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Abstract

We study how a discrete valuation v on a field K can be extended to a valuation

of a finite separable extension L of K. The ramification theory of extensions of dis-

crete valuations to a finite separable extension is very well established whenever the

residue class field extension is separable. This is the so called classical ramification

theory. We investigate the classical ramification theory and also the ramification

theory of extensions of discrete valuations with an inseparable residue class field

extension. We show that some results from classical ramification theory, such as

Hilbert’s different formula can be modified to be true for extensions of valuations

with inseparable residue class field extensions, whereas many other classical results

fail to hold.
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AYRIK DEĞERLERİN GENİŞLEMELERİ ve ONLARIN DALLANMA TEORİSİ

Şükrü Uğur Efem

Matematik, Yüksek Lisans Tezi, 2011

Tez Danışmanı: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Ayrık değerlerin genişlemeleri, ayrışabilir olmayan kalan sınıfı

cismi genişlemeleri, dallanma teorisi, değerli cisimler, kalan sınıfı cismi.

Özet

Bu tezde bir K cismi üzerindeki ayrık değerin, K’nın sonlu ve ayrılabilir bir cisim

genişlemesi olan L’ye nasıl genişletibileceği üzerine çalışılmıştır. Ayrık değerlerin

genişletilmesinin dallanma teorisi, kalan sınıfı cismi genişlemesinin ayrışabilir olduğu

durumlarda çok iyi bilinmektedir. Bu duruma klasik dallanma teorisi denir. Bu

tezde klasik dallanma teorisi ve kalan sınıf cisim genişlemesi ayrışabilir olmayan

ayrık değer genişlemelerin dallanma teorisi incelenmiştir. Klasik dallanma teorisinin,

Hilbert formülü gibi, bazı sonuçlarının cisim genişlemesi ayrışabilir olmayan ayrık

değer genişlemelerin dallanma teorisinde de doğru olacak şekilde modifiye edilebileceği,

ama bazı sonuçların ise bu durumda doğru olamayacakları gösterilmiştir.
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and

Rauf Nasuhoğlu
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1 Introduction

For a field K a valuation is a map v : K → Z ∪ {∞} with the following properties:

(i) v is onto

(ii) v(a) = ∞ if and only if a = 0

(iii) For all a, b ∈ K, v(ab) = v(a) + v(b)

(iv) For all a, b ∈ K, v(a+ b) ≥ min{v(a), v(b)}

More precisely, v is called a discrete valuation of rank one. We will be only interested

in such valuations in this thesis. So whenever we say valuation, we mean discrete

valuation of rank one. We say that (K, v) is a valued field ; more precisely (K, v) is

called a discrete valuation field. If the valuation v is clear from the context we will

say K is a valued field for the sake of simplicity.

If L is a finite separable extension of a valued field (K, v) then it is possible to extend

the valuation v to L. Our aim is to investigate the so called classical ramification

theory of valuations (i.e. where the residue class field extension is separable), and to

investigate what may happen if one tries to generalize the classical results to the case

where residue class field extension is inseparable. We will show that some results

of the classical ramification theory can be generalized, with some modifications, to

the inseparable residue class field extension case. A modified version of Hilbert’s

different formula and theorems about ramification jumps are most probably the

most important of such results. On the other hand the classical version of Hilbert’s

different formula, and Herbrand’s property fails to hold in the general case. A

natural limit for extending the results of classical ramification theory is the so called

monogenic extensions.

First we will present basic results about valued fields, construction of the extension

of a valuation to a separable extension of K. In the last two sections we will give the

classical ramification theory, and in the last section we will abandon the assumption

that the residue class field extension is separable in order to investigate what may

happen to the results of classical ramification theory in this general case.
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2 Preliminaries

In this section we will give basic results and terminology about valued fields.

Let (K, v) be a valued field, then we define the following sets:

Ov := {a ∈ K : v(a) ≥ 0}

Mv := {a ∈ K : v(a) > 0}

Lemma 2.1. (i) Ov is a subring of K, Mv is an ideal of Ov and K is the field

of fractions of Ov.

(ii) Ov is a local ring.

(iii) Let A �Ov and a ∈ A such that v(a) ≤ v(b) for all b ∈ A. Then A = aOv.

(iv) Ov is a PID and Mv is the unique prime ideal of Ov.

(v) The generators of Mv are exactly the elements π ∈ K with v(π) = 1. Such

elements are called prime elements of v. Given a prime element π, every

a ∈ K× has a representation a = πmu for some m = v(a) ∈ Z, and u ∈ O×

v
.

(vi) Ov is a maximal subring of K.

Since Ov is a ring Mv is its maximal ideal by lemma 2.1, Ov is called the valuation

ring of v and Mv is called the maximal ideal of Ov. Also Mv is called the valuation

ideal of v. Moreover, since Mv is maximal, kv = Ov/Mv is a field. It is called the

residue class field. The so called ramification theory of valuations strongly depends

on the residue class field.

Corollary 2.2. Let v, w be valuations of K. Then the following are equivalent:

(i) v = w.

(ii) Ov = Ow.

(iii) Ov ⊆ Ow

Proof. (i ⇒ ii ⇒ iii) is trivial. Moreover sinceOv is maximal we also have (iii ⇒ ii).

So the only thing that remains to be shown is (ii ⇒ i). Indeed, since Ov, and Ow

are local, Ov = Ow implies Mv = Mw. Hence v(π) = 1 if and only if w(π) = 1. For

a ∈ K×, a = πmu, for some u ∈ O×

v
= O×

w
. So, v(a) = m and w(a) = m.

2



Consider valued fields (K, v) and (L,w) where K ⊆ L. Then w is called an extension

of v if Ov ⊆ Ow and Mv ⊆ Mw. In this situation we also say, w lies over v, and

write w|v. In this case we will also say that (L,w) is an extension of (K, v). Beware

that this does not mean w|K
= v!

Theorem 2.3. Let (K, v) and (L,w) be valued fields, K ⊆ L and w|v. Then

(i) Ov = Ow ∩K and Mv = Mw ∩K.

(ii) The inclusion Ov ⊆ Ow induces an embedding of the residue class fields as

follows

kv = Ov/Mv → lw = Ow/Mw

a+Mv �→ a+Mw

So, we will always consider kv as a subfield of lw. We write f(w|v) = [lw : kv].

(iii) If [L : K] is finite, then [lw : kv] ≤ [L : K] is also finite.

(iv) w(K×) is a subgroup of Z of finite index. We write e(w|v) = (Z : w(K×)).

(v) For all a ∈ K, w(a) = e(w|v)v(a). In particular if π ∈ K is a prime element

of v, then w(π) = e(w|v).

(vi) e(w|v)f(w|v) ≤ [L : K].

The numbers f(w|v) and e(w|v) play an important role in extending valuations, and

also in the ramification theory of valuations. Therefore they are given special names.

f(w|v) is called the degree of w|v or the residue class degree, e(w|v) is called the

ramification index of w|v. w|v is said to be unramified if e(w|v) = 1, and ramified

if e(w|v) > 1.

Lemma 2.4. Let (K, v), (L,w), and (M,u) be valued fields such that K ⊆ L ⊆ M ,

and w|v and u|w. Then u|v and

e(u|v) = e(w|v)e(u|w)

f(u|v) = f(w|v)f(u|w)

A valuation v on a field K naturally gives rise to a metric on K as follows

Lemma 2.5. Let (K, v) be a valued field, ρ ∈ R with 0 < ρ < 1. Then, for a, b ∈ K

d(a, b) =

�
0 if a = b

ρv(a−b) if a �= b

3



defines a metric on K.

Now, since K became a metric space, we can introduce some notions from analysis;

such as convergence, Cauchy sequence, completion, etc. One of the most important

aspects of valuations is that they allow us to use techniques from analysis in algebraic

setting. Most importantly in number fields, and function fields, which are naturally

valued fields via their prime ideals.

The following results translate some basic results about convergence into the lan-

guage of valuations.

Lemma 2.6. Let (K, v) be a valued field, (an)a≥0 a sequence in K, and a ∈ K.

Then

(i) (an)a≥0 converges to a if and only if v(a− an) → ∞ as n → ∞.

(ii) (an)a≥0 is a Cauchy sequence if and only if v(an − am) → ∞ for n,m → ∞.

(iii) (an)a≥0 is a Cauchy sequence if and only if v(an − an+1) → ∞ for n → ∞.

Proof. i, ii are clear. We only need show iii. We will show that v(an − an+1) → ∞

if and only if v(an − am) → ∞ for n,m → ∞.

Given c ∈ R>0 there is an N ∈ N such that for all n > N

v(an − an+1) ≥ c

Let m,n > n, without loss of generality say m ≥ n. Then

v(an − am) = v((an − an+1) + (an+1 − an+2) + ...+ (am−1 − am))

≥ min{v(an − an+1), ..., v(am−1 − am)} ≥ c

The converse is obvious. Take m = n+ 1.

Lemma 2.7. Assume that an → a in a valued field (K, v). Then v(an) → v(a) in

Z ∪ {∞}.

Proof. If a = 0 it is follows immediately from Lemma 2.6.

So, assume that a �= 0. Choose N ∈ N such that for all n ≥ N

v(an − a) > v(a)

Then for all n > N ,

v(an) = v((an − a) + a) = min{v(an − a), v(a)} = v(a)

4



So the sequence (v(an))n≥0 is eventually constant. Hence it converges to v(a).

Corollary 2.8. Ov and Mr

v
are closed subsets of K for all r ∈ Z.

Proof. Recall that Ov = {a ∈ K : v(a ≥ 0)}. Let an → a with all an ∈ Ov. Hence,

by Lemma 2.7, v(a) = lim(an) ≥ 0.

Since there is a metric space structure on a valued field K we can talk about com-

pleteness, and completion of a field. Completion of a discrete valuation field plays

a central role for extending a valuation to a separable finite extension.

A a discrete valuation field (K, v) is called complete, if every Cauchy sequence in K

is convergent. Also let ( �K, �v) be a discrete valuation field and ε : K → �K be an

embedding. We say that ( �K, �v, ε) (or ( �K, �v) whenever ε is clear from the context)

is a completion of (K, v) if

(i) ( �K, �v) is complete.

(ii) �v ◦ ε = v.

(iii) ε(K) is dense in �K.

Theorem 2.9. Let (K, v) be a discrete valuation field. There exists a comple-

tion ( �K, �v, ε). The completion is unique in the sense that: Given two completions

( �K, �v, ε) and (K̃, ṽ, δ) there exists a unique continuous isomorphism σ : �K → K̃

such that σ ◦ ε = δ. Moreover, �v = ṽ ◦ σ.

The construction of the completion �K and embedding K into it is similar to the

construction of R as the completion of (Q, | · |) and embedding Q into R. For details
see [1].

For a completion ( �K, �v, ε) of (K, v) we can identify K with ε(K). Then K ⊆ �K, and

v = �v|K . Then we often write ( �K, v) is a completion of (K, v). Moreover, because

of the uniqueness, we call ( �K, v) the completion.

Theorem 2.10. Assume (K, v) is a valued field and K ⊆ K a dense subfield. We

define

v = v|K → Z ∪ {∞}

Then,

(i) v is valuation of K, and v|v. If (K, v) is complete then it is the completion of

(K, v).
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(ii) Let π ∈ K be a prime element for v. Then for all r ∈ Z, Mr

v
= Mr

v
∩

K = πrOv, and Mr

v
= Mr

v
Ov = πrOv. Moreover, for all r ≥ 1 we get an

isomorphism

Ov/M
r

v
→ Ov/M

r

v

a+M
r

v
�→ a+M

r

v

(iii) e(v|v) = f(v|v) = 1.

6



3 Hensel’s Lemma & Henselian Fields

As we will later see Hensel’s Lemma is an essential tool for extending valuations.

In this section we will show that completion of a rank 1 valuation satisfies Hensel’s

Lemma. Although in this thesis we restrict our attention to discrete rank 1 valua-

tions it should be remarked that Hensel’s Lemma needs not to be true for comple-

tions of fields with respect to a valuation of higher rank. This leads to the notion of

Henselian fields, which can be characterized as fields which satisfy Hensel’s Lemma.

Note that we will not give proofs of the results that we will mention in this section.

The results themselves will be useful in the next sections, but their proofs are of not

as useful for valuation theoretic purposes of this thesis.

The motivation for the Hensel’s Lemma is as follows: Let (K, v) be valued field

and Ov,Mv, and kv be the valuation ring, valuation ideal, and residue class field

respectively. For f(X) ∈ Ov[X] we define the residue class field polynomial f(X) ∈

kv in the natural vay.

Now, suppose that f(X) = Φ(X)Ψ(X) where Φ(X),Ψ(X) ∈ kv[X] are relatively

prime. Can we lift this factorization to Ov? Before we answer this question we will

give a special case of the Gauss Lemma.

Lemma 3.1. Let (K, v) be a valued field, and let f(x) ∈ Ov[X] be monic. Sup-

pose f(X) = f1(X)f2(X) ∈ K[X], where f1(X), and f2(X) are monic. Then

f1(X), f2(X) ∈ Ov[X].

The proof is very similar to the proof of Gauss Lemma. One should also remark that

whenever a polynomial f(X) ∈ Ov[X] can be factorized in K[X] as in Lemma 3.1

then the residue class polynomial f(X) can be factorized in kv[X].

Theorem 3.2. (Hensel’s Lemma) Let (K, v) be a complete discrete valuation field

with a rank 1 valuation, f(X) ∈ Ov[X], and f(X) �= 0 (in kv[X]). Assume that

f(X) = Φ(X)Ψ(X) where Φ(X),Ψ(X) ∈ kv[X] are relatively prime. Then there

exists g(X), h(X) ∈ Ov[X] such that g(X) = Φ(X), h(X) = Ψ(X) and deg g(X) =

deg Φ(X) and f(X) = g(X)h(X).

Hensel’s Lemma vaguely states that for a polynomial f(X) over a complete discrete

valuation field, if f(X) has a factorization over kv then this factorization can be

lifted to Ov[X] in a nice way. Hence the motivating question is answered positively.

A proof of a more general version of Hensel’s Lemma can be found in [1, Chap. 2].

Corollary 3.3. Let (K, v) be a complete field, f(X) ∈ Ov[X] monic. Assume that

f(X) ∈ kv has a simple root u ∈ kv. Then there exists an element a ∈ Ov such that

f(a) = 0 and a = u.

7



A valued field (K, v) which satisfies the assertion in theorem 3.2 is said to be

Henselian. Hensel’s Lemma states that every complete discrete valuation field is

Henselian.

8



4 Extension of Valuations, Complete Case

For the rest of this section (K, v) will always be a complete discrete valuation field.

Let L ⊇ K be a finite separable extension of K. Our aim in this section is to show

that extending the valuation v to a valuation of L is possible. Moreover there is only

one such extension. Also this section will form a basis for extension of valuations in

the general case, where the assumption of completeness of (K, v) is dropped.

Before constructing the extension of v to L and giving the properties of such an

extension, we will give a technical lemma by assuming such an extension is possible.

Lemma 4.1. Let (K, v) be a complete discrete valuation field. Suppose w extends

v to L, and let (u1, ..., un) be a basis of L over K. Given m ≤ n there exists a real

number c such that for all α ∈ K× with a repsentation α =
m�

j=1

aiui where ai ∈ K,

we have

w(ai) ≥ w(α)− c

A proof of Lemma 4.1 can be found in [2, Chap. 4, Sect. 4.5, Lemma 4.5.2].

Theorem 4.2. Let (K, v) be a complete discrete valuation field, L/K a finite sepa-

rable extension with [L : K] = n. Set

f = min{v(NL/K(α)) : NL/K(α) ∈ Mv}

Define

w : L → Z ∪ {∞}

α �→
1

f
v(NL/K(α))

and w(0) = ∞. Then

(i) w is a valuation of L, and w|v.

(ii) Ow is the integral closure of Ov in L.

(iii) Ow is a free Ov - module of rank n.

(iv) w is the unique extension of v to L.

(v) (L,w) is a complete discrete valuation field.

(vi) f(w|v) = f and e(w|v) = n

f
.

9



Proof. (i) Consider the map v ◦NL/K : L× → Z. It is a non-zero group homomor-

phism. Let π ∈ K be a prime element of v, then v ◦NL/K(π) = v(πn) = n > 0.

So, v ◦NL/K(L×) = fZ. Hence it follows w : L× → Z is onto.

Now, it only remains to show the triangular inequality. To do so, we need the

following supplementary claims:

(a) Let α ∈ L with w(α) ≥ 0. Let u(X) ∈ K[X] be the minimal polynomial

of α over K. Then u(X) ∈ Ov[X].

(b) Let α ∈ K. If w(α) ≥ 0, then w(α + 1) ≥ 0.

By assuming (b), one can show the triangular inequality as follows: Let α, β ∈

L. We can assume that w(α) ≤ w(β) < ∞. Then w(α+β) = w(α(1+α−1β)) =

w(α) + w(1 + α−1β). By (b) w(1 + α−1β) ≥ 0. Hence w(α + β) ≥ w(α).

Also by assuming (a) one can show (b) as follows: Let

u(X) = Xr + ar−1X
r−1 + ...+ a1X + a0 ∈ K[X]

be the minimal polynomial of α over K. Let q(X) = u(X − 1). By (a)

q(X) ∈ Ov[X]. Moreover

q(1 + α) = u(α + 1− 1) = u(α) = 0

Then q(X) is the minimal polynomial of α+1. So, NL/K(α+1) ∈ Ov. Hence

w(α) = v(NL/K(α)) ≥ 0.

We will finish the first part of the proof by proving (a): For the minimal

polynomial u(X) = Xr+ar−1Xr−1+ ...+a1X+a0 of α over K clearly a0 ∈ Ov

(since a0 = NL/K(α) ∈ Ov). Assume that u(X) �∈ Ov[X]. Choose c ∈ K×

such that for

f(X) = cu(X) = cXr + (car−1)X
r−1 + ...+ (cai)X

i + ...+ ca0

i is the least index with v(cai) = 0. Then f(X) �= 0, and 0 < deg f(X) = i < r.

Set Φ(X) = f(X), Ψ(X) = 1. By Hensel’s Lemma there are g(X), h(X) ∈

Ov[X] such that f(X) = g(X)h(X) and deg g(X) = i > 0 and deg h(X) =

r − i > 0. This contradicts with the fact that f(X) = cu(X) is irreducible in

K[X].

(ii) (⊆) Let α ∈ Ow. Then by (a) in the previous part α is integral over Ov.

10



(⊇) Let α ∈ L be integral over Ow. So, NL/K(α) ∈ Ov. Then
1
f
v(NL/K(α)) ≥

0. Hence, w(α) ≥ 0. Which means α ∈ Ow. So Ow is integrally closed, and by

the previous part it is also in the integral closure of Ov. So, Ow is the integral

closure of Ov in L.

(iii) Recall that Ov is a PID, and L is separable over K. Then integral closure of

Ov in L is a free Ov - module of rank n.

(iv) Assume that w̃ is another extension of v to L. Then Ov ⊆ Ow̃. But Ow̃ is a

PID, hence integrally closed in L. So, since Ow is the integral closure of Ov in

L we have

Ow ⊆ Ow̃ ⊆ L

On the other hand Ow is a maximal subring of L. Hence Ow = Ow̃. Implying

w = w̃.

(v) Choose a basis (u1, ..., un) of L over K. Let (α)i≥0 be a Cauchy sequence in

L. Write αi =
n�

j=1

aijuj. where ai ∈ K.

By using lemma 4.1 one can show that for any fixed s ∈ {1, ..., n}, (ais)i≥0

is also a Cauchy sequence. So, we have n Cauchy sequences in K. But we

know that K is comlpete, so (ais)i≥0 is convergent for all s. Say ais → as as

i → ∞. Define α =
n�

j=1

ajuj. Then again by lemma 4.1, αi → α. Hence (L,w)

is complete.

(vi) Choose an element c ∈ K with v(c) = 1. Then

e(w|v) = e(w|v)v(c) = w(c) =
1

f
v(NL/K(c)) =

1

n
v(cn)

Also, choose π ∈ L with w(π) = 1. Then πe(w|v)Ow = cOw and kv = Ov/Mv =

Ov/cOv. Consider the following chain

Ow/π
e(w|v)

Ow � πOw/π
e(w|v)

Ow � ... � πe(w|v)
Ow/π

e(w|v)
Ow

Clearly all factor groups in this chain are kv - vector spaces. We will look at

(πj
Ow/π

e(w|v)
Ow)/(π

j+1
Ow/π

e(w|v)
Ow) � πj

Ow/π
j+1

Ow � Ow/πOw

11



Where the isomorphism are vector space isomorphisms. Hence

dimkv
(Ow/π

e(w|v)
Ow) = e(w|v) dimkv

(Ow/πOw) = e(w|v) dimkv
(lw) = e(w|v)f(w|v)

On the other hand since Ow/πe(w|v)Ow = Ow/cOw, dimkv
(Ow/πe(w|v)Ow) = n.

Observe that the key point we used in the proof of the above theorem is Hensel’s

Lemma while proving that w is a valuation. Therefore we can change the assumption

(K, v) is complete by (K, v) is Henselian and prove the same theorem with a minor

modification on part (v). It should be modified as ”(L,w) is Henselian”. But we

know that algebraic extensions of Henselian fields are Henselian.

12



5 Extension of Valuations, Non-Complete Case

In this section we drop the assumption that (K, v) is complete. As in the previous

section L ⊇ K is a finite separable extension, and [L : K] = n. We are interested in

the question how one can extend v to L in this general case.

In the previous section we said that the complete case will form a basis in this case.

The following lemma is about the topological nature of (K, v) in (L,w) where L/K

is separable and w|v.

Lemma 5.1. Let (K, v) be a discrete valuation field, (L,w) a separable extension.

Consider the completion (�L, �w) of (L,w) with L ⊆ �L. Let K be the topological

closure of K in �L. Then

(i) K is a subfield of �L.

(ii) v = 1
e(w|v) �w : K → Z∪{∞} is a valuation of K, and (K, v) is a completion of

(K, v).

(iii) Let α ∈ L be algebraic over K. Then K(α) is dense in K(α). Moreover, if

L = K(α), then �L = K(α).

Proof. (i) Trivial.

(ii) Clearly, K is dense in K. So, e( �w|v)Z = �w(K×) = �w(K×

). Then it follows

that v = 1
e( �w|v) �w : K

×

→ Z is onto. Hence, v is a valuation of K and v|v and

�w|�v.

Next, we will show that K is complete. Let (an)n be a Cauchy sequence in

K. In particular (an)n is a Cauchy sequence in �L. But �L is complete. Then

there is an a ∈ �L such that an → a. Also, K is closed. So, a ∈ K. Hence K

is complete.

(iii) Let x ∈ K(α). Then write x =
m−1�

j=0

ajα
j, where aj ∈ K. Since K is dense

in K there is a sequence (aji)i in K that converges to aj for each j. So

x = lim
i→∞

m−1�

j=0

ajiα
j.

Now, since L is a finite separable extension, by primitive element theorem we can

assume that L = K(α). Let ( �K, �v) be a completion of (K, v). Let g(X) ∈ K[X] be
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the minimal polynomial of α over K. So, deg(g(X)) = n. In �K[X], g(X) splits into

distinct irreducible factors, say

g(X) = g1(X) · · · gr(X)

where g1(X), ..., gr(X) ∈ �K[X]. Now, choose an αi ∈
�Ka, where �Ka is the algebraic

closure of �K, such that gi(αi) = 0; and set Mi = �K(αi) where deg gi(X) = [ �K(αi) :

�K] = ni. So, n =
r�

i=1

ni.

Let wi be the unique extension of �v to Mi. Furthermore, clearly (Mi, wi) is complete.

Let σi : L → �K(αi) = Mi be the unique embedding over K with σi(α) = αi.

Theorem 5.2. (i) σi(L) is dense in Mi with respect to wi. Let vi = wi ◦ σi, then

vi is a valuation of L extending v. Moreover (Mi, wi, σi) is a completion of

(L, vi). Also e(vi|v) = e(wi|�v) and f(vi|v) = f(wi|�v).

(ii) v1, ..., vr are distinct.

(iii) v1, ..., vr are all extensions of v to L.

(iv)
r�

i=1

e(vi|v)f(vi|v) = n (This equality is known as the fundamental equality).

(v) For γ ∈ L, NL/K(γ) =
r�

i=1

N
Mi/

�K(σiγ), and TrL/K(γ) =
r�

i=1

N
Mi/

�K(σiγ).

Proof. (i) Consider the topological closure σi(L) = K(αi) of σi(L) in Mi. By the

lemma 5.1 K(αi) is dense in K(αi). Therefore K(αi) = K(αi) ⊇ �K(αi) = Mi.

Hence σi(L) is dense in Mi.

The assertions vi is a valuation of L and (Mi, wi, σi) is a completion of (L, vi)

are clear.

By definition e(wi|�v) = e(w|σiL
|v). We claim that e(w|σiL

|v) = e(vi|v). Indeed,

let π ∈ K be a prime element for v. Then observe that vi(π) = wi ◦ σi(π) =

wi(π). Hence vi(π) = e(wi|v). On the other hand e(w|σi
|v) = w|σiL

(π) = wi(π).

Hence e(w|σiL
|v) = e(vi|v).

(ii) Assume that vi = vj. Since (Mi, wi, σi) and (mj, wj, σj) are completions of

(L, vi) there is a unique continuous isomorphism ϕ : Mi → Mj such that

σj = ϕ ◦ σi.

14



Recall that onK ϕ is identity. Also, since ϕ is continuous, ϕ| �K
= id| �K . Observe

that

αj = σj(α) = (ϕ ◦ σi)(α) = ϕ(αi)

Since minimal polynomials of αi and αj over �K ire gi(X) and gj(X) respec-

tively, it follows that i = j.

(iii) Let v0 be a valuation of L with v0|v. Choose a completion (�L0, �v0) of (L, v0)
with L ⊆ �L0. Let K be the topological closure of K in �L0. On K the valuation

is given by

v =
1

e(v0|v)
�v| �K

From Lemma 5.1 we know that (K, v) is a completion of (K, v). Then, as

before, there is a unique continuous isomorphism ϕ0 : K → �K with ϕ0|K
=

id|K .

We also know that �L0 = K(α). Extend ϕ0 to an embedding of �L0 to �Ka, call

it ϕ. We know that g(α) = 0. Since ϕ0|K
= id|K , ϕ(g(α)) = g(ϕ(X)). But

g(X) = g1(X) · · · gr(X). Then there is an i ∈ {1, ..., r} such that ϕ(α) is a

root of gi(X).

Let ψi : �K(ϕ(αi)) → Mi be the unique �K isomorphism with ψi(ϕ(α)) = αi.

Set ϕi : ψi ◦ϕ : �L0 → Mi. Also observe that ϕi|
K

= ϕ0. Consider the valuation

wi ◦ ϕi of �L0. Clearly, wi ◦ ϕi|v. Now, we have two valuations of �L0 extending

v. Namely, �v0 and wi ◦ ϕi.

Since in a finite separable extension of a complete field there is only one ex-

tension of the valuation below, it follows that �v0 = wi ◦ ϕi. For γ ∈ L,

v0(γ) = �v0(γ) = wi(ϕi(γ)) = vi(γ).

(iv) Since (Mi, wi) is the completion of (L, vi) we have,

r�

i=1

e(vi|v)f(vi|v) =
r�

i=1

e(wi|�v)f(wi|�v) =
r�

i=1

ni = n

(v) Look at the embeddings of Mi into �Ka over �K. For any i = 1, ..., r there are

ni many embeddings of Mi into �Ka. Call them τij where j ∈ {1, ..., ni}. Then

τij ◦ σi : L → �Ka is an embedding of L which maps α to one of nj many roots

of gi(X). So, {τij ◦σi : i = 1, ..., r and j = 1, ..., ni} is the set of all embeddings

of L over K.
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Hence, for γ ∈ L

NL/K(γ) =
r�

i=1

ni�

j=1

(τij ◦ σi)(γ) =
r�

i=1

ni�

j=1

τij(σiγ) =
r�

i=1

N
Mi/

�K(σiγ)

Let (K, v) be a valued field. A polynomial f(X) = Xn+an−1Xn−1+ ...+a1X+a0 ∈

K[X] is said to be Eisenstein (with respect to v), if v(ai) ≥ 1 for i = 1, ..., n−1 and

v(a0) = 1. When K is a number field where any valuation comes from a prime ideal

the reason of calling such polynomials Eisenstein becomes clear. In the context of

number fields these are generalizations of Eisenstein polynomials in Q. So in the

context of general valued fields they should be thought as further generalizations.

Theorem 5.3. Let (K, v) be a discrete valuation field. Assume that L = K(α)

is separable over K, and α is a root of an Eisenstein polynomial f(X) = Xn +

an−1Xn−1 + ...+ a0 over K. Let w be an extension of v to L. Then f is irreducible

in K[X], and therefore [L : K] = n. w is the only extension of v to L with e(w|v) = n

and f(w|v) = 1. Moreover w(α) = 1.

Conversely, assume that L/K is a separable extension of degree n, and w is an ex-

tension of v to L such that e(w|v) = n. Then L = K(π) and the minimal polynomial

of π over K is an Eisenstein polynomial with respect to v.

Theorem 5.4. Let (K, v) be discrete valuation field, L a separable extension of K

with [L : K] = n. Suppose that L = K(α), and the minimal polynomial of α, say

g(X), is in Ov[X]. Suppose that g(X) is irreducible over Ov/Mv. Then there isa

unique extension w of v to L, and e(w|v) = 1 and f(w|v) = n.

Conversely, assume there is an extension w of v to L with f(w|v) = n. Then there is

some α ∈ Ow whose minimal polynomial g(X) is in Ov such that g(X) is irreducible

over Ov/Mv.

When e(w|v) = n we say that v is totally ramified in L/K, or (L,w) is an totally

ramified extension of (K, v). When e(w|v) = 1 we say that v is unramified in L or

(L,w) is an unramified extension of (K, v).

Remark that in this situation one can also show that Ow = Ov[α]. Such an extension

Ow is called monogenic. Let (K, v) be a discrete valuation field and (L,w) an

extension. We will say that (L,w) is a monogenic extension of (K, v) if Ow is

monogenic (over Ov). We will show that monogenic extensions have an important

place in the ramification theory of valuations.
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6 Classical Ramification Theory

Let (K, v) be discrete valuation field L/K a finite separable extension. In this section

we will always assume that for an extension w to L, lw is a separable extension of

kv. Number fields, and function fields in one variable over a perfect constant field,

which are classical examples of valued fields, have this property.

Theorem 6.1. Assume that (K, v) is complete and L a finite separable extension of

K of degree [L : K] = n. Let w be the extension of v to L, then e(w|v)f(w|v) = n.

Assume that lw is separable over kv. Then there exists an intermediate field K ⊆

T ⊆ L such that [T : K] = f(w|v) and for the unique valuation ṽ of T extending v,

one has e(ṽ|v) = 1, f(ṽ|v) = f(w|v), e(w|ṽ) = e(w|v) and f(w|ṽ) = 1

Proof. Since lw is a separable extension of kv of degree f(w|v), there is a z ∈ lw such

that its minimal polynomial g(X) over kv is irreducible and of degree f(w|v). Then

we can write g(X) = (X− z)g1(X) ∈ lw[X] where (X− z), and g1(X) are relatively

prime. By Hensel’s Lemma there are monic h1(X), h2(X), h3(X) ∈ Ow[X] with

degrees f(w|v), 1, and f(w|v) − 1 respectively such that h1(X) = g(X), h2(X) =

(X − z), and h1(X) = h2(X)h3(X).

So, h2(X) = X − α for some α ∈ Ow, and h1(α) = 0. Set T = K(α), and ṽ to be

the valuation of T that extends v. Now, [T : K] ≤ f(w|v), but h1(X) = g(X). So,

in fact [T : K] = f(w|v) and f(ṽ|v) = f(w|v) by theorem 5.4. Therefore e(ṽ|v) = 1.

The rest of the proof follows by multiplicativity.

Suppose that L is a Galois extension of K with [L : K] = n and G = Gal(L/K).

Set

W = {w : w is a valuation of L with w|v}

We have already shown that W is finite, say W = {w1, ..., wr}. The group G acts

on W by

σw = w ◦ σ−1

Note that σw|v, since for a ∈ K, (σw)(a) = w(σ−1a) = w(a). Moreover, Oσw =

σ(Ow) and Mσw = σ(Mw).

Theorem 6.2. Let (K, v) be discrete valuation field, L a Galois extension of K,

with G = Gal(L/K). Then all extensions of v to L are conjugate. In group theoretic

terms, the action of G on W is transitive.

Proof. Write L = K(α), and g(X) ∈ K[X] be the minimal polynomial of α over K.

Choose an extension w of v to L and a completion (�L, �w) of (L,w) with L ⊆ �L. Let
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K be the topological closure K in (�L, �w)

v =
1

e(w|v)
�w| �K

We know that (K, v) is a completion of (K, v) and �L = K(α).

Take αi with g(αi) = 0, Mi = K(αi) = K(α) = �L. Then we obtain all extensions of

v to L as �w ◦ σi = w ◦ σi.

Corollary 6.3. Let (K, v) be discrete valuation field, L a Galois extension of K,

with G = Gal(L/K). Then for all extensions w,w� of v to L, e(w|v) = e(w�|v), f(w|v) =

f(w�|v) and n = [L : K] = e(w|v)f(w|v)r where r is the number of extensions of v

to L.

Let (K, v) be a discrete valuation field, and L be a Galois extension of K with

[L : K] = n and Gal(L/K) = G. For an extension w of v to L.

GZ(w|v) = {σ ∈ G : σw = w}

is called the decomposition group of w over v. Also in group theoretic terms this is

the stabilizer of w under the group action.

GT (w|v) = {σ ∈ G : w(σz − z) > 0 for all z ∈ Ow}

is called the inertia group of w|v. Clearly, GT (w|v) ≤ GZ(w|v) ≤ G. Moreover for

a ρ ∈ G, GZ(ρw|v) = ρGZ(w|v)ρ−1 and GT (ρw|v) = ρGT (w|v)ρ−1.

Choose a completion (�L, �w) of (L,w) with L ⊆ �L. If L = K(α) then �L = �K(α), so
�L = KL. By the translation theorem of Galois theory, �L is a Galois extension of �K
with Gal(�L/ �K) = �G. For σ ∈ �G, σ|L

∈ G. This gives an embedding of �G into G.

Therefore we can consider �G as a subgroup of G.

Lemma 6.4. In this situation

(i) |GZ(w|v)| = e(w|v)f(w|v).

(ii) Gal(�L/ �K) = �G = GZ(w|v).

(iii) GZ( �w|�v) = GZ(w|v) and GT ( �w|�v) = GT (w|v).

Theorem 6.5. Let (L,w) be a Galois extension of (K, v), and Gal(L/K) = G.
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Then there is a homomorphism

Φ : GZ(w|v) → Aut(lw/kv)

σ �→ σ

where σ(u + Mw) = σ(u) + Mw. Its kernel is KerΦ = GT (w|v). Moreover, if

kv is perfect, then lw is a Galois extension of kv and Φ : GZ(w|v) → Gal(lw/kv)

is surjective. Hence GT (w|v) � GZ(w|v), (GZ(w|v) : GT (w|v)) = f(w|v), and

|GT (w|v)| = e(w|v).

Proof. First we will show that σ is well defined. Let u ∈ Ow. Then σu ∈ Oσw = Ow

and σ(Mw) ⊆ Mw and Φ is a group homomorphism.

Secondly, let σ ∈ KerΦ. Then σ(u +Mw) = σu +Mw = u +Mw for all u ∈ Ow

if and only if σu − u ∈ Mw for all u ∈ Ow if and only if σ ∈ GT (w|v). Hence

KerΦ = GT (w|v).

Let f(X) ∈ �k�v[X] be the minimal polynomial of α over �k�v, and deg(f(X)) = f(w|v).

Choose g(X) ∈ O�v[X] such that g(X) = f(X), and g(X) is monic of degree f(w|v),

moreover g(X) ∈ �K[X] is irreducible. Consider g(X) mod Mw. Then g(X) =

f(X) = (X − α)l(X) where l(X) ∈ �l �w
Now, by Hensel’s Lemma

g(X) = (X − u)h(X)

in �L[X] where u = α. Since �L is Galois over �K with Galois group �G,

g(X) =
f(w|v)�

i=1

(X − ui)

where ui ∈
�L, u = u1, u1 = α.

Since g(X) ∈ O�v[X], ui ∈ O �w. Then f(X) = g(X) =
f(w|v)�

i=1

(X − ui), with ui ∈
�l �w

pairwise distinct.

Let ρ ∈ Gal(�l �w/ �k�v), then ρ(α) = g(u1 = uj) for some j ≥ 1. Define σ ∈ Gal(�L/ �K) =

GZ(w|v) by σ(u1) = uj. Then σ = ρ. Hence Φ is onto.

Further,

(GZ(w|v) : GT (w|v)) = |GZ(w|v)/GT (w|v)| = |Gal(lw/kv)| = f(w|v)

Then GT (w|v) = e(w|v).

We are also interested in the fixed fields of the groups GZ(w|v) and GT (w|v). The
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fixed field LGZ(w|v)of GZ(w|v) will be called the decomposition field of w|v and de-

noted by Zw|v (or simply by Z when the extension w is clear), and the fixed field

LGT (w|v) will be called the inertia field of w|v and denoted by Tw|v (or simply by T

is the extension w is clear from the context).

Lemma 6.6. Let (K, v) be a discrete valuation field and (L,w) a Galois extension,

and Z and T be the decomposition and inertia fields with the normalized valuations

wZ and wT on them respectively. Then [Z : K] = r, [T : Z] = f(w|v), [L : T ] =

e(w|v) and e(wZ |v) = 1, f(wZ |v) = 1, e(wT |wZ) = 1, f(wT |wZ) = f(w|v), f(w|wT ) =

1, e(w|wT ) = e(w|v).

Corollary 6.7. Let (L,w) be a Galois extension of the discrete valuation field (K, v)

with w|v. Assume that kv is perfect. Let M be an intermediate field, and wM the

restriction of w to M . Then

(i) M ⊆ Z if and only if e(wM |v) = f(wM |v) = 1.

(ii) M ⊇ Z if and only if w is the only extension of wM to L.

(iii) M ⊆ T if and only if e(wM |v) = 1.

(iv) M ⊇ T if and only if w is totally ramified over wM .

We define the higher ramification groups as follows. For any integer i ≥ −1 the ith

ramification group of w|v is

Gi(w|v) = {σ ∈ G : w(σz − z) ≥ i+ 1 for all z ∈ Ow}

One can immediately see that G−1(w|v) = GZ(w|v), and G0(w|v) = GT (w|v). More-

over Gi+1 ≤ Gi(w|v) for all i. Therefore for a fixed w extending v we have a de-

scending chain

GZ(w|v) = G−1(w|v) ≥ GT (w|v) = G0(w|v) ≥ G1(w|v) ≥ ... ≥ 1

This chain has the descending chain condition condition. I.e there is an index j such

that for all i ≥ j Gi(w|v) = 1.

Lemma 6.8. Let σ ∈ Gal(L/K), and i ≥ −1. Then the following are equivalent

(i) σ is trivial on the ring Ow/Mi+1
w

.

(ii) w(σx− x) ≥ i+ 1 for all x ∈ Ow.

20



Lemma 6.9. Let σ ∈ G0(w|v), let i ≥ 0. Then σ ∈ Gi(w|v) if and only if σt/t ≡ 1

mod Mi

w
, where Mw = tOw (i.e. t is a uniformizer).

Lemma 6.10. There is a homomorphism

χ : G0(w|v) → l×
w

with Kerχ = G1(w|v).

Proof. Let t be a w - prime element (i.e. t is a uniformizer of Mw). For σ ∈ G0(w|v)

define

χ(σ) =
σt

t
+Mw ∈ l×

w

Note that since σ ∈ G0(w|v), w(σt) = (σ∗1w)(t) = w(t) = 1. Also remark that the

definition of χ is independent of the choice of the uniformizer t.

Now, we will show that χ is a homomorphism. Let σ, τ ∈ G0(w|v).

χ(στ) =
στt

t
+Mw =

σ(τt)

τt

τt

t
+Mw

τt is also a prime element as w(τt) = τ−1w(t) = w(t) = 1. Hence χ(στ) = χ(σ)χ(τ).

Next, observe that

σ ∈ Kerχ ⇔
σt

t
− 1 ∈ Mw ⇔ w(

σt

t
− 1) > 0

⇔ w(σt− t)− w(t) ≥ 1 ⇔ w(σt− t) ≥ 2 ⇔ σ ∈ G1(w|v).

Corollary 6.11. If Char(lw) = p > 0, then G0 is the semi-direct product of a cyclic

group of order prime to p and a normal subgroup of order pk for some k.

Lemma 6.12. For all i ≥ 1, there is a homomorphism

Ψi : Gi(w|v) → (lw,+)

with KerΨi = Gi+1(w|v).

Proof. Let t be a w - prime element. For σ ∈ Gi(w|v), w(σt − t) ≥ i + 1. Then

σt = t + uσti+1 for some uσ ∈ Ow. Then we define Ψi(σ) = uσ + Mw ∈ lw. Note

that Ψi depends on the choice of t.
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Next, we will show that Ψi is a homomorphism. Let τ ∈ Gi(w|v), and write τt =

t+ uτ ti+1 for some uτ ∈ Ow. Then

στt = σ(t+ uτ t
i+1) = σt+ (σt)i+1σ(uτ ) = σt+ (t+ uσt

i+1)i+1(uτ + tx)

= σt+ ti+1(1 + uσt
i)i+1(uτ + tx) = σt+ ti+1(1 + tiz)(uτ + tx)

= t+ ti+1uσ + ti+1uτ + ti+2r = t+ (uσ + uτ )t
i+1 + ti+2r

= t+ (uσ + uτ + tr)ti+1

Then Ψi(στ) = (uσ + uτ + tr) +Mw = uσ +Mw + uτ +Mw = Ψi(σ) + Ψi(τ).

Next, observe that

σ ∈ KerΨi ⇔ σt = t+ uti+2
⇔ w(σt− t) ≥ i+ 2 ⇔ σ ∈ Gi+1(w|v)

Main properties of the higher ramification groups are given in the following theorem

Theorem 6.13. (i) |G−1(w|v)| = e(w|v)f(w|v).

(ii) |G0(w|v)| = e(w|v).

(iii) Let i ≥ 0, σ ∈ G0(w|v) and t ∈ L with w(t) = 1. Then, σ ∈ Gi(w|v) if and

only if w(σt− t) ≥ i+ 1.

(iv) If Char(kv) = 0 then G1(w|v) = {1} and G0(w|v) is cyclic.

(v) If Char(kv) = p > 0 then Gi+1(w|v)�Gi(w|v) for all i ≥ 1 and Gi(w|v)/Gi+1(w|v)

is isomorphic to a subgroup of (lw,+), hence an elementary p - group.

(vi) If Char(kv) = p > 0 then G1(w|v) �G0(w|v) and G0(w|v)/G1(w|v) is cyclic of

order prime to p.

Proof. (i) Previously we have shown that [L : K] = n = re(w|v)f(w|v) where r

is the number of extensions of v to L. Observe that G−1(w|v) is the stabilizer

of w under the action of G. Moreover, since the action of G on the set of

extensions of v to L is transitive, the orbit length of w is r. Hence, from orbit

stabilizer theorem it follows that |G−1(w|v)| = e(w|v)f(w|v).

(ii) Trivial.

(iii) By corollary 6.7 w is totally ramified over w. Then we know that Ow = OwT
[t]

with w(t) = 1.
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(⇒) Clear.

(⇐) Let σ ∈ G and w(σt − t) ≥ i + 1, take z ∈ Ow. We will show that

w(σz − z) ≥ i+ 1. Write

z =
e(w|v)−1�

j=0

xjt
j

where e(w|v) = [L : T ], and xj ∈ OwT
. Then

σz − z =
e(w|v)−1�

j=0

xj((σt)
j
− tj) =

e(w|v)−1�

j=1

xj((σt)
j
− tj) = (σt− t)y

where y ∈ Ow. So, w(σz − z) ≥ i+ 1.

(iv) By lemma 6.12 G1(w|v) is homomorphic to a subgroup of (lw,+). But in

characteristic 0 no non trivial subgroup of additive subgroups is finite. Hence

G1(w|v) = {1}. Therefore by lemma 6.10 G0(w|v) is a finite subgroup of l×
w
.

Hence it is cyclic.

(v) Follows from lemma 6.12, since additive subgroup of a positive characteristic

is elementary abelian.

(vi) Follows from lemma 6.10.

Consider the filtration with ramification groups

G−1(w|v) ≥ G0(w|v) ≥ G1(w|v) ≥ ... ≥ Gi(w|v) ≥ Gi+1 ≥ ... ≥ 1

Next we will answer the natural question for which indices i we have the situation

Gi(w|v) �= Gi+1(w|v). Such indices are called the ramification jumps. So, in other

words we will answer the question where the ramification jumps can be in this

filtration.

Lemma 6.14. Let σ ∈ Gi(w|v) and τ ∈ Gj(w|v) where i, j ≥ 1. Then [σ, τ ] =

στσ−1τ−1 ∈ Gi+j(w|v) and Ψi+j([σ, τ ]) = (j − i)Ψi(σ)Ψj(τ), where Ψi is the homo-

morphism given in lemma 6.12.

Proof. Let t be a uniformizer of Mw. Then we can write σt = t(1 + a), and

τt = t(1 + b) for some a ∈ Mi

w
, and b ∈ Mj

w
. Therefore στt = t(1 + a+ σb+ aσb),

and τσt = t(1 + b+ τa+ bτa).
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Now, write a = tiα, and b = tjβ for some α, β ∈ Ow. Then

σb = σtj + σβ = tj(1 + a)jσβ

Since σ ∈ Gi(w|v), σβ ≡ β mod Mi+1
w

; and since a ∈ Mi

w
we have (1+a)j ≡ 1+ja

mod Mi+1
w

. So,

σb ≡ βtj(1 + ja) mod M
i+j+1
w

≡ b+ jab mod M
i+j+1
w

Hence

a+ σb+ aσb ≡ a+ b+ (j + 1)ab mod M
i+j+1
w

and similarly

a+ τa+ bτa ≡ a+ b+ (i+ 1)ab mod M
i+j+1
w

Now let τσt = t�. Then

στσ−1τ−1t� = στt = t(1 + a+ σb+ aσb) = t�(1 + a+ σb+ aσb)(1 + b+ τa+ bτa)−1

= t�(1 + c)

where c = (a+σb+aσb−b−τa−bτa)(1+b+τa+bτa)−1 ≡ (j− i)ab mod Mi+j+1
w

.

Hence [σ, τ ] ∈ Gi+j(w|v). Write c = γti+j.

Next, observe that Ψi(σ) = α+Mw,Ψj(τ) = β +Mw, and Ψi+j([σ, τ ]) = γ +Mw.

Therefore,

Ψi+j([σ, τ ]) = (j − i)Ψi(σ)Ψj(τ)

Theorem 6.15. Let i, j ≥ 1. Suppose that Gi(w|v) �= Gi+1(w|v), and Gj(w|v) �=

Gj+1. Then i ≡ j mod p, where p is the characteristic of lw.

Proof. If G1(w|v) = {1} then there is nothing to prove. Observe that this is also

the case when Char(lw) = 0. So we can suppose that Char(lw) = p > 0. Now,

let j be the largest index for which Gj(w|v) �= {1}, and let i > 1 be such that

Gi(w|v) �= Gi+1(w|v). We will show that i ≡ j mod p. Let σ ∈ Gi(w|v)\Gi+1(w|v)

and τ ∈ Gj(w|v) \Gj+1(w|v). By lemma 6.14 [σ, τ ] ∈ Gi+j. Hence [σ, τ ] = 1. Then

Ψi+j([σ, τ ]) = 0, but Ψi(σ),Ψj(τ) �= 0. Therefore i ≡ j mod p.

Theorem 6.16. Consider a separable field extension L of K of degree [L : K] =

n. Let R, S be subrings of K and L respectively such that R ⊆ S. Define the
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complementary module of S/R as

CS/R = {z ∈ L : TrL/K(zS) ⊆ R}

Then

(i) CS/R is an S - module. Also for a basis u1, ..., un of CS/R let u∗

1, ..., u
∗

n
be the

dual basis.

(ii) If
n�

i=1

Rui ⊆ S then CS/R ⊆

n�

i=1

Ru∗

i
.

(iii) If
n�

i=1

Rui = S then CS/R =
n�

i=1

Ru∗

i
.

(iv) Suppose α ∈ L satisfies L = K(α) and S = R[α], and moreover the minimal

polynomial f(X) of α over K is in R[X]. Then

CS/R =
1

f �(α)
S

Proof. (i) Trivial.

(ii) Let z ∈ CS/R ⊆ L. Write
n�

i=1

xiu
∗

i
where xi ∈ K. Since TrL/K(zS) ⊆ R and

uj ∈ S, TrL/K(zuj) ∈ R for all j. Then it follows that

TrL/K(zuj) = TrL/K(uj

n�

i=1

xiu
∗

i
) =

n�

i=1

xiTrL/K(uju
∗

i
) = xj

So, xj ∈ R.

(iii) Trivial.

(iv) Write f(x) = (X − α)(βn−1Xn−1 + βn2X
n−2 + ... + β1X + β0) where βi ∈ L

and βn−1 = 1. The coefficient of Xj in f(X) is in R, hence βj−1 − αβj ∈ R,

for j = 1, ...., n− 1. Also note that αβ0 ∈ R. Then βn−1, ..., β0 ∈ S.

Now, we claim that the dual basis of (1, α, ..., αn−1) is ( β0

f �(α) , ...,
βn−1

f �(α)). Indeed,

consider an algebraically closed field K̃ which contains K and the n distinct

embeddings σ1, ..., σn of L into K̃ over K.
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Set αi = σi(α). Then α1, ..., αn are distinct and f(X) =
n�

j=1

(X − αj). For

0 ≤ l ≤ n− 1 define

gl(X) =

�
n�

j=1

f(X)αl

j

(X − αi)f �(αj)

�
−X l

∈ K̃[X]

Moreover deg gl(X) ≤ n− 1. Observe that gl(αk) = 0 for all k = 1, ..., n, Then

gl(X) is identically zero.

Extend σj to an embedding σj : L[X] → K̃[X]. So,

X l =
n�

j=1

f(X)αl

j

(X − αj)f �(αj)
=

n�

j=1

f(X)σ(αl)

(X − σj(α))σj(f �(α))

=
n�

j=1

σj

�
f(X)αl

(X − α)f �(α)

�
=

n�

j=1

n−1�

i=1

σj

�
βi

αl

f �(α)

�
X i

=
n�

j=1

�
n−1�

i=1

σj

�
βi

αl

f �(α)

��
X i

Let L be a separable extension of K of degree n, and σ1, ..., σn : L → K̃ be the

n distinct embeddings of L into an algebraically closed field K̃ ⊇ K over K. Let

(u1, ..., un) be a basis of L over K. Then recall that the discriminant d(u1, ..., un) is

defined as

d(u1, ..., un) = det(TrL/K(uiuj))i,j=1,...,n

or equivalently as

d(u1, ..., un) = (det(σiuj)i,j=1,...,n)
2

Remark that for the dual basis (u∗

1, ..., u
∗

n
) of (u1, ..., un) and the base change matrix

Y which maps (u∗

1, ..., u
∗

n
) to (u1, ..., un) we have

d(u1, ..., un) = detY

For the rest of this chapter we will assume in addition that (K, v) is complete. So

v has a unique extension to L, as it is customary, say w. Note that due to the first

part of theoerem 5.2 and lemma 6.4 working with the completion of ( �K, �v) does not
change any thing in terms of ramification theory. So, by assuming that (K, v) is

complete we do not sacrifice anything we did up to this point!
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Remark that Ow and Ov are Dedekind rings, so any (fractional) ideal 0 �= A�Ow is of

the form A = Ma

w
for some a ∈ Z. For A = Ma

w
we define NL/K(Ma

w
) = M

rf(w|v)
w .

This is called the ideal norm.

Recall that Ow is a free Ov - module of rank n. Then the complementary module

COw/Ov
is a free Ov - module, and it is also a module over Ow. For the sake of

simplicity we put, CL/K = COw/Ov
. So, CL/K is fractional ideal of Ow. But we know

that Ow ⊆ CL/K . The ideal

Diff(L/K) = C
−1
L/K

is called the different of L/K. Thus, Diff(L/K) �Ow. Hence, Diff(L/K) = Md(w|v)
w

for some d(w|v) ≥ 0. This d(w|v) is called the different exponent of w|v.

The discriminant of L/K is defined as Discr(L/K) = NL/K(Diff(L/K)), which is

an ideal of Ov.

Theorem 6.17. (i) For 0 �= α ∈ L, NL/K(αOw) = NL/K(α)Ov.

(ii) Let A,B be fractional ideals of Ow. Let (u1, ..., un) and (z1, ..., zn) be bases of

A,B over Ov respectively. Write





z1
...

zn



 = X





u1

...

un





for some X ∈ GLn(K). Then NL/K(A−1B) = detX · Ov

(iii) Assume that Ow =
n�

i=1

Ovui. Then CL/K =
n�

i=1

Ovu
∗

i
, and Discr(L/K) =

d(u1, ..., un)Ov.

(iv) Assume that Ow = Ov[α], and let g(X) ∈ Ov[X] be the minimal polynomial of

α over K. Then

Diff(L/K) = g�(α)Ow

Proof. (i) We know that αOw = M
w(α)
w . So, NL/K(αOw) = M

w(α)f(w|v)
w . On the

other hand w(α) = 1
f(w|v)v(NL/K(α)). Then NL/K(α)Ov = M

f(w|v)w(α)
v .

(ii) Choose π ∈ L with w(π) = 1. Write A = πrOw, B = πsOw where r, s ∈ Z.
Then B = πs−rA. So,

n�

i=1

Ovzi = B = πs−r

n�

i=1

Ovui =
n�

i=1

Owπ
s−rui
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Then 



z1
...

zn



 = Y





πs−ru1

...

πs−run



 = Y Z





u1

...

un





Where Y ∈ GLn(Ov), and Z ∈ GLn(K) describes multiplication by πs−r.

So, X = Y Z. Then

detX · Ov = (detY · Ov)(detZ · Ov) = detZ · Ov

= NL/K(π
s−r)Ov = NL/K(π

s−r
Ow) = NL/K(A

−1B)

(iii) Take A = CL/K = Diff(L/K)−1 =
n�

i=1

Ovu
∗

i
, and B = Ow =

n�

i=1

Ovui in the

previous part. Write 



z1
...

zn



 = X





u∗

1
...

u∗

n





Then d(u1, ..., un) = detX. So,

d(u1, ..., un)Ov = detX·Ov = NL/K(A
−1B) = NL/K(Diff(L/K)) = Discr(L/K)

(iv) By theorem 6.16 Diff(L/K) = C
−1
L/K

= g�(α)Ow.

Theorem 6.18. Let K ⊆ M ⊆ L be finite separable extensions of complete discrete

valuation fields with valuations v, v�, w respectively. Then

(i) For any fractional ideal A of Ow, NL/K(A) = NM/K(NL/M(A)).

(ii) Diff(L/K) = Diff(M/K)Diff(L/M).

(iii) d(w|v) = e(w|v�)d(v�|v) + d(w|v�).

(iv) Discr(L/K) = NM/K(Discr(L/M))Discr(M/K)[L:M ].

Proof. (i) Trivial.

(ii) Equivalently we will show that CL/K = CM/KCL/M .

(⊆) Let x ∈ CL/K . Clearly TrL/M(xy) ∈ CM/K . Now, write CM/K = uOv� where

u ∈ M . Then TrL/M(xy) = ut for some t ∈ Ov. So, TrL/M(u−1xy) = t ∈ Ov� .
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So, for all y ∈ Ow, TrL/M((u−1x)y) ∈ Ov� . Then x ∈ uCL/M . Hence x ∈

CL/MCM/K .

(⊇) Let x1 ∈ CM/K , x2 ∈ CL/M , y ∈ Ow. Then

TrL/K(x1x2y) = TrM/K(TrL/M(x1x2y)) = TrM/K(x1TrL/M(x2y)) ∈ Ov

(iii) Follows from the previous part.

(iv)

Discr(L/K) = NL/K(Diff(L/K)) = NL/K(Diff(M/K)Ow)NL/K(Diff(L/M))

= NM/K(NL/M(Diff(M/K)Ow))NM/K(NL/M(Diff(L/M)))

= NM/K(Diff(M/K))[L:M ] Discr(L/M)

= Discr(M/K)[L:M ] Discr(L/M)

Theorem 6.19. (Dedekind’s different theorem) Let (K, v) be a complete discrete

valuation field, L a finite Galois extension of K, and w be the unique extension of

v to L. Assume that lw is a separable extension of kv. Say Diff(L/K) = M
d(w|v)
w .

Then

(i) d(w|v) ≥ e(w|v)− 1.

(ii) d(w|v) = e(w|v)− 1 if and only if Char(kv) � e(w|v).

The case d(w|v) > e(w|v) − 1 is said to be the wild ramification and the case

d(w|v) = e(w|v)− 1 is tame ramification.

Proof. (i) Choose an intermediate field K ⊆ T ⊆ L, and let v� be the canonical

valuation on T extending v, with e(w|v�) = e(w|v) = [L : T ], f(w|v�) = 1, and

e(v�|v) = 1, f(v�|v) = f(w|v) = [T : K].

By, theorem 5.4 there exists an α ∈ T such that Ov� = Ov[α], and let g(X) be

the minimal polynomial of α over K. Then g(X) ∈ Ov[X], and g(X) ∈ kv is

irreducible over, and hence separable. So, it follows that

g�(α) = g�(α) �= 0

Hence g�(α)Ov� = Ov� . So it follows Diff(T/K) = Ov� by theorem 6.17. Then

Diff(L/K) = Diff(T/K)Diff(L/T ) = Diff(L/T )
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Since different is transitive it follows that Md

w
= Diff(L/K) = Diff(L/T ).

Recall that w|v� is totally ramified. So, Ow = O�

v
[π] where π is a prime

element of (L,w).

Moreover, the minimal polynomial of π over T is of the form

h(X) = Xe(w|v) + ae(w|v)−1X
e(w|v)−1 + ...+ a0

with v�(ai) ≥ 1 for all i = 1, ..., e(w|v) − 1, and v�(a0) = 1. By theorem 6.17,

Diff(L/T ) = h�(π)Ow. So, d(w|v) = w(h�(π)).

h�(π) = e(w|v)πe(w|v) + (e(w|v)− 1)ae(w|v)−1π
e(w|v)−2 + ...+ a1

Observe that w(e(w|v)πe(w|v)) ≥ e(w|v)−1 and w((e(w|v)−i)ae(w|v)−iπe(w|v)−i−1) ≥

e(w|v) for all i = 1, ..., e(w|v) − 2 and w(a1) ≥ e(w|v). So, w(h�(π)) ≥

e(w|v)− 1.

(ii) Assume that Char(kv) | e(w|v). So, e(w|v) mod Mv ≡ 0. Which means

e(w|v) ∈ Mv. Therefore v(e(w|v)) ≥ 1. So, w(e(w|v)) ≥ e(w|v). By triangu-

lar inequality, w(h�(π)) ≥ e(w|v).

Conversely, assume that Char(kv) � e(w|v). Then e(w|v) mod Mv �≡ 0. So,

v(e(w|v)) = 0. So, w(e(w|v)) = 0. Then w(e(w|v)πe(w|v)−1) = e(w|v) − 1.

Hence w(h�(π)) = e(w|v)− 1.

Clearly, the assumption that ”lw is separable over kv” is not used in the proof of the

first part of Dedekind’s different theorem. Therefore we can revise this theorem as

follows:

Theorem 6.20. (Dedekind’s different theorem) Let (K, v) be a complete discrete

valuation field, L a finite Galois extension of K, and w be the unique extension of

v to L. Say Diff(L/K) = M
d(w|v)
w . Then

(i) d(w|v) ≥ e(w|v)− 1.

(ii) d(w|v) = e(w|v) − 1 if and only if Char(kv) � e(w|v) and lw is separable over

kv.

Corollary 6.21. The following are equivalent:

(i) e(w|v) = 1.
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(ii) Diff(L/K) = Ow.

(iii) Discr(L/K) = Ov.

Under the assumption that lw is separable over kv the connection between the dif-

ferent and the ramification groups is due to Hilbert.

Theorem 6.22. (Hilbert’s different formula) Let (L,w) be a Galois extension of

(K, v). Then

d(w|v) =
∞�

i=0

(|Gi(w|v)| − 1) = w(g�(α))

where d is the different exponent of w|v, g(X) ∈ K[X] is the minimal polynomial of

α, and Ow = Ov[α].

Proof. First assume that w|v is totally ramified, i.e. e(w|v) = |G| where G =

Gal(L/K). Set ei = |Gi(w|v)|, and e = e0 = |G0(w|v)| = |G|. Write Gi = Gi(w|v)

for the sake of simplicity. Choose a t ∈ L such that w(t) = 1. Then 1, t, ..., te−1 is an

integral basis of Ow. So, d = w(ϕ�(t)) where ϕ(X)Ov[X] is the minimal polynomial

of t over K.

We can write

ϕ(X) =
�

σ∈G

(X − σt)

therefore

ϕ�(X) =
�

σ∈G

�

τ �=σ

(X − τt)

So, ϕ�(t− σt). Then

d = w(±
�

σ �=1

(σt− t)) =
�

σ �=1

w(σt− t) =
∞�

i=0

�

σ∈Gi/Gi+1

w(σt− t) (6.1)

=
∞�

i=0

(ei − ei+1)(i+ 1) =
∞�

i=0

(ei − 1) (6.2)

= (e0 − 1) + (e1 − 1) + ...+ (ej − 1) (6.3)

where j is the minimal index with ej �= 1.

For the general case, let T0 denote the inertia field of w|v and Mw0 = Mw∩T . Then

w0|v is unramified and w|w0 is totally ramified. We know that Gi(w|v) = Gi(w|w0).

Then

d(w|v) = e(w|w0)d(w0|v) + d(w|w0) = d(w|w0) (6.4)
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by part (iii) of theorem 6.18. Now it follows from (6.3) and (6.4).

Corollary 6.23. Let (L,w) be a Galois extension of (K, v), and let (K �, v�) be an

intermediate field with the corresponding normal subgroup H �Gal(L/K). Then

d(v�|v) =
1

e(v�|v)

�

σ �∈H

v�(σα�
− α�)

where Ov� = Ov[α�].
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7 Ramification Theory of Valuations With Insep-

arable Residue Class Field Extensions

In this section we drop the crucial assumption that we made in the classical ramifi-

cation theory, namely the residue class field extension being separable. We will show

that without this assumption some results from the classical ramification theory can

be saved or modified such as Dedekind’s different formula whereas some other results

are not available any longer. We will also consider the monogenic extensions (i.e.

where the valuation ring extension is generated by a single element). Monogenic

extensions should be considered as an intermediate case between the classical ram-

ification theory and the ramification theory of valuations with inseparable residue

class field extension, as we have already shown that separability of residue class field

extension implies monogenity, and we will also show the monogenity assumption is

actually weaker than the separability of the residue class field extension. Also re-

mark that in the classical theory we used the fact that the extension is monogenic

to prove most of the results. So the results from the classical case are also true for

the monogenic case. Furthermore monogenic extensions in the case of Galois p -

extensions will be characterized in this section.

As before, throughout the rest of this section (K, v) will be a complete discrete

valuation field, (L,w) will be an extension. Since we are working with complete

fields, we write eL/K = e(w|v), and fL/K = f(w|v). Furthermore, we will write

eL/K = etame
L/K

ewild
L/K

where etame
L/K

, the tame ramification index of L/K, is the part

of eL/K that is coprime to p. From this point on we drop the assumption ”lw is

separable over kv”. Therefore Char(kv) = p > 0. Since there may be inseparability

in the extension lw/kv we need to revise some definitions about ramification. Let

f s

L/K
= [lw : kv]s, and f i

L/K
= [lw : kv]i, i.e. f s

L/K
and f i

L/K
denotes the separable

and inseparable degree of lw/kv respectively. Whenever the extension L/K is clear

from the context, we will drop it from the indices and write e, f, f i, f s, etame, ewild

for simplicity.

L/K f s

L/K
f i

L/K
e

unramified arbitrary 1 1
tamely ramified arbitrary 1 p � e(w|v)
totally ramified 1 1 arbitrary

totally wildly ramified 1 1 pk

weakly unramified arbitrary arbitrary 1
ferociously ramified 1 arbitrary 1
completely ramified 1 arbitrary pk
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At this point one should remark that we have a monogenic extension whenever

[L : K] = p without the separability condition. Simply, we can take Ow = Ov[α]

where α is w - prime element or a representative of a generator of the residue class

field extension.

Suppose now that L is a Galois extension of K, and let G = Gal(L/K). We can

generalize the notion of ramification groups defined in the previous section. Let

i ≥ −1, and n ≥ 0 be two integers, then the (i, n)th ramification group of L/K is

defined as

Gi,n = {σ ∈ G : w(σx− x) ≥ i+ n, for all x ∈ M
n

w
}

Now observe that that for i ≥ −1 the classical ith ramification group Gi = Gi+1,0.

Also put Hi = Gi,1. Clearly we have a descending chain

G ⊇ H−1 = G−1 ⊇ H0 ⊇ G0 ⊇ H1 ⊇ G1 ⊇ H2... ⊇ {1}

Lemma 7.1. For all i ≥ 1, there is a group homomorphism

Ψi,n : G → Aut(Mn

w
/Mi+n

w
)

where Mn

w
/Mi+n

w
is considered as a ring, with KerΨi,n = Gi,n. Where

Ψi,n(σ) : M
n

w
/Mi+n

w
→ M

n

w
/Mi+n

w

a+M
i+n

w
�→ σa+M

i+n

w

Hence Gi,n are normal subgroups of G. In particular, for n = 0 and n = 1, Gi and

Hi are normal subgroups of G.

Observe that in the case of separable residue class field extension (i.e. when lw is

separable over kv, so f i = 1) we have Gi = Hi for all i ≥ −1. Indeed, let T = LG0

with the corresponding valuation w�. Then we have Ow = OT +Mw since t�
w� = lw.

For i ≥ 1, σ ∈ Hi operates trivially on Mw/Mi+1
w

by lemma 7.1. Similarly, since

Hi ≤ G0, σ operates trivially on Ow. Therefore it operates trivially on Ow/Mi+1
w

.

Hence σ ∈ Gi.

Lemma 7.2. For all i ≥ 1 there is an homomorphism

Φ : Gi → (lw,+)

with KerΦ = Hi+1.
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Lemma 7.3. For all i ≥ 1 there is an homomorphism

Φ : G0 → l∗
w

with KerΦ = H1.

Theorem 7.4. (i) G−1 = H−1 = H0 = G, and |G| = ef .

(ii) |G0| = ef i.

(iii) Recall that Char(kv) = p > 0, then Gi+1�Gi, and Hi+1�Hi. Moreover Hi�Gi−1.

Also Gi/Hi+1 is isomorphic to a subgroup of (lw,+), hence it is an elementary

abelian group of exponent p for all i ≥ 1.

(iv) G0/H1 is cyclic of order etame.

(v) H1 is a p - group and |H1| = ewildf i.

Proof. (i) Since (K, v) is complete, w is the unique extension of v to L. Hence

|G| = |G−1| = ef .

(ii) We will show that lw/kv is normal. Let a ∈ lw, and

P (X) =
�

σ∈G

(X − σa)

Observe that P (X) is a monic polynomial with coefficients in kv. Consider the

reduced polynomial P (X) ∈ kv[X]. Clearly P (X) has σa + Mw as all of its

roots. Hence lw/kw is normal. Moreover, G/G0 � Aut(lw/kv) = Gal(lsep
w

/kv)

where lsep
w

is the separable clossure of lw in kv [3, Chap. I, Sect. 7].

By the previous part we know that |G| = ef , and we just showed that |G/G0| =

f s. Hence |G0| = ef i.

(iii) Follows from Lemma 7.1 and Lemma 7.2.

(iv) By Lemma 7.3 G0/H1 is cyclic and its order is relatively prime to p. As we will

show in the next part H1 is a p - group. Then it follows that |G0/H1| = etame.

(v) Let σ ∈ H1. Then σy− y ∈ M2
w
for all y ∈ Mw. Now let x ∈ Ow and observe

that

σpx− x = σp−1(σx− x) + σp−2(σx− x) + ....+ σ(σx− x) + σx− x
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But since σ ∈ G0 as well, σx − x ∈ Mw. Say σx − x = z ∈ Mw. But then

σz − z ∈ M2
w
. Similarly σ2z − z, ..., σp−1z − z ∈ M2

w
. Hence σx − x ≡ pz

mod M2
w
. On the other hand since Char(lw) = p, p ∈ Mw. So, σx − x ≡ pz

mod M2
w
≡ 0 mod M2

w
. Which means σx − x ∈ M2

w
. Hence σ ∈ G1. But

we know that G1/H2 has exponent p. Therefore (σp)p ∈ H2. If (σp)p �= 1, by

the same argument it is in G2.

We also know that for sufficiently large k, Gk = {1}. And it is clear from the

above argument that σp
k

∈ Gk. Therefore the order of any element of H1 is a

power of p. Hence H1 is a p - group.

Moreover, since |G0| = ef i, and |G0/H1| = etame, it follows |H1| = ewildf i.

By the theorem above T = T0 = LG0 is the maximal unramified extension of K in

L, E1 = LH1 is the maximal tamely ramified extension of K in L. So the associated

tower is as follows:

L

E1

f
i

L/K
e
wild
L/K

T = T0

e
tame
L/K

K

f
s

L/K

If lw/kv is inseparable we can say more about G0. It is a semi-direct product of a

cyclic group of order prime to p and a normal subgroup of order pk for some k by

Corollary 6.11.

Also, de Smit gave some generalizations of Theorem 6.15, which is about the ram-

ification jumps in the classical case, to the double filtration we defined as follows

[4].

Theorem 7.5. If Gal(L/K) is abelian then all i > 0 for which Gi �= Hi+1 are

congruent modulo p where p = Char(lw). Furthermore if there is such an index i for

which Gi �= Hi+1, then all j for which Gj �= Hj are divisible by p.

Actually the first part of the theorem above remains true if Gal(L/K) is not abelian.

Theorem 7.6. Let T = {i > 0 : Gi �= Hi+1} and S = {j > 0 : Hj �= Gj}. Then for

any i1, i2 ∈ T , i1 ≡ i2 mod p and for any j ∈ S with p � j, we have j + i ∈ T for

all i ∈ T . Further, S ⊆ pZ whenever T ∩ pZ �= ∅.
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To prove Theorem 7.5 and Theorem 7.6 one needs to work with the Ov derivations

of the graded algebra
�

i≥0

(Mw/M
i+1
w

) as it is done by de Smit in [4].

In the previous section we showed that in the classical case there is connection

between the different and the ramification groups. Namely, the Hilbert’s different

formula. Remark that Hilbert’s different formula also holds under the weaker as-

sumption that Ow is monogenic over Ov. A formula generalizing theorem 6.22 is

due de Smit [5]. We will give de Smit’s formula.

Let L/K be a Galois extension with Galois group G. We define the function

iG : G → Z ∪ {∞} as iG(1) = ∞, and

iG(σ) = inf
x∈Ow

w(σx− x)

for σ �= 1. Also remark that if Ow = Ov[α], then iG(σ) = w(σα− α).

For any σ ∈ G define aL(σ) to be the ideal generated by {σx− x : x ∈ Ow}. Since

L/K is normal we have aL(σ) = M
iG(σ)
w . The monogenity conductor rL/K is defined

to be the ideal Mn

w
where n is the smallest integer such that there is an α ∈ Ow

with Mn

w
⊆ Ov[α]. Remark that, rL/K = Ow if and only if Ow is monogenic over

Ov.

Since L/K is separable, L = K(α) for some α, then we define the conductor of

Ov[α] as rα = Mn

w
where n is the smallest positive integer with Mn

w
⊆ Ov[α].

Lemma 7.7. There is an element α ∈ Ow such that for any σ ∈ G, aL(σ) =

(σα− α)Ow.

Proof. If Ow is monogenic, say if Ow = Ov[α], then for a prime element t ∈ Ow

aL(σ) = M
iG(σ)
w

= M
w(σα−α)
w

= tw(σα−α)
Ow = tw(σα−α)uOw

where u ∈ Ow∗ such that tw(σα−α)u = σα− α. Hence aw(σ) = (σα− α)Ow.

So, now suppose that Ow is not monogenic. Then kv cannot be perfect. Hence kv is

also infinite. Now, for any σ ∈ G \ {1} consider

σ − 1 : Ow/MvOw → aw(σ)/Mwaw(σ)

a+MvOw �→ (σ − 1)(a) +Mwaw(σ)

Clearly σ − 1 is a non - zero kv - linear map. Moreover

Ker σ − 1 = {a+MvOw : (σ − 1)(Ow) �⊆ (σa− a)Ow}
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Since any vector space over an infinite field cannot be written as a finite union of

proper subspaces, there is an α+MvOw ∈ Ow/MvOw which is not in Kerσ − 1 for

any σ ∈ G \ {1}. Therefore aw(σ) = (σα− α)Ow.

Theorem 7.8.

Diff(L/K)rL/K =
�

σ �=1

aL(σ)

Proof. L = K(α) for some α ∈ Ow. Consider the conductor rα of Ov[α] in Ow.

More precisely rα = {x ∈ Ow : xOw ⊆ Ov[α]}. Then rαDiff(L/K) = f �(α)Ow

where f(X) ∈ K[X] is the minimal polynomial of α. [3]

Now, since

f �(α) =
�

σ �=1

(α− σα) ∈
�

σ �=1

aw(σ)

we have

Diff(L/K)rα ⊆

�

σ �=1

aw(σ)

Clearly, rL/K = rα. So, we have the inclusion ⊆.

On the other hand observe that α +MvOw �∈ Ker σ − 1 for all σ ∈ G \ {1} where

σ − 1 is as in lemma 7.7. Then by the same lemma aL(σ) = (σα−α)Ow. Therefore

�

σ �=1

aL(σ) = f �(α)Ow

Now by the above theorem we can give a generalization of the Hilbert’s different

formula to non monogenic case, which is due to Bart de Smit [5] as follows:

d(w|v) + n =
�

σ �=1

iG(σ) =
∞�

i=0

(|Gi| − 1) (7.1)

where n is the smallest positive integer for which there is an α ∈ Ow with Mn

w
⊆

Ov[α], i.e. rα = Mn

w
.

In the next several results we will consider the ramification groups of the interme-

diate fields of the Galois extension L/K.

Lemma 7.9. Let K � be an intermediate field of L/K (i.e. K ⊆ K � ⊆ L). Then for

any K - embedding τ : K � → L

aK�(τ) |
�

σ|
K�=τ

aL(σ)
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where the product ranges over all σ ∈ G such that σ|
K� = τ .

Proof. By lemma 7.7 there is an α ∈ Ow with K = L(α) such that aL(σ) = (σα −

α)Ow for all σ ∈ G. Let f ∈ Ov� [X] be the minimal polynomial of α over K � and v�

is the corresponding valuation on K �. Then

f(X) =
�

σ∈G�

(X − σα)

where G� = Gal(L/K �). Therefore

τ(f)(X) =
�

σ|
K�=τ

(X − σα)

Also observe that τ(f)(X)− f(X) ∈ aK�(τ)[X]. Therefore

�

σ|
K�=τ

aL(σ) =




�

σ|
K�=τ

(σα− α)



Ow = τ(f)(α)Ow = (τ(f)− f)(α)Ow ⊆ aK�(τ)

Let (K �, v�) be an intermediate field extension of the Galois extension (L,w) of

(K, v). By the previous theorem, for any τ ∈ Gal(K �/K) there is an ideal d(τ) of

Ow such that d(τ)aK�(τ) =
�

σ|
K�=τ

aL(σ).

The lemma above also provides us with some immediate information about ramifica-

tion groups of intermediate fields. Namely for a normal subgroup H�G = Gal(L/K)

we will find upper and lower bounds for iG/H(τ). Recall that for any a ∈ K �, we

have w(a) = e(w|v�)v�(a). Consider the inclusion

�

σ|
K�=τ

aL(σ) ⊆ aK�(τ)

as it is shown to be true in the lemma above. Now take w - valuation of both sides

to get �

σ|
K�=τ

iG(σ) ≥ e(w|v�)iG/H(τ)

On the other hand, for τ ∈ G/H let σ ∈ G such that σ|
K� = τ . Then clearly

aL(σ) | aK�(τ), i.e. aK�(τ) ⊆ aL(σ). Again, take w - valuation of both sides to get

e(w|v�)iG/H(τ) = iG(σ)
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Therefore we can write

1

e(w|v�)
sup

σ|
K�=τ

iG(σ) ≤ iG/H(τ) ≤
1

e(w|v�)

�

σ|
K�=τ

iG(σ) (7.2)

Latter, by an example, we will show that these are the best possible bounds which

can be found by just considering the ideals aL(σ) and aK�(τ).

Lemma 7.10. Let (L,w) be a Galois extension of (K, v) and (K �, v�) be an inter-

mediate field. Then

rL/K�rK�/K

�

τ �=1

d(τ) = rL/K

where τ = Gal(K �/K) \ {1}.

Proof. First of all write

Diff(L/K)rL/K =
�

σ �=1

aL(σ) =
�

σ|
K� �=1

aL(σ) ·
�

σ|
K�=1

aL(σ)

Next observe that the Galois automorphism σ ∈ Gal(L/K) with σ|
K� = 1 are exactly

the Galois automorphisms of L over K �. Hence, by theorem 7.8

�

σ|
K�=1

aL(σ) = rL/K�Diff(L/K �)

Now, recall that the Galois group Gal(K �/K) is finite. Say, τ1, ..., τn−1 are its non -

identity elements. Then we can write

�

σ|
K� �=1

aL(σ) =
�

σ|
K�=τ1

aL(σ) · · ·
�

σ|
K�=τn−1

aL(σ)

Observe that
�

σ|
K�=τi

aL(σ) = d(τi)aK�(τi) for all i = 1, ..., n− 1 by definition of d(τ).

Therefore,

�

σ|
K� �=1

aL(σ) =
n−1�

i=1

aK�(τi) ·
n−1�

i=1

d(τi) = Diff(K �)rK�/K

n−1�

i=1

d(τi)

Hence

Diff(L/K)rL/K = rL/K�Diff(L/K �)Diff(K �)rK�/K

n−1�

i=1

d(τi)

By cancellation of differents we get the desired result.

40



Corollary 7.11. Let (L,w) be a Galois extension of (K, v) and (K �, v�) be an in-

termediate field. Then rL/K�rK�/K | rL/K. Moreover, if Ow is monogenic over Ov,

then Ov� is also monogenic over Ov; furthermore in this situation we have equality

in theorem 7.8, and d(τ) = 1 where τ ∈ Gal(K �/K) \ {1}.

By the above corollary, on the the right side of the inequality (7.2) becomes an

equality in the monogenic case.

For a proof see [5].

Theorem 7.12. (Herbrand’s property) Let (L,w) be a monogenic extension of

(K, v), and H � G = Gal(L/K). Then for all τ ∈ G/H

iG/H(τ) =
1

e(w|v�)

�

σ|
K�=τ

iG(σ)

where v� is the corresponding valuation on K � = LH .

Proof. If τ = 1 both sides are equal to ∞. Let α, β be the generators of Ow and OwH

over Ov respectively. Now e(w|v�)iG/H(τ) = w(τβ − β), and iG(σ) = w(σα − α).

Choose a σ ∈ G such that σ = τ . Then the other representatives are of the form σρ

for ρ ∈ H.

Now we will show that a = σβ − β and b =
�

ρ∈H

(σρα − α) generate the same ideal

of Ow. So, let f(X) ∈ OwH
[X] be the minimal polynomial of α over T . Then

f(X) =
�

ρ∈H

(X − ρα)

Then clearly

σ(f)(X)
�

ρ∈H

(X − σρα)

Now observe that all coefficients of σ(f) − f are divisible by σβ − β. Therefore

a = σβ − β divides σ(f)(α)− f(α) = σ(f)(α) = ±b.

Next, we will show that b divides a. Observe that β = g(α) for some g ∈ Ov[X].

Then α is a root of the polynomial g(X)− β. Moreover all of its coefficients are in

OwH
. Hence, it is divisible by f . Say

g(X)− β = f(X)h(X)

for some h(X) ∈ OwH
[X]. By applying σ to this equality and evaluating at α we

get

β − σβ = σ(f)(α)σ(h)(α)
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Hence b = ±σ(f)(α) divides a.

In the classical case Herbrand’s property already tells what are the ramification

groups of the intermediate fields of the Galois extension L/K in terms of the ram-

ification groups of L/K. Although we will show that the ramification groups of an

intermediate field cannot be determined by the ramification groups of L/K.

Corollary 7.13. Let (L,w) be a Galois extension of (K, v) with Galois group G =

Gal(L/K). Assume that lw is separable over kv. Consider the quotient G/Gj. It is

the Galois group of K � = LGj . Then (G/Gj)i = Gi/Gj for i ≤ j, and (G/Gj)i = {1}

for i ≥ j.

Proof. Clearly, we have

G0/Gj ⊆ G1/Gj ⊆ ... ⊆ Gi/Gj ⊆ ... ⊆ Gj−1/Gj ⊆ Gj/Gj = {1}

where i ≤ j. In other words, the quotients Gi/Gj forms a decreasing filtration of

the Galois group G/Gj of K �. Let τ ∈ G/H \ {1}. Then there is a unique i < j for

which τ ∈ Gi/Gj but τ �∈ Gi+1/Gj.

Let σ ∈ G be a representative of τ . Then σ ∈ Gi but σ �∈ Gi+1. So iG(σ) = i + 1.

Also, sinceGj ≤ G0 the extension L/K � is totally ramified by corollary 6.7. Moreover

|Gj| = e(w|v�) where w and v� are the valuations on L and K � respectively. By

Herbrand’s property

iG/Gj
(τ) =

1

e(w|v�)

�

σ|
K�=τ

iG(σ) = i+ 1

Therefore the filtration given by Gi/Gj as above is the same as the filtration (G/Gj)i

for i ≤ j. A fortiori we have (G/Gj)i = Gi/Gj for i ≤ j.

Remark that one can generalize corollary 7.13 for an arbitrary normal subgroup

of Gal(L/K). But for this one needs to modify the numbering of the ramification

groups, more precisely one needs the so called upper numbering of ramification groups

to generalize corollary 7.13 for arbitrary normal subgroups [3]. We will not define

the upper numbering in this thesis, but one should also remark that there is no

satisfactory definition of the upper numbering of ramification groups in the case of

inseparable residue class field extensions [4].

Now we will show that the previous lemma about ramification groups of intermediate

fields of L/K in the classical case cannot be generalized.

42



Example 7.14. Let k be an imperfect field of characteristic p. Consider the field

of formal Laurent series over k, say K = k((t)) with the natural valuation on it;

denoted by v. Fix s ∈ {1, ..., p}, and let K � = K(π) where π is a root of the

polynomial f(X) = Xp − ts(p−1)X − t ∈ Ov[X]. Observe that f(X) is an Eisenstein

polynomial with respect to v. Therefore [K � : K] = p, e(v�|v) = p and v�(π) = 1.

Also, K �/K is Galois with the Galois group G = �τ |τ : π �→ π + ts�. Moreover,

as Char(kv) | e(v�|v), K � is a wildly ramified extension of K. More precisely K � is

totally wildly ramified! Since π is a v� - prime element, Ov� = Ov[π].

Now, let a ∈ k \ kp, and L = K �(α) where α is a root of g(X) = Xp − t2(p−1) − a−

tp−s(1− tp−1)π ∈ K �[X], denote the extension of v� to L by w. Then L/K � is Galois

with the Galois group H = �σ|σ : α �→ α+ t2�. Observe that lw = l�
v
(α), moreover it

is purely inseparable. Hence we also have Ow = Ov� [α].

We can extend σ to L by σ : α �→ α+ t. Moreover Gal(L/K) = �τ, σ� is elementary

abelian of order p2. The filtration of Gal(L/K) with ramification groups of the

extension L/K can be computed as follows:

G = G0 = ... = Gp−1 �= Gp = �σ� = ... = G2p−1 �= G2p = {1}

On the other hand observe that the first trivial ramification group of K �/K is (Gal(L/K)/H)sp.

If one considers s > 1, the lemma above, if it was true, would yield that Gp/H =

(Gal(L/K)/H)p = {1}. Which is not the case as we have shown. Therefore, the

previous lemma even cannot be generalized.

Next, we will verify the bounds given by (7.2). Consider the subgroup Gal(L/K)/H =

G. One can easily compute that the given inequality becomes

p ≤ sp ≤ p2

Observe that when s = p we have equality on the right hand side, and we have

equality on the left hand side when s = 1. Therefore, the bound given by (7.2) can

be reached.

Theorem 7.15. Let (L,w) be a finite Galois p - extension of (K, v). Then the

following are equivalent

(i) Ow = Ov[α] for some α ∈ L.

(ii) For any normal subgroup H � G the Herbrand property holds.

(iii) the Hilbert formula holds.
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Proof. (i ⇒ ii) Proved in theorem 7.12.

(i ⇒ iii) Proved in the previous section as Hilbert’s different formula (see theo-

rem 6.22).

(iii ⇒ i) Follows from the formula (7.1). Since Hilbert’s formula holds, n = 0 in the

formula (7.1). Hence Ow is monogenic over Ov.

(ii ⇒ i) Since L/K is a Galois p - extension, [L : K] = pn. We will proceed by

induction on n. If n = 1, as there is no non trivial intermediate extension, there is

nothing to be shown.

Next, assume this implication holds for n− 1. Let H � G with |H| = pn−1, and put

LH = K � with v� as the corresponding valuation. By definition

d(τ)aK�(τ) =
�

σ|
K�=τ

aL(σ)

for all τ ∈ Gal(K �/K) � G/H. Now by taking valuation (with respect to w) of both

sides we get

w(d(τ)) + iG/H(τ) =
�

σ|
K�

iG(σ)

Since Herbrand property holds w(d(τ)) = 0. Implying that d(τ) = Ow. Therefore

by lemma 7.10 we have

rL/K�rK�/K = rL/K

Since [K � : K] = p, it is monogenic and rK�/K = Ov� .

Next, A � H be a normal subgroup, s ∈ H, and LA = K̃ with the corresponding

valuation ṽ. Now, we will show that

iH/A(ρ) =
1

e(w|ṽ)

�

s|
K̃

=ρ

iH(s)

for all ρ ∈ H/A, where s ∈ H. Then, by inductive hypothesis it will follow that Ow

is monogenic over O�

v
.

Indeed suppose that ρ ∈ H/A and s ∈ with s|
K̃
= ρ. Then

iH/A(ρ) = inf
x∈Oṽ

ṽ(ρx− x) = iG/T (ρ)
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Observe that

iH/A(ρ) = iG/A(ρ) =
1

e(w|ṽ)

�

s|
K̃

=ρ,s∈G

iG(s) =

=
1

e(w|ṽ)

�

s|
K̃

=ρ,s∈H

iG(s) +
1

e(w|ṽ)

�

s|
K̃

=ρ,s∈G\H

iG(s) =

=
1

e(w|ṽ)

�

s|
K̃

=ρ,s∈G

iH(s)

since the second sum
�

s|
K̃

=ρ,s∈G\H

iG(s) is empty. Then by inductive hypothesis Ow

is monogenic over Ov� . Hence rL/K� = Ow. Then rL/K = Ov�Ow = Ow, since

rL/K�rK�/K = rL/K .

Remark that the assumption that L/K is a p - extension is only used at proving

the implication (ii ⇒ i). The theorem can still be proved if we interchange this

assumption with L/K is completely ramified [7]. We can say that theorem 7.15

characterizes the monogenic extensions.

Now we will give an example of a monogenic extension with inseparable residue class

field extension to verify that being monogenic is indeed more general then having a

separable residue class field extension.

Example 7.16. Let (K, v) be a discrete valuation field of characteristic 0. Let

ζp2 ∈ K be primitive p2
th

root of unity. Let L = K(α) where α is a root of the

polynomial f(X) = Xp
2
− (1 + uπ)ap where a, u ∈ O∗

v
, a �∈ kp

v
, and π is a prime

element of (K, v). Observe that α
p
2

Ap = 1 + uπ. Hence αp

A
= 1 in kv. Therefore,

αp = a ∈ kv \ kp

v
. Hence α �∈ kv. So, α is purely inseparable over kv; implying

f i ≥ p.

Next, we will show that e(w|v) ≥ p. Write

�
αp

a
− 1

�p

=

�
αp

a

�p

− 1 +

�
p

1

��
αp

a

�p−1

+ ...+

�
p

p− 1

�

= uπ +

�
p

1

��
αp

a

�p−1

+ ...+

�
p

p− 1

�

Now by taking valuation under w of the above equation we get p | eL/K. Implying,

e(w|v) ≥ p.

The facts eL/K ≥ p and fi ≥ p together with the fundamental equality yields that

eL/K = p = f i. So lw is not separable over kv. Also by checking Herbrand property
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one can show Ow = Ov[α].

We have shown that although monogenity assumption is an actual weakening of

the separability assumption of residue class field, many of the nice properties from

the classical theory such as Hilbert different formula and Herbrand property can be

saved. We will show by an example, given by Spriano [6], in the general case nice

properties of the classical (and monogenic) case cannot be saved further.

Lemma 7.17. Let L/K be an extension of complete fields with the corresponding

valuations v and w. Let π ∈ L be an w - prime element. Assume θ1, ..., θf(w|v) ∈ Ow

such that θ1, ..., θf(w|v) is a basis of lw over kv. Then {θiπj : 1 ≤ i ≤ f(w|v), 0 ≤ j ≤

e(w|v)− 1} forms a basis of Ow over Ov, and a basis of L over K.

Example 7.18. Let (K, v) be a complete field of characteristic 0. Let kv = F2(u1, u2),

and a, b ∈ Ov such that a = u1 and b = u2. Also assume v(2) = 4. Consider

f(X) = X4 − aπX2 + b ∈ Ov[X]. Clearly f(X) is irreducible.

Define L to be the splitting field of f(X). Let α, β be roots of f(X) such that β �= ±α.

Then K(α) is ferociously ramified over K and moreover [K(α) : K] = 4. Also the

Eisenstein polynomial g(X) = X2 − 2αX − π(a− 2α2/π) is the minimal polynomial

of α + β. Therefore L = K(α + β) is totally ramified over K(α), and e(L/K) = 2.

Hence [L : K] = 8. Observe that by lemma 7.17 Ow = Ov[α, α + β]. Then by

theorem 7.15, Herbrand property and Hilbert’s different formula also fails to hold

for L/K.
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