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Abstract

We first study the ring of g-polynomials over I, by constructing an isomorphism
between this ring and the polynomial ring over I, and by presenting several important
facts about the polynomials in this ring. We also give characterizations for permutation
polynomials of [F,,» derived from p-polynomials over [F,», based on a paper of P. Charpin
and G. Kyureghyan. Furthermore, we present several results on g-polynomials over F»

with kernel of any given dimension, following a paper by S. Ling and L.J. Qu.



SONLU CISIMLER UZERINDE DOGRUSALLASTIRILAN POLINOMLAR

Leyla Parlar
Matematik, Yiksek Lisans Tezi, 2012

Tez Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Dogrusallagtirilan polinomlar, permiitasyon polinomlari, p’ye 1

gonderimler.

Ozet

Ilk olarak, [F, iizerinde g-polinomlarinin olusturdugu halka ile I, tizerindeki polinom
halkas1 arasinda bir izomorfizma kurulmug ve bu polinomlarin birka¢ onemli 6zelligi
sunulmustur. Ayrica P. Charpin ve G. Kyureghyan’a ait bir makaleye dayanarak, F»
tizerinde p-polinomlar1 kullanilarak elde edilen F,» tizerinde permiitasyon polinom-
lar1 i¢in tamimlamalar verilmistir. Son olarak S. Ling ve L.J. Qu’ya ait bir makale
dogrultusunda, c¢ekirdegi herhangi bir boyuta sahip olan Fg» tizerinde g-polinomlar:

hakkinda birkag¢ sonuca yer verilmistir.
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Introduction

The class of linearized polynomials over finite fields constitutes a challenging study
area. Let ¢ be a prime power and I, the finite field of order ¢q. Further, let F be an
algebraic closure of F,. We investigate linearized polynomials over finite fields, i.e.,

polynomials of the form

L(z) = Zaixqi, where o; € F. (%)
=0
We denote the set of polynomials of type (*) by Ore,(F), referring to Ore [1] in which
the theory of linearized polynomials over finite fields is developed. This thesis ap-
proaches the set Ore,(F) in terms of three main aspects, which we describe below after
fixing some notations.
Any polynomial F'(z) € Fyn[z], defines a mapping
Fpn — Fgn

F
a = F(a),

which is called the associated mapping of F(x). During this paper, F(x) denotes a
polynomial and F' denotes the associated mapping of the polynomial. If F'(x) is of the
form (*), then Ker(F') and Im(F") denote the kernel and the image of F, respectively.
For such a polynomial, we can use the phrase “kernel of F(z)” to refer Ker(F). A
polynomial F(z) is called a permutation polynomial of Fy» if the mapping F' is a
permutation of Fyn. Tr(z) is the polynomial defining the trace function from Fy» to
[F,, which is given by

Tr(z) =z +a27+a% +-- 27"

If ¢ = p is a prime number, then T'r(z) is called the absolute trace function of Fyn.

e In Chapter 1, we deal with the polynomials of the form (*) whose coefficients
are in F,, namely, ¢-polynomials over F,. These polynomials form a ring under
the operations of addition and composition. We focus on the results of the
isomorphism between this ring and the polynomial ring over [F,. Further, we

point out several important properties of this special type of polynomials.

e In Chapter 2, we assume that ¢ is a prime number, say p, and aim to derive
permutation polynomials of F,» by using the polynomials of the form (*) whose

coefficients are in F,,n C IF.

X



e In Chapter 3, we give several representations and the number of linearized poly-
nomials of type (*) whose coeflicients are in F;» and whose kernel is of any given

dimension, which arises as a problem in Chapter 2.



Linearized Polynomials over [,

Throughout this thesis, let F, be a finite field with ¢ elements and F an algebraic
closure of [F,. In this section, we investigate the set of g-polynomials over F,, which

forms a special class of polynomials over F,.

n

Definition 1.1. (i) A polynomial of the form L(z) = Zaixqi with coefficients in
i=0
[F, is called a g-polynomial over F,,.

(ii) Denote
Ore,(F,) = {L(:C) = Zaixqi, where a; € Fq} and
i=0

Ore,(F) = {L(x) = Zaixqi, where «; € IF}
i=0

Remark 1.2. (i) Clearly, Ore,(F,) is a vector space over F,.
(ii) For any L(z) € Orey(F,), o, € F and c € F,

L(B+~) = L(B)+ L(v) as well as (1.1)
L(eB) = cL(B) (12)

Because of this fact, one uses the term linearized polynomials over F, instead of
g-polynomials over F . In other words, the associated mapping L : F — F of L(x) is a

linear operator on I, regarded as a vector space over [F,.

Theorem 1.3. Let L(z) € Ore,(F,) be nonzero. Then either each root of L(x) in F
15 simple or each of them has the same multiplicity, a power of q. Further, the roots

form a linear subspace of F, where F is considered as a vector space over IFy.

Proof. The fact that the roots form a linear subspace of F follows from (1.1) and (1.2).
Let L(z) = Y. ya;a?, then L'(x) = ag. If ag # 0 then all the roots of L(z) are simple.



Otherwise, there exists a; such that a; # 0 and a; = 0 for all ¢ < k. Since a; € F,
k
implies a] = a;, we can write

k

n n n q
L(z) = Zaimqi = Z a?kxqi = (Z aixqik> .

i=k i=k i=k

Since ,
(Z O‘ﬂ?qi_k> =a; # 0,
i=k

L(z) is the ¢*th power of a linearized polynomial over F, having only simple roots,
which concludes the proof. O]

There is a partial converse for Theorem 1.3, which follows from the following lemma.

Lemma 1.4. Let (31, Ba, ..., B, be elements of F. Then

B gL opr gt

- n-l /
ﬁ:2 5:2 ﬁz 52: :&H H (@,H_chﬁk), (1.3)

k=1

Bn BI BT . It

and so the determinant is nonzero if and only if By, Bo, ..., By are linearly independent

over .

Proof. Denote by D,, € F the determinant on the left-hand side. We prove that D,, is
equal to the given formula by induction on n. The basis step, n = 1, is trivial if the
empty product is taken as 1. Assume that the formula is shown for some n > 1. Define

the polynomial
n—1 n
P BL - BL B

n—1 n

Pr B3 - By B

-1
Bo BL -+ BL BT
n—1 n

x z¢9 ... x4 x4

Note that o
D(z) = D,z?" + Z az?
i=0
where a; € F for 0 <i <n — 1. Thus, D(z) € Ore,(F). Observe that
D(Bx) =0for 1 <k <n.
So by Theorem 1.3, we have
D(cify+ -+ cafln) =0

2



for any ¢, € Fy, where 1 < k < n. First assume that 3, s, ..., 5, are linearly indepen-
dent over IF,. Then there are exactly ¢" distinct linear combinations of 3i, 52, ..., 5,

over F . Since deg(D(z)) = ¢", D(x) has the factorization

D(z) = D, H (m — chﬁk> (1.4)

c1,...,cn€Fq k=1

Now assume that (3, s, ..., 3, are linearly dependent over F,. Then D, = 0 by the

Z biBr =0
h—1

inductive hypothesis and

for some by, ...,b, € F;, not all of which are 0. So
n n ¢
Z bkﬁgj = <Z bkﬁk) =0
k=1 k=1
for j = 0,1,...,n. Then the first n row vectors in the determinant defining D(z) are

linearly dependent over F,, i.e., D(z) = 0. Thus, (1.4) is also satisfied in this case.

Therefore, we can use the equation (1.4) to conclude that

Dypiy = D(Brt1)

= Dn H (/Bn-i-l - Z Ckﬁk:)

k=1

J
= 5 H H (5j+1 - Z Ckﬁk) )
' k=1
that is, the formula (1.3) holds for n + 1. O

Theorem 1.5. Let U be a finite dimensional linear subspace of I, considered as a

vector space over F, and k > 0. Then

L(z) = [[ (@ = B)" € Ore,(F).

BeU

Proof. If L(x) € Ore,(F) then L(z)? € Ore,(F), too. So it is enough to show that
L(x) is a g-polynomial over F when k = 0. Let {/31, 52, ..., 8.} be a basis of U over F,
and let D,, and D(z) be defined as in the proof of Lemma 1.4. Then D,, # 0 and we

have

L) = J]-p)

BeU
= H (56 - Z Ckﬁk)
c1,...,cn€Fq k=1
= D,'D(x)
by (1.4). Thus, the fact that D(z) € Ore,(F) completes the proof. O

3



The set of linearized polynomials is not closed under ordinary multiplication whereas
it is closed under composition. Here, we use the phrase symbolic multiplication to refer

to the composition operation in the set of linearized polynomials and denote it by
Ly(2) ® La(x) = Ly(La(x)).

From now on, we consider only the space Ore,(F,) € Ore,(F). Observe that

Orey(F,) is closed under symbolic multiplication. Moreover, for L;(z) = Zaixqi,
i=0

x) = Z bjxqj € Orey(F,), we have

=0
Ly(z) ® Ly(x Z a; Z A z”: zm: a;bjz?
=0 7=0 =0 j=0

= ZbZ Pat"" = Ly(x) ® L(w),

that is, symbolic multiplication is commutative in Ore,(F,). So that Ore,(FF,) forms
a commutative ring under the operations of symbolic multiplication and ordinary ad-
dition. In addition, it can be related to F,[x] under conventional arithmetic by the

following concept.

Definition 1.6. The polynomials [(x Za x' and L(z Za 27 over F are

=0
called g-associates of each other. More spec1ﬁcally, [(z) is the conventional g-associate

of L(x) and L(z) is the linearized g-associate of I(x).

Lemma 1.7. Let Li(z), Ly(x) € Orey(F,) with conventional g-associates l1(x) and
lo(x). Then l(z) = l1(x)ls(z) and L(x) = Li(z) @ Lo(z) are g-associates of each other
as well as ly(z) + lo(x) and Li(x) + La(x) are g-associates of each other.

Proof. Let Li(x Z@l , = Z b]-xqj. Then
§=0
n m _ q' n m o
Ll(l’) & L2(I‘) = Zai (ijxqj> = Zaibjl’q“—].

i=0 §=0 i=0 j=0

On the other hand,
li(x)ly(z) = Z a;x’' Z bjz! = Z abjx’ ™.
i=0 §=0 i=0 j=0

The other argument that I;(z) + lo(z) and Lq(z) + Lo(x) are g-associates of each other
is obvious; hence, we are done. O



Thanks to Lemma 1.7, we get an important result that the ring of polynomials over

[F, and the ring of ¢g-polynomials over I, are isomorphic to each other.

Theorem 1.8. The mapping ¢ : (F,[z],+,.) = (Ore,(F,), +, ®) which is given by
[(x) — L(x),

where I(x) and L(x) are g-associates of each other, is a ring isomorphism.

Proof. Clearly, ¢ is bijection. Note that

o(li(7)la(7)) = Li(7) ® La(w)

= ¢(h(2)) ® o(l2(x))
and
o(li(z) + l(x) = Li(x) + La()
= ¢(li(z)) + o(l2())
hold by Lemma 1.7. Therefore, ¢ is a ring isomorphism. O

Being isomorphic to F,[x], Ore,(F,) is a unique factorization domain with the iden-
tity element z and unit elements cz, where ¢ € F,. Also the notion of being irreducible
is adapted as being symbolically irreducible, i.e., a g-polynomial L(x) is symbolically
irreducible over F, if and only if its conventional g-associate () is irreducible over F,.

Moreover, one says that L(z) € Ore,(F,) is symbolically divisible by Li(x) €
Orey(F,) if L(z) = Li(x) ® La(x) for some Ly(x) € Ore,(F,). Denote by Ll(x)}®L(x)
the fact that Li(x) symbolically divides L(x). By this notion, the following corollary

is immediate from Theorem 1.8.

Corollary 1.9. Let Li(z), L(x) € Ore,(F,) with conventional g-associates ly(z) and
l(z). Then Ll(x)|®L(x) if and only if Iy (z)|l(z).

Now we indicate an important result that whereas symbolic multiplication and
ordinary multiplication are different operations, symbolic division and ordinary division
are equivalent in Ore,(F,).

Theorem 1.10. Let Ly(x), L(z) € Orey(F,) with conventional q-associates l;(x) and

[(x). Then the following properties are equivalent:
) L), L),

(i) Li(2)|L()

(iid) L(z)]l(x).



Proof. The equivalence of (i) and (¢i7) follows from Corollary 1.9. To complete the
proof, first assume (i) and let L(x) = L;(z) ® Lo(z) for some Lo(z) € Ore,(F,). Then

L(z) = Li(z) ® La(x) = La(z) ® L1(x) = Lao(L1(z)),

which implies Ll(m)‘L(x). For the converse, assume L (z)|L(x) and apply the division

algorithm to write
l(z) = k(z)li(x) + r(x), where deg(r(z)) < deg(li(z)).
With the linearized g-associates K (x) and R(z) of k(x) and r(z), respectively, we get
L(z) = K(x) ® Li(z) + R(z), where deg(R(x)) < deg(L1(x)).
Since (7) implies (7i), we get
Ll(x)|K(m) ® Ly(z).
So Ly(z)| R(x), which is possible only if R = 0. Thus we conclude that L (z) ‘®L(:c). O

As an analog of greatest common divisor, we consider greatest common symbolic
diwvisor, gcdg, for two or more g-polynomials over F,, not all of which are 0. Let
Lyi(x),...,Ly(x) € Ore,(F,) be nonzero and let

d(x) := ged(Li(x),...,Lg(z)) and
D(z) = gedg(Ly(z),. .., L(x)).

Then the roots of d(x) form a linear subspace of F, regarded as a vector space over F,
since the set of roots of d(z) is exactly the intersection of linear subspaces formed by
the roots of the given ¢g-polynomials. Also by Theorem 1.3, we get that either each root
of d(z) is simple or they have the same multiplicity, a power of q. Hence, Theorem
1.5 indicates that d(z) € Ore,(F,). Therefore, d(x) symbolically divides the given
g-polynomials by Theorem 1.10. Then

d(z)|D(z).

On the other hand,
D(x)|d(x)

since D(x) divides the given g-polynomials in the ordinary sense again by Theorem 1.10.

As a consequence, we can state the following theorem, which we have just proven.

Theorem 1.11. In the ring (Ore,(F,),+,®), the greatest common divisor and the

greatest common symbolically divisor are identical.

Here, we finish analyzing the results of the correspondence between F,[z] and

Orey(F,) by defining a new concept.



Definition 1.12. A finite-dimensional vector space M C F over F, is called a ¢-

modulus if
M={p?: ge M}

On the basis of this definition, we obtain a characterization for the monic ¢-

polynomials over [F, as follows.

Theorem 1.13. The monic polynomial L(x) is a q-polynomial over F, if and only if
each root of L(x) is either simple or multiple with the same multiplicity, a power of q,

and the roots form a q-modulus.

Proof. Assume that L(z) = Z&ixqi € Orey(F,). By Theorem 1.3, it is enough to
i=0
show that if L(5) = 0 then L(5?) = 0. Note that

L(z)? = Z alz?" = Z az? = L(z9).
i=0 i=0
Thus, L(B?) = L(B)? = 0. For the converse, apply Theorem 1.5 to L(x) to see that
L(x) € Orey(F). Let M be the g-modulus formed by the roots of L(x). Then, for some
keZ",
L(z) = H (z — )7 and

BeM

L(z)? = [ (2* = 89" = [] (=" - B)*" = L(a), (1.5)
BeM BEM

n

since M ={p?: fe€ M}. Let L(x) = Zaixqi, where a; € F. Then by (1.5),

=0
Z CL?SL’qHI = Z CLz‘SL’qu,
i=0 i=0

which implies that the coefficients of L(z) are in F,, i.e., L(x) € Ore,(F,). O

We can connect the notion of g-modulus with symbolically irreducible polynomials
over F,. It is clear that if L(z) € Ore,(F,) has degree ¢ then it is symbolically
irreducible over F,. For the ones with degree greater than ¢, we have the following
theorem.

Theorem 1.14. The g-polynomial L(x) over F, of degree greater than q is symbolically
irreducible over Fy if and only if L(x) has simple roots and the g-modulus M consisting

of the roots of L(x) contains no q-modulus except {0} and M itself.

Proof. Assume that L(x) is symbolically irreducible over F,. Further, suppose that
L(z) has multiple roots. Then
L(z) = L(z)",

7



where deg(Ly) > 1 and Ly(x) € Orey(F,) by Theorem 1.13. So L(x) has the symbolic
factorization
L(z) = 2 ® Ly(x).

This is a contradiction since neither of the factors is a unit. Hence, each root of L(z)

is simple. Now assume that N C M is a g-modulus. Define

Ly(z) = H@ - B),

BEN

which is a g-polynomial over [F, by Theorem 1.13 such that LQ(x)}L(x). Then we get
L2($>‘®L($) by Theorem 1.10. Thus deg(Ls(x)) is equal to either 1 or deg(L(x)), i.e.,
N is either {0} or M.

For the converse, let the symbolic decomposition of L(x) be
L(z) = Li(z) @ Lo(x),

where Ly(z), Ly(z) € Orey(F,). Then Ly(z)|L(x), which is derived form the fact that
L1($)1®L(a:) by using Theorem 1.10. So the g-modulus, N, formed by the roots of
Ly(z) is contained in M. Then N is either {0} or M. As a result, either deg(L;) or
deg(Ls) is equal to 1, which implies that L(z) is symbolically irreducible over F,. [

Now let ¢ € F be a root of L(x) € Ore,(F,) and let g(x) € F,[z] be the minimal
polynomial of ¢ over F,. Then g(z)|L(z). If g(z) does not divide any nonzero g-
polynomial over [F; of lower degree, then ( is said to be a g-primitive root over [F,.

Alternatively, we have the following definition.

Definition 1.15. Let L(x) € Ore,(F,) be nonzero. A root ¢ of L(z) is called a ¢-
primiative root over Fy if it is not a root of any nonzero g-polynomial over [F, of lower

degree.

We want to determine the number of g-primitive roots over I, of a nonzero g-
polynomial L(z) over F,. Denote this number by Ny.

For simplicity in the future results on the number N, we define an analog of
Euler’s ®-function for nonzero f € Fy[z]. Let ®,(f(x)) = ®,(f) denote the number of

polynomials in F [z] that are of smaller degree than f as well as relatively prime to f.

Lemma 1.16. The function ®, defined for nonzero polynomials in F,[x] has the fol-

lowing properties:

(i) ©q(f) =1 if deg(f) = 0;

(i7) ©,(fg) = Du(f)P,(g) whenever f and g are relatively prime;



(131) if deg(f) = n > 1, then
(f) =q" (1 —q™)---(1=q™™),

where the n; are the degrees of the distinct monic irreducible polynomials appear-

ing in the canonical factorization of f in F,[z].
Proof. See [2, p.122]. O

Theorem 1.17. Let L(x) € Ore,(F,) be nonzero with conventional q-associate ().

Then

O, (l(x if L(x) has simple roots
v, _ | @) i L) has simpie roots .
0 otherwise

Proof. First assume that L(x) has multiple roots. Then by Theorem 1.13,
L(z) = Ly(z)",

where Li(z) € Ore,(F,). Thus, any root of L(z) is also a root of Ly(x), i.e, N, = 0.
Now suppose that L(z) has only simple roots. If deg(L(x)) = 1 then, obviously,
the only root 0 is the g-primitive root of L(x) over F,. Then by Lemma 1.16,

N =1=,(())

since deg(l(x)) = 0. If deg(L(z)) = ¢"™ > 1 and without loss of generality L(x) is monic,
let
L(x) :Ll(l‘)®"'®L1(I)®"‘®LT(I)®“'®Lr($)/

S N
-~ -~

€1 €r

be the symbolic factorization of L(x) with distinct monic symbolically irreducible poly-

nomials L;(z) over F,. Define fori=1,...,r

Ri(z) =Li(z)® - @ Li(z)® @ Li(2) ® - @ Li(x) @+ @ Ly(2) ® - ® L, (),

[\ S N
-~ -~ -~

el e;—1 er

a g-polynomial over F, having only simple roots. Let S be the set of all roots of L(x)
and P be the set of ¢g-primitive roots of L(x) over I, as well as R be the union of the
set of roots of R;(x), i =1,...,r. Note that if ( € S\ P then R;(¢) = 0 for some 1,
1 <i<r,soS\ P CR. On the other hand, any root of R;(x) is a also a root of L(x)
so R C S\ P. Therefore,

S| =P +|R]. (1.7)

Since L(x) has simple roots, |S| = deg(L(z)) = ¢". If deg(L;(x)) = ¢ then

deg(R;(x)) = ¢" ™, (1.8)
which is the number of roots of R;(x). If iy,...,i, are distinct subscripts, then the
number of common roots of R; (x),...,R; (x) is equal to the degree of the greatest

9



common divisor, which is the same as the degree of the greatest common symbolic

divisor. Construction of R;(x) and (1.8) implies that this degree is equal to

M=y — Mg

q

So the inclusion-exclusion principle of combinatorics yields

L I S I (R (1.9)
i=1

1<i<j<r

Hence by using (1.7) and (1.9), we conclude that

Ny, = qn o an—nz + Z qn—ni—nj et (—].)rqn_nl_m_m'
=1

1<i<j<r

— qn<]_—qinl>...(1_qin7')'
To finish the proof, note that
l(x) =1l () L(z)™

is the canonical factorization of [(x), where deg(l;) = n;. Consequently, by Lemma
1.16,
N = d(i(x)).

]

Corollary 1.18. Every nonzero q-polynomial over F, with simple roots has at least

one g-primitive root over IF.

We use g-primitive roots to construct a special type of basis for a ¢-modulus over
F

q-

Theorem 1.19. Let M be a g-modulus of dimension m > 1 over F,. Then there exists
an element ( € M such that {¢, (9, ... ,Cqul} is a basis of M over F,.

Proof. Theorem 1.13 implies that L(z) = H (x — B) belongs to Orey(F,). By the
BseM
previous corollary, L(x) has a ¢-primitive root ¢ over F,. Then as a ¢g-modulus, M

contains the elements ¢, (%, (7, ..., (1

m—1

Assume that these elements are linearly

dependent over F,. Then there exist elements ay,...,a,-1 € Fy, not all of which are
0, such that

m—1

Z aicqz = 07

i=0

which is a contradiction since deg(L(z)) = |M| = ¢™. Thus, these m elements form a
basis of M over F,. O

10



A basis of F,m C F over F, of the form {(, (9, ..., Cqm_l} is called a normal basis
of Fym over F,. As a corollary of the next theorem, we will be able to calculate the

number of different normal bases of F;m over .

Theorem 1.20. In Fym there exist exactly ®,(z™ — 1) elements ¢ which generates a

normal basis of Fym over F,.

Proof. Since Fym is a g-modulus, Theorem 1.19 guarantees the existence of normal

bases of Fym over F,. Here,

L(z) = H (x—B) =27 — .
BEF m
By the proof of Theorem 1.19, we know that every g-primitive root of L(x) over F,
provides a basis of the desired type. On the other hand, if ( is not a g-primitive root of
L(z) over F, than there exists a nontrivial F,-linear combination of ¢, %, ¢%, ..., ¢7""
which is equal to 0, i.e., these elements are linearly dependent over F,. Thus the
elements generating a normal basis are exactly the g-primitive roots of L(z) over F,.

As a result, the number of such elements is equal to Ny, which is given by
Dy(a™ —1)
by Theorem 1.17. [

Corollary 1.21. The number of different normal bases of Fym over F, is given by
(1/m)®q(a™ —1).

Proof. Note that in a normal basis {¢,¢%,¢?°,...,¢" '}, each element generates the

same normal basis. Then the result follows from Theorem 1.20. O
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Permutation Polynomials from Linearized Polynomials

During this section, let ¢ = p be a prime number and fix F,» C F. Let Tr(x) be
the polynomial defining the absolute trace function of F,.. In this section our aim is
to derive permutation polynomials of F,» by using the polynomials in Ore,(F) with
coefficient in F,». Specifically, we want to characterize the elements v € F,» and the
polynomials H(x) € Fyn[z], L(x) € Ore,(F) for which

F(z) = L(z) +yTr(H(z)) (2.1)

is a permutation polynomial of F,», where the coefficients of L(x) are in F,». Through-
out the section let a linear mapping L : F,n — Fy» be the associated mapping of such
an L(z).

For the moment, consider the polynomial of the type
F(z) =G(z) +~+Tr(H(z)), (2.2)

where v € Fyn, G(x), H(z) € Fyn[z]. The next proposition presents a simple necessary

condition on G(z), for which (2.2) is a permutation of [Fn.

Proposition 2.1. Let F'(z) € Fpn[z] be a polynomial of type (2.2). Assume that F(x)

is a permutation of Fpn. Then for any B € Fpn there are at most p elements o with

G(a) = .
Proof. Assume that G(«;) = g for distinct o;, i = 1,...,p,p+ 1. Then
F(o;) =+ ve; where ¢; € Fp, 1 <i<p+1.

Since ¢; can have at most p distinct values, by the pigeonhole principle, F'(o;) = F'(a;)
for some i and j where 1 <i < j < p+ 1. Thus F(z) is not a permutation polynomial
of Fyn. O

Consider Ker(L), which is a linear subspace of F,n, regarded as a vector space over
F,. Let |Ker(L)| = p? where 0 < d < n. Then the fiber of an element 3 € F,» under

the linear transformation L is given by
L YB) = {a €Fp : L(a) = B} = ap + Ker(L),

12



where oy € Fpn is some element with L(cg) = 8. Thus |[L7}(8)] = p? for all 8 €
Im(L). Therefore, to construct a permutation polynomial of F,» of type (2.1), L
must necessarily be either bijective or p-to-1, by Proposition 2.1. The case that L is
bijective can be examined separately to construct permutation polynomials of F,» by
using permutation polynomials of Fy.. So, in this paper we deal with the other case
that L is a p-to-1 mapping. Note that if L is p-to-1 and o € Ker(L) is nonzero then
ca € Ker(L) for all ¢ € F,, which implies that Ker(L) = afF,,.

Theorem 2.2. Let L : Fpn — Fyn be a p-to-1 linear mapping with kernel K and let
H :Fyn — Fpn. Then the polynomial

F(z) = L(z) +yTr(H(z)), v € Fpr,
is a permutation of Fyn if and only if
(i) v & Im(L), and
(i7) Tr(H(a+€) — H(a)) # 0 for any a € By and ¢ € K \ {0}.

Proof. Assume that v € Im(L), say L(a1) = . Let F(8) = pand Tr(H(B)) = c € F,,.
Then

p="FPp) = LB)+c
= L(B) + L(car) = L(B + ca),

which yields that Im(F) C Im(L). Thus F' cannot be surjective since L is a p-to-1
mapping. Let o € F,» and € € K \ {0} be arbitrary elements. Then

Fla+e)—F(a) = Lla+e€)— L(a)+~Tr(H(a+¢€) — H(w))
= Tr(H(a+e€) — H(a)).
Assume that Tr(H(a +¢€) — H(a)) = 0. Then F(a + ¢) = F(a) while a + € # a.
Hence, F' cannot be an injective mapping. Therefore, the necessity of the conditions is
proved.

For the converse, assume that the assumptions (i) and (i7) hold. Let F(a) = F(B)
for some a, B € Fyn. Suppose that Tr(H(«) — H(B)) = ¢, where ¢ € F;. Then

0= F(a) = F(B) = L= B) + ¢,

which contradicts with (7) by implying L(c™!(8 — «)) = 7. Then we have Tr(H(a) —
H(B)) =0 and
0= F(a) - F(8) = L(a - B).
which provides o — 8 € K. On the other hand,
Tr(H(a) = H(B)) = Tr(H(+ (o= f)) — H(B))
= 0,

13



where § € Fyn and o — f € K. Thus o = § by (i), i.e., F : Fpn — Fpn is an injection.

Therefore F' is a permutation of Fn. ]

Given o € I}, and ¢ € F,, denote by H,(c) the affine hyperplane
{z € Fpn : Tr(ox) = c}.

Consider the first condition of Theorem 2.2. We are given a p-to-1 linear mapping

L :Fpn — Fpu. Since w?" = w for all w € Fyn, we can represent L as

I Fpn — Fpn

n—1 g
W >y awP

where o; € F,n. We are supposed to check whether an element v € F,» belongs to
Im(L). Since Ker(L) is a 1-dimensional subspace of F,» over F,, Im(L) should be
a hyperplane, say H,(0), where the defining element o € Iy, satisfies the following
identity:

Tr(cL(x)) = Tr (a z_: aixpi)

n—1
= Tr (aoam + o2 + -+ o102 >

= Tr (ag"ap”x T N &Z_p%)
n—1 _ _

= Tr Z ol Zcrp"l> m)
1=0

= Tr(L*(o)x)

=0

for any « € Fyn, where
n—1 ‘
* _ Pt _pt
L*(z) = apzr + E ol _af
i=1

a polynomial in Ore,(F) with coefficient in Fyn. If L*(0) # 0 then Tr(xz) = 0 for all
x € Fyn, a contradiction. Hence, L*(0) = 0. As a conclusion, v € Im(L) if and only
if Tr(oy) = 0, where o is a nonzero root of L*(z). Let us call L*(z) as the adjoint
polynomial of L(x) and L* : Fyn — F,n as the adjoint mapping of L. Now we claim
that Ker(L*) = oF,, i.e. L* is a p-to-1 mapping.

Theorem 2.3. Let L(z) = Y. aua? and let L : Fyn — By be a p-to-1 linear

mapping. Then L* is a p-to-1 linear mapping, too.

Proof. As L*(x) € Ore,(FF), it is known that L* is a linear mapping. By construction,
L*(x) has a nonzero root, o € Fy., where Im(L) = H,(0). Let oy, # 0 and a; = 0
for all i < k. Then by the proof of Theorem 1.5, we know that each root of L(x) has

14



multiplicity p*. Since |Ker(L)| = p, we obtain that deg(L(x)) = p*™ and so a; = 0 for

all i > k+ 1. Then

k k+1 n—1—k n—1—k n—=k n—k
— p p * — AP p p p
L(z) = apa? + apprz”  and L*(z) =), @ +aofp 2P

which implies that each root of L*(x) has multiplicity p"~*~* again by the proof of

Theorem 1.5. So, we have

r@= [ @-s""

BeKer(L*)

Since deg(L*(x)) = p"*, we have proven that |[Ker(L*)| = p, i.e., L* defines a p-to-1
mapping. 0

Now let us introduce the notion of a linear structure.

Definition 2.4. Let f : Fpn — F, and ¢ € F,. We say that a € F;. is a c-linear
structure of the function f if

f(x+a)— f(z) =cfor all x € Fpn.

Proposition 2.5. Let o, § € Fj., a+ 5 7# 0 and a,b € ¥y If o is an a-linear structure

and B is a b-linear structure of a function f : Fyn — F,, then
a+ B is an (a + b)-linear structure of f
and for any c € F,
c-ais a (c-a)-linear structure of f.

In particular, if A* is the set of linear structures of f, then A = A*U{0} is an F,-linear

subspace, which we call the linear space of f.
Proof.

fle+(a+p)—flz) = fllz+a)+P8)—flz+a)+ f(z+a)-—f(z)
= b+a.

Thus a + § is an(a + b)-linear structure of f, i.e., « + 8 € A*. Now take 5 = . Then
2 is a 2a-linear structure of f. Assume that (¢ — 1)« is a (¢ — 1)a-linear structure of
J, where ¢ € ;. Then

fletat(c=1a)=fx) = flrt+at(c—1a)=flz+a)+ flz+a)- f(z)
= (c—1Da+a

= ca.

So ca is a (ca)-linear structure of f, ie., ca € A*. Hence we proved that A is an

[F,-linear subspace of F . O
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By the next theorem, we will show that existence of a linear structure yields per-

mutations of F,» of type (2.1) under certain conditions.

Theorem 2.6. Let L : Fyn — Fpn be a p-to-1 linear mapping and K = olF, the kernel
of L and oFF, the kernel of its adjoint mapping L*. Further let H : Fpyn — Fpn be such
that o is a b-linear structure of Tr(H (x)). Then

F(x) = L(x) +yTr(H(x)),7 € Fpr,

is a permutation of Fyn if and only if

(1) Tr(ovy) # 0 and

(1) b+ 0.
Moreover, if Tr(ovy) # 0 and b =0 then F is a p-to-1 mapping of Fpn.
Proof. Via the remark on the first condition of Theorem 2.2,

Tr(ovy) # 0 < v ¢ Im(L).
Also by Proposition 2.5, car is a cb-linear structure of Tr(H (z)), for any ¢ € F. Then
Tr(H(z+ ca) — H(x)) = cb for all © € Fpn.

Thus the proof of the first part of the theorem follows from Theorem 2.2. For the other
part, suppose that Tr(oy) # 0 and b = 0. Fix § € F,» and assume that F'(5) = F(0)
for some 6 € F». Then

L(f—0) =~u with u=Tr(H(0) — H(B)).

If u # 0 then L(u~'(B — 6)) = ~, which cannot be the case. Thus u=0and 8 —0 €
K = of,. So 0 = 3+ cpa for some ¢y € F),. On the other hand,

Tr(H(B+ca)— H(B)) =0 for any c € IF,,
by Proposition 2.5 and by the assumption that b = 0. Hence
F(B + ca) = F(B) for any c € F,,
Therefore, I is a p-to-1 mapping. O

Lemma 2.7. Let H : Fpn — Fpn be an arbitrary mapping, v,8 € Fpn,v # 0 and
c="Tr(pv). Then v is a c-linear structure of f(x) = Tr(R(z)) where

R(z) = H(z — ~*'2) + Ba.
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Proof. Note that

R(z+7) = H(@"+" —""'o =) + Bz + By

= R(x)+ By.
So
Tr(R(x+7)) —Tr(R(x)) = Tr(R(z+~v)— R(z))
= Tr(B)
for all x € Fpn. O

Now we can explicitly describe two classes of permutation polynomials of F,. of
type (2.1).

Corollary 2.8. Let o, 5,7 € Fpn, a0 # 0 and H(z) € Fynx].
(1) Then the polynomial
F(z) =a" — o’ o +~yTr(H(z" — o ') + Br)
is a permutation polynomial of Fpn if and only if Tr(ya™P) # 0 and Tr(af) # 0.
(1) Then the polynomial

F(x)=a? —Ozp’lx—l—’yTr( Z H(x + ua) +5x>

u€lfy
is a permutation polynomial of Fpn if and only if Tr(ya™P) # 0 and Tr(af) # 0.

Proof. Let L(z) = 2? — a?~'z. Note that Ker(L) = aF, and L*(z) = 27" — o’z
is the adjoint polynomial of L(z) with the kernel o PF,. Then by Theorem 2.6, the
condition T'r(ya~P) # 0 is clear in both (i) and (i7). To complete the proof, observe

the following and again use Theorem 2.6.
e «is a Tr(af)-linear structure of Tr(H (z? — a?~1x) + Bz) by Lemma 2.7.

o Let g(z) :TT(Z H(z + ua) —I—ﬂx). Then

u€lf,

glz+a) = TT(ZH(J:—F(u—i-l)a)—i-Ba:—l—ﬂa)

u€l,

= Tr( Z H(z + ua) + B$> +Tr(Ba) = g(x) + Tr(fa).

u€lfy

Thus, « is a T'r(af)-linear structure of g(z).
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]

Let 3,7 € F}., Li(x) € Ore,(F) with coefficients in [Fy». Now we want to construct

polynomials of the form
L(2) = Ly(z) +7Tr(5a) (2.3)

such that L(z) is both a permutation of F,» and a p-polynomial over F. We desire
to provide a characterization for v, and Li(x) by focusing on the dimension of the
kernel of L; over F,,. First, recall that

Hs(0) = {x € Fpn : Tr(Bz) = 0}.

Lemma 2.9. Let Ly : Fpn — Fyn be a linear mapping with kernel Ky of dimension ky,
0< ki <n-—1, over F, and let v, € Fy.. Define

L(z) = Li(z) + yTr(Bz).

Then the kernel K of L has dimension k € {ky — 1,ky,k; + 1} over F, depending on

the cases described below:
(i) v € Im(Ly) then

(a) k=ki+1if Ky CHg(0) and there exists an element g satisfying L1(g) = v
and Tr(Bg) = —1;

(b) otherwise k = k.
(13) v ¢ Im(Ly) then

(a) k =k —1if K ¢ Hg(0);
(b) k = ky if K1 € Hg(0).

Proof. To begin note that any k-dimensional subspace of IF,,» over IF,, is either contained

in Hp(0) or intersects it in a subspace of dimension k — 1 over F,,.

(i) Suppose that v € Im(L;). Then Im(L) C Im(L,), which implies that

ki < k. (2.4)
(a) Assume that g € F,» satisfies L(g) = v and Tr(8g) = —1. Take an element
ag € K. Then
Li(ag) = —Tr(Bag)
= Ll(g)007

where ¢g = —Tr(Sap) € F,. So we have L;(ap—cog) = 0, which means that

ap — cog € K, for some ¢ € F),. Thus
KC{d+cg:6€ Ky,ceF,} = A
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Now take an element ¢ + cg € A.

L(d+cg) = Li(5)+ Li(cg) +~Tr(B6) +~Tr(Beg)
= oy +7Tr(Bd) — ey
= ~Tr(Bo)

So if 0 € Hp(0) then 0 + cg € K. Hence
K={d+cg:0€ KiNHp0),ceF,},

where g € Fn satisfies L1(g) = v and Tr(8g) = —1. If we assume further
that K; C Hz(0) then we get the result that

(b) We want to prove k = k; provided that either there does not exist g € Fyn
such that Li(g) = v and Tr(8g) = —1 or K; € Hz(0). By contraposition
method, assume that k # k;. Then by (2.4), we have

Let ag € K. Then
Ll (a()) = 7YCo,
where ¢y = —Tr(Bag) € F,. If ¢¢ = 0 then oy € K;, which results in a

contradiction by (2.5). So ¢y # 0. Set g = ¢; . Then
Li(g) =~ and Tr(Bg) = —1. (2.6)
Thus existence of an element g € F,. satisfying (2.6) implies that
K={d+cg:0€ KiNHp0),ceF,},

by the previous discussion. The assumption k& > ki forces Ky N Hz(0) to

have dimension k; over IF,, in other words,

Ky CHz(0).
(17) Suppose that v # Im(L;). Take oy € K. Then
Li(ag) = veo,

where ¢y = —Tr(Bag). If ¢ # 0 then Li(c;'ag) = 7, a contradiction. Thus
Tr(Bag) = 0 and consequently L;(ag) = 0. Then K C K; N Hg(0). Also it is
obvious that K; NHg(0) C K. Therefore

K = K; NHg(0).
So we have
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(a) if K1 € Hp(0) then k =k — 1;

]

We use this lemma in order to obtain permutation polynomials of F,n in Ore,(F)
of type (2.3).

Theorem 2.10. Let Ly : Fyo — Fyn be a linear mapping and let v, 8 € Fy.. Then the
p-polynomial
L(z) = Li(z) + yTr(Bx)

over F is a permutation polynomial of Fyn if and only if (i) or (i1) is fulfilled:

(i) Li(x) is a permutation polynomial of Fpn and Tr(BLy* (7)) # —1, where L is

the 1nverse mapping of Ly;

(i7) Ly(x) defines a p-to-1 mapping on Fpn with kernel aF,. Moreover, v ¢ Im(Ly)
and Tr(Pa) # 0.

Proof. Let k and k; be the dimensions of kernels of L and L; over F,, respectively.
Suppose that L(zx) is a permutation polynomial, i.e., k = 0. Then according to Lemma

2.9, kq is equal to either 0 or 1. So we have two cases:

(i) k1 =0. Then L; is a permutation of F,» and v € Im(L;). By Lemma 2.9, this is
only possible either if kernel of L, is not contained in the hyperplane #3(0) or if
Tr(BLy (7)) # —1. Since Ker(L;) = {0} C Hz(0), we conclude that

Tr(BLy (7)) # —1.

(1) ki = 1, i.e., Ly is a p-to-1 linear mapping. Thus we have the condition that
v ¢ Im(L) as well as aF, ¢ Hz(0) by Lemma 2.9, which is equivalent to the
second condition of the theorem.

The converse directly results from Lemma 2.9. O

Note that the equivalence of the second case, (iz), in the above theorem can also
be shown by Theorem 2.2 or Theorem 2.6 by letting H(z) = Sx.
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Dimension of Kernels of Linearized Polynomials

In the previous section, to construct permutation polynomials of F,,» C I, we have used
polynomials of the form L(z) = Z?:_Ol ;7P a; € Fyn, whose kernels are of dimension
1. Thus, we are motivated to find the explicit representations of such polynomials.

Let ¢ be a prime power and let
n—1 _
L(z) = Z az? oy € Fyn. (3.1)
i=0

We achieve our aim by giving several explicit representations and the number of the
polynomials of the form (3.1) such that kernel of L is of any given dimension.
In this section, we have the following notations. For m,n € Z*, the space of m x n

matrices over I, is denoted by F;**”. For any matrix A over F,, Rankg, (A) denotes the

rank of A. For a set of vectors {vy, ..., v, } of the same length over F,, Span(vy, ..., v,)
denotes the vector space spanned by {vi,...,v,} over F,, and Rankg {vi,...,v,} is
the dimension of Span(vy, ..., v,) over F,. Tr(z) is the trace function from F,» to F,.

Lemma 3.1. Let m,n, k € Z*, k <min{m,n} and
Se(m,n) = {A € F"" : Rankg,(A) = k}.

Then - | |
1S(m, )| = LLizo (q]H—q " —q)
II=0 (¢* — ¢¥)

Proof. Let A = [ay, g, ..., an] € Si(m,n) where o; € F* and let

m

V = Span(ay, as, ..., qy).

Then dimg, (V') = k. Note that there are

ways of ordering k elements in F;" that are linearly independent over F, while

k—1

[ - )

=0
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gives the number of distinct ordered bases of a subspace of Fy" with dimension k. Thus,
there are - A

[lico (¢" — ¢')

[T (¢F — )

different subspaces with dimension £ in F7". Once a k-dimensional subspace V' is fixed,

we have to choose n vectors with rank k from V' to construct A. Let {f1,Ba,..., Bk}

be a basis of V over F,. Then we have

A: [61,62,-“7516]37

where B € IFZX” is unique with rank k. There are

k—1

1@ -d)

i=0
different choices for the matrix B. To conclude,

k—1

Sy (m,n)| = ITis (q:l— qi)(qf — )
[Tizo (¢ — ¢")

]

Lemma 3.2. Let L(x) be of the form (3.1) such that L(x) € F, for all x € Fyn. Then
there is a unique element 6 € Fn such that L(x) = Tr(0x).

Proof. Note that the set of linear transformations from Fy» to I, has cardinality ¢". On
the other hand, the set {Tr(0x),0 € F;n} contains ¢™ distinct linearized polynomials
over Fn such that Tr(fz) € F, for all © € F,». Thus, the result is clear. O

Now can present the first results satisfying our main goal in this section.

Theorem 3.3. Let {f1, s, ..., B} be any given basis of Fyn over F, and let L(x) be
of the form (3.1). Then there exists a unique vector (61,0, ...,0,) € Fy. such that

n—1 / n
L(z) = Tr(012)By + -+ + Tr(0n2)B = > (Z @-@3") 29 (3.2)
i=0 \ j=1
Moreover, let k be an integer such that 0 < k < n, then dimg, (Ker(L)) = k if and
only if Rankg {01,0s,...,0,} =n — k. In particular, k = n if and only if L(x) = 0. If
k < n, then there are exactly
T (" —d')
T (" —q)
different L(x) of the form (3.1) with coefficients in Fgn and with dimg, (Ker(L)) = k.
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Proof. The equation (3.2) follows from the Lemma 3.2. Let W = Span(6y,...,0,) and

define the orthogonal complement
W' ={a€Fp:Tr(fa) =0 for every € W}.
Since T'r : Fyn X Fyn — F, is a non-degenerate bilinear form, we have
n = dimW ' + dimW.

We also have

Ker(L) ={a €Fp : Tr(fia) =0,1<i<n}=W".
Thus,

dimg, Ker(L) = dimH:qV[/'T =n —dimp, W = n — Rankg {01,0s,...,0,}.

Via this equality, we get the result that the number of L(x) of the form (3.2) with
dimg, (Ker(L)) = k < n is the number of vector sets {61, 0,...,60,} in Fgn with rank
n — k, which is |S,_x(n,n)|. Also it is obvious that dimg, (Ker(L)) = n if and only if
L(z)=0. O

Theorem 3.4. Let {6,602, ...,0,} be any given basis of Fyn over F,, and let
n—1 _
L(z) = Zaiqu € Orey(F), where a; € Fyn.
i=0

(1) Then there exists a unique vector (81, Ba, ..., Bn) € Fy. such that

L(z) =Tr(61z)B1+ -+ Tr(0,2)5, = i (Z ﬁ]@gl) 27 (3.3)

i=0 \ j=1

(it) Let D = [d;jlnxn be a square matriz of size n over Fen, where d;; = 07
1 <4,7 <n. Then D 1is invertible and

(Bh 627 R 7ﬁn)T = -D_l(a07 Qg, ... 7an—1>T7
where T denotes the transpose.

(iit) Let k be an integer such that 0 < k < n. Then dimg (Ker(L)) = k if and only if
Rankg {1, B2, ..., Bn} =n — k.

Proof. (i) We will construct a one to one correspondence between the vectors in Fy,

and the polynomials in Orey(F) of degree n — 1 with coefficients in Fyn. Define
®: Fiw — Orey(F) as
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(iid)

Q: 3= (01,02 ...,0n) — Lg(x) =Tr(01x)51 + Tr(0x) By + - - - + Tr(0,2) B
Then Lg(z) € Fyn[z]. For an element S € Ker(®), we have

Ls(z) = 0. (3.4)

Since Tr(6;z), 1 <i < n, runs through all the elements in IF, as x runs over Fn,
(3.4) is possible only if § = 0. Thus, ® is an injective mapping between two sets
of the same cardinality, ¢". Therefore, ® is a bijection, that is, for L(z), there

exists a unique vector (B, Sz, ..., n) € Fyn satisfying (3.3).

The equation (3.3) implies that
o= 800, 0<i<n—1,
j=1

which is equivalent to

01 ) 0.,
T B
(a()yala" '7an—1)T = _1 _2 . (61”62,,,,”8”)T
0%n71 0%n71 an—l

= D(/BIMB% s 7671)T'

The fact that D is invertible stems from Lemma 1.4 since {#,0,,...,0,} is a

basis of Fgn over F,. Thus, we obtain the result.

From (3.3), we know that L(z) runs over all the linear combinations of 31, 5, ... 5,

over [, as  runs over Fgn. Therefore, dimg, (Ker(L)) = k implies that
n — k = dimg, Im(L) = Rankg, {51, B2, . .., Bn}-

]

Note that the conditions in both of Theorem 3.3 and Theorem 3.4 are necessary

and sufficient. Thus, any polynomial of the form (3.1) whose kernel is of any given

dimension can be represented uniquely in the forms (3.2) and (3.3). Also observe that

these representations involve 2n elements in F;». Now we give another representation

which uses 2n — 2k elements.

Theorem 3.5. Let L(z) be of the form (3.1) and let k be an integer such that 0 <
k <n. Then dimg,(Ker(L)) = k if and only if there exist two vector sets over Fgn with
rank n — k over Fy, {wi,wa, ... ,wh—r} and {7,%2,..., Y-k}, such that

L(z) = Z Tr(vx)w; = i: (ijvgi) ' (3.5)

i=0 \ j=1
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Proof. Fix a basis {01,60,,...,0,} of Fgn over F,. Assume that dimp, (Ker(L)) = k.
Then by Theorem 3.4, there exists a unique vector (81, Ba,...,8,) € Fy. with rank

n — k over [F, satisfying

L(z) = ZTr(ejx),@j.

Let i
5]’ = Zci,jwiaci,j S Fq, 1 S j S n,

i=1
where wy, ws, . . ., w,—k form a basis for Span(f, 5s, . . ., B,) and denote C' = [¢; ;] (n—k) xn-
Then

Rankg, (C) =n —k
and
n n—k n—k n n—=k n
L(z) = Z Tr(6;x) Z ¢ Wi = Z W; Z Tr(c;0iz) = Z w;T'r ( ( Z ci,j9j> :v) .
j=1 i=1 =1 j=1 i=1 j=1
(3.6)

Set

n

%:Zci,ﬂj,lgign—k.

j=1
Thus, (3.5) is satisfied by the remark that

Rankp {71,72, .-, -} = Rankg, (C) =n — k.

For the converse, assume that the conditions of the theorem hold. Let v;, 1 <i <n—Fk,
have the linear representation in terms of the basis elements as follows

n

%= cijbjcij € R,

j=1

and denote C' = [¢; j](n—k)xn- Then
Rankg, (C) =n —k

and by the assumption (3.5) and by the equality (3.6), we get

n n—k
L(z) = Z Tr(6,x) Z C; Wi
j=1 i=1

Set
n—=k

B = Zci,jwi71 <Jjsn.

i=1
Thus, since

Rankl&;{ﬁl?ﬁ?? s 7577,} = Ranqu(C) =n-—- ka
dimp, (Ker(L)) = k by Theorem 3.4. O
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Observe that the representations given by Theorem 3.3 and Theorem 3.4 are unique
while the one given by Theorem 3.5 is not unique. Call the matrix C' in the previous
proof as the corresponding matrix of the representation (3.5). Among the representa-
tions of L(x) of the form (3.5), one of them provides a unique representation in terms

of the corresponding matrix.

Theorem 3.6. Let {61,6s,...,0,} be any given basis of Fpn over Fy and let k be an
integer such that 0 < k < n. Then all the polynomials of the form (3.1) with kernel of

dimension k are uniquely given by

L) = Y Tl = Y (iww;i)xqi (3.7)

i=0 \ j=1
where w;,y; satisfy the following conditions:

(i) {wi,wa,...,wn_k} is some vector set over Fgn with rank n — k over I,

(1) vi =25y cijly, cij €Fy, 1 <i<m—k, 1 <j <mn, where C = [cij](n—kyxn 15 in

reduced row echelon form of rank n — k.

Proof. Let L(x) of the form (3.1) with dimg, (Ker(L)) = k. Then there exists a unique
vector (B, B, - - -, Bn) € Fyn with Rankg, {51, B2,..., 8.} = n — k such that L(x) =
S Tr(6;x)B; by Theorem 3.4. Moreover, L(x) can be represented as

n—k

L(z) =) Tr(yiz)w, (3.8)

i=1

where w; and ~; are as in the proof of Theorem 3.5 with the corresponding matrix C' €

Fén_k)xn. Then C' is of rank n — k. First, we show the existence of the representation

(3.7). Let C” be the unique reduced row echelon form of C. Then there exists a unique
invertible matrix P such that C' = PC". Let

(Wi, wWhy oo ywh ) = (wi,way .., wWn k)P

(Ve )t = (01,04, ...,0,)".

Since {wy,wa, ..., wn_k} is a basis of Span(fy, Bs, . . ., B,) over F, with the corresponding

matrix C, we have

(ﬁl,ﬁg, e ;ﬂn) = ((,ul,(UQ, e ,wn_k)C'

= (wy,wa,...,wy k) PC" = (W, wh, ... W _

p)C"

Thus, by Theorem 3.5 and its proof, L(z) can be represented as
n—k
L(z) = ) Tr(yiz),
i=1
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with the corresponding matrix C’, where w, and 7/ satisfy (i) and (i¢). Therefore, to
get the uniqueness of the representation (3.7), it suffices to show the uniqueness of C’.

Let
n—k

n—k
ZTT(%‘@%’ = L(z) = ZTT(%@@

i=1

be two representations of L(x) of the form (3.8) with the corresponding matrices C'
and C, respectively. Then {wy,ws, ..., w, 1} and {@y,Ws, ..., w, } are bases over F,
of the same vector space, Span(f1, B2, ..., 5n), again by Theorem 3.5 and its proof. It
follows that there exists an invertible matrix P such that

(wl,wg, e ,wn_k) = (wl,WQ, Ce ,wn_k)P.
Thus, we have

(w17w27"'7wn—k)0 - (ﬁh/@%'”aﬁn)

= (51,52, c. ,wn,k)a = (wl,wQ, ce ,wn,k)PC.
Therefore,
C = PC,
that is, C' and C have the same reduced row echelon form. O
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