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Abstract

We study how a discrete valuation v on a field K can be extended to a valuation
of a finite separable extension L of K. The ramification theory of extensions of dis-
crete valuations to a finite separable extension is very well established whenever the
residue class field extension is separable. This is the so called classical ramification
theory. We investigate the classical ramification theory and also the ramification
theory of extensions of discrete valuations with an inseparable residue class field
extension. We show that some results from classical ramification theory, such as
Hilbert’s different formula can be modified to be true for extensions of valuations

with inseparable residue class field extensions, whereas many other classical results
fail to hold.



AYRIK DEGERLERIN GENISLEMELERI ve ONLARIN DALLANMA TEORISI

Stkri Ugur Efem
Matematik, Yiiksek Lisans Tezi, 2011

Tez Danmigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Ayrik degerlerin geniglemeleri, ayrigabilir olmayan kalan sinifi

cismi geniglemeleri, dallanma teorisi, degerli cisimler, kalan sinifi cismi.

Ozet

Bu tezde bir K cismi tlizerindeki ayrik degerin, K'nin sonlu ve ayrilabilir bir cisim
genislemesi olan L’ye nasil genisletibilecegi tizerine calisilmigtir. Ayrik degerlerin
genigletilmesinin dallanma teorisi, kalan sinifi cismi geniglemesinin ayrigabilir oldugu
durumlarda c¢ok iyi bilinmektedir. Bu duruma klasik dallanma teorisi denir. Bu
tezde klasik dallanma teorisi ve kalan simif cisim geniglemesi ayrigabilir olmayan
ayrik deger geniglemelerin dallanma teorisi incelenmistir. Klasik dallanma teorisinin,
Hilbert formiilii gibi, bazi sonuglarinin cisim geniglemesi ayrigabilir olmayan ayrik
deger geniglemelerin dallanma teorisinde de dogru olacak sekilde modifiye edilebilecegi,

ama baz1 sonuglarin ise bu durumda dogru olamayacaklar1 gosterilmistir.
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1 Introduction

For a field K a valuation is a map v : K — Z U {oo} with the following properties:
(i) v is onto
(ii) v(a) = oo if and only if a =0
(iii) For all a,b € K, v(ab) = v(a) + v(b)
(iv) For all a,b € K, v(a+ b) > min{v(a),v(b)}

More precisely, v is called a discrete valuation of rank one. We will be only interested
in such valuations in this thesis. So whenever we say valuation, we mean discrete
valuation of rank one. We say that (K, v) is a valued field; more precisely (K, v) is
called a discrete valuation field. If the valuation v is clear from the context we will
say K is a valued field for the sake of simplicity.

If L is a finite separable extension of a valued field (K, v) then it is possible to extend
the valuation v to L. Our aim is to investigate the so called classical ramification
theory of valuations (i.e. where the residue class field extension is separable), and to
investigate what may happen if one tries to generalize the classical results to the case
where residue class field extension is inseparable. We will show that some results
of the classical ramification theory can be generalized, with some modifications, to
the inseparable residue class field extension case. A modified version of Hilbert’s
different formula and theorems about ramification jumps are most probably the
most important of such results. On the other hand the classical version of Hilbert’s
different formula, and Herbrand’s property fails to hold in the general case. A
natural limit for extending the results of classical ramification theory is the so called
monogenic extensions.

First we will present basic results about valued fields, construction of the extension
of a valuation to a separable extension of K. In the last two sections we will give the
classical ramification theory, and in the last section we will abandon the assumption
that the residue class field extension is separable in order to investigate what may

happen to the results of classical ramification theory in this general case.



2 Preliminaries

In this section we will give basic results and terminology about valued fields.
Let (K,v) be a valued field, then we define the following sets:

O, = {aeK:v(a) >0}
M, = {a€ K:v(a) >0}

Lemma 2.1. (1) O, is a subring of K, M, is an ideal of O, and K is the field
of fractions of O,.

(i) O, is a local ring.
(i1i) Let A< O, and a € A such that v(a) < v(b) for allb € A. Then A = aQ,.
(iv) O, is a PID and M, is the unique prime ideal of O,.

(v) The generators of M, are exactly the elements m € K with v(w) = 1. Such
elements are called prime elements of v. Given a prime element w, every

a € K* has a representation a = m™u for some m = v(a) € Z, and u € O).
(vi) O, is a mazimal subring of K.

Since O, is a ring M, is its maximal ideal by lemma 2.1, O, is called the valuation
ring of v and M, is called the mazimal ideal of O,. Also M, is called the valuation
ideal of v. Moreover, since M, is maximal, k, = O,/ M, is a field. It is called the
residue class field. The so called ramification theory of valuations strongly depends

on the residue class field.

Corollary 2.2. Let v,w be valuations of K. Then the following are equivalent:
(i) v=w.
(ii) Oy = O,.

(iii) O, C O,

Proof. (i = ii = i1) is trivial. Moreover since O, is maximal we also have (iii = 7).
So the only thing that remains to be shown is (i = 7). Indeed, since O, and O,
are local, O, = O,, implies M,, = M,,. Hence v(7) = 1 if and only if w(7) = 1. For

a € K*, a=n"u, for some u € O = OF. So, v(a) =m and w(a) = m. O



Consider valued fields (K, v) and (L, w) where K C L. Then w is called an eztension
of v if O, C O, and M, C M,,. In this situation we also say, w lies over v, and
write w|v. In this case we will also say that (L, w) is an extension of (K, v). Beware

that this does not mean wy, = v!
Theorem 2.3. Let (K,v) and (L,w) be valued fields, K C L and w|v. Then
(i) Oy, =0,NK and M, = M, NK.

(i) The inclusion O, C O, induces an embedding of the residue class fields as

follows

ky =0,/ M, — 1, =0,/M,
a+ M, — a+ M,

So, we will always consider k, as a subfield of l,. We write f(w|v) = [l : k).
(ii) If [L : K] is finite, then [l,, : k,) < [L : K| is also finite.
(v) w(K™) is a subgroup of Z of finite index. We write e(w|v) = (Z : w(K™)).
(v) For all a € K, w(a) = e(w|v)v(a). In particular if 7 € K is a prime element
of v, then w(m) = e(w|v).
(vi) e(w|v)f(wlv) <[L: K].

The numbers f(w|v) and e(w|v) play an important role in extending valuations, and
also in the ramification theory of valuations. Therefore they are given special names.
f(wlv) is called the degree of w|v or the residue class degree, e(w|v) is called the
ramification index of w|v. wv is said to be unramified if e(w|v) = 1, and ramified
if e(w|v) > 1.

Lemma 2.4. Let (K,v), (L,w), and (M, u) be valued fields such that K C L C M,

and w|v and ulw. Then ulv and

e(ulv) = e(wlv)e(u|w)

flulv) = fwlv) f(ulw)

A valuation v on a field K naturally gives rise to a metric on K as follows

Lemma 2.5. Let (K,v) be a valued field, p € R with 0 < p < 1. Then, for a,b € K

[0 ifa=b
d(a, b)_{ pv(a—b) ifa#b

3



defines a metric on K.

Now, since K became a metric space, we can introduce some notions from analysis;
such as convergence, Cauchy sequence, completion, etc. One of the most important
aspects of valuations is that they allow us to use techniques from analysis in algebraic
setting. Most importantly in number fields, and function fields, which are naturally
valued fields via their prime ideals.

The following results translate some basic results about convergence into the lan-

guage of valuations.

Lemma 2.6. Let (K,v) be a valued field, (a,)a>0 a sequence in K, and a € K.
Then

(i) (an)a>0 converges to a if and only if v(a — a,) — 00 as n — 0.
(11) (an)a>o0 is a Cauchy sequence if and only if v(a, — a,,) — oo for n,m — oc.
(117) (an)a>o0 is a Cauchy sequence if and only if v(a, — any1) — 00 for n — oco.

Proof. i,ii are clear. We only need show iii. We will show that v(a,, — an+1) = 00
if and only if v(a, — a,,) — oo for n,m — oc.
Given ¢ € R”? there is an N € N such that for all n > N

0(an = 1) >
Let m,n > n, without loss of generality say m > n. Then

v(an = am) = v((an = ang1) + (@np1 = ang2) + oo+ (@1 — am))

Z mln{v(an - an+1)7 ceey U(am—l - a’m)} Z C

The converse is obvious. Take m = n + 1. O

Lemma 2.7. Assume that a,, — a in a valued field (K,v). Then v(a,) — v(a) in
Z U {oco}.

Proof. If a = 0 it is follows immediately from Lemma 2.6.
So, assume that a # 0. Choose N € N such that for all n > N

v(a, —a) > v(a)
Then for all n > N,

v(a,) =v((a, —a) + a) = min{v(a, — a),v(a)} = v(a)

4



So the sequence (v(ay))n>o0 is eventually constant. Hence it converges to v(a). O
Corollary 2.8. O, and M, are closed subsets of K for all v € Z.

Proof. Recall that O, = {a € K : v(a > 0)}. Let a,, — a with all a, € O,. Hence,
by Lemma 2.7, v(a) = lim(a,) > 0. O

Since there is a metric space structure on a valued field K we can talk about com-
pleteness, and completion of a field. Completion of a discrete valuation field plays
a central role for extending a valuation to a separable finite extension.

A a discrete valuation field (K, v) is called complete, if every Cauchy sequence in K
is convergent. Also let (K,7) be a discrete valuation field and € : K — K be an
embedding. We say that (K,7,¢) (or (K,7) whenever ¢ is clear from the context)

is a completion of (K, v) if
(i) ([?,6) is complete.
(ii) voe =w.
(iii) e(K) is dense in K.

Theorem 2.9. Let (K,v) be a discrete valuation field. There exists a comple-
tion (IA(,?)\, ). The completion is unique in the sense that: Given two completions
(I?,@, g) and (K, ©,0) there exists a unique continuous isomorphism o : K-> K

such that 0 oe = 9. Moreover, v =0o0o0.

The construction of the completion K and embedding K into it is similar to the
construction of R as the completion of (Q, |-|) and embedding @Q into R. For details
see [1].

For a completion (I/(\',@, e) of (K, v) we can identify K with e(K). Then K C K, and
v = V|g. Then we often write ([A( ,v) is a completion of (K, v). Moreover, because

of the uniqueness, we call (IA( ,v) the completion.

Theorem 2.10. Assume (K, ) is a valued field and K C K a dense subfield. We
define
v =7, = ZU {oo}

Then,

(i) v is valuation of K, and v|v. If (K, ) is complete then it is the completion of
(K, v).



(ii) Let 1 € K be a prime element for v. Then for all v € Z, M}, = MLN
K = 1"0,, and Mi, = MOy = 1" Oy. Moreover, for all v > 1 we get an

1somorphism

Op/ My, = Ox/ M
a+ M, — a+ M

(iii) e(T|v) = f(T|v) = 1.



3 Hensel’s Lemma & Henselian Fields

As we will later see Hensel’s Lemma is an essential tool for extending valuations.
In this section we will show that completion of a rank 1 valuation satisfies Hensel’s
Lemma. Although in this thesis we restrict our attention to discrete rank 1 valua-
tions it should be remarked that Hensel’s Lemma needs not to be true for comple-
tions of fields with respect to a valuation of higher rank. This leads to the notion of
Henselian fields, which can be characterized as fields which satisfy Hensel’s Lemma.
Note that we will not give proofs of the results that we will mention in this section.
The results themselves will be useful in the next sections, but their proofs are of not
as useful for valuation theoretic purposes of this thesis.

The motivation for the Hensel’s Lemma is as follows: Let (K, v) be valued field
and O,, M,, and k, be the valuation ring, valuation ideal, and residue class field
respectively. For f(X) € O,[X] we define the residue class field polynomial f(X) €
k, in the natural vay.

Now, suppose that f(X) = ®(X)¥(X) where ®(X), ¥(X) € k,[X] are relatively
prime. Can we lift this factorization to 0,7 Before we answer this question we will

give a special case of the Gauss Lemma.

Lemma 3.1. Let (K,v) be a valued field, and let f(x) € O,[X] be monic. Sup-
pose f(X) = fi(X)fo(X) € KI[X], where fi(X), and fo(X) are monic. Then
[ (X), f2(X) € O,[X].

The proof is very similar to the proof of Gauss Lemma. One should also remark that
whenever a polynomial f(X) € O,[X] can be factorized in K[X] as in Lemma 3.1

then the residue class polynomial f(X) can be factorized in k,[X].

Theorem 3.2. (Hensel’s Lemma) Let (K,v) be a complete discrete valuation field
with a rank 1 valuation, f(X) € O,[X], and f(X) # 0 (in k,[X]). Assume that
F(X) = &(X)U(X) where ®(X), V(X)) € k[X] are relatively prime. Then there
exists g(X), h(X) € O,[X] such that g(X) = ®(X), h(X) = ¥(X) and deg g(X) =
deg ®(X) and f(X) = g(X)h(X).

Hensel’s Lemma vaguely states that for a polynomial f(X) over a complete discrete
valuation field, if f(X) has a factorization over k, then this factorization can be
lifted to O,[X] in a nice way. Hence the motivating question is answered positively.

A proof of a more general version of Hensel’s Lemma can be found in [1, Chap. 2].

Corollary 3.3. Let (K,v) be a complete field, f(X) € O,[X] monic. Assume that
7(X) € k, has a simple root u € k,. Then there exists an element a € O, such that
f(a) =0 and a = u.



A valued field (K,v) which satisfies the assertion in theorem 3.2 is said to be
Henselian. Hensel’s Lemma states that every complete discrete valuation field is

Henselian.



4 Extension of Valuations, Complete Case

For the rest of this section (K, v) will always be a complete discrete valuation field.
Let L O K be a finite separable extension of K. Our aim in this section is to show
that extending the valuation v to a valuation of L is possible. Moreover there is only
one such extension. Also this section will form a basis for extension of valuations in
the general case, where the assumption of completeness of (K, v) is dropped.

Before constructing the extension of v to L and giving the properties of such an

extension, we will give a technical lemma by assuming such an extension is possible.

Lemma 4.1. Let (K,v) be a complete discrete valuation field. Suppose w extends

v to L, and let (uy,...,u,) be a basis of L over K. Given m < n there exists a real

number ¢ such that for all o« € K* with a repsentation o = Zaiui where a; € K,
j=1
we have
w(a;) > w(a) —c

A proof of Lemma 4.1 can be found in [2, Chap. 4, Sect. 4.5, Lemma 4.5.2].

Theorem 4.2. Let (K,v) be a complete discrete valuation field, L/ K a finite sepa-
rable extension with [L : K] =n. Set

f = min{U(NL/K(a)) . NL/K(CY) € MU}
Define

w:L — ZU{oo}

o o 2o(Nyk(a)

f

and w(0) = oo. Then

(i) w is a valuation of L, and w|v.

(i1) Oy is the integral closure of O, in L.
(iii) O, is a free O, - module of rank n.
(iv) w is the unique extension of v to L.

(v) (L,w) is a complete discrete valuation field.

(vi) f(w|v) = [ and e(w|v) = %.



Proof. (i) Consider the map vo Ny k : L* — Z. It is a non-zero group homomor-

phism. Let 7 € K be a prime element of v, then vo Ny i (m) = v(7") = n > 0.
So, v o Np /g (L*) = fZ. Hence it follows w : L* — Z is onto.

Now, it only remains to show the triangular inequality. To do so, we need the

following supplementary claims:

(a) Let a € L with w(a) > 0. Let u(X) € K[X] be the minimal polynomial
of av over K. Then u(X) € O,[X].

(b) Let o € K. If w(aw) > 0, then w(aw+ 1) > 0.

By assuming (b), one can show the triangular inequality as follows: Let o, 5 €
L. We can assume that w(a) < w(f) < co. Then w(a+8) = w(a(l+a™'p)) =
w(a) +w(l+a7'8). By (b) w(l+a™'p) > 0. Hence w(a + () > w(a).

Also by assuming (a) one can show (b) as follows: Let
wX)=X"+a, 1 X"+ . +a X +a € K[X]

be the minimal polynomial of o over K. Let ¢(X) = uw(X — 1). By (a)
q(X) € O,[X]. Moreover

q1+a)=ula+1—-1)=u(la)=0

Then ¢(X) is the minimal polynomial of &+ 1. So, Ny k(a4 1) € O,. Hence
w(a) = v(Np/k(a)) > 0.

We will finish the first part of the proof by proving (a): For the minimal
polynomial u(X) = X" +a, 1 X" '+...4+a; X +ag of a over K clearly ay € O,
(since a9 = Np/k(a) € O,). Assume that u(X) € O,[X]. Choose ¢ € K*
such that for

f(X) =cu(X) =cX" 4 (car_1) X" + ... + (ca)) X' + ... 4 cag

i is the least index with v(ca;) = 0. Then f(X) # 0, and 0 < deg f(X) =i < 7.
Set ®(X) = f(X), ¥(X) = 1. By Hensel’s Lemma there are g(X),h(X) €
O,[X] such that f(X) = g(X)h(X) and degg(X) = ¢ > 0 and degh(X) =
r —4 > 0. This contradicts with the fact that f(X) = cu(X) is irreducible in
K[X].

(ii) (€) Let o € O,. Then by (a) in the previous part « is integral over O,.

10



(2) Let a € L be integral over O,,. So, Ni/k(a) € O,. Then %U(NL/K(O[)) >
0. Hence, w(a) > 0. Which means a € O,,. So O,, is integrally closed, and by
the previous part it is also in the integral closure of O,. So, O,, is the integral

closure of O, in L.

Recall that O, is a PID, and L is separable over K. Then integral closure of

O, in L is a free O, - module of rank n.

Assume that @ is another extension of v to L. Then O, C O4. But Oy is a
PID, hence integrally closed in L. So, since O, is the integral closure of O, in

L we have

On the other hand O, is a maximal subring of L. Hence O, = Oy. Implying
w = w.

Choose a basis (uy, ..., u,) of L over K. Let («);>¢ be a Cauchy sequence in

L. Write o; = Z a;ju;. where a; € K.

j=1
By using lemma 4.1 one can show that for any fixed s € {1,....,n}, (ais)i>o
is also a Cauchy sequence. So, we have n Cauchy sequences in K. But we

know that K is comlpete, so (a;s);>0 is convergent for all s. Say a;s — as as
n

i — 00. Define a = Z aju;. Then again by lemma 4.1, a; — «. Hence (L, w)
j=1
is complete.

Choose an element ¢ € K with v(c¢) = 1. Then

e(wlo) = efwlo)ule) = w(e) = Fo(Vejx(e)) = Lo(e)

Also, choose m € L with w(m) = 1. Then ge@lv)Ow — O, and k, = O,/ M, =
0, /cO,. Consider the following chain

O, /7“M O, D 70, /MO, D ... D 7O, /xeM O,
Clearly all factor groups in this chain are k, - vector spaces. We will look at

(17O /7O, /(7 O, /7 O,) ~ 710, /7O, ~ O, /7O,

11



Where the isomorphism are vector space isomorphisms. Hence
dimy, (O /71 0,) = e(w|v) dimy, (O /7O,) = e(wlv) dimy, (1,) = e(w|v) f (w|v)

On the other hand since O,, /7¢O, = 0,,/cO,,, dimy, (O, /7™M 0O,) = n.
]

Observe that the key point we used in the proof of the above theorem is Hensel’s
Lemma while proving that w is a valuation. Therefore we can change the assumption
(K, v) is complete by (K, v) is Henselian and prove the same theorem with a minor
modification on part (v). It should be modified as ”(L,w) is Henselian”. But we

know that algebraic extensions of Henselian fields are Henselian.

12



5

Extension of Valuations, Non-Complete Case

In this section we drop the assumption that (K, v) is complete. As in the previous

section L O K is a finite separable extension, and [L : K] = n. We are interested in

the question how one can extend v to L in this general case.

In the previous section we said that the complete case will form a basis in this case.

The following lemma is about the topological nature of (K, v) in (L, w) where L/K

is separable and w|v.

Lemma 5.1. Let (K,v) be a discrete valuation field, (L, w) a separable extension.
Consider the completion (E, w) of (L,w) with L C L. Let K be the topological
closure of K in L. Then

(i) K is a subfield of L.

(ii) v = L= : K — ZU{oo} is a valuation of K, and (K,) is a completion of

e(wlv)

(K,v).

(iii) Let o € L be algebraic over K. Then K(a) is dense in K(a). Moreover, if

L = K(«), then L= K(a).

Proof. (i) Trivial.

(i)

(i)

Clearly, K is dense in K. So, e(@|v)Z = @(K*) = @(K ). Then it follows

that v = e(@l‘v)fu\ . K" — 7Z is onto. Hence, 7 is a valuation of K and o]v and

Next, we will show that K is complete. Let (a,), be a Cauchy sequence in
K. In particular (a,), is a Cauchy sequence in L. But L is complete. Then
there is an a € L such that an — a. Also, K is closed. So, a € K. Hence K
is complete.

m—1

Let 2 € K(a). Then write z = Z a;o, where a; € K. Since K is dense
j=0

in K there is a sequence (aj;); in K that converges to a; for each j. So

m—1
r = lim E a;o’.
1—00
Jj=0

]

Now, since L is a finite separable extension, by primitive element theorem we can
assume that L = K(a). Let (K, ) be a completion of (K,v). Let g(X) € K[X] be

13



the minimal polynomial of o over K. So, deg(g(X)) = n. In K[X], g(X) splits into

distinct irreducible factors, say

9(X) = g1(X) - g-(X)

where g1(X), ..., g-(X) € K[X]. Now, choose an a; € K®, where K is the algebraic
closure of K, such that g;(a;) = 0; and set M; = K (a;) where deg ;(X) = [K (a) :

I/(\'] =n;. So,n = an
i=1

Let w; be the unique extension of v to M;. Furthermore, clearly (M;, w;) is complete.

Let 0, : L — IA((ai) = M; be the unique embedding over K with o;(a) = .

Theorem 5.2. (i) o,(L) is dense in M; with respect to w;. Let v; = w; o 0y, then
v; is a valuation of L extending v. Moreover (M;, w;, 0;) is a completion of
(L,v;). Also e(v;|v) = e(w;|v) and f(v;|v) = f(w;|0).

(ii) vq,...,v, are distinct.

(7i) vy, ...,v, are all extensions of v to L.

(iv) Z e(vi|v) f(vs|v) = n (This equality is known as the fundamental equality ).
i=1

(v) For~ € L, Npjk(v) = HNMZ./R(UW); and Trp x(y) = ZNMZ./[?(UW)'
i=1

i= =1

Proof. (i) Consider the topological closure 0;(L) = K (o) of 0;(L) in M;. By the
lemma 5.1 K(qy) is dense in K (a;). Therefore K(o;) = K(a;) 2 [A((oz,-) = M,.

Hence o;(L) is dense in M;.

The assertions v; is a valuation of L and (M;, w;, 0;) is a completion of (L, v;)

are clear.

By definition e(w;|v) = e(w), ,[v). We claim that e(w), , [v) = e(v;|v). Indeed,
let 7 € K be a prime element for v. Then observe that v;(7) = w; o o;(m) =
w;(m). Hence v;(m) = e(w;|v). On the other hand e(w), [v) = w, , (7) = w;(7).

Hence e(w), ,|v) = e(v;|v).

(ii) Assume that v; = v;. Since (M;, w;,0;) and (m;,w;,0;) are completions of
(L,v;) there is a unique continuous isomorphism ¢ : M; — M; such that

0j = Qoo

14



(i)

Recall that on K ¢ is identity. Also, since ¢ is continuous, ¢| . = id| .. Observe
that

a; = oj(a) = (pooi)(a) = ¢(a;)
Since minimal polynomials of a; and o over K ire g;(X) and gj(X) respec-

tively, it follows that ¢ = j.

Let v be a valuation of L with vy|v. Choose a completion (EB, 0g) of (L, vy)
with L C z;. Let K be the topological closure of K in ZB. On K the valuation

is given by
1

e(volv) %

From Lemma 5.1 we know that (K,v) is a completion of (K,v). Then, as

U=

before, there is a unique continuous isomorphism ¢y : K — K with Yo, =

id) .

We also know that Lo = K(a). Extend @y to an embedding of Lo to K¢, call

it ¢. We know that g(a) = 0. Since @o = id,, p(g(@)) = g(p(X)). But

g(X) = g1(X) -+ ¢-(X). Then there is an i € {1,...,r} such that p(«a) is a

root of g;(X).

Let v; : lA((go(ozi)) — M; be the unique K isomorphism with Yi(p(a)) = a;.

Set w; 1 Y00 : E\O — M;. Also observe that ¢; = ¢o. Consider the valuation
K

w; o @; of Ly. Clearly, w; o ¢;|v. Now, we have two valuations of Ly extending

v. Namely, 05 and w; o ;.

Since in a finite separable extension of a complete field there is only one ex-

tension of the valuation below, it follows that 0y = w; o ¢;. For v € L,

vo(7) = To(7) = wipi(7)) = vi(v)-
Since (M;,w;) is the completion of (L, v;) we have,

T s

Z e(v;|v) f(vs|v) = Z e(w;|v) f(w;|v) = an =n

i=1 i=1

Look at the embeddings of M; into K9 over K. For any ¢ = 1, ..., there are
n; many embeddings of M; into K. Call them 7;; where j € {1,...,n;}. Then
Tijo0;: L — K%is an embedding of L which maps o to one of n; many roots
of g;(X). So, {m;00; :i=1,...,r and j = 1,...,n;} is the set of all embeddings
of L over K.
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Hence, for v € L

Nugse(n) = [ITT s 0 2)) = TT [T matow) = [T Mg lovn)

i=1 j=1 i=1j=1
]

Let (K, v) be a valued field. A polynomial f(X) = X"+a, 1 X" '+...4+a; X +ag €
K[X] is said to be Eisenstein (with respect to v), if v(a;) > 1fori=1,...,n—1 and
v(ag) = 1. When K is a number field where any valuation comes from a prime ideal
the reason of calling such polynomials Eisenstein becomes clear. In the context of
number fields these are generalizations of Eisenstein polynomials in Q. So in the

context of general valued fields they should be thought as further generalizations.

Theorem 5.3. Let (K,v) be a discrete valuation field. Assume that L = K(«)
is separable over K, and « is a root of an Fisenstein polynomial f(X) = X™ +
a1 X"+ ...+ ag over K. Let w be an extension of v to L. Then f is irreducible
in K[X], and therefore [L : K] = n. w is the only extension of v to L with e(w|v) =n
and f(wlv) = 1. Moreover w(a) = 1.

Conversely, assume that L/K is a separable extension of degree n, and w is an ex-
tension of v to L such that e(w|v) = n. Then L = K(m) and the minimal polynomial

of m over K is an Eisenstein polynomial with respect to v.

Theorem 5.4. Let (K,v) be discrete valuation field, L a separable extension of K
with [L : K] = n. Suppose that L = K(«), and the minimal polynomial of a, say
9(X), is in O,[X]. Suppose that g(X) is irreducible over O,/M.,. Then there isa
unique extension w of v to L, and e(w|v) =1 and f(w|v) = n.

Conversely, assume there is an extension w of v to L with f(w|v) = n. Then there is

some a € O,, whose minimal polynomial g(X) is in O, such that g(X) is irreducible

over O,/ M,.

When e(w|v) = n we say that v is totally ramified in L/K, or (L,w) is an totally
ramified extension of (K,v). When e(w|v) = 1 we say that v is unramified in L or
(L,w) is an unramified extension of (K, v).

Remark that in this situation one can also show that O, = O,[a]. Such an extension
O, is called monogenic. Let (K,v) be a discrete valuation field and (L,w) an
extension. We will say that (L,w) is a monogenic extension of (K,v) if O, is
monogenic (over O,). We will show that monogenic extensions have an important

place in the ramification theory of valuations.
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6 Classical Ramification Theory

Let (K, v) be discrete valuation field L/ K a finite separable extension. In this section
we will always assume that for an extension w to L, [,, is a separable extension of
k,. Number fields, and function fields in one variable over a perfect constant field,

which are classical examples of valued fields, have this property.

Theorem 6.1. Assume that (K, v) is complete and L a finite separable extension of
K of degree [L : K| =n. Let w be the extension of v to L, then e(w|v)f(w|v) = n.
Assume that 1, is separable over k,. Then there exists an intermediate field K C
T C L such that [T : K| = f(w|v) and for the unique valuation v of T' extending v,
one has e(v|v) =1, f(olv) = f(w|v), e(w|v) = e(w|v) and f(w|v) =1

Proof. Since [,, is a separable extension of k, of degree f(w]|v), there is a z € [, such
that its minimal polynomial g(X) over k, is irreducible and of degree f(w|v). Then
we can write g(X) = (X — 2)g1(X) € l,[X] where (X — z), and g(X) are relatively
prime. By Hensel’s Lemma there are monic hy(X), heo(X), h3(X) € O,[X] with
degrees f(w|v), 1, and f(w|v) — 1 respectively such that hi(X) = g(X), ho(X) =
(X — z), and hy(X) = hao(X)h3(X).

So, he(X) = X — a for some a € O, and hi(a) = 0. Set T' = K(«), and 0 to be
the valuation of T that extends v. Now, [T : K] < f(w|v), but hy(X) = g(X). So,
in fact [T : K] = f(w|v) and f(0|v) = f(w|v) by theorem 5.4. Therefore e(d|v) = 1.
The rest of the proof follows by multiplicativity. m

Suppose that L is a Galois extension of K with [L : K] = n and G = Gal(L/K).
Set

W = {w : w is a valuation of L with w|v}

We have already shown that W is finite, say W = {wy,...,w,}. The group G acts
on W by

cw=woog

Note that cw|v, since for a € K, (ow)(a) = w(c'a) = w(a). Moreover, O, =

0(Oy) and Mgy, = 0(My,).

Theorem 6.2. Let (K,v) be discrete valuation field, L a Galois extension of K,
with G = Gal(L/K). Then all extensions of v to L are conjugate. In group theoretic

terms, the action of G on W is transitive.

Proof. Write L = K(«), and ¢(X) € K[X] be the minimal polynomial of o over K.

Choose an extension w of v to L and a completion (Z, w) of (L,w) with L C L. Let
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K be the topological closure K in (L, )

v e(w\v)w“?

We know that (K, ) is a completion of (K,v) and L = K(a).
Take o; with g(e;) =0, M; = K(o;) = K(a) = L. Then we obtain all extensions of

vto L aswoo; =woo;. O

Corollary 6.3. Let (K,v) be discrete valuation field, L a Galois extension of K,
with G = Gal(L/K). Then for all extensions w,w’ of v to L, e(w|v) = e(w'|v), f(w|v) =
f(w'|v) and n = [L : K] = e(w|v) f(w|v)r where r is the number of extensions of v

to L.

Let (K,v) be a discrete valuation field, and L be a Galois extension of K with
[L: K] =nand Gal(L/K) = G. For an extension w of v to L.

Gz(wv) ={oc € G:ow=w}

is called the decomposition group of w over v. Also in group theoretic terms this is

the stabilizer of w under the group action.
Gr(wlv) ={c € G:w(oz—2z) >0 forall z € O,}

is called the inertia group of w|v. Clearly, Gr(w|v) < Gz(w|v) < G. Moreover for
ap€ G, Gylpwlv) = pGz(w|v)p™ and Gr(pwlv) = pGr(wlo)p™.

Choose a completion (L, w) of (L,w) with L C L. If L = K(«) then L = K(«), so
L=KL. By the translation theorem of Galois theory, L is a Galois extension of K
with Gal(f/[?) =G. Foro € G, 0|, € G. This gives an embedding of G into G.

Therefore we can consider G as a subgroup of G.
Lemma 6.4. In this situation

(1) |Gz(wlv)| = e(wlv) f(w]v).

(ii) Gal(L/K) = G = Gz(wlv).
fiii) G(@[) = G(wlv) and Gr(@[) = Gr(wlv).

Theorem 6.5. Let (L,w) be a Galois extension of (K,v), and Gal(L/K) = G.
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Then there is a homomorphism

O Gy(wlv) — Aut(ly/ky)
o = O
where a(u + My) = o(u) + M,,. Its kernel is Ker ® = Gr(w|v). Moreover, if
[v) = Gal(ly/ky)
is surjective. Hence Gr(wlv) <« Gz(w|v), (Gz(wlv) : Gr(wlv)) = f(wlv), and
|Gr(wv)| = e(w]v).

k, is perfect, then l, is a Galois extension of k, and ® : Gz(w

Proof. First we will show that & is well defined. Let u € O,,. Then ou € O,,, = O,
and o(M,,) € M,, and ® is a group homomorphism.

Secondly, let o € Ker ®. Then &(u + M) = ou + M,, = u+ M,, for all u € O,
if and only if ou —u € M,, for all w € O, if and only if ¢ € Gr(w|v). Hence
Ker @ = Gp(w|v).

Let f(X) € /;:%[X] be the minimal polynomial of a over kg, and deg(f(X)) = f(w
Choose g(X) € O3[X] such that g(X) = f(X), and ¢g(X) is monic of degree f(w
moreover g(X) € K [X] is irreducible. Consider g(X) mod M,,. Then g(X)
FX) = (X — a)l(X) where I(X) € I3

Now, by Hensel’s Lemma

v).
v),

9(X) = (X — u)h(X)
in L[X] where @ = . Since L is Galois over K with Galois group G,

f(wlv)

where u; € E,u = Uy, U = Q.
Since g(X) € O5[X], ui € Og. Then f(X) =g(X) = [[ (X —w), with v; € I

pairwise distinct.

Let p € Gal(ig/ks), then p(ar) = g(uy = u;) for some j > 1. Define o € Gal(L/K) =
Gz(w|v) by o(uy) = uj. Then @ = p. Hence ® is onto.

Further,

(Gz(wlv) : Gr(w]v)) = [Gz(w]v)/Gr(w|v)| = | Gal(lu/k,)| = f(w|v)

Then Gr(w|v) = e(w|v). O

We are also interested in the fixed fields of the groups Gz(w|v) and Gp(w|v). The
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fixed field LE2of G5 (w|v) will be called the decomposition field of w|v and de-
noted by Z,, (or simply by Z when the extension w is clear), and the fixed field
LGl will be called the inertia field of w|v and denoted by Twpv (or simply by T'

is the extension w is clear from the context).

Lemma 6.6. Let (K,v) be a discrete valuation field and (L,w) a Galois extension,
and Z and T be the decomposition and inertia fields with the normalized valuations
wyz and wy on them respectively. Then [Z : K| = r,[T : Z] = f(w|v),[L : T] =

e(w|v) and e(wz|v) =1, f(wz|v) = 1, e(wr|wz) = 1, f(wr|wz) = f(w|v), f(w|wr) =

L, e(w|wr) = e(w|v).

Corollary 6.7. Let (L, w) be a Galois extension of the discrete valuation field (K, v)
with w|v. Assume that k, is perfect. Let M be an intermediate field, and wy; the

restriction of w to M. Then
(i) M C Z if and only if e(wy|v) = f(wp|v) = 1.
(ii) M 2 Z if and only if w is the only extension of wys to L.
(iii) M C T if and only if e(wyr|v) = 1.
(iv) M 2 T if and only if w is totally ramified over wyy.

We define the higher ramification groups as follows. For any integer i > —1 the i

ramification group of w|v is
Gi(wph)={oc € G:w(oz—2)>i+1forall 2 € O,}

One can immediately see that G_;(w|v) = Gz(w|v), and Go(w|v) = Gr(w|v). More-
over G;1 < G;(w|v) for all i. Therefore for a fixed w extending v we have a de-

scending chain
Gz(w|v) = G_1(w|v) > Gr(wlv) = Go(w|v) > Gy(w|v) > ... > 1

This chain has the descending chain condition condition. I.e there is an index j such
that for all i > j G;(w|v) = 1.

Lemma 6.8. Let 0 € Gal(L/K), and i > —1. Then the following are equivalent
(1) o is trivial on the ring O,/ M.

(i) w(iox —x) > i+ 1 for all x € O,.
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Lemma 6.9. Let 0 € Gy(w|v), let i > 0. Then o € G;(w|v) if and only if ot/t =1
mod M

w?’

where My, = tO,, (i.e. t is a uniformizer).

Lemma 6.10. There is a homomorphism
X : Go(w|v) = 1]

with Ker x = G1(w|v).

Proof. Let t be a w - prime element (i.e. ¢ is a uniformizer of M,,). For o € Go(w|v)
define

t
x(0) = %Jr/\/lwel;

Note that since 0 € Go(wv), w(ot) = (¥ w)(t) = w(t) = 1. Also remark that the
definition of x is independent of the choice of the uniformizer .

Now, we will show that y is a homomorphism. Let 0,7 € Go(w|v).

x(or) = U_TtJer:@T_t

M
t ot

7t is also a prime element as w(7t) = 7 'w(t) = w(t) = 1. Hence x(o7) = x(0)x(7).
Next, observe that

t t
c€Kery & 07—1€Mw(:>w(07—1)>0

& wlot—t)—w(t) > 1< w(ot—t) > 2 0 € Gi(w|v).
[

Corollary 6.11. If Char(l,) = p > 0, then Gy is the semi-direct product of a cyclic

group of order prime to p and a normal subgroup of order p* for some k.

Lemma 6.12. For all 1 > 1, there is a homomorphism
U, Gi(w|v) = (Ly, +)

with Ker U, = G411 (w|v).

Proof. Let t be a w - prime element. For o € G;(w|v), w(ot —t) > i+ 1. Then
ot =t + u,t"! for some u, € O,. Then we define ¥;(c) = u, + M,, € l,. Note
that W; depends on the choice of t.
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Next, we will show that ¥; is a homomorphism. Let 7 € G;(w|v), and write 7t =

t + u, t"t! for some u, € O,. Then

ort = o(t+u ') =t + (ot)o(u,) = ot + (t + u t™ ) (u, + tx)
= ot + 1+ upt) T (uy +tr) = ot + 1+ 12) (u, + tz)
= t+t"Tu, + T u, + T =4 (up +ou )t R
= t+ (up +uy +tr)t't!

Then V;(07) = (ug + ur + 1) + My = tus + My + ur + My = Vi(0) + Vy(7).

Next, observe that
cEKerl; & ot=t+ut™ s wlot—1t)>i+2e 0 Gi(w)

O
Main properties of the higher ramification groups are given in the following theorem
Theorem 6.13. (i) |G_i(w|v)| = e(w|v) f(w|v).
(i) |Go(wlv)| = e(wlv).

(iii) Let i > 0, 0 € Go(w|v) and t € L with w(t) = 1. Then, o € G;(w|v) if and
only if w(ot —t) > i+ 1.

(iv) If Char(k,) = 0 then Gi(w|v) = {1} and Go(w|v) is cyclic.

(v) If Char(k,) = p > 0 then Giy1(w|v)<G;(w|v) for alli > 1 and G;(w|v)/Git1(w|v)

is isomorphic to a subgroup of (l,,+), hence an elementary p - group.

(vi) If Char(k,) = p > 0 then G1(w|v) <Go(w|v) and Go(w|v)/Gy(w|v) is cyclic of

order prime to p.

Proof. (i) Previously we have shown that [L : K| = n = re(w|v) f(w|v) where r
is the number of extensions of v to L. Observe that G_;(w|v) is the stabilizer
of w under the action of G. Moreover, since the action of G on the set of
extensions of v to L is transitive, the orbit length of w is r. Hence, from orbit

stabilizer theorem it follows that |G_;(w|v)| = e(w|v) f (w|v).
(ii) Trivial.

(iii) By corollary 6.7 w is totally ramified over w. Then we know that O, = O, [t]
with w(t) = 1.
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=) Clear.

(
(<) Let ¢ € G and w(ot —t) > i + 1, take z € O,. We will show that
w(oz —z) > i+ 1. Write

where e(w|v) = [L : T], and z; € O,,. Then

e(wlv)—1 e(wlv)—1
oz —z= Z zi((ot) —t) = Z zi((ot) —t) = (ot —t)y
=0 j=1

where y € O,,. So, w(oz —z) > i+ 1.

(iv) By lemma 6.12 G;(w|v) is homomorphic to a subgroup of (I,,+). But in
characteristic 0 no non trivial subgroup of additive subgroups is finite. Hence
G1(w|v) = {1}. Therefore by lemma 6.10 Go(w|v) is a finite subgroup of 15.

Hence it is cyclic.

(v) Follows from lemma 6.12, since additive subgroup of a positive characteristic

is elementary abelian.

(vi) Follows from lemma 6.10.

Consider the filtration with ramification groups
G_1(wlv) > Go(w|v) > Gi(w|v) > ... > Gi(w|v) > Gy > ... > 1

Next we will answer the natural question for which indices i we have the situation
Gi(w|v) # Gip1(wlv). Such indices are called the ramification jumps. So, in other
words we will answer the question where the ramification jumps can be in this
filtration.

Lemma 6.14. Let 0 € G;(w|v) and 7 € Gj(w|v) where i,j > 1. Then [o,7] =
orolr7t € Gij(wlv) and Vi ([o,7]) = (j — ) V(o) Y, (T), where W, is the homo-

morphism given in lemma 6.12.

Proof. Let t be a uniformizer of M,,. Then we can write ot = (1 + a), and
7t = t(1+ b) for some a € M’ and b € M? . Therefore o7t = t(1 + a + ob + acb),
and 7ot =t(1 + b+ Ta + bra).
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Now, write a = t'cr, and b = /8 for some a, 3 € O,,. Then
ob=ot! + 0B =t (1 +a)op

Since o € G;(w|v), o8 = mod M= and since a € M!, we have (14+a)’ =1+ ja
mod MEF. So,

ob = Bt'(1+ja) mod ML
= b+jab mod M4

Hence
a+ob+acb=a-+b+ (j+1)ab mod M-It

and similarly
a+Ta+bra=a+b+ (i+1)ab mod ML7H!

Now let 7ot = t'. Then

oro 't = ort=t(1+a+ob+aoch) =t (1+a+ob+ach)(l+b+1a+bra)™?
= t'(1+¢)

where ¢ = (a+0b+acb—b—7a—bra)(1+b+7a+bra)~! = (j—i)ab mod MEITL
Hence [0, 7] € Giy;(w|v). Write ¢ = .
Next, observe that U;(0) = a4+ M, V(1) = f+ My, and U, ([0, T]) = 7 + M.,
Therefore,
Wil ) = (G — D) Wi(0) ()
[
Theorem 6.15. Let i,j > 1. Suppose that G;(w|v) # Gip1(w|v), and Gj(wlv) #

Gjt1. Then i =3 mod p, where p is the characteristic of L.

Proof. It Gi(w|v) = {1} then there is nothing to prove. Observe that this is also
the case when Char(l,) = 0. So we can suppose that Char(l,,) = p > 0. Now,
let j be the largest index for which G;(wlv) # {1}, and let ¢ > 1 be such that
Gi(w|v) # Gip1(wlv). We will show that i = j mod p. Let 0 € G;(w|v) \ Gi1(w|v)
and 7 € G;(w|v) \ Gj41(w|v). By lemma 6.14 [0, 7] € G;+;. Hence [0, 7] = 1. Then
U, i(lo,7]) =0, but ¥,(0), ¥,(7) # 0. Therefore i = j mod p.

[

Theorem 6.16. Consider a separable field extension L of K of degree [L : K] =
n. Let R,S be subrings of K and L respectively such that R C S. Define the
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complementary module of S/R as
Csyr={z€ L:Tryk(2S) C R}

Then

(i) Cs/r is an S - module. Also for a basis ui,...,u, of Cg/g let uf,...,u}, be the

dual basis.

(ii) If@Rui C S then Cg/r C @Ru;‘
i=1 =1

(1i1) ]f@Rui = S then Cg/p = @Ru:‘
i=1 i=1

(iv) Suppose o € L satisfies L = K(a) and S = R|a], and moreover the minimal
polynomial f(X) of a over K is in R[X]. Then

1
CS/R - ms

Proof. (i) Trivial.

(ii) Let z € Csyr C L. Write Zmzuf where x; € K. Since Trp/x(25) € R and
i=1
u; €S, Tr i (zu;j) € R for all j. Then it follows that

Trik(zu;) = Tro r(u; Zazluf) = inTrL/K(ujuf) =z,
i=1 i=1

So, z; € R.
(iii) Trivial.

(iv) Write f(z) = (X — @) (Boaa X" P+ B, X" 2+ .. + $1.X + [y) where 5; € L
and 3,1 = 1. The coefficient of X7 in f(X) is in R, hence 3;_1 — af3; € R,
for j =1,.....,n — 1. Also note that afy € R. Then 5,,_1,...,50 € S.

Now, we claim that the dual basis of (1,a,...,a"!) is (%, s %) Indeed,
consider an algebraically closed field K which contains K and the n distinct

embeddings o7, ..., 0, of L into K over K.
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Set a; = o;(cw). Then ay, ..., o, are distinct and f(X) = H(X — a;). For

j=1
0 <1<n-—1define

) = (Z X i(i;%p) - X e KX

J=1

Moreover deg g;(X) < n—1. Observe that g;(c) = 0 for all k = 1,...,n, Then
g1(X) is identically zero.

Extend o to an embedding o : L[X] — K[X]. So,

l = f(X)a} - X)o(a!
¥ o Z(X / f(X)a(

Jj=1 j=1 i=1
n n—1

= 2.2 (5z‘ o ) '
j=1 \i=1 ' )

O

Let L be a separable extension of K of degree n, and oy, ...,0, : L — K be the
n distinct embeddings of L into an algebraically closed field K O K over K. Let
(u1, ..., un) be a basis of L over K. Then recall that the discriminant d(u, ..., u,) is
defined as

d(uy, ..., ty) = det(Trr (witt))ij=1,...n

or equivalently as

Remark that for the dual basis (uj, ..., u)) of (uy,...,u,) and the base change matrix

Y which maps (uf, ...,u}) to (ug,...,u,) we have
d(uy,...,u,) = detY

For the rest of this chapter we will assume in addition that (K, v) is complete. So
v has a unique extension to L, as it is customary, say w. Note that due to the first
part of theoerem 5.2 and lemma 6.4 working with the completion of (I? , V) does not
change any thing in terms of ramification theory. So, by assuming that (K, v) is

complete we do not sacrifice anything we did up to this point!
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Remark that O,, and O, are Dedekind rings, so any (fractional) ideal 0 # A<QO,, is of
the form A = M2 for some a € Z. For A = M? we define Ny x(M2) = M),
This is called the ideal norm.

Recall that O, is a free O, - module of rank n. Then the complementary module
Co, 0, is a free O, - module, and it is also a module over O,. For the sake of
simplicity we put, Cr/x = Co, 0, S0, Cr/k is fractional ideal of O,,. But we know
that O, C Cr k. The ideal

Diff (L/K) = Cp

is called the different of L/K. Thus, Diff(L/K)<O,,. Hence, Diff(L/K) = M)
for some d(w|v) > 0. This d(w|v) is called the different exponent of w|v.

The discriminant of L/K is defined as Discr(L/K) = Nk (Diff(L/K)), which is
an ideal of O,,.

Theorem 6.17. (i) For 0 # a € L, N jk(aOy) = Nk (a)O,.

(ii) Let A, B be fractional ideals of O,,. Let (uy,...,u,) and (z1, ..., z,) be bases of
A, B over O, respectively. Write

21 Uy

for some X € GL,(K). Then N /x(A™'B) =det X - O,
/

(iii) Assume that O, = ZO”ui' Then Crjx = Z(’)qu, and Discr(L/K) =
i=1 =1
d(ug, ..y tuy) Oy
() Assume that O, = O,|a], and let g(X) € O,[X] be the minimal polynomial of
a over K. Then

Diff(L/K) = ¢'(«) O,

Proof. (i) We know that a@,, = M4, So, Nk (aO,) = Mu™ @) On the
other hand w(a) = WU(NL/K(O&))- Then Nk (a)O, = M),

(ii) Choose m € L with w(m) = 1. Write A = n"O,,, B = 7°0O,, where r,s € Z.
Then B = 7%""A. So,

n n n
E OUZZ' =B=7"" E Ovui = E Owﬂ'87rul'
i=1 =1 i=1
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Then
Z1 7TS_T'LL1 Uy

Zn T u, Up,
Where Y € GL,(0,), and Z € GL,(K) describes multiplication by 7°~".
So, X =Y Z. Then

det X -0, = (detY - -0O,)(detZ-0,)=detZ-0O,
= NL/K(TFS_T)OU :NL/K(WS_TOM) :NL/K(A_IB)

(iii) Take A = Cp/x = Diff(L/K)™" = > O,u;, and B = O,, = > Oyu; in the
i=1 i=1
previous part. Write

Then d(uy, ..., u,) = det X. So,

d(uy, ..., u)0, = det X-O, = N (A" B) = Nk (Diff(L/ K)) = Discr(L/K)

(iv) By theorem 6.16 Diff(L/K) = CL_/IK = ¢ (a)Oy.

]

Theorem 6.18. Let K C M C L be finite separable extensions of complete discrete

valuation fields with valuations v,v',w respectively. Then
(i) For any fractional ideal A of O, Nijx(A) = Nyryw(Nim(A)).
(i) Diff(L/K) = Diff(M/K) Diff(L/M).
(ii1) d(wlv) = e(w|v')d(v'|v) + d(w|v').
(iv) Discr(L/K) = Ny (Discr(L/M)) Diser(M/K)EM,
Proof. (i) Trivial.

(ii) Equivalently we will show that Cr/x = Cr/xCrym-

(C) Let v € Cr k. Clearly Trpn(zy) € Cryx. Now, write Crryx = uO, where
uw e M. Then Trpy(xy) = ut for some t € O,. So, Trp(u'zy) =t € Oy.
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So, for all y € O, Trpm((u'z)y) € Op. Then z € uCr/y. Hence x €
CroymCuyk.
(2) Let x; € CM/K,I'Q € CL/M,y € O,. Then

Trig(w1m2y) = Tray e (Tro(2122y)) = Trayx (1T (22y)) € Oy

(iii) Follows from the previous part.
(iv)
Discr(L/K) = Nix(Diff(L/K)) = Nk (Diff (M/K)Ou)Npx (Diff (L/M))
= Ny (N (DIff (M K)Ouw)) Nz (N (Dt (L/M)))

= Ny (Diff(M/K))EM Discr(L/M)
= Diser(M/K)EM Diser(L/M)

]

Theorem 6.19. (Dedekind’s different theorem) Let (K,v) be a complete discrete
valuation field, L a finite Galois extension of K, and w be the unique extension of
v to L. Assume that l, is a separable extension of k,. Say Diff(L/K) = dlwlo)
Then

(i) d(w|v) > e(w|v) — 1.
(i1) d(w|v) = e(w|v) — 1 if and only if Char(k,) 1 e(w|v).

The case d(w|v) > e(w|v) — 1 is said to be the wild ramification and the case

d(wlv) = e(w|v) — 1 is tame ramification.

Proof. (i) Choose an intermediate field K C 7' C L, and let v' be the canonical
valuation on T' extending v, with e(w[v’) = e(w|v) = [L : T], f(w|v’) = 1, and
e(v'v) =1, f(v']v) = flwlv) = [T": K.

By, theorem 5.4 there exists an a € T such that O, = O,[a], and let g(X) be
the minimal polynomial of a over K. Then ¢g(X) € O,[X], and g(X) € k, is

irreducible over, and hence separable. So, it follows that
g@=g(a)#0
Hence ¢'()O, = O,. So it follows Diff(T'/K) = O, by theorem 6.17. Then
Diff(L/K) = Diff (T /K) Diff (L/T) = Diff(L/T)
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Since different is transitive it follows that M% = Diff(L/K) = Diff(L/T).
Recall that w|v’ is totally ramified. So, O, = O)[n] where 7 is a prime

element of (L, w).

Moreover, the minimal polynomial of 7 over 7' is of the form
h(X) = XM 4 a1 X4 4ag

with v(a;) > 1 for all i = 1,...,e(w|v) — 1, and v'(ap) = 1. By theorem 6.17,
Diff(L/T) = h'(7)O,. So, d(w|v) = w(h'(7)).

( ) ( ’ ) ( (w‘U> - 1)ae(w‘y)_1ﬂ'e(w‘v)72 + ... +a
Observe that w(e(w
e(wlv) for all i = 1,...,e(wlv) — 2 and w(a;) > e(wlv). So, w(h'(7)) >

e(wlv) — 1. B

)7 ) 2 efuwfo)— 1 and w((e(w]v) ~)acqupy -7 @) 2

(ii) Assume that Char(k,) | e(w|v). So, e(w|v) mod M, = 0. Which means
e(w|v) € M,. Therefore v(e(w|v)) > 1. So, w(e(w|v)) > e(w|v). By triangu-
lar inequality, w(h'(7)) > e(w|v).

Conversely, assume that Char(k,) { e(w|v). Then e(w|v) mod M, # 0. So,
v(e(w|v)) = 0. So, w(e(w|v)) = 0. Then w(e(w|v)x@)=1) = e(wlv) — 1.
Hence w(h/(m)) = e(w|v) — 1.

[

Clearly, the assumption that ”[,, is separable over k,” is not used in the proof of the
first part of Dedekind’s different theorem. Therefore we can revise this theorem as

follows:

Theorem 6.20. (Dedekind’s different theorem) Let (K,v) be a complete discrete
valuation field, L a finite Galois extension of K, and w be the unique extension of

v to L. Say Diff(L/K) = M&“"). Then
(i) d(w|v) > e(w|v) — 1.

(i1) d(w|v) = e(w|v) — 1 if and only if Char(k,) 1 e(w|v) and l,, is separable over
ky.

Corollary 6.21. The following are equivalent:

(i) e(wlv) = 1.
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(i1) Diff(L/K) =
(#i) Discr(L/K) = O

Under the assumption that [, is separable over k, the connection between the dif-

ferent and the ramification groups is due to Hilbert.

Theorem 6.22. (Hilbert’s different formula) Let (L,w) be a Galois extension of
(K,v). Then

o0

d(wl) =) _(IGi(wlv)| —1) = w(g'(a))

=0
where d is the different exponent of w|v, g(X) € K[X] is the minimal polynomial of
a, and O, = O,[a].

Proof. First assume that w|v is totally ramified, i.e. e(w|v) = |G| where G =
Gal(L/K). Set e; = |G;(w|v)], and e = ey = |Go(w|v)| = |G]|. Write G; = G;(w|v)
for the sake of simplicity. Choose a t € L such that w(t) = 1. Then 1,¢,...,t* ! is an
integral basis of O,,. So, d = w(¢'(t)) where ¢(X)O,[X] is the minimal polynomial
of t over K.

We can write

p(X) = [[(x —ot)

ceG

ZH — Tt)

0€G T#0

therefore

So, ¢'(t — ot). Then

d = wE]Jet—1))=> w(ot—1) Z > w(et—t)  (6.1)

o#1 o#1 i=0 0€G;/Giq1
= Z(ei —ei)(i+1) = Z(ei —-1) (6.2)
— (ep— 1)+ (e1 = 1)+ oo+ (e — 1) (6.3)

where j is the minimal index with e; # 1.

For the general case, let Tj) denote the inertia field of w|v and M,,, = M,,NT. Then
wp|v is unramified and w|wy is totally ramified. We know that G;(w|v) = G;(w|wy).
Then

d(w|v) = e(w|wy)d(wo|v) + d(w|wy) = d(w|wy) (6.4)
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by part (iii) of theorem 6.18. Now it follows from (6.3) and (6.4). O

Corollary 6.23. Let (L,w) be a Galois extension of (K,v), and let (K',v") be an

intermediate field with the corresponding normal subgroup H < Gal(L/K). Then
d(v'|v) = L Z v'(oa — )
e(v'|v)

o¢H

where O, = O,[d/].
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7 Ramification Theory of Valuations With Insep-

arable Residue Class Field Extensions

In this section we drop the crucial assumption that we made in the classical ramifi-
cation theory, namely the residue class field extension being separable. We will show
that without this assumption some results from the classical ramification theory can
be saved or modified such as Dedekind’s different formula whereas some other results
are not available any longer. We will also consider the monogenic extensions (i.e.
where the valuation ring extension is generated by a single element). Monogenic
extensions should be considered as an intermediate case between the classical ram-
ification theory and the ramification theory of valuations with inseparable residue
class field extension, as we have already shown that separability of residue class field
extension implies monogenity, and we will also show the monogenity assumption is
actually weaker than the separability of the residue class field extension. Also re-
mark that in the classical theory we used the fact that the extension is monogenic
to prove most of the results. So the results from the classical case are also true for
the monogenic case. Furthermore monogenic extensions in the case of Galois p -
extensions will be characterized in this section.

As before, throughout the rest of this section (K,v) will be a complete discrete
valuation field, (L,w) will be an extension. Since we are working with complete
fields, we write er;x = e(wlv), and fr;x = f(w|v). Furthermore, we will write

tame

tame ,wild
where e 2

= CL/kCL/K
of er/k that is coprime to p. From this point on we drop the assumption 7, is

er/K the tame ramification indexr of L/K, is the part
separable over k,”. Therefore Char(k,) = p > 0. Since there may be inseparability
in the extension l,/k, we need to revise some definitions about ramification. Let
fiyx = llw = kols, and f] e =
and inseparable degree of l,,/k, respectively. Whenever the extension L/K is clear

[l @ kyli, dee. f}j/K and fz/K denotes the separable

from the context, we will drop it from the indices and write e, f, f?, f*, etame, evild

for simplicity.

L/K Jik fiyx €
unramified arbitrary 1 1
tamely ramified arbitrary 1 p1e(wv)
totally ramified 1 1 arbitrary
totally wildly ramified 1 1 pF
weakly unramified arbitrary | arbitrary 1
ferociously ramified 1 arbitrary 1
completely ramified 1 arbitrary pF
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At this point one should remark that we have a monogenic extension whenever
[L : K] = p without the separability condition. Simply, we can take O, = O,q]
where « is w - prime element or a representative of a generator of the residue class
field extension.

Suppose now that L is a Galois extension of K, and let G = Gal(L/K). We can
generalize the notion of ramification groups defined in the previous section. Let
i > —1, and n > 0 be two integers, then the (i,n)™ ramification group of L/K is
defined as

Gin={0€G:w(ox —x)>i+mn, forallz € M}

Now observe that that for i > —1 the classical i*! ramification group G; = G, 1.

Also put H; = G, ;. Clearly we have a descending chain
GDOH1=G_12Hy,2Gy2H DGy D H,..D{1l}
Lemma 7.1. For all v > 1, there is a group homomorphism
o G — Aut(M2 /M)
where MT /| M is considered as a ring, with Ker U, ,, = G;,,. Where

(o) o+ MEJME — MM
a+ M oa + ME

Hence G, are normal subgroups of G. In particular, for n = 0 and n = 1, G; and
H; are normal subgroups of G.

Observe that in the case of separable residue class field extension (i.e. when [, is
separable over k,, so f' = 1) we have G; = H; for all i > —1. Indeed, let T = L%
with the corresponding valuation w’. Then we have O, = Op + M,, since t, = [,,.
For i > 1, 0 € H; operates trivially on M, /M by lemma 7.1. Similarly, since
H; < Gy, o operates trivially on O,,. Therefore it operates trivially on O,/ M4
Hence o € G;.

Lemma 7.2. For all v > 1 there is an homomorphism
D : Gl — (lw, +)

with Ker ® = Hz'—i—l-
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Lemma 7.3. For all v > 1 there is an homomorphism
P Go — l:;}

with Ker ® = H;.
Theorem 7.4. (i) Gy =H_;=Hy=G, and |G| = ef.
(ii) |Gol = ef".
(#i) Recall that Char(k,) = p > 0, then G;41<G;, and H;1<H;. Moreover H;<G;_;.
Also G;/H; 1 is isomorphic to a subgroup of (L, +), hence it is an elementary
abelian group of exponent p for all i > 1.

() Go/Hy is cyclic of order e'®™®.

(v) Hy is ap - group and |H,| = e ft.

Proof. (i) Since (K, v) is complete, w is the unique extension of v to L. Hence
Gl =G| =ef.
(ii) We will show that [, /k, is normal. Let @ € [, and

P(X)=[](X - oa)

oeG

Observe that P(X) is a monic polynomial with coefficients in k,. Consider the
reduced polynomial P(X) € k,[X]. Clearly P(X) has ca + M, as all of its
roots. Hence l,,/k,, is normal. Moreover, G/Gy ~ Aut(l,/k,) = Gal(l5?/k,)

where 57 is the separable clossure of [, in k, [3, Chap. I, Sect. 7].

By the previous part we know that |G| = ef, and we just showed that |G/Gy| =
f%. Hence |Go| = ef".

(iii) Follows from Lemma 7.1 and Lemma 7.2.

(iv) By Lemma 7.3 G/ H; is cyclic and its order is relatively prime to p. As we will

tame

show in the next part Hy is a p - group. Then it follows that |Gy/H;| = e

(v) Let 0 € Hy. Then oy —y € M2 for all y € M,,. Now let z € O,, and observe
that

o’r —x =0 or—z)+ 0" *(ox —1)+ ... +o(ox —x)+or —x
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But since o € G as well, ox —x € M,,. Say ox —x = z € M,,. But then
oz —z € M2, Similarly 0%z — z,...,07"'2 — 2 € M?. Hence ox —x = pz
mod M?2. On the other hand since Char(l,) = p, p € M,,. So, ox —z = pz
mod M? =0 mod M?. Which means ox — z € M?. Hence 0 € G;. But
we know that Gy/Hj, has exponent p. Therefore (o?)? € Hy. If (oP)P # 1, by

the same argument it is in Gj.

We also know that for sufficiently large k, G = {1}. And it is clear from the
above argument that o?" € Gy. Therefore the order of any element of Hy is a

power of p. Hence H; is a p - group.

Moreover, since |Go| = ef?, and |Go/H,| = e, it follows |H,| = e f*.

]

By the theorem above T' = Ty = L% is the maximal unramified extension of K in
L, B, = L™ is the maximal tamely ramified extension of K in L. So the associated
tower is as follows:

L

-
Fi ) peewid

Ey

tame
L/K

T =1y

e

Ik
K
If l,,/k, is inseparable we can say more about Gg. It is a semi-direct product of a
cyclic group of order prime to p and a normal subgroup of order p* for some k by
Corollary 6.11.
Also, de Smit gave some generalizations of Theorem 6.15, which is about the ram-

ification jumps in the classical case, to the double filtration we defined as follows
[4].

Theorem 7.5. If Gal(L/K) is abelian then all i > 0 for which G; # H;y1 are
congruent modulo p where p = Char(l,,). Furthermore if there is such an indez i for
which G; # Hiyq, then all j for which G; # H; are divisible by p.

Actually the first part of the theorem above remains true if Gal(L/K) is not abelian.

Theorem 7.6. Let T ={i>0:G; # Hi1} and S={j > 0: H; # G;}. Then for
any 11,12 € T, i1 = iy mod p and for any j € S with pt j, we have j+1i € T for
alli € T. Further, S C pZ whenever T N pZ # (.

36



To prove Theorem 7.5 and Theorem 7.6 one needs to work with the O, derivations

of the graded algebra @(Mw J M) as it is done by de Smit in [4].
i>0
In the previous section we showed that in the classical case there is connection

between the different and the ramification groups. Namely, the Hilbert’s different
formula. Remark that Hilbert’s different formula also holds under the weaker as-
sumption that O, is monogenic over O,. A formula generalizing theorem 6.22 is
due de Smit [5]. We will give de Smit’s formula.

Let L/K be a Galois extension with Galois group G. We define the function
ic:G—ZU{co} asig(l) = 0o, and

ig(o) = xle%fw w(ox — x)

for o # 1. Also remark that if O, = O,[a], then ig(0) = w(oca — ).

For any o € G define az (o) to be the ideal generated by {ox —z : z € O, }. Since
L/K is normal we have ar (o) = i5(®) " The monogenity conductor vk is defined
to be the ideal M}, where n is the smallest integer such that there is an o € O,
with Mj, C O,[a]. Remark that, v,k = O, if and only if O,, is monogenic over
O,.

Since L/K is separable, L = K(«) for some «, then we define the conductor of

O,la] as t, = M where n is the smallest positive integer with M C O, [a].

Lemma 7.7. There is an element o € O, such that for any o € G, ar(o) =

(ca — a)O,,.
Proof. Tt O, is monogenic, say if O, = O,[a], then for a prime element ¢t € O,
ClL(O') = MZ?(U) — Mg(dafa) — tw(oafa)ow — tw(aafa)uow

where u € Ow* such that t*(“*~%y = ca — a. Hence a,(0) = (ca — a)O,,.
So, now suppose that O, is not monogenic. Then k, cannot be perfect. Hence k, is

also infinite. Now, for any o € G \ {1} consider

c—1 : O,/ M0y — a,(0)/ Myau(o)
a+ M,0p — (0 —1)(a) + Mya,(o)

Clearly o — 1 is a non - zero k, - linear map. Moreover

Kero — 1= {a+ M,0, : (6 —1)(O,) Z (ca —a)O,}
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Since any vector space over an infinite field cannot be written as a finite union of
proper subspaces, there is an « + M, 0,, € O,,/M,O,, which is not in Kero — 1 for
any o € G\ {1}. Therefore a,(0) = (cax — @) O,. O

Theorem 7.8.
Dif f(L/K)ers = [ anlo)

o#1
Proof. L = K(a) for some a € O,. Consider the conductor t, of O,[a] in O,,.
More precisely t, = {x € O, : 2O, C O,la]}. Then v, Diff(L/K) = f'(a)O
where f(X) € K[X] is the minimal polynomial of a. [3]

(@) =]](a—-oa) e ]]aulo)

o#l o#1

Now, since

we have

Dif f(L/K)ta C [ [ au(o)
o#1

Clearly, t/x = to. So, we have the inclusion C.
On the other hand observe that o + M, 0, &€ Kero — 1 for all 0 € G \ {1} where

o0 — 1 is as in lemma 7.7. Then by the same lemma az (o) = (ca — «)O,,. Therefore
[[aw(0) = F(@)0,
o#1

]

Now by the above theorem we can give a generalization of the Hilbert’s different

formula to non monogenic case, which is due to Bart de Smit [5] as follows:

d(wlv) +n =Y iglo) = Z(|Gi| - 1) (7.1)

o#1

where n is the smallest positive integer for which there is an o € O,, with M}, C
O,lal, ie. tg = M.

In the next several results we will consider the ramification groups of the interme-
diate fields of the Galois extension L/K.

Lemma 7.9. Let K’ be an intermediate field of L/K (i.e. K C K' C L). Then for
any K - embedding 7 : K' — L

CIK/ H ClL

T g1 =

38



where the product ranges over all o € G' such that oy, = T.

Proof. By lemma 7.7 there is an a € O,, with K = L(«) such that az(0) = (ca —
a)O, for all o € G. Let f € Oy[X] be the minimal polynomial of o over K’ and v’

is the corresponding valuation on K’. Then

H a(o [ (ca—a) ]| Ouw=7(f)@)0u = (r(f) = /) @)y C ax(7)

U|K/ U|K/ =

Let (K',v") be an intermediate field extension of the Galois extension (L,w) o
(K,v). By the previous theorem, for any 7 € Gal(K'/K) there is an ideal ?(7) o
O, such that d(7)ag/ (T H ar(o

g
I =
The lemma above also provides us with some immediate information about ramifica-

f
f

tion groups of intermediate fields. Namely for a normal subgroup H<G = Gal(L/K)
we will find upper and lower bounds for ig/i(7). Recall that for any a € K’, we

have w(a) = e(w|v")v'(a). Consider the inclusion

H ClL CClK/ )

O'|K/

as it is shown to be true in the lemma above. Now take w - valuation of both sides

to get

> ia(0) = e(wlt)iam(r)

U‘K/ =T

On the other hand, for 7 € G/H let 0 € G such that o/, , = 7. Then clearly
ar(0) | ag/(7), i.e. ag(7) C ag(o). Again, take w - valuation of both sides to get

e(wv)ig/u(T) =ia(o)
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Therefore we can write

T S i6(0) < i) € s 3 i) 72)

O =T

Latter, by an example, we will show that these are the best possible bounds which

can be found by just considering the ideals az (o) and ag/ (7).

Lemma 7.10. Let (L,w) be a Galois extension of (K,v) and (K',v") be an inter-
mediate field. Then

CL/K/CK K H (1) =tk
T#1

where T = Gal(K'/K) \ {1}.
Proof. First of all write

Diff(L/K)tL/K = H aL H ClL H aL

o#1

U‘K/ O‘K/

Next observe that the Galois automorphism ¢ € Gal(L/K) with 0|, = 1 are exactly

the Galois automorphisms of L over K’. Hence, by theorem 7.8
H ar(o) = Dif f(L/K')
UlK/

Now, recall that the Galois group Gal(K'/K) is finite. Say, 71, ..., 7,1 are its non -

identity elements. Then we can write

H ag(o H ag(o H ar(o)

O"K'/?él U‘K/ 71 U‘K/ =Tn-1

Observe that H ar(o) =0(r)ag: (7;) for all i =1, ...,n — 1 by definition of (7).

0| s =Ti
Therefore,
n—1
H ar(o HaK’ ;) H ) = Dif f(K tK'/Kl_[a ;)

0|K,7é1 =1
Hence

Dif f(L/KYerie = iy Dif f(L/K')Dif f(K Yoo H 2(r)
By cancellation of differents we get the desired result. O]
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Corollary 7.11. Let (L,w) be a Galois extension of (K,v) and (K',v") be an in-
termediate field. Then vy kit Kk | trx. Moreover, if O, is monogenic over O,,
then O, 1is also monogenic over O,; furthermore in this situation we have equality
in theorem 7.8, and 3(1) = 1 where T € Gal(K'/K) \ {1}.

By the above corollary, on the the right side of the inequality (7.2) becomes an
equality in the monogenic case.

For a proof see [5].

Theorem 7.12. (Herbrand’s property) Let (L,w) be a monogenic extension of
(K,v), and H< G = Gal(L/K). Then for all T € G/H

) L 1g(o
ZG/H(T) = e(w|v) UlKZ/:T c(o)

where v is the corresponding valuation on K' = LY.

Proof. If 7 = 1 both sides are equal to co. Let a, 8 be the generators of O,, and O,,,,
over O, respectively. Now e(w|v')ig/u(7) = w(tf — ), and ig¢(0) = w(oa — ).
Choose a 0 € G such that @ = 7. Then the other representatives are of the form op
for pe H.

Now we will show that a = o8 — 8 and b = H (opa — ) generate the same ideal

peEH
of Oy. So, let f(X) € Oy, [X] be the minimal polynomial of a over 7. Then

FX) = [T(X = pa)

peEH

Then clearly
o()X) [[(X = opa)

peH
Now observe that all coefficients of o(f) — f are divisible by ¢ — 5. Therefore
a=of — pdivides o(f)(a) — f(a) = o(f)(a) = £b.
Next, we will show that b divides a. Observe that § = g(«) for some g € O,[X].
Then « is a root of the polynomial g(X) — 5. Moreover all of its coefficients are in
Oy, - Hence, it is divisible by f. Say

9(X) = B = f(X)h(X)

for some h(X) € O,,[X]. By applying o to this equality and evaluating at o we
get
p—of=a(f)(a)o(h)(e)
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Hence b = +o(f)(«) divides a. O

In the classical case Herbrand’s property already tells what are the ramification
groups of the intermediate fields of the Galois extension L/K in terms of the ram-
ification groups of L/K. Although we will show that the ramification groups of an

intermediate field cannot be determined by the ramification groups of L/K.

Corollary 7.13. Let (L,w) be a Galois extension of (K,v) with Galois group G =
Gal(L/K). Assume that L, is separable over k,. Consider the quotient G/G;. It is
the Galois group of K' = LY. Then (G/G;); = Gi/G; fori < j, and (G/G;); = {1}
fori>j.

Proof. Clearly, we have
Go/G; CG1/G; C...CG;/G; C ... C G4 /G; C G, /Gy = {1}

where ¢ < j. In other words, the quotients G;/G; forms a decreasing filtration of
the Galois group G/G; of K'. Let 7 € G/H \ {1}. Then there is a unique i < j for
which 7 € G;/G; but 7 € Gi11/G,.

Let o € G be a representative of 7. Then o € G; but 0 &€ G;11. So ig(o) =i+ 1.
Also, since G; < Gy the extension L/ K’ is totally ramified by corollary 6.7. Moreover
|G| = e(w|v’) where w and v are the valuations on L and K’ respectively. By
Herbrand’s property

1

= )

Z iglo)=1i+1

O 1 =T

Therefore the filtration given by G;/G; as above is the same as the filtration (G/G;);
for i < j. A fortiori we have (G/G;);, = G;/G; for i < j. O

Remark that one can generalize corollary 7.13 for an arbitrary normal subgroup
of Gal(L/K). But for this one needs to modify the numbering of the ramification
groups, more precisely one needs the so called upper numbering of ramification groups
to generalize corollary 7.13 for arbitrary normal subgroups [3]. We will not define
the upper numbering in this thesis, but one should also remark that there is no
satisfactory definition of the upper numbering of ramification groups in the case of
inseparable residue class field extensions [4].

Now we will show that the previous lemma about ramification groups of intermediate

fields of L/K in the classical case cannot be generalized.
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Example 7.14. Let k be an imperfect field of characteristic p. Consider the field
of formal Laurent series over k, say K = k((t)) with the natural valuation on it;
denoted by v. Fix s € {1,...,p}, and let K' = K(m) where 7 is a root of the
polynomial f(X) = XP —t*P~VX —t € O,[X]. Observe that f(X) is an Eisenstein
polynomial with respect to v. Therefore [K' : K| = p, e(v'|v) = p and V(1) = 1.
Also, K'/K is Galois with the Galois group G = (|t : m — m + t°). Moreover,
as Char(k,) | e(v'|v), K’ is a wildly ramified extension of K. More precisely K' is
totally wildly ramified! Since w is a v’ - prime element, O, = O,[x].

Now, let a € k\ kP, and L = K'(a)) where « is a root of g(X) = XP — 2= — g —
tP=5(1 —t*~Y)w € K'[X], denote the extension of v’ to L by w. Then L/K’ is Galois
with the Galois group H = (o|o : a — a+t*). Observe that l,, = I (@), moreover it
is purely inseparable. Hence we also have O, = Oy |a].

We can extend o to L by o : a — a+t. Moreover Gal(L/K) = (1,0) is elementary
abelian of order p*. The filtration of Gal(L/K) with ramification groups of the

extension L/K can be computed as follows:

G = GO = ... = Gp_1 7& Gp = <O'> = ... = Ggp_l 7é Ggp = {1}

On the other hand observe that the first trivial ramification group of K'/K is (Gal(L/K)/H)sp.
If one considers s > 1, the lemma above, if it was true, would yield that G,/H =
(Gal(L/K)/H), = {1}. Which is not the case as we have shown. Therefore, the
previous lemma even cannot be generalized.

Next, we will verify the bounds given by (7.2). Consider the subgroup Gal(L/K)/H =

G. One can easily compute that the given inequality becomes
2
p=sp=p

Observe that when s = p we have equality on the right hand side, and we have
equality on the left hand side when s = 1. Therefore, the bound given by (7.2) can

be reached.

Theorem 7.15. Let (L,w) be a finite Galois p - extension of (K,v). Then the

following are equivalent
(i) Oy = Oyla] for some a € L.
(ii) For any normal subgroup H < G the Herbrand property holds.

(ii) the Hilbert formula holds.
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Proof. (i = ii) Proved in theorem 7.12.

(1 = i) Proved in the previous section as Hilbert’s different formula (see theo-
rem 6.22).

(730 = i) Follows from the formula (7.1). Since Hilbert’s formula holds, n = 0 in the
formula (7.1). Hence O,, is monogenic over O,.

(12 = i) Since L/K is a Galois p - extension, [L : K| = p™. We will proceed by
induction on n. If n = 1, as there is no non trivial intermediate extension, there is
nothing to be shown.

Next, assume this implication holds for n — 1. Let H <G with |H| = p"~!, and put

LY = K’ with v/ as the corresponding valuation. By definition

0 aK/ H ClL

T\ s =

for all 7 € Gal(K'/K) ~ G/H. Now by taking valuation (with respect to w) of both
sides we get
w((7)) +ig/u(T Zza
|
Since Herbrand property holds w(?(7)) = 0. Implying that 9(7) = O,. Therefore
by lemma 7.10 we have

VL/K'tK' /K = YL/K

Since [K' : K] = p, it is monogenic and vx/ /g = O,.
Next, A< H be a normal subgroup, s € H, and L4 = K with the corresponding

valuation v. Now, we will show that

ina(p) = —— 3 in(s)

(ulp) 2=

for all p € H/A, where s € H. Then, by inductive hypothesis it will follow that O,
is monogenic over O).

Indeed suppose that p € H/A and s € with S| = p- Then

ima(p) = xlgl(of v(pr — x) =ig/r(p)

44



Observe that

i) = ioalp) = —— 3 ig(s) =

6(’11)|’U) s‘f(:p,SGG
R R SR
= VA S 7 S) =
e(w[v) ST e(w]o) ¢
S‘K:p,SGH - =p,s€G\H
1
= _ in(s)
e(w[v) Z
s‘f{ pP,S

since the second sum Z ic(s) is empty. Then by inductive hypothesis O,
3|k:p,s€G\H
is monogenic over O,. Hence vy/x» = O,. Then vy x = Oy0, = O,, since

/K'Y /K = VL/K- ]

Remark that the assumption that L/K is a p - extension is only used at proving
the implication (i@ = i). The theorem can still be proved if we interchange this
assumption with L/K is completely ramified [7]. We can say that theorem 7.15
characterizes the monogenic extensions.

Now we will give an example of a monogenic extension with inseparable residue class
field extension to verify that being monogenic is indeed more general then having a

separable residue class field extension.

Example 7.16. Let (K,v) be a discrete valuation field of characteristic 0. Let
G2 € K be primitive p2th root of unity. Let L = K(«) where o is a root of the
polynomial f(X) = X?* — (1 4 um)a? where a,u € O*a & kP, and 7 is a prime
element of (K,v). Observe that %,2 = 1+ ur. Hence % =1 in k,. Therefore,
a? =a € k, \ k?. Hence @ ¢ k,. So, @ is purely inseparable over k,; implying
f'>p.

Next, we will show that e(w|v) > p. Write

() = () () ()
(Y2 ()

Now by taking valuation under w of the above equation we get p | e k. Implying,
e(w|v) > p.

The facts ep)x > p and f; > p together with the fundamental equality yields that
er)k =p = f'. Sol, is not separable over k,. Also by checking Herbrand property
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one can show O, = O,la].

We have shown that although monogenity assumption is an actual weakening of
the separability assumption of residue class field, many of the nice properties from
the classical theory such as Hilbert different formula and Herbrand property can be
saved. We will show by an example, given by Spriano [6], in the general case nice

properties of the classical (and monogenic) case cannot be saved further.

Lemma 7.17. Let L/K be an extension of complete fields with the corresponding
valuations v and w. Let m € L be an w - prime element. Assume 01, ..., 0wy € O
such that 0, ey Oy 18 a basis of 1, over k,. Then {6;77 : 1 <i < f(w|v),0 < j <

e(w|v) — 1} forms a basis of O, over O,, and a basis of L over K.

Example 7.18. Let (K, v) be a complete field of characteristic 0. Let k, = Fo(uy, us),
and a,b € O, such that @ = uy and b = uy. Also assume v(2) = 4. Consider
f(X)=X*—anX?+be O,[X]. Clearly f(X) is irreducible.

Define L to be the splitting field of f(X). Let c, B be roots of f(X) such that § # +a.
Then K(«) is ferociously ramified over K and moreover [K(«) : K] = 4. Also the
Eisenstein polynomial g(X) = X? —2aX — w(a — 2a?/7) is the minimal polynomial
of a + 8. Therefore L = K(a + ) is totally ramified over K(«), and e(L/K) = 2.
Hence [L : K| = 8. Observe that by lemma 7.17 O, = O,[a,a + B]. Then by
theorem 7.15, Herbrand property and Hilbert’s different formula also fails to hold
for L/K.
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