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Abstract

Phylogenies or evolutionary trees for a given family of species show the evolutionary

relationships between these species. The leaves denote the given species, the internal

nodes denote their common ancestors and the edges denote the genetic relationships.

Species can be identified by their whole genomes and the evolutionary relations between

species can be measured by the number of rearrangement events (i.e. mutations) that

transform one genome into another. One approach to infer phylogeny from genomic data

is by solving median genome problems for three genomes, or the genome rearrangement

problem for pairs of genomes, while trying to minimize the total evolutionary distance

among the given species.

In this thesis, we have developed and implemented two search based algorithms

for phylogeny reconstruction problem based on solving median genome problems for

circular genomes of the same length without gene duplication.

In order to show applicability and effectiveness of our algorithms, we have tested

them with randomly generated instances and two real data sets: mitochondrial genomes

of Metazoa and chloroplast genomes of Campanulaceae.
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Özet

Verilen bir tür ailesi için oluşturulan filojeniler veya evrim ağaçları bu türler

arasındaki evrimsel ilişkileri gösterir. Ağacın yaprakları verilen türleri, ara düğümleri

ortak ataları ve ayrıtları da genetik ilişkileri belirtir. Türler genom bilgileriyle tanımlanabilir

ve türler arasındaki evrimsel ilişkiler bir genomu diğerine dönüştüren genom yeniden

düzenleme olayları (mesela mutasyonlar) ile ölçülebilir. Genom verisinden filojeni çıkarımı

yapmak için kullanılan yaklaşımlardan biri, türler arasındaki toplam evrimsel mesafeyi

en aza indirgemeye çalışırken genom üçlüleri için ortanca genom problemi çözmek veya

genom çiftleri için genom yeniden düzenleme problemi çözmektir. Bu tezde, yeniden

filojeni kurma problemini çözmek amacıyla, gen tekrarı içermeyen aynı uzunluktaki

dairesel genomlar için ortanca genom problemi çözümüne dayanan iki tane arama ta-

banlı algoritma geliştirdik ve gerçekledik. Algoritmalarımızın uygulanabilir ve etkili

olduğunu gösterebilmek adına rastgele üretilmiş örnekler ve Metazoa’ya ait türlerin

mitokondri genomlarını ve Campanulaceae ailesine ait türlerin kloroplast genomlarını

içeren iki gerçek veri kümesiyle algoritmalarımızı sınadık.
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Chapter 1

Introduction

We present applications of heuristic search from Artificial Intelligence to three well-

studied problems in computational biology:

• Genome Rearrangement Problem: Given two genomes, i.e., sequences of

genes, find the minimum number of rearrangement events (e.g., inversions, trans-

positions) that transform one genome to another.

• Median Genome Problem: Given three genomes, find a genome such that the

total number of rearrangement events that transform each given genome to this

genome is minimum.

• Phylogeny Reconstruction Problem: Given n genomes, find an unrooted full

binary tree, whose leaves correspond to the given genomes and internal nodes cor-

respond to their common ancestors, such that the total number of rearrangement

events that transform the given genomes to their children is minimum.

These problems are important in understanding the evolutionary relations between

species.For instance,, the phylogenetic relationship between the pathogens from individ-

uals in an epidemic contribute valuable epidemiological information about transmission

chains and epidemiologically significant events [42, 33].

A computational problem is defined as a search problem over a search space, which

can be viewed as a directed graph whose vertices correspond to search states and the

edges denote transitions, with an initial state and a goal. The aim is to find a path from

the initial state to a goal state; the path characterizes a solution to the given problem.

Heuristic search provides strategies for finding this path, utilizing a heuristic function.

The contributions of this thesis can be summarized as follows:
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• We modeled the computational biology problems described above as search prob-

lems.

• We introduced algorithms to solve these problems, using the existing heuristic

search strategies (i.e., A∗ search, IDA∗ search, greedy best-first search) from

artificial intelligence and heuristics from computational biology.

• We studied their optimality and computational complexity.

• We implemented the algorithms and tested them with artificial and real data sets.

Rest of this thesis is organized as follows: A brief introduction to search problems

and widely-used search strategies are presented in Chapter 2. We give a formal defini-

tion of the genome rearrangement problem in Chapter 3. This chapter also explains our

model for the genome rearrangement problem and the algorithm based on A∗ search

strategy to solve it. The median genome problem, our search model and the algorithm

based on greedy best-first search strategy is presented in Chapter 4. In Chapter 5, our

studies on the phylogeny reconstruction problem is presented. In this chapter, two al-

gorithms based on greedy best-first search strategy are introduced and their properties

are studied. We conclude this chapter with presenting results of these algorithms on

two real data sets: chloroplast genomes of Campanulaceae and mitochondrial genomes

of Metazoan families. We conclude with a brief summary of our contributions and

remarks on future work in Chapter 6.
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Chapter 2

Heuristic Search

A search problem is a computational problem where the goal is to find a solution in a

solutions space (a set of possible solutions). The solution space is sometimes called a

search or state space and its elements are called the states. During the search, moving

from a state to another is possible by some actions.

The input of a search problem (over a search space S) consists of the following:

• Initial State: An element of S from where the search starts.

• Goal Test: A function from S to {true, false} which decides whether a given

state satisfies properties of goal state or not.

• Successor Function: A function succ : S → P(S) that returns the set of

possible states that can be reached from a given state where P(S) is the power

set of S i.e., set of all possible subsets of S.

• Step Cost Function: A function c : S × S → N that determines the cost of

moving from one state to another. We assume that step cost function is nonneg-

ative.

The output of a search problem is a sequence of states leading from the initial state

to a goal state. Quality of the solution can be determined by the total cost of the edges

in the path. An optimal solution is a solution with the lowest total edge cost.

Most of the search algorithms build a “search tree”, starting from the initial state.

Search tree contains nodes which are constructed from the states of the problem. New

nodes are generated by applying the successor function succ to corresponding states of

nodes. After new nodes are generated, the algorithm chooses one of them to continue
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search, unless the chosen node does not contain a goal state. A generic search algorithm

is presented in Algorithm 11.

Algorithm 1 TreeSearch

Input: initial state init, successor function succ, goal test function GoalTest, Step
cost function c

Output: A solution or failure
1:

2: fringe ← ∅ //Leaves of the search tree ordered using c
3: Make a node from init and insert it to fringe
4: while true do
5: if fringe is empty then
6: return failure
7: end if
8: node← first element of fringe
9: if GoalTest(node) succeeds then
10: return solution
11: end if
12: for Each state s in succ(corr. state of n) do
13: Make a node for s and insert it to fringe
14: end for
15: end while

We evaluate a search algorithm’s performance according to four criterion:

• Completeness: If a solution exists, then can algorithm find it?

• Optimality: Is the solution found by algorithm optimal?

• Time Complexity: What is the asymptotical complexity of the number of steps

required to find a solution?

• Space Complexity: What is the maximum amount of memory used during

search?

The performance of an algorithm can be measured with respect to different factors

like:

• Branching factor: The maximum number of nodes generated at any state

• Depth of the shallowest goal node where depth of a node is the length of the path

from the initial node to this node

1Algorithm is adapted from Section 3.4. of [59]
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• The length of the maximum-length path in the search tree

• The minimum value of c for states in state space

• The total cost of an optimal solution

Heuristic search utilizes a heuristic function to determine the next state to explore

in the search tree. A∗ search is one of the most popular heuristic search strategies.

Consider the TreeSearch algorithm depicted in Algorithm 1. An A∗ search algorithm

is a variation of this algorithm: It evaluates nodes in the fringe with respect to a function

f from set of nodes in the search tree to N. An A∗ search picks a node in the fringe

with minimum f value as the current node. For a node n, f(n) is defined in terms of

two functions: a cost function g(n) that returns the total cost of the path from the

initial node to n, and a heuristic function h(n) that estimates the total cost of the path

from n to a goal node. Then,

f(n) = g(n) + h(n).

Intuitively, f(n) estimates the total cost of a solution that passes through n.

Before explaining properties of A∗ search, we present a similar heuristic search strat-

egy called Greedy Best-First Search (GBFS). GBFS expands a node that is predicted

to be the closest to a goal node considering only heuristic function h. More formally,

GBFS expands nodes according to evaluation function f = h.

An A∗ search is both complete and optimal if the heuristic function h satisfies some

properties. For every node n in the search tree, if h(n) never overestimates the cost

to reach a goal state, i.e., the total cost of every path from n to a goal state is not

less than h(n), then h is an admissible heuristic. If h is admissible, then the A∗ search

algorithm is optimal.

For every node n and every successor n′ of n, if

h(n) ≤ c(n, n′) + h(n′),

then h is called consistent (or monotone). Every monotone heuristic is admissible.

Therefore, an A∗ search algorithm with a monotone heuristic always finds optimal

solutions.

The time and space complexity of an A∗ search algorithm depends on the heuristic

function h. Let h∗(n) denote the minimum actual total cost of getting from a node n
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to a goal state. If for every node n in the search tree

|h(n)− h∗(n)| ≤ O(log h∗(n)),

then the time complexity of the A∗ search is polynomial ([59]). However, almost for

all heuristics, the difference between the actual cost and the heuristic estimate is pro-

portional to the path cost. Consequently, the time complexity of the algorithm grows

exponentially. In order to keep track of the paths from the initial node, the A∗ needs

to store all generated states. Therefore, the space complexity of A∗ search is also

exponential.

Iterative-Deepening A∗ (IDA∗) search is an iterative application of A∗ search.

The idea is to generate states whose f value are above a threshold flimit. An IDA∗

algorithm is shown in Algorithm 2 and 3.

Algorithm 2 IDA∗

Input: initial state init, successor function succ, goal test function GoalTest, Step
cost function c

Output: a solution or failure
1: for flimit← 0 to ∞ do
2: result← DepthLimitedA∗(init,succ,GoalTest,c,flimit)
3: if result 6= failure then
4: return result
5: end if
6: end for

A summary of A∗ and IDA∗ search algorithms in comparison with Breadth-First

Search (BFS) and Depth-First Search (DFS) algorithms are presented in Table 2.12.

Table 2.1: Evaluation of search strategies: b is the branching factor, d is the depth
of the shallowest solution, m is the maximum depth of search tree, k is the optimal
solution cost and e is the minimum edge cost. A∗ and IDA∗ search algorithms are
assumed to have monotone h functions. Superscripts denote: a if b is finite, b it step
costs are identical.

Criterion BFS DFS A∗ IDA∗

Completeness Yesa No Yes Yes
Optimality Yesb No Yes Yes

Time Comp. O(bd+1) O(bm) O(bk/e) O(bk/e)
Space Comp. O(bd+1) O(bm) O(bk/e) O(k)

2The table is adapted from Section 3.4. of [59]
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Algorithm 3 DepthLimitedA∗

Input: initial state init, successor function succ, goal test function GoalTest, Step
cost function c, flimit

Output: A solution or failure
1:

2: fringe ← ∅ //Leaves of the search tree ordered using c
3: Make a node from init and insert it to fringe
4: while true do
5: if fringe is empty then
6: return failure
7: end if
8: node← the lowest f -valued element of fringe
9: if GoalTest(node) succeeds then
10: return solution
11: end if
12: for each state s in succ(corr. state of n) do
13: If f(node) ≤ flimit, make a node for s and insert it to fringe
14: end for
15: end while
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Chapter 3

Genome Rearrangement Problem

Genetic information is transferred between organisms through hereditary molecules

inside cells. Those molecules are called chromosomes. Set of all chromosomes (or set

of all hereditary molecules) is referred as genome. Basically, chromosomes are made

of DNA which is a double stranded sequence of nucleotides. One strand of DNA can

be obtained from the other strand. Specific DNA segments contains information for

production of other molecules (i.e., proteins, enzymes). Those segments are called as

genes. Therefore, a genome can be viewed as a sequence of genes.

One way to measure evolutionary relatedness of two species is by comparing their

genomic content, considering possible mutations that the species are exposed during

reproduction. The idea is to find the number of mutations that transform one genome

to another; so the less the number of these mutations the closer the genomes are.

Mutations can change the order, content or the length of genomes. Some mutations

(called point mutations) occur in a small scale affecting a nucleotide of a DNA whereas

some mutations occur in larger scale affecting greater DNA sequences. These large-scale

mutations are called genome rearrangement events (or rearrangements in short). Re-

searchers mostly consider the genome rearrangement events while comparing genomes

because they occur less frequently than the point mutations [58]. Since these events

are rare, finding the minimum number of rearrangements as a measure of evolutionary

distance between two species is plausible.

With these motivations, the researchers have studied the following computational

problem to better understand the evolutionary relations between species:

Genome rearrangement problem Given the gene order of two whole genomes,

find the minimum number of rearrangement events that transform one genome to
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the other.

A genome can contain different number of chromosomes. If it contains just one

chromosome, it is called a monochromosomal genome. Otherwise, it is called a multi-

chromosomal genome. Although, most of the advanced species have multichromosomal

genomes, they contain single chromosome organelles like chloroplasts [50], [28] or mito-

chondria [51].

A chromosome may be circular which means chromosome forms a circle. This is

the case for bacteria. On the other hand, a chromosome can be linear. This is the case

for more complex genomes like animal and plant genomes.

A gene may occur only once or multiple times inside a genome. We call a genome

whose genes are all different, as a genome without duplicate genes and a genome whose

some genes occur multiple times, as a genome with duplicate genes. In the following we

consider monochromosomal, circular genomes without gene duplication.

There are numerous rearrangement events:

• If a segment of a genome inside a chromosome is reversed and its orientation of

genes inside segment is also reversed but location of the segment does not change,

it is called an inversion (or a reversal).

• If a genome segment is moved from one location to another without changing

its genes’ orientation, this rearrangement event is called as transposition. One

can notice that this definition is equivalent as interchanging locations of genome

segments without changing their orientation.

• A translocation rearrangement is defined on multichromosomal linear genomes. It

operates on two chromosomes. Firstly, it splits each chromosome into two parts

from arbitrary points and then ties end part of one chromosome to beginning of

the other without changing orientation.

• Block interchanges exchanges two genome segments without changing their ori-

entation. Notice that a transposition can be seen as block interchange of two

adjacent segments.

• A transversion is an inverted transposition. It moves a genome segment from one

location to other like a transposition but it changes orientation of moved segment

i.e. it inverts moved segment.
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• If two linear chromosomes are merged into one linear chromosome, it is called a

fusion. If just one gene is inserted into a specific location of a chromosome, it is

called an insertion.

• Conversely, a fission operation splits a genome into two. If just one gene is deleted

from a chromosome, it is called a deletion.

• If two arbitrary points on a genome is chosen and the genome is split from these

points and then those ends could be connected in all possible ways, this rearrange-

ment is called a double cut-and-join (DCJ). DCJ could only be applied to mul-

tichromosomal genomes, since a DCJ on a single chromosome may produce two

chromosomes. DCJ is an important rearrangement since many other rearrange-

ments can be obtained by one or two DCJ rearrangements and it is biologically

relevant.

Most of these rearrangement events are not applicable or suitable for monochro-

mosomal genomes or circular genomes. Moreover, there are debates over some rear-

rangements whether they are really biologically relevant or not. Therefore, we consider

inversions and transpositions only.

Our consideration of inversions and transpositions as rearrangement events fit the

phylogeny reconstruction model known as Generalized Nadeau-Taylor (GNT) model [76]

which is based on Nadeau-Taylor model [49]. In this model, only inversion, transposition

and transversions can occur. Moreover, each inversion is equiprobable. Same is true for

transpositions and transversions. However, if occurrence of an inversion has probability

ωi, transposition has probability ωt and transversion has probability ωv, then ωi +ωt +

ωv = 1. We use this model with ωi = ωt = 0.5 and ωv = 0. Also, this model requires

an estimation for number of rearrangements. We assume uniform distribution for each

k ≤ n.

Now we have given the necessary biological background and informally described

the genome rearrangement problem with our assumptions, let us describe how we math-

ematically model this biology problem. In the following, we first describe how we view

genomes as mathematical objects, and how we define rearrangement events. Then,

we define the genome rearrangement problem. After reviewing the related work, we

present our approach for solving this problem. In particular, we discuss how we model

this problem as a search problem, and describe our search algorithms that utilizes some

heuristics to solve it. We provide a theoretical analysis of these algorithms as well as
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an experimental evaluation with randomly generated data sets.

3.1 Problem Description

3.1.1 Mathematical Description of Genomes

As we mentioned earlier, genome rearrangement problem heavily depends on struc-

ture of genome and rearrangements considered. For this study, we are working with

monochromosomal cyclic genomes without duplicate genes. As we stated earlier, these

genomes can be represented by a mathematical object called genomic circular signed

permutations (GCSP). Before we present the definition of a GCSP, let us recall some

definitions about permutations defined on a set A = {1, 2, ..., n}:

Definition 1 (Permutation). A bijection π : A → A is called a permutation. The

image of i ∈ A under π is denoted by πi and π is denoted as a sequence.

For instance, if we take n = 4, π = (3, 2, 1, 4) is a permutation. It means π(1) = 3,

π(2) = 2, π(3) = 1 and π(4) = 4.

Since elements of permutations do not contain sign we need to extend definition

such that negative integers could be involved:

Definition 2 (Signed Permutation). A signed permutation is a permutation πi where

each πi is assigned to + or -.

Now, we can define a binary operation ◦ on signed permutations as follows:

Definition 3 (Composition of signed permutations). Let π and σ be two signed per-

mutations of length n. Then, ◦ : P × P → P is a binary operation such that for all

x ∈ A, (σ ◦ π)(x) = σ(π(x)).

Circularity can be obtained from signed permutations by the property that shifted

version of a circular permutation is again the same circular permutation. Therefore, let

us define the shift operation first:

Definition 4 (Shift). Given 1 ≤ i < n, a shift on a signed permutation π can be

described as another signed permutation θ(i), such that for all 1 ≤ j ≤ n, (θ(i) ◦ π)j =

π(j+i−1 mod n)+1.
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Consider signed genome π defined in previous example. θ(2) ◦ π = (4, 2,−3,−1).

In order to proceed to genomic circular signed permutation consider following equiv-

alence relation with symbol ≡ between signed permutations:

Definition 5 (GCSP). Let π and σ be two signed permutations over A. Then, π ≡ σ

if there exists 1 ≤ i < n such that σ = θ(i) ◦ π or σ = θ(i) ◦ (−πn, ...,−π1). We call the

equivalence class of π a genomic circular signed permutation (GCSP) of A, and denote

it as [π].

Again, equivalence class of our example π above is [π] = {(−3,−1, 4, 2), (−1, 4, 2,−3),

(4, 2,−3,−1), (2,−3,−1, 4), (−2,−4, 1, 3), (−4, 1, 3,−2), (1, 3,−2,−4), (3,−2,−4, 1)}. Now,

we can precisely define GCSPs based on this equivalence relation as in [44, 68].

Consider genomes (or in our case the single chromosome) with n genes. We can rep-

resent each gene with a label from the set {1, ..., n}. Then, genomes can be represented

as genomic circular signed permutations.

3.1.2 Mathematical Definition of Rearrangement Events

Now, we can define rearrangements on GCSPs:

Definition 6 (Inversion). For some 1 ≤ i ≤ j ≤ n, an inversion inv(pii, pij) on a

GCSP [π] is a GCSP obtained by inverting the gene sequence between two labels πi and

πj as follows:

inv(πi, πj) ◦ [π] = [(π1, ..., πi−1,−πj, ...,−πi, πj+1, ...πn)]

Definition 7 (Transposition). For some 1 ≤ i < j ≤ k ≤ n, a transposition trp(πi, πj, πk)

on a GCSP [π] is a GCSP obtained by inverting the gene sequence from πj to πk before

πi as follows:

trp(πi, πj, πk) ◦ [π] = [(π1, ..., πi−1, πj, ..., πk, πi, ..., πj−1, πk+1, ..., πn)]

For instance, for previous [π] = [(−3,−1, 4, 2)], inv(−1, 4) ◦ [π] = [(−3,−4, 1, 2)]

and trp(4, 2,−1) ◦ [π] = [(−1, 2,−3, 4)].

Note that rearrangements take images of i, j, k instead of i, j, k as parameters since

there is no definite index position in this circular structure. Moreover, rearrangements

are applicable for all GCSPs over the elements of A.
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3.1.3 Mathematical Description of the Genome Rearrange-

ment Problem

Now, we define genome rearrangement problem on monochromosomal cyclic genomes

without duplicate genes, with transposition and inversion rearrangements [44]:

Given two GCSPs [π] and [σ] find the minimum k ∈ N such that there exists a

sequence of inversions and transpositions η1, ..., ηk such that [σ] = ηk ◦ ...◦η1 ◦ [π].

Actually, this problem can be reduced to a problem called sorting GCSPs by rever-

sals and transpositions [61] where the goal is to find the minimum k ∈ N number of

rearrangements η1, ..., ηk such that η1◦ ...◦ηk ◦ [π] = [I]. The sequence of rearrangement

events is called a sorting sequence.

3.2 Related Work

Various versions of genome rearrangement problems have been widely studied. One

of the most widely studied problem in this area is sorting signed permutations by

reversals which is the same problem as the genome rearrangement problem for signed

linear genomes [7]. It can be solved by a polynomial time algorithm [35] of complexity

O(n4) as well as an algorithm of asymptotical time complexity O(n) [4] where n is the

number of genes. There have also been studies to develop parallelized algorithms like in

[39, 66]. Although this problem has linear time solutions, it is interesting that sorting

unsigned permutations by reversals problem is NP-Hard [18].

There are variations of sorting signed integers by reversals. One of them assigns

weights to reversals such that the longer the reversed sequence, the more weight assigned

to it, then finds a sequence of reversal such that the total cost of reversals is minimum

by a polynomial time approximation [69]. Another variant of this problem fixes the

length of reversals (i.e., a special case of the previous variant with a weight function

which is nonzero for only one value) to even numbers [55].

For the circular genomes, sorting GCSPs by reversals problem has also been studied.

[44] presents a polynomial time algorithm for this problem.

Problem gets more complicated if we involve transpositions. Sorting permutations

only by transpositions has recently been shown to be NP-Hard [16]. Notice that there

are signed permutations which can not be transformed to identity permutation I by

transpositions only due to the fact that transpositions do not change the signs of genes.
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However, problem of sorting signed permutations with transpositions and reversals

is valid since all signed permutations can be transformed into each other with these

rearrangements. It is possible to assign different weights to transpositions and rever-

sals, and change the problem to finding minimum total weight while sorting a signed

permutation to I. The complexity of this problem is still unknown. However, there

are various approximation results for different α values where α is the ratio between

the weight of a transposition and the weight of an inversion. For α = 1, there are 2-

approximation algorithms presented by [34, 75, 43]. For 1 ≤ α ≤ 2 a 1.5-approximation

algorithm exists [6]. For α = 2 there is a (1 + ε)-approximation algorithm for any ε > 0

[30], based on well known polynomial time algorithm developed for inversions only [35].

It can be observed that any transposition on signed permutations can be obtained by

three reversals. Therefore, for α ≥ 3 the solution to the problem of sorting by reversals

and transpositions will be no better than sorting only by reversals which has linear time

solution algorithm.

There are also studies for sorting signed permutations by reversals, transpositions

and transversions. For instance, a 1.5-approximation algorithm assuming that the

weights of all rearrangements are equal, is presented in [37].

Similar problems have been studied for genomes with duplicate genes. Since we

do not consider in this thesis the rearrangements which change the gene content of

genomes, we assume that genomes are balanced (i.e., they contain the same number

of copies of each gene). Genome rearrangement problem for balanced genomes with

gene repetition is defined similar to the genome rearrangement problem for genomes

without gene repetition by using inversions, transpositions and/or transversions. For

unbalanced genomes, rearrangements which changes the gene content of genome like

insertion, deletion, fusion or fission are required. Rearranging unbalanced genomes is

considered to be harder than balanced ones. We will not refer to any problems or

theoretical results for problems on unbalanced genomes in this thesis, since there are

numerous different genome rearrangement problems for even rearranging unbalanced

strings by the same rearrangements. Therefore, we consider problems on balanced

genomes for the rest of this part. Genomes with gene duplication can be represented

by sequences.

The problem of rearranging by reversals persists to be difficult for the genomes with

duplicate genes [56], [20]. This problem is shown to be NP-Hard [56]. However, there

are approximation algorithms. If the maximum occurrence of a symbol in one of the
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sequences is c, then this problem can be solved by a O(c) algorithm [40]. Also, there is

a O(n0.69) approximation algorithm to solve this problem [24].

The problem of rearranging unsigned sequences by transpositions is also studied [23].

It is shown to be NP-Hard [56]. For the similar reason explained above (i.e. there may

be two genomes which can not be transformed into each other by transpositions only),

this problem is not defined for signed sequences. There are approximation algorithms

for this algorithm as well. The algorithm mentioned above [40] can solve this problem

as well. In addition, there is O(log nlog∗ n) approximation algorithm presented in [25]

where log∗n is the number of log function applied to n until a constant is obtained.

Also, block-interchange rearrangements are studied for unsigned sequences and

proven to be NP-Hard [21].

Another line in genome rearrangement studies does not consider aforementioned re-

arrangements. We have already stated that DCJ rearrangement is biologically relevant

and can replace various other rearrangements. Sorting signed permutations by DCJ

problem is presented in [78] first time. Then, polynomial time algorithms developed to

solve this problem. [8] presents an O(n) algorithm for this problem.

There is also software for solving genome rearrangement problem with inversions,

transpositions and transversions. Derange II [11] can handle both circular and lin-

ear genomes and the user can assign different weights to each rearrangement type.

GenomePlan [29] models this problem as a planning problem in Action Description

Language (ADL) [52] in study and solves by a planner called TLplan [3].GenomePlan

can also solve problems with duplicate genes. GRIMM can handle linear or circular,

monochromosomal or multichromosomal, signed or unsigned genomes with transloca-

tions, reversals, fusions and fissions [72].

3.3 Modeling the Genome Rearrangement as a Search

Problem

We have modeled the genome rearrangement problem as a search problem.

Search states A search state consists of a single GCSP instead of two GCSPs. As

we stated earlier, the genome rearrangement problem (that we defined for circular

monochromosomal genomes without duplicate genes and with transpositions and in-

versions) can be reduced to the problem of sorting GCSPs by transpositions and inver-
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sions by relabeling the genes. Therefore, it is sufficient to keep information about one

genome after relabeling and try to find a sequence of rearrangements that transform it

to identity GCSP [I]. Hence, we represent a search state by a single GCSP (obtained

after relabeling). Then, state space becomes G. Note that since we do not represent a

search state by two genomes, the memory consumption is not as much. In the following,

we use the terms “state” end “GCSP” interchangeably.

Successor function Let 2G denote the power set of G which is a multi set consisting

of all possible subsets of G. Then, the successor function is defined as δ : G → 2G.

Basically, δ takes a GCSP Π and maps it to the set of GCSPs that can be obtained from

Π by a transposition or an inversion. We have considered two variations of the successor

function under some restrictions. We explain these restrictions after we explain the

search model.

Goal Test A state s with a GCSP Π is a goal state if and only if #bp(Π) = 0

To utilize A∗ search strategies we have also defined a cost function and a heuristic

function.

Cost function g Since we are looking for the minimum number of rearrangements

between two GCSPs without giving priority to some of them, for a state s, g(s) is the

number of rearrangements applied from initial state until obtaining s.

To define our heuristic function, we need to recall well-known breakpoint definition

[44].

Definition 8 (Breakpoint). Let Π and Σ be two GCSPs of length n. Then, for some

a, b ∈ {−n, ... − 2,−1, 1, 2, ..., n}, (a, b) is a breakpoint of Π if there exists π ∈ Π and

1 ≤ i < n such that πi = a, πi+1 = b and for all σ ∈ Σ and 1 ≤ j < n neither σj = a

and σj+1 = b nor σj = −b or σj+1 = −a. We denote the number of breakpoints of Π by

#bp(Π).

Although mathematical definition is complicated, we can say that two consecutive

elements (a, b) in Π is a breakpoint if neither (a, b) nor (−b,−a) occurs consecutively

in Σ. Consider Π = [(−3,−2, 1,−4)] and [I]. Only breakpoints of Π are (−2, 1) and

(1,−4). Also note that two GCSPs are equal if and only if both of them have 0

breakpoints.
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Heuristic function h For a state s characterizing a GCSP Π, h(s) = #bp(Π)/3.

To define restrictions on the successor function δ, we need definition of strip [21]:

Definition 9 (Strip). Let Π and Σ be two GCSPs of length n. Then, for some k ≤ n,

1 ≤ i ≤ k, li ∈ {−n, ....,−2,−1, 1, 2, ..., n} and π ∈ Π, (l1, ..., lk) is called a strip if l1

and lk are involved in a breakpoint of π but for all 1 ≤ j < k (lj, lj+1) is not a breakpoint

of π.

Strips can be seen as maximal consecutive elements that commonly exist in both

GCSPs. This definition also can be clarified by an example. Take same Π and [I] of

above example. Then, only strip in Π is (−4,−3,−2). Note that strips of a GCSP

are disjoint and both GCPSs contain the same set of strips. Moreover, the elements of

breakpoints are the end points of strips.

Now, we can more precisely define the restrictions on the successor function δ. For

a state s containing GCSP Π of length n, another state s′ containing GCSP Σ is an

element of δ(s) if

(R1) #bp(Σ) < #bp(Π) with respect to [I] and

(R2) one of the followings holds:

– for some a, b ∈ {−n, ...,−1, 1, ..., n}, Σ = inv(a, b) ◦ Π and a and b are end

points of some strips

– for some a, b, c ∈ {−n, ...,−1, 1, ..., n}, Σ = trp(a, b, c) ◦Π and a, b, c are end

points of some strips.

Note that δ does not generate states for all possible transpositions and inversions

of a GCSP with these restrictions. According to the first restriction R1, only the

rearrangements that does not split strips are allowed. According to the restriction R2,

the rearrangements that reduces the number of breakpoints with the goal state are

allowed.

3.4 Theoretical Results

In this section, we present some results and properties of the A∗ search model described

in previous section.

Let s first analyze the properties of our heuristic function.
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Proposition 1. Let s be a state with GCSP Π and #bp(Π) be number of breakpoints

of Π with respect to [I]. Then, without restrictions R1 and R2, h(s) = #bp(Π)/3 is

monotone.

Proof. Consider a state s′ with GCSP Σ, which can be obtained from Π by a single

inversion or a single transposition. A transposition between Π and Σ can reduce at

most three breakpoints since it operates on three points on a GCSP and an inversion

can reduce at most two breakpoints since it operates on two points. Therefore,

#bp(Π) ≤ #bp(Σ) + 3.

Then,

#bp(Π)

3
≤ #bp(Σ)

3
+ 1

h(s) ≤ h(s′) + c(s, s′)

Consequently, h is monotone.

Due to this proposition, h is admissible and the A∗ search (without restrictions

R1,R2) terminates with an optimal solution.

Termination and Optimality Now, we give some results about the optimality of

the solutions. Our restrictions R1 and R2 prunes search tree and restricts the search

space. Therefore, we need to examine how R1 and R2 affects the quality of solutions.

We will examine affects of restrictions to optimality separately starting from R1. To do

that we need definition of a minimal GCSP [21]:

Definition 10 (Minimal GCSP). Let Π be a GCSP and have r strips with respect to

some other GCSP Σ. Then minimal GCSP of Π is a GCSP consisting of elements from

{−r, ...,−1, 1, ..., r} obtained from Π by replacing each strip by an element of this set

renumbering each element such that breakpoints and matching elements are preserved.

It is denoted by min(Π).

For instance take Π = [(2,−5,−4, 3, 1)]. Then, its minimal version with respect to

[I] is min(Π) = [(1,−3, 2)].

Note that R1 allows rearrangements to operate only on end points of strips. There-

fore we can think of this as algorithm only using R1 restriction solves sorting min(Π)
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problem. Therefore, in order to show that R1 does not violate the optimality we need

to show that two problems have the same length sorting sequences.

We need further notation for our claims. Let id(Π) denote the length of the minimum

sorting sequence of GCSP Π only using inversions, td(Π) denote the length of the

minimum sorting sequence for only using transpositions, and tid(Π) denote the length

of the minimum sorting sequence of Π by using transpositions and inversions. Same

notation can be used for permutations and signed permutations.

Actually, the same problem is widely studied for permutations. For a permutation

π, id(π) = id(min(π)) has been tried to be shown for unsigned permutations where

inversion can only flip permutation but can not change its sign. In [36], it is shown that

id(π) = id(min(π)) for unsigned permutations if all strips of π has length more than 2

based on the polynomial time algorithm of sorting signed permutations with inversions

described in [35]. Again for a permutation π, td(π) = td(min(π)) is shown in [22]. We

will use this method while proving our results.

Firstly, we can see the correspondence between rearrangements of min(Π) and Π

for some GCSP Π. Every rearrangement on min(Π) can be mimicked by a rearrange-

ment on Π. Consider a/an transposition/inversion on min(Π). Operation points of the

rearrangement represent strips in Π. By applying the same rearrangement to the corre-

sponding end points of Π we obtain a new GCSP of which minimal version is the same

as rearrangement applied to min(Π). For instance, consider same Π = [(2,−5,−4, 3, 1)]

and min(Π) = [(1,−3, 2)] of above example. inv(−3, 2) on min(Π) can be mimicked

by inv(−5, 3) on Π which result in same minimum GCSPs [(1,−2, 3)]. Similarly,

trp(1,−3, 2) on Π can be mimicked by trp(1,−5, 3) on Π and both rearrangements

results in minimum GCSP [(−3, 1, 2)]. Using this similarity, we can prove our result:

Proposition 2. Let Π and min(Π) be GCPSs of length n and r respectively. Then,

tid(Π) = tid(min(Π)).

Proof. First, we show that tid(Π) ≤ tid(min(Π)). By the mimicking rearrangements

of min(Π) it is easy to show that for every sequence of rearrangements that transforms

min(Π) to [I], one can find a sequence of rearrangements of the same length that

transforms Π to [I]. Therefore, tid(Π) ≤ tid(min(Π)).

Now, we show tid(Π) ≥ tid(min(Π)). We form a new GCSP Σ by inserting n−r−1

asterisks to min(π) as follows. For all labels a in min(Π) and corresponding strip γ in Π,

we insert asterisks to the clockwise adjacency of a such that number of asterisks added

are one less than length of γ. For instance, let Π = [(−4,−3,−5, 1, 2)]. Then, min(Π) =

19



[(−2, 3, 1)] and Σ = [(−2, ∗,−3, 1, ∗)]. We can find a bijection between labels of Π and Σ

such that for any label a inmin(Π), a is mapped to first element of corresponding strip in

clockwise direction. Then, for any rearrangement on Π one can use this mapping to find

a rearrangement in Σ. A sequence of rearrangements that transforms Π to [I] will also

transform Σ to [I] if we ignore asterisks. However, some inversions/transpositions may

be applied to only asterisks and therefore they are not applied to min(Π). Therefore,

there can be a shorter sequence of inversions that transforms min(Π) to [I] for all such

sequences. Consequently, tid(π) ≥ tid(min(Π)).

This proposition shows us that we can find optimal length sequence of rearrange-

ments with our algorithm under restriction R1.

However, we can not guarantee optimality if we involveR2. Consider Π = [(7, 6, 5, 4, 3, 2, 1)].

If restriction R2 is considered, Π can be sorted by applying minimum seven rearrange-

ments (actually, only transpositions) which brings an integer to the correct position at

each rearrangement. However, there exists a sequence of four transpositions that sorts

Π, if we do not consider R2 [79].

Complexity We also examine effects of R1 and R2 on computational complexity.

First, lets consider the case without any restrictions. We know that a transposition

operates on three points in a GCSP. Moreover, any three points forms a valid transpo-

sition. Then, we can generate O(n3) new states from a state with a GCSP of length n.

Similarly, an inversion operates on two points and any two points on a GCSP forms an

inversion. Therefore, we can generate O(n2) new states from a state with a GCSP of

length n. Consequently, branching factor of each search state is O(n3).

Now, let us explain how R1 affects the branching factor of the states.

Proposition 3. Let s be a state with GCSP Π and #bp(Π) be number of breakpoints

of Π with respect to [I]. Then, A∗ search algorithm with R1 generates O(#bp(Π)3) new

states from s.

Proof. With R1, the A∗ algorithm only generates states with rearrangements that op-

erate on the ends of strips. By definition, they are breakpoints and every breakpoint

is an end of a strip. Following the steps for the unrestricted case, algorithm generates

O(#bp(Π)3) states by applying transpositions and O(#bp(Π)2) new states by applying

inversions. Consequently, O(#bp(Π)3) new states are generated.
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Since there can be at most n breakpoints, the branching factor does not asymp-

totically change with R1. However, for close species with long gene sequences, the

effect of R1 is significant. But if we take R2 into account, the branching factor changes

considerably.

Proposition 4. Let s be a state with GCSP Π of length n. Then, A∗ search algorithm

with R2 generates O(n2) new states from s.

Proof. Since R2 ensures decreasing number of breakpoints, rearrangement applied to

Π must relieve at least 1 breakpoint. Without loss of generality, assume that applied

rearrangement brings (a, a′) together for a, a′ ∈ {−n, ...,−1, 1, ..., n} and (a, a′) is not

a breakpoint with respect to [I]. First consider that applied rearrangement is a trans-

position. Then, one of the operation points of this transposition must be adjacent to

a and other one should be adjacent to a′. Third operation point can be chosen freely.

Therefore, O(n) transpositions can bring (a, a′) together. Secondly, assume applied

rearrangement is an inversion. Again one of the operation points must be adjacent to

a and other should be adjacent to a′. Therefore, there can be at most 2 inversions that

brings (a, a′) together. Consequently, there can be O(n) rearrangements that brings

(a, a′) together. Since Π may have at most n breakpoints, O(n2) new states can be

generated from s.

If we consider R1 and R2 together as we did in our algorithm, the branching factor

becomes combination of the previous two results.

Proposition 5. Let s be a state with GCSP Π and #bp(Π) be number of breakpoints of

Π with respect to [I]. Then, A∗ search algorithm with R1 and R2 generates O(#bp(Π)2)

new states from s.

This result has been shown by Tansel Uras (personal communication).

3.5 GenomeSEARCH-A∗

Our implementation of the A∗ search algorithm to solve the genome rearrangement

problem is called GenomeSEARCH-A∗. The states of the search model is imple-

mented as a collection of a vector of pairs of integers, a vector of triples of integers

and two integers. Each element of this collection contains information about the search

states explained in the following.
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GCSP As we stated earlier, we keep a single GCSP inside a state since we can

reduce the genome rearrangement problem to the corresponding sorting problem by

transforming one of the GCSPs to [I] by relabeling its elements. A GCSP of a state is

represented by a vector of pairs of integers in our implementation. This data structure

is described in detail in Section 3.5.1. This data structure helps successor function to

operate on the ends of strips which is required by the restriction R1. In this GCSP

representation, locating a particular element in the GCSP and applying a rearrangement

takes constant time. Therefore, it is useful for our implementation.

Rearrangement history We keep a vector of triples of integers inside the states to

keep all the rearrangements applied from the initial GCSP to the current GCSP. An

element (triple of integers) in this vector represents an inversion or a transposition. Each

integer in the triple shows the operation point of the rearrangement. Since inversions

operate on two points, last integer is set to -1 for an inversion. Therefore, one can

understand whether a given triple is an inversion or a transposition by looking at

the last integer of the triple. This vector reduces memory consumption of the states.

Because with the help of this vector, we just keep frontier states —not the full search

tree— and obtain the applied rearrangement history when required. Moreover, we can

obtain g value of a state for A∗ search easily by checking the size of this vector.

Start gene One of the integers inside the state implementation represents the start

gene of the GCSP of a state. Although GCSPs are circular and have no definite end

points, this arbitrary point eases our job while traversing a GCSP for generating all

possible transpositions and inversions from the current GCSP. Start gene changes if the

previous start gene falls inside a strip.

Breakpoint count The second integer inside the state implementation represents the

number of breakpoints of the GCSP of a state with respect to [I]. It is not necessary

to calculate number of breakpoints from the scratch for newly created GCSPs. It can

be deduced from number of breakpoints of the GCSP of the predecessor state and how

many breakpoints healed by the rearrangement applied to the GCSP of the predecessor

state. Since h value of a state is a-third of the number of breakpoints of the GCSP of

this state, h value of the states can be directly obtained from this integer.

Moreover, a heap of states are utilized for the A∗ search. The heap gives the state

in the fringe with the minimum f value in the constant time and inserting a new state
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Figure 3.1: Implementation of a GCSP in GenomeSEARCH-A∗. (a) A GCSP of
length five. (b) Representation of this GCSP in our implementation.

to the heap takes time logarithmically proportional to the size of the heap. Therefore,

using heap to organize states in the fringe increases efficiency of our implementation.

3.5.1 Data Structure for the GCSP Representation

Our data structure for representing GCSPs is a vector of a pair of integers. Each index

in this vector represents a gene in the corresponding genome of the GCSP. Using a

vector, we can reach a particular gene in constant time.

If we label two ends of a gene as left and right ends, pair of integers inside the vector

points to the left and right neighbors of this gene. Integers in a pair can be positive or

negative. If it is negative, it means that this end of the gene is adjacent to the left end

of its neighbor. Otherwise, it is adjacent to the right end of its neighbor. This data

structure is depicted in Figure ??.

With this data structure, strips can also be handled easily. Let (a1, ..., ak) and

(b1, ..., bm) be two strips that come together as (a1, ..., ak, b1, ..., bm) after a rearrange-

ment. If (ak, b1) is not a breakpoint, we can omit all the genes between a1 and bm since

restriction R1 prevents rearrangements on this genes. We can achieve this by setting
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right pointer of a1 to −bm and setting left pointer of bm to a1 in constant time. Then,

we can traverse a GCSP more efficiently and prevent generation of rearrangements that

violate R1.

Moreover, we can apply the rearrangements in constant time. To apply an inversion

inv(a, b) operating on two points a and b, changing the left pointer of a, the right

adjacent of b and the right pointer of b, the left adjacent of a suffices. Note that

applying an inversion on a GCSP implemented by a linked-list or a vector of integers

can not be done in constant time, since signs of the all the elements between the two

operation points should be reversed.

Similarly, a transposition trv(a, b, c) operating on three points a, b and c can be

implemented by changing the left pointers of a,b the right adjacent of c and the right

pointers of the left adjacent of a, the left adjacent of b, c.

3.6 Experimental Results

In our experiments, we compared GenomeSEARCH-A∗ with GenomePLAN and

GenomeSEARCH-IDA∗ in terms of computation times and accuracy. Moreover, we

conducted experiments to measure effects of R1 and R2 in terms of computation time.

We conducted experiments on two data sets. First data set includes 100 random

GCSPs of length 12. Each GCSP corresponds to a problem instance. Random GCSPs

are obtained from [I] by 50 random swaps. Each swap takes two labels and interchanges

their content and changes their sign by %50 chance.

Second data set also contains 100 random GCSPs of length 12 and each GCSP cor-

responds to a problem instance. GCSPs are obtained from [I] by six random inversions

and six random transpositions.

All of the experiments are run on a machine with eight Intel Xeon E5310 CPUs

(1.60 GHz, 8M Cache) and 16 GB memory. It contains CentOS 5.8 operating system

and the software is compiled with g + + 4.1.2 c+ + compiler.

For each problem instance, we put 1000 seconds time limit and 15 gb memory limit.

If an instance exceeds the limits, this instance is omitted from the results and statistics.

3.6.1 Effect of Restrictions

As we stated in previous sections (see section 3.4), our restrictions make an asymp-

totic contribution to branching factor of A∗ search which reduces it from O(n3) to
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O(#bp(Π)2) where Π is a GCSP of length n. Therefore, we were expecting signifi-

cant time difference between performances of regular GenomeSEARCH A∗ search

and the one without restrictions. Our experimental results also supported our beliefs.

Comparative results can be seen in Table 3.1:

Table 3.1: Results of the experiment that compares computation time of our algorithm
with and without restrictions R1 and R2

Plan Length
With Restrictions W/O Restrictions

# of Instances Avg. Time # of Instances Avg. Time

Data Set 1

8 4 0.745 4 122.354
9 7 6.073 2 582.014
10 44 45.678 N/A N/A
11 45 238.590 N/A N/A

Data Set 2

7 2 0.15 2 3.45
9 12 7.430 1 792.490
10 39 52.893 N/A N/A
11 45 212.440 N/A N/A
12 1 592.018 N/A N/A

One can see from the table that, without restrictions, no plan of length greater than

9 is found. This algorithm can not find solutions to 94 instances from the first data set

and 97 instances from the second data set. The algorithm with the restrictions could

not solve only single instance due to exceeding the memory limit. We also observed

that, instance solved by the both algorithms have the same plan length. Since we know

that the algorithm without restrictions finds optimal solutions, the algorithm with R1

and R2 also finds optimal solutions for this data sets.

3.6.2 A∗ and IDA∗

In order to measure performance of A∗ search with other similar search algorithms,

we ran experiments with IDA∗ search. IDA∗ search algorithm also contains two re-

strictions those we used for A∗ search. Performance of IDA∗ search compared with A∗

search is shown in the Table 3.2.

As it can be seen from table, both search algorithms have similar performance until

plan length 10. For instances of solution length 10 and 11, IDA∗ search is slightly

faster. We think that this result occurs because all of edges are integer cost and there

are many states with same depth or g value. Therefore, at each iteration of IDA∗

search, lots of new states are explored and thus iterations does not cause considerable
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Table 3.2: Results of the experiment that compares computation time of A∗ search
strategy with IDA∗ search strategy with restrictions R1 and R2 for the genome rear-
rangement model

Plan Length
A∗ with Restrictions IDA∗ with Restrictions

# of Instances Avg. Time # of Instances Avg. Time

Data Set 1

8 4 0.745 4 0.854
9 7 6.073 7 7.526
10 44 45.678 44 37.843
11 45 238.590 45 179.395

Data Set 2

7 2 0.15 2 0.22
9 12 7.430 12 7.842
10 39 52.893 39 47.538
11 45 212.440 45 203.448
12 1 592.018 2 834.582

time loss since they are few. Although the A∗ search seems faster for the instances

with the solution length 12, the A∗ search can not solve one of the instances which we

suspect to have an optimal solution of the length 12, due to high memory requirements.

However, IDA∗ solves this instance since it has modest memory requirements.

3.6.3 GenomePLAN and GenomeSEARCH-A∗

In order to compare performance of our search algorithm with a planning approach, we

run our instances on GenomePLAN. For detailed information on this software, please

visit GenomePLAN homepage. We did not change default values for priority or cost

options. We just changed search strategy from Depth First Search (DFS) to Breadth

First Search (BFS) since DFS does not guarantee an optimal solution. Results were

surprisingly different since GenomePLAN could not find a solution. In the Table 3.3,

we compared these results with GenomeSEARCH-A∗ without restrictions.

Table 3.3: Results of the experiment that compares computation time of A∗ search
strategy without restrictions with GenomePLAN using BFS strategy

Plan Length
GenomePLAN A∗ W/O Restrictions

# of Instances Avg. Time # of Instances Avg. Time

Data Set 1
8 N/A N/A 4 122.354
9 N/A N/A 2 582.014

Data Set 2
7 N/A N/A 2 3.45
9 N/A N/A 1 792.490
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3.7 Conclusion

In this section we mathematically modeled genome rearrangement problem for circular

genomes without gene repetition as a search problem.

Then, we developed an A∗ based algorithm to solve this problem. For a state s

with GCSP Π, We determined heuristic function h(s) = #bp(Π)/3 where #bp(Π) is

the number of breakpoints of Π with respect to [I]. We proved monotonicity of h.

Therefore, our basic A∗ algorithm terminates with an optimal solution.

We also applied two restrictions R1 and R2 on the successor state function in order

to obtain better computation times. R1 allows rearrangements that only operate on

strips and R2 allows rearrangements that only reduces breakpoints between GCSP of

the current state and [I]. We have shown that the A∗ algorithm with R1 does not

violate optimality of the solutions, whereas we can find an instance for R2 such that

the A∗ algorithm does not generate an optimal solution.

We implemented our algorithm as a software called GenomeSEARCH-A∗. For

this implementation, we used a special data structure (a vector of pair of integers) for

GCSPs inside search states which allows us applying inversions and transpositions on

the GCSP in constant time and eases traversing the GCSP without considering genes

inside the splits.

We conducted experiments with GenomeSEARCH-A∗ on two simulated data sets.

We compared computation time of the A∗ algorithm with and without R1 and R2, with

IDA∗ using the same restrictions and with another software called GenomePLAN.

We have observed that the restrictions increase the time efficiency of the algorithm.

IDA∗ and A∗ have the similar time results. However, IDA∗ may solve instances that

A∗ can not solve due to its modest memory requirements. Also, GenomeSEARCH-A∗

performs better than GenomePLAN with the help of restrictions that may violate the

optimality.
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Chapter 4

Median Genome Problem

Another widely studied topic in comparative genomics is the median genome problem.

Roughly, the problem is given the whole genomes of three species, finding the genome

of their common ancestor. Not only this problem is used to infer ancestral information

but also can be used for constructing phylogenies for more than three species.

Actually, this problem has an intuitive counterpart in geometry: Given three points

A,B,C on a plane (or corners of the triangle 4ABC), another point X is called a

Fermat point or geometric median if |AX|+ |BX|+ |CX| is minimum. The problem of

finding X is called Fermat’s problem. Problem is named after mathematician Pierre de

Fermat since it is first proposed by Fermat in a letter to Evangelista Toricelli who solved

it ([38]). Similar reasoning applies for the median genome problem. If we consider space

of all possible genomes of same length instead of R2 with a suitable distance measure,

then the median genome problem is to find a genome of which total distance to the

initial genomes is minimum.

Undoubtedly, distance measure should be defined precisely to define the problem in

genomes space. There are two biologically relevant and widely used distance functions

in this space. One of them is called the breakpoint distance and other is called the

event distance function. The first one relies on the number of breakpoints between two

genomes and other the one measures the minimum number of rearrangement events be-

tween two genomes. Again, we consider inversions and transpositions. As in the genome

rearrangement problem case, we consider genomes that are circular, monochromosomal

and without duplicate genes.
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4.1 Problem Definition

As in the genome rearrangement problem case, we represent monochromosomal cyclic

genomes without duplicate genes as GCSPs. Similarly, transpositions and inversions

are represented as signed permutations. Let us first define the distance function.

Definition 11 (Distance function). Let X be a set. Then, a function d : X ×X → R+

is called a distance function or a metric on X if for all x1, x2, x3 ∈ X:

• d(x1, x2) = 0 if and only if x1 = x2

• d(x1, x2) = d(x2, x1)

• d(x1, x3) ≤ d(x1, x2) + d(x2, x3)

Now, we will define two metrics on the set of GCSPs as in [14]. The first one is

called the breakpoint distance and the second one is called the event distance function.

Definition 12 (Breakpoint distance). The breakpoint distance between two GCSPs G1

and G2 is number of breakpoints between them. It is denoted by dBP (G1, G2).

Definition 13 (Event distance). Event distance between two GCSPs G1 and G2 is

the minimum number of transpositions and inversions to transform G1 into G2 (i.e.,

the solution of the genome rearrangement problem for G1 and G2. It is denoted by

dE(G1, G2).

For practical reasons, we use d as a placeholder for dBP and dE from now on. Now,

we can define the median genome problem [14].

Definition 14 (Median genome problem). Let G1, G2, G3 be three GCSPs of the same

length n. Then, the median genome problem is to find a GCSP G of length n such that

d(G,G1)+d(G,G2)+d(G,G3) is minimum. Then, G is called the median of G1, G2, G3.

The sum d(G,G1) + d(G,G2) + d(G,G3) is called the median distance for G1, G2, G3

with respect to G.

If we choose d as dE, this problem is called the Ancestral Median Problem (AMP)[14]

and if we choose d as dBP it is called the Breakpoint Median Problem (BMP)[15]. BMP is

computationally easier to cope with because number of breakpoints between two GCSPs

can be computed in polynomial time where calculating only transposition event distance

is shown to be NP-Hard as we explained previously (see Section 3.2). However, BMP has
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some drawbacks: There may be more than one candidate for median of three GCSPs

and the breakpoint distance gives us no further information for deciding on which

one is the gene configuration of the biological common ancestor of the corresponding

three genomes. Consider G1 = [(1, 2,−4,−3, 5)], G2 = [(1,−4,−3,−2, 5)] and G3 =

[(1, 2, 3, 4,−5)]. If we solve BMP for them, we can find one of four possible ancestors

which are G1, G2, G3 and [I] = [(1, 2, 3, 4, 5)]. But, if we solve AMP with reversals

only, the ancestor is only [I].

Let G1, G2, G3 be three arbitrary GCSPs and G be their median with respect to

some distance function d. Let k = d(G,G1) + d(G,G2) + d(G,G3). In this part, we

provide an upper bound and a lower bound on k with respect to the pairwise distances

of G1, G2 and G3 not depending on the distance function.

Firstly, we show a well-known lower bound on k using the triangle inequality as-

sumptions on the distance function (Definition 11). We know that

d(G,G1) + d(G,G2) ≥ d(G1, G2)

d(G,G1) + d(G,G3) ≥ d(G1, G3)

d(G,G2) + d(G,G3) ≥ d(G2, G3)

Summing these three inequalities we obtain:

d(G,G1) + d(G,G2) + d(G,G3) ≥
d(G1, G2) + d(G1, G3) + d(G2, G3)

2

Now, using the minimality of k we show an upper bound on k. Consider G1, without

loss of generality. The GCSP G1 is a valid candidate as the median G1, G2, G3 if

d(G1, G2) + d(G1, G3) is minimum. Therefore, for any median G for G1, G2, G3,

d(G1, G2) + d(G1, G3) ≥ d(G,G1) + d(G,G2) + d(G,G3). (4.1)

Same reasoning applies to G2 and G3. Then, we obtain:

d(G1, G3) + d(G2, G3) ≥ d(G,G1) + d(G,G2) + d(G,G3) (4.2)

d(G1, G2) + d(G2, G3) ≥ d(G,G1) + d(G,G2) + d(G,G3) (4.3)
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By summing the equations (4.1), (4.2), (4.3) we obtain:

2

3
(d(G1, G2) + d(G1, G3) + d(G2, G3)) ≥ d(G,G1) + d(G,G2) + d(G,G3).

Consequently,

2

3
(d(G1, G2) + d(G1, G3) + d(G2, G3)) ≥ k ≥ d(G1, G2) + d(G1, G3) + d(G2, G3)

2
. (4.4)

4.2 Related Work

In this section, we summarize related work on AMP and BMP separately.

BMP is the easier problem since breakpoint distance can be calculated for all genome

types in linear time. BMP was first introduced in [62]. For signed and unsigned permu-

tations, problem is shown to be NP-Complete in [53]. However, for multichromosomal

linear genomes, BMP has O(n3) solution [71]. For the case of GCSPs, problem is

NP-Hard as shown in [15]. An exact solution algorithm to problem for signed permu-

tations exists by reducing it to Traveling Salesman Problem [62]. There is also a 7/6

approximation algorithm [54]. There is a software system called BPAnalysis, that

solves BMP based on algorithms in [63] for linear genomes without duplicate genes by

inversions, transpositions and translocations.

AMP may have variations with respect to the chosen rearrangements. If we consider

only inversions for the AMP, the median genome problem is proven to be NP-Hard [19].

Moreover, the problem is even APX-Hard [9]. AMP with transpositions only is shown

to be NP-Complete [5]. There is a software system called MGR[14] that can be used to

solve AMP. Although its main purpose is to create phylogenies for arbitrary number of

genomes, its main algorithm is based on AMP problem. It can handle circular or linear

genome models. However, it solves AMP considering reversals only since there exists

O(n) algorithm for computing reversal distance. Another tool to be considered for

AMP is called GRAPPA. Initially it was only considering reversals as rearrangements

but later an extension is made for transpositions [79]. Moreover, it contains a special

algorithm [70] for solving AMP in GCSPs using reversals.
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4.3 Modeling Median Genome Problem As a Search

Problem

We modeled the median genome problem as a search problem as follows:

States The search states are characterized by sets of three GCSPs. Let s be a state

and G1, G2, G3 be its GCSPs. Then, we denote s as a set s = {G1, G2, G3}. The state

space is denoted by S in this section.

Successor function Now, let us explain successor function δ : S → S. Note that,

unlike the successor function we introduced in Section 3.3 for the genome rearrangement

problem, δ does not map a state to a set of states but only to a state. Let s =

{G1, G2, G3} be a state. Then, we define two sets of states

Ginv(s) = {{G′1, G′2, G′3}|G′i = inv(l1, l2) ◦Gi for exactly one 1 ≤ i ≤ 3

and some labels l1, l2 ∈ Gi and G′j = Gj for j 6= i}

and

Gtr(s) = {{G′1, G′2, G′3}|G′i = trp(l1, l2, l3) ◦Gi for exactly one 1 ≤ i ≤ 3

and some labels l1, l2, l3 ∈ Gi and G′j = Gj for j 6= i}.

Ginv denotes set of GCSPs triples obtained by applying an inversion to exactly one

GCSP of s whereas Gtr denotes set of GCSPs triples obtained by applying a trans-

position to exactly one GCSP of s. Then, δ(s) is in Ginv ∪ Gtr. Informally, we chose

the next state among the states which are obtained by applying a single inversion or a

transposition to one of GCSPs of the current state.

To choose which GCSP to apply a rearrangement in order to generate the next state

δ(s), we order GCSPs of s according to the following evaluation function fs : s → N.

We compute the total pairwise distance of a GCSP in s to other two GCSPs in s. More

formally, our evaluation function fs for 1 ≤ i ≤ 3 is calculated as:

fs(Gi) =
∑

1≤j≤3

d(Gi, Gj).

For instance, fs(G1) = d(G1, G2) + d(G1, G3). The idea is to choose a GCSP G in s

such that fs(G) is minimum. We choose the GCSP which is the furthest away from
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other two GCSPs because we assume that median should be closer to the pair which is

the closest each other.

Without loss of generality, assume that fs(G1) ≥ fs(G2) ≥ fs(G3). Then, δ(s) is

defined as follows:

• If, for some labels l1, l2, l3 ∈ G1, there exists a transposition trp(l1, l2, l3) such that,

for G′1 = trp(l1, l2, l3) ◦ G1 d(G′1, G2) < d(G1, G2) and d(G′1, G3) < d(G1, G3), or

there exists an inversion inv(l1, l2) such that for G′1 = inv(l1, l2)◦G1, d(G′1, G2) <

d(G1, G2) and d(G′1, G3) < d(G1, G3), then s′ = {G′1, G2, G3}.

• Else if, for some labels l1, l2, l3 ∈ G2, there exists a transposition trp(l1, l2, l3)

such that, for G′2 = trp(l1, l2, l3) ◦ G2, d(G′2, G1) < d(G2, G1) and d(G′2, G3) <

d(G2, G3), or there exists an inversion inv(l1, l2) such that for G′2 = inv(l1, l2)◦G2

d(G′2, G1) < d(G2, G1) and d(G′2, G3) < d(G2, G3), then s′ = {G1, G
′
2, G3}.

• Else if, for some labels l1, l2, l3 ∈ G3, there exists a transposition trp(l1, l2, l3)

such that, for G′3 = trp(l1, l2, l3) ◦ G3, d(G′3, G2) < d(G3, G2) and d(G′3, G1) <

d(G3, G1), or there exists an inversion inv(l1, l2) such that for G′3 = inv(l1, l2)◦G3,

d(G′3, G2) < d(G3, G2) and d(G′3, G1) < d(G3, G1), then s′ = {G1, G2, G
′
3}.

• Else, for some labels l1, l2, l3 ∈ G1, there exists a transposition trp(l1, l2, l3) such

that for G′1 = trp(l1, l2, l3)◦G1, d(G′1, G2)+d(G′1, G3) < d(G1, G2)+d(G′1, G3), or

there exists an inversion inv(l1, l2) such that for G′1 = inv(l1, l2)◦G1, d(G′1, G2) +

d(G′1, G3) < d(G1, G2) + d(G′1, G3), then s′ = {G′1, G2, G3}.

Here is the idea behind δ(s): We start from the furthest GCSP and try to find a

rearrangement which gets this GCSP closer to other two GCSPs. If we can not find

such a rearrangement from the furthest, then we try to find such rearrangements from

other two GCSPs in the order imposed by fs. If no such rearrangement exists from the

other two GCSPs, we apply a rearrangement to the furthest GCSP such that it gets

closer to one of other two GCSPs.

Goal Test Given a state s with three GCSPs G1, G2, G3 and a distance function

from set of all pairs of GCSPs to N, s is a goal state if and only if d(G1, G2) = 0,

d(G1, G3) = 0 and d(G2, G3) = 0.

Once we model the median genome problem as a search problem, we can decide

for the search strategy. Here, we developed an algorithm based on the Greedy Best-
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First Search (GBFS) strategy. For a state s with GCSPs G1, G2, G3 we determined

f(s) = h(s) = d(G1, G2) + d(G1, G3) + d(G2, G3).

Our algorithm for solving the median genome problem is described in Algorithm 4:

Algorithm 4 Median Algorithm

Input: Three GCSPs G1, G2, G3, distance function d
Output: G: Median of input genomes
1: while G1 6= G2 ∨G2 6= G3 ∨G1 6= G3 do
2: /*Order GCSPs with respect to fs */
3: G′1 ← maxg∈L{

∑
g′∈L d(g, g′)}

4: G′2 ← maxg∈L\{G′
1}{
∑

g′∈L d(g, g′)}
5: G′3 ← L\{G′1, G′2}
6: if Find a rearrangement ρ s.t. d(ρ◦G′1, g) < d(G′1, g) for all g ∈ L\{G′1} /*Try to

find a rearrangement for the furthest GCSP, making it closer to other two*/ then
7: G′1 ← ρ ◦G′1
8: else if Find an event ρ s.t. d(ρ ◦G′2, g) < d(G′2, g) for all g ∈ L\{G′2} /*Else try

to find a rearrangement for the second furthest GCSP, making it closer to other
two*/ then

9: G′2 ← ρ ◦G′2
10: else if Find an event ρ s.t. d(ρ ◦ G′3, g) < d(G′3, g) for all g ∈ L\{G′3} /*Else

try to find a rearrangement for the third furthest GCSP, making it closer to other
two*/ then

11: G′3 ← ρ ◦G′3
12: else/*Else find a rearrangement for the furthest GCSP, making it closer to one

of others */
13: G′1 ← ρ ◦G′1 where,
14:

∑
g∈L\{G′

1}
d(ρ ◦G′1, g) <

∑
g∈L\{G′

1}
d(γ ◦G′1, g), for all events γ

15: end if
16: G1 ← G′1
17: G2 ← G′2
18: G3 ← G′3
19: end while
20: G← G1

4.4 Theoretical Results

First, we show that Algorithm 4 terminates, then we give some results about the op-

timality of its solutions and lastly we analyze asymptotical time complexity of the

algorithm.
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Termination Our main aim here is to show the following result:

Proposition 6. Algorithm 4 is guaranteed to terminate.

We need the following two lemmas to prove Proposition 6:

Lemma 1. Let G1 and G2 be two GCSPs of length n. There exists a finite sequence of

rearrangements that transform G1 to G2.

Proof. For all integers 1 ≤ k ≤ n, if the orientation of k is different between G1 and

G2, then we apply an inversion on G1 that only changes the sign of k. Then, in finite

number of steps, all labels get the same sign. Now, since all labels have the same sign,

one can iteratively apply appropriate transpositions on G1 to obtain G2. More precisely,

let (l1, l2) be consecutive labels in G1 and (l1, l3) be consecutive elements in G2. Then,

applying trp(l1, l3, l3) on G1 heals the (l1, l2) breakpoint.

Lemma 2. Let G1 and G2 be any two GCSPs of length n. Then, for d = dE or d = dBP

there exists a rearrangement that reduces the distance d(G1, G2) if d(G1, G2) > 0.

Proof. Let us first prove this lemma for the event distance function. We know that there

exists a sequence of rearrangements that transforms G1 to G2 by Lemma 1. Pick one

of these sequences such that number of rearrangements is minimum (i.e., dE(G1, G2)

is minimum). Since dE(G1, G2) > 0, sequence contains at least one rearrangement.

Then, applying the first rearrangement ρ to G1 should reduce the event distance since

we know dE(G1, G2)− 1 length sequence from ρ ◦G1 to G2.

Now, we show this for the breakpoint distance function. For some a, a′, b ∈ {−n,
...,−1, 1, ..., n}, let (a, b) be adjacent in G1 and (a, a′) be adjacent in G2. Without loss

of generality, assume that a is positive. Then, there are two cases for a′: for some

c, d ∈ {−n, ...,−1, 1, ..., n}, G1 contains two consecutive elements (−a′, d) or a strip

(a′, ..., c) where a′ and c are the ends of the strip.

For the first case, consider inversion inv(b,−a′). Clearly, (a, b) and (−a′, d) are

breakpoints inG1 . inv(b,−a′) heals (a, b) breakpoint with (a, a′). Therefore, dBP (G1, G2)

reduces at least by one.

For the second case, consider transposition trp(b, a′, c). Note that (a, b), clock-

wise adjacency of a′ and counter-clockwise adjacency of c are all breakpoints of G1.

trp(b, a′, c) heals (a, b) breakpoint by replacing it with (a, a′). Therefore, d(G1, G2)

reduces at least by one.

Consequently, for all G1, G2 there exists a rearrangement that reduces dBP (G1, G2).
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Proof of the Proposition 6. Loop containing lines 2-19 terminates when all of the three

GCSPs become identical to each other. So, we need to show that GCSPs become

identical inside this loop (lines 16-18). Let K = d(G1, G2) + d(G1, G3) + d(G2, G3).

Observe that the three GCSPs are identical if and only if K = 0. We will show that if

K 6= 0, then K decreases at each iteration.

At each iteration, Algorithm 4 executes lines 6-7 or 8-9 or 10-11 or 12-14. If it

executes 6-7, it should have found a rearrangement that makes the furthest genome

closer to the other two genomes. Therefore, K decreases by at least 2 in the next

state. Similar reasoning applies for lines 8-9 and 10-11 and K decreases by at least

2. If none of above lines are executed Algorithm 4 executes 13-14. In these lines,

it tries to find a rearrangement that makes the furthest GCSP the closest to one of

the others. By Lemma 2 we know that there exists a rearrangement that makes the

furthest genome closer to any other GCSP. We can just pick the one which makes them

the closest. Consequently, K decreases by at least one. Considering all the cases, K

strictly decreases at each iteration.

Since K > 0, the loop is guaranteed to terminate in finite number of steps. After

the while loop terminates, rest of algorithm executes just a simple assignment on line

20. Therefore, the algorithm is guaranteed to terminate.

Optimality Suppose that d = dE.

Proposition 7. Let G be the output GCSP of Algorithm 4 for the input GCSPs G1, G2

and G3 and M be the median of G1, G2, G3. Then,
∑3

i=1 dE(Gi, G) ≤ 3
∑3

i=1 dE(Gi,M).

We need the following lemma to prove Proposition 7.

Lemma 3. Let G1, G2 and G3 be the input GCSPs, and G be output of Algorithm

4. The number of iterations of the loop starting at line 1, is greater than or equal to∑3
i=1 dE(Gi, G).

Proof. Algorithm 4 picks one of the three GCSPs at each iteration, and applies one

rearrangement to it until GCSPs become identical. Therefore, the number of iterations

are the same as the total number of rearrangements applied to the input GCSPs. Now,

pick one of the input GCSPs, say G1, and consider the number of rearrangements

applied to this GCSP by our algorithm. It should not be less than dE(G1, G) since

dE(G1, G) is the minimum length sequence transforming G1 to G. Therefore, the total

number of rearrangements and iterations can not be less than
∑3

i=1 dE(Gi, G).

36



Proof of Proposition 7. Let dC , dM and dG be defined as follows:

dM =
3∑
i=1

d(Gi,M)

dG =
3∑
i=1

d(Gi, G)

dC = d(G1, G2) + d(G2, G3) + d(G1, G3).

Without loss of generality, assume that dG1G2 is the largest pairwise distance among

the input GCSPs. We have shown a lower bound for dM previously in (4.4) (Section

4.1:
dC
2
≤ dM . (4.5)

Although dG1G2 is the longest distance, it obeys the triangle inequality. Therefore:

d(G1, G2) ≤ d(G2, G3) + d(G1, G3)

We can add d(G1, G2) to the both sides of the inequality and obtain:

d(G1, G2) ≤
dC
2

(4.6)

From (4.6) and (4.5), we obtain:

d(G1, G2) ≤ dM (4.7)

Now, we will try to put an upper limit on dF . By Lemma 3 we know that the number

of iterations of algorithm is not less than dG, and dC is not less than the number of

iterations since algorithm reduces dC by 1 or 2 at each iteration, until it becomes 0.

Consequently:

dG ≤ dC . (4.8)

However, we know that dG1G2 is the largest pairwise distance among input genomes,

therefore :

d(G1, G2) ≥ d(G1, G2)

d(G1, G2) ≥ d(G1, G3)
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d(G1, G2) ≥ d(G2, G3)

Then, from above three inequalities and (4.8), we obtain:

d(G1, G2) ≥
dG
3

(4.9)

From (4.9) and (4.7), we obtain:

dG ≤ 3dM (4.10)

According to (4.10), the median distance of G1, G2, G3 with respect to the output of

Algorithm 4 can not be more than three times the median distance of the optimal

solution.

Complexity Now, we give some results about computational complexity of the algo-

rithm. Complexity of the algorithm depends on our choice of the distance function d.

Therefore, we will prove our complexity results separately for the event distance and

breakpoint distance.

Proposition 8. If d = dBP , then Algorithm 4 has complexity O(n4) where n is the

length of input and output GCSPs.

Proof. The asymptotical time complexity of the algorithm depends on the loop running

through lines 1-19. This loop runs until all GCSPs become identical. Initially, the

breakpoint distance between two GCSPs can not be more than n since each GCSP has

n consecutive labels. Therefore, K = dBP (G1, G2) + dBP (G1, G3) + dBP (G2, G3) ≤ 3n.

As we show in Proposition 6 K decreases by at least 1 for each iteration, and the loop

terminates when K = 0. Consequently, while loop iterates O(n) times.

Now, we will analyze complexity of statements inside the loop. Lines 3-5 and 16-18

take constant time. Lines 6\8\10 and 12 generate possible rearrangements. Since a

transposition operates on three points on GCSPs, and any chosen triple inside a GCSP

constitutes a transposition, there are O(n3) transpositions. Similarly, an inversion

operates on two points and thus there are O(n2) inversions. Consequently, there are

O(n3) possible rearrangements. For each rearrangement, the algorithm checks whether

this rearrangement makes two GCSPs closer. We can check in constant time the change

in the number of breakpoints between two GCSPs by considering the operation points of

the applied rearrangement. Consequently, lines 6\8\10\12 have O(n3) time complexity.
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Lines 7\9\11\13-14 take constant time since they are simple assignments and arithmetic

operations. As a result, the time complexity of the while loop is O(n3).

Since the loop iterates O(n) times and each iteration has O(n3) complexity, Algo-

rithm 4 has O(n4) computational complexity.

Now we can prove a similar result for the event distance function.

Proposition 9. If d = dE, then Algorithm 4 performs O(n4) event distance calculations

where n is the length of the input and output GCSPs.

Proof. The event distance calculations are performed inside the loop running through

lines 1-19. This loop runs until all genomes become equal. Initially, event distance

between two GCSPs can not be more than 2n since we can convert one GCSP into

another in 2n steps by applying the procedure explained in Lemma 1. Therefore,

K = dBP (G1, G2) + dBP (G1, G3) + dBP (G2, G3) ≤ 6n. As we show in Proposition 6

K decreases by at least 1 for each iteration, and the loop terminates when K = 0.

Consequently, the while loop iterates O(n) times.

Now, we will analyze the statements inside the loop. The distance function is used in

lines 6\8\10 and 12. These lines generate possible rearrangements. As stated in the pre-

vious proof, we can generate O(n3) transpositions and O(n2) inversions from a GCSP.

Consequently, there are O(n3) possible rearrangements. For each rearrangement, the

algorithm checks whether this rearrangement makes two GCPSs closer. Therefore, we

need to compute the event distance for the two GCSPs. Consequently, lines 6\8\10\12

have O(n3) distance function calculation.

Since the loop iterates O(n) times and each iteration has O(n3) event distance

calculations, our algorithm has O(n4) event distance calculations.

4.5 MedianSEARCH Implementation

We implemented our algorithm as a software named MedianSEARCH. It can solve

the median genome problem for both the breakpoint distance and the event distance

functions.

For this algorithm, we represented GCSPs as linked lists with integer keys. With

this data structure, given labels we could apply a transposition or an inversion in linear

time by changing the appropriate pointers and signs of integers.
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Moreover, generating all possible inversions and transpositions is easier by iterating

over linked list. To explain generation of the rearrangements we need two observations.

For any GCSP G, split G into two disjoint strips s1 and s2 such that each strip si

has the first element ai and the last element bi in the clockwise direction (see Figure

4.5) . Then, it can be observed that inverting s1 yields the same resulting GCSP with

inverting s2. Therefore, resulting GCSP of any inversion on G can be obtained by

inverting a segment of which length is not more than half of the length of G.

s1

s2

a1 b1a2
b2

s1

s2

s1

s2

     
  in

v(a1,b
1)

        inv(a
2 ,b

2 )

Figure 4.1: Inversion symmetries on a GCSP G. Inverting segment s1 on G yields G1

and inverting segment s2 on G yields G2. G1 and G2 are the mirror reflections of each
other. Therefore they are the same.

Similarly, split G into three disjoint strips t1, t2 and t3 such that each strip ti has

the first element ai and the last element bi in the clockwise direction (see Figure 4.5).

Then, it can be observed that shifting t2 to the counter-clockwise adjacency of t1 by a

transposition yields the same resulting GCSP with shifting t3 to the counter-clockwise

adjacency of t2 by a transposition and shifting t1 to the counter-clockwise adjacency

of t13 by a transposition. Therefore, resulting GCSP of any transposition on G can be

obtained by transposing a segment of which length is not more than one-third of the

length of G.

We keep two iterators it1 and it2 on elements of the linked list for generating in-

versions. Initially, both iterators are on the same element. We advance it2 until length

of the elements between it1 and it2 is the half length of the linked list. Each advance

of it2 generates a new inversion. it2 stops in the half way since same GCSP can be

generated later due to observation above. After the length of elements between it1 and

it2 becomes half of the length of the linked list, we advance it1 by one element and
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Figure 4.2: Transposition symmetries on a GCSPG. Shifting t2 to the counter-clockwise
adjacency of t1 yields G1. Shifting t3 to the counter-clockwise adjacency of t2 yields
G2. Shifting t1 to the counter-clockwise adjacency of t3 yields G3. G1, G2 and G3 are
rotated versions of each other. Therefore they are the same.

bring it2 to the same place with it1. We repeat the same procedure until it1 returns to

its original position.

We keep three iterators it1, it2 and it3 on elements of the linked list for generating

transpositions. Initially, it2 and it3 points to the clockwise adjacency of it1. We advance

it3 until length of the elements between it2 and it3 is the one-third of the length of the

linked list. Each advance of it3 generates a new transposition. it3 stops on this point

since same GCSP can be generated later due to the observation above. After the length

of elements between it2 and it3 becomes one-third of the length of the linked list, we

advance it2 by one element and bring it3 to the same place with it2. Same procedure is

repeated until it2 comes to the counter-clockwise adjacency of it1. Then, it1 is advanced

by one element and it2 and it3 is brought to the clockwise adjacency of it1. The whole

procedure is repeated until it1 comes to its initial position.

We keep three linked lists representing GCSPs for our current state. In each itera-

tion, we just change one of the linked-lists if an appropriate rearrangement is found.

Moreover, we only keep states of the fringe in the memory since the rearrangements

applied to the input GCSPs so far are not required for the output.
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The breakpoint distance between a GCSP and identity GCSP can be calculated

in linear time using linked lists. It can be achieved by traversing linked list once and

checking for each element whether its clockwise neighbor is the neighbor in the identity

GCSP or not. Therefore, BMP problem can be solved efficiently. In order to solve

AMP problem we need a tool to calculate the event distance with inversions and

transpositions. To measure the event distance, we used GenomeSEARCH software

(developed by Tansel Uras), which can solve genome rearrangement problem for circular

monochromosomal genomes without gene duplicates with inversions and transpositions.

Although GenomeSEARCH does not guarantee optimality (since it is based on a

greedy depth-first search algorithm), it is efficient. This is important because our

algorithm needs to calculate the event distance O(n3) times at each iteration, where n

is length of GCSPs of the current state.

4.6 Conclusion

In this section, we modeled the median search problem considering two distance mea-

sures between genomes: breakpoint and event distance. Then, we developed a search

algorithm to solve this problem and analyzed optimality and computational complexity.

We implemented this algorithm leading to a software named MedianSEARCH.
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Chapter 5

Phylogeny Reconstruction

A phylogeny is a leaf-labeled tree whose leaves represent current species, internal nodes

represent common ancestors and edges show genetic relations between species. Edges

maybe labeled as well by some shared traits of species e.g., with the gene order in a

genome or morphological character states. In this thesis, they represent evolutionary

distances between species based on a metric function.

In the following, we present formal description of the problem first. Then, we give

information about the recent work on the phylogeny reconstruction problem. Then, we

directly present our algorithms for solving the problem. We have developed two search

based algorithms based on the Greedy Best-First Search strategy. After analyzing

theoretical properties of these algorithms, we explain our implementation PhyloHS.

5.1 Problem Description

Before we give a definition of a phylogeny, let us recall unrooted full binary trees.

Definition 15 (Unrooted full binary tree). An unrooted full binary tree T is an unrooted

tree such that every node n ∈ T has degree three or one.

Then, a phylogeny is defined as follows:

Definition 16 (Phylogeny). A phylogeny for a given set G of GCSPs is an unrooted

full binary tree (V,E) with the set G L of leaves and a bijection fn that maps every

leaf in L to a GCSP in G. We denote a phylogeny with a tuple (V,E,G, L, fn).

Then, we define the phylogeny reconstruction problem as follows:
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Definition 17 (Phylogeny Reconstruction Problem). Let G denote the set of all pos-

sible GCSPs of {1, ..., n}. Given distance function d : G × G → N, the phylogeny

reconstruction problem is to find a phylogeny (V,E,G, L, fn) such that

D(T ) =
∑
π,σ∈V

d(π, σ)

is minimum.

This problem is called Multiple Genome Rearrangement Problem in [14]. Intuitively,

G denotes the given set of GCSPs, V \G denotes GCSPs of common ancestors and fn

maps given genomes in the set L to their GCSPs.

As a distance function d, we consider breakpoint and event distances as we did for

the median genome problem. Recall that for two GCSPs Π and Σ, dBP (Π,Σ) denotes

the breakpoint distance and dE(Π,Σ) denotes the event distance between Π and Σ. We

use d to denote dBP or dE.

Phylogeny reconstruction problem is referred as the large parsimony problem [64].

It is considered as a specific case of the full Steiner tree problem explained [32].

5.2 Related Work

The phylogeny reconstruction problem considering the breakpoint distance function

was introduced in [10] and [63]. Same problem considering the reversal distance, which

is the event distance with reversals only, is introduced in [45] and [14]. The former

problem is NP-Complete [53] whereas the latter problem is both NP-Complete and

APX-Hard [17].

There are three main approaches for solving the phylogeny reconstruction problem.

The distance based approach gets a distance matrix that estimates the path lengths

between pairs of the leaves of the phylogeny via given distance function, and infers a

tree topology from that matrix as to minimize the total distance of the phylogeny. The

distance matrix is based on the pairwise-distances of the input genomes. One of the

earliest studies using this approach [12] considers the breakpoint distance and constructs

phylogenies using the neighbor-joining method [60]. Later, this method has become the

most popular one for building phylogenies with the distance-based approach. However,

the initial pairwise-distances of the input genomes and the distance function plays

important roles for obtaining optimal results using the neighbor-joining method. In
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fact, the distance matrix should be additive or nearly additive[1]. Therefore, there exists

some studies for estimating distance matrix based on the pairwise-distances of input

genomes such as [77]. Another method to construct phylogenies using the distance based

approach is UPGMA [67]. This method constructs phylogenies assuming the molecular

clock hypothesis which states that the average rate of mutation is approximately same

for each species in a given time period. Therefore, two genomes that stem from a

common ancestor shall have the same event distance. However, the molecular clock

assumption is not correct for most cases. For instance, tube-nosed seabirds have one

half of the mutation rate of many other birds [57] and the mutation rates of many turtles

are approximately one-eighth of the mutation rate of small mammals [2]. Therefore,

constructing phylogenies with the molecular clock assumption for some species including

turtles or tube-nosed seabirds may produce unrealistic scenarios.

There is a phylogeny reconstruction software called phylip[31] based on these two

methods.

The second approach is based on direct optimization. The idea is to construct a

phylogeny from input genomes iteratively, by finding the common ancestors of some

genomes at each iteration, forming partial trees and connecting them with the goal

of minimizing the total distance of the phylogeny. One of the methods based on this

approach tries to find the internal nodes for each tree topology and leaf replacement,

by solving the median genome problems for the nodes adjacent to them and reducing

the cost of the adjacent edges [65]. Recently developed algorithm EMRAE uses a

similar technique [80, 81]. There are two phylogeny reconstruction software using this

method: GRAPPA(considers both the breakpoint and the reversal distances) [48, 47,

46]; BPAnalysis (considers the breakpoint distance) [63]. Another method based on

direct optimization constructs an initial small tree (i.e., with three nodes) and then

inserts the remaining leaves into this tree iteratively by “edge-splitting” [14]. To split

an edge, the median genome problem is solved for the vertices the edge and one of

the remaining leaves. Therefore, to find an “optimal” edge-splitting this method solves

large number of median genome problems. This method is implemented as a tool called

MGR; MGR considers reversal distance only.

The third approach uses statistical methods to reconstruct phylogenies. They model

rearrangements as stochastic processes and try to develop probabilistic evolution paths

for genomes. One of the studies models trees, edge lengths and the number of each re-

arrangement (inversion and transposition) for each as random variables [41]. It assumes
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that each possible tree topology is equiprobable, i.e., uniformly distributed. The length

of each edge is modeled as a gamma random variable and the number of rearrangements

for an edge is modeled as a Poisson distribution with mean equal to the length of this

edge. Then, a phylogeny is reconstructed using a Monte Carlo Markov Chain method.

Although the first and the third approaches are computationally efficient, con-

structed phylogenies by the first approach does not provide genomes of the ancestors (or

internal nodes of the phylogeny) and the third approach requires numerous parameters

for distributions of tree topologies, the lengths of edges in the phylogeny and operation

indices of the rearrangements such that small changes in these parameters results in

dramatic changes in the posterior probabilities of the resulting phylogenies. Therefore,

we preferred the direct optimization approach to develop solutions to the phylogeny

reconstruction problem.

5.3 Algorithms

We have developed two algorithms to solve the phylogeny reconstruction problem based

on the direct optimization approach.

Each of the algorithms uses our methods for solving the median genome problem

as explained in Chapter 4. In the following, Median denotes one of our algorithms

that solves the median genome problem depending on the distance function. We denote

the median distance of three GCSPs x, y, z with respect to a median s and a distance

function d that maps set of pairs of GCSPs to N, by wds(x, y, z) = d(x, s) + d(y, s) +

d(z, s). If s is the median of x, y, z; we denote wds(x, y, z) as wd(x, y, z) in short.

PhyloHS-1 Our first algorithm (Algorithm 5) is similar to that of [14] explained

above: They both construct phylogenies iteratively by applying edge-splitting. How-

ever, [14] considers only reversals whereas our algorithm considers both reversals and

transpositions since we have an efficient tool for solving the median genome problem

with reversals and transpositions.

First, Algorithm 5 constructs a phylogeny for three input GCSPs x, y, z so that

wd(x, y, z) is minimum (lines 3-8). Then, it iteratively inserts each remaining input

GCSP as a leaf of this phylogeny by applying an edge-split (lines 10-15). Splitting an

edge (u, v) by a vertex t replaces (u, v) with the (u, t′), (v, t′), (t, t′) where t′ is a new

vertex having same GCSP with t. When Algorithm 5 inserts one of the remaining input

GCSP into the phylogeny, it finds out which edge (u, v) of the phylogeny to split by
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input GCSP, say t (line 10), by solving the median genome problem for u, v, t, and by

considering wd(u, v, t): the smaller wd(u, v, t), the better to split (u, v) by t. Then, all

three nodes (u, v, t) are connected to their median by new edges as explained above

(lines 12-15).

Algorithm 5 PhyloHS-1

Input: Set L of GCSPs G1, ..., Gk; a distance function d that maps from set of pairs
of GCSPs to N

Output: A phylogeny (V,E,G, L, fn)
1:

2: T ← ∅
3: Find x, y, z ∈ L s.t. wd(x, y, z) ≤ wd(x′, y′, z′), for all x′, y′, z′ ∈ L
4: m←Median(x, y, z)
5: m′ ← m
6: Add m,m′, x, y, z to T
7: Form edges (m,x),(m, y),(m′, z) and (m′,m) in T
8: Remove x, y, z from L
9: while L 6= ∅ do
10: Find x ∈ L and edge (y, z) ∈ T s.t. wd(x, y, z)−d(y, z) ≤ wd(x′, y′, z′)−d(y′, z′),

for all x′ ∈ L and (y′, z′) ∈ T
11: sxyz ←Median(x, y, z)
12: Insert x and sxyz to T .
13: Form edges (x, sxyz),(sxyz, y) and (sxyz, z) in T
14: Remove edge (y, z) from T .
15: Remove x from L
16: end while

We have shown that PhyloHS-1 terminates.

Proposition 10. For a set L of GCSPs, a distance function d, PhyloHS-1 terminates.

Proof. In Proposition 6, we have shown that Algorithm 4 is guaranteed to terminate.

Therefore, we can safely state that Median function in the PhyloHS-1 is guaranteed

to terminate (line 4).

Now, consider the lines 5-9. Algorithm 5 executes these lines sequentially exactly

once; they terminate.

Last thing to show to prove that the loop running through 9-16 terminates. First

consider line 10. Since it is inside the loop, L is not empty. Hence, we can find x ∈ L.

Moreover, T has some edges due to line 7. Although line 14 removes an edge, line 13

adds some more before it. Therefore, at each iteration of line 10, we can find (y, z) ∈ T .

Again, line 10 searches for x, y, z such that wd(x, y, z) is minimum and it can be found

by the well-ordering principle. Lines 11-14 perform some changes on the phylogeny.
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In line 15 a GCSP is removed from L and consequently its size reduces by one. Since

the execution of each line inside the loop terminates, and the number of elements of L

reduces by one at each iteration, the loop eventually terminates by finite-descent.

We have analyzed the asymptotical time complexity of Algorithm 5, in terms of

calls to Median, since it is the most expensive part of the algorithm. we have given

results about computational complexity of this function for various distance measures

in Section 4.4, we just give a result on number of calls to Median function.

Proposition 11. For a given set of k GCSPS, PhyloHS-1 calls Median O(k3) times.

Proof. Median function is called in lines 4 and 11 explicitly. The former is executed

only once and the latter is executed O(k) times since the loop containing line 11 iterates

O(k) times.

However, there is some implicit calls to Median in PhyloHS-1 while computing

wd. Therefore, median function is called for lines 3 and 10.

First consider line 3. It calls Median for every triple in L. Therefore,
(
k
3

)
—which

is O(k3)— calls to Median are performed in line 3.

Then, consider each iteration of line 10 and let Ti = (Vi, Ei) and Li represent

the parts of T and L constructed at iteration i, respectively. At the first iteration,

|L1| = k−3 and |E1| = 4. Therefore, line 10 performs 4(k−3) calls to Median. Since,

|Li+1| = |Li|−1 due to line 15 and |Ei+1| = |Ei|+2 due to lines 13\14; line 10 performs

6(k−4) calls in the second iteration and so on. Consequently, the total number of calls

to Median in line 10 is as follows:

k−1∑
i=3

(k − i)(2k − 2)

which can be bounded from above as follows:

k−1∑
i=3

(k − 1)(2k − 2) <

k−1∑
i=3

k(2k − 2)

<

k−1∑
i=1

2k(k − 1)

= k2(k − 1)

Consequently, Median is called O(k3) times in Line 10. Both lines, 3 and 10, call

Median O(k3) times.
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PhyloHS-2 We have developed another algorithm, called PhyloHS-2 (Algorithm

6), to solve the phylogeny reconstruction problem. This algorithm can be considered

as an extension of PhyloHS-1 . However, PhyloHS-2 constructs a rooted full binary

tree. Then we can obtain an unrooted tree from rooted tree by removing the root.

PhyloHS-2 initially perceives each input GCSP as a partial phylogeny with one

root in a forest F (lines 2\3). Then, it tries to merge the phylogenies by solving the

median genome problems iteratively, over x, y, z such that

• C1(x, y, z): x, y, z are the roots of three distinct partial phylogenies in F , or

• C2(x, y, z): x is the root of one partial phylogeny in F and (y, z) is an edge in

another partial phylogeny in F ,

until there is only one phylogeny left (lines 5-16).

At each iteration, PhyloHS-2 finds three GCSPs x, y, z in F such that C1(x, y, z)

or C2(x, y, z) holds, and wd(x, y, z) is the minimum (line 5). Then, it solves the median

genome problem for x, y, z (line 7 or 14) and connect them to their median by forming

new edges (lines 8-12 or 15). Consequently one phylogeny remains in F that is the

output of PhyloHS-2 .

Proposition 12. For a finite set L of GCSPs, PhyloHS-2 terminates.

Proof. Proof is similar to the proof of Proposition 10.

Each iteration of the while loop is guaranteed to terminate. Consider the size of F

during iterations. If the block containing lines 6-12 is executed, the size of F reduces by

2 (line 11) and if the block containing lines 13-16 is executed then, the size of F reduces

by 1 (line 15). Therefore, the size of F reduces by at least one at each iteration. Since

|F | ∈ N, |F | = 1 after finitely many iterations. Consequently, the while loop terminates

after finitely many steps.

We have analyzed the computational complexity of Algorithm 6 also by means of

the number of calls to Median.

Proposition 13. For a given set of k GCSPs PhyloHS-2 calls Median O(k4) times.

To prove Proposition 13 we need the following lemma:

Lemma 4. Each iteration of the while loop in PhyloHS-2 increases the total number

of edges in F by at most by four.
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Algorithm 6 PhyloHS-2

Input: Set L of GCSPs G1, ..., Gk; a distance function d that maps from set of pairs
of GCSPs to N

Output: A phylogeny (V,E,G, L, fn)
1:

2: F ← ∅
3: Insert each element of L to F as a tree with root itself.
4: while |F | 6= 1 do
5: Find a genome triple (x, y, z) such that C1(x, y, z) or C2(x, y, z) and that
wd(x, y, z) ≤ wd(x′, y′, z′), for all (x′, y′, z′) such that C1(x

′, y′, z′) or C2(x
′, y′, z′)

6: if C1(x, y, z) then
7: sxyz ←Median(x, y, z)
8: Find i ∈ {x, y, z} s.t. d(i, sxyz) ≥ d(j, sxyz), for all j ∈ {x, y, z}
9: Let i′ and i′′ be remaining elements in {x, y, z}\{i}
10: s2 ← median(sxyz, i

′, i′′)
11: Merge trees in F containing x,y and z by adding edges (sxyz, i), (sxyz, s2),

(s2, i
′) and (s2, i

′′)
12: mark sxyz as root
13: else if C2(x, y, z) then
14: sxyz ← median(x, y, z)
15: Merge trees containing x and edge (y, z) by adding (y, sxyz), (sxyz, z) and

(sxyz, x) and removing (y, z)
16: end if
17: end while
18: T ← F [1]

Proof. At each iteration of the while loop, either the if block containing lines 6-12 or

else if block containing lines 13-15 is executed. The former increases the total number

of edges in F by four due to line 11. the latter increases the number of edges in F

by two due to line 15. Since these are the only lines in the while loop that effects the

number of edges in F , the number of edges in F increases by at most four.

Proof of Proposition 13. Median function is called in PhyloHS-2 in two places: line

7 and 14. At each iteration of the while loop, either line 7 or 14 is executed due to

the if-else if block. The while loop iterates at most k times, since initially |F | = k and

at each iteration |F | reduces by at least one. Therefore, Median function is called at

most O(k) times.

Besides this apparent calls, line 5 makes implicit calls to Median. Line 5 tries to

find a GCSP triple satisfying C1 or C2 such that its w value is minimum among other

triples satisfying conditions. Calculation of w is done via solving the median genome

problem for all such triples. Therefore, Median is called multiple times at line 5. Let
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us examine the number of triples satisfying C1 and C2 at each iteration separately.

We begin with C1. At the first iteration, |F | = k. Therefore,
(
k
3

)
possible triples

satisfy C1 since each root of a tree is a candidate for the triple. We know that |F | reduces

by at least one for each iteration. Therefore, the total number of triples satisfying C1

is
(
k
3

)
+
(
k−1
3

)
+ ...+

(
3
3

)
. Then, the following holds:

k∑
i=3

(
i

3

)
=

k∑
i=0

(
i

3

)
=

(
k + 1

4

)
=

(k + 1)k(k − 1)(k − 2)

4!

Therefore, Median function is called O(k4) times for triples satisfying C1.

Now, we do a similar calculation for C2. C2 requires choosing an edge and a root

from distinct trees in F . Since we are looking for an upper bound, we can remove the

restriction that the edge and the root must come from distinct trees. Initially, there

can be four edges at most and k roots at least in F . Therefore, the number of triples

satisfying C2 is less than or equal to 4k. By Lemma 4 we know that at each iteration,

the total number of edges increase by at most four and |F | reduces by at least one.

Therefore, the number of triples satisfying C2 in the second iteration is 8(k− 1). Then,

then total number of triples satisfying C2 is:

k−1∑
i=1

4i(k − i+ 1) ≤ 4k
k−1∑
i=1

i = 2k2(k − 1).

Therefore, the total number of triples satisfying C2 is O(k3).

Regarding the total number of calls for both C1 and C2, line 5 calls Median function

O(k4) times and this is also true for the PhyloHS-2 algorithm since line 5 is the one

which calls Median the most.

Some Remarks: Note that both PhyloHS-1 and PhyloHS-2 are essentially are

Greedy Best-First Search Algorithms. States can be viewed as sets of partial phyloge-

nies. Given a set of phylogenies F in a state s, the successor function generates a set

of set of phylogenies that can be obtained by all possible edge-splittings for all pairs

of partial phylogenies in F or by all possible root-joinings for all triples of partial phy-

logenies in F . In this model, a goal state is a state with a single phylogeny of which

leaves contains all of the input GCSPs. With this search model for a state s with a set

of phylogenies F = {F1, ..., Fk}, our algorithms utilize greedy best-first search strategy

with h(s) =
∑

Fi∈F D(Fi) where D is defined as in Definition 17.
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5.4 PhyloHS

We implemented our phylogeny reconstruction algorithms in C++. The implementation

called PhyloHS . PhyloHS utilizes GenomeSearch, developed by Tansel Uras, to

calculate the event distances.

To increase the efficiency of the algorithms, we used linked-lists to represent GCSPs

to be consistent with MedianSEARCH described in Section 4.5. Since our phylogeny

reconstruction algorithms call frequently the Median function of which implementation

is MedianSEARCH which represents GCSPs with linked-lists, GCSPs can be easily

passed as parameter to MedianSEARCH using linked-lists.

To implement PhyloHS-1 , we maintained a heap to store possible edge-splitting

events. Each element of the heap contains a GCSP representing the median GCSP of

three GCSPs, a pointer to those three GCSPs and the median distance of those GCSPs.

The heap is constructed with respect to the median distances. Therefore, finding the

edge-split that leads to the minimum median distance takes constant time and inserting

a new element takes proportional time to size of the heap.

PhyloHS-1 also utilizes the heap to reduce the number of calls to the Median.

New elements (medians) are inserted to the heap by calling Median in two places:

after constructing initial phylogeny (after line 8) and after adding an element of L to

the existing phylogeny (after line 15). Basically, new elements are inserted to the heap

after new edges are formed in the phylogeny such that all possible medians that can be

formed by edge-splitting between the remaining elements of L an and the newly formed

edges.

Although all calls to the Median in line 3 still have to be done, there is no need

to call Median in line 10 anymore since the heap that returns the minimum median

distance valued GCSP triples along with their median and median distance. Therefore,

we need to consider calls to the Median in lines 3, 8 and 15 to find out the total

number.

Line 3 still calls the Median
(
k
3

)
times as before, where k is the initial length of

L (see Proposition 10). Since there are four new edges in the phylogeny and k − 3

elements are left in L, line 8 calls the Median 4(k− 3) times. Therefore, total calls to

the Median before the while loop does not change asymptotically.

However, using the heap changes the number of calls to the Median inside the while

loop from k2(k− 1) (see Proposition 10) to 2(k− 4)(k− 3). At iteration i, 4 new edges

are formed and L contains k− i−3 elements since initial phylogeny is constructed with

52



three elements from L and one element is joined to the phylogeny after each iteration.

Therefore, there are 4(k − i − 3) calls to the Median after ith iteration. In total, the

while loop iterates k − 4 times (since |L| decreases by one at each iteration due to

Proposition 10) and the PhyloHS-1 calls the Median

k−4∑
i=1

4(k − i− 3) = 2(k − 3)(k − 4)

times inside the while loop. This reduces the number of calls to the Median inside the

loop from O(k3) to O(k2).

For the implementation of PhyloHS-2 , we keep the same heap structure. We

represent partial phylogenies in F as a collection of nodes which contains a linked-list

(representing the GCSP in this node) and two node pointers (representing two children).

Besides that we represent L and F together as a vector of pairs of a linked-list and a node

where the linked-list represents a GCSP in L and node-pointer represents the partial

phylogeny with root this GCSP. This partial phylogenies contain a single node which

are elements of L at the beginning. As phylogenies merge, we connect phylogenies via

node-pointers inside the nodes and remove elements with an empty phylogeny. This

data structure enables us to access an element in L and the corresponding partial

phylogeny together.

Usage of the heap structure reduces number of calls to the Median function asymp-

totically from O(k4) (see Proposition 13) to O(k3) for some input set L of k input

GCSPs.

Using the heap, Algorithm 6 could execute line 5 without calling the Median, since

elements of the heap contains median of the three GCSPs and the median distance.

However, a new median is inserted to the heap by calling the Median for each newly

created edge, newly formed root and for all possible root triples containing this newly

formed root at each iteration. Inside the while loop of Algorithm 6, either the block

between lines 7-12 or the block between lines 14-15 are executed. The former block

merges three phylogenies, forms a new root and three new edges whereas the latter

block merges two trees, generates a new root node and forms three new edges.

Consider the ith iteration of the while loop in Algorithm 6. There are at most

4i edges in F , at most 4 of them are formed in this iteration due to Lemma 4 and

|F | ≤ k− i due to proof of Proposition 13. Therefore, there are at most 4i new medians

are added to the heap due to all possible edge-splittings of the newly formed root by
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the block between lines 14-15, 4(k − i) new medians are added to due to all possible

edge-splittings of the newly formed four edges by the block between lines 14-15, and(
k−2
3

)
new medians are added due to all possible three root joinings containing the

newly formed root by the block between lines 7-12. Since we know that the while loop

in Algorithm 6 iterates k − 1 times at most (see proof of Proposition 13), at most

k−1∑
i=1

(
k − i

2

)
+ 4(k − i) + 4i =

(
k

3

)
+ 4k(k − 1)

medians are inserted to the heap in total. Therefore, total calls to the Median is

O(k3).

5.5 Experimental Results

We performed experiments with two real data sets:Metazoan and Campanulaceae. Meta-

zoan data set contains 11 monochromosomal, circular genomes with 36 genes without

gene repetition. This data set contains mitochondrial genomes of two nematodes, an

annelid, three mollusca, two arthropods, two echinoderms and a chordate (human).

Campanulaceae data set contains 13 monochromosomal, circular genomes with 105

genes without gene duplication. This data set contains chloroplast genomes of species

from “hare bell” or “bellflower” family.

We tested PhyloHS-1 considering the event distance and the breakpoint distance.

PhyloHS-2 is implemented with the event distance measure.

Metazoan Phylogenies

• The phylogeny computed by PhyloHS-1 (event distance) is shown in Figure

5.1. The phylogeny can be represented in Newick format as follows: (((((((Hu-

man,Katharina tunicata ),Lumbricus terrestris),(Cepaea nemoralis, Albinaria coerulea

)),(Asterina pectinifera, Paracentrotus lividus )),(Onchocerca volvulus, Ascaris

suum )),Drosophila yakuba ),Artemia franciscana )

• The phylogeny computed by PhyloHS-1 (breakpoint distance) is shown in Fig-

ure 5.2. The phylogeny can be represented in Newick format as follows: (Ascaris

suum, ((Drosophila yakuba, (((((((Artemia franciscana, Paracentrotus lividus

),Cepaea nemoralis ),Lumbricus terrestris),Asterina pectinifera),Albinaria coerulea

),Onchocerca volvulus ),Katharina tunicata )),Human))
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Figure 5.1: Metazoan phylogeny constructed by PhyloHS-1 using the event distance

Figure 5.2: Metazoan phylogeny constructed by PhyloHS-1 using the breakpoint
distance

• The phylogeny computed by PhyloHS-2 (event distance) is shown in Figure

5.3. The phylogeny can be represented in Newick format as follows:((Human,

Drosophila yakuba),(((Artemia franciscana, Asterina pectinifera),(Onchocerca volvu-

lus, (Ascaris suum, Paracentrotus lividus ))),(((Albinaria coerulea, Katharina tu-

nicata ), Lumbricus terrestris), Cepaea nemoralis )))

Let us compare these results with the other phylogenies represented in the literature.
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Figure 5.3: Metazoan phylogeny constructed by PhyloHS-2 using the event distance

Table 5.1 compares whether species of same phylum are collected correctly:

For this data set, another important issue is grouping of a Mollusc called Katharina

Tunicata (KT). None of the algorithms could group it with other Mollusca in the data

set. Uras [73] and Blanchette(1)[13] groups KT with an annelid. Bourque’s method

firstly combines other mollusca with annelid and then they are combined with KT [14].

Blanchette(2) firstly goups chordate with arthropods, then they are combined with KT

[13]. PhyloHS-1 with the event distance combines KT with chordate. PhyloHS-1

with the breakpoint distance groups KT with a chordate an annelid and nematode.

PhyloHS-2 combines KT with another mollusc.

Campanulaceae Phylogenies

• The phylogeny computed by PhyloHS-1 (event distance) is shown in Figure

5.4. The phylogeny can be represented in Newick format as follows:((Trachelium,

(Campanula, (Adenophora, (((Tobacco, Platycodon), Codonopsis), Cyananthus)))),

((Symphyandra, (Wahlenbergia, Merciera)),( Legousia, (Triodanus, Asyneuma))))

• The phylogeny computed by PhyloHS-1 (breakpoint distance) is shown in Figure

5.5. The phylogeny can be represented in Newick format as follows: (Platycodon,
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Table 5.1: Comparison of phylogenies on Metazoan data set with recent results with
respect to correct matching of the species in the same phylum. PhyloHS-1 (a) refers
to PhyloHS-1 with the event distance, PhyloHS-1 (b) refers to PhyloHS-1 with
the breakpoint distance. Blanchette (1) and (2) refers to Figures 4.a and 4.b in [13]
respectively.

Algorithm Echinodermata Nematoda Arthropoda Mollusca

PhyloHS-1 (a) X X X X
PhyloHS-1 (b) X X X X
PhyloHS-2 X X X X
Bourque [14] X X X X
Blanchette (1) [13] X X X X
Blanchette (2) [13] X X X X
Uras [73] X X X X

Figure 5.4: Campanulaceae phylogeny constructed by PhyloHS-1 using the event
distance

((Asyneuma, Triodanus), (Legousia,(( Trachelium,((((( Symphyandra, Codonop-

sis), Wahlenbergia), Tobacco), Merciera), Cyananthus)), (Campanula, Adenophora)))))

• The phylogeny computed by PhyloHS-2 (event distance) is shown in Figure

5.6. The phylogeny can be represented in Newick format as follows: ((Trache-

lium, (Campanula, Platycodon)), ((Symphyandra, Codonopsis), (Adenophora,

((Tobacco, (Wahlenbergia,Asyneuma)), ((Legousia, (Cyananthus, Triodanus)),

Merciera)))))
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Figure 5.5: Campanulaceae phylogeny constructed by PhyloHS-2 using the breakpoint
distance

Figure 5.6: Campanulaceae phylogeny constructed by PhyloHS-1 using event distance

Let us compare these results with the other phylogenies represented in the literature.

For Campanulaceae data set [14] and [26] give exactly same trees. However, tree of

[27] is constructed via sequence analysis and it is slightly different than first two. [74]

is mostly in accordance with first two.

PhyloHS-1 with the event distance groups Wahlenbergia and Merciera together;

Legousia, Asyneuma, Triodanus together and Codonopsis, Cyananthus Platycodon and

Tobacco together; Trachelium, Campanula and Adenophora together as in the [14],
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[26] and [73]. However, grouping of Symphyandra, with Trachelium, Campanula and

Adenophora does not occur like in other algorithms.

PhyloHS-1 with the breakpoint distacne could only group Campanula and Adenophora

together; and Legousia, Asyneuma and Triodanus together. Rest of the tree is not in

accordance with [14], [26] or [27]. However, grouping of Legousia, Asyneuma and Trio-

danus is more similar to [14] and [26] than [73].

PhyloHS-2 groups Wahlenbergia and Asyneuma together;Codonopsis, and Sym-

phandra together; and Triodanus and Cyananthus together. Location of Tobacco, Cam-

panula, Trachelium and Platycodon do not match with [14], [26] or [27].

5.6 Summary of Contributions

We introduced two algorithms PhyloHS-1 and PhyloHS-2, to reconstruct phylo-

genies, utilizing the two algorithms for the genome rearrangement problem and the

median genome problem. PhyloHS-1 differs from PhyloHS-2 in that PhyloHS-

1 constructs phylogenies by edge-splitting only, whereas PhyloHS-2 considers both

edge-splitting and joining three phylogenies together from their roots.

We analyzed the complexity of these algorithms and proved their termination. We

implemented these algorithms leading to software named as PhyloHS .

We tested PhyloHS with two real data sets: Mitochondrial genomes of Metozoan

species and chloroplast genomes of species from Campanulaceae family. According to

the results PhyloHS-1 using event distance constructs phylogenies similar to recent

and mostly accepted phylogenies for both Metozoan and Campanulaceae data set.
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Chapter 6

Conclusion

In this thesis, we studied three well-known computational biology problems. We have

developed solution algorithms using heuristic search strategies from Artificial Intelli-

gence. We implemented and tested algorithms with real and simulated data sets. Main

contributions of this thesis can be summarized as follows:

• We modeled the genome rearrangement problem for circular monochromosomal

genomes without duplicate genes using inversion and transpositions. We devel-

oped an algorithm for this problem based on the A∗ search strategy. We utilized

the heuristic function h as one-third of the number of breakpoints of the GCSP

inside the states. We have shown that this heuristic function is monotonic and

therefore our A∗ search finds optimal solutions. Moreover, we introduced two

restrictions R1 and R2 on the successor function to improve time efficiency of the

algorithm. We have shown that R1 does not violate optimality whereas, incorpo-

rating R2 may lead to suboptimal solutions. We implemented our algorithms as

a tool called GenomeSEARCH-A∗ using a new data structure for representing

the GCSPs which allows application of inversions and transpositions in constant

time. We experimented our algorithm with simulated data sets and tested effect of

our restrictions, compared different heuristic search strategies A∗ and IDA∗; and

compared computation time of our tool with existing software GenomePLAN.

• We modeled the median genome problem as a search problem and developed an

algorithm to solve this problem for the breakpoint and the event distance func-

tions, based on the Greedy Best-First Search strategy. This time, our heuristic

function h is the total pairwise distance of the GCSPs of the state. We have

shown that the algorithm terminates and it performs O(n4) distance function
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computations where n is the length of the input GCSPs. We implemented our

algorithm representing GCSPs as linked-lists.

• We developed two algorithms PhyloHS-1 and PhyloHS-2 to solve the phy-

logeny reconstruction problem. Both algorithm utilize Greedy Best-First Strat-

egy. This time our heuristic function is the total pairwise distances of the GCSPs

in all partial phylogenies. We have shown that PhyloHS-1 terminates and solves

O(k3) median genome problems where k is the number of input GCSPs. We also

have shown that PhyloHS-2 terminates and solves O(k4) median genome prob-

lems. We implemented our algorithms as a software called PhyloHS using a

heap to find minimum edge-splitting or root-joinings. These improved computa-

tional complexity of PhyloHS-2 to O(k3). We tested our algorithms with two

real data sets and compared resulting phylogenies with the recent work.

Future Work We have assumed for all of the three problems that rearrangements are

inversions and transpositions. However, Generalized Nadeau-Taylor Model also involves

transversions which we omitted due to increase time efficiency. In the future, we plan

to incorporate transversions for solving these problems in order to obtain biologically

more relevant results.

We have utilized A∗ search strategy for solving the genome rearrangement problem.

We have realized that excessive use of memory is the main problem while testing our

algorithms. To solve this problem, similar search strategies like Memory-Bounded A∗

which has modest memory requirements, can be developed and implemented.

Moreover, R1 and R2 restrictions that we used for the genome rearrangement prob-

lem are also implemented in GenomePLAN. Therefore, we plan to test Genome-

PLAN with depth-first priority search strategy and compare results with Genome-

SEARCH-A∗. Furthermore, there exists another software, GenomeSEARCH, which

implements a greedy algorithm to solve the genome rearrangement problem. We also

plan to apply the same data set on GenomeSEARCH and compare its results with

GenomeSEARCH-A∗ soon.

We plan to conduct experiments using MedianSEARCH software by generating

random data sets, which contains multi sets of three genomes, each generated by random

number of inversions and transpositions from [I].

We also plan to conduct experiments for comparing the quality of the solutions

found by the breakpoint and the event distances. To do this, we can use a data set
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generated as above and find the median distance for both solutions found by using the

breakpoint and event distances.
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