge-

neous case cannot be solved to optimality within reasonable time using the

available algorithms. We propose a column generation algorithm to solve the

GAP for both homogeneous and heterogeneous cases.

• We show that the pricing subproblem of the proposed CG algorithm can be

represented as a shortest path problem, which can be solved in polynomial

time.

• Two robustness measures for the robust gate assignment problem (RGAP)

(idle time variance and insert capability) are suggested and compared with

each other. Results indicate that these two measures are negatively correlated.

• A new set of problem instances is created for the heterogeneous case by mod-

ifying the instances with homogeneous gates from the literature.

1.2 Outline

In Chapter 2, related literature and problem description are presented, and both

classical and proposed formulations of GAP are described. In chapter 3, the pro-

posed CG algorithm is presented, and homogeneous and heterogeneous versions of

the algorithm are introduced separately. Also, two different robustness measures are

introduced within the column generation framework. In Chapter 4, a computational

study is presented where problem sets from the literature and newly generated het-

erogeneous instances are solved using the suggested algorithm. Finally, concluding

remarks and ideas for future work are discussed in Chapter 5.
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CHAPTER 2

RELATED LITERATURE AND PROBLEM DESCRIPTION

In this chapter, we present the related work for GAP and give the problem descrip-

tion. We refer the reader to Dorndorf et al. [1] for an extensive review of the state

of the art developments for GAP.

2.1 Related Work

GAP is studied extensively in the literature from several different perspectives re-

garding the problem environment. These studies can be classified based on two

aspects: objective type and solution method. We should note that the solution

methods employed are highly correlated with the selected objective type. Dorndorf

et al. [1] list the main objective types as follows:

• the number of un-gated (open) aircraft activities is minimized,

• assignment of certain aircrafts to particular preferred gates is maximized,

• the total walking distance for passengers is minimized,

• the deviation of the current schedule from a reference schedule has to be mini-

mized in order to increase schedule attractiveness and passenger comfort, and

• the amount of expensive aircraft towing procedures (that otherwise decrease

the available time for some ground service operations on the ramp as well as

in the terminal) is minimized.
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Babic et al. [4] formulate GAP as 0-1 integer programming model with an ob-

jective of minimizing total walking distance and solve it using a Branch and Bound

algorithm. Many studies refer to Mangoubi and Mathaisel [5] for the classical for-

mulation of GAP. In this study, the authors present a linear relaxation of an integer

programming problem and use a heuristic algorithm as a solution approach. While

Babic et al. [4] only consider the total walking distance of the passengers within the

airport, Mangoubi and Mathaisel [5] also takes walking distance for the transfer of

passengers into account.

Quadratic assignment formulations appear frequently in the literature. Xu and

Bailey [6] propose a quadratic assignment model that minimizes the total passenger

connection time from one flight to the next. Ding et al. [7] present a similar formu-

lation which minimizes both the total walking distance and the number of ungated

flights (the flights that cannot be assigned to any gate and left at the apron).

Robustness is studied in the GAP literature, where the impact of operational

disruptions on the gate assignment is analyzed. Again, Mangoubi and Mathaisel [5]

refer to this problem and propose fixed time buffers between consecutive flights, in

order to avoid highly utilized gates. If a gate is highly utilized, it is also highly fragile

against any delay or congestion, which is in the nature of the problem environment.

Bolat [8] also refers to the robustness issue where he claims that increasing

the idle time between consecutive flights in a gate schedule creates a more robust

solution. He argues that minimizing the variance of idle times in a gate schedule

triggers uniformly distributed flights. As also mentioned in Mangoubi and Mathaisel

[5], the buffers created between flights can handle some delays without revising the

original gate assignment. We discuss this objective function approach in Section

3.3.

Dorndorf et al. [9] argue that robustness can be integrated into the gate assign-

ment by maximizing a score that represents the schedules’ ability to accept other

flights without changing its regular assignments. They suggest that this score should

be based on two types of moves that can be performed on gate schedules: an insert

move that inserts a flight between two consecutive flights at the same gate, and a
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swap move that swaps the positions of two flights between two different gates. We

discuss the insert capability of schedules in more detail in Section 3.3.

Stochastic optimization approaches for RGAP are also considered in the litera-

ture, which explicitly model various sources of uncertainty in the airport operations

such as weather conditions, air traffic control delays, gate breakdowns, etc. [3]. Lim

and Wang [10] propose a model where they estimate the probability of conflict for

each flight pair using an estimation function and try to minimize the expected num-

ber of flight conflicts. Seker [3] discusses a two-stage scenario-based optimization

approach for the objective functions discussed in Bolat [8].

In this study, we propose a solution method for GAP based on a CG approach.

For further information about CG, we refer the reader to Desaulniers et al. [11].

CG algorithm for GAP has not been used in the literature before, but Chapter

2 of this book discusses a CG algorithm for vehicle routing and crew scheduling

problems where the pricing subproblem is formulated as a shortest path problem

with resources constraints, which is highly related to CG formulation in this thesis.

We will provide detailed information about the CG algorithm in Section 3.

2.2 Gate Assignment Problem (GAP)

The classical GAP aims to assign arriving aircraft to available gates at an airport.

In this problem, we assume that the arrival and departure times of the aircraft will

realize as planned. However, due to many disruptions that may occur in an airline

operation, actual aircraft arrival and departure times may deviate significantly from

the plan. This results in a large number of gate changes during the day, which im-

pacts the operational cost and service quality adversely. Creating a gate assignment

plan that is robust to disruptions is critical for the smooth operation of an airline.

In this study, we focus on RGAP which aims to create a robust gate assignment

that enables easy recovery from operational disruptions.

We suppose that the problem is to be solved for a finite planning horizon during

which the availability of gates is known a priori. The planning horizon starts at

a specified starting point in time and continues until an end point, which mostly
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coincide with the departure time of the last flight. We assume that a master plan of

gate assignments is to be prepared before the beginning of the planning horizon. A

schedule of arriving and departing flights is given. A pair of an arriving flight and a

departing flight is associated with an aircraft that performs both flights. The aircraft

is to reside at a gate from the time it arrives at the airport and until it departs. In

this respect, the literature uses the terms flight assignment and aircraft assignment

interchangeably as the time period between the arriving flight and departing flight

is referred to as the ground time of the aircraft or the flight. Hence, the basic

information associated with a flight or an aircraft include arrival time and departure

time that jointly imply the ground time.

In our setting, as well as in the literature, GAP contains only one resource type,

which is the gate. In a real life airport environment, gates can be classified in many

different ways in terms of their size, neighboring gates, terminal type (international

vs. domestic) and functional type (cargo - passenger). For the homogeneous case,

we assume that all gates are equivalent and identical. For the heterogeneous case,

gates might be differentiated with respect to their size, terminal type and function

type. In that case, the aircraft to reside at the gate also needs to be specified with

additional information regarding the size, terminal and function.

2.3 Mathematical Models

In this section, we first revisit the classical integer programming (IP) formulation for

GAP. Then we present an alternative set covering formulation, for both the classical

and robust versions of the problem.

2.3.1 Classical IP Formulation

We first present the mathematical model due to Mangoubi and Mathaisel [5] for the

classical GAP. In this model, I is the set of flights to be assigned to some gate and

K denotes the set of available gates. We assume that there is a certain cost, cik, of

assigning flight i ∈ I to gate k ∈ K. For each flight i ∈ I, ai and di are the arrival

and departure times, respectively. The decision variable xik is equal to 1 if flight i

7



is assigned to gate k; and 0, otherwise. Then, the integer programming formulation

is:

minimize
∑
i∈I

∑
k∈K

cikxik (2.1)

subject to
∑
k∈K

xik ≥ 1 ∀i ∈ I (2.2)

∑
h∈L(i)

xhk + xik ≤ 1 ∀i ∈ I,∀k ∈ K (2.3)

xik ∈ {0, 1} ∀i ∈ I,∀k ∈ K (2.4)

where L(i) is the set of flights that are still on ground when flight i arrives, i.e.

L(i) = {h : dh ≥ ai, ah ≤ di, h ∈ L(i− 1) ∪ (i− 1)}, ∀i ∈ I.

In the classical GAP formulation (2.1)-(2.4) above, the objective function (2.1)

minimizes the total cost of assigning flights to gates. Constraints (2.2) ensures that

each flight is assigned to some gate while constraints (2.3) ensures that no two

conflicting flights are assigned to the same gate. Constraints (2.4) honor the binary

nature of the decision variables.

2.3.2 Set Covering Formulation for GAP

Many studies in the GAP literature are based on Mangoubi and Mathaisel [5] for-

mulation given in the previous section. In this study, we propose an alternative

formulation based on the set covering problem. This formulation facilitates the im-

plementation of new robustness measures for GAP which are difficult to formulate

using the mathematical model in (2.1)-(2.4).

We first present the set covering formulation which is equivalent to the problem

formulation in (2.1)-(2.4). Later on, we discuss the features that can be incorpo-

rated into GAP when this set covering formulation is used instead of the classical

formulation. In the set covering formulation for GAP, each flight is to be covered by

a gate schedule where a gate schedule is a collection of flights that can be assigned
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to a certain gate with no conflicts with respect to their arrival and departure times.

J denotes the set of all feasible schedules for any gate schedule j with no conflicts

and honoring all operational constraints for all flights in the schedule. We define

the two problem parameters as follows:

bij =

 1, if flight i is covered by gate schedule j,

0, otherwise.

cj =
∑
i

bijcij

where cj is equal to cik when all gates are identical as in the homogeneous case. The

decision variable yj is equal to 1 if gate schedule j ∈ J is selected and 0, otherwise.

Then, the set-covering formulation for GAP is

minimize
∑
j∈J

cjyj (2.5)

subject to
∑
j∈J

bijyj ≥ 1 ∀i ∈ I (2.6)

yj ∈ {0, 1} ∀j ∈ J (2.7)

In this formulation, the objective function (2.5) minimizes the total cost of cov-

ering all flights by selected gate schedules while constraints (2.6) ensure that each

flight is covered by at least one gate schedule. Constraints (2.7) are the integrality

constraints for the decision variables.

In the classical GAP formulation given in Section 2.3.1, the cost of a gate assign-

ment is calculated as the sum of the costs for all flight to gate assignments included

in the solution. Using the above set covering formulation, the cost of a gate as-

signment can be based on each assigned flight itself as well as the other flights at

the same gate. This property allows us to model several robustness measures which

will be described later. It should also be noted that the classical GAP formulation

in Section 2.2 can be revised so that the objective function reflects the costs that

9



are dependent on the ordering of flights at the gates. However, this requires the

introduction of many additional variables and constraints to the problem formu-

lation, which makes it difficult to solve. This issue is one of the major concerns

that motivated us to propose an alternate formulation for GAP. On the other hand,

the challenge with the set covering formulation is the number of decision variables

(i.e. columns of the problem formulation). In a real life problem, the number of

feasible gate schedules may be too many. This leads to a very large problem in

terms of the number of binary decision variables. In Chapter 3, we first revisit the

set covering formulation for GAP and propose a column generation algorithm to

solve this problem. Then, we discuss the adaptation of the problem formulation to

the heterogeneous case along with the modifications of CG algorithm to solve the

heterogeneous problem.
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CHAPTER 3

SOLUTION APPROACH

In Chapter 2, we have provided the set covering formulation for the GAP and

RGAP. As mentioned earlier, set of all feasible gate schedules is too large, which

leads to a large-scale IP problem. Therefore, we need a specialized approach to

solve it efficiently. The problem of large number of variables is often handled using

a CG algorithm, which consists of two components: the restricted master problem

(RMP) and pricing subproblem (PSP). In this study, we solve RMP using linear

programming relaxation formulation of the problem. RMP is a smaller version of

the original problem that contains a subset of all possible feasible gate schedules

(columns). At every iteration RMP is enlarged iteratively with new columns (i.e.

decision variables) that are likely to improve the solution. The second component

PSP is used to determine the new column (decision variable) to be added to RMP.

We again note that a column in RMP of the CG procedure refers to a gate

schedule. It consist of consecutive flights which do not overlap with each other. The

advantages of the column generation algorithm against direct approaches such as

B&B are the reduced size of RMP and the ability of solving PSP very efficiently.

The performance of the CG algorithm is highly dependent on efficiently solving PSP.

In this study, a network representation is used to solve the pricing subproblem. This

subproblem is reduced to a shortest path problem that can be solved very efficiently

in polynomial time.
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3.1 Column Generation Algorithm for Homogeneous GAP

Homogeneous problems consist of identical gates which can accommodate all arriving

flights. The proposed set covering formulation for homogeneous GAP (2.5) - (2.7)

is introduced in Section 2.4.2. Solving (2.5)-(2.7) directly is not practical due to

the size of set J , which contains all possible gate schedules J . However, a column

generation algorithm may be employed to solve the linear programming relaxation of

(2.5)-(2.7). The column generation algorithm starts with a restricted master problem

(RMP), which includes only a selected subset of gate schedules (columns)in j ∈ J ,

and then iteratively adds new columns to RMP to improve its objective function

value. At each iteration of the column generation algorithm, RMP is solved and

the optimal dual values from RMP are used to solve the PSP, where we search

for a new gate schedule that is likely to improve the objective function value of

RMP when the new schedule is selected. In CG algorithm (see Figure 3.1), we start

with a feasible set of gate schedules (initial feasible solution) to solve our RMP. We

gather dual values from the solution of RMP and solve PSP using these values to

calculate the reduced cost of the schedules that do not yet exist in RMP. We find the

most negative reduced cost column. If the reduced cost of the column is less than

zero, we add this column to RMP. Otherwise, the most recent solution to RMP is

optimal. The algorithm continues to add columns to RMP until an optimal solution

is reached.

Next, we first discuss the structure of the initial solution; then, we outline the

solution procedure for PSP.

3.1.1 Initial Solution

We experiment with two approaches for obtaining an initial solution: First, we start

with a feasible initial solution acquired by a constructive heuristic; second, we start

from an infeasible initial solution with as many gate schedules as the number of

flights, each covering only one flight. Eventually the second approach also reaches

a feasible schedule after some iterations, provided that there are feasible schedules

12



Figure 3.1: Flowchart of the CG algorithms for homogeneous GAP

for the problem instance. Starting from a good initial solution often effects the effi-

ciency of algorithm. In order to test the impact of the initial solution on algorithm

performance, we performed a computational study, where the CG algorithm is ini-

tialized using both approaches. In the next section the computational results of this

study will be mentioned.

3.1.2 The Pricing Subproblem

PSP is used to find a new column that does not yet exist in RMP. As a rule of

thumb, the algorithm finds the most negative reduced cost column. In order to do

this, we look into the dual of RMP. By using the dual values of RMP, PSP finds

the row in the dual (i.e. a column of the original problem) with the largest degree

of violation. To further look into this procedure, let us first formulate the dual of

RMP.

Let ui be the dual variable corresponding to constraint i in (2.6). The dual of

(2.5)-(2.7) can then be formulated as:
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max
∑
i∈I

ui (3.1)

subject to
∑
i∈I

bijui ≤ cj ∀j ∈ J (3.2)

ui ≥ 0 ∀i ∈ I (3.3)

The pricing subproblem is to find a column j that has a negative reduced cost

(i.e. a row that violates the corresponding dual constraint (3.2)). Formally, when

we search for the column/schedule that is likely to make the best improvement in

the objective function value of RMP, the pricing problem is to find the column j∗

corresponding to a row with the largest violation with respect to constraint (3.2),

i.e.

cj∗ −
∑
i∈I

bij∗ui = min
j∈J

{
cj −

∑
i∈I

bijui

}
. (3.4)

If cj∗ −
∑
i∈I

bij∗ui < 0, then decision variable yj∗ is added to RMP. Otherwise, the

optimal solution to RMP is reached.

We notice that the reduced cost of a gate schedule j ∈ J is

cj −
∑
i∈I

bijui =
∑
i∈I

bij(cij − ui) (3.5)

=
∑
i∈j

(cij − ui) (3.6)

Therefore, for a gate schedule, the reduced cost is a function of the flights that are

included in the schedule. We use a network representation to solve the PSP in (3.4)

that finds the schedule with the minimum reduced cost. For this purpose, we create

a network G = (V,A). In this network representation, every flight is represented as

a node. An arc is created from one flight node to the other if the two flights can be

scheduled consecutively at the same gate. In this network, the vertex set V includes

a dummy source node, s, and a dummy sink node, t, as well as nodes for each flight
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i, i.e. V = {i ∈ j : j ∈ J} ∪ {s, t}. The arc set is defined as A = Af

⋃
A0, where

Af is the set of all arcs (ip, is) such that flight ip ∈ I can be immediately followed

by flight is (i.e. p stands for the predecessor and s stands for the successor), and

A0 = {(s, i)|i ∈ V }
⋃
{(i, t)|i ∈ V }.

In this network representation,

• the cost of traversing an arc (ip, is) is cipj − uip , ∀ip ∈ V and ∃is ∈ V where

is can be assigned to the gate schedule right after ip where cipj is the cost of

assigning flight is in gate schedule j while uip is the value of the dual variable

for flight is (obtained from the solution of RMP);

• the cost of traversing an arc (s, i) is zero ∀i ∈ V ;

• and the cost of traversing an arc (i, t) is cij − ui ∀i ∈ V .

We notice that a path in G from s to t corresponds to a collection of flights that

can be simultaneously assigned to a gate schedule (by assigning them one after each

other in the same order as they appear on the path). Therefore, all schedules j ∈ J

are represented by an s − t path. Traversing this path by adding up the arc costs,

we obtain the reduced cost of the column that represents the gate schedule. From

equations (3.4) and (3.5), finding the schedule with the minimum reduced cost is

equivalent to finding the shortest path from s to t in G. An example of the network

representation is given in Figure 3.2.

There are 10 flights and 3 gates in this example problem instance. The colored

arcs show a set of paths corresponding to a set of feasible schedules that make up

a feasible solution to the overall problem. Note that each flight-node is included

in exactly one of the s-t paths. This corresponds to a feasible solution where each

flight is assigned to a gate. As the arcs are created between two flight-nodes, each

s-t path corresponds to feasible gate schedule. We also note the large number of

feasible arcs in such a small problem instance.
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Figure 3.2: A small size flight network with ten flights and three gates

3.2 Column Generation Algorithm for Heterogeneous GAP

In the heterogeneous GAP, gates are not identical and each flight can be assigned

to only a subset of available gates that can accommodate it. The proposed CG

approach also works for the heterogeneous case; however the algorithm should be

slightly modified.

In the set covering formulation, only one additional set of constraints will be

inserted for every gate k ∈ K for gate coverage. The formulation for heterogeneous

case is:

minimize
∑
j∈J

cjyj (3.7)

subject to
∑
j∈J

bijyj ≥ 1 ∀i ∈ I (3.8)

∑
j∈Jk

yj ≤ 1 ∀k ∈ K (3.9)

yj ∈ {0, 1} ∀j ∈ J (3.10)

In this formulation, the objective function (3.7) minimizes the total cost of cover-

ing all flight by selected gate schedules while constraints (3.8) ensure that each flight
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is covered by at least in one gate schedule. Constraints (3.9) ensure that only one

schedule is chosen for each gate. Constraints (3.10) are the integrality constraints

for the decision variables.

To formulate PSP of the heterogeneous case, let ui and wk be the dual variables

corresponding to, respectively, constraint i in (3.8) and constraint k in (3.9). The

dual of (3.7)-(3.10) can then be formulated as:

max
∑
i∈I

ui −
∑
k∈K

wk (3.11)

subject to
∑
i∈I

bijui + wk ≤ cj ∀j ∈ Jk,∀k ∈ K (3.12)

ui ≥ 0 ∀i ∈ I (3.13)

wk ≥ 0 ∀k ∈ K (3.14)

Similar to the homogeneous case, PSP finds a column j that has a negative reduced

cost (i.e. violates the corresponding dual constraint in (3.12)). Formally, when we

search for the column/schedule that makes the best improvement in the objective

function value of RMP, the PSP is to find the column

j∗ = arg min
j∈Jk,k∈K

{
cj −

∑
i∈I

bijui + wk

}
. (3.15)

If cj∗−
∑
i∈I

bij∗ui+wk < 0 , then decision variable yj∗ is added to RMP. Otherwise,

the optimal solution to RMP is reached.

Note that PSP in (3.15) can be solved in two stages:

• The first stage finds the schedule that has the most negative short reduced

cost for each gate k ∈ K,

j∗k = min
j∈Jk

{
cj −

∑
i∈I

bijui

}
, ∀k ∈ K.

• At the second stage, among the schedules with the most negative short reduced
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cost found at the first stage for each gate k ∈ K , the schedule with the most

negative reduced cost is found as

j∗ = min
j∈{j∗1 ,j∗2 ,...,j∗|K|}

{
cj −

∑
i∈I

bijui + wk

}
.

We note that the reduced cost of a gate schedule j ∈ Jk is

cj −
∑
i∈I

bijui + wk =
∑
i∈I

bij(cij − ui) + wk (3.16)

=
∑
i∈j

(cij − ui) + wk. (3.17)

It is easily observed that the reduced cost of a schedule in the heterogeneous

case is slightly different than the one in the homogeneous case; it is also dependent

on the gate to which the schedule belongs. This is due to the additional constraint

(3.9) in RMP which introduces the corresponding dual variable wk into the reduced

cost calculation. Therefore, the difference between homogeneous and heterogeneous

GAP is that, in the heterogeneous GAP we solve multiple (as many as the number

of gates) PSPs instead of a single PSP and select the most negative reduced cost

column among these multiple gate schedules considering also the dual values (wk).

In terms of the network representation, we solve a shortest path problem for

each gate k ∈ K on the network Gk = (Vk, Ak) which consists only those nodes and

arcs that are compatible with gate k ∈ K. A gate schedule compatible with gate k

is represented by a path from sk to tk in Gk. In Figure 3.3, we give the flowchart

of the CG algorithm for the heterogeneous GAP. First, we solve the RMP with

the additional constraint in (3.9). Then, we acquire dual values ui corresponding

to conflicting flights constraint in (3.8) and use the dual information by solving

the PSPs with only compatible nodes at each gate k ∈ K. Among the gathered

best gate schedules for all gates, we select the most negative reduced cost schedule

using also the information from the dual values wk, k ∈ K. We again check the

optimality condition; we add the selected column to RMP if the reduced cost of

the most negative reduced cost is less than zero. The procedure is verified until the

optimality condition is verified.
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Figure 3.3: Flowchart of the CG algorithm for heterogeneous GAP

3.3 Objective Function and Robustness Measures

Deviations from the planned gate assignment are inevitable due to many disruptions

that occur during the planning horizon. The gate assignment plan created by the

models described so far do not consider the issue of operational robustness, i.e. how

easy it is to recover from disruptions that occur during the operation. In this study,

we explicitly incorporate robustness measures into the gate assignment model so

that we can plan for a robust gate assignment in advance. We focus on independent

flight delays (deviations from the planned arrival and departure times of flight) as

the main source of disruption. Massive disruptions that affect the entire operation

such as those caused by weather events are outside the scope of this study, since

they often require a complete replanning of the gate assignment.

Unfortunately, it is a challenge to define a robustness measure that can predict

how well a given gate assignment will recover from a disruption. Bolat [8] argues

that minimizing the variance of gate idle times will result in a more robust gate

assignment. In [2], he proposes five models that minimize the variance and range of
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idle times in an effort to improve robustness.

Alternatively Dorndorf et al. [9] suggest a robustness index that measures the

availability of recovery options built into the gate assignment plan. In this context,

an easy-to-quantify measure is associated with insert opportunities that consider

moving the delayed flight to a different gate. Figure 3.4 depicts an insert move

opportunity for Flight 2 at Gate 2. Flight 2 is currently assigned to Gate 1, but it

can be moved to Gate 2 since Gate 2 is idle from the arrival time of Flight 2 to the

departure time of Flight 2. It is worth mentioning that the amount of excess idle

time at Gate 2 available before the arrival time of Flight 2 and after the departure

time of Flight 2 (marked in dashed lines) is an important factor in the viability of

the insert move. Since an insert will only be considered if Flight 2 is either early

or late, the insert move cannot be carried out unless there is excess idle time at

Gate 2. A natural choice would be to use a robustness measure that is an increasing

function of the excess idle time available for the move.

Figure 3.4: An illustration of feasible schedules for two gates

We can employ the gate assignment model given in (2.5)-(2.7) to introduce a

robustness measure based on the insert opportunities present in a gate assignment.

We propose an objective function that maximizes the sum of all insert move oppor-

tunities created by the gate assignment. For this purpose we define the objective

function coefficient cj for gate assignment j as follows:

cj = −
∑

(i1,i2)∈Jj

r(i1, i2), j ∈ J
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where Jj is the ordered sequence of flights visited in gate schedule j (including the

dummy source and sink nodes), and

r(i1, i2) =
∑

i∈Mi1i2

f(i1, i, i2),

here Mi1i2 denotes the set of flights and f(i1, i, i2) is an increasing function of the idle

time resulting from inserting flight i between flights i1 and i2 that can be inserted

between i1 and i2.

Considering the column generation method for the set-covering problem (2.5)-

(2.7), insert moves can be easily incorporated in the evaluation of a new column

being considered for addition to RMP. In the pricing problem, the objective function

contribution of each arc (i1, i2) in the gate schedule j(i.e. ri1,i2), can be computed

as discussed above.
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CHAPTER 4

COMPUTATIONAL STUDY

The goal of our computational study can be summarized as follows:

• to analyze the efficiency and effectiveness of the CG algorithm to solve the set

covering formulation of GAP for both homogeneous and heterogeneous cases,

• to test if different types of objective functions, particularly in the case of

alternative robustness measures, can be handled within the same generic al-

gorithmic framework, and

• to understand the differences between the two robustness measures.

The computer programming for the experimental study is done in Visual C++.

IBM ILOG CPLEX Optimization Studio 12.2 is used as the optimization software

to solve LP and IP problems. The experiments are conducted on a PC with a 2.39

GHz Intel Core 2 Quad CPU Q6600 processor with 3.24 GB of RAM.

For homogeneous GAP, we use the data set in Bolat [12]. In this data set, there

are 72 instances out of which there are,

• 24 small problems with 5 gates where the number of flights vary from 25 to

29,

• 24 medium problems with 10 gates where the number of flights vary from 50

to 56, and

• 24 large flights with 20 gates, where the number of flights vary from 102 to

112.
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Each of these sets consist of 8 underutilized, 8 normally utilized and 8 highly utilized

problem instances.

We use the homogeneous data from Bolat [12] to create the heterogeneous in-

stances that are not available in the literature. For small instances, we consider small

gates and medium gates: 5 flights are designated as medium-size flights and 2 out

of 5 gates are designated as medium gates; the remaining flights are designated as

small while the remaining gates are supposed to accommodate small flights only. For

medium problem instances, where we have large, medium and small gates 7 flights

are designated as medium-size while 3 flights are designated as large-size and 2 out

of 10 gates are designated as medium gates while 2 out of 10 gates are designated as

large gates; the remaining flights are designated as small while the remaining gates

are supposed to accommodate small flights only. For large instances, 12 out of 50

flights are designated as medium-size flights while 4 out of 50 flights are designated

as large-size flights and 4 out of 20 gates are designated as medium gates while 4

out of 20 gates are designated as large gates; the remaining flights are designated

as small while the remaining gates are supposed to accommodate small flights only.

For all instances we assume that all small and medium-size flights can be assigned to

medium gates and small medium and large-size flights can be assigned to large-size

gates, where small gates can only accommodate small-size flights. A summary of

problem settings is given in Table 4.1.

Table 4.1: Characteristics of the homogeneous and heterogeneous problem instances.
Heterogeneous

Homogeneous Small Medium Large
Problem Size Flights Gates Flights Gates Flights Gates Flights Gates

Small 25-29 5 20-24 3 5 2 0 0
Medium 50-56 10 40-46 6 7 2 3 2
Large 102-112 20 86-96 12 12 4 4 4

In order to evaluate different robustness measures, we also alter the original data

sets. When we try to conduct insert moves with the original problem instances of

Bolat [12], they allow only a limited number of insert moves and we are not able to

evaluate this robustness measure with the original instances. Therefore, we reduced

the flight durations by half for the robustness comparison runs, and used there
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modified instances to compare the two robustness measures. The altered data for

the insert capability is experimented also with variance of idle time measure (see

Appendix C).

In this section, we provide the results of our computational experiments, we

have performed to evaluate the efficiency and effectiveness of CG algorithm under

different settings. We test the performance of the CG algorithm to solve the LP

relaxation of the problem with respect to the CPU time and number of iterations to

reach optimality. To obtain integer-feasible solutions, we use a heuristic idea (IP-

ALL): once the LP relaxation solution is found, we solve RMP as an IP problem

considering all the columns generated so far in addition to the ones in the initial

solution.

CPU time is reported in milliseconds. We impose a limit on the number of

iterations for homogeneous problems. The algorithm terminates at 300 iterations.

This value is set due to an initial experimentation with the algorithm performance

in order to limit CPU time to a reasonable level; results with unlimited CPU time

is given in Appendices.

4.1 Results with Homogeneous Problems

The homogeneous problem set is used to test the performance of the CG algorithm

with respect to two aspects of the algorithm: Number of columns generated at each

iteration and initial solution. The traditional CG algorithm iterates by generating

one column in each iteration while the initial RMP is constructed based on a feasible

solution. We also test the performance of our IP heuristic, IP-ALL, by comparing

it against the performance of another heuristic,which is also based on the column

pool created by the CG algorithm. The results where the traditional CG setting is

used along with our original IP heuristic, IP-ALL, given in Appendix A.
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4.1.1 Column Generation Scheme

Our original CG algorithm uses the commonly used approach where only one column

is added to the RMP at each iteration. Alternatively, more than one column can be

added to RMP to achieve more improvement per iteration. Although we prefer to

use a RMP as small as possible rather than including all feasible columns at once

to ensure computational efficiency, we argue that adding a group of columns that

complement each other to RMP at each iteration may improve the performance of

the CG algorithm. To defend this argument, we modify our algorithm in such a

way that we create a number of extra columns in addition to the column with the

most negative reduced cost in each iteration, we resort to PSP more than once.

After solving PSP once, the flights that belong to the newly generated gate schedule

are deleted from the network and PSP is solved again to create additional columns

with the flights which have not been selected for the gate schedules in the previous

PSP solutions. This is repeated until all flights are covered by one of the new

schedules. Therefore, at every iteration, we generate a selected number of new

schedules that cover different flights and can be selected simultaneously to construct

a new feasible solution. For each problem set, we experiment with different number

of extra columns based on the number of gates in the problem. To determine the

number of extra columns that yield the best performance, we conduct a parameter

analysis where the number of extra columns vary from one to the number of gates

in the problem. Table 4.2, Table 4.3 and Table 4.4 show the results of these

experiments. These tables consist of six columns. The first column is the utilization

level where “U”, “N” and “H” correspond to underutilized, normally utilized and

highly utilized instances, respectively. The column titled as “Extra columns” shows

the number of extra columns generated at each iteration. The third column displays

the number of iterations performed by the CG algorithm to reach the LP relaxation

optimal solution. The “LP Time” column shows the average CPU time spent by the

algorithm to reach the LP optimal solution and “IP Time” shows average CPU time

incurred to reach an IP optimal solution within the columns generated so far until

the LP optimal solution is obtained. The last column “Frac/Int” column displays
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the number of fractional solutions vs number of integer feasible solutions obtained

after LP optimal solution is reached by CG algorithm.We note that IP Time is the

average for those instances whose LP optimal solution is not integer-feasible.

Table 4.2: Results for small problems with under/normal/high utilized homogeneous
gates

Utilization Extra Columns Iterations LP Time IP Time Frac/Int
U 0 88 2580 16 1/7
U 1 50 2535 12 0/8
U 2 35 2383 16 1/7
U 3 30 2619 4 0/8
U 4 28 3051 14 0/8
N 0 66 2729 18 0/8
N 1 36 2368 27 1/7
N 2 28 2482 13 0/8
N 3 24 2562 16 0/8
N 4 22 3194 25 1/7
H 0 29 1383 26 1/7
H 1 14 1039 24 1/7
H 2 16 1320 35 2/6
H 3 11 1463 27 1/7
H 4 10 1539 18 0/8

Table 4.2 shows the results for small problems with five gates. The LP time

results indicate that creating extra columns does not result in a significant benefit

for small problems. It can be argued that in small instances there is no need to

increase the size of the column pool in each iteration. We also see that very few

fractional solutions obtained by the optimal LP relaxation solution. The results

indicate that as the utilization level increases, CPU time required to obtain LP

solution tends to decrease. This may be due to the smaller size of the solution space

for the highly utilized problems. The limited number of feasible solutions may lead

us to the optimal solution faster. Another important observation is that the extra

column generation is effective in decreasing the number of iterations to reach the

optimal solution. Overall, we may conclude that the CG algorithm is capable to

solve small size problems quite fast; small instances can be solved on average in at

most three seconds.

The results in Table 4.3 are for medium-size problems. For medium problems,

extra column generation improves the algorithm performance significantly. As the

number of extra columns increases, the number of CG iterations required decreases

sharply. Meanwhile as more columns are generated, the time per iteration increases.
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Table 4.3: Results for medium problems with under/normal/high utilized homoge-
neous gates

Utilization Extra Columns Iterations LP Time IP Time Frac/Int
U 0 263 16437 82 4/4
U 1 132 13340 72 3/5
U 2 89 12904 45 2/6
U 3 68 12957 98 4/4
U 4 60 13696 49 2/6
U 5 52 14232 39 1/7
U 6 47 15057 41 1/7
U 7 42 14928 55 2/7
U 8 41 16998 72 3/5
U 9 41 18926 39 1/7
N 0 225 28051 183 6/2
N 1 115 23031 131 4/3
N 2 79 21152 102 3/5
N 3 60 20395 118 4/4
N 4 52 21980 109 2/6
N 5 45 21217 84 2/6
N 6 39 22076 100 3/5
N 7 37 23605 86 2/6
N 8 36 26262 113 3/5
N 9 35 28438 143 5/3
H 0 151 12411 132 5/3
H 1 78 10596 152 4/4
H 2 55 10679 141 5/3
H 3 37 9217 65 1/7
H 4 28 8292 130 5/3
H 5 27 9967 72 3/5
H 6 23 9480 78 3/5
H 7 22 9623 60 2/6
H 8 21 10522 60 1/7
H 9 20 11466 78 2/6

2, 3 and 4 extra columns are the best settings for under utilized, normally utilized

and highly utilized cases, respectively. For medium problems, the ratio of fractional

solutions to integer solutions is higher when compared to small problems. We observe

that the time it takes the IP heuristic to reach an optimal solution within the column

pool increases significantly as the problem size increases.

From the results in Table 4.4 for large problems, we observe that with 8 and

12 extra column settings the CG algorithm provides the best performance in terms

of the CPU time to obtain LP optimal solutions. We also observe that the ratio

fractional LP relaxation solutions are even higher than that of the medium size

problems and it takes longer to obtain IP optimal solutions within the given column

pool. LP relaxation of large instances can be solved using the best settings in around

50 to 70 seconds depending on the utilization level. However we observe that in some

settings (such as the one with four extra columns), the IP heuristic takes extremely
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Table 4.4: Results for large problems with under/normal/high utilized homogeneous
gates

Utilization Extra Columns Iterations LP Time IP Time Frac/Int
U 0 300 29822 4469 8/0
U 4 135 53772 809 8/0
U 8 78 52844 287 6/2
U 12 56 53240 248 6/2
U 16 50 60035 217 6/2
U 19 46 66918 299 8/0
N 0 300 53274 10725 8/0
N 4 115 76500 1193367 8/0
N 8 68 76869 522 8/0
N 12 51 81525 340 7/1
N 16 44 89131 347 7/1
N 19 40 95750 383 8/0
H 0 300 66073 1797 6/2
H 4 88 67651 24240 6/2
H 8 53 69136 474 6/2
H 12 40 75927 352 5/3
H 16 33 80279 401 6/2
H 19 32 96383 370 6/2

long to reach the optimal solution within the given column pool.

For the homogeneous experiments with extra column generation scheme, the

proposed CG algorithm performs well with small problems, where the CPU time to

obtain a LP optimal solution is around 1 to 3 seconds on average. The algorithm

also provides integer feasible solutions for most of the instances, without resorting to

an IP heuristic. For medium problems, CPU time to obtain a LP optimal solution

increases to 8 to 28 seconds and around half of the instances required to run the

IP heuristic to find an integer-feasible solution. The number of iterations needed

to reach the LP optimum also increases in comparison to the small problems. Fop

large problems, the CPU time increases further as expected, it varies between 52 to

96 seconds. The algorithm needs to execute more iterations to reach the LP optimal

solution, and the 300-iteration limit is reached for all large instances if no extra

columns are generated(see Appendix A for unlimited results). Moreover in almost

every instance, IP heuristic is employed to obtain an integer feasible solution using

the generated column pool. In terms of the utilization levels we see that for small

and medium problems normal utilization level takes more time. The performance

of IP heuristic is discussed in Section 4.1.3.
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4.1.2 Initial Solution Strategy

To initiate the CG algorithm, we use a feasible initial solution obtained from a

constructive heuristic as discussed in Section 3.1.1. To eliminate the need for a

feasible initial solution, we also experiment with infeasible initial solutions. We

construct an initial solution that contains as many schedules as the number of flights

in the problem, where each schedule contains only one flight. Therefore, the initial

solution is infeasible with respect to availability of gates. In order to understand the

effect of the initial solution quality, we conduct the same experiments by initiating

the CG algorithm with such infeasible initial solution. The experimental results

shown in Tables 4.5, 4.6 and 4.7 are obtained using underutilized instances for

small, medium and large problems, respectively.

Table 4.5: Results for small problems with underutilized homogeneous gates when
CG algorithm is initiated with an infeasible solution

Extra Columns Iterations LP Time IP Time Frac /Int
0 107 3074 12 0/8
1 58 2760 10 0/8
2 44 3018 12 0/8
3 38 3333 9 0/8
4 50 4047 26 1/7

Table 4.6: Results for medium problems with underutilized homogeneous gates when
CG algorithm is initiated with an infeasible solution

Extra Columns Iterations LP Time IP Time Frac /Int
0 282 16844 163 5/3
1 143 14272 98 3/5
2 118 12617 18 0/8
3 76 12770 19 0/8
4 63 12936 51 2/6
5 54 13061 33 1/7
6 50 13994 43 2/5
7 47 14825 27 1/7
8 45 16100 33 1/7
9 46 18416 51 2/6

As we observe from the results in Tables 4.5, 4.6 and 4.7, starting with an

infeasible solution may affect both the CPU time and number of iterations to reach

the LP relaxation optimal solution. For small problems, the difference is significant

while it is not the case for medium and large problems. We may argue that a good

initial solution helps the algorithm to reach the LP optimal more quickly in general,
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Table 4.7: Results for large problems with underutilized homogeneous gates when
CG algorithm is initiated with an infeasible solution

Extra Columns Iterations LP Time IP Time Frac /Int
0 300 31715 519436 8/0
4 138 60318 3201 7/1
8 78 58734 2836 8/0

12 58 57346 391 8/0
16 51 66035 336 8/0
19 50 77074 508 7/1

but for large problems a good initial solution is not as effective as it is for small

problems. This can be attributed due to the ability of the constructive heuristic to

obtain near-optimal results in smaller problems. As the constructive heuristic does

not provide good-quality solutions for larger problems, a feasible initial solution

might be as poor as an infeasible solution to initiate the CG algorithm. Based on

these results, we may conclude that infeasible solutions might be used to initiate

the algorithm in the absence of feasible solutions.

4.1.3 IP Heuristics

In this section, we report the computational results for the heuristic methods we have

employed to obtain integer feasible solutions. The CG algorithm obtains an optimal

solution to the LP relaxation of the problem. It can create fractional solutions as

Bolat [2] also discusses. In our first set of experiments, in Tables 4.2 4.3 and 4.4,

we utilize the IP-ALL heuristic to obtain an integer feasible solution when the CG

algorithm terminates with a fractional solution. All of the previous results shown in

Tables 4.2 to 4.7 use this heuristic if necessary. As an alternative heuristic method,

we propose IP-NZ, which solves an IP problem that includes only the columns whose

corresponding decision variables are nonzero in the optimal LP solution. With this

alternative method, we intend to further decrease the CPU time to obtain an integer

feasible solution without sacrificing the quality.

To test the integer feasible solution quality of the CG algorithm with IP-ALL and

IP-NZ heuristics, we conduct experiments in order to compare the objective function

values of the final integer feasible solutions with that of the genetic algorithm in

Bolat [12]. As a result of our experiment in Section 4.1 we generate 4 extra columns
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for small and medium problems, and 12 for large problems. The results are given

in Tables 4.8 4.9 and 4.10. The first column provides information on the problem

instance. The second column shows the initial objective function value (OFV). The

third column shows the OFV from Bolat [12]. The next three columns show the

results of the experiments, with IP-ALL heuristic where OFV of the solution found

by the heuristic, IP time shows the CPU time for the integer programming runs.

and (Gap%) shows the percentage gap from the OFV in Bolat [12]. The next three

columns show the same information for the IP-NZ heuristic.

Table 4.8: Comparison of results for the IP heuristics on small homogeneous prob-
lems with under, normal and high utilization

Pr. Set Init. Sol. Bolat OFV IP-ALL IP-NZ
OFV IP Time Gap(%) OFV IP Time Gap(%)

SU1 25560 21208 21208 15 0.000 21208 0 0.000
SU2 19887 19561 19561 0 0.000 19561 0 0.000
SU3 32365 20881 20881 0 0.000 20881 0 0.000
SU4 50926 20834 20834 16 0.000 20834 16 0.000
SU5 33196 20700 20700 16 0.000 20700 16 0.000
SU6 26951 21427 21427 15 0.000 21427 16 0.000
SU7 24200 20940 20940 16 0.000 20940 15 0.000
SU8 21351 20253 20253 15 0.000 20253 15 0.000
SN1 4787 4165 4165 16 0.000 4165 15 0.000
SN2 3886 3490 3490 15 0.000 3490 16 0.000
SN3 5671 4105 4105 16 0.000 4105 16 0.000
SN4 4152 3548 3548 16 0.000 3548 16 0.000
SN5 4705 3815 3817 94 0.052 4705 16 23.329
SN6 3722 3374 3374 16 0.000 3374 15 0.000
SN7 5647 4251 4251 15 0.000 4251 0 0.000
SN8 3741 3189 3189 16 0.000 3189 15 0.000
SH1 369 305 305 16 0.000 305 15 0.000
SH2 456 392 392 16 0.000 392 16 0.000
SH3 322 320 320 16 0.000 320 16 0.000
SH4 367 315 315 16 0.000 315 15 0.000
SH5 380 318 318 15 0.000 318 16 0.000
SH6 418 334 334 16 0.000 334 15 0.000
SH7 288 252 252 16 0.000 252 16 0.000
SH8 415 357 357 31 0.000 357 16 0.000

The results in Tables 4.8, 4.9 and 4.10 show us that IP-ALL heuristic is needed

mostly for large and medium problems. In small problems, LP optimal solution is

also an integer feasible solution. With small problems, both heuristics perform as

good as the genetic algorithm in Bolat [12] except for one instance. With medium

problems, IP-ALL finds the same OFV as Bolat [12] except for two instances while

it is close within less than 0.1% gap. However, IP-NZ fails to perform as good as

IP-ALL. For larger problems, IP-ALL finds better solutions in 3 out of 24 instances,

same quality solution in 11 out of 24 instances and solutions with 1% gap for the
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Table 4.9: Comparison of results for the IP heuristics on medium homogeneous
problems with under, normal and high utilization

Pr. Set Init. Sol. Bolat OFV IP-ALL IP-NZ
OFV IP Time Gap(%) OFV IP Time Gap(%)

MU1 54839 41233 41233 0 0.000 41233 16 0.000
MU2 89450 41000 41000 93 0.000 89450 32 118.171
MU3 63367 40953 40953 16 0.000 40953 15 0.000
MU4 80497 41203 41203 31 0.000 41203 16 0.000
MU5 76760 39218 39218 15 0.000 39218 16 0.000
MU6 58672 41244 41244 31 0.000 41244 31 0.000
MU7 60857 38975 38975 172 0.000 60857 63 56.144
MU8 69376 41112 41112 31 0.000 41112 31 0.000
MN1 17098 7988 7988 47 0.000 7988 46 0.000
MN2 11080 7538 7538 47 0.000 7538 47 0.000
MN3 8504 7054 7054 47 0.000 7054 47 0.000
MN4 9151 7811 7811 62 0.000 7811 47 0.000
MN5 8997 7043 7045 282 0.028 8997 109 27.744
MN6 12034 7460 7460 47 0.000 7460 47 0.000
MN7 14028 6988 6994 234 0.086 14028 125 100.744
MN8 10334 7710 7710 62 0.000 10334 141 34.034
MH1 482 380 380 188 0.000 482 125 26.842
MH2 627 549 549 250 0.000 627 125 14.208
MH3 828 650 650 250 0.000 828 140 27.385
MH5 696 554 554 94 0.000 696 141 25.632
MH6 802 582 582 16 0.000 582 62 0.000
MH7 913 667 667 94 0.000 913 157 36.882
MH8 667 525 525 16 0.000 525 62 0.000

Table 4.10: Comparison of results for the IP heuristics on large homogeneous prob-
lems with under, normal and high utilization

Pr. Set Init. Sol. Bolat OFV IP-ALL IP-NZ
OFV IP Time Gap(%) OFV IP Time Gap(%)

LU1 189754 83466 83466 16 0.000 83466 16 0.000
LU2 192322 78274 78274 15 0.000 78274 15 0.000
LU3 200206 84494 84492 172 -0.002 200206 47 136.947
LU4 236776 81332 81342 453 0.012 236776 63 191.123
LU5 188494 83276 83274 312 -0.002 188494 47 126.349
LU6 179560 78760 78766 500 0.008 179560 78 127.984
LU7 151227 81501 81501 219 0.000 151227 79 85.552
LU8 220509 80723 80721 297 -0.002 220509 94 173.167
LN1 34818 14344 14344 313 0.000 34818 94 142.736
LN2 24179 15605 15605 328 0.000 24179 110 54.944
LN3 20840 13736 13738 391 0.015 20840 109 51.718
LN4 19794 14188 14190 312 0.014 19794 234 39.512
LN5 33264 14482 14482 47 0.000 14482 78 0.000
LN6 29965 14271 14277 547 0.042 29965 188 109.971
LN7 33427 14879 14880 344 0.007 33427 156 124.659
LN8 27016 15040 15042 438 0.013 27016 141 79.628
LH1 1601 1111 1111 234 0.000 1601 172 44.104
LH2 2741 1059 1059 94 0.000 1059 93 0.000
LH3 1981 961 961 266 0.000 1981 203 106.139
LH4 1972 1076 1087 656 1.022 1972 171 83.271
LH7 2849 1185 1188 453 0.253 2849 218 140.422
LH8 2362 1113 1115 407 0.180 2363 203 112.309

remaining 10 instances. In general IP-NZ does not perform well when the problems

are larger. In most of the instances of medium and large problems, IP-NZ cannot

find a better solution than the initial feasible solution. Therefore, we may easily

conclude that IP-ALL is a good heuristic that finds close-to-optimal solutions in
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reasonable time.

4.2 Experimental Results with Heterogeneous Prob-

lems

Modifying the flight arrival and departure data in the problem instances in Bolat

[12], we have generated problem instances with heterogeneous gates as discussed in

Section 4. We have arranged the new instances in such a way that the initial feasible

solutions for the homogeneous problems are also feasible with the new heterogeneous

instances. In most cases, we have also realized that the best solution we have found

for the homogeneous case is also feasible for the heterogeneous case. Therefore, we

guarantee that there exists another integer feasible solution better than the initial

one. One should also note that a heterogeneous feasible solution is always feasible

for the corresponding homogeneous problem. In case the optimal solution for the

homogeneous problem is feasible for the heterogeneous one, it is also optimal for

the heterogeneous problem. We conduct the computational experiments under the

same settings we employ for the homogeneous problems initially. The results in

Appendix B in Tables B.1, B.2, B.3 are obtained by initiating the CG algorithm

with the same feasible solution as the one for the homogeneous problem and using

the IP-ALL heuristic to solve the IP problem. No extra column generation scheme

is used for these experiments.

Table 4.11 compares the CPU time and the number of iterations for the homo-

geneous and heterogeneous problems. The problem set in the first column shows

the problem size (S = small, M = medium, L = large) and the utilization level (U

= underutilized, N = normally utilized, H = highly utilized). The second, third and

fourth columns show the average CPU time to obtain LP relaxation optimal solu-

tions, CPU time to obtain IP-feasible solutions from the LP optimal solutions and

number of CG algorithm iterations for the homogeneous problems. The fifth, sixth

and seventh columns show the same information for the heterogeneous problems.

The last three columns provide information on the ratio of CPU times and number
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of iterations, for homogeneous and heterogeneous problems.

Table 4.11: Comparison of homogeneous and heterogeneous model results in terms
of CPU time and number of iterations

Homogeneous Heterogeneous Ratio (HT/HM)
Pr. Set LP Time IP Time Iterations LP Time IP Time Iterations LP Time IP Time Iterations

SU 1951 14 88 11896 68 119 6.10 4.96 1.35
SN 1625 8 66 9774 61 91 6.01 7.68 1.38
SH 732 14 28 3832 29 38 5.23 2.16 1.34
MU 10674 43 267 117973 1621 361 11.05 37.48 1.35
MN 10633 105 225 105596 1000 305 9.93 9.49 1.35
MH 8114 98 151 66513 306 214 8.20 3.12 1.42
LU 75807 7389 228 1315232 14269889 973 17.35 1931.36 4.27
LN 72576 687666 324 1000373 2602020 767 13.78 3.78 2.37
LH 66945 53438 400 770857 33518 592 11.51 0.63 1.48

As expected, CPU times are in general significantly larger for the heterogeneous

problems. The ratios of both CPU time and number of iterations are quite large

and they also increase with problem size while the CPU time to obtain LP optimal

solutions are 5 to 6 times longer for the small problems. For medium problems the

ratio is around 8 to 11 and for large problems, it is 11 to 17. This increase can be

explained by investigating the flow charts (see Section 3, Figures 3.1 and 3.3) of

the proposed algorithms. We solve as many PSP’s as the number of gates for the

heterogeneous problems at each iteration of the heterogeneous algorithm. The LP

time ratios almost reflect this for small and medium-size problems. For the highly

utilized instances, we obtain more reasonable solution times for the heterogeneous

problems. While the CPU time to obtain LP optimal solutions depend mostly the

problem size, the performance to obtain IP solutions also changes according to the

utilization level. For underutilized problems of medium or large size, the column

generation algorithm needs more time, because the number of feasible columns are

too many. Particularly for large, underutilized problems, the number of iterations

to obtain LP optimal solutions are significantly larger than medium underutilized

problems. Also the number of generated columns and in parallel to that, the size of

the IP problem is larger for the large problems.
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4.3 Alternative Robustness Measures: Variance of Idle Times vs. Insert

Capability

In Section 3.3, we mention the robustness measures for GAP in the literature: vari-

ance of idle time measure introduced by Bolat [8] and insert capability measure

introduced by Dorndorf et al. [9]. The computational results presented in the pre-

vious sections utilize the variance of idle time as the robustness measure. However

using our CG algorithm, we can easily switch to a new robustness measure by only

altering the reduced cost calculation while solving the PSP.

To introduce insert capability as a robustness measure, we experiment with dif-

ferent robustness score to evaluate the possible insert moves as discussed in Dorndorf

et al. [9]. We first define these scores and then present the computational results

obtained with each score.

4.3.1 New Robustness Measures to Represent Insertion Capability

Various robustness scores may be suggested to quantify the insert capability of a

schedule. Note that our objective here is to maximize the robustness measures that

represent insert capability whereas we seek to minimize the variance of idle time

in all of the work discussed so far. We utilize simple scores to quantify the insert

capability of a gate schedule. To explain the newly introduced scores, Figures 4.1

and 4.2 display examples of full insert and partial insert moves. In Figure 4.1 flight

f is inserted between flights i and j, resulting in two idle times t1 and t2, where

t1 = af − di and t2 = aj − df . On the other hand in Figure 4.2, flight f can only

be partially accommodated between flights i and j, which creates only one idle time

denoted by t1, where t1 is either t1 = af − di or t1 = aj − df .

Figure 4.1: Depiction of a full insert move for flight f between flights i and j
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Figure 4.2: Depiction of a partial insert move for flight f between flights i and j

The simplest robustness score, RS1, sums up over all flights f that can be fully

inserted between two flights i and j. In the network representation we employ to

solve the PSP, there exists an arc (i, j) for any two flights i and j that can be

assigned to the same gate schedule consecutively. To adopt the CG algorithm to

maximize insert capability robustness measure, we define the cost of arc (i, j) as the

robustness score calculated for the pair of flights i and j.

According to the illustration in Figure 4.1, RS1 is

RS1
ij =

∑
f : af≥di, df≤aj

(t1 + t2) (4.1)

The second score, RS2, is a modification of RS1: we divide RS1 by the number of

flights (denoted by |F |) that can be inserted between the two flights, i and j, to

obtain an average idle time per flight.

RS2
ij =

∑
f : af≥di, df≤aj

(t1 + t2)/|F | (4.2)

The third score, RS3, also accounts for the partial insert moves, as illustrated in

Figure 4.2 where the ground time of the inserted flight overlaps partially with the

time available between the two flights i and j. Then,

RS3
ij =

∑
f : af≥di or df≤aj

t1 +
∑

f : af≥di, df≤aj

t1 + t2 (4.3)

The fourth score, RS4
ij, is similar to RS2

ij in spirit. We again calculate an average

idle time by dividing RS3
ij by the number of flights that can be inserted fully or
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partially between the selected flights.

RS4
ij =

 ∑
f : af≥di or df≤aj

t1 +
∑

f : af≥di, df≤aj

t1 + t2

 /|F | (4.4)

All of the previously described scores lead the algorithm to create arcs where an

insert move is more likely to be accomplished and this favors schedules with long

idle times between two consecutive flights (and also very short idle times between

other consecutive flights). Therefore these four robustness measures create schedules

with highly variable idle time values, which is in the opposite direction of Bolat [8]’s

approach that minimizes idle time variance. To overcome this issue, we propose

RS5
ij, which only accounts for idle times that are less than the average idle time

in the schedule. In RS5
ij, we first calculate the length of the planning horizon and

multiply it with the number of gates. This value is the total time available for

scheduling flights. We also calculate the total ground time of all flights. Then we

find the total idle time, by subtracting the total ground time from the total time

available for scheduling. Finally, we divide the total idle time by the number of

flights in the problem, to obtain the average idle time per flight denoted by IT . In

the calculation of RS5
ij, the idle times of insert moves are included only if they are

less than or equal to the average idle time. RS5
ij aims to prevent the algorithm from

creating columns, with more than the average idle time between consecutive flights.

RS5
ij =

 ∑
(f : af≥di or df≤aj), (t1≤IT )

t1 +
∑

(f : af≥di, df≤aj), (t1+t2≤IT )

t1 + t2

 /|F | (4.5)

4.3.2 Comparison of Variance Of Idle Time and Insert Capability Ro-

bustness Measures

With all of the scores discussed above, we are able to reach LP optimal solutions

using our algorithm. But the columns generated by the CG algorithm are not suffi-

cient to form an IP feasible solution. The reason of this outcome can be identified by
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looking at the columns generated using the robustness scores as we explain below.

Figures 4.3 and 4.4 also give us some insight into this outcome. These two figures

display the OFV throughout the algorithm for RS5
ij and variance of idle time ro-

bustness measures, respectively. In Figure 4.3, the algorithm uses RS5
ij robustness

measure to reach a LP optimal solution after some iterations. But in the last step,

the algorithm searches for an IP solution in the resulting column pool and generates

to the initial feasible solution as the final IP solution. Therefore the CG algorithm

cannot improve upon the initial IP solution for this robustness measure. Conversely,

the algorithm is capable of generating an IP solution that has a much better OFV

for the variance idle time robustness measure as depicted in Figure 4.4.

Figure 4.3: A sample run using RS5 score structure

Figure 4.4: A sample run using the variance of idle time cost structure

Using the variance of idle time measure, flights are evenly distributed on the

planning horizon for each gate schedule, as expected. Often, the optimal solutions
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of the instances provided by Bolat [12] consist of evenly distributed number of flights

across the gates. On the other hand the columns created by the insert capability

robustness measure have very long or very short idle times between consecutive

flights. As the insert capability of a solution increases, the variance of idle time

between two consecutive flights also increases for a solution, which causes flights

to be distributed unevenly. Our algorithm finds an LP optimal solution, but the

resulting columns are not likely to form an integer feasible solution due to this

reason. Therefore, the IP solution remains the same as the initial feasible solution

even for the small instances.

This observation is also helpful for the comparison of the two suggested meth-

ods. While Bolat [2] suggests distributing the flights evenly with similar idle times

between flights, Dorndorf et al. [9] proposes to increase the insert capability of the

columns by forming some very large idle times in some columns and allowing more

insert moves at desired time intervals. So, we can argue that the columns created

using these two different robustness measures have fundamentally different struc-

tures.

To check whether there is any correlation between these two measures, we com-

pare the robustness measures in terms of solution quality using the following ap-

proach: First, we run the algorithm on one test instance for each different problem

set (9 instances in total) using the variance of idle time measure and calculate the

OFV of the initial and final solution for all of the six robustness measures. Table

4.12 displays the percentage improvement in terms of the OFV from the initial so-

lution to the final solution for all robustness measures. We see that the algorithm

improves the OFV of the variance of idle time robustness measure for all test in-

stances, while the OFV’s of all other measures deteriorate (except for RS5 for SN1,

and RS1 for small instances, where the most simple structure is used). So it can

be argued that there is a negative correlation between the variance of idle time and

insert capability robustness measures.
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Table 4.12: Comparison of the variance of idle time and insert capability robustness
measures on homogeneous problem instances

Problem Set Variance of idle time RS1 RS2 RS3 RS4 RS5

DSU1 0.07 0.16 -0.10 -0.21 -0.12 -0.05
DSN1 0.01 0.88 -0.01 -0.01 0.00 0.01
DSH1 0.00 0.66 -0.01 -0.03 -0.17 -0.01
DMU1 0.11 -0.25 -0.15 -0.16 -0.12 -0.11
DMN1 0.15 -0.04 -0.18 -0.22 -0.13 -0.11
DMH1 0.00 0.11 0.00 0.00 0.00 -0.01
DLU1 0.34 -0.56 -0.40 -0.46 -0.37 -0.29
DLN1 0.17 -0.50 -0.22 -0.29 -0.13 -0.20
DLH1 0.01 -0.13 -0.03 -0.03 -0.09 -0.02
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, RGAP is formulated as a set covering problem. A column generation

algorithm proposed to solve the RGAP and the PSP in this CG algorithm is modeled

as a network and solved by a shortest path algorithm. We formulate the objective

function of the RGAP using the robustness measures in the literature: variance of

idle time and insert capability.

Algorithms proposed for homogeneous and heterogeneous problems provides LP

optimal solutions for all instances from Bolat [12], and in many cases they are

also IP optimal solutions. Computational results indicate that the proposed CG

algorithm performs better for highly utilized instances on both homogeneous and

heterogeneous problems. Initializing the algorithm with a better initial solution does

not have a large impact on the CPU time and we also observe that infeasible initial

solutions can be used for homogeneous problems. We show that CPU time can be

improved by using smart column generation approaches such as generating extra

columns using multiple PSP runs with a more limited network, as we did in this

study. For homogeneous and heterogeneous problems, CPU times are correlated

with the size of the problem, especially number of gates plays an important role.

We demonstrate that the algorithm can be easily modified according to other

robustness measures, such as the insert capability robustness measure implemented

in this study. To modify the algorithm for this measure, only the cost calculation

phase in the PSP formulation needs to be rearranged according to the the new

objective function structure. While the algorithm is capable of obtaining the LP

optimal solutions, for this robustness measure, it cannot improve on the initial IP
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solution. A comparative analysis of the two robustness measures indicates that they

are negatively correlated and each measure creates different columns in terms of idle

time characteristics.

The contributions of this study can be summarized as follows:

• We propose a CG algorithm that can solve both homogeneous and hetero-

geneous RGAP in reasonable CPU time to obtain near IP optimal solution

quality.

• The proposed algorithm generates better quality integer solutions than the

genetic algorithm of Bolat [12] for some homogeneous gate instances.

• We suggest heuristics that employ extra column generation to improve the CG

algorithm in terms of CPU time and solution quality.

• We show that the two robustness measures proposed in the literature, variance

of idle time and insert capability, are negatively correlated.

Several extensions can be suggested as future work.

• PSP performance can be improved using more sophisticated network algo-

rithms and other problem formulations.

• Other information regarding the neighboring flights in a schedule such as the

company information or flight type can be also considered in the score calcu-

lation rather than only focusing on idle time.

• IP performance can be improved using IP heuristic methods, which can lead

to substantial reduction in the CPU times of the large-size problems.

• Other robustness measures can be easily implemented using the CG approach,

by only altering the score calculation procedures.

Due to the increased traffic and congestion at airports, methods similar to the

proposed algorithm started to be used in real life applications. The performance of

the formulated CG algorithm indicates that, CG algorithms, supported with some
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heuristic performance improvement methods, can suggest good quality solutions in

reasonable times to the operational problems in the airline industry.
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Appendix A

Homogeneous Run Results

Table A.1: Results for small problems with under/normal/high utilized homoge-
neous gates when exta column generation is not considered

Data Set Iterations LP Time IP Time frac = 1 Total Time
DSU1 77 1750 0 0 1750
DSU2 58 1188 0 0 1188
DSU3 93 1953 16 0 1969
DSU4 114 2484 63 1 2547
DSU5 97 2109 16 0 2125
DSU6 103 2328 15 0 2343
DSU7 79 1844 0 0 1844
DSU8 80 1953 0 0 1953
DSN1 54 1329 0 0 1329
DSN2 54 1250 0 0 1250
DSN3 79 1922 15 0 1937
DSN4 69 1797 0 0 1797
DSN5 68 1656 16 0 1672
DSN6 51 1250 0 0 1250
DSN7 73 1781 16 0 1797
DSN8 82 2015 16 0 2031
DSH1 33 812 0 0 812
DSH2 31 797 16 0 813
DSH3 11 328 16 0 344
DSH4 12 312 0 0 312
DSH5 35 875 0 0 875
DSH6 53 1375 31 1 1406
DSH7 10 266 15 0 281
DSH8 40 1094 31 1 1125
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Table A.2: Results for medium problems with under/normal/high utilized homoge-
neous gates when exta column generation is not considered

Data Set Iterations LP Time IP Time frac = 1 Total Time
DMU1 229 8187 157 1 8344
DMU2 279 10453 16 0 10469
DMU3 259 10531 16 0 10547
DMU4 322 12469 0 0 12469
DMU5 311 12891 15 0 12906
DMU6 248 10531 16 0 10547
DMU7 249 10187 110 1 10297
DMU8 241 10140 16 0 10156
DMN1 237 10688 109 1 10797
DMN2 216 10484 109 1 10593
DMN3 203 9297 94 1 9391
DMN4 229 10390 16 0 10406
DMN5 205 9469 15 0 9484
DMN6 264 12875 266 1 13141
DMN7 251 12219 109 1 12328
DMN8 194 9641 125 1 9766
DMH1 139 7703 125 1 7828
DMH2 91 4985 78 1 5063
DMH3 160 7907 15 0 7922
DMH5 172 8812 110 1 8922
DMH6 159 8547 218 1 8765
DMH7 172 9954 125 1 10079
DMH8 164 8891 15 0 8906

Table A.3: Results for large problems with under/normal/high utilized homogeneous
gates when exta column generation is not considered

Data Set Iterations LP Time IP Time frac = 1 Total Time
DLU1 679 64782 343 1 65125
DLU2 765 80953 750 1 81703
DLU3 688 75203 344 1 75547
DLU4 758 86375 22359 1 108734
DLU5 644 74969 3031 1 78000
DLU6 642 76094 27281 1 103375
DLU7 619 64625 1031 1 65656
DLU8 716 83453 3969 1 87422
DLN1 597 71922 969 1 72891
DLN2 551 65031 824875 1 889906
DLN3 543 66796 20969 1 87765
DLN4 604 77484 3292281 1 3369765
DLN5 548 73281 4157 1 77438
DLN6 547 76578 3563 1 80141
DLN7 519 72625 1354015 1 1426640
DLN8 554 76891 500 1 77391
DLH1 404 56281 20875 1 77156
DLH2 452 64984 2672 1 67656
DLH3 478 72937 96578 1 169515
DLH4 442 68641 36375 1 105016
DLH7 487 72468 95797 1 168265
DLH8 458 66359 68328 1 134687
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Table A.4: Results for small problems with under utilized homogeneous gates when
exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DSU1 0 77 1781 0 0
DSU1 1 49 2000 0 0
DSU1 2 31 1813 15 0
DSU1 3 25 1907 15 0
DSU1 4 28 2485 15 0
DSU1 5 28 2609 0 0
DSU2 0 58 1437 0 0
DSU2 1 30 1313 15 0
DSU2 2 26 1453 94 1
DSU2 3 26 1969 0 0
DSU2 4 20 1829 15 0
DSU2 5 20 1875 0 0
DSU3 0 93 2829 15 0
DSU3 1 51 2500 16 0
DSU3 2 33 1953 0 0
DSU3 3 31 2437 0 0
DSU3 4 26 2547 0 0
DSU3 5 26 2562 0 0
DSU4 0 114 3000 78 1
DSU4 1 66 3047 0 0
DSU4 2 44 2953 0 0
DSU4 3 43 3563 0 0
DSU4 4 35 4281 16 0
DSU4 5 35 3875 0 0
DSU5 0 97 2812 0 0
DSU5 1 58 3312 16 0
DSU5 2 36 2719 0 0
DSU5 3 29 2719 0 0
DSU5 4 33 3640 16 0
DSU5 5 33 3937 0 0
DSU6 0 103 3406 16 0
DSU6 1 56 3234 16 0
DSU6 2 38 2828 0 0
DSU6 3 33 3157 0 0
DSU6 4 29 3500 15 0
DSU6 5 29 3594 0 0
DSU7 0 79 2656 0 0
DSU7 1 47 2500 16 0
DSU7 2 43 3297 0 0
DSU7 3 24 2375 16 0
DSU7 4 24 2984 16 0
DSU7 5 24 2812 0 0
DSU8 0 80 2719 15 0
DSU8 1 40 2375 16 0
DSU8 2 26 2046 16 0
DSU8 3 28 2828 0 0
DSU8 4 25 3141 15 0
DSU8 5 25 3032 15 0
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Table A.5: Results for small problems with normally utilized homogeneous gates
when exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DSN1 0 54 1937 16 0
DSN1 1 39 2296 16 0
DSN1 2 32 2703 0 0
DSN1 3 24 2703 16 0
DSN1 4 25 3500 16 0
DSN1 5 25 3485 0 0
DSN2 0 54 1938 15 0
DSN2 1 30 1813 15 0
DSN2 2 29 2469 16 0
DSN2 3 23 2578 15 0
DSN2 4 20 2829 15 0
DSN2 5 20 2578 16 0
DSN3 0 79 3062 16 0
DSN3 1 42 2703 16 0
DSN3 2 31 2688 15 0
DSN3 3 22 2484 16 0
DSN3 4 27 3860 0 0
DSN3 5 27 3688 0 0
DSN4 0 69 2750 15 0
DSN4 1 33 2219 16 0
DSN4 2 27 2407 15 0
DSN4 3 20 2360 15 0
DSN4 4 19 2719 16 0
DSN4 5 19 2656 16 0
DSN5 0 68 2781 16 0
DSN5 1 36 2485 93 1
DSN5 2 25 2313 16 0
DSN5 3 22 2593 16 0
DSN5 4 22 3250 94 1
DSN5 5 22 3219 94 1
DSN6 0 51 2157 15 0
DSN6 1 38 2672 16 0
DSN6 2 23 2312 16 0
DSN6 3 24 3062 16 0
DSN6 4 21 3109 16 0
DSN6 5 21 3203 15 0
DSN7 0 73 3468 32 0
DSN7 3 34 2390 16 0
DSN7 4 20 3094 15 0
DSN7 5 20 3094 31 0
DSN8 0 82 3735 15 0
DSN8 1 34 2391 16 0
DSN8 4 23 2328 16 0
DSN8 5 20 3218 16 0
DSH1 0 33 1625 31 0
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Table A.6: Results for small problems with highly utilized homogeneous gates when
exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DSH1 1 17 1266 16 0
DSH1 2 14 1375 15 0
DSH1 3 13 1657 15 0
DSH1 4 14 2141 16 0
DSH1 5 14 2157 15 0
DSH2 0 31 1422 16 0
DSH2 1 21 1562 16 0
DSH2 2 13 1313 15 0
DSH2 3 15 1938 15 0
DSH2 4 10 1594 16 0
DSH2 5 10 1593 16 0
DSH3 2 11 594 15 0
DSH3 3 6 766 15 0
DSH3 4 6 969 16 0
DSH3 5 6 953 15 0
DSH4 0 12 547 16 0
DSH4 1 7 547 15 0
DSH4 2 6 641 31 0
DSH4 3 10 1328 16 0
DSH4 4 8 1281 16 0
DSH4 5 8 1297 15 0
DSH5 0 35 1672 16 0
DSH5 1 18 1390 16 0
DSH5 2 18 1890 16 0
DSH5 3 14 1890 16 0
DSH5 4 13 2125 15 0
DSH5 5 13 2125 16 0
DSH6 0 53 2547 63 1
DSH6 1 11 844 62 1
DSH6 2 15 1594 109 1
DSH6 3 11 1500 16 0
DSH6 4 10 1641 16 0
DSH6 5 10 1672 16 0
DSH7 0 10 485 15 0
DSH7 1 8 625 16 0
DSH7 2 10 1093 16 0
DSH7 3 7 953 31 0
DSH7 4 6 1016 16 0
DSH7 5 6 1000 31 0
DSH8 2 40 2063 62 1
DSH8 3 12 1672 94 1
DSH8 4 9 1547 31 0
DSH8 5 9 1547 31 0
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Table A.7: Results for medium problems with under utilized homogeneous gates
when exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DMU1 0 229 8016 172 1
DMU1 1 122 7594 94 1
DMU1 2 85 7000 94 1
DMU1 3 61 6859 125 1
DMU1 4 57 7937 0 0
DMU1 5 47 7906 110 1
DMU1 6 44 8625 0 0
DMU1 7 39 8703 110 1
DMU1 8 36 9032 15 0
DMU1 9 38 10672 16 0
DMU1 10 38 11062 16 0
DMU2 0 279 11359 16 0
DMU2 1 143 10203 16 0
DMU2 2 90 9203 16 0
DMU2 3 73 9656 16 0
DMU2 4 65 10610 93 1
DMU2 5 55 9656 16 0
DMU2 6 53 11328 15 0
DMU2 7 41 9547 16 0
DMU2 8 43 12313 16 0
DMU2 9 40 13031 15 0
DMU2 10 41 13922 16 0
DMU3 0 259 12672 16 0
DMU3 1 134 11187 219 1
DMU3 2 92 10969 15 0
DMU3 3 66 10250 219 1
DMU3 4 60 11422 16 0
DMU3 5 49 11078 15 0
DMU3 6 43 11297 16 0
DMU3 7 41 12312 16 0
DMU3 8 36 12203 125 1
DMU3 9 37 13890 141 1
DMU3 10 43 17047 141 1
DMU4 0 300 17031 94 1
DMU4 1 140 13329 15 0
DMU4 2 99 13406 16 0
DMU4 3 76 13187 16 0
DMU4 4 65 13860 31 0
DMU4 5 59 14922 31 0
DMU4 6 50 14797 31 0
DMU4 7 51 17157 31 0
DMU4 8 47 17734 31 0
DMU4 9 48 20219 16 0
DMU4 10 45 19859 31 0
DMU5 0 300 19687 156 1
DMU5 1 149 16266 31 0
DMU5 2 98 15063 15 0
DMU5 3 75 14922 172 1
DMU5 4 67 16250 15 0
DMU5 5 57 16438 31 0
DMU5 6 49 16359 141 1
DMU5 7 46 17625 31 0
DMU5 8 48 20578 16 0
DMU5 9 46 21953 15 0
DMU5 10 45 22313 31 0
DMU6 0 248 18328 16 0
DMU6 1 125 15172 16 0
DMU6 2 88 15125 15 0
DMU6 3 66 16594 31 0
DMU6 4 55 14844 31 0
DMU6 5 55 21578 31 0
DMU6 6 47 17860 31 0
DMU6 7 39 18204 31 0
DMU6 8 42 22704 156 1
DMU6 9 40 23000 32 0
DMU6 10 46 25453 31 0
DMU7 0 249 21125 141 1
DMU7 1 124 16156 157 1
DMU7 2 80 15937 156 1
DMU7 3 65 15110 172 1
DMU7 4 58 16500 172 1
DMU7 5 49 16563 31 0
DMU7 6 42 17578 47 0
DMU7 7 37 16641 156 1
DMU7 8 36 18234 47 0
DMU7 9 41 22641 31 0
DMU7 10 37 22062 219 1
DMU8 0 241 23281 47 0
DMU8 1 119 16813 31 0
DMU8 2 81 16531 31 0
DMU8 3 65 17078 31 0
DMU8 4 56 18141 31 0
DMU8 5 41 15718 47 0
DMU8 6 47 22609 47 0
DMU8 7 39 19234 47 0
DMU8 8 42 23188 172 1
DMU8 9 40 26000 47 0
DMU8 10 35 22875 172 1
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Table A.8: Results for medium problems with normally utilized homogeneous gates
when exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DMN1 0 237 24203 187 1
DMN1 1 121 19578 157 1
DMN1 2 79 17375 47 0
DMN1 3 64 18047 156 1
DMN1 4 53 18360 47 0
DMN1 5 47 18968 32 0
DMN1 6 37 17172 31 0
DMN1 7 39 21156 47 0
DMN1 8 39 23859 188 1
DMN1 9 35 23172 47 0
DMN1 10 34 24094 188 1
DMN2 0 216 23578 187 1
DMN2 1 111 19407 47 0
DMN2 2 71 17078 32 0
DMN2 3 56 17250 156 1
DMN2 4 45 17172 47 0
DMN2 5 42 18656 172 1
DMN2 6 36 18594 187 1
DMN2 7 36 20765 188 1
DMN2 8 38 23953 47 0
DMN2 9 31 21843 235 1
DMN2 10 32 23781 203 1
DMN3 0 203 24891 187 1
DMN3 1 107 21594 47 0
DMN3 2 71 19219 47 0
DMN3 3 56 19609 47 0
DMN3 4 49 21343 47 0
DMN3 5 41 20985 47 0
DMN3 6 36 20938 47 0
DMN3 7 34 21828 47 0
DMN3 8 32 22172 47 0
DMN3 9 34 30500 172 1
DMN3 10 34 26672 47 0
DMN4 0 229 28204 62 0
DMN4 1 126 24781 63 0
DMN4 2 78 21562 47 0
DMN4 3 59 20344 47 0
DMN4 4 56 24047 62 0
DMN4 5 40 19922 31 0
DMN4 6 41 21031 47 0
DMN4 7 38 24953 62 0
DMN4 8 35 25782 62 0
DMN4 9 35 29672 62 0
DMN4 10 34 29047 62 0
DMN5 0 205 27375 62 0
DMN5 1 103 23734 47 0
DMN5 2 82 22562 188 1
DMN5 3 53 19297 203 1
DMN5 4 51 23609 282 1
DMN5 5 38 20218 63 0
DMN5 6 37 21109 47 0
DMN5 7 35 22890 63 0
DMN5 8 39 29406 47 0
DMN5 9 36 28531 47 0
DMN5 10 35 28485 62 0
DMN6 0 264 35265 360 1
DMN6 1 118 24719 218 1
DMN6 2 86 23547 47 0
DMN6 3 68 23625 172 1
DMN6 4 55 23438 47 0
DMN6 5 49 24219 62 0
DMN6 6 44 25313 172 1
DMN6 7 39 25297 47 0
DMN6 8 39 28219 62 0
DMN6 9 41 32953 203 1
DMN6 10 44 36516 218 1
DMN7 0 251 33703 203 1
DMN7 1 122 25703 203 1
DMN7 2 91 26406 203 1
DMN7 3 67 24593 47 0
DMN7 4 58 25891 234 1
DMN7 5 46 24343 203 1
DMN7 6 45 27063 62 0
DMN7 7 41 28063 47 0
DMN7 8 40 32891 218 1
DMN7 9 36 30719 187 1
DMN7 10 35 30359 63 0
DMN8 0 194 27188 218 1
DMN8 1 112 24734 266 1
DMN8 2 71 21468 203 1
DMN8 5 57 22422 62 0
DMN8 6 36 25391 203 1
DMN8 7 33 23891 188 1
DMN8 8 29 23812 234 1
DMN8 9 33 30110 187 1
DMN8 10 33 33219 62 0
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Table A.9: Results for medium problems with highly utilized homogeneous gates
when exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DMH1 0 139 21219 235 1
DMH1 1 46 11906 219 1
DMH1 2 62 20219 344 1
DMH1 3 31 13969 78 0
DMH1 4 26 13734 188 1
DMH1 5 24 13953 63 0
DMH1 6 20 13812 63 0
DMH1 7 16 12421 63 0
DMH1 8 18 16031 219 1
DMH1 9 17 17921 250 1
DMH1 10 17 16297 219 1
DMH2 0 91 13875 203 1
DMH2 1 73 18937 219 1
DMH2 2 39 13391 250 1
DMH2 3 26 11078 234 1
DMH2 4 24 13250 250 1
DMH2 5 20 12860 203 1
DMH2 6 24 16562 203 1
DMH2 7 19 14985 62 0
DMH2 8 14 12469 78 0
DMH2 9 14 14172 78 0
DMH2 10 14 14234 63 0
DMH3 0 160 25094 93 0
DMH3 1 77 19438 484 1
DMH3 2 53 19203 203 1
DMH3 3 40 19735 78 0
DMH3 4 22 11625 250 1
DMH3 5 35 22703 63 0
DMH3 6 21 15641 62 0
DMH3 7 20 15766 78 0
DMH3 8 21 20672 94 0
DMH3 9 21 22781 78 0
DMH3 10 21 22282 62 0
DMH5 0 172 5906 78 1
DMH5 1 83 4672 16 0
DMH5 2 63 5078 78 1
DMH5 3 50 5594 16 0
DMH5 4 28 3922 94 1
DMH5 5 25 4047 78 1
DMH5 6 22 4297 94 1
DMH5 7 24 5156 16 0
DMH5 8 23 5140 0 0
DMH5 9 19 4984 94 1
DMH5 10 19 5297 78 1
DMH6 0 159 6047 172 1
DMH6 1 81 5328 109 1
DMH6 2 49 4625 78 1
DMH6 3 47 5266 16 0
DMH6 4 33 4687 16 0
DMH6 5 26 4625 79 1
DMH6 6 24 4672 94 1
DMH6 7 26 5781 109 1
DMH6 8 22 5532 0 0
DMH6 9 18 4907 15 0
DMH6 10 18 5235 15 0
DMH7 0 172 7454 125 1
DMH7 1 92 6671 0 0
DMH7 2 60 5859 16 0
DMH7 3 39 4859 16 0
DMH7 4 31 4891 94 1
DMH7 5 30 5875 0 0
DMH7 6 25 5766 15 0
DMH7 7 29 6875 78 1
DMH7 8 27 7469 16 0
DMH7 9 21 6218 16 0
DMH7 10 21 6703 0 0
DMH8 0 164 7281 16 0
DMH8 1 95 7218 16 0
DMH8 2 60 6375 16 0
DMH8 3 29 4015 16 0
DMH8 4 33 5938 16 0
DMH8 5 26 5703 15 0
DMH8 6 22 5609 16 0
DMH8 7 21 6375 16 0
DMH8 8 22 6344 16 0
DMH8 9 28 9281 15 0
DMH8 10 23 8078 16 0
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Table A.10: Results for large problems with under utilized homogeneous gates when
exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DLU1 0 300 18859 3750 1
DLU1 4 137 37047 453 1
DLU1 8 77 36281 234 1
DLU1 12 55 36281 16 0
DLU1 16 48 42015 266 1
DLU1 20 43 45656 219 1
DLU2 0 300 22125 1157 1
DLU2 4 143 45656 141 1
DLU2 8 86 48453 16 0
DLU2 12 61 48313 15 0
DLU2 16 52 53203 235 1
DLU2 20 47 56766 250 1
DLU3 0 300 25453 4328 1
DLU3 4 130 46188 406 1
DLU3 8 80 47406 188 1
DLU3 12 56 47437 172 1
DLU3 16 50 55187 16 0
DLU3 20 46 60093 266 1
DLU4 0 300 28125 1203 1
DLU4 4 141 54422 468 1
DLU4 8 83 55156 31 0
DLU4 12 60 59719 453 1
DLU4 16 56 64375 32 0
DLU4 20 48 69703 281 1
DLU5 0 300 30547 7438 1
DLU5 4 128 49078 453 1
DLU5 8 75 51313 469 1
DLU5 12 54 49891 312 1
DLU5 16 47 56375 344 1
DLU5 20 43 63313 281 1
DLU6 0 300 35391 4578 1
DLU6 4 130 61172 3313 1
DLU6 8 75 54890 703 1
DLU6 12 53 55516 500 1
DLU6 16 45 64578 219 1
DLU6 20 49 80469 328 1
DLU7 0 300 35968 7782 1
DLU7 4 124 57953 515 1
DLU7 8 70 60484 344 1
DLU7 12 53 61922 219 1
DLU7 16 49 73890 297 1
DLU7 20 42 78328 312 1
DLU8 0 300 42110 5515 1
DLU8 4 146 78656 719 1
DLU8 8 77 68765 313 1
DLU8 12 59 66844 297 1
DLU8 16 49 70656 328 1
DLU8 20 46 81016 453 1
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Table A.11: Results for large problems with normally utilized homogeneous gates
when exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DLN1 0 300 43031 8219 1
DLN1 4 125 65609 328 1
DLN1 8 72 63735 375 1
DLN1 12 58 71875 313 1
DLN1 16 43 72250 453 1
DLN1 20 43 83203 297 1
DLN2 0 300 47625 10109 1
DLN2 4 119 69391 38250 1
DLN2 8 71 68703 313 1
DLN2 12 52 69094 328 1
DLN2 16 43 72281 390 1
DLN2 20 36 72344 516 1
DLN3 0 300 45875 11641 1
DLN3 4 110 61734 9750 1
DLN3 8 61 59469 969 1
DLN3 12 49 67656 391 1
DLN3 16 41 73203 437 1
DLN3 20 36 76672 375 1
DLN4 0 300 50610 7328 1
DLN4 4 115 71750 2846890 1
DLN4 8 68 73125 281 1
DLN4 12 48 74016 312 1
DLN4 16 45 100625 312 1
DLN4 20 48 116016 375 1
DLN5 0 300 52360 13640 1
DLN5 4 110 76906 4484 1
DLN5 8 67 86157 422 1
DLN5 12 50 87078 47 0
DLN5 16 43 89031 47 0
DLN5 20 41 101140 297 1
DLN6 0 300 58297 11437 1
DLN6 4 115 88157 484 1
DLN6 8 67 78344 562 1
DLN6 12 52 93531 547 1
DLN6 16 44 97922 328 1
DLN6 20 37 100047 359 1
DLN7 0 300 61516 12109 1
DLN7 4 112 86125 6641015 1
DLN7 8 68 88906 735 1
DLN7 12 48 90203 344 1
DLN7 16 45 105000 390 1
DLN7 20 40 114437 516 1
DLN8 0 300 66875 11313 1
DLN8 4 116 92329 5734 1
DLN8 8 68 96515 516 1
DLN8 12 49 98750 438 1
DLN8 16 47 102734 422 1
DLN8 20 40 102141 328 1
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Table A.12: Results for large problems with highly utilized homogeneous gates when
exta column generation is considered

Pr. Set Extra Columns Iterations LP Time IP Time Frac=1
DLH1 0 300 58453 703 1
DLH1 4 76 52937 4829 1
DLH1 8 47 51672 859 1
DLH1 12 35 55047 234 1
DLH1 16 29 61234 266 1
DLH1 20 27 66688 250 1
DLH2 0 300 57781 5172 1
DLH2 4 85 57031 297 1
DLH2 8 53 60203 328 1
DLH2 12 44 75047 94 0
DLH2 16 36 80109 344 1
DLH2 20 30 81688 328 1
DLH3 0 300 66500 1219 1
DLH3 4 101 73734 282 1
DLH3 8 61 78843 360 1
DLH3 12 43 86063 266 1
DLH3 16 34 79750 281 1
DLH3 20 34 96766 265 1
DLH4 0 300 67984 1281 1
DLH4 4 87 69516 53188 1
DLH4 8 49 71188 359 1
DLH4 12 40 75172 656 1
DLH4 16 34 80719 360 1
DLH4 20 32 101984 297 1
DLH7 0 300 73281 1203 1
DLH7 4 92 77578 76344 1
DLH7 8 54 74422 344 1
DLH7 12 40 79078 453 1
DLH7 16 33 85734 750 1
DLH7 20 35 116922 734 1
DLH8 0 300 72438 1203 1
DLH8 4 87 75110 10500 1
DLH8 8 55 78485 594 1
DLH8 12 40 85156 407 1
DLH8 16 33 94125 406 1
DLH8 20 36 114250 344 1
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Appendix B

Heterogeneous Run Results without Extra Columns Generation

Table B.1: Results for small problems with under/normal/high utilized heteroge-
neous gates when exta column generation is not considered

Data Set Iteration LP Time IP Time Frac Total Time
DSH1 48 5250 110 1 5360
DSH2 54 5531 0 0 5531
DSH3 15 1500 15 0 1515
DSH4 26 2563 0 0 2563
DSH5 57 5875 31 1 5906
DSH6 41 4172 31 1 4203
DSH7 25 2297 32 1 2329
DSH8 36 3468 16 1 3484
DSN1 92 8797 109 1 8906
DSN2 93 9172 78 1 9250
DSN3 100 10344 62 1 10406
DSN4 89 9688 47 1 9735
DSN5 100 11343 16 0 11359
DSN6 99 11359 16 0 11375
DSN7 86 10016 78 1 10094
DSN8 72 7469 78 1 7547
DSU1 100 10718 78 1 10796
DSU2 87 9062 0 0 9062
DSU3 123 10407 171 1 10578
DSU4 140 12625 0 0 12625
DSU5 131 12594 172 1 12766
DSU6 155 15640 94 1 15734
DSU7 110 11219 15 0 11234
DSU8 103 12906 16 0 12922
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Table B.2: Results for medium problems with under/normal/high utilized hetero-
geneous gates when exta column generation is not considered

DMU1 329 104078 344 1 104422
DMU2 369 95562 516 1 96078
DMU3 362 108594 125 1 108719
DMU4 396 135172 4312 1 139484
DMU5 420 167266 4641 1 171907
DMU6 352 144469 62 0 144531
DMU7 308 75360 2546 1 77906
DMU8 349 113281 422 1 113703
DMN1 324 116219 156 1 116375
DMN2 261 70953 688 1 71641
DMN3 280 78266 344 1 78610
DMN4 332 105500 109 1 105609
DMN5 311 108109 1860 1 109969
DMN6 333 127656 2063 1 129719
DMN7 311 129578 2750 1 132328
DMN8 284 108485 31 0 108516
DMH1 154 63813 31 0 63844
DMH2 191 52422 422 1 52844
DMH3 214 59625 312 1 59937
DMH5 247 76234 250 1 76484
DMH6 193 61594 312 1 61906
DMH7 264 90640 344 1 90984
DMH8 233 61265 469 1 61734

Table B.3: Results for large problems with under/normal/high utilized heteroge-
neous gates when exta column generation is not considered

DLU1 1012 1413734 21253937 1 22667671
DLU2 1047 1390797 16468750 1 17859547
DLU3 964 1480609 18676625 1 20157234
DLU4 1027 1365000 18083657 1 19448657
DLU5 914 1149625 3829594 1 4979219
DLU6 904 1214468 6332125 1 7546593
DLU7 910 1175125 13178797 1 14353922
DLU8 1009 1332500 16335625 1 17668125
DLN1 840 1139954 1885312 1 3025266
DLN2 823 1100172 4128438 1 5228610
DLN3 704 894782 1587656 1 2482438
DLN4 799 1111359 2123485 1 3234844
DLN5 702 863797 1606969 1 2470766
DLN6 755 946609 3022719 1 3969328
DLN7 753 999578 2162453 1 3162031
DLN8 763 946734 4299125 1 5245859
DLH1 479 557562 5610 1 563172
DLH2 613 748625 60125 1 808750
DLH3 626 879829 23765 1 903594
DLH4 602 788406 26797 1 815203
DLH7 649 913438 57890 1 971328
DLH8 583 737281 26922 1 764203
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Appendix C

Altered Half and 75% Flight Duration Data Results with Variance of

Idle Time

Table C.1: Results for small problems half duration flights data with variance of
idle time

Data Set Iteration LP Time IP Time Frac=1 Total Time
HALFDSU1 28 953 109 1 1062
HALFDSU2 32 766 31 1 797
HALFDSU3 41 1031 32 1 1063
HALFDSU4 48 1187 31 1 1218
HALFDSU5 43 1188 15 1 1203
HALFDSU6 53 1438 15 1 1453
HALFDSU7 40 1046 16 1 1062
HALFDSU8 34 890 32 1 922
HALFDSN1 37 1000 16 1 1016
HALFDSN2 28 766 16 1 782
HALFDSN3 42 1125 32 1 1157
HALFDSN4 31 843 32 1 875
HALFDSN5 41 1109 31 1 1140
HALFDSN6 35 969 16 1 985
HALFDSN7 36 953 32 1 985
HALFDSN8 30 781 16 1 797
HALFDSH1 30 797 31 1 828
HALFDSH2 38 1047 32 1 1079
HALFDSH3 36 1031 32 1 1063
HALFDSH4 35 813 31 1 844
HALFDSH5 28 672 16 1 688
HALFDSH6 29 1219 16 1 1235
HALFDSH7 31 766 15 1 781
HALFDSH8 39 969 31 1 1000
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Table C.2: Results for medium problems half duration flights data with variance of
idle time

Data Set Iteration LP Time IP Time Frac=1 Total Time
HALFDMU1 106 3734 16 1 3750
HALFDMU2 121 4297 47 1 4344
HALFDMU3 89 3281 32 1 3313
HALFDMU4 107 4031 31 1 4062
HALFDMU5 94 3594 31 1 3625
HALFDMU6 92 3390 32 1 3422
HALFDMU7 91 3359 31 1 3390
HALFDMU8 88 3156 31 1 3187
HALFDMN1 88 3125 31 1 3156
HALFDMN2 87 3172 31 1 3203
HALFDMN3 74 2937 31 1 2968
HALFDMN4 90 3391 31 1 3422
HALFDMN5 82 3031 31 1 3062
HALFDMN6 109 4391 46 1 4437
HALFDMN7 99 4437 31 1 4468
HALFDMN8 77 3266 47 1 3313
HALFDMH1 74 3328 32 1 3360
HALFDMH2 68 2938 31 1 2969
HALFDMH3 82 3593 47 1 3640
HALFDMH5 77 2906 94 1 3000
HALFDMH6 72 2485 31 1 2516
HALFDMH7 87 3031 32 1 3063
HALFDMH8 81 2875 31 1 2906

Table C.3: Results for large problems half duration flights data with variance of idle
time

Data Set Iteration LP Time IP Time Frac=1 Total Time
HALFDLU1 331 24359 375 1 24734
HALFDLU2 367 28906 531 1 29437
HALFDLU3 288 22703 344 1 23047
HALFDLU4 296 24218 125 1 24343
HALFDLU5 295 23047 406 1 23453
HALFDLU6 249 19922 375 1 20297
HALFDLU7 196 15687 47 1 15734
HALFDLU8 263 22266 359 1 22625
HALFDLN1 228 19109 250 1 19359
HALFDLN2 286 24609 328 1 24937
HALFDLN3 226 19125 313 1 19438
HALFDLN4 238 21656 281 1 21937
HALFDLN5 214 18547 250 1 18797
HALFDLN6 269 23516 344 1 23860
HALFDLN7 225 19766 344 1 20110
HALFDLN8 229 20063 375 1 20438
HALFDLH1 181 16297 187 1 16484
HALFDLH2 203 17781 344 1 18125
HALFDLH3 233 21906 375 1 22281
HALFDLH4 215 20438 296 1 20734
HALFDLH5 223 20219 297 1 20516
HALFDLH7 193 15266 453 1 15719
HALFDLH8 207 15453 281 1 15734
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Table C.4: Results for small problems 75% duration flights data with variance of
idle time

Data Set Iteration LP Time IP Time Frac=1 Total Time
QUARDSU1 27 875 63 1 938
QUARDSU2 29 718 32 1 750
QUARDSU3 30 750 31 1 781
QUARDSU4 35 906 31 1 937
QUARDSU5 41 1032 15 1 1047
QUARDSU6 38 969 16 1 985
QUARDSU7 30 750 32 1 782
QUARDSU8 36 937 31 1 968
QUARDSN1 29 719 15 1 734
QUARDSN2 29 625 16 1 641
QUARDSN3 34 766 31 1 797
QUARDSN4 29 656 32 1 688
QUARDSN5 28 625 31 1 656
QUARDSN6 29 687 16 1 703
QUARDSN7 31 703 16 1 719
QUARDSN8 28 625 16 1 641
QUARDSH1 26 578 15 1 593
QUARDSH2 33 750 31 1 781
QUARDSH3 32 766 15 1 781
QUARDSH4 28 641 31 1 672
QUARDSH5 30 719 31 1 750
QUARDSH6 30 734 16 1 750
QUARDSH7 31 765 16 1 781
QUARDSH8 35 875 16 1 891

Table C.5: Results for medium problems 75% duration flights data with variance of
idle time

Data Set Iteration LP Time IP Time Frac=1 Total Time
QUARDMU1 90 3047 31 1 3078
QUARDMU2 101 3485 31 1 3516
QUARDMU3 87 3125 31 1 3156
QUARDMU4 82 2969 31 1 3000
QUARDMU5 102 3813 31 1 3844
QUARDMU6 79 2875 31 1 2906
QUARDMU7 75 2750 31 1 2781
QUARDMU8 68 2437 32 1 2469
QUARDMN1 73 2609 32 1 2641
QUARDMN2 68 2625 31 1 2656
QUARDMN3 65 2469 31 1 2500
QUARDMN4 59 2390 32 1 2422
QUARDMN5 58 2156 47 1 2203
QUARDMN6 78 3000 47 1 3047
QUARDMN7 74 2797 31 1 2828
QUARDMN8 61 2218 47 1 2265
QUARDMH1 59 2281 32 1 2313
QUARDMH2 60 2313 31 1 2344
QUARDMH3 56 2719 31 1 2750
QUARDMH5 61 2468 32 1 2500
QUARDMH6 60 2406 31 1 2437
QUARDMH7 60 2469 31 1 2500
QUARDMH8 59 2438 31 1 2469
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Table C.6: Results for large problems 75% duration flights data with variance of
idle time

Data Set Iteration LP Time IP Time Frac=1 Total Time
QUARDLU1 187 15953 141 1 16094
QUARDLU2 223 20828 438 1 21266
QUARDLU3 221 19766 359 1 20125
QUARDLU4 239 20640 375 1 21015
QUARDLU5 201 16453 359 1 16812
QUARDLU6 211 18078 313 1 18391
QUARDLU7 204 17110 500 1 17610
QUARDLU8 200 17281 329 1 17610
QUARDLN1 167 14531 297 1 14828
QUARDLN2 160 14266 343 1 14609
QUARDLN3 152 13516 109 1 13625
QUARDLN4 163 15235 125 1 15360
QUARDLN5 151 13172 328 1 13500
QUARDLN6 166 15000 344 1 15344
QUARDLN7 166 14719 156 1 14875
QUARDLN8 154 13875 63 1 13938
QUARDLH1 118 10703 63 1 10766
QUARDLH2 125 11203 62 1 11265
QUARDLH3 134 13062 78 1 13140
QUARDLH4 126 12188 78 1 12266
QUARDLH5 122 11250 94 1 11344
QUARDLH7 132 13063 62 1 13125
QUARDLH8 131 12797 63 1 12860
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