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EŞLEŞMELERDE BAĞLANILABİLİRLİĞİN DİKKATE ALINDIĞI

DEMİRYOLLARI EKİP KAPASİTE PLANLAMA PROBLEMİ

Ali Çetin Suyabatmaz

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Güvenç Şahin

Anahtar Kelimeler: Ekip Planlama, Taktik Seviyede Planlama, Demiryolu,

Kolon-ve-satir Turetme, Uzay-zaman Çizgesi, Çizge Akışı.

Özet

Demiryolu planlamasinda ekip, stratejik, taktik ve operasyonel seviyede ele alınması

gereken en önemli kaynaklardan birisidir. Birçok demiryoulu işletmesinde personel gider-

leri yakıt ve enerji giderlerini dahi geride bırakmış ve toplam giderlerin üçte birinden

fazlasını oluşturmuştur. Bu bağlamda etkin ve verimli ekip yönetimi önemli bir plan-

lama problemine dönüşmektedir. Bu çalışmada, bölge ekip kapasitesini (ihtiyaç duyulan

ekip üyesi sayısını) belirlemeyi amaçlayan taktik seviyede demiryolu ekip kapasite plan-

lama problemi ele alınmaktadır. Genişletilmiş problem tanımı, operasyonel bir gereklilik

olan ekip görev çizelgelerinin bir çizelge döneminden diğer çizelge dönemine geçişte

birbirlerine bağlanabilir olması, dolayısıyla birbirini takip edecek çizelge dönemlerinde

ekiplerin olurlu ve kurallara uygun birer görev çizelgesiyle çalışıyor olmasını da kap-

sar. Problem için bir küme-kaplama tipi model geliştirilmiş ve çözüm yöntemi olarak bir

eşzamanlı kolon-ve-satır türetme algoritması önerilmiştir. Buna ek olarak, çok katmanlı

bir ağ gösterimi geliştirilmiş ve çözüm için bir ağ akışı modeli önerilmiştir. Türkiye

Cumhuriyeti Devlet Demiryolları’ndan alınan veri üzerinde yapılan bilgisayısal çalışma

sonuçları sunulmaktadır.
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Abstract

Crew is one of the most crucial resources in railway planning that needs to be considered

at strategic, tactical and operational planning levels. During the last decade, crew-related

costs outweigh energy expenditures and constitute more than one third of general expen-

ditures in most railways. Therefore, sufficient but effective crew management is a critical

planning problem which may lead to important savings. In this study, we deal with the

tactical crew capacity planning problem which determines the minimum required number

of crew members. In our setting, the feasibility of crew schedules and the connectivity of

rosters are integrated to find a repeatable set of schedules that satisfy the operational rules

and regulations. We develop a set-covering type formulation and propose a simultane-

ous column-and-row generation algorithm. We also propose a network representation of

the problem and develop a corresponding network flow formulation. In order to compare

efficiency and effectiveness of the two solution methods, we perform a comprehensive

computational study with data sets acquired from Turkish State Railways and present the

results.
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Chapter 1

Introduction

Crew is one of the most crucial resources in railway planning that needs to be considered

at strategic, tactical and operational planning levels. In the strategic level, company-wide

decisions that would vastly affect the level and allocation of crew resources over all re-

gions are made. Some of these problems are related to physical infrastructural changes

such as establishment of new crew regions or new crew exchange stations for trains op-

erating between crew regions; as well as high level adjustment of company practice such

as re-distribution of inter-regional workload that may result from modifications in the

duty-crew region assignments. At the tactical level, individual capacities of crew regions

are determined. Given the train timetable that is under the responsibility of a particular

crew region, a tactical level planning problem determines the minimum required num-

ber of crew members that would operate these train schedules. With respect to various

company-wide and/or region-specific objectives, train duties are paired into feasible crew

schedules that honor several rules and regulations. Based on the crew capacities of the

regions, decisions related to daily practice are made at the operational level. These deci-

sions are based on the assignment of individual crew members to train duties that would

result from rostering of the crew schedules that are determined at the tactical level.

As an example, the system in Turkish State Railways (TCDD) is composed of multiple

crew regions. Each region has a central home base station and each region is responsi-

ble for effectively planning and managing their crew; however, the operations should be

executed in coordination with other regions. During the last decade, crew-related costs

outweigh energy expenditures and constitute more than one third of general expenditures

of the Turkish State Railways [19, 20, 21]. Therefore, sufficient but effective crew man-
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agement is a critical planning problem. Since the fixed crew salaries constitute a major

component in crew related costs, minimizing crew capacities of regions (at the tactical

level) may lead to significant savings.

Tactical decisions should take into account the operational level considerations as

much as possible. Besides the cost-related concerns, balancing workload amongst in-

dividual crew members and feasible rostering are some of the vital ones. In the planning

process, tactical decisions are made by considering a finite planning period and the recur-

rence of the planning period is overlooked, which may lead to crew schedules that are not

implementable in practice. We may exemplify such a drawback for a base station where

we have only two crew members to operate the weekly duties under the responsibility

of this station. According to feasible crew schedules, one crew member returns back to

the base at 11 pm while the other member returns back at 11:30 pm on Sunday having

performed their last duties at the end of the week. The earliest duty at the beginning of the

week starts at 8 am on Monday morning. As a result, none of these crew members may

perform this train duty as the minimum home rest should last at least 16 hours. Although

we have feasible schedules for the planning period of one week; we fail to honor some of

the regulations in the second week of operations.

In railways, crew resource is critical and needs to be scheduled with respect to strict

rules and regulations. When infeasibilities regarding the continuity of the schedules are

faced at the operational level, either the managers resort to patching or the schedules

are manually modified to guarantee continuity of the crew schedules so that the pairing

plans can be repeated from one period to the next. Thus, integrating rostering related

(operational level) concerns into the pairing (tactical level) decisions while determining

periodically repetitive schedules is a challenging one as the crew should be able to follow

duty schedules not only in a single period, but also the availability of crew should be

guaranteed with respect to the periodic recurrence of the planning horizon. In this study,

we deal with the tactical crew capacity planning problem which determines the minimum

required number of crew members. In our setting, the feasibility of crew schedules and

the connectivity of rosters are integrated to find a repeatable set of schedules that satisfy

the operational rules and regulations.

From a methodological point of view, set-covering type formulations and network

flow formulations have been competing with each other in this research area. Note that
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this is also true for other resource planning problems in other transportation modes such

as airlines and freight transportation. Therefore, we look into both type of formulation

approaches and aim to understand the efficiency and effectiveness of solution methods

based on these types of formulations.

Our contributions in this study can be summarized as follows:

• We first focus on the tactical level crew capacity planning problem where:

– we suggest improvements for the network flow formulation of the problem

and improve the results of an earlier study, and

– we develop a set-covering type formulation of the problem and propose a col-

umn generation algorithm.

• We define the tactical level crew capacity planning problem with connectivity con-

siderations in pairings;

– we develop a set-covering type formulation and propose a simultaneous column-

and-row generation algorithm, and

– we discuss a network representation of the problem and give the correspond-

ing network flow formulation.

• In order to compare the efficiency and effectiveness of the two solution methods

devised for each problem, we perform a computational study with data sets acquired

from TCDD.

• We show that the decisions on regional crew capacities without connectivity of the

schedules might significantly differ from those where connectivity of schedules are

integrated into the problem.

• We propose an algorithm for an alternative rostering strategy for the tactical level

crew capacity planning problem with connectivity considerations in pairings where

the long-term workload balancing is to be achieved.

Following a review of the literature on crew-related railway problems in Chapter 2,

we present our study on the tactical level crew capacity planning problem in detail in

Chapter 3. We define the tactical level crew capacity planning problem with connectivity
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considerations in pairings, propose two modeling and solution approaches, and present

our computational study in Chapter 4. In Chapter 5, we present alternative rostering

strategies for an enhanced version of the problem. Finally in Chapter 6, we conclude with

a summary and some remarks on future research.
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Chapter 2

Literature Review

Crew planning problems at railways have been studied several times for various environ-

ments considering particular railway companies, and nation-wide or region-wide systems.

For instance, Caprara et al. [4, 5, 6] focus on the Italian case; Freling et al. [11], Morgado

and Martins [16], Kroon and Fischetti [13, 14] and Abbink et al. [1, 2] focus on Dutch

railways; Vaidyanathan et al. [22] focus on the North American railways; and Şahin and

Yüceoğlu [8] focus on Turkish railways. Although the problem environment is different

from one system to the other, several features are shared including universally accepted

rules as well as company and legislative regulations. For more information on schedul-

ing and rostering problems in railway optimization, including crew scheduling, we refer

the interested reader to the extensive review of general scheduling problems in passenger

railway optimization Caprara et al. [7]. In addition, Ernst et al. [9] and Kumar et al. [15]

survey the literature on crew scheduling applications in railways and airlines, and propose

new research directions related to railway crew scheduling problems.

From a mathematical modeling point of view, the crew planning and associated prob-

lems are generally studied with two mainstream approaches: network flow formulations

and set covering/partitioning type formulations. While research on crew planning prob-

lems with a network flow formulation is limited, set partitioning and set covering formu-

lations are more frequently used. The network flow formulations usually depend on a

spacetime network representation of the problem, and solution methods are often based

on relaxations of the problem. Set covering type formulations of the problem lead to

developing decomposition-based methods and column generation.

With respect to the problem environment we consider, our study is close to Ernst et al.
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[10] and Şahin and Yüceoğlu [8]. Both studies consider minimizing the crew size (i.e.

number of crew members) required to operate the trains under the responsibility of the

region. Ernst et al. [10] consider the problem in two phases: the planing stage where

the number of crew members is determined and the operational (rostering) stage where

the connectivity of the crew schedules is maintained. Ernst et al. [10] develop a two-

stage solution methodology that does not guarantee optimal solutions. Their heuristic

two-stage approach minimizes the number of crew members in the first stage and tries to

satisfy the connectivity of rosters in the second stage. Şahin and Yüceoğlu [8] study the

planning stage and represent the operational stage problem as the tactical level counterpart

of the planning stage problem. Şahin and Yüceoğlu [8] focus on optimally minimizing

the number of crew members required in the region to cover the duties. They develop a

network representation of the problem and solve the corresponding network flow problem

with a solver.

From a methodological point of view, our study is inspired by Caprara et al. [4, 5, 6].

These studies tackle the operational level crew planning problem in Italian State railways

by dividing it into three subproblems: pairing generation, pairing optimization, and roster-

ing optimization. These sequential problems are modeled with set covering/partitioning

type formulations and solved with various optimization techniques including column gen-

eration algorithm. Chronologically in Caprara et al. [4, 5, 6], improvements are observed

on the quality of solutions obtained with the use of Lagrangian relaxation techniques and

feedback mechanism between pairing optimization and rostering optimization phases.

Although the overall cost based objective includes minimizing the number of required

workforce, the connectivity of the rosters are not addressed.

In this study, we deal with the tactical crew capacity planning problem where the aim

is to determine the minimum required number of crew members. In our setting, the feasi-

bility of crew schedules and the connectivity of rosters are integrated to find a repeatable

set of schedules that satisfy the operational rules and regulations. We use simultaneous

column-and-row generation algorithm to tackle with the tactical level crew capacity plan-

ning problem when formulated as a set covering problem with additional constraints. This

novel methodology [17, 18] can be used successfully for solving large scale linear pro-

gramming (LP) formulations with exponentially many variables. The distinctive feature

of these set covering type formulations is an additional set of linking constraints. These
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constraints are either too many to be included in the formulation directly, or the full set of

linking constraints can only be identified if all variables are generated explicitly.
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Chapter 3

Railway Crew Capacity Planning

Railway crew capacity planning problem (RCCP) determines the minimum number of

crew members required to cover all duties in the region. Each crew-base region of TCDD

has a central home station which is responsible for providing and managing the crew

resources to operate a predetermined set of trains. Also for each crew-base region, there

is a predetermined set of stations called away stations which are either the home stations

of other crew-base regions or intermediate stations located between two home stations.

The crew-base is responsible for operating the trains that are starting at the home

station and ending at an away station and vice versa. These predetermined list of trains

correspond to the duties to be covered by a crew-base region. We focus on crew-base

regions with a single home station and multiple away stations and consider a finite-length

planning horizon that repeats itself periodically with respect to the schedules of trains. We

assume that all crew members are at their home station at the beginning of the planning

horizon, and each crew member has to end its duties at the home station at the end of the

planning horizon.

RCCP is solved with respect to different rules and policies governed by the company

and the labor unions. Parameters of the rules and policies applied by TCDD are shown

in Table 3.1. Minimum and maximum home rest times limit the duration of a rest that

a crew member reaching the home station after completing a duty must take. Likewise,

a crew member reaching the away station after covering a duty must take an away rest

which is between a predetermined minimum and maximum away rest times. Instead of

taking an away rest, the crew member reaching at an away station can be transfered to the

home station for deadheading. Following a short rest defined by minimum and maximum
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Parameter Value at TCDD (hours)
Minimum home rest time 16
Maximum home rest time 48
Minimum away rest time 8
Maximum away rest time 24
Minimum deadhead start time 4
Maximum deadhead start time 24
Excess duty time 12
On-duty time 1
Off-duty time 1/2
Double manning time 8

Table 3.1: The environmental parameters of the problem at TCDD [8]

deadhead start times, the crew member reaching an away station can be transferred with a

train destined to his home station without covering a duty. Alternatively, the crew member

can return back to home by covering a second train duty if the total duration of both duties

is less than the excess duty time.

According to the policies of TCDD, the actual duty duration corresponds to the train

duty time extended by on-duty and off-duty times which are scheduled for filling paper-

work and debriefs on the trip. If a train duty takes more than double manning time, then

to cover this duty, at least two crew members are required instead of one. Lastly, TCDD

applies a day-off policy which imposes that every crew member must take a certain num-

ber of days off during the finite planning horizon (i.e. a day-off each week). The day-off

should be spent at the home station of the crew, and it should include a complete day

(from 00:00 to 23:59) and not any 24 hours.

Şahin and Yüceoğlu [8] develop a network representation of the problem and solve a

minimum flow problem to determine the minimum crew capacity. We focus on an exten-

sion of RCCP but we also revisit their problem. For the sake of flow and clarity, we first

introduce the original RCCP problem; next, we summarize the developments in Şahin

and Yüceoğlu [8]; we, then, discuss our suggested improvements and a new modeling ap-

proach along with a proposed solution method. In Section 3.1, problem definition and the

network representation in Şahin and Yüceoğlu [8] is summarized along with the improve-

ments that we suggest on the network representation and the corresponding mathematical

model. In Section 3.2, a set covering based formulation of the problem and the overview

of the proposed column generation algorithm is given. Finally in Section 3.3, we present
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the results of our computational study which shows the improvements on the network

representation and compares the efficiency and effectiveness of the two solution methods

devised for the RCCP.

3.1 Network Flow Formulation for RCCP

Şahin and Yüceoğlu [8] model the tactical level crew capacity planning problem with a

space-time network representation where different policies and practical considerations

that also include the ones as applied in TCDD are considered. The nodes represent events

in the space-time network and have two attributes: space and time, respectively represent-

ing the place (i.e. the station) and the time of the event. Each duty is defined with two

nodes (on-duty and tie-up) that represent the beginning and the end of that duty in each

layer of the network. The arcs in the space-time network represent the engagement of

crew with the activity represented by the arc. According to the type of events represented

by the nodes and corresponding activities, various type of arcs are included:

• A source arc emanates from the source node and enters an on-duty node at home

station. The flow on this arc represents the beginning of a crew schedule.

• A sink arc emanates from a tie-up node at home station and enters the sink node. A

flow on this arc represents the end of a crew schedule.

• A duty arc emanates from the on-duty node of a duty and enters its corresponding

tie-up node. The flow on this arc represents the crew member engaging with the

duty.

• A rest arc goes from a tie-up node to an on-duty node representing the rest activity

between the two duties as dictated.

• A deadhead arc goes from a tie-up node at an away station to a tie-up node at home

station representing deadhead activity.

• A direct connection arc goes from a tie-up node at an away station to an on-duty

node at the same station, representing the coverage of an excess duty.

Figure 3.1 is an illustration of the space-time network. On the space-time network, a

source-sink (s− t) path corresponds to a crew schedule representing a sequence of events
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Figure 3.1: An illustration of the space-time network [8]

(i.e. duties) and activities (i.e. rest, deadhead, direct connection) the crew is engaged

with during a finite planning horizon whose beginning and end is marked with the source

node and sink node, respectively. Since the space-time network is constructed according

to the rules and regulations, the flow on an s− t path corresponds to a feasible schedule.

Beginning of a schedule is marked with a flow on a source arc which is connected to an

on-duty node (i.e. first duty in the schedule). After covering a set of on-duty nodes and

tie-up nodes (i.e. set of duties) and using different types of arcs between them, the flow

reaches the sink node. The last tie-up node in the path before reaching the sink node

indicates the end of the crew schedule.

One challenging requirement of TCDD for crew schedules is the day-off policy. In

order to represent the day-off requirement, Şahin and Yüceoğlu [8] enhance their network

representation into a multi-layer network. For a generalized problem with g days-off, the

network consists of g + 1 layers from Layer0 to Layerg, with identical nodes. Day-off

activities are represented with day-off arcs between a tie-up node at Layerh and on-duty

node at Layerh+1 (0 ≤ h ≤ g− 1) at home station for a one-day-off requirement. In their

multi-layered network representation, Şahin and Yüceoğlu [8] preserve the feasibility of

s − t paths so that a flow on any s − t path corresponds to a feasible crew schedule in
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which the day-off rules are also honored. We refer readers to Şahin and Yüceoğlu [8] for

the details of the space-time network representation.

3.1.1 Improvements in the Network Representation

Şahin and Yüceoğlu [8] have discussed two special cases regarding the availability of

crew to cover at the beginning and at the end of the planning horizon; they propose to

modify the construction of a special set of duty arcs as well as additional sink arcs.

It is assumed that the crew is located at the home station at the beginning of the

planning horizon and she has to return to the home station at the end. However, this

assumption may not hold for two cases, and representing these duties in the network

requires special handling according to Şahin and Yüceoğlu [8]. In the first case, the

challenge is to represent the duties at an away station that are too close to the beginning

of the planning horizon as there may not be any incoming arcs from the source node to

the on-duty nodes of such duties. An on-duty, away early on-duty, is moved to the end

of the planning horizon with an updated time attribute without losing the generality. The

second case is concerned with the duties ending at an away station that are too close to the

end of the planning horizon; in this case, the crew member performing such a duty cannot

return back to the home station. Pseudo sink arcs are introduced to connect these duties

to the sink node supposing that the crew member comes back home through deadheading

or performing a duty at the beginning of the next planning horizon.

Şahin and Yüceoğlu [8] have not discussed any particular order for creating the away

early on-duty nodes and the pseudo sink arcs. In this respect, we observe the following:

• If the away early on-duty nodes are moved at the end of the planning horizon before

introducing pseudo sink arcs from tie-up nodes at an away station, there might exist

other types of arcs between these two nodes since the time attributes of the away

early on-duty nodes will be updated close to the very end of the planning horizon. If

those tie-up nodes can be connected to these away early on-duty nodes, that would

allow a crew member who engages with those duties to come back to home station

at the end of the planning horizon; this eliminates the need for introducing pseudo

sink arcs. By processing away early on-duty nodes before processing pseudo sink

arcs, we introduce less number of pseudo sink arcs than Şahin and Yüceoğlu [8]

when constructing the network with same input parameters while we also create
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more opportunities for the same schedule to cover more duties.

Our second modification is concerned with a more practical issue. In practice, TCDD

does not favor the schedules for crew members that begin or end in midweek days. This

is also due to the fact that a crew member might use too long of a rest period or too many

days as the weekly day-off period. In the original network representation, such cases are

not prohibited since source arcs are from the source node to every on-duty node at home

station and sink arcs are from every tie-up node at home station to the sink node. With

our modification, we remove the “unnecessary” source and sink arcs from the network

regarding these practical considerations as follows:

• Source arcs determine the first duty of a schedule; source arcs are created from

the source node to an on-duty node if the time attribute of that on-duty node is

within the maximum home rest period that starts at the beginning of the planning

horizon. In a multi-layer network (where the day-off requirement is considered)

since the first layer represents the duties before taking a day-off, same rule should

be applied.

• Sink arcs determine the last duty of a schedule; a sink arc can be created from the

tie-up node to a sink node if time attribute of that tie-up node node is within the

maximum home rest period that ends at the end of the planning horizon. In a multi-

layer network (where the day-off requirement is considered) since the last layer

represents the duties after taking all necessary day-offs, same procedure should be

applied.

Figure 3.2 is an illustration of the space-time network with source and sink arcs.

3.1.2 Mathematical Model

Based on the improved layered network representation of the problem, we revisit the

corresponding mathematical programming formulation in [8]. Notation for the space-

time network and mathematical formulation of the minimum flow problem is given in

Table 3.2. x̄a denotes the amount of flow on arc a ∈ A and x̄l
a is the amount of flow on

copy of duty arc a ∈ Ad on layer l ∈ L. Then the integer programming formulation of

the corresponding network flow problem is as follows:
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   Layer 0
Home

Day 1 Day 2 Day 3 Day 4

Source node

Sink node

On-duty node

Tie-up node

T Source arc

Sink arc

Day 5

Layer 1
Home

Day 6 Day 7 Day 1

Layer 2
Home

S T
S

Figure 3.2: An illustration of the source and sink arcs

N set of nodes in the network
L set of layers in the network
s source node of the network
t sink node of the network
A set of all arcs in the network
Ad set of duty arcs in the network
As set of source arcs
At set of sink arcs
An+ set of outgoing arcs at node n
An− set of incoming arcs at node n
ca required number of crew members

to cover the duty represented by arc a

Table 3.2: Notation for the space-time network and minimum flow problem [8]

minimize
∑
a∈As

x̄a (3.1)

subject to
∑
a∈As

x̄a =
∑
a∈At

x̄a, (3.2)

∑
a∈An+

x̄a =
∑

a∈An−

x̄a, ∀n ∈ N \ {s, t}, (3.3)

∑
l∈L

x̄l
a ≥ ca, ∀a ∈ Ad, (3.4)

x̄a ∈ Z+, ∀a ∈ A. (3.5)

The objective function (3.1) minimizes the total amount of flow leaving the source
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node, which corresponds to minimizing the number of crew members required to operate

the given duties in the region. Constraints (3.2) and (3.3) are flow-balance constraints

for the source, the sink, and other nodes. The coverage constraint (3.4) guarantees that

the total amount of flow on all copies of a duty arc is at least as much as the required

amount, ca, to ensure that duties are covered by the required number of crew members.

Constraints (3.5) represent the domain of the decision variable.

Şahin and Yüceoğlu [8] solve the minimum flow problem (3.1)-(3.5) to determine the

minimum crew capacity.

3.2 A Column Generation Algorithm for RCCP

An alternative approach is to formulate the tactical RCCP problem as a pure set covering

problem and solve it with a column generation algorithm, where a feasible crew schedule

corresponds to a column in the formulation.

We let the set of duties in the finite planning horizon be denoted by I and the set of

feasible schedules covering the horizon be denoted by J . A binary parameter aij indicates

that duty i ∈ I is included in schedule j ∈ J when aij = 1. Minimum required crew

member to cover duty i is represented by ci. The decision variable xj is defined as

xj =

 1, if schedule j is selected/included in solution;

0, otherwise.

Then, the mathematical programming formulation of the tactical crew capacity planning

problem studied in Şahin and Yüceoğlu [8] as a set-covering problem is as follows:

minimize
∑
j∈J

xj (3.6)

subject to
∑
j∈J

aijxj ≥ ci, i ∈ I, (3.7)

xj ∈ {0, 1}, j ∈ J. (3.8)

Objective function (3.6) minimizes the number of selected schedules (i.e. number

of crew members as each schedule may be associated with one crew). Constraints (3.7)
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ensure that each duty is covered by at least the required number of crew members. Con-

straints (3.8) represent the domain of the decision variable.

A traditional set covering problem can be solved with the column generation algo-

rithm. Initially, the problem with only a small subset of the decision variables is solved;

this problem is called the restricted master problem (RMP). Using the dual information

of the optimal solution to RMP, the pricing sub-problem (PSP) is employed to generate a

new decision variable (that does not yet exist in RMP) that is expected to improve the so-

lution when added to RMP. RMP is expanded iteratively while PSP is solved with updated

dual information at each iteration.

In the column generation algorithm, the set of constraints in RMP is fixed, and com-

plete dual information is supplied from RMP to PSP. In each iteration, PSP generates a

new column (i.e. decision variable) to be added to RMP, by computing the reduced cost

of the column using the retrieved dual information. If the computed reduced cost of this

column is negative, we add the column to RMP. Otherwise, the solution of RMP cannot

be improved; optimal solution to the LP relaxation of the original problem is found.

In order to mathematically describe PSP that generates a new schedule for RMP of

problem (3.6)-(3.8), let Jc be the set of existing schedules in RMP, and the set of remaining

feasible schedules be Jc. Let ui be the dual variables corresponding to, respectively,

constraints i ∈ I in (3.7) for only j ∈ Jc. The dual of RMP can then be formulated as

maximize
∑
i∈I

ciui (3.9)

subject to
∑
i∈I

aijui ≤ 1, j ∈ Jc, (3.10)

ui ≥ 0, i ∈ I. (3.11)

PSP is to find a schedule j ∈ Jc that has a negative reduced cost (i.e. violates the

corresponding dual constraint in (3.10)). If we search for the schedule that is expected

to make the most improvement in the objective function value (3.6) of RMP, the pricing

problem becomes

j∗ = arg min
j∈Jc

{
1−

∑
i∈I

aijui

}
. (3.12)
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The new schedule, represented by xj∗ , is expected to enter the optimal basis of RMP

(i.e. the new schedule is included in the optimal solution) at the next iteration of the

column generation algorithm. Consequently, if 1 −
∑
i∈I

aij∗ui < 0, xj∗ is added to RMP

and the correct termination condition for the column generation algorithm that optimally

solves the LP relaxation of (3.6)-(3.8) is formalized with the following theorem.

Theorem 1 Let ui, i ∈ I be the optimal dual solution corresponding to the optimal ba-

sis B of the current RMP. The primal solution associated with B is optimal for the LP

relaxation of (3.6)-(3.8) if

1−
∑
i∈I

aijui ≥ 0 (3.13)

for every j ∈ Jc.

The LP relaxation of (3.6)-(3.8) can be solved to optimality with a column generation

algorithm when the termination condition in Theorem 1 is reached. We develop a col-

umn generation algorithm to solve the LP relaxation of (3.6)-(3.8) where both the initial

solution procedure and computationally efficient solution method for PSP are developed

based on the network representation of the original problem as discussed in Section 3.1.1.

3.2.1 Initial Solution Procedure

To start the column generation algorithm, a feasible solution to (3.6)-(3.8) is required

to construct the initial RMP. A trivial procedure would be to produce schedules each of

which cover a single train duty. Another approach would be as follows: since any s − t

path on the network representation corresponds to a feasible schedule (i.e. column), initial

RMP is constructed by finding a set of paths on the network. A feasible solution to (3.6)-

(3.8) requires that all the duties are covered (i.e. corresponding duty arcs in the network

are included in paths). And the overall objective is to attain the minimum number of

schedules (i.e. s− t paths). In order to find such a set of schedules, we develop a greedy

search algorithm that finds a path at every iteration.

Our greedy algorithm is developed for the network representation by setting the pa-

rameters of the network accordingly and updating the parameters at each iteration. It is
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based on finding s − t paths (i.e. schedules) that cover the most number of uncovered

duties. In each iteration, to find an s − t path that covers the most number of the uncov-

ered duties, a shortest path problem is solved on the network where the (arc) length of

a duty arc that is uncovered is set to a negative value. Initially, all the duty arc lengths

are set to −ci (number of crew members required to cover the corresponding duty). After

finding an s − t path, the length of the arcs on the path is increased by one; and, even-

tually they are set to 0 in order to exclude the covered arcs in the following iterations.

In each iteration, the optimal path would correspond to a column that covers at least one

uncovered duty. We terminate when the optimal path of the shortest path problem on the

network does not contain any uncovered duty; this indicates that no new path would cover

an uncovered duty, i.e. no uncovered duty exists. We construct the initial RMP with the

columns corresponding to the paths found until the terminating iteration.

3.2.2 Solution Method for PSP

PSP as stated in (3.12) can be solved by using the network representation of the problem;

it can be formulated to find a path on the network where the arc costs are arranged in such a

way that the total length of an s− t path represents the reduced cost of the corresponding

column (crew schedule). Recall that a solution to PSP at any iteration of the column

generation algorithm is found using the dual values obtained from the optimal solution of

the most recent RMP. In order to achieve this, at each iteration of the algorithm arc lengths

are arranged as follows: the dual price of each duty constraint (3.7) (−ui) is introduced

as the arc length of the corresponding duty arc (in a multi-layer network all copies of the

same duty arc are updated). In this respect, the schedule with the most negative reduced

cost should correspond to the shortest s− t path on the network.

A solution to the shortest s − t path problem on the corresponding network corre-

sponds to a schedule with a total cost of −
∑
i∈I

aij∗ui where j∗ represents the schedule

corresponding to the shortest s − t path. Whenever 1 −
∑
i∈I

aij∗ui < 0 (i.e. negative re-

duced cost) that schedule (column) is added to RMP; otherwise, the termination criterion

is satisfied as no schedule with negative reduced cost is found.
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3.2.3 Procedure for the Column Generation Algorithm

The column generation algorithm that solves the LP relaxation of (3.6)-(3.8) has three

main components: initial solution, RMP and PSP. The iterative mechanism of the algo-

rithm is depicted in Figure 3.3. The initial solution procedure corresponds to the algorithm

(presented in Section 3.2.1) on the network representation of the problem. Then, with the

schedules in the initial solution, RMP is solved to optimality with an LP solver. Resulting

optimal dual values of the constraints are used in solving PSPs as explained in Section

3.2.2. In order to solve PSP, the arc lengths are updated accordingly with the dual val-

ues of the constraints; then, a shortest path problem is solved on this network, and the

schedule with minimum reduced cost is constructed from the resulting s − t path. If the

reduced cost of the schedule is negative, it is added to RMP. The RMP is solved to opti-

mality iteratively repeating the same procedure until no schedule with negative reduced

cost is found.

Read Input Data
Initial 

solution
procedure

Start

Construct Network

Update arc costs

Solve PSP

Solve SP Problem
Solve RMP Dual  

values

Is the reduced cost
of the schedule -ive?

     YES

STOP

NO

Construct schedule

Add column to RMP

Schedules in 
the initial solution

Figure 3.3: The flow of the column generation algorithm

The optimal solution to LP relaxation of (3.6)-(3.8) may not be integer feasible; we use

a heuristic idea to find an integer feasible solution with the information obtained from the

terminating iteration of the column generation algorithm. Column generation algorithm

terminates when the optimal solution to the LP relaxation of (3.6)-(3.8) is found. To obtain

an integer feasible solution, we solve (3.6)-(3.8) as an integer programming problem with

the schedules generated by the column generation algorithm until the termination. Since

the columns generated by the algorithm represents a limited solution space, the optimal

solution of (3.6)-(3.8) with the columns in terminating RMP generates an integer feasible
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upper-bounding solution to the problem.

3.3 Computational Study

The computational study is performed on a data set that is representative of three differ-

ent crew regions in the Turkish State Railways system, namely Ankara, Haydarpasa and

Eskisehir. We implement the network flow formulation and the column generation algo-

rithm in C++ using ILOG Optimization Studio 12.2 as the LP and IP solver on a PC with

Intel Core i7 @3.20 GHz CPU and 24GB RAM.

We present results for three TCDD crew regions where we create problem instances

with a planning horizon of one week and two weeks and different day-off requirements.

Complete results are reported in Table 3.3 where OPT column corresponds to the results

of Şahin and Yüceoğlu [8]. LB, OPT(*) and Time1 columns correspond to the optimal

objective function value of the LP relaxation, optimal integer objective function value

of (3.1)-(3.5) and computational time required in seconds, respectively, for the network

flow formulation. Number of iterations required by the column generation algorithm is

reported in the Itr and the LP optimal solution value is reported in the LP-LB column.

Time2 indicates total computational time (in seconds) required by the column generation

algorithm. IP-UB indicates the number of feasible schedules found by the initial solu-

tion procedure, thus integer upper bound. IP-FS indicates the integer solution found by

the heuristic idea, solving (3.1)-(3.5) with columns in the terminating iteration of col-

umn generation algorithm, and finally Time3 indicates time required by CPLEX solver

(bounded by one hour).

With the computational study, we first want to observe the impact of the improvements

made on the network representation. This has two dimensions:

• possible improvement in the solution quality

• reduction in computational effort

For this purpose, we solved the problem (3.1)-(3.5) with the improvements by applying

the network flow formulation of Şahin and Yüceoğlu [8]. We note that in Şahin and

Yüceoğlu [8] the existence of so-called “unnecessary” source arcs and sink arcs does not

impact the solution quality. As the objective function minimizes the required number of
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crew members, the optimal solution implicitly prohibits such unnecessary home rest pe-

riods. Yet, we should also note that removing these arcs decreases the size of the network

and may impact the computational effort to solve problems using this network represen-

tation. The results indicate the decrease in the number of required crew members (i.e.

decrease in the objective function value). As expected, we observed % 2-5 improvement

on average in Ankara and Haydarpasa data sets, but the most striking ones are in Eskise-

hir data set where improvements vary between % 15-25. For example, with a planning

horizon of 1-week and 2-day-off requirement, we have found the optimal number of crew

members as 76 which is 18 less than that reported in Şahin and Yüceoğlu [8].

We also want to understand the quality of the solutions obtained with the column gen-

eration algorithm and the heuristic idea to obtain integer feasible solutions. Although

we see that good integer feasible solutions are obtained by our heuristic procedure, the

column generation performs poorly by not only solution quality but also required com-

putational time when compared against the network flow formulation. We observe that

integer feasible solutions obtained by our heuristic idea are % 5-15 worse on average,

indicating a mediocre performance. On the other hand, in all of our data sets, computa-

tional effort required by the network flow formulation to find the optimal integer solutions

is less than the computational effort required by the column generation algorithm to find

the optimal solution to the LP relaxation to the problem. Furthermore, in more than half

of the cases, CPLEX is not able to solve the IP problem to optimality in one hour of com-

putational time (which is considered as a reasonable time limit and indicated in column

Time3). In conclusion, our computational study shows that the network flow formulation

is a preferred solution approach to the RCCP problem under these circumstances.
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Chapter 4

RCCP with Connectivity Considerations in Pair-

ings

We deal with an extension of RCCP where the periodic repeatability of crew schedules

is considered as well. This issue arises from a particular deficient supposition in the

railway crew planning that crew schedules can be repeated over the periodic recurrence

of the planning horizon. When it is left unconsidered, the continuity of schedules over the

recurrence of the schedule period may lead to crew schedules that are not implementable

in practice. We extend RCCP to find a set of feasible crew schedules that can be connected

to other schedules from one planning period to the other; thus, we name our new RCCP

problem with connectivity considerations in pairings as RCCP-C.

For this extension of the problem, we follow the footsteps of the solution methods

developed for the original RCCP: (i) a set-covering type formulation and a simultaneous

column-and-row generation algorithm, and (ii) a network representation of the problem

and a corresponding network flow formulation. In Section 4.1, we formulate the prob-

lem and introduce the column-and-row generation algorithm; details of the algorithm, an

initial solution procedure for RMP, the proposed solution method for the pricing subprob-

lem and the flow of the column-and-row generation algorithm is discussed. We discuss

the network flow problem and the corresponding mathematical model in Section 4.2; we

give details of the network representation and the corresponding integer programming

formulation. Finally, in Section 4.3, we show the results of our computational study that

compares the two solution methods devised for the RCCP-C.

23



4.1 A Simultaneous Column-and-Row Generation Algo-

rithm for RCCP-C

To formulate this version of the problem, the set covering problem (3.6)-(3.8) is enriched

with an additional parameter, a new decision variable and constraints that represent the

connectivity relationship among the schedules.

Let the new parameter denoted by ljj′ indicate the connectivity relationship between

schedules as follows:

ljj′ =

 1, if schedule j can be connected to schedule j′;

0, otherwise.

Decision variable yjj′ is defined as:

yjj′ =

 1, if schedule j is connected to schedule j′;

0, otherwise.

Then, the mathematical programming formulation of the tactical crew capacity planning

problem with connectivity considerations in pairings (RCCP-C) becomes:

[RCCP-C]sc minimize (3.6)

subject to (3.7)− (3.8),∑
j′∈J

ljj′ yjj′ − xj = 0, j ∈ J, (4.1)

∑
j′∈J

lj′j yj′j − xj = 0, j ∈ J, (4.2)

yjj′ ∈ {0, 1}, j, j′ ∈ J. (4.3)

Constraints (4.1) guarantee that each selected schedule follows (is connected to) an-

other selected schedule in the solution. Likewise, constraints (4.2) guarantee that a se-

lected schedule is being followed by (connects to) another selected schedule in the solu-

tion. We may call these two set of constraints as linking constraints in the general context

of set-covering type mathematical programming formulations, and as connectivity con-
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straints in the case of RCCP. Constraints (4.3) represent the binary nature of the new

decision variables.

Solving [RCCP-C]sc directly is not practical due to the size of set J , which contains all

possible schedules. However the formulation [RCCP-C]sc belongs to the set of column-

dependent-rows (CDR) problems [17, 18]. In this respect, a simultaneous column-and-

row generation algorithm may be employed to solve the LP relaxation.

In problem [RCCP-C]sc, existence of connectivity constraints (4.1) and (4.2) (i.e. rows

of the formulation) depends on the existence of columns (represented by xj) in the prob-

lem; addition of a new column induces new linking constraints to be added to RMP. How-

ever, when this new variable is to be generated by PSP, the dual information associated

with the constraints that are linking the new decision variable(s) to the existing variables

is missing from the solution of the most recent RMP. Therefore, the reduced cost of the

new column may not be accurately computed with PSP. In order to correctly compute the

reduced cost of a column (with PSP), we need to know the associated dual variables of

these linking constraints (rows) a priori. In this respect, a traditional column generation

algorithm would not suffice to solve this problem due to this missing dual information

associated with the missing rows that do not yet exist. To overcome this challenge, we

develop a column-and-row generation algorithm that simultaneously generates feasible

crew schedules (i.e. decision variables/columns) and associated connectivity constraints

(i.e. linking constraints/rows).

As in the column generation algorithm, the simultaneous column-and-row generation

(CRG) algorithm starts with an RMP that includes only a selected subset of columns

(schedules), and then iteratively adds new columns to RMP to improve its objective func-

tion value. At each iteration, RMP is solved to optimality and the optimal dual values

from RMP are used to solve PSP which allows generating new variables and their associ-

ated linking constraints simultaneously by appropriately estimating the dual values of the

missing linking constraints.

In order to mathematically describe PSP that generates a new schedule for RMP of

problem [RCCP-C]sc, let Jc be the set of existing schedules in RMP, and the set of re-

maining feasible schedules be Jc. Let ui, vj and wj be the dual variables corresponding

to, respectively, constraints i ∈ I in (3.7) and constraints (4.1) and (4.2) for only j ∈ Jc.
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The dual of RMP can then be formulated as

maximize
∑
i∈I

ui (4.4)

subject to
∑
i∈I

aijui − vj − wj ≤ 1, j ∈ Jc, (4.5)

ljj′(vj + wj′) ≤ 0, j, j′ ∈ Jc, (4.6)

ui ≥ 0, i ∈ I, (4.7)

vj, wj u.i.s j ∈ Jc. (4.8)

PSP is to find a schedule j ∈ Jc that has a negative reduced cost (i.e. violates the corre-

sponding dual constraint in (4.5)). If we search for the schedule that is expected to make

the most improvement in the objective function value (3.6) of RMP, the pricing problem

becomes the following two-stage problem to find

j∗ = arg min
j∈Jc

{
1−

∑
i∈I

aijui + vj + wj

}
(4.9)

minimize vj (4.10)

subject to ljj′(vj + wj′) ≤ 0, j ∈ Jc, j
′ ∈ Jc, (4.11)

at least one constraint in (4.11) is tight; (4.12)

minimize wj (4.13)

subject to lj′j(vj′ + wj) ≤ 0, j′ ∈ Jc, j ∈ Jc, (4.14)

at least one constraint in (4.14) is tight. (4.15)

where problems (4.10)-(4.12) and (4.13)-(4.15) impose the connectivity relations between

the new schedule j ∈ Jc and the existing schedules in Jc.

Constraints (4.11) and (4.14) impose that the dual constraints (4.6) are not violated

as we try to find the schedule with the largest violation in dual constraint (4.5). The

new schedule, represented by xj∗ , is expected to enter the optimal basis of RMP (i.e.

the new schedule is included in the optimal solution) at the next iteration of the CRG
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algorithm. We know that when xj∗ enters the basis, the connectivity constraints in (4.1)

and (4.2) are to be honored with two new basic linking variables yj∗j′ = 1, j′ ∈ Jc,

and yj′j∗ = 1, j′ ∈ Jc. Optimal solution of (4.10)-(4.12) indicates which yjj′ variable

is to enter the basis (takes a value of 1) in (4.1), corresponding to a tight constraint in

(4.11). This is indeed imposed by the complementary slackness condition associated

with constraint (4.12). Similarly, the optimal solution of (4.13)-(4.15) indicates which

yj′j variable is to enter the basis (takes a value of 1) in (4.2), corresponding to a tight

constraint in (4.14) with respect to the complementary slackness condition associated

with constraint (4.15).

We may exploit the solution of PSP in (4.9)-(4.15) as follows:

• For each schedule j ∈ Jc (new candidate column), if the schedule can be connected

to the existing schedule j′ ∈ Jc, (i.e. ljj′ = 1, j ∈ Jc, j
′ ∈ Jc) the corresponding

constraint (4.11) appears as vj ≤ −wj′ . Therefore, for each j ∈ Jc (new candidate

schedule), the solution of (4.10)-(4.12) becomes

vj = min
j′∈Jc,ljj′=1

(−wj′) = max
j′∈Jc,ljj′=1

(wj′). (4.16)

• Likewise, for all the existing schedules j′ ∈ Jc that can connect to the new schedule

j (i.e. lj′j = 1, j′ ∈ Jc, j ∈ Jc,) the corresponding constraint (4.14) appears as

wj ≤ −vj′ and for each j ∈ Jc (new candidate schedule), the solution of (4.13)-

(4.15) becomes

wj = min
j′∈Jc,lj′j=1

(−vj′) = max
j′∈Jc,lj′j=1

(vj′). (4.17)

Then, the two stage problem (4.9)-(4.15) can be reformulated as

j∗ = arg min
j∈Jc

{
1−

∑
i∈I

aijui + max
j′∈Jc,ljj′=1

(wj′) + max
j′∈Jc,lj′j=1

(vj′)

}
(4.18)

As in the column generation algorithm, the CRG algorithm achieves optimality when

the objective function value (4.18) is non-negative (i.e. no column exists with negative

reduced cost). Consequently, if

1−
∑
i∈I

aij∗ui + vj∗ + wj∗ < 0,
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xj∗ is added to RMP and RMP is augmented along with one new linking constraint of

type (4.1) and one new linking constraint of type (4.2). Then, the correct termination

condition for the CRG algorithm that optimally solves the LP relaxation of [RCCP-C]sc

may be formalized with the following theorem.

Theorem 2 Let ui, i ∈ I, vj, j ∈ Jc, and wj, j ∈ Jc be the optimal dual solution corre-

sponding to the optimal basis B of the current RMP. The primal solution associated with

B is optimal for the LP relaxation of [RCCP-C]sc if

1−
∑
i∈I

aijui + max
j′∈Jc,ljj′=1

(wj′) + max
j′∈Jc,lj′j=1

(vj′) ≥ 0 (4.19)

for every j ∈ Jc.

The proof of this theorem follows from the analysis of the CRG algorithm developed in

Muter [17] and Muter et al. [18].

The LP relaxation of [RCCP-C]sc can be solved to optimality with a CRG algorithm

when the termination condition in Theorem 2 is reached. From a methodological and

computational point of view there are potential obstacles in the CRG algorithm. First,

to initialize the CRG algorithm, an initial feasible solution to RMP ([RCCP-C]sc) should

be known. Second, the two stage PSP (4.18) is solved at each iteration. In order to find

a feasible solution to the problem, one could develop a constructive algorithm in order

to produce a set of schedules which together cover all the duties in the schedule. A

trivial procedure would be to produce schedules each of which cover a single train duty.

However, such schedules would be infeasible with respect to rest period restrictions. To

find a new schedule that is expected to improve the solution to RMP, one could calculate

the reduced costs of all remaining feasible schedules (∀j ∈ Jc). Yet, this would first of all

require knowing all feasible schedules, and it would also be computationally cumbersome

to calculate the reduced costs for all of them.

We develop a tailored CRG algorithm to solve the LP relaxation of [RCCP-C]sc where

both the initial solution procedure and a computationally efficient solution method for PSP

are developed based on the network representation of the original problem discussed in

Section 3.1.
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4.1.1 Initial Solution Procedure

To start the simultaneous column-and-row generation algorithm, an initial feasible solu-

tion to [RCCP-C]sc is needed to construct the initial RMP. A trivial idea is to generate

dummy schedules that cover a specific duty which can connect to every other schedule

and vice versa. Such schedules are clearly infeasible; thus they would need extra care.

Another idea that constructs an initial RMP is an enhanced version of the inital solution

procedure given in Section 3.2.1 that uses again the network representation of RCCP. A

feasible solution to [RCCP-C]sc requires that all duties are covered (i.e. corresponding

duty arcs in the network are included in selected paths) and each schedule (i.e. s− t path)

is connected to another schedule (i.e. s− t path), and connected by a schedule (i.e. s− t

path). And, the overall objective is to attain the minimum number of schedules (i.e. s− t

paths). In order to find such a set of schedules, we develop a greedy search algorithm that

is based on the similar idea of finding a path at every iteration.

The algorithm iteratively covers all duty arcs by finding a new s − t path in each

iteration as in the initial solution procedure described for the column generation algorithm

for RCCP in Section 3.2.1. In order to maintain connectivity of schedules throughout the

iterations, we use an ordered list of connected schedules as follows:

• The first schedule on the list does not necessarily follow any other schedule found

so far while the new path to be found is expected to connect to the last schedule

on the list. In order to achieve this, we modify the length of the source arcs at the

beginning of the iteration in such a way that the first duty of the new path to be

found is connected to the last duty of the path found in the previous iteration.

• At the end of the iteration, we check if the new path may connect to the first sched-

ule on the list. If this is the case, then the current list of schedules makes a closed

circuit of connected schedules, we initiate a new list at the next iteration. Otherwise,

we again modify the source arcs at the beginning of the next iteration.

We terminate the algorithm when all duty arcs are covered in some path. Flowchart

of the algorithm is given in Figure 4.1. At any iteration, the new path may not cover any

previously uncovered duty arc. In this case, we modify this path such that it can connect

to the first path in the active list of connected schedules, thus forming a closed circuit of

connected schedules.
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Figure 4.1: The flow of the initial solution procedure

4.1.2 Solution Method for PSP

PSP as stated in (4.18) is seemingly a bi-level optimization problem. However, it can

be solved by using the network representation in Section 3.1. PSP can be formulated to

find a path on the network representation of the problem where the arc costs are arranged

in such a way that the total length of an s − t path represents the reduced cost of the

corresponding new column (i.e. crew schedule). A solution to PSP at any iteration of

the CRG algorithm can be found using the dual values (ui, vj and wj) obtained from the

optimal solution of the most recent RMP. At each iteration of the algorithm arc lengths

are arranged as follows:

• the dual price of each duty (−ui) is introduced as the arc length of the corresponding

duty arcs (in a multi-layer network all copies of the same duty arc are updated);

• the length of a source arc (s, i) is set to

max
j∈Js(i)

c

(vj)

where Js(i)
c is the set of schedules in the current RMP which can connect to a sched-

ule that starts with duty i, and

30



• the length of a sink arc (i, t) is set to

max
j∈Je(i)

c

(wj)

where j ∈ J
e(i)
c is the set of schedules in the current RMP which can be connected

by a schedule that ends with duty i.

Consequently, solving a shortest s− t path problem on this network with modified arc

lengths corresponds to finding a path that represents a schedule j∗ with a total length of

csij∗ −
∑
i∈I

aij∗ui + ci′
j∗ t

where csij∗ is the length of the source arc that enters the on-duty node of the first duty in

schedule j∗ denoted by ij∗ and ci′
j∗ t

is the length of the sink arc that emenates from the

tie-up node of the last dusty in schedule j∗ denoted by i′j∗ . If

1 + csij∗ −
∑
i∈I

aij∗ui + ci′
j∗ t

< 0

(i.e. negative reduced cost), the corresponding schedule (column) is added to RMP; oth-

erwise, the termination criteria is satisfied as no schedule with negative reduced cost is

found.

4.1.3 Procedure for the Column-and-Row Generation Algorithm

CRG algorithm that solves the LP relaxation of [RCCP-C]sc has three main components:

initial solution, RMP and PSP. The iterative mechanism of the algorithm is depicted in

Figure 4.2. The main difference in the flow of the CRG algorithm when compared to

the algorithm in Section 3.2.3 (depicted in Figure 3.3) is the expansion of RMP, which

now includes not only the new column but also the associated new connectivity constraints

along with the new column. Furthermore, the initial solution procedure uses the algorithm

presented in Section 4.1.1 and PSP is solved as explained in Section 4.1.2.

The optimal solution to LP relaxation of [RCCP-C]sc may not be integer feasible;

we use the same heuristic idea to find an integer feasible solution with the information

obtained from the terminating iteration of the CRG algorithm. Alternatively, optimal so-

lution of [RCCP-C]sc can be obtained by implementing a branch-and-bound algorithm.
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Figure 4.2: The flow of the column-and-row generation algorithm

Solving the LP relaxation of [RCCP-C]sc with CRG algorithm corresponds to solving

only the root node problem of B&B. Within a branch-and-bound-and-price framework,

the node problems are solved with CRG algorithm to obtain the optimal solution of prob-

lem [RCCP-C]sc.

4.2 Network Flow Formulation for RCCP-C

RCCP-C problem requires the continuity of schedules over the recurrence of the schedule

period. In order to incorporate the connectivity issue in a network flow formulation of the

problem, we first modify the network representation given in Section 3.1. Then, we solve

a minimum flow problem over the modified network to solve RCCP-C to optimality.

4.2.1 Network Representation

The challenge in developing a network representation of RCCP-C is to represent the con-

nectivity of the schedules. Considering the network representation of the RCCP, this

challenge corresponds to linking the s − t paths (i.e. schedules) such that a flow may

circulate on these paths.

To represent this circulating flow, a new arc type is defined: a connectivity arc em-

anates from a tie-up node that may mark the end of a schedule to an on-duty node at home

station that may mark the beginning of a schedule. Unlike any other arc in the network,

time attribute of the tail node will be later/greater than the time attribute of the head node;
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a connectivity arc goes from the end of the planning horizon to the beginning, represent-

ing the recurrence of the planning horizon. In other words, head node of a connectivity

arc corresponds to a duty that will be covered in the next recurrence of planning period.

The flow on this arc represents the rest period of a crew member that is between her last

duty (i.e. tail node) and the first duty (i.e. head node) in the next period. In order to

represent the rest activity in between, time difference of the head and tail nodes have to

honor resting constraints; and connectivity arcs are created between such nodes.

A unit flow on a connectivity arc links two connected schedules of a crew member by

marking the end of one and the beginning of the latter. The head node of a connectivity arc

defines the end of a path that corresponds to the last duty of that schedule, and the head

node defines the first duty of a path that corresponds to the first duty of another schedule

that is connected to the previous one. Consequently, source and sink nodes that represent

the beginning and the end of the planning horizon are no longer needed in the updated

network representation. Moreover, source arcs that define the beginning of a schedule and

sink arcs that define end of a schedule are naturally excluded as there are no source and

sink nodes.

We give an example to demonstrate the use of connectivity arcs; two feasible crew

schedules and modifications of a single day-off requirement problem on a two-layer net-

work representation is given in Figure 4.3. In part (a), two distinct s − t paths (i.e. crew

schedules) are marked with bold arcs. One of the schedules starts with a source arc (S,15)

and ends with a sink arc (20,T), the other starts with a source arc (S,2) and ends with

a sink arc (13,T). The second network illustrates the same case where connectivity arcs

(13,15) and (20,2) represents the connection between the two schedules from one period

to the next. Crew following these schedules continue working without violating rules and

regulations through the end of the first period into the second.

4.2.2 Mathematical Model

The objective of RCCP-C is to minimize the number of required crew members to cover

all the duties while maintaining the continuity of schedules over the recurrence of the

planning period. In the modified network, total flow on connectivity arcs corresponds

to number of schedules linked with each other (i.e. number of crew members), thus

corresponding mathematical programming formulation aims to minimize the total flow
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Figure 4.3: An illustration of two sample schedules
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on connectivity arcs.

In addition to the notation described in Table 3.2, Ac represents the set of connectivity

arcs. The integer programming formulation of the corresponding network flow problem

is as follows:

minimize
∑
a∈Ac

x̄a (4.20)

subject to
∑

a∈An+

x̄a =
∑

a∈An−

x̄a, ∀n ∈ N, (4.21)

∑
l∈L

x̄l
a ≥ ca, ∀a ∈ Ad, (4.22)

x̄a ∈ Z+, ∀a ∈ A. (4.23)

The objective function (4.20) minimizes the total amount of flow on connectivity arcs,

which corresponds to minimizing the number of crew members required to operate the

given duties in the region. Constraint (4.21) is the flow-balance constraint. The coverage

constraint (4.22) guarantees that the total amount of flow on all copies of a duty arc is

at least as much as the required amount, ca, to ensure that duties are covered by the re-

quired number of crew members. Constraints (4.23) represent the domain of the decision

variable.

4.3 Computational Study

We perform a computational study in order to empirically observe both the efficiency and

effectiveness of our proposed solution methods. The computational study is performed

on the same data set as in Chapter 3. We implement the CRG algorithm and the network

flow formulation in C++ using ILOG Optimization Studio 12.2 as the LP and IP solver

on a PC with Intel Core i7 @3.20 GHz CPU and 24GB RAM.

With the computational study, we want to first understand the quality of the solutions

obtained with our CRG algorithm and the heuristic idea to obtain integer feasible solu-

tions. For this purpose, we present results for three TCDD crew regions where we create

problem instances with a planning horizon of one week and two weeks and different day-

off requirements.
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In Table 4.1, we present results for two versions of the CRG algorithm based on

how the initial RMP is constructed. In CRG-DC, initial RMP is constructed by dummy

columns that cover only a single duty and can connect to every other column and vice

versa. On the other hand, in CRG-AC initial RMP is constructed by the algorithm given

in Section 4.1.1. CRG-DC-IP and CRG-AC-IP corresponds to the heuristic procedure

for generating integer feasible solutions. In Table 4.1, LP-LB corresponds to the objec-

tive function value of the optimal solution of the LP relaxation of [RCCP-C]sc obtained

with our CRG algorithm. ”Itr” shows the number of iterations/schedules generated until

termination. IP-UB indicates the number of schedules generated by the initial solution

procedure. With the existing columns in the terminating RMP, we solve the problem as

an IP to optimality. IP-FS shows the objective function value of the IP problem solution

where Time indicates the time (in seconds) required by CPLEX solver to solve the IP

problem (bounded by one hour). We obtain the following results:

• Neither versions of the algorithm are capable of solving the LP relaxation to opti-

mality within reasonable computational time (3600 seconds). We have faced both

convergence and stalling problems with the CRG algorithm which we believe that

is due to the unary column cost and high degeneracy in our data sets.

• When DC version of the algorithm is used, CPLEX is not able to solve the IP

problem. It shows that a good initial solution significantly improves both solution

quality and computational time required to solve the problem.
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In order to overcome convergence and stalling problems, we modified the CRG al-

gorithm to add multiple columns instead of a single column in each iteration. In each

iteration, after we solve PSP with the solution method given in Section 4.1.2, we modify

the arc costs, simply by increasing the length of the arcs on the current optimal path, and

resolve the shortest path problem to generate an alternative path. The first path represents

the column with the most negative reduced cost; the second is the second best column, and

so on. We may continue generating alternative paths until a path with nonnegative reduced

cost is found. In essence, any of these paths may enter the basis in the next iteration of the

CRG algorithm. By generating multiple decision variables at each iteration, we hope to

overcome the stalling problem that occurs when generating a single decision variable in

each iteration. In Table 4.2, we present two more versions of the CRG algorithm namely

DC-MC and AC-MC where MC corresponds to generating multiple columns in one iter-

ation. In CRG-DC-MC, initial RMP is constructed by dummy columns that only covers

a single duty and can connect to every other column and vice versa. On the other hand, in

CRG-AC-MC initial RMP is constructed by the algorithm given in Section 4.1.1. Both al-

gorithms expand RMP with multiple columns in each iteration, and CRG-DC-MC-IP and

CRG-AC-MC-IP corresponds to the heuristic procedure for generating integer feasible

solutions using CPLEX. We obtain the following result:

• In some cases, multi column version of the CRG algorithms solves the LP relaxation

of [RCCP-C]sc to optimality within reasonable computational time.

• When we compare the IP-FS columns of the dummy column start (CRG-DC-MC-

IP) and advanced column start (CRG-AC-MC-IP) versions of the algorithm, we

observe significant difference between the best integer feasible solutions. Overall,

we see that good integer feasible solutions are obtained by our heuristic procedure

when we construct initial RMP with the algorithm given in Section 4.1.1. Contrary

to our expectation, results obtained from the single column version (in Table 4.1) is

better compared to the multi column version.
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We also want to investigate the quality of the solutions obtained with the network flow

formulation. For this purpose, we present results for three TCDD crew regions where we

create the same problem instances with a planning horizon of one week and two weeks

with different day-off requirements.

In Table 4.3, we present results for network flow formulations of both problems RCCP

and RCCP-C to observe the effect of connectivity issue as well. In Table 4.3, LB corre-

sponds to the objective function value of the optimal solution of the LP relaxation of

(4.20)-(4.23). OPT indicates the optimal objective function value which corresponds to

required number of crew members for both problems where Time shows the time required

(in seconds) to solve the problem (4.20)-(4.23) to optimality. Finally, OPT* indicates op-

timal integer objective function value of (3.1)-(3.5), i.e. the optimal solution to RCCP.

We obtain the following results:

• When we compare OPT against OPT*, we observe an increase in the number of

required crew members in all scenarios. From the decision-maker’s point of view,

results indicate that the decisions on regional crew capacities without connectivity

of the schedules might significantly differ from those where connectivity of sched-

ules are integrated into the problem at the planning/pairing phase.

• Our numerical experiments indicate that the proposed network flow formulation is

capable of solving all of the cases to optimality within reasonable computational

time. Thus, our network flow formulation is a valid approach for the RCCP-C.

• When we compare LP-LB values of the cases where CRG algorithm terminates

(see Table 4.2) to the corresponding LB values of network flow representation, we

observe that network flow formulation gives better lower bounds to the problem,

not to mention that the optimality of the LP relaxation is guaranteed.

• Both solution methods, CRG and network flow formulation, are capable of generat-

ing integer feasible solutions but network flow formulation is better off not only by

solution quality but also with respect to computational time. Therefore, it is a more

efficient and effective solution approach which could be used for solving RCCP-C

as it is to RCCP.
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RCCP-C
Region Weeks Days-Off OPT* LB OPT Time

Ankara

1 0 50 54.00 54 1
1 1 55 59.80 60 1
1 2 66 70.00 71 5
2 0 50 54.00 54 1
2 1 52 54.15 55 15
2 2 57 58.66 59 87

Haydarpasa

1 0 38 39.00 39 1
1 1 43 44.50 45 9
1 2 52 53.40 54 15
2 0 38 39.00 39 1
2 1 41 41.00 41 45
2 2 44 44.41 45 130

Eskisehir

1 0 65 69.00 69 1
1 1 67 72.20 73 5
1 2 76 86.20 87 4
2 0 65 69.00 69 1
2 1 65 69.00 69 20
2 2 68 70.91 71 259

Table 4.3: Results of the network flow formulation for RCCP-C
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Chapter 5

Rostering Strategies for RCCP-C

Crew rostering is an operational level problem which involves sequencing crew schedules

that will be performed by a set of crew members over a specified planning horizon. A

roster is also subject to rules and regulations. These rules and regulations which also con-

strain the feasibility of crew schedules, usually involve minimum and maximum working

hour regulations which may be binded by safety standards or union agreements. In addi-

tion, the quality of a roster may be even subject to quality of life objectives based on the

satisfaction level of industrial and individual preferences.

Crew rostering is usually treated as a second phase planning problem in crew schedul-

ing literature and practice. In the first phase, crew pairing, feasible schedules are gener-

ated. Then, in the second phase, these schedules are sequenced together to make up the

rosters. Rosters can be divided into two groups: cyclic and non-cyclic. In a cyclic roster,

all crew members visit each schedule one by one, resulting in the same cyclic working

pattern starting with a different particular schedule for each crew member. For example,

with five crew schedules, say A,B,C,D and E, first crew member would execute a schedule

sequence ABCDE; the second crew member would be given the sequence BCDEA; the

third CDEAB; the forth DEABC, and the last EABCD. Over a planning horizon of five

periods, each crew member completes the same workload but in a different order. This

type of cyclic rostering allows the workload distribution to be inherently fair [10]. On the

other hand a non-cyclic roster, as the name implies, does not require each crew member

to visit every schedule. Constructing a non-cyclic roster is easier compared to a cyclic

one, but the resulting uneven workload distribution in the short-term planing horizon is

a drawback. In Figure 5.1, we provide examples of cyclic and multi-non-cyclic rosters
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schematically. Consider that each of the five nodes represent the first on-duty node of

schedules A,B,C,D, and E, respectively while the five shaded nodes on the right are the

last tie-up nodes of the schedules correspondingly. In this respect, the arcs from left to

right represent the schedules while the arcs from right to left act as the connectivity arcs.

In part (a), the schedules are connected to one another in a cyclic manner; note that there’s

only one cycle in this case. However, in part (b), there are three separate cycles as AB, C,

and DE. Schedule sequence in part (a) can be executed by a group of five crew members

that switch in each period; on the other hand, schedule sequence in part (b) can be exe-

cuted by three group of crew members where two crew members execute A and B, two

crew members execute D and E, and the last crew member executes C repeatedly.

A
B

C D E

A B C

… E | A B C D E | A ...

… B | A B | A …
… C | C | C … 
… E | D E | D …

D E

(a)

(b)

Figure 5.1: Examples of a cyclic (a) and a non-cyclic (b) rostering solutions

Ernst et al. [10] propose two schemes for generating cyclic and non-cyclic rosters

in their study. They aim for feasibility and their algorithms do not contain an objective

function. Although their non-cyclic rostering algorithm guarantees a feasible solution,

the cyclic rostering algorithm does not. Ernst et al. [10] does not provide a valid integer

programming formulation for cyclic rostering.

In our study of RCCP-C, by incorporating the connectivity issue into the RCCP prob-

lem, we explicitly consider the non-cyclic rosters and integrate this operational concern

into our tactical level problem. In this regard, our focus is close to that of Ernst et al. [10].

Any feasible solution to RCCP-C contains a feasible roster, which may turn out to be a

non-cyclic roster in the worst case. In the following sections, we present our preliminary

43



work on generating cyclic rosters for our problem RCCP-C.

5.1 A Mathematical Model for the RCCP-C with Cyclic

Rosters

In RCCP-C, the connectivity relationship between schedules could be used for construct-

ing feasible rosters. In fact, any feasible solution contains a feasible rostering solution

since continuity of schedules in the next recurrence of planning horizon is guaranteed.

In order to find a cyclic solution from scratch, the set covering type formulation of the

problem in [RCCP-C]sc should be extended as follows:

• An artificial schedule, H, that can connect to any other feasible schedule is intro-

duced as the first schedule in the roster, and

• an artificial schedule, H ′, that can be connected by any other feasible schedule is

introduced as the last schedule in the roster.

In Figure 5.2, we demonstrate H and H ′ and the corresponding sequence that starts

with H and ends with H ′ by modifying the cyclic roster example given part (a) in Figure

5.1.

A
B

C D E

… H | A B C D E | H' ...

H H'

Figure 5.2: Example of a cyclic roster solution

In this setting, a cyclic roster corresponds to a sequence of feasible schedules, in

which the sequence starts with schedule H and ends with schedule H ′. On top of that, it

is required that the last schedule before H ′ should connect to the first schedule after H to

make a closed circuit of connected schedules. We are able to model these new restrictions

with constraints that are similar to sub-tour elimination constraints in an open tour TSP.
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If a new decision variable sj denotes the sequence of schedule j is in roster (j 6= H),

then, the mathematical programming formulation of the RCCP-C with cyclic rostering

becomes:

minimize (3.6)

subject to (3.7)− (3.8),

(4.1)− (4.3),

sj − sj′ + nljj′yjj′ ≤ n− 1, j, j′ ∈ J − {H,H ′}, (5.1)

yHj′ + yjH′ − ljj′ ≤ 1, j, j′ ∈ J, (5.2)

sj ∈ Z+, j′ ∈ J. (5.3)

where n is greater than or equal to cardinality of J . In this extended model, constraint

(5.1) is the subtour elimination constraint that would align the selected schedules into a

sequence and constraint (5.2) guarantees that the last schedule on the sequence connects

to the first one so that the schedules are connected to one another in a cyclic manner.

Computational results given in Section 4.3 reveals that CRG algorithm that we pro-

pose to solve [RCCP-C]sc performs poorly. Solving [RCCP-C]sc with additional con-

straints (5.1)-(5.3) would require a more complicated CRG algorithm in which PSP may

turn out to be a more difficult problem. Based on this observation and our computa-

tional experience, we have not yet attempted to develop a solution algorithm for solving

[RCCP-C]sc with additional constraints (5.1)-(5.3). On the other hand, we do not yet have

an extended model for the network flow formulation of RCCP-C that would generate a

cyclic roster.

5.2 A Cyclic Rostering Algorithm for RCCP-C

In the previous section, the objective is to propose a mathematical model that would find

a cyclic solution. An alternative approach is to develop a scheme that would generate

alternative solutions for the non-cyclic version and try to identify a solution that is in fact

a cyclic one. By using the connectivity relationship between the schedules, we are able to

propose such an algorithm.
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Consider a feasible solution to problem [RCCP-C]sc, let every schedule in the solution

be represented by a node and the connectivity relationship between those schedules (i.e.

nodes) are represented by arcs (i.e. whenever ljj′ = 1 a directed arc is placed between j

and j′). In this setting, finding a cyclic roster corresponds to finding a circuit that includes

every node by exactly once. This problem is known as detection of Hamiltonian circuits

in a directed graph; Karmakar [12] proposes a polynomial time algorithm that detects

such a circuit if there is one. It is possible to check whether a set of feasible schedules

can be sequenced in a cyclic roster or not, and to identify that circuit within reasonable

computational effort.

With our network flow formulation given in Section 4.2, we are able to solve RCCP-

C problem to optimality within reasonable computational time. We propose an iterative

algorithm to find a solution that contains a cyclic roster with the optimal number of crew

schedules; the main steps of this algorithm is depicted on a flowchart in Figure 5.3. We

first solve the problem (4.20)-(4.23), and then check whether this solution contains a

cyclic roster. If this is the case, we have identified the optimal solution. Otherwise, we

resolve the problem to find the next best solution to (4.20)-(4.23) by introducing a new

constraint that would prevent the model to come up with a previously found solution. We

might check whether this new solution contains a cyclic roster; if this is not the case, we

might continue this procedure until we find one such solution.

Contains
Single-chain?
Karmakar [12]

Solve Problem

STOP      YES

NO

START

Initialize model

Update Model

Solve

Figure 5.3: Algorithm for generating a cyclic roster

To find the next best solution of (4.20)-(4.23), we need to update the model in each

iteration of the algorithm accordingly. In order to describe the updated mathematical

model throughout the iterations of the algorithm, we use the approach in Acar et al. [3].
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N denotes the set of previous iterations, and n denotes the index of iterations. M , a

sufficiently large number, represents the penalty cost associated with the previously found

solution at any iteration. To keep track of the solutions found in previous iterations, we

define a parameter as:

Tna = x̄n
a , a ∈ Ac,

where x̄n
a denotes the value of x̄a in (4.20)-(4.23) (in candidate solution n) and a decision

variable

Zn =


1, if the solution currently considered by the mathematical model

is suggested in previous iteration n;

0, otherwise.

that is used to incorporate the penalty cost for candidate solution at iteration n into the

objective function. Then, the resulting mathematical model is

minimize (4.20) +
∑
n

MZn (5.4)

subject to (4.21)− (4.23),∑
a∈Ac

(2Tnax̄a − Tna − x̄a) ≤ Zn − 1, ∀n ∈ N, (5.5)

∑
a∈Ac

(2Tnax̄a − Tna − x̄a) ≥M(Zn − 1), ∀n ∈ N, (5.6)

Zn ∈ {0, 1}, ∀n ∈ N. (5.7)

In this formulation, constraints (5.5)-(5.6) identify a previously obtained solution through

the values of flow on connectivity arcs. If such a solution is found (i.e. x̄a = Tna,

∃n ∈ N ), that solution is penalized in the objective function.

We have tested our single-chain rostering algorithm for RCCP-C with TCDD data

sets. For each data set, we have observed the same results: initially none of the solutions

of (4.20)-(4.23) was a cyclic roster, but in the first iteration it turns out that the optimal

schedules can be rostered in a cyclic fashion. This is due to the high connection possibility

of the schedules in our data sets; in other words, ljj′ of the selected schedules in the first

optimal solution is a dense matrix.
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Chapter 6

Conclusions and Future Research

Effective crew management is a critical planning problem in railways. We study a tactical

level crew planning problem where we consider different policies and practical consider-

ations that also include the ones as applied in TCDD. We first focus on RCCP problem

which determines the minimum number of crew members required to cover all duties in a

given region. We suggest improvements for the network flow formulation of the problem

in an earlier study; this improvement results in a significant decrease in the number of

required crew members. Moreover, we develop a set-covering type formulation for the

same RCCP problem; we propose a column generation algorithm to solve the LP relax-

ation and a heuristic to obtain integer feasible solutions. We observe that good-quality

integer feasible solutions are obtained by our heuristic procedure based on the LP relax-

ation solutions obtained by the column generation algorithm. Yet, the column generation

performs poorly not only by solution quality but also in terms of the required computa-

tional effort for both the LP relaxation and integer feasible solutions when we compare

the results with those obtained with the network flow formulation of the problem. In con-

clusion, our computational study indicates that the network flow formulation is a valid

solution approach to the RCCP problem.

While determining the minimum required crew capacity for a region, tactical deci-

sions should take into account the operational level considerations as much as possible.

In the planning process, tactical decisions are made by considering a finite planning hori-

zon to repeat periodically; but the recurrence of the planning period is overlooked, which

may lead to crew schedules that are not implementable in practice. We extend RCCP to

RCCP-C (RCCP with connectivity considerations in pairings) to consider finding a set of
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feasible crew schedules that can be connected to other schedules from one period to the

other. For this extension of the problem, we follow the footsteps of the solution methods

for the original RCCP: (i) a set-covering type formulation and a simultaneous column-

and-row generation algorithm and (ii) a network representation of the problem along with

a corresponding network flow formulation. We perform a computational study with data

sets acquired from TCDD. Our numerical experiments show that the proposed network

flow formulation is capable of solving all real-life cases to optimality within reasonable

computational time. On the other hand, CRG algorithm fails to solve the LP relaxation

of RCCP-C problem to optimality within reasonable computational time where we ex-

perience unexpected convergence and stalling problems with the CRG algorithm. Both

solution methods, CRG and network flow formulation, are capable of generating integer

feasible solutions but network flow formulation outweighs not only by solution quality

but also with respect to computational time. In conclusion, our computational study indi-

cates that the network flow formulation is a more efficient and effective solution approach

which could be used for solving RCCP-C as it is to RCCP. From the decision-maker’s

point of view, the results clearly shows that the decisions on regional crew capacities

that ignore the connectivity of the schedules might significantly differ from those where

connectivity of schedules are integrated into the problem at the planning/pairing phase.

Lastly, we focus on additional crew rostering issues, which could be considered in

the context of operational level planning. Crew rostering involves assigning feasible and

but also preferable crew schedules to a set of crew members over a specified planning

horizon. Balanced allocation of workload among crew members is a particular quality

aspect in rostering which may be attained by carefully planning the schedule connectivity

in the long-term. The cyclic rosters provide perfect balance over several recurrences of the

planning period in the long term. We first provide a mathematical model based on the set-

covering formulation of the RCCP-C and then propose an algorithm that generates a cyclic

rostering solution. This preliminary study leads to ideas for future research directions that

would incorporate more operational level concerns into tactical level planning.

For future research, we consider the workload balancing as a valuable venue. Cyclic

rostering is a trivial management solution, and literature lacks alternative ones; yet, ob-

taining perfectly cyclic rosters may not be that trivial from a methodological point of

view. In addition, integrating other operational concerns such as minimizing operational
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costs, fair allocation of different type of duties among the crew and other quality of life

objectives based on the satisfaction level of industrial and individual preferences are open

research questions to be studied.
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