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ON THE ASYMPTOTIC THEORY OF TOWERS OF FUNCTION FIELDS OVER
FINITE FIELDS

Seher Tutdere
Mathematics, PhD Thesis, 2012

Thesis Supervisor: Prof. Dr. Henning Stichtenoth
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Abstract

In this thesis we consider a tower of function fields F = (F,),>0 over a finite field
F, and a finite extension E/Fy such that the sequence £ := E - F = (EF,)n>0 is a
tower over the field F,. Then we study invariants of £, that is, the asymptotic number
of the places of degree r in &, for any r > 1, if those of F are known. We give a
method for constructing towers of function fields over any finite field F, with finitely
many prescribed invariants being positive. For certain ¢, we prove that with the same
method one can also construct towers with at least one positive invariant and certain
prescribed invariants being zero. Our method is based on explicit extensions of function
fields. Moreover, we show the existence of towers over a finite field [F, attaining the
Drinfeld-Vladut bound of order r, for any » > 1 with ¢" a square. Finally, we give
some examples of recursive towers with various invariants being positive and towers

with exactly one invariant being positive.



SONLU CISIMLER UZERINDE TANIMLANAN FONKSIYON
CISIMLERI KULELERININ ASIMPTOTIK TEORISI UZERINE

Seher Tutdere
Matematik, Doktora Tezi, 2012

Tez Danigmani: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: fonksiyon cisimleri kuleleri, yerlerin sayisi, cins.

Ozet

Bu tezde, herhangi bir sonlu cisim I, iizerinde tanimlanan bir fonksiyon cisimleri
kulesi F = (F),)n>0 ve € := E - F = (EF,)n>o dizisinin F, iizerinde tanimlanmasini
saglayan herhangi bir sonlu genigleme E/Fj ele alimmigtir. Bu F kulesinin degismezleri-
nin (yani derecesi herhangi bir » > 1 olan F’teki yerlerin asimptotik sayilarmin)
bilindigi varsiyilarak, £'nin degismezleri tizerinde ¢aligilmigtir. Herhangi bir [F, izerinde
tanimlanan ve belirlenen sonlu sayidaki degismezi pozitif olan fonksiyon cisimleri kulele-
rinin inga edilebilmesi i¢in bir metod verilmistir. Ayrica, aym1 metod kullanilarak, baz
q degerleri igin, en az bir tane pozitif degismezi ve baz1 belirlenmis degismezleri sifir
olan kulelerinin inga edilebilecegi ispatlanmistir. Bu metod, fonksiyon cisimlerinin agik
geniglemelerine dayanmaktadir. Ayrica, herhangi bir r > 1 ve ¢ Oyle ki ¢" bir kare
oldugu durumlarda, F, iizerinde tanimlanan ve r mertebeli Drinfeld-Vladut sinirina
ulagan fonksiyon cisimleri kulelerinin var oldugu gosterilmigtir. Son olarak, cesitli
degismezleri pozitif olan veya sadece bir degismezi pozitif olan bazi 6zyineli fonksiyon

cisimleri kuleleri ornekleri verilmigtir.
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Introduction

Let [F, be a finite field and F/IF, be an algebraic function field with the field F,
as its full constant field. Throughout this thesis, we shall simply refer to F/F, as a
function field. In this thesis the main aim is to construct towers of function fields over
F, and estimate their invariants, by using explicit extensions.

In 1992, M. Tsfasman [25] introduced the notion of asymptotically exact sequences
of function fields over F,. For any such sequence F = (F,,),>0 over F,, M. Tsfasman [25]
and M. Tsfasman, S. Vladut [26] studied invariants of F defined as follows: for any
=t (F)

B, (F,
Br(F) = lim o)
where B, (F),) denotes the number of places of F),/F, of degree r, and g(F,) denotes
the genus of F,,/IF,.

The sequences for which (3, exists and is large are useful to obtain both good
algebraic geometric codes and bounds for multiplication complexity in F,. In [1], S.
Ballet and R. Rolland showed that these particular sequences have large asymptotic
class number. In particular, explicitely defined exact sequences are quite useful in
application.

In 2007, T. Hasegawa [13] and P. Lebacque [17] independently gave a proof of the
existence of towers of function fields over F, with finitely many prescribed invariants
B, being positive. Their method is based on class field theory. Note that M. Tsfasman,
S. Vladut [26] and T. Hasegawa [12] showed that any tower of function fields over F,
is an exact sequence. However, the existence of exact sequences of function fields over
F, with at least one nonzero invariant and certain prescribed invariants being zero is
in general not known (c.f. [20, p.64]).

The following open problem is stated in [1]: find asymptotically exact sequences
F of function fields over I, attaining the Drinfeld-Vladut bound of order r, for any
r > 1, which is as follows:

/2 _
Bi(F) < L
In [1], when r = 4 and ¢ = 2, an exact sequence attaining the bound (0.1) is given. In
the particular case, when ¢ is a square and r = 1, there are several examples, namely
maximal (or optimal) towers attaining this bound (for instance, see [8]). In [1], S. Ballet
and R. Rolland proved that for any prime power ¢, there exists a tower attaining the
bound (0.1) with r = 2.

The organization of this thesis is as follows:

In Chapter 1 we recall the basic definitions and introduce the notations. Moreover,
we give some basic results.

In Chapter 2 we firstly give some bounds for the invariants of towers of function
fields over IF,. We then give a method for constructing towers with many prescribed in-
variants being positive. Furthermore, for certain ¢, we prove that by the same method,
one can construct towers over F, with at least one positive invariant and certain pre-
scribed invariants being zero.

(0.1)

X



In Chapter 3 we give some examples of non-maximal recursive towers with all but
one invariants equal to zero. This is analogous to the following open problem given
in [19, p.3]: Are there any infinite number fields (i.e., towers of number fields) with all
but one invariants equal to zero? Moreover, we show that for any integer » > 1 and
a prime power ¢ such that ¢" is a square, there are towers of function fields over I,
attaining the Drinfeld-Vladut bound of order r. In this chapter we give also several
examples of recursive towers with many invariants being positive. We also estimate
the deficiency, i.e., the difference between the right hand side and the left hand side of
(0.1), and the class number A(F},) for each new tower F = (F},)n>0.

In Chapter 4 we discuss constant field extensions of asymptotically exact sequences
of function fields. Moreover, we give some basic results concerning Thara’s constant
A,(q), for any r > 1 and prime power ¢, which is defined as follows:

A,(q) := limsup B (F) :

g—00 g

where F' runs over all function fields over IF, with genus g > 0.



Preliminaries

Let us first fix some notation. Throughout this thesis, IF, will denote the finite field
with ¢ = p" elements, where p is a prime and r > 1 is an integer. We will consider
function fields F'/F, of one variable over F,; in all cases, IF, will be the full constant
field of F. We denote by g(F') and P(F') the genus and the set of all places of F//F,
respectively. For any integer » > 1, define

B,(F):=#{P € P(F) :deg P =r}.

For a rational function field F,(x) we will write (x = a) for the place which is the zero
of v — a (where a € F,) and (z = oo) for the pole of z. For a place P € P(F), we will
use the following notations:

e vp := the discrete valuation of F'//F, associated to the place P,
e Op := the valuation ring of P,
e k(P) := the residue class field of P.

Let E/F be a finite separable extension and () be a place of E/F,. We will write Q)| P
if the place @ lies above the place P € P(F'). In this case, we will denote by

e(QP), f(QP),d(Q|P)

the ramification index, the relative degree, and the different exponent, respectively, of

Q|P.

1.1 Asymptotically exact sequences of function fields

In [25], M. A. Tsfasman studied asymptotic properties of the numbers B,.(F') in
sequences of function fields over F,. Specifically, he introduced the following notion:

Definition 1.1.1. A sequence S = (F},),>o of function fields F,,/F, is called asymp-
totically exact if g(F,) — oo as n — oo, and for all r > 1, the limit

= lim B, (I)
67"(8) T n1—>oo g(Fn>

exists.

For the numbers f3,(S) one obtains the following bound [25, Corollary 1}, [22, Theorem 3]:

1



Theorem 1.1.2 (Generalized Drinfeld-Vladut bound). For an asymptotically
exact sequence S of function fields over a finite field F, the following holds:

3 ;ff;(f)l <1 (1.1)

r=1

Definition 1.1.3. For every r > 1, the real number

. B, (F)
A, (q) = limsup ,
9o(F) =00 9(F)

where F' runs over all function fields over F, of genus g(F") > 0 is called the r-th Ihara’s
constant.

In particular, A;(q) = A(q), which is called Thara’s constant. The difference between
the right hand side and the left hand side of the inequality (1.1) is called the deficiency
of the sequence S. This is related to the limit distribution of zeroes of zeta functions.
For details see [26].

As a consequence of Theorem 1.1.2, one has

Corollary 1.1.4.

An exact sequence S over [F is called
asymptotically good if there exists an r > 1 such that 3,.(S) > 0,
asymptotically bad if B,.(S) =0 for all r > 1, and
mazimal if the bound (1.1) is attained.

For a sequence & = (F),),>0 of function fields over F,, denote by h, := h(F,) the
class number of F,,/F,. Next, we give some results concerning the relation between the
invariants (3,.(S) and the numbers h,,, with r,n > 1.

Theorem 1.1.5. Suppose that the sequence S = (F,,)n>0 of function fields over F is
asymptotically exact. Then the limit

log, h.,
H(S) := lim —2

( ) n—00 g(Fn)

exists and -
qT
H(S) =14 p:(S)log, (qr — 1).
r=1
Proof. See [25, Corollary 2. O

Recently, for the non-asymptotic case, S. Ballet and R. Rolland gave the following
result in [2]:

Theorem 1.1.6. Let S = (F),)n>0 be a sequence of function fields over a finite field F,
such that B1(F,) > 1 for alln > 0. Let further a be a positive real number. Suppose
that there exists an integer v > 1 such that

2



B

T Fn)
q(

(
> Qor

(i) liminf
n—oo

L iBi(Fn
(i1) %hﬂgfﬂzr g(}n)) > a.

Then there exists a constant C' > 0 such that for all n > 0, one has

h(F,) > C((qTq: 1)aq>g(m'

As a consequence of Theorems 1.1.5 and 1.1.6, it is clear that in a sequence S =
(Fy)n>0 with various positive invariants 3,(S), the numbers h,, are large.

In this thesis we will consider specific sequences of function fields over F,, namely
towers. We will show that they are asymptotically exact and then study their invariants
defined in Definition 1.3.1. We will give an elementary method to construct towers with
various invariants being positive.

1.2 Towers of function fields

In this section we introduce towers of function fields and discuss some of their general
properties.

Definition 1.2.1. An infinite sequence F = (F},),>0 over F, is called a tower if the
following hold:

(a) RGP GRS,
(b) for each n > 0, the extension F,;/F, is finite and separable,
(c) the genus g(F,,) — 0o as n — 0.
Note that we always assume that F, is the full constant field of F,, for all n > 0.

Definition 1.2.2. Let F = (F,),>0 be a tower over F, and f(X,Y) € F,[X,Y] be a
non-constant polynomial. Suppose that there exist elements x,, € F,, (for n > 0) such
that

Foi1 = Fo(xpy) with f(z,, 2p41) = 0 for all n > 0.

Then we say that the tower F is recursively defined over F;, by the polynomial f(X,Y).

In the subsequent chapters, we will give many examples of recursive towers and
study their invariants.

Proposition 1.2.3. Let F = (F,,)n>0 be a tower over F,. Then the following hold:

is convergent in R7% U {oo}.

(i) The sequence (g(F,)/[F, : Fo))

n>0

(ii) Let P € P(Fy), and r > 1. Set
B.(P, F,) = #{Q € P(F,) : Q|P and degQ =r}.

Then the sequence (B,(P, F,)/[F, : Fo]) _ is convergent in R=°.

n>0

Proof.



(i) See [10, Proposition 2.4(i)].

(ii) Our proof is similar to T. Hasegawa’s proof that the sequence (B,(F,)/g(F)), o i
convergent (cf. [12, Proposition 2.2]). We proceed by induction over r. For r = 1, the
sequence (Bi(P, F,,)/[Fy : Fy)), >, is monotonically decreasing, and so convergent (cf.
24, Lemma 7.2.3(a)]). Now let » > 1 and assume that for all 1 < s < r, the sequence
(Bs(P, F)/[Fn : Fol),so is convergent. Let d :=deg P. If d { r, then B, (P, F,) = 0 for
all n > 0. Hence, we can assume that d | r.

Consider the constant field extension of F with the field F,-; i.e.,

f . qu = (Fnqu)nzo

This is clearly a tower over F . The place P € P(Fyp) splits into Py, ..., Py € P(FyF,)
of degree one, and all places of F, of degree s | r split into s degree one places of
F,F,/F. Hence, the following formula holds (cf. [24, p. 206]):

s By(P, F,) By(P;, F,Fyr (1.2)
> Z

s|r

By the induction hypothesis, the sequences
<BS(P, Fn)) and (Bl(Pj, FnIqu))
[Fy : Fo) n>0 [F 1 Fo n>0

are convergent for s < r. Hence, the sequence (B, (P, F,,)/[F, : Fo]),~, also converges.
- [

Corollary 1.2.4. Let F = (F},)n>0 be a tower over F,, P a place of Fy and r > 1.
Then the sequences

are convergent in R=0,

Proof. Tt is clear from Proposition 1.2.3(i) that ([F, : Fy]/g(F,)) is convergent in R=Y.
Hence, the convergence of the sequence (B, (P, F},)/g(F})),o follows immediately from
Proposition 1.2.3(ii) and the equality -

Br(Pan) _ Br(PaFn) [FTL:FO]

g(F) B [P Fol ‘ g(F) .
Since
B,(F,)= Y B.(PF,), (1.3)
PcP(Fp)

the other sequences in Corollary 1.2.4 are convergent as well. Note that the sum (1.3)
is finite since for any fixed » > 1 there are only finitely many places of Fy of degree
dividing 7. [



1.3 Invariants of towers

As a consequence of Proposition 1.2.3(i) and Corollary 1.2.4, the following definitions
make sense:

Definition 1.3.1. Let F = (F},),>0 be a tower over F,, P € P(Fp) and r > 1.

(a) The local invariants of F at P are defined as

 B.(PF)  B.(P.F)
v(P,F):= lim ———— and fS,(P,F):= lim ———.
( ) n—00 [Fn : FO] ( ) n—o0 g(Fn)
(b) The global invariants of F are defined as
. B.(F) . B.(F,)
vp(F) := lim and £,.(F) := lim .
( ) n—o0 [Fn : FO] ( ) n—o0 g(Fn)

(c¢) The genus v(F) of F is defined as

2(5) = tim AL

Note that the definition of 3,(F) is consistent with Definition 1.1.1. The sets
Supp(F) :={P € P(Fp) : v.(P,F) > 0 for some r € N} and

P(F):={reN: v (F) >0}

are called the support and the set of the positive parameters of F, respectively.
We summarize as follows:

Theorem 1.3.2. Let F = (F,)n>0 be a tower over F,. Then one has the following:

(i) For all r > 1, the limit

— i Be(B)

exists; i.e., the tower is asymptotically exact.

(i1) (Generalized Drinfeld-Viadut bound and Deficiency)

S i<
r=1 q B 1
and the difference between the right hand side and the left hand side of this in-
equality is called the deficiency of F.

(#ii) (Drinfeld-Viadut bound of order r) For all r > 1,

B(F) < A(q) < f -1

r

where A,(q) is the r-th Thara’s constant.



(iv) Let P € P(Fy) andr > 1. Then

57”(P7 ‘F) -

(v) For allrT > 1,

v(F)= Y wlPF) and B.(F) = Y B(P,F).

PeP(Fy) PeP(Fp)

Note that obviously for a tower F when (F) < oo, by using Theorem 1.3.2(iv),
one can define the set of positive parameters of F as follows:

P(F)={reN:L.(F)>0}={reN:vy(F) >0}

Lemma 1.3.3. Let F = (F),)n>0 be a tower over F, and for eachr > 1 set F, := FyFyr

Then the following holds:
By (F,
0 < (7)< 2
r

where By (F,) denotes the number of rational places of F,/Fr.

Proof. The first inequality is clear, so we prove the second one. For n > 2, let ) be a
place of F}, of degree r and set P := Q) N Fy. Since F,, and Fj have the same constant
field, we have

f(Q|P)-deg P =degQ =, (1.4)

which implies that deg P|r. Thus, in order to find the number of places @ € P(F,) of
degree r, we take a place P of Iy of degree d dividing r, and define

sp:=#{Q € P(F,)| Q lies above P | deg@Q =r}.

From (1.4), for all such places @, the relative degree f(Q|P) = %, and so we get

So= 0% @

QP QP
deg Q=r deg Q=r
< —Z (QIP)- f(QIP)
QP
d

= —.[F,:Fy] (by the Fundamental Equality )
r

Then by this inequality, we obtain that

Br(Fn) = Z SP—Z Z Sp

deg P|r

degP d
<2 ¥ fnen=R a5
A eg'P—d dIr deg P—d
_ Z—[F";FO]-d-Bd(FO).
d|r



Now in the above inequality, dividing both of the sides by [F}, : Fp], and then taking
the limit yields the desired result:

Bl(Fr)

r

ve(F) <

S|

(D d-BuFy) | =
d|r

Thus, the following consequence is immediate:

Corollary 1.3.4. Let F = (F,)n,>0 be a tower over F,. Then for any r > 1 and
P € P(Fy), the limit B,.(P,F) > 0 if and only if v,(P,F) > 0 and vy(F) < 0.

Proof. By Theorem 1.3.2(iv), we have 3,(P,F) = v,(P,F)/~v(F). Hence, by using
Proposition 1.2.3 and Lemma 1.3.3, the corollary follows. O

Definition 1.3.5. Let F = (F,),>0 and € = (E,)n>0 be towers over F,. Then F is
said to be a subtower of £ if for each i > 0 there exists a 7 > 0 and an embedding
¢; + Fy — E; over IF,.

For the proof of the following result see [24, Proposition 7.2.8]:
Lemma 1.3.6. Let F be a subtower of £. Then B1(F) > p1(E).

We note here that Lemma 1.3.6 is in general not true for g, with r > 2. For
instance, see examples in Chapter 3.

Furthermore, by [19, Theorem C], the deficiency is an increasing function with
respect to inclusion, i.e., we have the following:

Lemma 1.3.7. If F is a subtower of £, then
I(F) <9(E).

1.4 Infinite function fields

An infinite function field Q1/F, is an infinite separable extension of the rational
function field F,(x) such that I, is algebraically closed in 2. In other words,

Q= U F,,, for some tower F = (F,,),>o over F,.

n>0
In this case, the tower F is called a representative for the field 2.

Lemma 1.4.1. Suppose that F = (F,)n>0 and H = (H,)n>o0 are two towers, with
F = Fy = Hy, representing the same infinite function field ). Then the following
hold:

(1) 1(F) =~v(H).
(i) For any P € P(F) and r > 1, one has that
v(P,F) =v.(P,H) and B.(P,F) = B.(P, H).

Moreover,

ve(F) = v (H) and B,(F) = B,(H) for all r > 1. (1.5)



Proof.

(i) As Q = U0 Fn = U,>0 Hn, and each F), is finitely generated over Iy, there is
an m > n such that F,, is contained in H,,. Hence, by using the Hurwitz Genus
Formula [24], we obtain that

g(Hp) =1 > [Hy 2 Fo] - (9(Fo) = 1).
Then dividing both sides of this inequality by [H,, : F] yields

Q(Hm)_1>g(Fn)_1
[H,:F) — [F,:F]

Hence, v(#H) > v(F), and similarly, vice versa.

(ii)) Let P € P(F). It is enough to prove that v,.(P, F) = v,.(P,H) for any > 1. Then
by (i) and Theorem 1.3.2(iv),(v), the other invariants of F and #H are also equal. As
in (i), for any n > 1, we have F,, C H,, for some m > n. We prove our assertion by
induction over r. For r = 1, we have that

By(P,Hy,,) < [Hpy : F,|Bi(P, Fy).
Hence, as n — oo, we obtain that

B\(P.H,) . B (PF,
v (P,H) = lim Bi(P, Hm) < lim M:

m—oo [Hpy, : F] ~ nooo [F,: F] (b F).

Similarly, since H,, C F}, for some k > m, we obtain that v, (P, F) < vy (P, H). Hence,
(P, F)=uv(P,H).

Now let r > 1 and assume that for all 1 < s < r, we have that v,(P, F) = vs(P, H).
Consider the constant field extensions F - F,r = (F,,Fyr)n>0 and H - Fyr = (H,Fyr)n>o
of the towers F and H, respectively. Let d := deg P. From the Formula (1.2), we have
that

> sB.(P,F,) ZBl (P;, F,Fyr (1.6)

s|r

where Py, ..., P; are the extensions of P in FF, . Dividing Eq. (1.6) by [F), : F| and
then taking the limit as n — oo gives that

ZSVS<P, F)

s|r

Zy1 (P, F -Fyr (1.7)

- ZM(P]-,H Fy) =) svs(P.H). (18)

Jj=1 s|r
By the induction hypothesis, vs(P, F) = vs(P,H) for all 1 < s < r. Therefore,

v.(P,F) =v.(P,H).



Lemma 1.4.2. Let Q be an infinite function field represented by a tower F = (F,)n>0
over F, and Q' be a finite separable extension of Q. Suppose that F, is algebraically
closed in Q. Then for some k > 0, there exists a finite separable extension E of Fj
such that the following hold:

(i) The fields E and F,, are linearly disjoint over Fy for all n > 0.
(ii) The sequence € := (EF,),>k is a tower over F, representing the field ).

Proof. We will prove just the first assertion. The second assertion will clearly follow.
Since ' /€ is finite and separable, there exists an element o € ' such that Q" = Q(«).
The coefficients of the minimal polynomial of a over €2 lie in F}, for some k£ > 0. Let
E = Fy(a) and E, := EF, for all n > k. Then, ' =J,-, E, and for all n > k, we
have that -

[Ey: F=[E,:F,)=1[Q:Q].

This means that the fields F) and F}, are linearly disjoint over F}, for all n > k. Then

obviously
[Eny1: By = [Fog : F) for all n > k.

Next, as F, is algebraically closed in Q' and F,, for all n > 0, it is the full constant
field of E,. Hence, £ = (E,),>k is a tower over F,. O



Invariants of Towers

In this chapter, unless otherwise stated, we consider a tower F = (F},),,>0 of function
fields over IF, and a finite separable extension E of Fj,. For convenience, we assume that
E| Fy, Fy, ... are all contained in a fixed algebraically closed field €). For simplicity, we
set F':= Fy and denote by &€ := E - F the sequence €& = (E,),>0, with E,, := EF,, of
function fields over [F,.

Remark. If E and F,, are linearly disjoint over F' and F, is algebraically closed in E,
for all n > 0, then the sequence £ is a tower over F,.

Our goal is as follows: For a given tower F/IF, we want to construct an appropriate
extension £ of F' such that £ is a tower over IF, and to estimate the invariants of £

depending on those of F. Recall that by Theorem 1.3.2(iv), for any r € N, we have

Br(&) = (—)) Hence, in order to get bounds for 5,(£), we estimate v,.(£) and y(&).

2.1 Bounds for the invariants of a tower

In this section we assume that & = (E'F,),>0 is a tower over F,. We begin with
a lemma concerning the splitting of places in the compositum of function fields, [24
Proposition 3.9.6(a)].

Lemma 2.1.1. Let E/F and F'/F be finite separable extensions of function fields
contained in an algebraic closure of F'. Suppose that P is a place of F which splits
completely in the extension F'. Then every place Q of E lying above P splits completely
in the compositum EF’.

Proposition 2.1.2. For any s > 1, one has
vs(E) > #{Q € P(E)| degQ = s and Q N F splits completely in F} .

Proof. Let ) € P(FE) such that P := @ N F splits completely in F. Then by Lemma
2.1.1, @ splits completely in E,, for all n > 1. Hence,

Bi(Q, E,) = [E, : E] where s = degQ,
which yields v4(Q, &) = 1, and so by Theorem 1.3.2(v) the proposition follows. ]
Remark 2.1.3. For any d > 1 and P € P(F), the following holds:

Z > n(Q.€) = va(P,F). (2.1)

r=1 QeP(E)
Q|P, s=rd

10



Proof. The proof follows from the following argument. Let P, be a place of F, lying
above P of deg P, = d for some d > 1. Then for any extension @), of P, in E,, we
have f(Q,|P,) = r for some 1 < r < m, and so deg@,, = rd. O

Proposition 2.1.4. Let QQ € P(E) and P := QN F. Then for all s > 0, we have the
following:

W @< Y "upr) mip@e< Y SurF)

deP(F) deP(F)
d|s,d>= d|s,d>=

. md d

(ii) vi(E) < > —va(F) and B,(€) < > —Ba(F).
deP(F) deP(F)
d|s,d>=2 d|s,d>=2

Proof. (i) Fixn > 1 and let @, be an extension of @ in F,, of degree s and P, := Q,NF,.
Then clearly P,|P and deg P, = d with d dividing s and d > =, since f(Qn|P,) < m.
Conversely, any place P, of F}, lying above P with deg P, = d, and satisfying d > >
has at most de extensions of degree s in F,,, by the Fundamental Equality [24]. Hence,

md
deN
dls, d>-=-

Dividing (2.2) by [E, : E] yields the bound for v4(Q,&). Next, by using the Hurwitz
Genus Formula [24], one obtains that

g(E,) > mg(F,) —m for all n > 0, and so v(&€) > m~y(F). (2.3)

Dividing the LHS and the RHS of (2.2) by v(£) and m~y(F)), respectively, gives the
desired bound for f5(Q, E). The assertion (ii) then follows by using Theorem 1.3.2(v).
[l

The following consequence follows easily from Proposition 2.1.4:

Corollary 2.1.5. For the tower £, we obtain that

(i) Swp(€) € {Q € P(E) : QN F € Supp(F)}.
(11) If P(F) is finite, then P(E) is also finite.

Since for a given integer r > 0 there are finitely many places of F' of degree dividing
r, if P(F) is finite, then the set Supp(F) is also finite. Furthermore, when ~(F) < oo,
by Theorem 1.3.2(iv), for any r € P(F), we have 3.(F) > 0. Moreover, by Theorem
2.3.3, ¥(€) < o0, and hence 34(E) > 0 for all s € P(E).

By using Proposition 2.1.4, we obtain the following generalization of Lemma 1.3.6.
Lemma 2.1.6. Let £ be a tower over F, and F be a subtower of £. Then
s < Y Lo
B S

deP(F)
d|s,d>

S
m

11



Proof. We use a similar method as used for the proof of Lemma 1.3.6 (cf. [24, Propo-
sition 7.2.8]). Set

m = min{[E;q) : @i(F;)]| @i : Fi = Ej;) is an embedding and g(F;) > 2}.
Let H; be the subfield of E;) which is uniquely determined by the following properties:
o vi(F;) C H; C Ejp,
e H;/p;(F;) is separable, and
e J;;)/H; is purely inseparable.

By using the Hurwitz Genus Formula [24] for the extension H;/¢;(F;), for any i > 1,
with g(F;) > 2, we obtain that

g9(Hi) =1 =m(g(F;) —1).

By [24, Proposition 3.10.2(c)], the field H; is isomorphic to Ej;). Hence, by using the
formula (2.2) for H;/@;(F;), for any s € N,

Bs(Eji Bs(H; 1 md
9(Ej@) —1 g(H;) = m(g(F;) —1) 4= s
dls,d>-
- ¥ @(M) S Q(M)
2 \gm-1) " 2 s\gm) -1
d|s,d2% d\s,dZ%
By taking the limit as ¢ — oo in this inequality, the lemma follows. ]

2.2  Construction of towers with prescribed invariants being positive

We say that a tower F = (F},),>0, with F' := Fp, is pure, if for all P € P(F') and
r € N, the inequality v,.(P, F) > 0 implies deg P = r and v4(P,F) = 0 for all s # r.
In this section we will prove our main result:

Theorem 2.2.1. Let F = (F,)n,>0 be a tower over F, with a finite support and let
N C N be a non-empty finite set. Then there exists a finite separable extension E/F
such that € := E - F 1is a tower with the following properties:

(i) for all s € N,
v(&) = Y / > d-w(PF)

S
fEN PeSupp(F)
deP(F) lem(f deg P,d)=s

Moreover,

Supp(€) = {Q € P(E) : QN F € Supp(F)} and (2.4)
P(E) ={s € N:s=lem(fdegP,d) with f € N, d €N, P € Supp(F)}.

12



(i) If furthermore F/F is pure, then for all s € N,

vs(€) = Z va(F) and
fENj deP(F)

PE)={seN:s= fd with f € N, d € P(F)}.

To be able to prove Theorem 2.2.1, we first give some results which will be used to
construct an appropriate extension E/F such that £ := E - F is a tower over F, with
certain properties.

Proposition 2.2.2. Let F/F, be a function field, S C P(F) a finite set of places of
F/F, and R € P(F)\ S. Assume that for each P € S her’e is given a finite set
Np C N such that 3 ey, [ = ZfeNQf for all P,Q € Then there is a finite
separable extension E of F such that

(i) [E: F)=m where m =3,y [ and R is totally ramified in E.

(11) For each P € S, f € N, there exists exactly one extension Q of P in E/F, with
f@IP) =

(i1i) There is y € E such that E = F(y) and {1,y, e ’qu} 15 an integral basis for
E/F atallP€S.

Proof. For each P € S, set
= ] 9s/(1) =D axrT" € Op[T],
feENp k=0

where gf € Op[T] is a monic polynomial which is irreducible over k(P) of degg; = f.
Then by the Weak Approximation Theorem [24], for each & = 0,...,m, there exist
elements by, ...,b, € F such that

e vp(bj—a;p) >0foralli=1,...,m—1and P € S, and

° UR(bm) - 07
ged(m,vg(by)) = 1 and either
vr(b;) > vr(by) >0fori=1,... m—1 or
vr(bo) <0, vg(b;) >0fori=1,...,m—1.

Note that w.l.o.g. we can take by, := 1. Now we set p(T) := > ;" bT* € Npeg Op[T].
Then
o(T) = ¢p(T) over k(P) for P € S, and

by the generalized Eisenstein’s Irreducibility Criterion [24] with the place R, the poly-
nomial ¢(7) is irreducible over F. Set E := F(y) where y is a root of ¢(T"). Hence,
[E : F| = m and by the same irreducibility criterion, R is totally ramified in £, and so
assertion (i) follows. Then by applying Kummer’s Theorem [24], assertion (ii) follows.
Note that E/F is separable, since by Kummer’s Theorem each P € S is unramified in
E. Assertion (iii) is clear from the factorization of o(T") over k(P). O

13



Remark 2.2.3. In Proposition 2.2.2, the elements in the set Np do not need to be
distinct if the following holds: for each P € S and f € Np, there are monic polynomials
g(T') € Op|T] which are pairwise distinct and irreducible over k(P) of deg g(T) = f.

Lemma 2.2.4. Let E/F and F'/F be finite separable extensions of function fields in
some algebraic closure of F. Suppose that F, is algebraically closed in F' and F', and
there is a place P of F that is totally ramified in E/F and unramified in F'/F. Then
E/F and F'/F are linearly disjoint and IF, is algebraically closed in EF’.

Proof. The linear disjointness follows from the existence of P and Abhyankar’s Lemma
[24]. Let L/F, be a finite extension of F,. Then P is unramified in the constant field
extension F’L. Hence, again by applying Abhyankar’s Lemma, we obtain that EF”'/F’
and F'L/F’ are linearly disjoint, and so

EFNFL=F.

This gives that EF' N L =F,, as F, is algebraically closed in F”. Since this holds for
any finite extension L/F,, we obtain that F, is algebraically closed in EF". O

Lemma 2.2.5. Let F'/F, be an algebraic function field and let E, F' and E' be finite
extensions of F' such that E' = EF’. Let QQ and P’ be places of E and F', respectively,

lying above a place P of F. Suppose that there exists a place Q' of E' lying above both
Q and P'. Then

e(Q'P) < e(QIP) and k(Q') 2 k(Q)k(F).
If furthermore e(Q|P) and e(P'|P) are coprime, then
)

e(Q'|P) = e(QIP) and k(Q') = k(Q)k(P").

Proof. We first set k := k(Q)k(P’), then clearly k(Q') D k. Consider the constant
field extensions Fy := Fk, Ey, := Ek,F| = F'k and E] := E'k. Let Q) € P(E]) be an
extension of (). Then obviously P, := Q|NF, Q1 := Q|NE, and P := Q|NF" lie above
P, @ and P’, respectively. We denote the completions of Fy, E'y, F| and F{ with respect
to Pl, Ql, P and @} by the symbol” As Q)] is lylng above Pp,()1 and P/, we can regard
By, F as subfields of E’ such that E’ ElF’ We note that by [21, p.30, Theorem
1], the correspondmg ramlﬁcatlon 1ndlces and the relative degrees are preserved by
completion. Moreover, by [24, Theorem 3.6.3], the corresponding ramification indices
do not change after taking the constant field extensions. Consequently, we obtain that

f(@1|131) = f(jf’/1|ﬁ1) = f(Q1|P1) = f(Pll|P1) =

Thus,
e(Q1|P))e(P{|Py) < (B : Fy] < By : By - [F] : FY] = e(Qu]|Pr)e(P]|Py). (2.5)

Therefore, o
e(Q'|P') = e(Qi| PY) < e(Qu|P1) = e(Q|P).
Now suppose that e(Q|P) and e(P’|P)) are coprime. By Abhyankar’s Lemma [24],
we get
e(Q'IP) = e(Q[P) and e(Q'|Q) = e(P'|P).
Thus, in Eq.(2.5), equalities hold, and so

e(QYPy) = B} : 1] = e(Q4|P) f(QY| P).

14



Hence, o )

= F(QiIP = (K@) - k()] = [K(@)) - k(P1)].
This means that k(Q)) = k(P;) = k. As k(Q') 2 k and by [24, Theorem 3.6.3(g)],
k(Q)) =k - k(Q'), we obtain that k(Q') = k. O

Lemma 2.2.6. Let F'/F, be an algebraic function field and let E, F' and E' be finite
separable extensions of F' such that E' = EF'. Suppose that E/F and F'/F are linearly
disjoint. Set E := F(y), m := [E : F|, and consider the set

M :={PeP(F):{l,y,...,y" '} is an integral basis for E/F at P}.
Let P € M, P' € P(F") with P'|P. Suppose that e(P'|P) is coprime to any ramification

index of P in E. Then above P' and each ) € P(E) with Q|P there are exactly
ged(f(Q|P), f(P'|P)) places Q' € P(E"). Moreover, for each such place @',

HQ'|P) = [k(Q)k(P') : k(P)]. (2.6)

Proof. We first note that by [24, Theorem 3.3.6], the set M contains almost all places
of F'. Fix a place P € M with an extension P’ in E’ satisfying the given assumption.
Let ¢(T') € Op[T] be the minimal polynomial of y over F' and

= H@(T)G" (2.7)

be the decomposition of ¢(7T) into irreducible factors over k(P). By Kummer’s Theo-
rem [24], for 1 < ¢ < r, there are places Q; € P(F) satisfying

Qil P, gi(y) € Qi, e(QilP) = €, f(Qi|P) = degg, (2.8)
and these are all extensions of P in E. For each 1 <i <r, set
ki = [K(Qi)k(P') : k(P")]. (2.9)

Then as g;(T') is irreducible over k(P), it is separable, and so

H T) € k(P)[T),

where hj1(T), . .., his;(T) are pairwise distinct, monic, irreducible polynomials in k(P')[T]
of deg h;;(T) = k; for all 1 < j <'s;, and
si = ged(f(Qi|P), f(P'|P)), (2.10)
Again by Kummer’s Theorem, for 1 < j <'s;, there are places @Q;; € P(E’) satisfying
Qij| P, hij(y) € Qij, f(Qy|P’) = deghyy = ki (2.11)

Moreover, as h;;(T) | g:(T), it follows that each @);;|Q;. Since by assumption e(Q;|P)
and e(P'|P) are coprime, by Lemma 2.2.5, we have

k(Qij) = k(Qi)k(F).
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Hence,
F(QulP) = [k(Qy) - k(P)] = [k(Q:)k(P') : k(P")] = ki.

Now we just need to prove that ();;’s are all extensions of ¢); and P’, then by (2.10)
the lemma follows. By Abhyankar’s Lemma [24], we have that

e(Qi|P") = e(Q|P) = ¢ forall 1 < j <s;. (2.12)

As this holds for all 1 <7 <r, by using (2.8), (2.11) and (2.12), we obtain that

[E:F]= ) eQIP)(QIP)=) e¢degg(T) = ) ki
QEP(E) i=1 i=1 j=1
Q\P
= ZZ e(QuIP)FQuIPY < 3 e(QIPFQIP) = [E": F.
=1 ]Zl QIGITI(DE/)
Ql /

Hence, as [E : F| = [E' : F'], the above equality holds. Then for each 1 < i <r, we
obtain that Q;1,... Qs are all places of E’ lying over ); and P'. O

Theorem 2.2.7. Suppose that £ := E-F is a tower of F /F,. With the same notations
as in Lemma 2.2.6, let P € M, and suppose that e(Q|P) is coprime to any ramification
index of P in F, for all Q € P(E) with Q|P. Then for any Q|P and s > 1,

P
Vs(Qag) = f(cil ) Z d- Vd(Pa 'F)
deN
lem(deg Q,d)=s
Proof. Set E' := E,,, I’ .= F,,, forany n > 1. By Lemma 2.2.6, there are gcd(f(Q|P), f(P'|P))
places " € P(E’) above any fixed () and P’ lying over P € M, and moreover for each
such place ', one has

FQNP) = [K(Q)K(P') : k(P)].

In particular, s := f(Q'|P) = lem((f(Q|P), f(P'|P)), and so d := f(P'|P) divides s.
Conversely, any P’ lying over P with d = f(P'|P) such that s = lem(f(Q|P),d) has
at least one extension ) in E’ with f(Q'|P) = s. Hence,

2ot= 2 2 2

Q/ Q l P Ql Pl
f(Q/I‘P):s lem(f <Q|P> d)=s f(P/IIP) d Q'Q
= > > ged(f(QIP),d)
deN P'|P

lem(f(Q|P),d))=s ¢(P'|P)=d

d- f(QIP)
= e llD DR ¢
deN P'|P
lem(f(Q|P),d)=s f(P'|P)=d

Since lem(af, ad) = as if and only if lem(f, d) = s, we can write the summation indices
in terms of absolute degrees instead of relative degrees with respect to P as base place.
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Then we get

s = Y 1= s sy

deN PP
degc‘)/Q:S lem(deg Q,d)=s deg ]L’:d
P
IVCICR SE.
5 deN
lem(deg Q,d)=s

Dividing this equation by [E’ : E] and then taking the limit as n — oo proves the
theorem. O

Proof of Theorem 2.2.1. It is enough to prove (i), then (ii) is immediate. By
applying Lemma 2.2.4 and Proposition 2.2.2 with the set S := Supp(F) and Np := N
for each P € Supp(F), one can construct an extension E/F such that the following
hold:

(i) £€:=E - F is a tower of F with E/F.

(ii) For each f € N, any P € S has exactly one extension ) in E with f(Q|P) =
and these are the only extensions of P in F.

(iii) All places P € S are unramified in F and S is contained in the set M defined in
Lemma 2.2.6.

By Corollary 2.1.5 and the construction of E/F, and Theorem 2.2.7, the statement
(2.4) is immediate. Therefore, for any s > 1, by using Theorems 2.2.7 and 1.3.2(v), we
get

we) = Y Y weo=-X1 ¥ awen

feEN,deN  f(Q|P)= feEN PesS
PeS  lem(degQ, d) s deN  lem(f deg P,d)=s

O

We note here that when Supp(F) is infinite, one can apply Theorem 2.2.1 with a finite
subset S C Supp(F) and get a finite subset of Supp(&).

As there are many towers over a given finite field F, with non-empty finite support,
such as many of the class field towers and the recursive towers (see Chapter 3), Theorem
2.2.1 can be often applied. More specifically, let F be a tower over F . attaining the
Drinfeld-Vladut bound of order one. Note that there are many such towers, for instance
see Section 3.2. Then obviously P(F) = {1}. Hence, by using Theorem 2.2.1(ii) one
gets immediately the following consequence:

Corollary 2.2.8. For any given finite set N C N, there exists a tower of function
fields € over F 2 with
P(E) = N.

Proof. Consider a tower F = (F},),>0 over F,2 with P(F) = {1}. Then by Theorem
2.2.1(ii), there is an extension E of Fj such that £ := E - F is a tower over F,2 with
P(E)=N. O

Corollary 2.2.9. For any given set M ; N, there exists an asymptotically good tower
of function fields € over Fp with

PE)NM = 0.

17



Proof. Let N C N\ M be a finite set. By Corollary 2.2.8, there exists a tower £ over
F, with P(£) = N, and hence the corollary follows. O

Remark 2.2.10. For a finite field IF,, when ¢ is non-prime, there are many recursive
towers F/IF, with £;(F) > 0 (for instance see Chapter 3). Hence, for any finite set
N C N, by using Theorem 2.2.1, one can construct many recursive towers & over I,
with

PE)={reN:5.() >0} DN.

In Chapter 3 we will construct some such towers £ over [F,. However, in the case that
q is a prime, the existence of recursive towers F over F, with §;(F) > 0 is not known.

2.3 Computation of the genus of a tower

Let F = (F,)n>0 be a tower over a finite field F, and E be a finite separable extension
of Fy. In this section we suppose that & = (E'F),),>0 is a tower over F, and estimate
the genus v(€) of the tower £, under certain conditions.

Definition 2.3.1. Let F = (F},),>0 be a tower over F,. Then the set
R(F) :={P € P(Fy) : P is ramified in F,, for some n > 0}.
is called the ramification locus of F.
The proof of the following lemma is omitted; for the proof see [11, Lemma 3.4].

Lemma 2.3.2. Suppose that the set R(F) is finite. For any n > 1, set

A, = Z P.

PcP(F,)
PNFeR(F)

Then the following limit exists:

. degA,
a(F) = nh—>nc}o [F, : F|

Theorem 2.3.3. For the genus v(E) of the tower £ the following hold:
(i) Set m = [E : F]. Thenm-v(F) <€) < g(E)—14+m(l —g(F)+~(F)). If

furthermore all P € R are unramified in E, then
(E) = g(E) =1+ m(1 = g(F) +~(F)).
(i1) If R is finite, a(F) =0 and all P € R are tame in E, then
1E) = g(E) =1 —=s/24+m(1 —g(F) +~(F)),

where s := > d(Q|QNF)-degQ.
QEP(E)
QNFER

For the proof of Theorem 2.3.3 we need the following lemma:
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Lemma 2.3.4. Let F/F, be a function field and let E, F' and E' be finite separable
extensions of F such that E' = EF'. Setn :=[F': F| and m := [E : F|. Then

(i) for any Q" € P(E') with P = Q' NF', Q:=Q NE, and P:= Q' NF, one has
d(Q'[P') < e(QQ)d(Q|P).
(ii) Suppose that E/F and F'/F are linearly disjoint. Then

m(g(F") = 1) +1 < g(E') <mg(F') +ng(E) — nmg(F) + (n — 1)(m — 1).

In order to prove Lemma 2.3.4, we will use the following proposition. Its proof fol-
lows from [21, p.52, Proposition 10], [21, p.57, Proposition 12], and [21, p.56, Corollary
2].

Proposition 2.3.5. Let K/, be a function field and L be a finite separable extension

of K with a place Q and P := Q N K. Consider the completions k, L of the fields K,
L with respect to the places P, (), respectively. Then one has

(i) Og = Opla] for some o € L.

(i) d(Q|P) = d(Q|P) = Vo (f'(@0)), where f(T) € Op[T] is the minimal polynomial
of o over Op.
Proof of Lemma 2.3.4.

(i) First we fix a place " with the restrictions P, @, and P’ to the fields F, E and F",

respectively. Consider the completions F E F’ and E’ with respect to the places
P, Q, P and (', respectively. By Proposmon 2.3.5(ii), the different is preserved by
completion, and so it suffices to prove it in the completed setting. By Proposition
2.3.5(i), there is an element o € E such that Oy = Oplal. Let f(T) € Op[T], (resp.

g(T) € Op,[T)) be the minimal polynomial of @ over F (resp. over F”). By the Lemma
of Gauss [14], we can write f(T') = g(T)h(T) in Op, [T, then

f'(@) = g'(@)h(a) + K ()g(@) = g'()h(a).

Thus, by applying [24, Theorem 3.5.10(a)] and Proposition 2.3.5(ii), the desired result
follows:

d(Q'P") < v (g () < v (f' (@) = e(Q1Q)vg (f' () = e(QQ)A(QP).

Note that by [21, p.30, Theorem 1], the ramification indices are preserved by comple-
tion.

(ii) By using the Hurwitz Genus Formula [24] for the extension E’/F’, we obtain that
g(E") = m(g(F') = 1) + 1.

Next, we prove the second inequality. By using (i), we have that

Diff(E'/F) = > Y dQIPYVQ < > Y e(@Q1Q)dQIP)Q’

P'eP(F') Q'| P! QGIP’ ) Q'lQ
P=QNF
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where Cong /g is the conorm map and Diff is the different. Hence, by [24, Corollary
3.1.14],

deg Diff(E'/F'") < [E' : E]deg Diff(E/F). (2.13)
By using the Hurwitz Genus Formula for the extension E/F, we obtain that
deg Diff(E/F) = 2¢9(E) — 2 —m(2¢9(F) — 2). (2.14)

By using (2.13), (2.14) and the Hurwitz Genus Formula for the extensions E'/F’, it
follows that

29(E") —2 = m(2g(F") —2) + deg Diff (E'/F")
< m(2¢9(F') —2) + ndeg Diff(E/F)
= m(29(F') = 2) +n(29(E) — 2 — m(29(F) - 2))
= 2[mg(F") —m+ng(F) —n —nmg(F) + nm),
Therefore, the second inequality follows. O

Proof of Theorem 2.3.3.
(i) By applying Lemma 2.3.4(ii), with £’ := E,,, F’ := F,,, for any n > 1, we have that
m(g(F')—1) < g(E') < mg(F') + [ : Flg(E) —=m[F": Flg(F)+ ([ : F]=1)(m—1).

Dividing both sides of those inequalities by [E’ : E] = [F’ : F|, and then taking the
limit as n — oo gives the first part of the assertion.

Now assume that all places P € R(F) are unramified in F. For simplicity, we first
denote by P (resp. @, P, Q") the places of F' (resp. E,F,, E,), and set R := R(F).
The Hurwitz Genus Formula for the extension E,,/F yields that

29(E,) —2=[E,: F|(29(F) — 2) + s1 + s9, (2.15)

where

s1i= Y Y d(Q|P)-degQ and sy:=> > d(Q'|P)-deg(.

PE¢RQ'|P PERQ'|P

By applying the transitivity of the different in ' C E C E,,, we obtain that

s1o= > > Y (eQ1Q) - d(QIP) + d(Q'|Q)) - deg

P¢R QP Q'|Q
= ) ) > d@QIP)- f(QQ) - deg@ (by the Fundamental Equality)
PZR Q|P Q'|Q
= [E,: E]-) ) d(Q|P)-degQ
P¢R Q|P

= [E,: E]-degDiff(E/F).
Next, we apply the transitivity of the different in F' C F,, C E,,:

o= 33N (@QIP) - d(P|P) + d(Q|P)) - deg @

PER P'|P Q'|P'
= Y YD d(P|P)- f(Q|P) - deg P’
PER PP Q'|P’

= [E:F]- Z Z d(P'|P) - deg P" (by the Fundamental Equality)
PER P'|P

= [E: F)-degDiff(F,/F).
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Now by substituting s; and s, in (2.15), we obtain that

29(E,) —2 = [E,: F]-(29(F)—2)+[E,: E]-degDiff(E/F)
+ [E: F]-degDiff(F,/F)
= [En: F]-(29(F) = 2) + [En - E]- (29(E) =2 - [E: F]- (29(F) — 2))
+ B F](29(F) =2 = [y FT- (29(F) = 2)).

Dividing both of the sides of this equation by 2 - [E, : E], and letting n — oo, we
obtain that

1E) = [E:F-(9(F) =1) +g(E) -1-[E: F]-(9(F) - 1)
+ [E:F]-(0(F) —g(F) +1)
= g(B) =1+ [E: F]-(v(F) —g(F) + 1).

(ii) For the proof see [11, Theorem 3.6]. The proof is similar to our proof for the second
part of assertion (i). O

Remark 2.3.6. Let K/F, be a function field and K7, K5 be two subfields of K. Sup-
pose that K = K1 K, and [K : K;| = n; for i = 1,2. Then Castelnouvo’s Inequality [24]
gives the following bound for the genus g(K) of K:

9(K) < nig(K1) +nag(Kz) + (n1 — 1)(ng — 1).

In Theorem 2.3.3, when g(F') = 0, the equality in Castelnouvo’s Inequality holds for
the function fields E/F, and F, /F, with their compositum E, = EF,.

Remark 2.3.7. In Theorem 2.3.3(ii), if a(F) is not zero, then
V&) < g(E) =1 —s/24[E: FI(1 = g(F)+s+7(F)), (2.16)
where s 1=} p g deg P.

However, the bound (2.16) is not better than the one obtained by using Castel-
nouvo’s Inequality for F, F,, and E,, which yields that

Y(E) < g(E) =1+ [E: FI(1+~(F)).
A tower F = (F),)n>0 is called tame if F,,;1/F, is a tame extension for all n > 0.

Lemma 2.3.8. Suppose that F is a tame tower. Then the tower £ is also tame, and
hence

29(F) — 2
Y(€) < 2(B) =2+ where s 1= Z deg P. (2.17)
PER(E

Proof. By Abhyankar’s Lemma [24], it is clear that the tower £ is tame. Then by [11
Theorem 2.1],the ineaulity (2.17) holds. O
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2.4 Towers with infinitely many positive invariants

In this section we investigate the situation where we can estimate v,.(F) for infinitely
many r > 1.

Theorem 2.4.1. Let F, be a finite field of characteristic p. Then there is a tower F
over IF, and a strictly increasing sequence (k;);>o of positive integers with ko :=1 such
that

1
v, (F) > — for all i > 0.
pZ

Proof. Let Fy :=TF,(xo) be the rational function field. Set
Qo = (xg = ), Sp:={Py} where Py := (2o =0), and ko := 1.
Choose an element z, € Fy with the following properties:
20(P) = 0 for P € Sy, and zy has a simple pole at Q.

Note that by the Weak Approximation Theorem [24] such an element z, always exists.
Let Fy := Fy(z1) where z satisfies the equation
x} — 1z = 2.
Then @)y is totally ramified in F, and hence F, is algebraically closed in F;. Denote
by @ the place of F} lying above Qy. Set
S| = {P € ]P(Fl) PNFEy e So} U {Pl},

where P, € P(F)) of deg P, = k; for some k; > 1. Next, choose an element z; € F}
such that

21(P) =0 for all P € Sy, and 2; has a simple pole at ().
Let Fy := Fi(x2) where z, satisfies the equation

b — 1y = 2.

Then @) is totally ramified in F5, and so [, is algebraically closed in F,. We continue
on this process inductively for n > 2. Set

Sn,1 = {P S P(Fn,1> PN Fn,Q € Sn,Q} U {Pnfl}

where P, € P(F,_;) of deg P,_1 = k,_; for some k,_; > k, 5. Choose an element
Zn_1 € F,_1 such that the following hold:

(i) zp—1(P)=0for all P € S,_1,
(ii) z,_1 has a simple pole at Q,,_; where Q,,_1|Qn_o-

Let F,, := F,,_1(x,) where z,, satisfies the following equation:

p _
Ty — Ty = Zp_1.

Then @),—; is totally ramified in F,,, and hence [, is algebraically closed in F,.

Now it follows from the construction of F),/F,, for n > 0, that the sequence F :=
(Fy)n>o0 is a tower over F, with [F), : F},_1] = p for all n > 0. Moreover, for all i > 0, by
applying Kummer’s Theorem [24], each place P € S; splits in F,,, for any sufficiently
large n > 1. Thus, for all + > 0, we obtain that

By, (F,) > [F,: 5] =p"", and so v, (F) >

1
P
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Remark 2.4.2. It is not yet known if there exist towers of function fields over finite
fields with infinitely many [, being positive.

2.5 Towers with all invariants being zero

For any tower F/F,, it is clear that when either the genus v(F) of F is infinite or
v (F) = 0, the invariants (,(F) are all zero, for any r» > 1. We know that there are
many towers with infinite genus. For instance, see Lemma 4.1.10. We now prove the
existence of towers with v,.(F) = 0 for all » > 1. First, recall that for any function
field extension E/F, if () € P(F) lies above P € P(F'), then deg P divides deg Q.

Lemma 2.5.1. For any finite field F,, there exists a tower F over F, with
v(F) =0 for all r € N.

Proof. The proof is similar to that of Theorem 2.4.1. Let p be the characteristic of
F,. We first claim that there exists an element a; € F; such that the polynomial
T? — T — a is irreducible over F,.

Proof of the claim: We first recall that for any a € F,, the polynomial 77 — T — a is
irreducible over I, if and only if it has no root in F,. Consider the map v : IF, — [F, with
v(b) = b” — b for any b € F,. This map is clearly F,-linear and its kernel is Kery = F,,.
Hence, v is not surjective, and so there exists an «; such that the polynomial 7?7 —T —q;
has no roots in F,. Then the claim follows.

Now let Fj := F,(z0) be the rational function field and set

QO = (.TO = OO), SO = {P S ]P)(Fo) \ {Qo} : degP = 1}
Choose an element 2, € Fj with the following properties:
20(P) = ay for all P € Sy and @) is a simple pole of z.

Let Fl = F()(Zo) with
¥ — x1 = 2. (2.18)

Then Q) is totally ramified in F; and hence F, is algebraically closed in F;. Moreover,
it follows from Kummer’s Theorem [24] and our claim that all places P € Sj are inert
in F}. Thus,

Bl (Fl) - 1

Next, denote by ()1 the extension of (g in F} and set
Sy ={P € P(F}):deg P =2}.

By using our claim, there exists an element o € 2 such that the polynomial 77 —
T — ay is irreducible over F 2. Choose an element 2; € F} such that the following hold:

21(P) = ay for all P € S; and 2, has a simple pole at Q.
Let Fy := Fi(z3) where x5 satisfies the equation

h — 1y = 2.
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Then @), is totally ramified in F,,, and so F, is algebraically closed in F5. By Kummer’s
Theorem, all P € Sy are inert in F5. Hence,

BQ(FQ) =1 and BQ(FQ) = 0.

We proceed by induction over n. Suppose that there is an extension F,_;/Fp, with
n > 3, such that

(a) Bi(F,-1)=1and B,(F,—1) =0forall2<r <n-—1,
(b) Qo is totally ramified in F,,_q,
(c) F, is algebraically closed in F),_.
Let Q.1 € P(F,,_1) be the extension of Qg in F,_1. Set
Sp—1:={P €P(F,_1) : deg P = n}.

Using our claim, there exists an element «, € Fy, such that the polynomial 7% —T —ay,
is irreducible over Fy. Choose an element z,_; € F;,_; with the following properties:

zn-1(P) = a,, for all P € S,,_; and z,_; has a simple pole at Q,,_;.

Let F,, := F,,_1(z,) with
b —x, = 2, 1.

Then @,—; is totally ramified in F),, and so I, is algebraically closed in F,. By
Kummer’s Theorem, all P € S,_; are inert in F,, (notice that k(P) = Fyn for all
P € S,_41). Hence, by combining this observation with (a), we get that

Bi(F,)=1 and B,(F,)=0forall2<r<n.

Now by the construction of F},/F, it follows that the sequence F := (F},),>0 is a tower
over [F, with
v(F) =0 for all r € N.
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Examples

In this chapter we are interested in the following problems concerning the invariants
of a tower over any finite field IF,.
Problem 1. For a given tower (an asymptotically exact sequence) F over F,, describe
the set of positive parameters P(F) = {r € N: ,.(F) > 0}.
Problem 2. Describe the set of possible values of the deficiency for towers (asymp-
totically exact sequences) of function fields over F,.
Problem 3. Find towers (asymptotically exact sequences) of function fields over F,
with small deficiency.

We will construct some new towers £ = (E,,),>0 of function fields over [, and then
find the set P(€) and the deficiency 6(€). Moreover, we will estimate the class numbers
hy := h(E,), for n > 0, and the value H(&) for these new towers £ over F,. We note
that to estimate the numbers h,,, we compute the genus g(£,), and then by Theorem
1.1.6, one can easily estimate these numbers.

3.1 Non-maximal recursive towers with all but one invariants being zero

We first recall that a non-maximal tower is a tower which does not attain the gener-
alized Drinfeld-Vladut bound given in Theorem 1.3.2(ii). We begin with some simple
remarks, which we will apply in the subsequent examples.

Remark 3.1.1. Let F = (F},),>0. For any n > 1, we have that

B, (F,/F,) ZN )By(FF ya/Fya),

d|r

where 1 denotes the Mobius function (see [24, p.207]). Therefore,

B, (F/F,) Z 11(=) B1(FFya [T ya).

d|r

Remark 3.1.2. For any r,t > 1, we have

1 ifr=t,

Zﬂ(a) =

t|djr 0 else.
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Proof. We know that

1 ifr=1,

> uld) =

dlr 0 else.

Clearly, if ¢ 1 r, then there is nothing to prove. So we assume that r = t"s for some
n > 1 and ¢ 1 s, where s is an integer. Set d := tk where k is a factor of £. Then

Sou) = Yu(h)= > u(tnkls>

t|d|r tk|tms kltn—1s
1 iftls=1
= > k)=
kltn—1s 0 else.
Hence, since r = t"s, the result follows. O

Example 3.1.3. Let F be the tower defined by the equation y*+y = x+1+1/x over
a finite field Fye for some e > 1. Then by Example 5.8 in [4], we have

3/2 if 3 divides e,
Pi(F) =

0 else.

Now we consider the tower F over F,, with ¢ = 2° where 3 { e. Then by using Remark
3.1.1, we obtain that

B (F/B) = 3 ()5 (FF o Fr) = 5 S (%),

3|d|r 3|d|r

This equality and an application of Remark 3.1.2 with ¢t = 3 yields

3/2 ifr=3,
rB(F) =
0 else.
Hence,
P(F/F,) = {3} with B5(F/F,) = %

Then the deficiency and H(F) = lim log, h,/g(F,), as defined in Theorem 1.1.5, are
n—oo

as follows:

SF/E) = 20770 H(FR) =14 M ik
(F/ q)—miﬂl (F/Fq) = +§0qq F_1)
This example implies that for ¢ = 2¢ where 3 { e, we get
1
As(q) = 5

Notice that for ¢ = 2, we get a lower bound close to the Drinfeld-Vladut bound of
order 3 with the deficiency 6(F /Fq) = 0.17962 and H (F/F3) = 1.0850.
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Example 3.1.4. Let ¢ = 3¢ for some e > 1 and F be the tower given in [10], which is
defined by the equation y? = % over IF,. Then by Example 2.4.3 in [13], we have

2/3 if e is even,
PiL(F) =
0 ife=1.

Now by applying Remark 3.1.2 with ¢ = 1, we obtain that
: 2

Thus,
2
O(F/Fy) = 3 ~ 0.66 and H(F/Fy) = 1.0357.

Example 3.1.5. Let g be a power of 3, and F be the tower given in [10], which is
defined by the equation y? = ZZD gyer F,. Then by a remark in [13, p.46], we have

r—1
B1(F /Fgn) = 2 for all n > 1.
Now by applying Remark 3.1.2 with £t = 1, we get that

Hence,

Example 3.1.6. Let p > 3 be a prime number and F be the tower over Fj defined
by the equation y*> = (2 + 1)/2z. Then by Example 5.9 in [4], we have

p—1 if 2 divides e,
51(f) -

0 else.

We consider the tower F over F,, where ¢ := p® with 2 not dividing e. Then by
applying Remark 3.1.2 with ¢ = 2, we obtain that

P(F/F,) = {2} with fo(F) = 7%1.

Thus,

1 2
(5(]:'/IFQ) :pefl_’_pG*Q_Q_,__—kp and H(_/—-'/Fq) =14+ (p 5 >1qu (qQQ_ 1)'

Thus, the tower F over F, attains the Drinfeld-Vladut bound of order 2.

Corollary 3.1.7. In the following cases there exists a mon-maximal recursive tower
over IF, with exactly one nonzero invariant:

(i) q = 2° with 3 not dividing e,
(i) q = 3° with e = 2 or 4,
(11i) q = p® with p > 3, e > 2 and 2 not dividing e.
Proof. See Examples 3.1.3, 3.1.4, 3.1.5, and 3.1.6, respectively. m
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3.2 Towers attaining the Drinfeld-Vladut bound of order r

Example 3.2.1. Let ¢" be a square and F be the tower defined by the equation

P q7'/2
q" — -

over a finite field Fpe, for some e > 1. Then by Example 5.7 in [4], we have

"2 _1 ifF, CTFpe
q 1 q" = L'pe

0 else

Now consider the tower £/F, defined by (3.1), which is studied in [9]. Using Remark
3.1.1, we have that

PO (E/F)) = Y u(5)Bi(E[F ),
d|r
from which it follows that
qr/2 -1
Br(E/F,) = = A,(q), and so P(E/F,) = {r}.

r

Thus,

¢ —1 q
(E/F,) =0and H(E/F,) =1+ " log, (qr — 1).

Example 3.2.2. Consider the tower T defined by the equation

'r/2 'r/2 1 T‘/2
q
Yy ty=

over Fr, with ¢" a square. This tower is studied in [8]. It is maximal and from |9,
Remark 3.11, Corollary 2.4], we have that 5,(€) > 51(T), where £/F, is the tower
defined in Example 3.2.1. Hence,

/21 Fyr
q over Fr,
A(T) =
0 over Fe where Fyr € Fe.

Then by the same way as in the previous example, we get that

P(T/F,) = {r} with 4,(T/F,) = L1

Note that
6(T/Fy) = 6(E/F,) and H(T/Fy) = H(E/F,).
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3.3 Recursive towers with various invariants being positive

In this section we will construct some recursive towers € = (E,,),>0 over F, and esti-
mate the deficiency 0(€), the class numbers h,, := h(E,), and H(E) = lim log, h,/g(Ey).
n—oo

By Theorems 2.2.1, 2.3.3, and Examples 3.2.1, 3.2.2, 3.1.3, 3.1.6, we have the following:

Theorem 3.3.1. Let N C N be a finite set and q be a prime number. Then there
exists a recursive tower of function fields F/F, such that the set

P(F):={reN:B.(F)>0} 2N.
Moreover, in the following cases there ezists a recursive tower F/F, with P(F) = N:

(i) q is any prime power and N is a finite set with each k € N a multiple of r for
some r such that q" is a square,

(i1) q = 2° with 3t e and each element k € N is a multiple of 3,
(11i) q = p° with p > 3, e > 2 and 21 e, and each k € N is an even integer.

We will mainly use the following proposition to construct some new towers with
various invariants being positive.

Proposition 3.3.2. Let F/IF, be a function field with a finite set of places S and F'|F
be a finite separable extension. Further let N C N be a finite set with m := ZfeNf.

Suppose that F/F, has a rational place QQ which has a rational extension Q" in F' such
that (m,e(Q'|Q)) = 1. Define E := F(z) where z is a root of the polynomial

o(T) = [ 9¢(T) — a € FIT]
feN
which has the following properties:
(a) each g¢(T') is a monic, irreducible polynomial in F,[T| of deg g¢(T') = f,
(b) a € F and a(P) =0 for all P € S,
(¢) vg(a) <0 and (vy(a),m) = 1.
Set E' .= EF'. Then the following hold:

(1) the place Q is totally ramified in E, [E : F] = [E' : F'] = m, and F, is alge-
braically closed in E’.

(i1) Each place P € S has ezactly one extension Qy € E with
deg Qs = fdegP forall f € N.

(i5i) If P splits completely in F', then each extension of P in E splits completely in
£

Proof. (i) By applying the generalized Eisenstein’s Irreducibility Criterion [24] with
the place @ and using (c), we obtain that ¢(7') is irreducible over F' and @ is totally
ramified in E. Since (m, e(Q’|Q)) = 1 for some rational place Q) of F” lying over @, it
follows from Abhyankar’s Lemma [24] that @' is totally ramified in £’ = EF’. Thus,
assertion (i) follows.

(ii) The proof is clear by Kummer’s Theorem [24], and the properties (a) and (b).
(iii) See Lemma 2.1.1. O
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We here compute the class numbers by using Theorem 1.1.6. Hence, we need to
compute the genus g(F,). For this we will use the following lemma (recall that we
have F' := Fp):

Lemma 3.3.3. Suppose that F = (F,)n>0 s a tower over F, with finite ramification
locus R(F). Let E/F be a finite separable extension such that all P € R(F) are tame
in E. Assume that £ = (E,)n>0, with E,, :== EF,, is a tower over F,. Setm = [E : F].
Then

s+2 r(n
(5 = (98) = malF) +-m = 52 By £+ mio(F) — 1)+ 5 1,
where
s = Y dQIQNF)degQ and
QEP(E)
QNFER(F)
rin) = Y Y degPy Y (e(QulPn) = 1)f(QulP0).
PeR(F PneIP Fn QnEP(ER)
Proof. See [11, Theorem 3.6]. O

A tower F = (F,)n>o over F, is called an Artin-Schreier tower if each extension
F,11/F, is an Artin-Schreier extension.

Here we first consider the tower F over IF 2 which is defined as follows:
F := Fy = F2(z0) is the rational function field and F, 1y = F,(z,4+1) with

W12 1 )+ gy = 2 (3.2
for all n > 0. This tower is studied in [8]. It has the following properties:
e Supp(F) ={P € P(F)| 2o(P) = a for some 0 # a € F2} and

P(F)={1} and v4(P,F) =1 for all P € Supp(F).

R(F) = {FRy, P} C P(F), where P, (resp. P) is the zero (resp. the pole) of
X, is the set of ramified places in F.

P, is totally ramified in F, and y(F) = ¢ + 1.

B1(F) =q—1, i.e., F attains the Drinfeld-Vladut bound of order one.

(q+1)g" — (g +2)g> + 1 ifn=0 mod 2
9(F,) = (3.3)

(¢+1)q" — 3P +3q+1)g = "4+1 ifn=1 mod2.

Example 3.3.4. Let N C N be a finite set and set m := EfeN f. Consider the tower
F = (F,)n>0 defined by Eq. (3.2) over Fgp, with (m,q) = 1. Let ¢ be an integer such
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that 1 <t < ¢*—1 and (t,,m) = 1. Further let £ := F(z) where z is a root of the
polynomial

t
T):Hgf ng—aj with 0 # a; € Fpe,
fEN j=1

where each gy is a monic and irreducible polynomial in F2[T] having deg g¢(T") = f.
Let

S :={P eP(F):x2y(P) =« for some j =1,...,t}.
By applying Proposition 3.3.2 with @) := P, and the set S, and using Abhyankar’s
Lemma [24], we obtain the following:

e E/F is separable of degree [F : F| = dego(T) = m,
e F and F,, are linearly disjoint over F' for all n > 0,
e [F 2 is algebraically closed in £, for all n > 0,

e cach P € S has exactly one extension () in F with deg@; = f for all f € N.

Thus, the sequence €& = (E,),>0, with E,, := EF,, is a tower over F,. such that
[Eny1: E,] = q for all n > 0. Moreover, since for all P € S we have that v (P, F) =1
i.e., P splits completely in F, by Propositon 3.3.2(iii), each place @ splits completely
in £. Hence,

I/f(@f,g) =1forall f € N.

Then by Theorem 1.3.2(v), for each f € N, we have that

vi(€) =D vp(QpE) = #S8 =t. (3.4)
pes
QslP
Moreover, since v(F') < oo, by Theorem 2.3.3(i), the genus 7(£) < oo. Therefore, by
Theorem 1.3.2(iv) and Eq. (3.4), we obtain that

t
Br(€) > W >0 for all f € N. (3.5)

It is obvious that

P(F) 2 N.

Next, we compute the genus of the tower £ in some specific cases:
Case-1: Let t := 1, ¢ := p for some prime p, a; := 1, and N := {1,7} where r > 2
with (r + 1,p) = 1. For simlicity, we set [ := p?. We have

o(T) = g.(T)(T = 1) — 2+ 1 € FIT], (3.6)

where g,(T") € Fp[T] is a monic and irreducible polynomial of degree r. Assume that
(o(T),¢'(T)) = 1 at By. To estimate g(F,), we apply Lemma 3.3.3. It is clear that
g(E) = 0. From the defining equation (3.6), we have that the place P is totally
ramified in E. Let @) € P(F) lying above P,,. Then the different exponent d(Q|P) =
e(QIP)—1=r.

Since (¢(T),¢'(T)) = 1 at By, the polynomial ¢(7T") has no multiple factors over
the residue class field of Py. Hence, by Kummer’s Theorem [24], Py is unramified in
E. Then the sum s defined in Lemma 3.3.3 is

5S=T.
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Since P, is totally ramified in E and F, by Abhyankar’s Lemma [24], it is totally
ramified in E,, for all n > 0. Hence, the value r(n) defined in Lemma 3.3.3 is

r(n) =r for all n > 0.
Then by using the same lemma and (3.3), we obtain that

r+2 r+2

2

g(E,) = (r+1— )[En:E]+(r+1)(g(Fn)—1)+

= gp”+(r+1)g(Fn)—r—1+r—;2
s2rp+2p+3r+2)p" — (r+1)(p+2)p2 + 52 ifn=0 mod?2
- %(2rp+2p+3r+2)p”—Ap%+% ifn=1 mod 2.
where )
A= 5(7" +1)(p* +3p+1).
Therefore,

1
v(€&) = 5(2rp+ 2p+ 3r +2),

and so by substituting in Eq. (3.5), we obtain that

2
&) >
Bi(&) 2 2rp+2p+3r + 2

for f e {1,r}.

Now we estimate the class numbers in both asymptotic and non-asymptotic cases. By
Theorem 1.1.5,

HE) = 1+ gﬁr(é’) log, (ll_ 1>

2 [+l
> 1 1 — ] |-
- +2rp—|—2p—|—37"-|—2<Ogl((l—l)([’"—l)))

By using Theorem 1.1.6, for each 0 < a < m, we obtain that there exists a

constant C' > 0 such that for all n > 0 the following holds:

h(E,) > (J((lrl: l)az)gwn).

Case-2: Let t := ¢®> — 1 where ¢ is any prime power, N C N be a finite set such that
m = ZfeNf is coprime to ¢. For simplicity, set [ := ¢*. Define E := F(z) with 2 a
root of the polynomial

o(T) = [] 9s(T) — 2§ + 20 € FIT), (3.7)
fEN

where each ¢;(7") is a monic and irreducible polynomail in F2[T]. We first note that
all conditions in Proposition 3.3.2 are satisfied with the set S := Supp(F) and the
place ) := P,,. We also have the following:
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(i) The extension E/Fp2(z) is an elementary abelian extension. Hence, we can easily
conclude from Eq. (3.7) that only the pole of z, say Q. is ramified in E/F(z). Let
Q.. be the extension of @ in . Then

e(QlQx) = ¢* and d(QL|Quc) = (m + 1)(¢* — 1).

For details see [24, Proposition 3.7.10]. Now it follows from the Hurwitz Genus Formula
for the extension E/F,2(z) that the genus of E is

g(E) = (m — 1>2(q2 -1 (3.8)

ii) By using Kummer’s Theorem [24], the place P, is unramified and by Proposition
3.3.2(i), P is totally ramified in E/F. Hence, the sum s defined in Lemma 3.3.3 is

s=m—1. (3.9)

(ili) Since P, is totally ramified in E and F, by using Abhyankar’s Lemma [24], Py
is totally ramified in F,, for all n > 0. Hence, the sum r(n) defined in Lemma 3.3.3 is

r(n) =m — 1 for all n > 0. (3.10)

Now by combining (3.8), (3.9),(3.10), (3.3) and applying Lemma 3.3.3, we obtain that

— (@ -1 +m—1 1
o = (PEESDEE D i s mo(r) - )+ T
2 2
mq* —q*) , m—+1
= D g (o) - 1)+
2 2
Tm(¢® +2q+2) — ¢*)g" —m(q +2)q? + = ifn=0 mod 2
Lm(® +2¢+2) — ¢*)g" — 2(¢> + 3¢+ 1)g"7 + ™ ifn=1 mod 2.
Hence,
1
V(€)= 5(m(q* +20+2) — ¢*). (3.11)
Then by (3.4),
vi(€) >t=¢*—1forall f € N. (3.12)

Since the tower F is pure and S = Supp(F), by Theorem 2.2.1(ii),
vi(€)=¢*—1forall f€ N and P(€) = N. (3.13)

Now by combining (3.11) and (3.13), and Theorem 1.3.2(iv), we obtain that

B 2(¢* = 1)
Br(&) = m(q2+2q+2)—q

> forall f € N.

Now by Theorem 1.1.5, in the asymptotic case, we get

2(¢> — 1) 2
HE) =1 log, [ —— ).
(£) +m(q2+2q+2)—q2f€ZN0g’ -1
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By Theorem 1.1.6, for each 0 < a < ;?(‘I;I)J, there exists a constant C' > 0 such
that for all n > 0, we h e
at for all n > 0, we have

hE,) > C((lrl: 1)0})9@”).

In this case, one can obtain the exact value of the deficiency:

2(¢* - 1) f
5(E)=1— ,
(£) m(q2+2q+2)—q2quf—1

which depends on m, ¢ and the set N. Thus, by an appropriate choice of m,q and N,
one can construct many different towers £/F 2 with distinct 6.

A tower F = (F,)n>0 is called a tame tower if each extension F,.i/F, is a tame
extension.

Next, we construct some tame towers of function fields over F, with many invariants
B, being positive and estimate the class numbers in these towers. First of all, for any

tower F = (Fy,)n>0, set
= > ) degQ.

PER(F) QeP(Fy)
QP

Lemma 3.3.5. Let [ be a prime power, ¢ = 1" with r > 2, and d := ‘{_;1. Let

F = (Fo)n>0, with the rational function field Fy = F,(xo), be the tower which is
recursively defined by the equation

y? = a(z +b)" + ¢ with a,c € F},b € F and ab® + ¢ = 0. (3.14)
Then the following hold:

(i) the pole (resp. the zero) of xq, say Py (resp. Py), splits completely (resp. is
totally ramified) in F, and

R(F)={P € P(F): 2o(P) = « for some a € F,}.

(i) 51(F) = 2.

(iii) For any n > 1, the genus

q—2 1 , an
F, d" — —a, +1 th i .
g(F,) = ( 5 > 54 + wi Jim s T Fo =0

Proof. For the proof of (i), see [28, p.37, Theorem 4.1.4 and Lemma 4.2.2]. For that of
(ii) and (iii), see [28, Theorem 4.2.3]. O

Example 3.3.6. Consider the tower F/F, given in Lemma 3.3.5. Let N C N be a
finite set and set m 1=,y f. Suppose that (m,d) = 1. Let E':= F(z) with z a root

of the polynomial
=[] 9s(T (3.15)
fen
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where each g¢(T) € F,[T] is a monic and irreducible polynomial of deggs(T) = f.
Suppose further that ged(o(T),¢'(T)) = 1 over the residue class field k(P) for any
place P € R(F)\ {Fy}, where Py is the zero of z.

By applying Proposition 3.3.2 with the set S := {Px} and @ := Py, we obtain
that the sequence & := (E,),>o with E,, := E'F,, is a tower over F, with the following
properties:

(a) [E: F|=[E,: F,] =degp(T) =m for all n > 0, ( observe that then F/F and
F,/F are linearly disjoint for all n >0 ).

(b) For each f € N, the place Py, has exactly one extension Q) in £ with deg Qf = f
and Q¢ splits completely in £.

Hence,
B¢(E,) > [E, : E]=[F,: F]=d"forall f € N. (3.16)

Next, we estimate g(E,) for any n > 1. For this, we will use Lemma 3.3.3. It is clear
that g(E) = 0. Let P € R(F) \ {Fo}. By assumption (¢(T'),¢'(T)) = 1 at P, and so
©(T') has no multiple factors at P. Thus, by Kummer’s Theorem [24], P is unramified
in . Now using Abhyankar’s Lemma, we obtain that the numbers s and r(n) defined
in Lemma 3.3.3 are as follows:

s=r(n)=m—1forall n > 1.

Then Lemma 3.3.5(iii) and Lemma 3.3.3 yield that

_ _ 1 1 n
g(E,) = (%) d" — @an + mEl Gith lim =0

2 2 n—oo [E, : E|
By combining this with Eq. (3.16), we obtain that

2
> ———— for all N.
Bf(g)_mq—m—l or all f e

Moreover, it follows from Lemma 3.3.5(ii) and Theorem 2.2.1(ii) that if 1 € N, then
2

mqg—m—1

51(5) =

Lemma 3.3.7. [10, Theorem 3.11] Let ¢ = 1" with r > 1 and | > 2 a power of the
characteristic of F,. Assume that

r=0 mod2orl=0 mod?2.

Then the equation
Yyl =—(z+ b+ 1, withb e Fr, (3.17)

defines a recursive tower F = (F,),>0 over F, with the following properties:
(1) letting F' = Fy := Fy(xg) the rational function field, we have that

R(F) C{P € P(Fy) : zy(P) = a for some a € F}.

(i) The pole (resp. the zero) of xo, say Ps (resp. Fy), splits completely (resp. is
totally ramified) in F.
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(iii) The genus of F satisfies the inequality

1—9
[ QE—
Y(F) < 5

(iv) Bi(F) > 25

Theorem 3.3.8. Let F be the tower given in Lemma 3.5.7. Then ~(F) = 52. More-
over, when r =1, i.e., | is a power of 2, one has

2
[—2

We prove Theorem 3.3.8 via the Lemmas 3.3.9, 3.3.10, 3.3.11, 3.3.13 and Proposition
3.3.12. From now on, unless otherwise stated, F will be the tower defined in Lemma
3.3.7. Additionally, the numbers on the figures denote the corresponding ramification
indices. First, by using Eq. (3.17) and Kummer’s Theorem, we have the following
ramification structure in Fy/F and Fy/Fy(x):

/31(]:) =

(1) Any place (xg = ), with a € F;\ {—b} is totally ramified in Fy. Let P, € P(F})
lying above (zy = «), then x,(P,) = 0.

(2) The place (zo = —b) splits completely in F. Let P € P(F}) be a place lying
above (xg = —b), then x;(P) = « for some « € F;.

To sum up we have the following:

NN

acF\{-b},(zo=0a) (x1=0) —b) (r1=a),a € Ff

Figure 3.1:

Lemma 3.3.9. Let S :={P € P(F): zo(P) = « for some a € F; \ {—b}}.
(i) All P € S are totally ramified in F.

(i) R(F) = SU{(zo = —b)}.
Proof. For simplicity, let f(x) := —(x + b)'"! + 1. Then for any n > 0, we have
Fn+1 = Fn($n+1) with
Tty = f (). (3.18)
Note that
f(a) =0 ifand only if « €T\ {-b}.

(i) Let P € S. By Eq. (3.18), and Kummer’s Extension Theorem [24], P is totally
ramified in F. Moreover, for any @) € P(F}) lying above P, we have z1(Q) = 0 and
(x1 = 0) splits in Fy. Then by Eq. (3.18), obviously for any @Q,, € P(F,), n > 1, Q,|P,
we have z,,(@Q,) = 0. Hence, by using Abhyankar’s lemma [24] in Figure 3.2, we obtain
that P is totally ramified in F;, for all n > 1.
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Figure 3.2:

(ii) By (i), S € R(F). Thus, all we need to do is to check the ramification behaviour
of the place (zg = —b) € P(F) in F. By (2), (zo = —b) splits completely in F;. Let
Q € P(F3) lying above (xg = —b). Then by using Figure 3.1, we have either

(a) 21(Q) € Ff\ {—b} and x2(Q) =0 or
(b) z1(Q) = —b and 22(Q) € F7.

W.lo.g., suppose that (a) holds. Then by drawing a figure and using Abhyankar’s
Lemma, one can easily see that e(Q|(xg = —b)) =1 — 1, and so the place (g = —b) is
ramified in F5. Thus, (xg = —b) € R(F). O

Lemma 3.3.10. Let P := (xg = —b). Then there exists k > 1 such that P has an
extension Py € P(Fy) with xx(Py) € F; and the following hold:

(i) if xi(Py) = —b, then Py splits in Fj.

(i1) If xx(Py) = a for some o € Fy\{—b}, then P is unramified in F,, for alln < 2k+1
and ramified in F,, for alln > 2k + 1. Now suppose that P, € P(F,) is a place
lying over P and Py. Then for n > 2k + 1, we have

e(P,|P) = (I —1)" 2~

Proof. The existence of k is clear by Figure 3.1. (i) By using Eq. 3.18, P splits
completely in F(zy, zx11), and so by Lemma 2.1.1, P splits completely in Fj,q, (see
Figure 3.3).
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NN

Figure 3.3:

(ii) By using Eq. (3.18), we have the following:

zi(Py) = —bforalli<k and
zi(Py) = Oforalli>k.

Moreover, for any ¢ > 1, the following hold:
(a) (x; = —b) splits completely in F;(z;, x;11) and is totally ramified in Fy(x;_1, ;).

(b) (z; = «), with a € F; \ {-0b}, is totally ramified in both F;(z;,z;1) and
Fi(@i-1, ;).

(¢) (x; =0) splits completely in F;(z;_1, z;) and totally ramified in F;(z;, x;11).

By using (a), (b), (c), and Abhyankar’s Lemma, we obtain the following figure, from
which (ii) follows:
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Lemma 3.3.11. For any k > 1, set Ry := { P, € P(Fy) : xx(Py) = « for some o € F} \ {—0b}}.
(1) (zx = «), with o € Fy \ {—b} is totally ramified in Fy, for all k > 0.
(i) #Ry =1—2 and deg P, =1 for all k > 0.
(1 —1)"* ifn < 2k +1

i) Y degQ =

Qzﬂ‘gn) (I—1%ifn > 2k +1.
PLERy

Proof. Assertion (i) is clear from Figure 3.4. Assertion (ii) follows from (i).
(ili) Let P, € P(Fy) with x(P;) = « for some o € F; \ {—b}. Then

z;(Q) = —bforalli <k and
z;(Q) = O0foralli>k.

From Figure 3.4 we have the following:
(a) By (ii), deg P, = 1.

(b) For all k£ < i < 2k, the place Py is unramified in F;, and hence

d  degR=[F,: F]=(1-1)""
ReP(F;)
R|P;
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(c¢) Let R € P(Fyy) lying above P,. Then R is totally ramified in F), for all n > 2k+1,
i.e., R has only one extension @) € P(F,,) and deg Q = deg R. Therefore, by using
(b), for any n > 2k + 1, we have

Y deg@Q= Y degR=[Fy:F]=(-1" (3.19)
QeP(Fy) REP(Fyy,)
Q| Py R| Py
O

(I—1)"2+1 ifn=0 mod?2

—
~
w|\
o
SN—
—~
—
|
—_
S~—
3
|
N~

(l_2)(l —1)" = (=12 41 4fn=1 mod 2.

Proof. Let @ be a place of F,,. By using Lemmas 3.3.9, 3.3.10, and 3.3.11, we obtain
that for any n > 1, the degree of the diferent of F,/Fj is as follows:

7]
degDiff(F,/Fy) = > dQ(wo=0)+ Y #R > degQ-d(Q|(xo = —b))
Q?IE(‘R){:—(Z} = P Ck?‘EI;%k
"
= (=D-1"=D+01=2) Y > degQ-d(Q|(xo = —b))
R
Ln 1
= (=)™ —(-D+1-2) Y (-DFI-1)"*-1]
5
= (-D)""'—(1-1)+(1-2) Z [(1— 1) % — (1 — 1)*]
R S
_ n+1 n
= (I-1)"" —(-D+1-2)(1-1) > o
[%54] -1
- (1-2) (1 —1)k+!

= <l—1>"“—<l—1>+<l—2><l—1>"1<<z_$m ‘1) (lz%lz)
- (z_2)(z—1)((l—1?5J—1)

= (-1 = (-1l - pleln

I(1—1)" —1(1 —1)"/? if n=0 mod 2

I(1—1)" —2(1 — 1)(*+D/2 ifn=1 mod?2.
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Now by using the Hurwitz Genus Formula for the extension F, /Fj, the desired result
follows:

29(F,) —2 = (I—1)"(29(F) —2) + deg Diff(F,,/ Fy)
(1—=2)(1—1)" =1l —1)™/? ifn=0 mod 2

(I—=2)(1—1)" —2(1 —1)+1)/2 ifn=1 mod 2.

Lemma 3.3.13. Suppose that q := 1 = 2° for some e > 1. Then
I=1)"4201-1)<B(F,) <(—-1)"+2(1-1)+ A,

where

) I(1—1)"2 —1 ifn=0 mod 2
2(1 — 1)"*V/2 | jfpn=1 mod 2.

Proof. We have

Bi(F)= Y 14+ > 1+ > 1+ Y 1L (3.20)

QEP(Fy) QEP(Fy) QEP(Fy) QEP(Fy)
z0(Q)EF\{—b} zn(Q)=—b z0(Q)=00 QP
PrLERy

By Lemmas 3.3.9, 3.3.10 and 3.3.11, and Lemma 3.3.7(ii), for any n,k > 1 with n > k,

we have
ool =1-1, ) =1-1, Y =(@-1" and

QEP(FTL) QEP(F'IL) QE]P(FTL)
0(Q)€F,\{—b} 2n(Q)=—b 20(Q)=00
(I—1)"*ifn<2k+1
>o1s
QEP(Fy) (I—DFifn>2k+1.
P
A
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Hence,

ZZlS Z#RkZH Z #BRe Y1

k=1 QeP(Fy) QEP(Fy) k= Ln 1J+1 QEP(Fy)
Q| Py Q| Py Q| Py
PrERy PrLERy PLERy,

2] n
= (=2) X G- 20-1 Y oy

k=0 b=[ 5t |41

= (1-2)(- 1)[”_ 1;{? - 1]

- == i = e ()
e R LR B e i 1)1L"51J+11

SIS Nkl kL R A N
= (-l gl oy

Now by substituting each value for the sums involved in Eq.(3.20), the lemma follows.
O

Proof of Theorem 3.3.8. The proof follows from Proposition 3.3.12 and Lemma 3.3.13.
O

Example 3.3.14. Consider the tower F over F, defined in Lemma 3.3.7 with ¢ = 22.
Let E := F(z) with z a root of the polynomial
1
p(T) = (T* = T)(T* + uT + ) — — € FIT].
0

where g is a primitive element for F,. By applying Proposition 3.3.2 with the set
S :={Px} and Q := Py, we obtain that the sequence & = (E,,),>0 with E, := EF, is
a tower over F, such that [E, : F},] = deg¢(T') = 6 for all n > 0. We want to compute
the invariants 51(€) and [a(E).

It follows from Kummer’s Theorem [24] and Proposition 3.3.2 that the ramification
structure in E/F is as follows:

(a) Py is totally ramified.

(b) Since (p(T),¢'(T)) =1 at the places P, := (xg = p) and P2 := (z¢ = p?), these
places are unramified in F.

(¢) P, := (zo = 1) has exactly one extension which has degree 2 and ramification
index 3 (by using Magma).

(d) P has 4 rational extensions and one extension of degree 2.

Therefore, by Proposition 3.3.2,

By(E,) >4-|E,: E] =4-3" and By(E,) > 3" for all n > 0. (3.21)
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Next, we want to find v(€). In order to estimate g(E,), we apply Lemma 3.3.3. It is
clear that g(E) = 0. By applying Hurwitz Genus Formula for the extension F/F, we

have
deg Diff(E/ Fy) = 10. (3.22)

Let @ € P(FE). Then by Dedekind’s Different Formula [24], we have that
(i) if Q| Py, then d(Q[P1) = e(Q[P1) —1 =2.
(i) If Q|Fy, then d(Q|Py) > e(Q|FPy) —1 = 5. Moreover, by (i), (¢), and (3.22), we
have that 6 > d(Q|P,). Hence, d(Q|Fy) = 6.

Thus, by using (b), (i), and (ii), we obtain that the number s defined in Lemma 3.3.3
is

s=6+2-2=10 (3.23)
Next, we need to find r(n) defined in Lemma 3.3.3. By Abhyankar’s Lemma [24] and
Lemma 3.3.7(ii), the following hold:

(1) first let @ € P(F) lying above Fy. Since F is totally ramified in F,, it has only
one extension, say P,, in F,. By Abhyankar’s Lemma, e(Q,|P,) = 2, where
Q. € P(E,) lies over Q.

(2) By (c), P, has only one extension, say Pj, in E with deg P; = 2 and e(P[|P;) = 3,
and so Abhyankar’s Lemma gives that any extension of P; in F}, is unramified in
E,.

(3) Since any P € P(F') \ {Fy, P1} is unramified in E, by Abhyankar’s Lemma their

extensions in F), are unramified in F,,.

Hence, by (1), (2) and (3), for any n > 0, we have

Now by applying by Lemma 3.3.3, (3.23), and (3.24), we obtain that for all n > 1,
9

Now using Proposition 3.3.12 yields that
V(&) = 6. (3.26)

Then by combining (3.21) and (3.26), and since F/Fy is maximal with 5, (F) = 1, by
applying Theorem 2.2.1(ii), we get that

2 1
A(€) = 3 and $o(€) = 6
Remark 3.3.15. In Example 3.3.14, the deficiency is

= rB(E) 2
S(E/F)=1->" qﬁi@l =5~ 022
r=1

Until now, the tower £/F, has the smallest ¢ value among the towers of function
fields having at least two positive invariants .. Moreover, in comparision with the
generalized Drinfeld-Vladut bound of order one (resp. two), one has the following:

1

1 1
1-061(&) = 3~ 0.33, (resp. 5 Bo(E) = 3~ 0.33).
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Example 3.3.16. Consider the tower F over I, given in Lemma 3.3.7 with [ := 3 and
r:=2 ie., ¢g=3% and then d = 4. Let £ := F(z) with z a root of the polynomial
1
p(T) := (I + 1) (T° ~T) ~ — € FIT],
0

where p is a primitive element for Fg. We apply Proposition 3.3.2 with the place
Q = By and S := {P.}. We obtain that the sequence & = (EF},),>¢ is a tower over
Fy and the following hold:

(i) P, is totally ramified in E.
(ii) P has 9 rational extensions and one extension of degree 2 in E.

(iii) Since P, splits completely in F, its all extensions in F splits completely in £.

Note that F/Fg is maximal with
Hence, F/Fy is pure, and so it follows from (iii) and Theorem 2.2.1(ii) that
(€) =9 and 1n(€) =1 (3.27)

Next, we want to compute the genus g(F,). For this, we will apply Lemma 3.3.3. We
know that from Lemma 3.3.9 that

R(F)={P € P(F): zo(P) =« for some a € Fs}.

One can easily check that (p(7'), ¢ (T)) = 1 at the places P € P(F') with zo(P) = «
for some o € Fi. Hence, ¢(T') has no multiple factor over the residue class field of
these places. Then it follows from Kummer’s Theorem that these places are unramified
in £. Now by applying Lemma 3.3.3, and using assertion (i), since E/F is tame, we
obtain that

s =d(Qo|Py) = e(Qo|Py) —1 =10 where Qg is the extension of Fy in E. (3.28)

By using Abhyankar’s Lemma, we have that all P, € P(F,) with P, N F € {P €
P(F) : xo(P) € F%} are unramified in E,. Moreover, since Fp is totally ramified in
both extensions E and F,,, again by Abhyankar’s Lemma, we have that any extension
of Py in F), is totally ramified in F,,. Hence, by Lemma 3.3.3,

r(n) =10 for all n > 1. (3.29)

Now by applying Lemma 3.3.3, (3.28), (3.29), and Proposition 3.3.12, we obtain that

21-271-33.20=2)/2 L 6 if n =0 mod 2

g(En) =
21271 _11.204D/2 L 6 if n=1 mod 2.
Hence,
21
18 =5 (3.30)

Then by combining (3.27) and (3.30), we get that

Bi(E) :g and (€)= %
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Note that as F is pure, by Theorem 2.2.1(ii),
P(E) ={1,2}.
Then the deficiency is given by

23
O(F) = — =~ 0.54.
(B) = ;5 =05

Moreover, in comparision with the generalized Drinfeld-Vladut bound of order one
(resp. two), one has the following:

2 By(E) = % ~ 11 (resp. 1 — Bo(€) = — ~ 0.9).
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Further Remarks

4.1 Constant field extensions of asymptotically exact sequences of func-

tion fields

We first recall that all towers are asymptotically exact sequences, but the converse
is not always true.

Lemma 4.1.1. Let S = (F},),>0 be an exact sequence of function fields over F, such
that 5,(S) > 0 for some r > 1. Then the constant field extension S - Fyr of S has

Bi(S -Fyr) > rB(S).
Proof. Since F,F, is a constant field extension of F,, /F,, we have that
By(F,Fp) =) iBi(F,) and  g(F,F,) = g(F). (4.1)
i|r

Hence,

Bi(S-Fp) = lim BFEy) _ !

= lim —— 1B;(F,
R Ay | 2B

i Sy =)
]

We note here that if an asymptotically exact sequence S/F, of function fields attains
the Drinfeld-Vladut bound of order d for some d > 1, i.e., B4(S) = (¢*/? — 1)/d, then
by using (4.1), for any r > 1 we obtain that

¢?—1 ifd|r
B (8) = (4.2)

0 else.

By using Lemma 4.1.1, for any integer » > 1 and prime power ¢, the following conse-
quence is immediate:

Corollary 4.1.2. A(q") > rA.(q).
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This fact might be well-known, but we could not find any reference in the literature.

Remark 4.1.3. One can easily conclude from Lemma 4.1.1 that if for some » > 1 an
exact sequence S/F, attains the Drinfeld-Vladut bound of order r, then the sequence
S-F,r /F, attains the classical Drinfeld-Vladut bound, i.e., of order one. Furthermore,
in that case we have

r

r/2 _ 1
(12 A 2 B(SE) 2 r(8) = ) =r (TR ) =,
which implies that
A(q") =rA(g) = ¢ - 1. (4.3)

Theorem 4.1.4. Let S = (F,)n>0 be a sequence of function fields over a finite field
F, and S, == S -Fpr = (F,Fy)n>0 be the constant field extension of S, for some r > 1.
Then

58 ==L randontyif B(S)=q2—1

For the proof of Theorem 4.1.4, we need the following results.

Lemma 4.1.5. [5, Lemma IV.3] Let S = (F,)n>0 be a sequence of function fields over
F,. If for some m > 1, one has

1 <= iB;(F
lim inf ( )Z BiF)
" oi=1

n—oo ( = qm/2 -1~

then B (F
lim 2mtn) m(Fn) =q¢m/? 1.

n—00 g(Fn)

Theorem 4.1.6. [1, Theorem 2.2] Letr € N and S = (F,,)n>0 be a sequence of function
fields over IF, such that 5,(S) = 21 Then the sequence S/ Fy is asymptotically exact.

Proof of Theorem 4.1.4. First, suppose that (5,(S) = ¢”-1  Then by Theorem 4.1.6,

T

the sequence S/F, is asymptotically exact. Hence, by Remark 4.1.3, 3,(S,) = ¢"/2 — 1.
Next, suppose that £1(S,) = ¢"/?> — 1. Then by using (4.1), we obtain that

B, (F.F,- 1 B;(F 1 ~— iB;(F
1= lim M: lim — 3 ° 2( k) < liminf — 2( ).

i=1

ir
Now it follows from Lemma 4.1.5 that

qr/2 -1
. .

5r(S) =

By Remark 4.1.3 and Example 3.2.2, the following corollary follows:

Corollary 4.1.7. For any square prime power q", one has
A(q") = rA(q),
hence A,(q) = (¢"/* — 1).
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Remark 4.1.8. When ¢" is not a square, it is not known whether there are any
qr/2_1
r )

sequences of function fields S over F, with 3,.(S) = i.e., attaining the Drinfeld-

Vladut bound of order r.
By [23, p.31, Theorem 8], one has the following:

Lemma 4.1.9. Let S = (F,,)n>0 be a sequence of function fields over F, such that each
extension F,,/Fy is an abelian extension. Then (1(S) = 0.

One can generalize Lemma 4.1.9 as follows:

Theorem 4.1.10. Let S = (F,)n>0 be an ezact sequence of function fields over F,
such that each extension F, /Fy is an abelian extension. Then ,(F) =0 for all r > 1.

Proof of Theorem 4.1.10. It is obvious that the extension F,,[F, / FyFF,r is also an abelian
extension. Hence, by Lemma 4.1.9, the sequence S - F,» has 8;(S - F,») = 0. Then the
desired result follows from Lemma 4.1.1. O

Lemma 4.1.11. Let F = (F},)i>0 be a tower over a finite field F, and € := F - Fyr be
the constant field extension of F, for some r > 1. Set

S :={P € P(Fy)|deg P =r, all extensions of P in E splits completely in E} .
Then

#S
Br(F) > ——= and ~(F)=~(E).
)= 2 (F) =
Proof. Since FyF,/Fy is a constant field extension of degree r, any place P € P(Fp) of
degree r splits completely in FyF,-, and so the lemma is clear. O

Example 4.1.12. Let g := [* for some prime power [. Consider the tower H = (Hy)x>0
which is recursively defined by the equation

L A-1)
! -1 _ Z
-y +1= CEE=E

This tower is investigated in [3]. Let Hy := F,(yo) be the rational function field.
By [3, Theorems 2.2, 3.4 and 6.5], the following hold:

o [Hy:Hy|=1(l—1)and [Hy: Hy_] =1 for all k > 2.
e For all £ > 0, the genus g(Fj) < w, and y(H) < 12%21
e The set Split(H) of places of Hy/F, which split completely in #H satisfies
Split(H) 2 {(yo = a)|a € Fz \ Fy} .
Moreover, by [3, Theorem 2.2], H is a tower over every constant field K O ;. Let
F = (Fi)k>0 be the tower over F; such that # = F - F,. To estimate f5(F), we first
compute the number of degree 3 places of Fy/F;, then we apply Lemma 4.1.11. It is

clear that any degree 3 place P € P(Fp) splits completely in Hy and its extensions are
in the set Split(H/H,). Now since

Bl(Ho) = Bl(Fo) +3- B3(F0),

we have B3(Fp) = pT_l, and so

Bs(Fp) S 2(° = 1)

BolF) 2 v(F) T 3(2+2)
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