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Prof. Dr. Ferruh Özbudak ..............................................
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Abstract

In this thesis we consider a tower of function fields F = (Fn)n≥0 over a finite field

Fq and a finite extension E/F0 such that the sequence E := E · F = (EFn)n≥0 is a

tower over the field Fq. Then we study invariants of E , that is, the asymptotic number

of the places of degree r in E , for any r ≥ 1, if those of F are known. We give a

method for constructing towers of function fields over any finite field Fq with finitely

many prescribed invariants being positive. For certain q, we prove that with the same

method one can also construct towers with at least one positive invariant and certain

prescribed invariants being zero. Our method is based on explicit extensions of function

fields. Moreover, we show the existence of towers over a finite field Fq attaining the

Drinfeld-Vladut bound of order r, for any r ≥ 1 with qr a square. Finally, we give

some examples of recursive towers with various invariants being positive and towers

with exactly one invariant being positive.



SONLU CİSİMLER ÜZERİNDE TANIMLANAN FONKSİYON

CİSİMLERİ KULELERİNİN ASİMPTOTİK TEORİSİ ÜZERİNE

Seher Tutdere

Matematik, Doktora Tezi, 2012

Tez Danışmanı: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: fonksiyon cisimleri kuleleri, yerlerin sayısı, cins.

Özet

Bu tezde, herhangi bir sonlu cisim Fq üzerinde tanımlanan bir fonksiyon cisimleri

kulesi F = (Fn)n≥0 ve E := E · F = (EFn)n≥0 dizisinin Fq üzerinde tanımlanmasını

sağlayan herhangi bir sonlu genişleme E/F0 ele alınmıştır. Bu F kulesinin değişmezleri-

nin (yani derecesi herhangi bir r ≥ 1 olan F ’teki yerlerin asimptotik sayılarının)

bilindiği varsıyılarak, E ’nin değişmezleri üzerinde çalışılmıştır. Herhangi bir Fq üzerinde

tanımlanan ve belirlenen sonlu sayıdaki değişmezi pozitif olan fonksiyon cisimleri kulele-

rinin inşa edilebilmesi için bir metod verilmiştir. Ayrıca, aynı metod kullanılarak, bazı

q değerleri için, en az bir tane pozitif değişmezi ve bazı belirlenmiş değişmezleri sıfır

olan kulelerinin inşa edilebileceği ispatlanmıştır. Bu metod, fonksiyon cisimlerinin açık

genişlemelerine dayanmaktadır. Ayrıca, herhangi bir r ≥ 1 ve q öyle ki qr bir kare

olduğu durumlarda, Fq üzerinde tanımlanan ve r mertebeli Drinfeld-Vladut sınırına

ulaşan fonksiyon cisimleri kulelerinin var olduğu gösterilmiştir. Son olarak, çeşitli

değişmezleri pozitif olan veya sadece bir değişmezi pozitif olan bazı özyineli fonksiyon

cisimleri kuleleri örnekleri verilmiştir.
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Introduction

Let Fq be a finite field and F/Fq be an algebraic function field with the field Fq
as its full constant field. Throughout this thesis, we shall simply refer to F/Fq as a
function field. In this thesis the main aim is to construct towers of function fields over
Fq and estimate their invariants, by using explicit extensions.

In 1992, M. Tsfasman [25] introduced the notion of asymptotically exact sequences
of function fields over Fq. For any such sequence F = (Fn)n≥0 over Fq, M. Tsfasman [25]
and M. Tsfasman, S. Vladut [26] studied invariants of F defined as follows: for any
r ≥ 1,

βr(F) := lim
n→∞

Br(Fn)

g(Fn)
,

where Br(Fn) denotes the number of places of Fn/Fq of degree r, and g(Fn) denotes
the genus of Fn/Fq.

The sequences for which βr exists and is large are useful to obtain both good
algebraic geometric codes and bounds for multiplication complexity in Fq. In [1], S.
Ballet and R. Rolland showed that these particular sequences have large asymptotic
class number. In particular, explicitely defined exact sequences are quite useful in
application.

In 2007, T. Hasegawa [13] and P. Lebacque [17] independently gave a proof of the
existence of towers of function fields over Fq with finitely many prescribed invariants
βr being positive. Their method is based on class field theory. Note that M. Tsfasman,
S. Vladut [26] and T. Hasegawa [12] showed that any tower of function fields over Fq
is an exact sequence. However, the existence of exact sequences of function fields over
Fq with at least one nonzero invariant and certain prescribed invariants being zero is
in general not known (c.f. [20, p.64]).

The following open problem is stated in [1]: find asymptotically exact sequences
F of function fields over Fq, attaining the Drinfeld-Vladut bound of order r, for any
r ≥ 1, which is as follows:

βr(F) ≤ qr/2 − 1

r
. (0.1)

In [1], when r = 4 and q = 2, an exact sequence attaining the bound (0.1) is given. In
the particular case, when q is a square and r = 1, there are several examples, namely
maximal (or optimal) towers attaining this bound (for instance, see [8]). In [1], S. Ballet
and R. Rolland proved that for any prime power q, there exists a tower attaining the
bound (0.1) with r = 2.

The organization of this thesis is as follows:
In Chapter 1 we recall the basic definitions and introduce the notations. Moreover,

we give some basic results.
In Chapter 2 we firstly give some bounds for the invariants of towers of function

fields over Fq. We then give a method for constructing towers with many prescribed in-
variants being positive. Furthermore, for certain q, we prove that by the same method,
one can construct towers over Fq with at least one positive invariant and certain pre-
scribed invariants being zero.

ix



In Chapter 3 we give some examples of non-maximal recursive towers with all but
one invariants equal to zero. This is analogous to the following open problem given
in [19, p.3]: Are there any infinite number fields (i.e., towers of number fields) with all
but one invariants equal to zero? Moreover, we show that for any integer r ≥ 1 and
a prime power q such that qr is a square, there are towers of function fields over Fq
attaining the Drinfeld-Vladut bound of order r. In this chapter we give also several
examples of recursive towers with many invariants being positive. We also estimate
the deficiency, i.e., the difference between the right hand side and the left hand side of
(0.1), and the class number h(Fn) for each new tower F = (Fn)n≥0.

In Chapter 4 we discuss constant field extensions of asymptotically exact sequences
of function fields. Moreover, we give some basic results concerning Ihara’s constant
Ar(q), for any r ≥ 1 and prime power q, which is defined as follows:

Ar(q) := lim sup
g→∞

Br(F )

g
,

where F runs over all function fields over Fq with genus g > 0.
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1

Preliminaries

Let us first fix some notation. Throughout this thesis, Fq will denote the finite field
with q = pr elements, where p is a prime and r ≥ 1 is an integer. We will consider
function fields F/Fq of one variable over Fq; in all cases, Fq will be the full constant
field of F . We denote by g(F ) and P(F ) the genus and the set of all places of F/Fq,
respectively. For any integer r ≥ 1, define

Br(F ) := #{P ∈ P(F ) : degP = r}.

For a rational function field Fq(x) we will write (x = a) for the place which is the zero
of x− a (where a ∈ Fq) and (x =∞) for the pole of x. For a place P ∈ P(F ), we will
use the following notations:

• vP := the discrete valuation of F/Fq associated to the place P ,

• OP := the valuation ring of P ,

• k(P ) := the residue class field of P .

Let E/F be a finite separable extension and Q be a place of E/Fq. We will write Q|P
if the place Q lies above the place P ∈ P(F ). In this case, we will denote by

e(Q|P ), f(Q|P ), d(Q|P )

the ramification index, the relative degree, and the different exponent, respectively, of
Q|P .

1.1 Asymptotically exact sequences of function fields

In [25], M. A. Tsfasman studied asymptotic properties of the numbers Br(F ) in
sequences of function fields over Fq. Specifically, he introduced the following notion:

Definition 1.1.1. A sequence S = (Fn)n≥0 of function fields Fn/Fq is called asymp-
totically exact if g(Fn)→∞ as n→∞, and for all r ≥ 1, the limit

βr(S) := lim
n→∞

Br(Fn)

g(Fn)

exists.

For the numbers βr(S) one obtains the following bound [25, Corollary 1], [22, Theorem 3]:

1



Theorem 1.1.2 (Generalized Drinfeld-Vladut bound). For an asymptotically
exact sequence S of function fields over a finite field Fq the following holds:

∞∑
r=1

rβr(S)

qr/2 − 1
≤ 1. (1.1)

Definition 1.1.3. For every r ≥ 1, the real number

Ar(q) := lim sup
g(F )→∞

Br(F )

g(F )
,

where F runs over all function fields over Fq of genus g(F ) > 0 is called the r-th Ihara’s
constant.

In particular, A1(q) = A(q), which is called Ihara’s constant. The difference between
the right hand side and the left hand side of the inequality (1.1) is called the deficiency
of the sequence S. This is related to the limit distribution of zeroes of zeta functions.
For details see [26].

As a consequence of Theorem 1.1.2, one has

Corollary 1.1.4.

Ar(q) ≤
qr/2 − 1

r
.

An exact sequence S over Fq is called

asymptotically good if there exists an r ≥ 1 such that βr(S) > 0,

asymptotically bad if βr(S) = 0 for all r ≥ 1, and

maximal if the bound (1.1) is attained.

For a sequence S = (Fn)n≥0 of function fields over Fq, denote by hn := h(Fn) the
class number of Fn/Fq. Next, we give some results concerning the relation between the
invariants βr(S) and the numbers hn, with r, n ≥ 1.

Theorem 1.1.5. Suppose that the sequence S = (Fn)n≥0 of function fields over Fq is
asymptotically exact. Then the limit

H(S) := lim
n→∞

logq hn

g(Fn)

exists and

H(S) = 1 +
∞∑
r=1

βr(S) logq

(
qr

qr − 1

)
.

Proof. See [25, Corollary 2].

Recently, for the non-asymptotic case, S. Ballet and R. Rolland gave the following
result in [2]:

Theorem 1.1.6. Let S = (Fn)n≥0 be a sequence of function fields over a finite field Fq
such that B1(Fn) ≥ 1 for all n ≥ 0. Let further α be a positive real number. Suppose
that there exists an integer r ≥ 1 such that
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(i) lim inf
n→∞

Br(Fn)
g(Fn)

> α or

(ii) 1
r

lim inf
n→∞

∑
i|r

iBi(Fn)
g(Fn)

> α.

Then there exists a constant C > 0 such that for all n ≥ 0, one has

h(Fn) > C

((
qr

qr − 1

)α
q

)g(Fn)

.

As a consequence of Theorems 1.1.5 and 1.1.6, it is clear that in a sequence S =
(Fn)n≥0 with various positive invariants βr(S), the numbers hn are large.

In this thesis we will consider specific sequences of function fields over Fq, namely
towers. We will show that they are asymptotically exact and then study their invariants
defined in Definition 1.3.1. We will give an elementary method to construct towers with
various invariants being positive.

1.2 Towers of function fields

In this section we introduce towers of function fields and discuss some of their general
properties.

Definition 1.2.1. An infinite sequence F = (Fn)n≥0 over Fq is called a tower if the
following hold:

(a) F0 $ F1 $ F2 $ . . .,

(b) for each n ≥ 0, the extension Fn+1/Fn is finite and separable,

(c) the genus g(Fn)→∞ as n→∞.

Note that we always assume that Fq is the full constant field of Fn for all n ≥ 0.

Definition 1.2.2. Let F = (Fn)n≥0 be a tower over Fq and f(X, Y ) ∈ Fq[X, Y ] be a
non-constant polynomial. Suppose that there exist elements xn ∈ Fn (for n ≥ 0) such
that

Fn+1 = Fn(xn+1) with f(xn, xn+1) = 0 for all n ≥ 0.

Then we say that the tower F is recursively defined over Fq by the polynomial f(X, Y ).

In the subsequent chapters, we will give many examples of recursive towers and
study their invariants.

Proposition 1.2.3. Let F = (Fn)n≥0 be a tower over Fq. Then the following hold:

(i) The sequence
(
g(Fn)/[Fn : F0]

)
n≥0 is convergent in R>0 ∪ {∞}.

(ii) Let P ∈ P(F0), and r ≥ 1. Set

Br(P, Fn) := # {Q ∈ P(Fn) : Q|P and degQ = r} .

Then the sequence
(
Br(P, Fn)/[Fn : F0]

)
n≥0 is convergent in R≥0.

Proof.

3



(i) See [10, Proposition 2.4(i)].

(ii) Our proof is similar to T. Hasegawa’s proof that the sequence (Br(Fn)/g(Fn))n≥0 is
convergent (cf. [12, Proposition 2.2]). We proceed by induction over r. For r = 1, the
sequence (B1(P, Fn)/[Fn : F0])n≥0 is monotonically decreasing, and so convergent (cf.
[24, Lemma 7.2.3(a)]). Now let r ≥ 1 and assume that for all 1 ≤ s < r, the sequence
(Bs(P, Fn)/[Fn : F0])n≥0 is convergent. Let d := degP . If d - r, then Br(P, Fn) = 0 for
all n ≥ 0. Hence, we can assume that d | r.

Consider the constant field extension of F with the field Fqr ; i.e.,

F · Fqr := (FnFqr)n≥0.

This is clearly a tower over Fqr . The place P ∈ P(F0) splits into P1, . . . , Pd ∈ P(F0Fqr)
of degree one, and all places of Fn of degree s | r split into s degree one places of
FnFqr/Fqr . Hence, the following formula holds (cf. [24, p. 206]):

∑
s|r

s ·Bs(P, Fn) =
d∑
j=1

B1(Pj, FnFqr). (1.2)

By the induction hypothesis, the sequences(
Bs(P, Fn)

[Fn : F0]

)
n≥0

and

(
B1(Pj, FnFqr)

[Fn : F0]

)
n≥0

are convergent for s < r. Hence, the sequence (Br(P, Fn)/[Fn : F0])n≥0 also converges.

Corollary 1.2.4. Let F = (Fn)n≥0 be a tower over Fq, P a place of F0 and r ≥ 1.
Then the sequences(

Br(P, Fn)

g(Fn)

)
n≥0

,

(
Br(Fn)

[Fn : F0]

)
n≥0

, and

(
Br(Fn)

g(Fn)

)
n≥0

are convergent in R≥0.

Proof. It is clear from Proposition 1.2.3(i) that ([Fn : F0]/g(Fn)) is convergent in R≥0.
Hence, the convergence of the sequence (Br(P, Fn)/g(Fn))n≥0 follows immediately from
Proposition 1.2.3(ii) and the equality

Br(P, Fn)

g(Fn)
=
Br(P, Fn)

[Fn : F0]
· [Fn : F0]

g(Fn)
.

Since
Br(Fn) =

∑
P∈P(F0)

Br(P, Fn), (1.3)

the other sequences in Corollary 1.2.4 are convergent as well. Note that the sum (1.3)
is finite since for any fixed r ≥ 1 there are only finitely many places of F0 of degree
dividing r.
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1.3 Invariants of towers

As a consequence of Proposition 1.2.3(i) and Corollary 1.2.4, the following definitions
make sense:

Definition 1.3.1. Let F = (Fn)n≥0 be a tower over Fq, P ∈ P(F0) and r ≥ 1.

(a) The local invariants of F at P are defined as

νr(P,F) := lim
n→∞

Br(P,F)

[Fn : F0]
and βr(P,F) := lim

n→∞

Br(P, Fn)

g(Fn)
.

(b) The global invariants of F are defined as

νr(F) := lim
n→∞

Br(F)

[Fn : F0]
and βr(F) := lim

n→∞

Br(Fn)

g(Fn)
.

(c) The genus γ(F) of F is defined as

γ(F) := lim
n→∞

g(Fn)

[Fn : F ]
.

Note that the definition of βr(F) is consistent with Definition 1.1.1. The sets

Supp(F) := {P ∈ P(F0) : νr(P,F) > 0 for some r ∈ N} and

P(F) := {r ∈ N : νr(F) > 0}
are called the support and the set of the positive parameters of F , respectively.

We summarize as follows:

Theorem 1.3.2. Let F = (Fn)n≥0 be a tower over Fq. Then one has the following:

(i) For all r ≥ 1, the limit

βr(F) := lim
n→∞

Br(Fn)

g(Fn)

exists; i.e., the tower is asymptotically exact.

(ii) (Generalized Drinfeld-Vladut bound and Deficiency)

∞∑
r=1

rβr(F)

qr/2 − 1
≤ 1,

and the difference between the right hand side and the left hand side of this in-
equality is called the deficiency of F .

(iii) (Drinfeld-Vladut bound of order r) For all r ≥ 1,

βr(F) ≤ Ar(q) ≤
qr/2 − 1

r
,

where Ar(q) is the r-th Ihara’s constant.

5



(iv) Let P ∈ P(F0) and r ≥ 1. Then

βr(P,F) =
νr(P,F)

γ(F)
and βr(F) =

νr(F)

γ(F)
.

(v) For all r ≥ 1,

νr(F) =
∑

P∈P(F0)

νr(P,F) and βr(F) =
∑

P∈P(F0)

βr(P,F).

Note that obviously for a tower F when γ(F) < ∞, by using Theorem 1.3.2(iv),
one can define the set of positive parameters of F as follows:

P(F) = {r ∈ N : βr(F) > 0} = {r ∈ N : νr(F) > 0}.

Lemma 1.3.3. Let F = (Fn)n≥0 be a tower over Fq and for each r ≥ 1 set Fr := F0Fqr .
Then the following holds:

0 ≤ νr(F) ≤ B1(Fr)

r
,

where B1(Fr) denotes the number of rational places of Fr/Fqr .

Proof. The first inequality is clear, so we prove the second one. For n ≥ 2, let Q be a
place of Fn of degree r and set P := Q ∩ F0. Since Fn and F0 have the same constant
field, we have

f(Q|P ) · degP = degQ = r, (1.4)

which implies that degP |r. Thus, in order to find the number of places Q ∈ P(Fn) of
degree r, we take a place P of F0 of degree d dividing r, and define

sP := # {Q ∈ P(Fn)| Q lies above P , degQ = r} .

From (1.4), for all such places Q, the relative degree f(Q|P ) = r
d
, and so we get

sP =
∑
Q|P

degQ=r

1 =
d

r
·
∑
Q|P

degQ=r

f(Q|P )

≤ d

r

∑
Q|P

e(Q|P ) · f(Q|P )

=
d

r
· [Fn : F0] (by the Fundamental Equality )

Then by this inequality, we obtain that

Br(Fn) =
∑

degP |r

sP =
∑
d|r

∑
P

degP=d

sP

≤
∑
d|r

∑
P

degP=d

d

r
[Fn : F0] =

∑
d|r

[Fn : F0]

r
· d ·

∑
P

degP=d

1

=
∑
d|r

[Fn : F0]

r
· d ·Bd(F0).

6



Now in the above inequality, dividing both of the sides by [Fn : F0], and then taking
the limit yields the desired result:

νr(F) ≤ 1

r
·

∑
d|r

d ·Bd(F0)

 =
B1(Fr)

r
.

Thus, the following consequence is immediate:

Corollary 1.3.4. Let F = (Fn)n≥0 be a tower over Fq. Then for any r ≥ 1 and
P ∈ P(F0), the limit βr(P,F) > 0 if and only if νr(P,F) > 0 and γ(F) <∞.

Proof. By Theorem 1.3.2(iv), we have βr(P,F) = νr(P,F)/γ(F). Hence, by using
Proposition 1.2.3 and Lemma 1.3.3, the corollary follows.

Definition 1.3.5. Let F = (Fn)n≥0 and E = (En)n≥0 be towers over Fq. Then F is
said to be a subtower of E if for each i ≥ 0 there exists a j ≥ 0 and an embedding
φi : Fi → Ej over Fq.

For the proof of the following result see [24, Proposition 7.2.8]:

Lemma 1.3.6. Let F be a subtower of E. Then β1(F) ≥ β1(E).

We note here that Lemma 1.3.6 is in general not true for βr with r ≥ 2. For
instance, see examples in Chapter 3.

Furthermore, by [19, Theorem C], the deficiency is an increasing function with
respect to inclusion, i.e., we have the following:

Lemma 1.3.7. If F is a subtower of E, then

δ(F) ≤ δ(E).

1.4 Infinite function fields

An infinite function field Ω/Fq is an infinite separable extension of the rational
function field Fq(x) such that Fq is algebraically closed in Ω. In other words,

Ω =
⋃
n≥0

Fn, for some tower F = (Fn)n≥0 over Fq.

In this case, the tower F is called a representative for the field Ω.

Lemma 1.4.1. Suppose that F = (Fn)n≥0 and H = (Hn)n≥0 are two towers, with
F := F0 = H0, representing the same infinite function field Ω. Then the following
hold:

(i) γ(F) = γ(H).

(ii) For any P ∈ P(F ) and r ≥ 1, one has that

νr(P,F) = νr(P,H) and βr(P,F) = βr(P,H).

Moreover,
νr(F) = νr(H) and βr(F) = βr(H) for all r ≥ 1. (1.5)

7



Proof.

(i) As Ω =
⋃
n≥0 Fn =

⋃
n≥0Hn, and each Fn is finitely generated over Fq, there is

an m ≥ n such that Fn is contained in Hm. Hence, by using the Hurwitz Genus
Formula [24], we obtain that

g(Hm)− 1 ≥ [Hm : Fn] · (g(Fn)− 1).

Then dividing both sides of this inequality by [Hm : F ] yields

g(Hm)− 1

[Hm : F ]
≥ g(Fn)− 1

[Fn : F ]
.

Hence, γ(H) ≥ γ(F), and similarly, vice versa.

(ii) Let P ∈ P(F ). It is enough to prove that νr(P,F) = νr(P,H) for any r ≥ 1. Then
by (i) and Theorem 1.3.2(iv),(v), the other invariants of F and H are also equal. As
in (i), for any n ≥ 1, we have Fn ⊆ Hm for some m ≥ n. We prove our assertion by
induction over r. For r = 1, we have that

B1(P,Hm) ≤ [Hm : Fn]B1(P, Fn).

Hence, as n→∞, we obtain that

ν1(P,H) = lim
m→∞

B1(P,Hm)

[Hm : F ]
≤ lim

n→∞

B1(P, Fn)

[Fn : F ]
= ν1(P,F).

Similarly, since Hm ⊆ Fk for some k ≥ m, we obtain that ν1(P,F) ≤ ν1(P,H). Hence,

ν1(P,F) = ν1(P,H).

Now let r ≥ 1 and assume that for all 1 ≤ s < r, we have that νs(P,F) = νs(P,H).
Consider the constant field extensions F · Fqr = (FnFqr)n≥0 and H · Fqr = (HnFqr)n≥0
of the towers F and H, respectively. Let d := degP . From the Formula (1.2), we have
that ∑

s|r

sBs(P, Fn) =
d∑
j=1

B1(Pj, FnFqr), (1.6)

where P1, . . . , Pd are the extensions of P in FFqr . Dividing Eq. (1.6) by [Fn : F ] and
then taking the limit as n→∞ gives that

∑
s|r

sνs(P,F) =
d∑
j=1

ν1(Pj,F · Fqr) (1.7)

=
d∑
j=1

ν1(Pj,H · Fqr) =
∑
s|r

sνs(P,H). (1.8)

By the induction hypothesis, νs(P,F) = νs(P,H) for all 1 ≤ s < r. Therefore,

νr(P,F) = νr(P,H).

8



Lemma 1.4.2. Let Ω be an infinite function field represented by a tower F = (Fn)n≥0
over Fq and Ω

′
be a finite separable extension of Ω. Suppose that Fq is algebraically

closed in Ω
′
. Then for some k ≥ 0, there exists a finite separable extension E of Fk

such that the following hold:

(i) The fields E and Fn are linearly disjoint over Fk for all n ≥ 0.

(ii) The sequence E := (EFn)n≥k is a tower over Fq representing the field Ω
′
.

Proof. We will prove just the first assertion. The second assertion will clearly follow.
Since Ω

′
/Ω is finite and separable, there exists an element α ∈ Ω

′
such that Ω

′
= Ω(α).

The coefficients of the minimal polynomial of α over Ω lie in Fk for some k ≥ 0. Let
E := Fk(α) and En := EFn for all n ≥ k. Then, Ω′ =

⋃
n≥k En and for all n ≥ k, we

have that
[Ek : Fk] = [En : Fn] = [Ω

′
: Ω].

This means that the fields Ek and Fn are linearly disjoint over Fk for all n ≥ k. Then
obviously

[En+1 : En] = [Fn+1 : Fn] for all n ≥ k.

Next, as Fq is algebraically closed in Ω
′

and Fn, for all n ≥ 0, it is the full constant
field of En. Hence, E = (En)n≥k is a tower over Fq.
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2

Invariants of Towers

In this chapter, unless otherwise stated, we consider a tower F = (Fn)n≥0 of function
fields over Fq and a finite separable extension E of F0. For convenience, we assume that
E,F0, F1, . . . are all contained in a fixed algebraically closed field Ω. For simplicity, we
set F := F0 and denote by E := E · F the sequence E = (En)n≥0, with En := EFn, of
function fields over Fq.
Remark. If E and Fn are linearly disjoint over F and Fq is algebraically closed in En
for all n ≥ 0, then the sequence E is a tower over Fq.

Our goal is as follows: For a given tower F/Fq we want to construct an appropriate
extension E of F such that E is a tower over Fq and to estimate the invariants of E
depending on those of F . Recall that by Theorem 1.3.2(iv), for any r ∈ N, we have

βr(E) = νr(E)
γ(E) . Hence, in order to get bounds for βr(E), we estimate νr(E) and γ(E).

2.1 Bounds for the invariants of a tower

In this section we assume that E = (EFn)n≥0 is a tower over Fq. We begin with
a lemma concerning the splitting of places in the compositum of function fields, [24,
Proposition 3.9.6(a)].

Lemma 2.1.1. Let E/F and F ′/F be finite separable extensions of function fields
contained in an algebraic closure of F . Suppose that P is a place of F which splits
completely in the extension F ′. Then every place Q of E lying above P splits completely
in the compositum EF ′.

Proposition 2.1.2. For any s ≥ 1, one has

νs(E) ≥ # {Q ∈ P(E)| degQ = s and Q ∩ F splits completely in F} .

Proof. Let Q ∈ P(E) such that P := Q ∩ F splits completely in F . Then by Lemma
2.1.1, Q splits completely in En for all n ≥ 1. Hence,

Bs(Q,En) = [En : E] where s = degQ,

which yields νs(Q, E) = 1, and so by Theorem 1.3.2(v) the proposition follows.

Remark 2.1.3. For any d ≥ 1 and P ∈ P(F ), the following holds:

m∑
r=1

∑
Q∈P(E)
Q|P, s=rd

νs(Q, E) ≥ νd(P,F). (2.1)

10



Proof. The proof follows from the following argument. Let Pn be a place of Fn lying
above P of degPn = d for some d ≥ 1. Then for any extension Qn of Pn in En, we
have f(Qn|Pn) = r for some 1 ≤ r ≤ m, and so degQn = rd.

Proposition 2.1.4. Let Q ∈ P(E) and P := Q ∩ F . Then for all s > 0, we have the
following:

(i) νs(Q, E) ≤
∑

d∈P(F)
d|s,d≥ s

m

md

s
νd(P,F) and βs(Q, E) ≤

∑
d∈P(F)
d|s,d≥ s

m

d

s
βd(P,F).

(ii) νs(E) ≤
∑

d∈P(F)
d|s,d≥ s

m

md

s
νd(F) and βs(E) ≤

∑
d∈P(F)
d|s,d≥ s

m

d

s
βd(F).

Proof. (i) Fix n ≥ 1 and letQn be an extension ofQ in En of degree s and Pn := Qn∩Fn.
Then clearly Pn|P and degPn = d with d dividing s and d ≥ s

m
, since f(Qn|Pn) ≤ m.

Conversely, any place Pn of Fn lying above P with degPn = d, and satisfying d ≥ s
m

has at most md
s

extensions of degree s in En, by the Fundamental Equality [24]. Hence,

Bs(Q,En) ≤
∑
d∈N

d|s, d≥ s
m

md

s
Bd(P, Fn) (2.2)

Dividing (2.2) by [En : E] yields the bound for νs(Q, E). Next, by using the Hurwitz
Genus Formula [24], one obtains that

g(En) ≥ mg(Fn)−m for all n ≥ 0, and so γ(E) ≥ mγ(F). (2.3)

Dividing the LHS and the RHS of (2.2) by γ(E) and mγ(F)), respectively, gives the
desired bound for βs(Q, E). The assertion (ii) then follows by using Theorem 1.3.2(v).

The following consequence follows easily from Proposition 2.1.4:

Corollary 2.1.5. For the tower E, we obtain that

(i) Supp(E) ⊆ {Q ∈ P(E) : Q ∩ F ∈ Supp(F)}.

(ii) If P(F) is finite, then P(E) is also finite.

Since for a given integer r > 0 there are finitely many places of F of degree dividing
r, if P(F) is finite, then the set Supp(F) is also finite. Furthermore, when γ(F) <∞,
by Theorem 1.3.2(iv), for any r ∈ P(F), we have βr(F) > 0. Moreover, by Theorem
2.3.3, γ(E) <∞, and hence βs(E) > 0 for all s ∈ P(E).

By using Proposition 2.1.4, we obtain the following generalization of Lemma 1.3.6.

Lemma 2.1.6. Let E be a tower over Fq and F be a subtower of E. Then

βs(E) ≤
∑

d∈P(F)
d|s,d≥ s

m

d

s
βd(F).
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Proof. We use a similar method as used for the proof of Lemma 1.3.6 (cf. [24, Propo-
sition 7.2.8]). Set

m := min
i
{[Ej(i) : ϕi(Fi)]| ϕi : Fi → Ej(i) is an embedding and g(Fi) ≥ 2}.

Let Hi be the subfield of Ej(i) which is uniquely determined by the following properties:

• ϕi(Fi) ⊆ Hi ⊆ Ej(i),

• Hi/ϕi(Fi) is separable, and

• Ej(i)/Hi is purely inseparable.

By using the Hurwitz Genus Formula [24] for the extension Hi/ϕi(Fi), for any i ≥ 1,
with g(Fi) ≥ 2, we obtain that

g(Hi)− 1 ≥ m(g(Fi)− 1).

By [24, Proposition 3.10.2(c)], the field Hi is isomorphic to Ej(i). Hence, by using the
formula (2.2) for Hi/ϕi(Fi), for any s ∈ N,

Bs(Ej(i))

g(Ej(i))− 1
=

Bs(Hi)

g(Hi)
≤ 1

m(g(Fi)− 1)

∑
d∈N

d|s,d≥ s
m

md

s
Bd(Fi)

=
∑
d∈N

d|s,d≥ s
m

d

s

(
Bd(Fi)

g(Fi)− 1)

)
=

∑
d∈N

d|s,d≥ s
m

d

s

(
Bd(Fi)

g(Fi)− 1)

)

By taking the limit as i→∞ in this inequality, the lemma follows.

2.2 Construction of towers with prescribed invariants being positive

We say that a tower F = (Fn)n≥0, with F := F0, is pure, if for all P ∈ P(F ) and
r ∈ N, the inequality νr(P,F) > 0 implies degP = r and νs(P,F) = 0 for all s 6= r.
In this section we will prove our main result:

Theorem 2.2.1. Let F = (Fn)n≥0 be a tower over Fq with a finite support and let
N ⊂ N be a non-empty finite set. Then there exists a finite separable extension E/F
such that E := E · F is a tower with the following properties:

(i) for all s ∈ N,

νs(E) =
∑
f∈N
d∈P(F)

f

s

∑
P∈Supp(F)

lcm(f degP,d)=s

d · νd(P,F).

Moreover,
Supp(E) =

{
Q ∈ P(E) : Q ∩ F ∈ Supp(F)

}
and (2.4)

P(E) =
{
s ∈ N : s = lcm(f degP, d) with f ∈ N , d ∈ N, P ∈ Supp(F)

}
.
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(ii) If furthermore F/F is pure, then for all s ∈ N,

νs(E) =
∑

f∈N, d∈P(F)
fd=s

νd(F) and

P(E) =
{
s ∈ N : s = fd with f ∈ N , d ∈ P(F)

}
.

To be able to prove Theorem 2.2.1, we first give some results which will be used to
construct an appropriate extension E/F such that E := E · F is a tower over Fq with
certain properties.

Proposition 2.2.2. Let F/Fq be a function field, S ⊆ P(F ) a finite set of places of
F/Fq and R ∈ P(F ) \ S. Assume that for each P ∈ S there is given a finite set
NP ⊆ N such that

∑
f∈NP

f =
∑

f∈NQ
f for all P,Q ∈ S. Then there is a finite

separable extension E of F such that

(i) [E : F ] = m where m :=
∑

f∈NP
f and R is totally ramified in E.

(ii) For each P ∈ S, f ∈ N , there exists exactly one extension Q of P in E/Fq with
f(Q|P ) = f .

(iii) There is y ∈ E such that E = F (y) and
{

1, y, . . . , ym−1
}

is an integral basis for
E/F at all P ∈ S.

Proof. For each P ∈ S, set

ϕP (T ) :=
∏
f∈NP

gf (T ) =
m∑
k=0

akPT
k ∈ OP [T ],

where gf ∈ OP [T ] is a monic polynomial which is irreducible over k(P ) of deg gf = f .
Then by the Weak Approximation Theorem [24], for each k = 0, . . . ,m, there exist
elements b1, . . . , bm ∈ F such that

• vP (bi − aiP ) > 0 for all i = 1, . . . ,m− 1 and P ∈ S, and

• vR(bm) = 0,
gcd(m, vR(b0)) = 1 and either

vR(bi) ≥ vR(b0) > 0 for i = 1, . . . ,m− 1 or

vR(b0) < 0, vR(bi) ≥ 0 for i = 1, . . . ,m− 1.

Note that w.l.o.g. we can take bm := 1. Now we set ϕ(T ) :=
∑m

k=0 bkT
k ∈

⋂
P∈S OP [T ].

Then
ϕ(T ) ≡ ϕP (T ) over k(P ) for P ∈ S, and

by the generalized Eisenstein’s Irreducibility Criterion [24] with the place R, the poly-
nomial ϕ(T ) is irreducible over F . Set E := F (y) where y is a root of ϕ(T ). Hence,
[E : F ] = m and by the same irreducibility criterion, R is totally ramified in E, and so
assertion (i) follows. Then by applying Kummer’s Theorem [24], assertion (ii) follows.
Note that E/F is separable, since by Kummer’s Theorem each P ∈ S is unramified in
E. Assertion (iii) is clear from the factorization of ϕ(T ) over k(P ).
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Remark 2.2.3. In Proposition 2.2.2, the elements in the set NP do not need to be
distinct if the following holds: for each P ∈ S and f ∈ NP , there are monic polynomials
g(T ) ∈ OP [T ] which are pairwise distinct and irreducible over k(P ) of deg g(T ) = f .

Lemma 2.2.4. Let E/F and F ′/F be finite separable extensions of function fields in
some algebraic closure of F . Suppose that Fq is algebraically closed in F and F ′, and
there is a place P of F that is totally ramified in E/F and unramified in F ′/F . Then
E/F and F ′/F are linearly disjoint and Fq is algebraically closed in EF ′.

Proof. The linear disjointness follows from the existence of P and Abhyankar’s Lemma
[24]. Let L/Fq be a finite extension of Fq. Then P is unramified in the constant field
extension F ′L. Hence, again by applying Abhyankar’s Lemma, we obtain that EF ′/F ′

and F ′L/F ′ are linearly disjoint, and so

EF ′ ∩ F ′L = F ′.

This gives that EF ′ ∩ L = Fq, as Fq is algebraically closed in F ′. Since this holds for
any finite extension L/Fq, we obtain that Fq is algebraically closed in EF ′.

Lemma 2.2.5. Let F/Fq be an algebraic function field and let E, F ′ and E ′ be finite
extensions of F such that E ′ = EF ′. Let Q and P ′ be places of E and F ′, respectively,
lying above a place P of F . Suppose that there exists a place Q′ of E ′ lying above both
Q and P ′. Then

e(Q′|P ′) ≤ e(Q|P ) and k(Q′) ⊇ k(Q)k(P ′).

If furthermore e(Q|P ) and e(P ′|P ) are coprime, then

e(Q′|P ′) = e(Q|P ) and k(Q′) = k(Q)k(P ′).

Proof. We first set k := k(Q)k(P ′), then clearly k(Q′) ⊇ k. Consider the constant
field extensions F1 := Fk,E1 := Ek, F ′1 = F ′k and E ′1 := E ′k. Let Q′1 ∈ P(E ′1) be an
extension of Q′. Then obviously P1 := Q′1∩F , Q1 := Q′1∩E, and P ′1 := Q′1∩F ′ lie above
P,Q and P ′, respectively. We denote the completions of F1, E1, F

′
1 and E ′1 with respect

to P1, Q1, P
′
1 and Q′1 by the symbol .̂ As Q′1 is lying above P1,Q1 and P ′1, we can regard

F̂1, Ê1, F̂ ′1 as subfields of Ê ′1 such that Ê ′1 = Ê1F̂ ′1. We note that by [21, p.30, Theorem
1], the corresponding ramification indices and the relative degrees are preserved by
completion. Moreover, by [24, Theorem 3.6.3], the corresponding ramification indices
do not change after taking the constant field extensions. Consequently, we obtain that

f(Q̂1|P̂1) = f(P̂ ′1|P̂1) = f(Q1|P1) = f(P ′1|P1) = 1.

Thus,

e(Q̂′1|P̂ ′1)e(P̂ ′1|P̂1) ≤ [Ê ′1 : F̂1] ≤ [Ê1 : F̂1] · [F̂ ′1 : F̂1] = e(Q̂1|P̂1)e(P̂ ′1|P̂1). (2.5)

Therefore,

e(Q′|P ′) = e(Q̂′1|P̂ ′1) ≤ e(Q̂1|P̂1) = e(Q|P ).

Now suppose that e(Q|P ) and e(P ′|P )) are coprime. By Abhyankar’s Lemma [24],
we get

e(Q′|P ′) = e(Q|P ) and e(Q′|Q) = e(P ′|P ).

Thus, in Eq.(2.5), equalities hold, and so

e(Q̂′1|P̂1) = [Ê ′1 : F̂1] = e(Q̂′1|P̂1)f(Q̂′1|P̂1).
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Hence,

1 = f(Q̂′1|P̂1 = [k(Q̂′1) : k(P̂1)] = [k(Q′1) : k(P1)].

This means that k(Q′1) = k(P1) = k. As k(Q′) ⊇ k and by [24, Theorem 3.6.3(g)],
k(Q′1) = k · k(Q′), we obtain that k(Q′) = k.

Lemma 2.2.6. Let F/Fq be an algebraic function field and let E, F ′ and E ′ be finite
separable extensions of F such that E ′ = EF ′. Suppose that E/F and F ′/F are linearly
disjoint. Set E := F (y), m := [E : F ], and consider the set

M :=
{
P ∈ P(F ) : {1, y, . . . , ym−1} is an integral basis for E/F at P

}
.

Let P ∈M,P ′ ∈ P(F ′) with P ′|P . Suppose that e(P ′|P ) is coprime to any ramification
index of P in E. Then above P ′ and each Q ∈ P(E) with Q|P there are exactly
gcd(f(Q|P ), f(P ′|P )) places Q′ ∈ P(E ′). Moreover, for each such place Q′,

f(Q′|P ) = [k(Q)k(P ′) : k(P )]. (2.6)

Proof. We first note that by [24, Theorem 3.3.6], the set M contains almost all places
of F . Fix a place P ∈ M with an extension P ′ in E ′ satisfying the given assumption.
Let ϕ(T ) ∈ OP [T ] be the minimal polynomial of y over F and

ϕ̄(T ) =
r∏
i=1

ḡi(T )εi (2.7)

be the decomposition of ϕ̄(T ) into irreducible factors over k(P ). By Kummer’s Theo-
rem [24], for 1 ≤ i ≤ r, there are places Qi ∈ P(E) satisfying

Qi|P, gi(y) ∈ Qi, e(Qi|P ) = εi, f(Qi|P ) = deg gi, (2.8)

and these are all extensions of P in E. For each 1 ≤ i ≤ r, set

ki := [k(Qi)k(P ′) : k(P ′)]. (2.9)

Then as ḡi(T ) is irreducible over k(P ), it is separable, and so

ḡi(T )εi =

si∏
j=1

h̄ij(T )εi ∈ k(P ′)[T ],

where h̄i1(T ), . . . , h̄isi(T ) are pairwise distinct, monic, irreducible polynomials in k(P ′)[T ]
of deg h̄ij(T ) = ki for all 1 ≤ j ≤ si, and

si = gcd(f(Qi|P ), f(P ′|P )), (2.10)

Again by Kummer’s Theorem, for 1 ≤ j ≤ si, there are places Qij ∈ P(E ′) satisfying

Qij|P ′, hij(y) ∈ Qij, f(Qij|P ′) ≥ deg hij = ki. (2.11)

Moreover, as hij(T ) | gi(T ), it follows that each Qij|Qi. Since by assumption e(Qi|P )
and e(P ′|P ) are coprime, by Lemma 2.2.5, we have

k(Qij) = k(Qi)k(P ′).
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Hence,

f(Qij|P ′) = [k(Qij) : k(P ′)] = [k(Qi)k(P ′) : k(P ′)] = ki.

Now we just need to prove that Qij’s are all extensions of Qi and P ′, then by (2.10)
the lemma follows. By Abhyankar’s Lemma [24], we have that

e(Qij|P ′) = e(Qi|P ) = εi for all 1 ≤ j ≤ si. (2.12)

As this holds for all 1 ≤ i ≤ r, by using (2.8), (2.11) and (2.12), we obtain that

[E : F ] =
∑

Q∈P(E)
Q|P

e(Q|P )f(Q|P ) =
r∑
i=1

εi deg gi(T ) =
r∑
i=1

εi

si∑
j=1

ki

=
r∑
i=1

si∑
j=1

e(Qij|P ′)f(Qij|P ′) ≤
∑

Q′∈P(E′)
Q′|P ′

e(Q′|P ′)f(Q′|P ′) = [E ′ : F ′].

Hence, as [E : F ] = [E ′ : F ′], the above equality holds. Then for each 1 ≤ i ≤ r, we
obtain that Qi1, . . . Qisi are all places of E ′ lying over Qi and P ′.

Theorem 2.2.7. Suppose that E := E ·F is a tower of F/Fq. With the same notations
as in Lemma 2.2.6, let P ∈M , and suppose that e(Q|P ) is coprime to any ramification
index of P in F , for all Q ∈ P(E) with Q|P . Then for any Q|P and s ≥ 1,

νs(Q, E) =
f(Q|P )

s

∑
d∈N

lcm(degQ,d)=s

d · νd(P,F).

Proof. Set E ′ := En, F ′ := Fn, for any n ≥ 1. By Lemma 2.2.6, there are gcd(f(Q|P ), f(P ′|P ))
places Q′ ∈ P(E ′) above any fixed Q and P ′ lying over P ∈M , and moreover for each
such place Q′, one has

f(Q′|P ) = [k(Q)k(P ′) : k(P )].

In particular, s := f(Q′|P ) = lcm((f(Q|P ), f(P ′|P )), and so d := f(P ′|P ) divides s.
Conversely, any P ′ lying over P with d = f(P ′|P ) such that s = lcm(f(Q|P ), d) has
at least one extension Q′ in E ′ with f(Q′|P ) = s. Hence,∑

Q′|Q
f(Q′|P )=s

1 =
∑
d∈N

lcm(f(Q|P ),d)=s

∑
P ′|P

f(P ′|P )=d

∑
Q′|P ′
Q′|Q

1

=
∑
d∈N

lcm(f(Q|P ),d))=s

∑
P ′|P

f(P ′|P )=d

gcd(f(Q|P ), d)

=
∑
d∈N

lcm(f(Q|P ),d)=s

d · f(Q|P )

s

∑
P ′|P

f(P ′|P )=d

1.

Since lcm(af, ad) = as if and only if lcm(f, d) = s, we can write the summation indices
in terms of absolute degrees instead of relative degrees with respect to P as base place.
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Then we get

Bs(Q,E
′) =

∑
Q′|Q

degQ′=s

1 =
f(Q|P )

s

∑
d∈N

lcm(degQ,d)=s

d
∑
P ′|P

degP ′=d

1

=
f(Q|P )

s

∑
d∈N

lcm(degQ,d)=s

d ·Bd(P, F
′).

Dividing this equation by [E ′ : E] and then taking the limit as n → ∞ proves the
theorem.

Proof of Theorem 2.2.1. It is enough to prove (i), then (ii) is immediate. By
applying Lemma 2.2.4 and Proposition 2.2.2 with the set S := Supp(F) and NP := N
for each P ∈ Supp(F), one can construct an extension E/F such that the following
hold:

(i) E := E · F is a tower of F with E/F .

(ii) For each f ∈ N , any P ∈ S has exactly one extension Q in E with f(Q|P ) = f
and these are the only extensions of P in E.

(iii) All places P ∈ S are unramified in E and S is contained in the set M defined in
Lemma 2.2.6.

By Corollary 2.1.5 and the construction of E/F , and Theorem 2.2.7, the statement
(2.4) is immediate. Therefore, for any s ≥ 1, by using Theorems 2.2.7 and 1.3.2(v), we
get

νs(E) =
∑

f∈N,d∈N
P∈S

∑
f(Q|P )=f

lcm(degQ,d)=s

νs(Q, E) =
∑
f∈N
d∈N

f

s

∑
P∈S

lcm(f degP,d)=s

d · νd(P,F).

2

We note here that when Supp(F) is infinite, one can apply Theorem 2.2.1 with a finite
subset S ⊆ Supp(F) and get a finite subset of Supp(E).

As there are many towers over a given finite field Fq with non-empty finite support,
such as many of the class field towers and the recursive towers (see Chapter 3), Theorem
2.2.1 can be often applied. More specifically, let F be a tower over Fq2 attaining the
Drinfeld-Vladut bound of order one. Note that there are many such towers, for instance
see Section 3.2. Then obviously P(F) = {1}. Hence, by using Theorem 2.2.1(ii) one
gets immediately the following consequence:

Corollary 2.2.8. For any given finite set N ⊆ N, there exists a tower of function
fields E over Fq2 with

P(E) = N.

Proof. Consider a tower F = (Fn)n≥0 over Fq2 with P(F) = {1}. Then by Theorem
2.2.1(ii), there is an extension E of F0 such that E := E · F is a tower over Fq2 with
P(E) = N .

Corollary 2.2.9. For any given set M $ N, there exists an asymptotically good tower
of function fields E over Fq2 with

P(E) ∩M = ∅.
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Proof. Let N ⊆ N \M be a finite set. By Corollary 2.2.8, there exists a tower E over
Fq2 with P(E) = N , and hence the corollary follows.

Remark 2.2.10. For a finite field Fq, when q is non-prime, there are many recursive
towers F/Fq with β1(F) > 0 (for instance see Chapter 3). Hence, for any finite set
N ⊆ N, by using Theorem 2.2.1, one can construct many recursive towers E over Fq
with

P(E) = {r ∈ N : βr(E) > 0} ⊇ N.

In Chapter 3 we will construct some such towers E over Fq. However, in the case that
q is a prime, the existence of recursive towers F over Fq with β1(F) > 0 is not known.

2.3 Computation of the genus of a tower

Let F = (Fn)n≥0 be a tower over a finite field Fq and E be a finite separable extension
of F0. In this section we suppose that E = (EFn)n≥0 is a tower over Fq and estimate
the genus γ(E) of the tower E , under certain conditions.

Definition 2.3.1. Let F = (Fn)n≥0 be a tower over Fq. Then the set

R(F) := {P ∈ P(F0) : P is ramified in Fn for some n ≥ 0}.

is called the ramification locus of F .

The proof of the following lemma is omitted; for the proof see [11, Lemma 3.4].

Lemma 2.3.2. Suppose that the set R(F) is finite. For any n ≥ 1, set

An :=
∑

P∈P(Fn)
P∩F∈R(F)

P.

Then the following limit exists:

α(F) := lim
n→∞

degAn
[Fn : F ]

.

Theorem 2.3.3. For the genus γ(E) of the tower E the following hold:

(i) Set m := [E : F ]. Then m · γ(F) ≤ γ(E) ≤ g(E) − 1 + m(1 − g(F ) + γ(F)). If
furthermore all P ∈ R are unramified in E, then

γ(E) = g(E)− 1 +m(1− g(F ) + γ(F)).

(ii) If R is finite, α(F) = 0 and all P ∈ R are tame in E, then

γ(E) = g(E)− 1− s/2 +m(1− g(F ) + γ(F)),

where s :=
∑

Q∈P(E)
Q∩F∈R

d(Q|Q ∩ F ) · degQ.

For the proof of Theorem 2.3.3 we need the following lemma:
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Lemma 2.3.4. Let F/Fq be a function field and let E, F ′ and E ′ be finite separable
extensions of F such that E ′ = EF ′. Set n := [F ′ : F ] and m := [E : F ]. Then

(i) for any Q′ ∈ P(E ′) with P ′ := Q′ ∩ F ′, Q := Q′ ∩ E, and P := Q′ ∩ F , one has

d(Q′|P ′) ≤ e(Q′|Q)d(Q|P ).

(ii) Suppose that E/F and F ′/F are linearly disjoint. Then

m(g(F ′)− 1) + 1 ≤ g(E ′) ≤ mg(F ′) + ng(E)− nmg(F ) + (n− 1)(m− 1).

In order to prove Lemma 2.3.4, we will use the following proposition. Its proof fol-
lows from [21, p.52, Proposition 10], [21, p.57, Proposition 12], and [21, p.56, Corollary
2].

Proposition 2.3.5. Let K/Fq be a function field and L be a finite separable extension

of K with a place Q and P := Q ∩K. Consider the completions K̂, L̂ of the fields K,
L with respect to the places P , Q, respectively. Then one has

(i) OQ̂ = OP̂ [α] for some α ∈ L̂.

(ii) d(Q|P ) = d(Q̂|P̂ ) = vQ̂(f ′(α)), where f(T ) ∈ OP̂ [T ] is the minimal polynomial
of α over OP̂ .

Proof of Lemma 2.3.4.

(i) First we fix a place Q′ with the restrictions P,Q, and P ′ to the fields F,E and F ′,

respectively. Consider the completions F̂ , Ê, F̂ ′ and Ê ′ with respect to the places
P , Q, P ′ and Q′, respectively. By Proposition 2.3.5(ii), the different is preserved by
completion, and so it suffices to prove it in the completed setting. By Proposition
2.3.5(i), there is an element α ∈ Ê such that OQ̂ = OP̂ [α]. Let f(T ) ∈ OP̂ [T ], (resp.

g(T ) ∈ OP̂ ′ [T ]) be the minimal polynomial of α over F̂ (resp. over F̂ ′). By the Lemma
of Gauss [14], we can write f(T ) = g(T )h(T ) in OP̂ ′ [T ], then

f ′(α) = g′(α)h(α) + h′(α)g(α) = g′(α)h(α).

Thus, by applying [24, Theorem 3.5.10(a)] and Proposition 2.3.5(ii), the desired result
follows:

d(Q̂′|P̂ ′) ≤ vQ̂′(g
′(α)) ≤ vQ̂′(f

′(α)) = e(Q̂′|Q̂)vQ̂(f ′(α)) = e(Q̂′|Q̂)d(Q̂|P̂ ).

Note that by [21, p.30, Theorem 1], the ramification indices are preserved by comple-
tion.

(ii) By using the Hurwitz Genus Formula [24] for the extension E ′/F ′, we obtain that

g(E ′) ≥ m(g(F ′)− 1) + 1.

Next, we prove the second inequality. By using (i), we have that

Diff(E ′/F ′) =
∑

P ′∈P(F ′)

∑
Q′|P ′

d(Q′|P ′)Q′ ≤
∑

Q∈P(E)
P=Q∩F

∑
Q′|Q

e(Q′|Q)d(Q|P )Q′

= ConE′/E(Diff(E/F )),
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where ConE′/E is the conorm map and Diff is the different. Hence, by [24, Corollary
3.1.14],

deg Diff(E ′/F ′) ≤ [E ′ : E] deg Diff(E/F ). (2.13)

By using the Hurwitz Genus Formula for the extension E/F , we obtain that

deg Diff(E/F ) = 2g(E)− 2−m(2g(F )− 2). (2.14)

By using (2.13), (2.14) and the Hurwitz Genus Formula for the extensions E ′/F ′, it
follows that

2g(E ′)− 2 = m(2g(F ′)− 2) + deg Diff(E ′/F ′)

≤ m(2g(F ′)− 2) + n deg Diff(E/F )

= m(2g(F ′)− 2) + n
(
2g(E)− 2−m(2g(F )− 2)

)
= 2[mg(F ′)−m+ ng(E)− n− nmg(F ) + nm],

Therefore, the second inequality follows.

Proof of Theorem 2.3.3.

(i) By applying Lemma 2.3.4(ii), with E ′ := En, F ′ := Fn, for any n ≥ 1, we have that

m(g(F ′)−1) ≤ g(E ′) ≤ mg(F ′) + [F ′ : F ]g(E)−m[F ′ : F ]g(F ) +([F ′ : F ]−1)(m−1).

Dividing both sides of those inequalities by [E ′ : E] = [F ′ : F ], and then taking the
limit as n→∞ gives the first part of the assertion.

Now assume that all places P ∈ R(F) are unramified in E. For simplicity, we first
denote by P (resp. Q,P ′, Q′) the places of F (resp. E,Fn, En), and set R := R(F).
The Hurwitz Genus Formula for the extension En/F yields that

2g(En)− 2 = [En : F ](2g(F )− 2) + s1 + s2, (2.15)

where

s1 :=
∑
P /∈R

∑
Q′|P

d(Q′|P ) · degQ′ and s2 :=
∑
P∈R

∑
Q′|P

d(Q′|P ) · degQ′.

By applying the transitivity of the different in F ⊆ E ⊆ En, we obtain that

s1 =
∑
P /∈R

∑
Q|P

∑
Q′|Q

(e(Q′|Q) · d(Q|P ) + d(Q′|Q)) · degQ′

=
∑
P /∈R

∑
Q|P

∑
Q′|Q

d(Q|P ) · f(Q′|Q) · degQ (by the Fundamental Equality)

= [En : E] ·
∑
P /∈R

∑
Q|P

d(Q|P ) · degQ

= [En : E] · deg Diff(E/F ).

Next, we apply the transitivity of the different in F ⊆ Fn ⊆ En:

s2 =
∑
P∈R

∑
P ′|P

∑
Q′|P ′

(e(Q′|P ′) · d(P ′|P ) + d(Q′|P ′)) · degQ′

=
∑
P∈R

∑
P ′|P

∑
Q′|P ′

d(P ′|P ) · f(Q′|P ′) · degP ′

= [E : F ] ·
∑
P∈R

∑
P ′|P

d(P ′|P ) · degP ′ (by the Fundamental Equality)

= [E : F ] · deg Diff(Fn/F ).
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Now by substituting s1 and s2 in (2.15), we obtain that

2g(En)− 2 = [En : F ] · (2g(F )− 2) + [En : E] · deg Diff(E/F )

+ [E : F ] · deg Diff(Fn/F )

= [En : F ] · (2g(F )− 2) + [En : E] · (2g(E)− 2− [E : F ] · (2g(F )− 2))

+ [E : F ] · (2g(Fn)− 2− [Fn : F ] · (2g(F )− 2)) .

Dividing both of the sides of this equation by 2 · [En : E], and letting n → ∞, we
obtain that

γ(E) = [E : F ] · (g(F )− 1) + g(E)− 1− [E : F ] · (g(F )− 1)

+ [E : F ] · (γ(F)− g(F ) + 1)

= g(E)− 1 + [E : F ] · (γ(F)− g(F ) + 1) .

(ii) For the proof see [11, Theorem 3.6]. The proof is similar to our proof for the second
part of assertion (i).

Remark 2.3.6. Let K/Fq be a function field and K1, K2 be two subfields of K. Sup-
pose that K = K1K2 and [K : Ki] = ni for i = 1, 2. Then Castelnouvo’s Inequality [24]
gives the following bound for the genus g(K) of K:

g(K) ≤ n1g(K1) + n2g(K2) + (n1 − 1)(n2 − 1).

In Theorem 2.3.3, when g(F ) = 0, the equality in Castelnouvo’s Inequality holds for
the function fields E/Fq and Fn/Fq with their compositum En = EFn.

Remark 2.3.7. In Theorem 2.3.3(ii), if α(F) is not zero, then

γ(E) ≤ g(E)− 1− s/2 + [E : F ](1− g(F ) + s+ γ(F)), (2.16)

where s :=
∑

P∈R(F) degP .

However, the bound (2.16) is not better than the one obtained by using Castel-
nouvo’s Inequality for E,Fn and En, which yields that

γ(E) ≤ g(E)− 1 + [E : F ](1 + γ(F)).

A tower F = (Fn)n≥0 is called tame if Fn+1/Fn is a tame extension for all n ≥ 0.

Lemma 2.3.8. Suppose that F is a tame tower. Then the tower E is also tame, and
hence

γ(E) ≤ 2g(E)− 2 + s

2
where s :=

∑
P∈R(E)

degP . (2.17)

Proof. By Abhyankar’s Lemma [24], it is clear that the tower E is tame. Then by [11,
Theorem 2.1],the ineaulity (2.17) holds.
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2.4 Towers with infinitely many positive invariants

In this section we investigate the situation where we can estimate νr(F) for infinitely
many r ≥ 1.

Theorem 2.4.1. Let Fq be a finite field of characteristic p. Then there is a tower F
over Fq and a strictly increasing sequence (ki)i≥0 of positive integers with k0 := 1 such
that

νki(F) ≥ 1

pi
for all i ≥ 0.

Proof. Let F0 := Fq(x0) be the rational function field. Set

Q0 := (x0 =∞), S0 := {P0} where P0 := (x0 = 0), and k0 := 1.

Choose an element z0 ∈ F0 with the following properties:

z0(P ) = 0 for P ∈ S0, and z0 has a simple pole at Q0.

Note that by the Weak Approximation Theorem [24] such an element z0 always exists.
Let F1 := F0(x1) where x1 satisfies the equation

xp1 − x1 = z0.

Then Q0 is totally ramified in F1, and hence Fq is algebraically closed in F1. Denote
by Q1 the place of F1 lying above Q0. Set

S1 := {P ∈ P(F1) : P ∩ F0 ∈ S0} ∪ {P1},

where P1 ∈ P(F1) of degP1 = k1 for some k1 > 1. Next, choose an element z1 ∈ F1

such that
z1(P ) = 0 for all P ∈ S1, and z1 has a simple pole at Q1.

Let F2 := F1(x2) where x2 satisfies the equation

xp2 − x2 = z1.

Then Q1 is totally ramified in F2, and so Fq is algebraically closed in F2. We continue
on this process inductively for n ≥ 2. Set

Sn−1 := {P ∈ P(Fn−1) : P ∩ Fn−2 ∈ Sn−2} ∪ {Pn−1}

where Pn−1 ∈ P(Fn−1) of degPn−1 = kn−1 for some kn−1 > kn−2. Choose an element
zn−1 ∈ Fn−1 such that the following hold:

(i) zn−1(P ) = 0 for all P ∈ Sn−1,

(ii) zn−1 has a simple pole at Qn−1 where Qn−1|Qn−2.

Let Fn := Fn−1(xn) where xn satisfies the following equation:

xpn − xn = zn−1.

Then Qn−1 is totally ramified in Fn, and hence Fq is algebraically closed in Fn.
Now it follows from the construction of Fn/Fq, for n ≥ 0, that the sequence F :=

(Fn)n≥0 is a tower over Fq with [Fn : Fn−1] = p for all n ≥ 0. Moreover, for all i ≥ 0, by
applying Kummer’s Theorem [24], each place P ∈ Si splits in Fn, for any sufficiently
large n ≥ 1. Thus, for all i ≥ 0, we obtain that

Bki(Fn) ≥ [Fn : Fi] = pn−i, and so νki(F) ≥ 1

pi
.
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Remark 2.4.2. It is not yet known if there exist towers of function fields over finite
fields with infinitely many βr being positive.

2.5 Towers with all invariants being zero

For any tower F/Fq, it is clear that when either the genus γ(F) of F is infinite or
νr(F) = 0, the invariants βr(F) are all zero, for any r ≥ 1. We know that there are
many towers with infinite genus. For instance, see Lemma 4.1.10. We now prove the
existence of towers with νr(F) = 0 for all r ≥ 1. First, recall that for any function
field extension E/F , if Q ∈ P(E) lies above P ∈ P(F ), then degP divides degQ.

Lemma 2.5.1. For any finite field Fq, there exists a tower F over Fq with

νr(F) = 0 for all r ∈ N.

Proof. The proof is similar to that of Theorem 2.4.1. Let p be the characteristic of
Fq. We first claim that there exists an element α1 ∈ F ∗q such that the polynomial
T p − T − α1 is irreducible over Fq.
Proof of the claim: We first recall that for any a ∈ Fq, the polynomial T p − T − a is
irreducible over Fq if and only if it has no root in Fq. Consider the map γ : Fq → Fq with
γ(b) = bp− b for any b ∈ Fq. This map is clearly Fp-linear and its kernel is Ker γ = Fp.
Hence, γ is not surjective, and so there exists an α1 such that the polynomial T p−T−α1

has no roots in Fq. Then the claim follows.
Now let F0 := Fq(x0) be the rational function field and set

Q0 := (x0 =∞), S0 := {P ∈ P(F0) \ {Q0} : degP = 1}.

Choose an element z0 ∈ F0 with the following properties:

z0(P ) = α1 for all P ∈ S0 and Q0 is a simple pole of z0.

Let F1 := F0(z0) with
xp1 − x1 = z0. (2.18)

Then Q0 is totally ramified in F1 and hence Fq is algebraically closed in F1. Moreover,
it follows from Kummer’s Theorem [24] and our claim that all places P ∈ S0 are inert
in F1. Thus,

B1(F1) = 1.

Next, denote by Q1 the extension of Q0 in F1 and set

S1 := {P ∈ P(F1) : degP = 2}.

By using our claim, there exists an element α2 ∈ Fq2 such that the polynomial T p −
T −α2 is irreducible over Fq2 . Choose an element z1 ∈ F1 such that the following hold:

z1(P ) = α2 for all P ∈ S1 and z2 has a simple pole at Q1.

Let F2 := F1(x2) where x2 satisfies the equation

xp2 − x2 = z1.
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Then Q1 is totally ramified in Fn, and so Fq is algebraically closed in F2. By Kummer’s
Theorem, all P ∈ S1 are inert in F2. Hence,

B2(F2) = 1 and B2(F2) = 0.

We proceed by induction over n. Suppose that there is an extension Fn−1/F0, with
n ≥ 3, such that

(a) B1(Fn−1) = 1 and Br(Fn−1) = 0 for all 2 ≤ r ≤ n− 1,

(b) Q0 is totally ramified in Fn−1,

(c) Fq is algebraically closed in Fn−1.

Let Qn−1 ∈ P(Fn−1) be the extension of Q0 in Fn−1. Set

Sn−1 := {P ∈ P(Fn−1) : degP = n}.

Using our claim, there exists an element αn ∈ F∗qn such that the polynomial T p−T−αn
is irreducible over Fnq . Choose an element zn−1 ∈ Fn−1 with the following properties:

zn−1(P ) = αn for all P ∈ Sn−1 and zn−1 has a simple pole at Qn−1.

Let Fn := Fn−1(xn) with
xpn − xn = zn−1.

Then Qn−1 is totally ramified in Fn, and so Fq is algebraically closed in Fn. By
Kummer’s Theorem, all P ∈ Sn−1 are inert in Fn (notice that k(P ) = Fqn for all
P ∈ Sn−1). Hence, by combining this observation with (a), we get that

B1(Fn) = 1 and Br(Fn) = 0 for all 2 ≤ r ≤ n.

Now by the construction of Fn/Fq, it follows that the sequence F := (Fn)n≥0 is a tower
over Fq with

νr(F) = 0 for all r ∈ N.
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3

Examples

In this chapter we are interested in the following problems concerning the invariants
of a tower over any finite field Fq.
Problem 1. For a given tower (an asymptotically exact sequence) F over Fq, describe
the set of positive parameters P(F) = {r ∈ N : βr(F) > 0}.
Problem 2. Describe the set of possible values of the deficiency for towers (asymp-
totically exact sequences) of function fields over Fq.
Problem 3. Find towers (asymptotically exact sequences) of function fields over Fq
with small deficiency.

We will construct some new towers E = (En)n≥0 of function fields over Fq and then
find the set P(E) and the deficiency δ(E). Moreover, we will estimate the class numbers
hn := h(En), for n ≥ 0, and the value H(E) for these new towers E over Fq. We note
that to estimate the numbers hn, we compute the genus g(En), and then by Theorem
1.1.6, one can easily estimate these numbers.

3.1 Non-maximal recursive towers with all but one invariants being zero

We first recall that a non-maximal tower is a tower which does not attain the gener-
alized Drinfeld-Vladut bound given in Theorem 1.3.2(ii). We begin with some simple
remarks, which we will apply in the subsequent examples.

Remark 3.1.1. Let F = (Fn)n≥0. For any n ≥ 1, we have that

rBr (Fn/Fq) =
∑
d|r

µ(
r

d
)B1(FnFqd/Fqd),

where µ denotes the Mobius function (see [24, p.207]). Therefore,

rβr (F/Fq) =
∑
d|r

µ(
r

d
)β1(FFqd/Fqd).

Remark 3.1.2. For any r, t ≥ 1, we have

∑
t|d|r

µ(
r

d
) =

1 if r = t,

0 else.
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Proof. We know that

∑
d|r

µ(d) =

1 if r = 1,

0 else.

Clearly, if t - r, then there is nothing to prove. So we assume that r = tns for some
n ≥ 1 and t - s, where s is an integer. Set d := tk where k is a factor of r

t
. Then∑

t|d|r

µ(
r

d
) =

∑
tk|tns

µ
(r
d

)
=
∑

k|tn−1s

µ

(
tn−1s

k

)

=
∑

k|tn−1s

µ (k) =

1 if tn−1s = 1

0 else.

Hence, since r = tns, the result follows.

Example 3.1.3. Let F be the tower defined by the equation y2 +y = x+ 1 + 1/x over
a finite field F2e for some e ≥ 1. Then by Example 5.8 in [4], we have

β1(F) =

3/2 if 3 divides e,

0 else.

Now we consider the tower F over Fq, with q = 2e where 3 - e. Then by using Remark
3.1.1, we obtain that

rβr(F/Fq) =
∑
3|d|r

µ(
r

d
)β1(FFqd/Fqd) =

3

2

∑
3|d|r

µ(
r

d
).

This equality and an application of Remark 3.1.2 with t = 3 yields

rβr(F) =

3/2 if r = 3,

0 else.

Hence,

P(F/Fq) =
{

3
}

with β3(F/Fq) =
1

2
.

Then the deficiency and H(F) = lim
n→∞

logq hn/g(Fn), as defined in Theorem 1.1.5, are

as follows:

δ(F/Fq) =
2q3/2 − 5

2(q3/2 − 1)
and H(F/Fq) = 1 +

1

2
loqq

(
q3

q3 − 1

)
.

This example implies that for q = 2e where 3 - e, we get

A3(q) ≥
1

2
.

Notice that for q = 2, we get a lower bound close to the Drinfeld-Vladut bound of
order 3 with the deficiency δ(F/F2) = 0.17962 and H(F/F2) = 1.0850.
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Example 3.1.4. Let q = 3e for some e ≥ 1 and F be the tower given in [10], which is

defined by the equation y2 = x(x−1)
x+1

over Fq. Then by Example 2.4.3 in [13], we have

β1(F) =

2/3 if e is even,

0 if e = 1.

Now by applying Remark 3.1.2 with t = 1, we obtain that

P(F/F9) =
{

1
}

with β1(F/F9) =
2

3
.

Thus,

δ(F/F9) =
2

3
≈ 0.66 and H(F/F9) = 1.0357.

Example 3.1.5. Let q be a power of 3, and F be the tower given in [10], which is

defined by the equation y2 = x(x+1)
x−1 over Fq. Then by a remark in [13, p.46], we have

β1(F/F81n) = 2 for all n ≥ 1.

Now by applying Remark 3.1.2 with t = 1, we get that

P(F/F81) =
{

1
}

with β1(F/F81) = 2.

Hence,
δ(F/F81) = 0.75 and H(F/F81) = 1.0057.

Example 3.1.6. Let p ≥ 3 be a prime number and F be the tower over Fpe defined
by the equation y2 = (x2 + 1)/2x. Then by Example 5.9 in [4], we have

β1(F) =

p− 1 if 2 divides e,

0 else.

We consider the tower F over Fq, where q := pe with 2 not dividing e. Then by
applying Remark 3.1.2 with t = 2, we obtain that

P(F/Fq) =
{

2
}

with β2(F) =
p− 1

2
.

Thus,

δ(F/Fq) = pe−1 + pe−2 + . . .+ p and H(F/Fq) = 1 +

(
p− 1

2

)
logq

(
q2

q2 − 1

)
.

Thus, the tower F over Fp attains the Drinfeld-Vladut bound of order 2.

Corollary 3.1.7. In the following cases there exists a non-maximal recursive tower
over Fq with exactly one nonzero invariant:

(i) q = 2e with 3 not dividing e,

(ii) q = 3e with e = 2 or 4,

(iii) q = pe with p ≥ 3, e > 2 and 2 not dividing e.

Proof. See Examples 3.1.3, 3.1.4, 3.1.5, and 3.1.6, respectively.
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3.2 Towers attaining the Drinfeld-Vladut bound of order r

Example 3.2.1. Let qr be a square and F be the tower defined by the equation

yq
r/2

+ y =
xq

r/2

xqr/2−1 + 1
(3.1)

over a finite field Fpe , for some e ≥ 1. Then by Example 5.7 in [4], we have

β1(F) =

q
r/2 − 1 if Fqr ⊆ Fpe ,

0 else

Now consider the tower E/Fqr defined by (3.1), which is studied in [9]. Using Remark
3.1.1, we have that

rβr(E/Fq) =
∑
d|r

µ(
r

d
)β1(E/Fqd),

from which it follows that

βr(E/Fq) =
qr/2 − 1

r
= Ar(q), and so P(E/Fq) = {r}.

Thus,

δ(E/Fq) = 0 and H(E/Fq) = 1 +
qr − 1

r
logq

(
qr

qr − 1

)
.

Example 3.2.2. Consider the tower T defined by the equation

yq
r/2

xq
r/2−1 + y = xq

r/2

over Fqr , with qr a square. This tower is studied in [8]. It is maximal and from [9,
Remark 3.11, Corollary 2.4], we have that β1(E) ≥ β1(T ), where E/Fqr is the tower
defined in Example 3.2.1. Hence,

β1(T ) =

q
r/2 − 1 over Fqr ,

0 over Fpe where Fqr * Fpe .

Then by the same way as in the previous example, we get that

P(T /Fq) = {r} with βr(T /Fq) =
qr/2 − 1

r
= Ar(q).

Note that
δ(T /Fq) = δ(E/Fq) and H(T /Fq) = H(E/Fq).
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3.3 Recursive towers with various invariants being positive

In this section we will construct some recursive towers E = (En)n≥0 over Fq and esti-
mate the deficiency δ(E), the class numbers hn := h(En), andH(E) = lim

n→∞
logq hn/g(En).

By Theorems 2.2.1, 2.3.3, and Examples 3.2.1, 3.2.2, 3.1.3, 3.1.6, we have the following:

Theorem 3.3.1. Let N ⊆ N be a finite set and q be a prime number. Then there
exists a recursive tower of function fields F/Fq such that the set

P(F) :=
{
r ∈ N : βr(F) > 0

}
⊇ N.

Moreover, in the following cases there exists a recursive tower F/Fq with P(F) = N :

(i) q is any prime power and N is a finite set with each k ∈ N a multiple of r for
some r such that qr is a square,

(ii) q = 2e with 3 - e and each element k ∈ N is a multiple of 3,

(iii) q = pe with p ≥ 3, e > 2 and 2 - e, and each k ∈ N is an even integer.

We will mainly use the following proposition to construct some new towers with
various invariants being positive.

Proposition 3.3.2. Let F/Fq be a function field with a finite set of places S and F ′/F
be a finite separable extension. Further let N ⊆ N be a finite set with m :=

∑
f∈N f .

Suppose that F/Fq has a rational place Q which has a rational extension Q′ in F ′ such
that (m, e(Q′|Q)) = 1. Define E := F (z) where z is a root of the polynomial

ϕ(T ) :=
∏
f∈N

gf (T )− α ∈ F [T ]

which has the following properties:

(a) each gf (T ) is a monic, irreducible polynomial in Fq[T ] of deg gf (T ) = f ,

(b) α ∈ F and α(P ) = 0 for all P ∈ S,

(c) vQ(α) < 0 and (vq(α),m) = 1.

Set E ′ := EF ′. Then the following hold:

(i) the place Q is totally ramified in E, [E : F ] = [E ′ : F ′] = m, and Fq is alge-
braically closed in E ′.

(ii) Each place P ∈ S has exactly one extension Qf ∈ E with

degQf = f degP for all f ∈ N .

(iii) If P splits completely in F ′, then each extension of P in E splits completely in
E ′.

Proof. (i) By applying the generalized Eisenstein’s Irreducibility Criterion [24] with
the place Q and using (c), we obtain that ϕ(T ) is irreducible over F and Q is totally
ramified in E. Since (m, e(Q′|Q)) = 1 for some rational place Q′ of F ′ lying over Q, it
follows from Abhyankar’s Lemma [24] that Q′ is totally ramified in E ′ = EF ′. Thus,
assertion (i) follows.
(ii) The proof is clear by Kummer’s Theorem [24], and the properties (a) and (b).
(iii) See Lemma 2.1.1.
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We here compute the class numbers by using Theorem 1.1.6. Hence, we need to
compute the genus g(En). For this we will use the following lemma (recall that we
have F := F0):

Lemma 3.3.3. Suppose that F = (Fn)n≥0 is a tower over Fq with finite ramification
locus R(F). Let E/F be a finite separable extension such that all P ∈ R(F) are tame
in E. Assume that E = (En)n≥0, with En := EFn, is a tower over Fq. Set m := [E : F ].
Then

g(En) =

(
g(E)−mg(F ) +m− s+ 2

2

)
[En : E] +m(g(Fn)− 1) +

r(n)

2
+ 1,

where

s =
∑

Q∈P(E)
Q∩F∈R(F)

d(Q|Q ∩ F ) degQ and

r(n) =
∑

P∈R(F)

∑
Pn∈P(Fn)
Pn|P

degPn
∑

Qn∈P(En)
Qn|Pn

(e(Qn|Pn)− 1)f(Qn|Pn).

Proof. See [11, Theorem 3.6].

A tower F = (Fn)n≥0 over Fq is called an Artin-Schreier tower if each extension
Fn+1/Fn is an Artin-Schreier extension.

Here we first consider the tower F over Fq2 which is defined as follows:
F := F0 = Fq2(x0) is the rational function field and Fn+1 = Fn(xn+1) with

xqn+1x
q−1
n + xn+1 = xqn (3.2)

for all n ≥ 0. This tower is studied in [8]. It has the following properties:

• Supp(F) = {P ∈ P(F )| x0(P ) = α for some 0 6= α ∈ Fq2} and

P(F) = {1} and ν1(P,F) = 1 for all P ∈ Supp(F).

• R(F) = {P0, P∞} ⊆ P(F ), where P0 (resp. P∞) is the zero (resp. the pole) of
x0, is the set of ramified places in F .

• P∞ is totally ramified in F , and γ(F) = q + 1.

• β1(F) = q − 1, i.e., F attains the Drinfeld-Vladut bound of order one.

•

g(Fn) =

(q + 1)qn − (q + 2)q
n
2 + 1 if n ≡ 0 mod 2

(q + 1)qn − 1
2
(q2 + 3q + 1)q

n−1
2 + 1 if n ≡ 1 mod 2.

(3.3)

Example 3.3.4. Let N ⊆ N be a finite set and set m :=
∑

f∈N f . Consider the tower

F = (Fn)n≥0 defined by Eq. (3.2) over Fq2 , with (m, q) = 1. Let t be an integer such
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that 1 ≤ t ≤ q2 − 1 and (t,m) = 1. Further let E := F (z) where z is a root of the
polynomial

ϕ(T ) :=
∏
f∈N

gf (T )−
t∏

j=1

(x0 − αj) with 0 6= αj ∈ Fq2 ,

where each gf is a monic and irreducible polynomial in Fq2 [T ] having deg gf (T ) = f .
Let

S := {P ∈ P(F ) : x0(P ) = αj for some j = 1, . . . , t}.
By applying Proposition 3.3.2 with Q := P∞ and the set S, and using Abhyankar’s
Lemma [24], we obtain the following:

• E/F is separable of degree [E : F ] = degϕ(T ) = m,

• E and Fn are linearly disjoint over F for all n ≥ 0,

• Fq2 is algebraically closed in En for all n ≥ 0,

• each P ∈ S has exactly one extension Qf in E with degQf = f for all f ∈ N .

Thus, the sequence E = (En)n≥0, with En := EFn, is a tower over Fq2 such that
[En+1 : En] = q for all n ≥ 0. Moreover, since for all P ∈ S we have that ν1(P,F) = 1,
i.e., P splits completely in F , by Propositon 3.3.2(iii), each place Qf splits completely
in E . Hence,

νf (Qf , E) = 1 for all f ∈ N.
Then by Theorem 1.3.2(v), for each f ∈ N , we have that

νf (E) ≥
∑
P∈S
Qf |P

νf (Qf , E) = #S = t. (3.4)

Moreover, since γ(F ) < ∞, by Theorem 2.3.3(i), the genus γ(E) < ∞. Therefore, by
Theorem 1.3.2(iv) and Eq. (3.4), we obtain that

βf (E) ≥ t

γ(E)
> 0 for all f ∈ N . (3.5)

It is obvious that
P(F) ⊇ N.

Next, we compute the genus of the tower E in some specific cases:
Case-1: Let t := 1, q := p for some prime p, α1 := 1, and N := {1, r} where r ≥ 2
with (r + 1, p) = 1. For simlicity, we set l := p2. We have

ϕ(T ) = gr(T )(T − 1)− x0 + 1 ∈ F [T ], (3.6)

where gr(T ) ∈ Fq2 [T ] is a monic and irreducible polynomial of degree r. Assume that
(ϕ(T ), ϕ′(T )) = 1 at P0. To estimate g(En), we apply Lemma 3.3.3. It is clear that
g(E) = 0. From the defining equation (3.6), we have that the place P∞ is totally
ramified in E. Let Q ∈ P(E) lying above P∞. Then the different exponent d(Q|P ) =
e(Q|P )− 1 = r.

Since (ϕ(T ), ϕ′(T )) = 1 at P0, the polynomial ϕ(T ) has no multiple factors over
the residue class field of P0. Hence, by Kummer’s Theorem [24], P0 is unramified in
E. Then the sum s defined in Lemma 3.3.3 is

s = r.
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Since P∞ is totally ramified in E and F , by Abhyankar’s Lemma [24], it is totally
ramified in En for all n ≥ 0. Hence, the value r(n) defined in Lemma 3.3.3 is

r(n) = r for all n ≥ 0.

Then by using the same lemma and (3.3), we obtain that

g(En) =

(
r + 1− r + 2

2

)
[En : E] + (r + 1)(g(Fn)− 1) +

r + 2

2

=
r

2
pn + (r + 1)g(Fn)− r − 1 +

r + 2

2

=


1
2
(2rp+ 2p+ 3r + 2)pn − (r + 1)(p+ 2)p

n
2 + r+2

2
if n ≡ 0 mod 2

1
2
(2rp+ 2p+ 3r + 2)pn − Apn−1

2 + r+2
2

if n ≡ 1 mod 2.

where

A :=
1

2
(r + 1)(p2 + 3p+ 1).

Therefore,

γ(E) =
1

2
(2rp+ 2p+ 3r + 2),

and so by substituting in Eq. (3.5), we obtain that

βf (E) ≥ 2

2rp+ 2p+ 3r + 2
for f ∈ {1, r}.

Now we estimate the class numbers in both asymptotic and non-asymptotic cases. By
Theorem 1.1.5,

H(E) = 1 +
∞∑
r=1

βr(E) logl

(
lr

lr − 1

)
≥ 1 +

2

2rp+ 2p+ 3r + 2

(
logl

(
lr+1

(l − 1)(lr − 1)

))
.

By using Theorem 1.1.6, for each 0 < α < 2
2rp+2p+3r+2

, we obtain that there exists a

constant C > 0 such that for all n ≥ 0 the following holds:

h(En) > C

((
lr

lr − 1

)α
l

)g(En)

.

Case-2: Let t := q2 − 1 where q is any prime power, N ⊆ N be a finite set such that
m :=

∑
f∈N f is coprime to q. For simplicity, set l := q2. Define E := F (z) with z a

root of the polynomial

ϕ(T ) :=
∏
f∈N

gf (T )− xq
2

0 + x0 ∈ F [T ], (3.7)

where each gf (T ) is a monic and irreducible polynomail in Fq2 [T ]. We first note that
all conditions in Proposition 3.3.2 are satisfied with the set S := Supp(F) and the
place Q := P∞. We also have the following:
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(i) The extension E/Fq2(z) is an elementary abelian extension. Hence, we can easily
conclude from Eq. (3.7) that only the pole of z, say Q∞, is ramified in E/Fq2(z). Let
Q′∞ be the extension of Q∞ in E. Then

e(Q′∞|Q∞) = q2 and d(Q′∞|Q∞) = (m+ 1)(q2 − 1).

For details see [24, Proposition 3.7.10]. Now it follows from the Hurwitz Genus Formula
for the extension E/Fq2(z) that the genus of E is

g(E) =
(m− 1)(q2 − 1)

2
. (3.8)

(ii) By using Kummer’s Theorem [24], the place P0 is unramified and by Proposition
3.3.2(i), P∞ is totally ramified in E/F . Hence, the sum s defined in Lemma 3.3.3 is

s = m− 1. (3.9)

(iii) Since P∞ is totally ramified in E and F , by using Abhyankar’s Lemma [24], P∞
is totally ramified in En for all n ≥ 0. Hence, the sum r(n) defined in Lemma 3.3.3 is

r(n) = m− 1 for all n ≥ 0. (3.10)

Now by combining (3.8), (3.9),(3.10), (3.3) and applying Lemma 3.3.3, we obtain that

g(En) =

(
(m− 1)(q2 − 1) +m− 1

2

)
[En : E] +m(g(Fn)− 1) +

m− 1

2
+ 1

=
(mq2 − q2)

2
qn +m(g(Fn)− 1) +

m+ 1

2

=


1
2
(m(q2 + 2q + 2)− q2)qn −m(q + 2)q

n
2 + m+1

2
if n ≡ 0 mod 2

1
2
(m(q2 + 2q + 2)− q2)qn − m

2
(q2 + 3q + 1)q

n−1
2 + m+1

2
if n ≡ 1 mod 2.

Hence,

γ(E) =
1

2
(m(q2 + 2q + 2)− q2). (3.11)

Then by (3.4),
νf (E) ≥ t = q2 − 1 for all f ∈ N . (3.12)

Since the tower F is pure and S = Supp(F), by Theorem 2.2.1(ii),

νf (E) = q2 − 1 for all f ∈ N and P(E) = N . (3.13)

Now by combining (3.11) and (3.13), and Theorem 1.3.2(iv), we obtain that

βf (E) =
2(q2 − 1)

m(q2 + 2q + 2)− q2
for all f ∈ N .

Now by Theorem 1.1.5, in the asymptotic case, we get

H(E) = 1 +
2(q2 − 1)

m(q2 + 2q + 2)− q2
∑
f∈N

logl

(
lf

lf − 1

)
.
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By Theorem 1.1.6, for each 0 < α < 2(q2−1)
m(q2+2q+2)−q2 , there exists a constant C > 0 such

that for all n ≥ 0, we have

h(En) > C

((
lr

lr − 1

)α
l

)g(En)

.

In this case, one can obtain the exact value of the deficiency :

δ(E) = 1− 2(q2 − 1)

m(q2 + 2q + 2)− q2
∑
f∈N

f

qf − 1
,

which depends on m, q and the set N . Thus, by an appropriate choice of m, q and N ,
one can construct many different towers E/Fq2 with distinct δ.

A tower F = (Fn)n≥0 is called a tame tower if each extension Fn+1/Fn is a tame
extension.

Next, we construct some tame towers of function fields over Fq with many invariants
βr being positive and estimate the class numbers in these towers. First of all, for any
tower F = (Fn)n≥0, set

an :=
∑

P∈R(F)

∑
Q∈P(Fn)
Q|P

degQ.

Lemma 3.3.5. Let l be a prime power, q = lr with r ≥ 2, and d := q−1
l−1 . Let

F = (Fn)n≥0, with the rational function field F0 := Fq(x0), be the tower which is
recursively defined by the equation

yd = a(x+ b)d + c with a, c ∈ F ∗l , b ∈ F ∗q and abd + c = 0. (3.14)

Then the following hold:

(i) the pole (resp. the zero) of x0, say P∞ (resp. P0), splits completely (resp. is
totally ramified) in F , and

R(F) = {P ∈ P(F ) : x0(P ) = α for some α ∈ Fq}.

(ii) β1(F) = 2
q−2 .

(iii) For any n ≥ 1, the genus

g(Fn) =

(
q − 2

2

)
dn − 1

2
an + 1 with lim

n→∞

an
[Fn : F0]

= 0.

Proof. For the proof of (i), see [28, p.37, Theorem 4.1.4 and Lemma 4.2.2]. For that of
(ii) and (iii), see [28, Theorem 4.2.3].

Example 3.3.6. Consider the tower F/Fq given in Lemma 3.3.5. Let N ⊆ N be a
finite set and set m :=

∑
f∈N f . Suppose that (m, d) = 1. Let E := F (z) with z a root

of the polynomial

ϕ(T ) :=
∏
f∈N

gf (T )− 1

x0
, (3.15)
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where each gf (T ) ∈ Fq[T ] is a monic and irreducible polynomial of deg gf (T ) = f .
Suppose further that gcd(ϕ(T ), ϕ′(T )) = 1 over the residue class field k(P ) for any
place P ∈ R(F) \ {P0}, where P0 is the zero of x0.

By applying Proposition 3.3.2 with the set S := {P∞} and Q := P0, we obtain
that the sequence E := (En)n≥0 with En := EFn, is a tower over Fq with the following
properties:

(a) [E : F ] = [En : Fn] = degϕ(T ) = m for all n ≥ 0, ( observe that then E/F and
Fn/F are linearly disjoint for all n ≥ 0 ).

(b) For each f ∈ N , the place P∞ has exactly one extension Qf in E with degQf = f
and Qf splits completely in E .

Hence,
Bf (En) ≥ [En : E] = [Fn : F ] = dn for all f ∈ N. (3.16)

Next, we estimate g(En) for any n ≥ 1. For this, we will use Lemma 3.3.3. It is clear
that g(E) = 0. Let P ∈ R(F ) \ {P0}. By assumption (ϕ(T ), ϕ′(T )) = 1 at P , and so
ϕ(T ) has no multiple factors at P . Thus, by Kummer’s Theorem [24], P is unramified
in E. Now using Abhyankar’s Lemma, we obtain that the numbers s and r(n) defined
in Lemma 3.3.3 are as follows:

s = r(n) = m− 1 for all n ≥ 1.

Then Lemma 3.3.5(iii) and Lemma 3.3.3 yield that

g(En) =

(
mq −m− 1

2

)
dn − m

2
an +

m+ 1

2
with lim

n→∞

an
[En : E]

= 0.

By combining this with Eq. (3.16), we obtain that

βf (E) ≥ 2

mq −m− 1
for all f ∈ N .

Moreover, it follows from Lemma 3.3.5(ii) and Theorem 2.2.1(ii) that if 1 ∈ N , then

β1(E) =
2

mq −m− 1
.

Lemma 3.3.7. [10, Theorem 3.11] Let q = lr with r ≥ 1 and l > 2 a power of the
characteristic of Fq. Assume that

r ≡ 0 mod 2 or l ≡ 0 mod 2.

Then the equation
yl−1 = −(x+ b)l−1 + 1, with b ∈ F∗l , (3.17)

defines a recursive tower F = (Fn)n≥0 over Fq with the following properties:

(i) letting F = F0 := Fq(x0) the rational function field, we have that

R(F) ⊆
{
P ∈ P(F0) : x0(P ) = α for some α ∈ Fl

}
.

(ii) The pole (resp. the zero) of x0, say P∞ (resp. P0), splits completely (resp. is
totally ramified) in F .
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(iii) The genus of F satisfies the inequality

γ(F) ≤ l − 2

2
.

(iv) β1(F) ≥ 2
l−2 .

Theorem 3.3.8. Let F be the tower given in Lemma 3.3.7. Then γ(F) = l−2
2

. More-
over, when r = 1, i.e., l is a power of 2, one has

β1(F) =
2

l − 2
.

We prove Theorem 3.3.8 via the Lemmas 3.3.9, 3.3.10, 3.3.11, 3.3.13 and Proposition
3.3.12. From now on, unless otherwise stated, F will be the tower defined in Lemma
3.3.7. Additionally, the numbers on the figures denote the corresponding ramification
indices. First, by using Eq. (3.17) and Kummer’s Theorem, we have the following
ramification structure in F1/F and F1/Fq(x1):

(1) Any place (x0 = α), with α ∈ Fl \ {−b} is totally ramified in F1. Let Pα ∈ P(F1)
lying above (x0 = α), then x1(Pα) = 0.

(2) The place (x0 = −b) splits completely in F1. Let P ∈ P(F1) be a place lying
above (x0 = −b), then x1(P ) = α for some α ∈ F∗l .

To sum up we have the following:

1l−1 l−11

α ∈ Fl \ {−b}, (x0 = α) (x1 = 0) (x0 = −b) (x1 = α), α ∈ F∗l

Figure 3.1:

Lemma 3.3.9. Let S := {P ∈ P(F ) : x0(P ) = α for some α ∈ Fl \ {−b}}.

(i) All P ∈ S are totally ramified in F .

(ii) R(F) = S ∪ {(x0 = −b)}.

Proof. For simplicity, let f(x) := −(x + b)l−1 + 1. Then for any n ≥ 0, we have
Fn+1 = Fn(xn+1) with

xl−1n+1 = f(xn). (3.18)

Note that
f(α) = 0 if and only if α ∈ Fl \ {−b}.

(i) Let P ∈ S. By Eq. (3.18), and Kummer’s Extension Theorem [24], P is totally
ramified in F1. Moreover, for any Q ∈ P(F1) lying above P , we have x1(Q) = 0 and
(x1 = 0) splits in F1. Then by Eq. (3.18), obviously for any Qn ∈ P(Fn), n ≥ 1, Qn|P ,
we have xn(Qn) = 0. Hence, by using Abhyankar’s lemma [24] in Figure 3.2, we obtain
that P is totally ramified in Fn for all n ≥ 1.
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l−1

l−1 1 1

l−1 1 1l−1 1

l−1

(x0 = α) (x1 = 0) (x2 = 0) . . . (xn = 0) (xn+1 = 0)

Figure 3.2:

(ii) By (i), S ⊆ R(F). Thus, all we need to do is to check the ramification behaviour
of the place (x0 = −b) ∈ P(F ) in F . By (2), (x0 = −b) splits completely in F1. Let
Q ∈ P(F3) lying above (x0 = −b). Then by using Figure 3.1, we have either

(a) x1(Q) ∈ F∗l \ {−b} and x2(Q) = 0 or

(b) x1(Q) = −b and x2(Q) ∈ F∗l .

W.l.o.g., suppose that (a) holds. Then by drawing a figure and using Abhyankar’s
Lemma, one can easily see that e(Q|(x0 = −b)) = l − 1, and so the place (x0 = −b) is
ramified in F3. Thus, (x0 = −b) ∈ R(F).

Lemma 3.3.10. Let P := (x0 = −b). Then there exists k ≥ 1 such that P has an
extension Pk ∈ P(Fk) with xk(Pk) ∈ F∗l and the following hold:

(i) if xk(Pk) = −b, then Pk splits in Fk+1.

(ii) If xk(Pk) = α for some α ∈ F∗l \{−b}, then P is unramified in Fn for all n < 2k+1
and ramified in Fn for all n ≥ 2k + 1. Now suppose that Pn ∈ P(Fn) is a place
lying over P and Pk. Then for n ≥ 2k + 1, we have

e(Pn|P ) = (l − 1)n−2k.

Proof. The existence of k is clear by Figure 3.1. (i) By using Eq. 3.18, P splits
completely in Fl(xk, xk+1), and so by Lemma 2.1.1, Pk splits completely in Fk+1, (see
Figure 3.3).
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1

Pk
1

(xk = −b)

Figure 3.3:

(ii) By using Eq. (3.18), we have the following:

xi(Pk) = −b for all i < k and

xi(Pk) = 0 for all i > k.

Moreover, for any i ≥ 1, the following hold:

(a) (xi = −b) splits completely in Fl(xi, xi+1) and is totally ramified in Fl(xi−1, xi).

(b) (xi = α), with α ∈ F∗l \ {−b}, is totally ramified in both Fl(xi, xi+1) and
Fl(xi−1, xi).

(c) (xi = 0) splits completely in Fl(xi−1, xi) and totally ramified in Fl(xi, xi+1).

By using (a), (b), (c), and Abhyankar’s Lemma, we obtain the following figure, from
which (ii) follows:
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l−1 1

1 1 l−1

l−1
l−1

1 l−1

1

1 l−1 1 1 1 1

1 l−1 1 l−1
l−1

1 1 l−1 1 l−1

(x0 = −b) (x1 = −b) (xk−1 = −b) (xk = α) (xk+1 = 0) (x2k−1 = 0) (x2k = 0). . .(x2k+1 = 0)

Figure 3.4:

Lemma 3.3.11. For any k ≥ 1, set Rk := {Pk ∈ P(Fk) : xk(Pk) = α for some α ∈ F∗l \ {−b}}.

(i) (xk = α), with α ∈ F∗l \ {−b} is totally ramified in Fk for all k ≥ 0.

(ii) #Rk = l − 2 and degPk = 1 for all k ≥ 0.

(iii)
∑

Q∈P(Fn)
Q|Pk
Pk∈Rk

degQ =

(l − 1)n−k if n < 2k + 1

(l − 1)k if n ≥ 2k + 1.

Proof. Assertion (i) is clear from Figure 3.4. Assertion (ii) follows from (i).
(iii) Let Pk ∈ P(Fk) with xk(Pk) = α for some α ∈ F∗l \ {−b}. Then

xi(Q) = −b for all i < k and

xi(Q) = 0 for all i > k.

From Figure 3.4 we have the following:

(a) By (ii), degPk = 1.

(b) For all k ≤ i ≤ 2k, the place Pk is unramified in Fi, and hence∑
R∈P(Fi)
R|Pk

degR = [Fn : Fk] = (l − 1)n−k.
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(c) Let R ∈ P(F2k) lying above Pk. Then R is totally ramified in Fn for all n ≥ 2k+1,
i.e., R has only one extension Q ∈ P(Fn) and degQ = degR. Therefore, by using
(b), for any n ≥ 2k + 1, we have∑

Q∈P(Fn)
Q|Pk

degQ =
∑

R∈P(F2k)
R|Pk

degR = [F2k : Fk] = (l − 1)k. (3.19)

Proposition 3.3.12.

g(Fn) =


(
l−2
2

)
(l − 1)n − l

2
(l − 1)n/2 + 1 if n ≡ 0 mod 2(

l−2
2

)
(l − 1)n − (l − 1)(n+1)/2 + 1 if n ≡ 1 mod 2.

Proof. Let Q be a place of Fn. By using Lemmas 3.3.9, 3.3.10, and 3.3.11, we obtain
that for any n ≥ 1, the degree of the diferent of Fn/F0 is as follows:

deg Diff(Fn/F0) =
∑

x0(Q)=α
α∈Fl\{−b}

d(Q|(x0 = α) +

bn−1
2 c∑

k=1

#Rk

∑
Q|Pk
Pk∈Rk

degQ · d(Q|(x0 = −b))

= (l − 1)((l − 1)n − 1) + (l − 2)

bn−1
2 c∑

k=1

∑
Q|Pk
Pk∈Rk

degQ · d(Q|(x0 = −b))

= (l − 1)n+1 − (l − 1) + (l − 2)

bn−1
2 c∑

k=1

(l − 1)k
[
(l − 1)n−2k − 1

]

= (l − 1)n+1 − (l − 1) + (l − 2)

bn−1
2 c∑

k=1

[
(l − 1)n−k − (l − 1)k

]

= (l − 1)n+1 − (l − 1) + (l − 2)(l − 1)n
bn−1

2 c−1∑
k=0

1

(l − 1)k+1

− (l − 2)

bn−1
2 c−1∑
k=0

(l − 1)k+1

= (l − 1)n+1 − (l − 1) + (l − 2)(l − 1)n−1
(

1

(l − 1)b
n−1
2 c
− 1

)(
l − 1

2− l

)

− (l − 2)(l − 1)

(
(l − 1)b

n−1
2 c − 1

l − 2

)
= l(l − 1)n − (l − 1)n−b

n−1
2 c − (l − 1)b

n−1
2 c+1

=

l(l − 1)n − l(l − 1)n/2 if n ≡ 0 mod 2

l(l − 1)n − 2(l − 1)(n+1)/2 if n ≡ 1 mod 2 .
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Now by using the Hurwitz Genus Formula for the extension Fn/F0, the desired result
follows:

2g(Fn)− 2 = (l − 1)n(2g(F )− 2) + deg Diff(Fn/F0)

=

(l − 2)(l − 1)n − l(l − 1)n/2 if n ≡ 0 mod 2

(l − 2)(l − 1)n − 2(l − 1)(n+1)/2 if n ≡ 1 mod 2.

Lemma 3.3.13. Suppose that q := l = 2e for some e > 1. Then

(l − 1)n + 2(l − 1) ≤ B1(Fn) ≤ (l − 1)n + 2(l − 1) + An,

where

An :=

l(l − 1)n/2 − l if n ≡ 0 mod 2

2(l − 1)(n+1)/2 − l if n ≡ 1 mod 2.

Proof. We have

B1(Fn) =
∑

Q∈P(Fn)
x0(Q)∈Fl\{−b}

1 +
∑

Q∈P(Fn)
xn(Q)=−b

1 +
∑

Q∈P(Fn)
x0(Q)=∞

1 +
∑

Q∈P(Fn)
Q|Pk
Pk∈Rk

1. (3.20)

By Lemmas 3.3.9, 3.3.10 and 3.3.11, and Lemma 3.3.7(ii), for any n, k ≥ 1 with n ≥ k,
we have ∑

Q∈P(Fn)
x0(Q)∈Fl\{−b}

1 = l − 1,
∑

Q∈P(Fn)
xn(Q)=−b

= l − 1,
∑

Q∈P(Fn)
x0(Q)=∞

= (l − 1)n, and

∑
Q∈P(Fn)
Q|Pk
Pk∈Rk

1 ≤

(l − 1)n−k if n < 2k + 1

(l − 1)k if n ≥ 2k + 1 .
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Hence,

n∑
k=1

∑
Q∈P(Fn)
Q|Pk
Pk∈Rk

1 ≤
bn−1

2 c∑
k=1

#Rk

∑
Q∈P(Fn)
Q|Pk
Pk∈Rk

1 +
n∑

k=bn−1
2 c+1

#Rk

∑
Q∈P(Fn)
Q|Pk
Pk∈Rk

1

= (l − 2)

bn−1
2 c−1∑
k=0

(l − 1)k+1 + (l − 2)(l − 1)n
n∑

k=bn−1
2 c+1

1

(l − 1)k

= (l − 2)(l − 1)

[
(l − 1)b

n−1
2 c − 1

l − 2

]
+ (l − 2)(l − 1)n

[
1

(l − 1)n+1
− 1

(l − 1)b
n−1
2 c+1

](
l − 1

2− l

)
= (l − 1)

[
(l − 1)b

n−1
2 c − 1

]
− (l − 1)n+1

[
1

(l − 1)n+1
− 1

(l − 1)b
n−1
2 c+1

]
= (l − 1)b

n−1
2 c+1 − (l − 1)− 1 + (l − 1)n−b

n−1
2 c

= (l − 1)b
n−1
2 c+1 + (l − 1)n−b

n−1
2 c − l.

Now by substituting each value for the sums involved in Eq.(3.20), the lemma follows.

Proof of Theorem 3.3.8. The proof follows from Proposition 3.3.12 and Lemma 3.3.13.

Example 3.3.14. Consider the tower F over Fq defined in Lemma 3.3.7 with q = 22.
Let E := F (z) with z a root of the polynomial

ϕ(T ) = (T 4 − T )(T 2 + µT + µ)− 1

x0
∈ F [T ],

where µ is a primitive element for F4. By applying Proposition 3.3.2 with the set
S := {P∞} and Q := P0, we obtain that the sequence E = (En)n≥0 with En := EFn is
a tower over Fq such that [En : Fn] = degϕ(T ) = 6 for all n ≥ 0. We want to compute
the invariants β1(E) and β2(E).

It follows from Kummer’s Theorem [24] and Proposition 3.3.2 that the ramification
structure in E/F is as follows:

(a) P0 is totally ramified.

(b) Since (ϕ(T ), ϕ′(T )) = 1 at the places Pµ := (x0 = µ) and Pµ2 := (x0 = µ2), these
places are unramified in E.

(c) P1 := (x0 = 1) has exactly one extension which has degree 2 and ramification
index 3 (by using Magma).

(d) P∞ has 4 rational extensions and one extension of degree 2.

Therefore, by Proposition 3.3.2,

B1(En) ≥ 4 · [En : E] = 4 · 3n and B2(En) ≥ 3n for all n ≥ 0. (3.21)
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Next, we want to find γ(E). In order to estimate g(En), we apply Lemma 3.3.3. It is
clear that g(E) = 0. By applying Hurwitz Genus Formula for the extension E/F , we
have

deg Diff(E/F0) = 10. (3.22)

Let Q ∈ P(E). Then by Dedekind’s Different Formula [24], we have that

(i) if Q|P1, then d(Q|P1) = e(Q|P1)− 1 = 2.

(ii) If Q|P0, then d(Q|P0) > e(Q|P0) − 1 = 5. Moreover, by (i), (c), and (3.22), we
have that 6 ≥ d(Q|P0). Hence, d(Q|P0) = 6.

Thus, by using (b), (i), and (ii), we obtain that the number s defined in Lemma 3.3.3
is

s = 6 + 2 · 2 = 10 (3.23)

Next, we need to find r(n) defined in Lemma 3.3.3. By Abhyankar’s Lemma [24] and
Lemma 3.3.7(ii), the following hold:

(1) first let Q ∈ P(E) lying above P0. Since P0 is totally ramified in Fn, it has only
one extension, say Pn, in Fn. By Abhyankar’s Lemma, e(Qn|Pn) = 2, where
Qn ∈ P(En) lies over Q.

(2) By (c), P1 has only one extension, say P ′1, in E with degP ′1 = 2 and e(P ′1|P1) = 3,
and so Abhyankar’s Lemma gives that any extension of P1 in Fn is unramified in
En.

(3) Since any P ∈ P(F ) \ {P0, P1} is unramified in E, by Abhyankar’s Lemma their
extensions in Fn are unramified in En.

Hence, by (1), (2) and (3), for any n ≥ 0, we have

r(n) = e(Qn|Pn)− 1 = 1. (3.24)

Now by applying by Lemma 3.3.3, (3.23), and (3.24), we obtain that for all n ≥ 1,

g(En) = 6g(Fn)− 9

2
. (3.25)

Now using Proposition 3.3.12 yields that

γ(E) = 6. (3.26)

Then by combining (3.21) and (3.26), and since F/F4 is maximal with β1(F) = 1, by
applying Theorem 2.2.1(ii), we get that

β1(E) =
2

3
and β2(E) =

1

6
.

Remark 3.3.15. In Example 3.3.14, the deficiency is

δ(E/F4) = 1−
∞∑
r=1

rβr(E)

qr/2 − 1
=

2

9
≈ 0.22.

Until now, the tower E/F4 has the smallest δ value among the towers of function
fields having at least two positive invariants βr. Moreover, in comparision with the
generalized Drinfeld-Vladut bound of order one (resp. two), one has the following:

1− β1(E) =
1

3
≈ 0.33, (resp.

1

2
− β2(E) =

1

3
≈ 0.33).
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Example 3.3.16. Consider the tower F over Fq given in Lemma 3.3.7 with l := 3 and
r := 2, i.e., q = 32, and then d = 4. Let E := F (z) with z a root of the polynomial

ϕ(T ) := (T 2 + µ7)(T 9 − T )− 1

x0
∈ F [T ],

where µ is a primitive element for F9. We apply Proposition 3.3.2 with the place
Q := P0 and S := {P∞}. We obtain that the sequence E = (EFn)n≥0 is a tower over
F9 and the following hold:

(i) P0 is totally ramified in E.

(ii) P∞ has 9 rational extensions and one extension of degree 2 in E.

(iii) Since P∞ splits completely in F , its all extensions in E splits completely in E .

Note that F/F9 is maximal with
β1(F ) = 2.

Hence, F/F9 is pure, and so it follows from (iii) and Theorem 2.2.1(ii) that

ν1(E) = 9 and ν2(E) = 1. (3.27)

Next, we want to compute the genus g(En). For this, we will apply Lemma 3.3.3. We
know that from Lemma 3.3.9 that

R(F) = {P ∈ P(F ) : x0(P ) = α for some α ∈ F3}.

One can easily check that (ϕ(T ), ϕ′(T )) = 1 at the places P ∈ P(F ) with x0(P ) = α
for some α ∈ F∗3. Hence, ϕ(T ) has no multiple factor over the residue class field of
these places. Then it follows from Kummer’s Theorem that these places are unramified
in E. Now by applying Lemma 3.3.3, and using assertion (i), since E/F is tame, we
obtain that

s = d(Q0|P0) = e(Q0|P0)− 1 = 10 where Q0 is the extension of P0 in E. (3.28)

By using Abhyankar’s Lemma, we have that all Pn ∈ P(Fn) with Pn ∩ F ∈ {P ∈
P(F ) : x0(P ) ∈ F∗3} are unramified in En. Moreover, since P0 is totally ramified in
both extensions E and Fn, again by Abhyankar’s Lemma, we have that any extension
of P0 in Fn is totally ramified in En. Hence, by Lemma 3.3.3,

r(n) = 10 for all n ≥ 1. (3.29)

Now by applying Lemma 3.3.3, (3.28), (3.29), and Proposition 3.3.12, we obtain that

g(En) =

21 · 2n−1 − 33 · 2(n−2)/2 + 6 if n ≡ 0 mod 2

21 · 2n−1 − 11 · 2(n+1)/2 + 6 if n ≡ 1 mod 2.

Hence,

γ(E) =
21

2
. (3.30)

Then by combining (3.27) and (3.30), we get that

β1(E) =
6

7
and β2(E) =

2

21
.
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Note that as F is pure, by Theorem 2.2.1(ii),

P(E) = {1, 2}.

Then the deficiency is given by

δ(E) =
23

42
≈ 0.54.

Moreover, in comparision with the generalized Drinfeld-Vladut bound of order one
(resp. two), one has the following:

2− β1(E) =
8

7
≈ 1.1 (resp. 1− β2(E) =

2

21
≈ 0.9).
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4

Further Remarks

4.1 Constant field extensions of asymptotically exact sequences of func-

tion fields

We first recall that all towers are asymptotically exact sequences, but the converse
is not always true.

Lemma 4.1.1. Let S = (Fn)n≥0 be an exact sequence of function fields over Fq such
that βr(S) > 0 for some r ≥ 1. Then the constant field extension S · Fqr of S has

β1(S · Fqr) ≥ rβr(S).

Proof. Since FnFqr is a constant field extension of Fn/Fq, we have that

B1(FnFqr) =
∑
i|r

iBi(Fn) and g(FnFqr) = g(Fn). (4.1)

Hence,

β1(S · Fqr) = lim
n→∞

B1(FnFqr)
g(FnFqr)

= lim
n→∞

1

g(Fn)

∑
i|r

iBi(Fn)


≥ lim

n→∞

rBr(Fn)

g(Fn)
= rβr(S).

We note here that if an asymptotically exact sequence S/Fq of function fields attains
the Drinfeld-Vladut bound of order d for some d ≥ 1, i.e., βd(S) = (qd/2 − 1)/d, then
by using (4.1), for any r ≥ 1 we obtain that

βr(S) =

q
d/2 − 1 if d | r

0 else.

(4.2)

By using Lemma 4.1.1, for any integer r ≥ 1 and prime power q, the following conse-
quence is immediate:

Corollary 4.1.2. A(qr) ≥ rAr(q).
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This fact might be well-known, but we could not find any reference in the literature.

Remark 4.1.3. One can easily conclude from Lemma 4.1.1 that if for some r ≥ 1 an
exact sequence S/Fq attains the Drinfeld-Vladut bound of order r, then the sequence
S ·Fqr/Fqr attains the classical Drinfeld-Vladut bound, i.e., of order one. Furthermore,
in that case we have

qr/2 − 1 ≥ A(qr) ≥ β1(SFqr) ≥ rβr(S) = rAr(q) = r

(
qr/2 − 1

r

)
= qr/2 − 1,

which implies that
A(qr) = rAr(q) = qr/2 − 1. (4.3)

Theorem 4.1.4. Let S = (Fn)n≥0 be a sequence of function fields over a finite field
Fq and Sr := S ·Fqr = (FnFqr)n≥0 be the constant field extension of S, for some r ≥ 1.
Then

βr(S) =
qr/2 − 1

r
if and only if β1(Sr) = qr/2 − 1.

For the proof of Theorem 4.1.4, we need the following results.

Lemma 4.1.5. [5, Lemma IV.3] Let S = (Fn)n≥0 be a sequence of function fields over
Fq. If for some m ≥ 1, one has

lim inf
n→∞

1

g(Fn)

m∑
i=1

iBi(Fn)

qm/2 − 1
≥ 1,

then

lim
n→∞

mBm(Fn)

g(Fn)
= qm/2 − 1.

Theorem 4.1.6. [1, Theorem 2.2] Let r ∈ N and S = (Fn)n≥0 be a sequence of function

fields over Fq such that βr(S) = qr/2−1
r

. Then the sequence S/Fq is asymptotically exact.

Proof of Theorem 4.1.4. First, suppose that βr(S) = qr/2−1
r

. Then by Theorem 4.1.6,

the sequence S/Fq is asymptotically exact. Hence, by Remark 4.1.3, β1(Sr) = qr/2− 1.
Next, suppose that β1(Sr) = qr/2 − 1. Then by using (4.1), we obtain that

1 = lim
k→∞

B1(FkFqr)
gk(qr/2 − 1)

= lim
k→∞

1

gk

∑
i|r

iBi(Fk)

qr/2 − 1
≤ lim inf

k→∞

1

gk

r∑
i=1

iBi(Fk)

qr/2 − 1
.

Now it follows from Lemma 4.1.5 that

βr(S) =
qr/2 − 1

r
.

By Remark 4.1.3 and Example 3.2.2, the following corollary follows:

Corollary 4.1.7. For any square prime power qr, one has

A(qr) = rAr(q),

hence Ar(q) = 1
r
(qr/2 − 1).
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Remark 4.1.8. When qr is not a square, it is not known whether there are any

sequences of function fields S over Fq with βr(S) = qr/2−1
r

, i.e., attaining the Drinfeld-
Vladut bound of order r.

By [23, p.31, Theorem 8], one has the following:

Lemma 4.1.9. Let S = (Fn)n≥0 be a sequence of function fields over Fq such that each
extension Fn/F0 is an abelian extension. Then β1(S) = 0.

One can generalize Lemma 4.1.9 as follows:

Theorem 4.1.10. Let S = (Fn)n≥0 be an exact sequence of function fields over Fq
such that each extension Fn/F0 is an abelian extension. Then βr(F) = 0 for all r ≥ 1.

Proof of Theorem 4.1.10. It is obvious that the extension FnFqr/F0Fqr is also an abelian
extension. Hence, by Lemma 4.1.9, the sequence S · Fqr has β1(S · Fqr) = 0. Then the
desired result follows from Lemma 4.1.1.

Lemma 4.1.11. Let F = (Fk)k≥0 be a tower over a finite field Fq and E := F · Fqr be
the constant field extension of F , for some r ≥ 1. Set

S := {P ∈ P(F0)| degP = r, all extensions of P in E splits completely in E} .

Then

βr(F) ≥ #S

γ(F)
and γ(F) = γ(E).

Proof. Since F0Fqr/F0 is a constant field extension of degree r, any place P ∈ P(F0) of
degree r splits completely in F0Fqr , and so the lemma is clear.

Example 4.1.12. Let q := l3 for some prime power l. Consider the towerH = (Hk)k≥0
which is recursively defined by the equation

(yl − y)l−1 + 1 =
−xl(l−1)

(xl−1 − 1)l−1
.

This tower is investigated in [3]. Let H0 := Fq(y0) be the rational function field.
By [3, Theorems 2.2, 3.4 and 6.5], the following hold:

• [H1 : H0] = l(l − 1) and [Hk : Hk−1] = l for all k ≥ 2.

• For all k ≥ 0, the genus g(Fk) ≤ lk(l3+l2−2l)
2

, and γ(H) ≤ l2+2l
2

.

• The set Split(H) of places of H0/Fq which split completely in H satisfies

Split(H) ⊇ {(y0 = α)|α ∈ Fl3 \ Fl} .

Moreover, by [3, Theorem 2.2], H is a tower over every constant field K ⊇ Fl. Let
F = (Fk)k≥0 be the tower over Fl such that H = F · Fq. To estimate β3(F), we first
compute the number of degree 3 places of F0/Fl, then we apply Lemma 4.1.11. It is
clear that any degree 3 place P ∈ P(F0) splits completely in H0 and its extensions are
in the set Split(H/H0). Now since

B1(H0) = B1(F0) + 3 ·B3(F0),

we have B3(F0) = l3−l
3

, and so

β3(F) ≥ B3(F0)

γ(F)
≥ 2(l3 − l)

3(l2 + 2l)
.
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