

POWER CONSUMPTION REDUCTION TECHNIQUES FOR H.264 VIDEO

COMPRESSION HARDWARE

by

Yusuf Adıbelli

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of
the requirements for the degree of

Doctorate of Philosophy

Sabancı University

August 2012

© Yusuf Adıbelli 2012

All Rights Reserved

To my Mother, Father and Sisters

To my beloved wife Hümeyra

V

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. İlker Hamzaoğlu for all his guidance,

support, and patience throughout my PhD study. I appreciate very much for his

suggestions, detailed reviews, invaluable advices and life lessons. I particularly want to

thank him for his confidence and belief in me during my study. It has been a great honor

for me to work under his guidance.

I would also like to thank my thesis committee members Dr. Onur Toker, Dr. Hakan

Erdoğan, Dr. Müjdat Çetin and Dr. Albert Levi for participating in my thesis jury.

I like to convey my heartiest thanks to Mustafa Parlak and his wife Neslihan Parlak

for their unlimited support, encouragement. It is very heartwarming to know that one has

such friends.

My sincere thanks to System-on-Chip Design & Test group members, Mert Çetin,

Merve Peyiç, Çağlar Kalaycıoğlu, Onur Can Ulusel, Aydın Aysu, Abdulkadir Akın, Tevfik

Zafer Ozcan, Serkan Yalıman, Kamil Erdayandı, Yusuf Akşehir, Ercan Kalali and Erdem

Özcan.

My sincere thanks to all my friends and colleagues in Sabancı University including

Mehmet Özdemir, Alisher Kholmatov, Ünal Şen and İbrahim İnanç. I appreciate their

friendship and help which made my life easier and more pleasant during my PhD study.

I also would like to express my deepest gratitude to my friends; Malik Sina, Zeynep

and Ozgur for their unlimited support, encouragement. It is very heartwarming to know that

one has such friends.

I am particularly grateful to my parents and my wife, Hümeyra, for their constant

support, encouragement, assistance and patience. Without them, this study would never

have been possible.

Finally, I would like to acknowledge Sabancı University and Scientific and

Technological Research Council of Turkey (TUBITAK) for supporting me throughout my

graduate education.

VI

POWER CONSUMPTION REDUCTION TECHNIQUES FOR H.264
VIDEO COMPRESSION HARDWARE

Yusuf Adıbelli
Electronics, Ph.D. Dissertation, 2012

Thesis Supervisor: Asst. Prof. İlker HAMZAOĞLU

Keywords: H.264, Intra Prediction, Deblocking Filter, Mode Decision, Template Matching

1 ABSTRACT

 Video compression systems are used in many commercial products such as digital

camcorders, cellular phones and video teleconferencing systems. H.264 / MPEG4 Part 10,

the recently developed international standard for video compression, offers significantly

better compression efficiency than previous video compression standards. However, this

compression efficiency comes with an increase in encoding complexity and therefore in

power consumption. Since portable devices operate with battery, it is important to reduce

power consumption so that battery life can be increased. In addition, consuming excessive

power degrades the performance of integrated circuits, increases packaging and cooling

costs, reduces reliability and may cause device failures.

In this thesis, we propose novel computational complexity and power reduction

techniques for intra prediction, deblocking filter (DBF), and intra mode decision modules

of an H.264 video encoder hardware, and intra prediction with template matching (TM)

VII

hardware. We quantified the computation reductions achieved by these techniques using

H.264 Joint Model reference software encoder. We designed efficient hardware

architectures for these video compression algorithms and implemented them in Verilog

HDL. We mapped these hardware implementations to Xilinx Virtex FPGAs and estimated

their power consumptions using Xilinx XPower Analyzer tool. We integrated the proposed

techniques to these hardware implementations and quantified their impact on the power

consumptions of these hardware implementations on Xilinx Virtex FPGAs. The proposed

techniques significantly reduced the power consumptions of these FPGA implementations

in some cases with no PSNR loss and in some cases with very small PSNR loss.

VIII

H.264 VİDEO SIKIŞTIRMA DONANIMI İÇİN GÜÇ TÜKETİMİ
AZALTMA TEKNİKLERİ

Yusuf Adıbelli
Elektronik Müh., Doktora Tezi, 2012

Tez Danışmanı: Yrd. Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: H.264, Çerçeve İçi Öngörü, Blok Giderici Filtre, Kip Seçimi, Şablon
Eşleştirme

2 ÖZET

Video sıkıştırma sistemleri, dijital kameralar, cep telefonları ve video telekonferans

sistemleri gibi bir çok ticari üründe kullanılmaktadır. Yakın tarihte geliştirilmiş uluslararası

bir standart olan H.264 / MPEG4 Part 10, kendinden önceki standartlara göre belirgin

şekilde daha iyi sıkıştırma verimi sağlamaktadır. Ancak,bu kodlama kazancı hesaplama

karmaşıklığı ve güç tüketimi artışını beraberinde getirmektedir. Taşınabilir cihazlar pil ile

çalıştığı için, güç tüketimini azaltmak pil ömrünün uzamasını sağlayacaktır. Bunun yanında

aşırı güç tüketimi, entegre devrelerin performansını düşürür, paketleme ve soğutma

maliyetlerini arttırır, dayanıklılığını azaltır ve bozulmalarına sebep olabilir.

Bu tezde, H.264 video kodlayıcı donanımı modülleri olan çerçeve içi öngörü, blok

giderici filtre, çerçeve içi kip seçimi algoritması ve şablon eşleştirmeli çerçeve içi öngörü

algoritmaları için yeni hesaplama karmaşıklığı ve güç tüketimi azaltma teknikleri önerildi.

Önerilen tekniklerin hesaplama miktarında yaptığı azalma H.264 referans yazılımı (JM)

kullanılarak belirlendi. Bu video sıkıştırma algoritmaları için verimli donanım mimarileri

tasarlandı ve donanım mimarileri Verilog HDL ile gerçeklendi. Ayrıca bu donanım

IX

uygulamaları Xilinx Virtex FPGA’lerine sentezlendi ve Xilinx XPower Analyzer yazılımı

kullanılarak bu donanımların FPGA gerçeklemelerinin detaylı güç tüketim analizleri

yapıldı. Daha sonra, önerilen teknikleri bu donanım uygulamalarına entegre edilerek, bu

donanımların Xilinx Virtex FPGA’lerindeki güç tüketimine olan etkisi belirlendi. Önerilen

teknikler bu FPGA uygulamalarının güç tüketiminde bazen hiçbir PSNR kaybı olmaksızın,

bazen de çok küçük PSNR kaybına sebep olarak önemli azalmalara sebep olmuştur.

X

3 TABLE OF CONTENTS

ACKNOWLEDGEMENT .. V

1 ABSTRACT ... VI

2 ÖZET ... VIII

3 TABLE OF CONTENTS ... X

LIST OF FIGURES ... XII

LIST OF TABLES .. XIV

1 CHAPTER I INTRODUCTION ... 1

1.1 H.264 Video Compression Standard ... 1

1.2 Low Power Hardware Design ... 4

1.3 Thesis Contributions ... 6

1.4 Thesis Organization .. 9

2 CHAPTER II PIXEL EQUALITY AND PIXEL SIMILARITY BASED

COMPUTATION AND POWER REDUCTION TECHNIQUES FOR H.264 INTRA

PREDICTION ... 10

2.1 H.264 Intra Prediction Algorithm ... 12

2.2 Proposed Computational Complexity and Power Reduction Techniques 25

2.3 Proposed Intra Prediction Hardware Architecture .. 41

2.4 Power Consumption Analysis ... 42

3 CHAPTER III DATA REUSE, PECR AND PSCR TECHNIQUES FOR

COMPUTATION AND POWER REDUCTION IN H.264 INTRA PREDICTION 46

XI

3.1 Proposed Computational Complexity and Power Reduction Techniques 47

3.2 Proposed Intra Prediction Hardware Architecture .. 56

3.3 Power Consumption Analysis ... 59

4 CHAPTER IV ENERGY REDUCTION TECHNIQUES FOR H.264

DEBLOCKING FILTER .. 62

4.1 H.264 Adaptive Deblocking Filter Algorithm .. 63

4.2 Proposed Energy Reduction Techniques .. 67

4.3 H.264 DBF Hardware and Its Energy Consumption .. 81

5 CHAPTER V A NOVEL ENERGY REDUCTION TECHNIQUE FOR H.264

INTRA MODE DECISION .. 89

5.1 Proposed Energy Reduction Technique .. 93

5.2 Proposed 16x16 Intra Mode Decision Hardware Architectures 113

5.3 Energy Consumption Analysis.. 115

6 CHAPTER VI A NOVEL ENERGY REDUCTION TECHNIQUE FOR INTRA

PREDICTION WITH TEMPLATE MATCHING ... 119

6.1 Proposed Computation and Energy Reduction Technique 122

6.2 Proposed Intra Prediction with Template Matching Hardware 131

6.3 Energy Consumption Analysis.. 136

7 CHAPTER VII CONCLUSIONS AND FUTURE WORK 139

8 BIBLIOGRAPHY ... 143

4

XII

LIST OF FIGURES

Figure 1.1 H.264 Encoder Block Diagram .. 2

Figure 1.2 H.264 Decoder Block Diagram .. 3

Figure 2.1 A 4x4 Luma Block and Neighboring Pixels ... 13

Figure 2.2 4x4 Luma Prediction Modes .. 13

Figure 2.3 Examples of Real Images for 4x4 Luma Prediction Modes 14

Figure 2.4 Prediction Equations for 4x4 Luma Prediction Modes .. 17

Figure 2.5 16x16 Luma Prediction Modes .. 18

Figure 2.6 Examples of Real Images for 16x16 Luma Prediction Modes 19

Figure 2.7 Prediction Equations for 16x16 Luma Prediction Modes .. 21

Figure 2.8 Chroma Component of a MB and its Neighboring Pixels.. 22

Figure 2.9 Prediction Equations for 8x8 Chroma Prediction Modes ... 25

Figure 2.10 Four Pixel Groups of Neighboring Pixels of a MB ... 31

Figure 2.11 Rate Distortion Curves of the Original 4x4 Intra Prediction Algorithm and 4x4 Intra

Prediction Algorithm with Proposed Technique .. 40

Figure 2.12 4x4 Intra Prediction Hardware Architecture ... 42

Figure 3.1 Rate Distortion Curves of the Original 4x4 Intra Prediction Algorithm and a) 4x4

Intra Prediction Algorithm with PSCR Technique proposed in [9] b) 4x4 Intra Prediction

Algorithm with Proposed PSCR Technique ... 55

Figure 3.2 Top-Level Block Diagram of 4x4 Intra Prediction Hardware Architecture 57

Figure 3.3 Datapath for The Prediction Equations Used in DDL, DDR, VR, VL, HD, HUP and

DC Modes .. 58

Figure 4.1 Edge Filtering Order Specified in H.264 Standard .. 64

Figure 4.2 Illustration of H.264 DBF Algorithm ... 65

Figure 4.3 H.264 Deblocking Filter Algorithm.. 66

XIII

Figure 4.4 Rate Distortion Curves of the Original H.264 DBF Algorithm and H.264 DBF

Algorithm with Proposed PSCR Technique ... 80

Figure 4.5 H.264 DBF Hardware Architecture .. 81

Figure 4.6 Processing Order of 4×4 Blocks ... 82

Figure 4.7 4x4 Blocks Stored in LUMA and CHRM SRAMs.. 83

Figure 4.8 H.264 DBF Datapath ... 85

Figure 4.9 a) Unfiltered Video Frame and b) The Same Frame Filtered by H.264 Deblocking

Filter Algorithm .. 86

Figure 5.1 Formation of DC Block for Intra 16x16 Prediction Modes 91

Figure 5.2 SATD Calculation for Each 4x4 Block ... 91

Figure 5.3 Addition Operations Performed by Intra Prediction and Mode Decision 92

Figure 5.4 Fast HT Algorithm for a 4x4 Block .. 94

Figure 5.5 Hadamard Transform of Vertical, Horizontal and DC Modes 95

Figure 5.6 16x16 MB and its Neighboring Pixels .. 105

Figure 5.7 Rate Distortion Curves of Original SATD Mode Decision and SATD Mode Decision

with Proposed Technique .. 113

Figure 5.8 Proposed Hardware for Original Intra 16x16 Mode Decision 116

Figure 5.9 Proposed Hardware for Intra 16x16 Mode Decision with Proposed Technique 117

Figure 6.1 Intra Prediction with Template Matching ... 120

Figure 6.2 Different Size Templates and Search Windows .. 123

Figure 6.3 Top Level Block Diagram of Proposed 4x4 Intra Prediction with Template Matching

Hardware .. 129

Figure 6.4 Template Search PE Array and 16 Adder Tree ... 130

Figure 6.5 PE Architecture ... 132

Figure 6.6 SAD Calculation PE Array and Adder Tree ... 133

Figure 6.7 Memory Organization of 32x32 SW .. 135

Figure 6.8 a) Video Frame Predicted by H.264 4x4 Intra Prediction Modes and b) The Same

Frame Predicted by H.264 4x4 Intra Prediction Modes with TM Including Proposed

Technique ... 137

XIV

LIST OF TABLES

Table 2.1 Availability of 4x4 Luma Prediction Modes ... 17

Table 2.2 Availability of 16x16 Luma Prediction Modes ... 19

Table 2.3 Availability of 8x8 Luma Prediction Modes ... 22

Table 2.4 4x4 Intra Modes and Corresponding Neighboring Pixels .. 26

Table 2.5 Percentage of 4x4 Intra Prediction Modes with Equal Neighboring Pixels 28

Table 2.6 Percentage of 4x4 Intra Prediction Modes with Similar Neighboring Pixels 29

Table 2.7 Computation Amount of 4x4 Intra Modes .. 29

Table 2.8 Intra 4x4 Modes Computation Reduction Results by PECR Technique 30

Table 2.9 Intra 4x4 Modes Computation Reduction Results by PSCR Technique 30

Table 2.10 Percentage of 16x16 Intra Prediction Modes with Equal Neighboring Pixels 32

Table 2.11 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Equal Neighboring

Pixels .. 33

Table 2.12 Percentage of 16x16 Intra Prediction Modes with Similar Neighboring Pixels 34

Table 2.13 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Similar

Neighboring Pixels ... 35

Table 2.14 Computation Amount of Intra 16x16 and Intra 8x8 Modes 36

Table 2.15 Intra 16x16 Computation Reduction Results by PECR ... 37

Table 2.16 Intra 8x8 (Chroma CB, CR) Computation Reduction Results by PECR 37

Table 2.17 Intra 16x16 Computation Reduction Results by PSCR.. 38

Table 2.18 Intra 8x8 (Chroma CB, CR) Computation Reduction Results by PSCR 39

Table 2.19 Average PSNR Comparison of the Proposed PSCR Technique 41

Table 2.20 Power Consumption Reduction (QP=28) by PECR and PSCR Techniques 44

Table 2.21 Power Consumption Reduction (QP=35) by PECR and PSCR Techniques 44

Table 2.22 Power Consumption Reduction (QP=42) by PECR and PSCR Techniques 45

Table 3.1 Prediction Equations of 4x4 Intra Prediction Modes ... 49

XV

Table 3.2 4x4 Intra Modes and Corresponding Neighboring Pixels .. 50

Table 3.3 Percentage of 4x4 Intra Prediction Blocks with Equal and Similar Prediction Equation

Pixels .. 51

Table 3.4 Addition and Shift Operations Performed by 4x4 Intra Prediction for a CIF Frame with

PECR Technique .. 52

Table 3.5 Addition and Shift Operations Performed by 4x4 Intra Prediction for a CIF Frame with

PSCR Technique ... 52

Table 3.6 Computation Reduction by PECR and PSCR (4bT) Techniques for 4x4 Intra

Prediction with Data Reuse ... 53

Table 3.7 Computation Reduction for 4x4 Intra Prediction by PECR Technique 53

Table 3.8 Computation Reduction for 4x4 Intra Prediction by PSCR Technique with 4bT........ 54

Table 3.9 Average PSNR Comparison of the PSCR Techniques .. 56

Table 3.10 Comparison of 4x4 Intra Prediction Hardware .. 58

Table 3.11 Power Consumption Reduction (QP = 28) .. 60

Table 3.12 Power Consumption Reduction (QP = 35) .. 61

Table 3.13 Power Consumption Reduction (QP = 42) .. 61

Table 4.1 Conditions that Determine BS .. 67

Table 4.2 DBF Modes ... 68

Table 4.3 Equations for Mode 6 and their Simplified Versions when p2=p1=p0=q0=q1=q2 69

Table 4.4 The Amount of Computation Required by DBF Mode 0 For Different Equal Pixel

Combinations .. 70

Table 4.5 The Amount of Computation Required by DBF Mode 1 For Different Equal Pixel

Combinations .. 70

Table 4.6 The Amount of Computation Required by DBF Mode 2 For Different Equal Pixel

Combinations .. 70

Table 4.7 The Amount of Computation Required by DBF Mode 3 For Different Equal Pixel

Combinations .. 71

Table 4.8 The Amount of Computation Required by DBF Mode 4 For Different Equal Pixel

Combinations .. 71

XVI

Table 4.9 The Amount of Computation Required by DBF Mode 5 For Different Equal Pixel

Combinations .. 72

Table 4.10 The Amount of Computation Required by DBF Mode 6 For Different Equal Pixel

Combinations .. 72

Table 4.11 The Amount of Computation Required by DBF Mode 7 For Different Equal Pixel

Combinations .. 73

Table 4.12 Amount of Operations Performed by All DBF Modes .. 73

Table 4.13 Filtering Units with All Equal or Similar Pixels for Luma Components 74

Table 4.14 Filtering Units with All Equal or Similar Pixels for Chroma (CbCr) Components ... 74

Table 4.15 Computation Reductions for Luma Components .. 76

Table 4.16 Computation Reductions for Chroma (CbCr) Components 77

Table 4.17 Comparison Overhead .. 79

Table 4.18 Average PSNR Comparison of PSCR Technique ... 79

Table 4.19 FPGA Resource Usage and Clock Frequency After P&R 84

Table 4.20 Energy Consumption Reduction By PECR Technique .. 87

Table 4.21 Energy Consumption Reduction By PSCR (1bT) Technique 87

Table 4.22 Energy Consumption Reduction By PSCR (2bT) Technique 88

Table 5.1 Pre-calculated Values for DDL Prediction Mode .. 100

Table 5.2 DDL Mode Prediction Calculations Using Pre-calculated Values 100

Table 5.3 Pre-calculated Values for DDR Prediction Mode .. 101

Table 5.4 DDR Mode Prediction Calculations Using Pre-calculated Values 101

Table 5.5 Pre-calculated Values for VR Prediction Mode .. 102

Table 5.6 VR Mode Prediction Calculations Using Pre-calculated Values 103

Table 5.7 Pre-calculated Values for HUP Prediction Mode .. 103

Table 5.8 HUP Mode Prediction Calculations Using Pre-calculated Values 104

Table 5.9 Computation Reductions for Intra Prediction Modes .. 112

Table 5.10 Average PSNR (dB) Comparison of Original SATD Mode Decision and SATD

Mode Decision with Proposed Technique.. 112

Table 5.11 Energy Consumption Reductions ... 118

XVII

Table 6.1 PSNR Results (dB) of Different Size SWs and Templates 123

Table 6.2 PSNR Results (dB) of Intra Prediction with TM ... 125

Table 6.3 Number of TM Predictions Selected when ThSAD Used... 126

Table 6.4 Average PSNR (dB) Comparison of the Proposed Technique for Small ThSAD 126

Table 6.5 Average PSNR (dB) Comparison of the Proposed Technique for Large ThSAD 127

Table 6.6 Computation Reductions for Intra Prediction with TM for Different ThSAD values .. 128

Table 6.7 Energy Consumption Reduction when ThSAD = 40 .. 138

Table 6.8 Energy Consumption Reduction when ThSAD = 50 .. 138

Table 6.9 Energy Consumption Reduction when ThSAD = 60 .. 138

1

1 CHAPTER I

INTRODUCTION

1.1 H.264 Video Compression Standard

Video compression systems are used in many commercial products, from consumer

electronic devices such as digital camcorders, cellular phones to video teleconferencing

systems. H.264 / MPEG4 Part 10, the recently developed international standard for video

compression, offers significantly better compression efficiency (capable of saving up to

50% bit rate at the same level of video quality) than previous video compression standards

[1, 2, 3]. Because of its high coding efficiency and flexibility and robustness to different

communication environments, H.264 is expected to be widely used in many applications

such as digital TV, DVD, video transmission in wireless networks, and video conferencing

over the internet.

The human visual system appears to distinguish scene content in terms of brightness

and color information individually, and with greater sensitivity to the details of brightness

2

than color [3]. Same as the previous video compression standards, H.264 is designed to

take advantage of this by using YCbCr color space. In YCbCr color space, each pixel is

represented with three 8-bit components called Y, Cb, and Cr. Y, the luminance (luma)

component, represents brightness. Cb and Cr, chrominance (chroma) components,

represent the extent to which the color differs from gray toward blue and red, respectively.

Since the human visual system is more sensitive to luma component than chroma

components, H.264 standard uses 4:2:0 sampling. In 4:2:0 sampling, for every four luma

samples, there are two chroma samples, one Cb and one Cr.

The top-level block diagram of an H.264 video encoder is shown in Figure 1.1. As

shown in the figure, the video compression efficiency achieved in H.264 standard is not a

result of any single feature but rather a combination of a number of encoding tools such as

motion estimation, intra prediction and deblocking filter (DBF). Same as the previous video

compression standards, H.264 standard does not specify all the algorithms that will be used

in an encoder such as mode decision. Instead, it defines the syntax of the encoded bit

stream and functionality of the decoder that can decode this bit stream.

As shown in Figure 1.1, an H.264 encoder has a forward path and a reconstruction

path. The forward path is used to encode a video frame and create the bit stream by using

intra and inter predictions. The reconstruction path is used to decode the encoded frame and

reconstruct the decoded frame. Since a decoder never gets original images, but rather works

on the decoded frames, reconstruction path in the encoder ensures that both encoder and

decoder use identical reference frames for intra and inter prediction. This avoids possible

encoder – decoder mismatches [1,3,4].

Figure 1.1 H.264 Encoder Block Diagram

3

Forward path starts with partitioning the input frame into macroblocks (MB). Each

MB is encoded in intra or inter mode depending on the mode decision. In both intra and

inter modes, the current MB is predicted from the reconstructed frame. Intra mode

generates the predicted MB based on spatial redundancy, whereas inter mode, generates the

predicted MB based on temporal redundancy. Mode decision compares the required

amount of bits to encode a MB and the quality of the decoded MB for both of these modes

and chooses the mode with better quality and bit-rate performance. In either case, intra or

inter mode, the predicted MB is subtracted from the current MB to generate the residual

MB. Residual MB is transformed using 4x4 and 2x2 integer transforms. Transformed

residual data is quantized and quantized transform coefficients are re-ordered in a zig-zag

scan order. The reordered quantized transform coefficients are entropy coded. The entropy-

coded coefficients together with header information, such as MB prediction mode and

quantization step size, form the compressed bit stream. The compressed bit stream is

passed to network abstraction layer (NAL) for storage or transmission [1,3,4].

Reconstruction path begins with inverse quantization and inverse transform

operations. The quantized transform coefficients are inverse quantized and inverse

transformed to generate the reconstructed residual data. Since quantization is a lossy

process, inverse quantized and inverse transformed coefficients are not identical to the

original residual data. The reconstructed residual data are added to the predicted pixels in

order to create the reconstructed frame. DBF is, then, applied to reduce the effects of

blocking artifacts in the reconstructed frame [1,3,4].

Figure 1.2 H.264 Decoder Block Diagram

4

The compression efficiency achieved by H.264 standard comes with an increase in

encoding complexity and therefore in power consumption. H.264 intra prediction and mode

decision algorithms have very high computational complexity. Because, in order to

improve the compression efficiency, H.264 standard uses many intra prediction modes for a

MB and selects the best mode for that MB using a mode decision algorithm. The DBF

algorithm used in H.264 standard is more complex than the DBF algorithms used in

previous video compression standards. First of all, H.264 DBF algorithm is highly adaptive

and applied to each edge of all the 4×4 luma and chroma blocks in a MB. Second, it can

update 3 pixels in each direction that the filtering takes place. Third, in order to decide

whether the DBF will be applied to an edge, the related pixels in the current and

neighboring 4×4 blocks must be read from memory and processed. Because of these

complexities, the DBF algorithm can easily account for one-third of the computational

complexity of an H.264 video decoder [4,5].

H.264 decoder is similar to the reconstruction path of H.264 encoder. It receives a

compressed bit stream from the NAL as shown in Figure 1.2. The bit stream is decoded,

inverse quantized and inverse transformed to get residual data. Using the header

information decoded from the bit stream, the decoder creates a prediction block, identical

to the prediction block generated in reconstruction path of H.264 encoder. The prediction

block is added to the residual block to create the reconstructed block. Blocking artifacts are,

then, removed from reconstructed block by applying DBF.

H.264 has three profiles; Baseline, Main, and Extended. A profile is a set of

algorithmic features and a level shows encoding capability such as picture size and frame

rate. In this thesis, we use Baseline profile. Baseline profile has lower latency than main

and extended profiles, and it is used for wireless video applications and video conferencing.

In Baseline profile, YCbCr color space with 4:2:0 sampling, I and P slices, and context-

adaptive variable length entropy coding are supported [1,3].

1.2 Low Power Hardware Design

Multimedia applications running on portable devices have increased recently and this

5

trend is expected to continue in the future. Since portable devices operate with battery, it is

important to reduce power consumption so that battery life can be increased. In addition,

consuming excessive power for a long time causes chips to heat up and degrades

performance, because transistors run faster when they are cool rather than hot. Excessive

power consumption also increases packaging and cooling costs. Excessive power

consumption also reduces reliability and may cause device failures [6, 7].

Field Programmable Gate Arrays (FPGA) consume more power than standard cell-

based Application Specific Integrated Circuits (ASIC). FPGAs have look-up tables and

programmable switches. Look-up table based logic implementation is inefficient in terms

of power consumption and programmable switches have high power consumption because

of large output capacitances. Therefore, reducing power consumption is even more

important for FPGA implementations.

ICs have static and dynamic power consumption. Static power consumption is a

result of leakage currents in an IC. Dynamic power consumption is a result of short circuit

currents and charging and discharging of capacitances in an IC. Dynamic power

consumption is proportional to the switching activity (α), total capacitance (CL), supply

voltage (VDD), operating frequency (f) and short circuit current (ISC) as shown in the

following equation. The power consumption due to charging and discharging of

capacitances is the dominant component of dynamic power consumption and it can be

reduced either by decreasing switching activity, capacitance, supply voltage or frequency.

fVIfVCP DDSCDDLdyn +≈ →
2

10α (1.1)

In this thesis, we focused on reducing the dynamic power consumptions of FPGA

implementations of H.264 video compression hardware. The dynamic power consumption

of a digital hardware implementation on a Xilinx FPGA is estimated using Xilinx XPower

tool. Since the switching activity is input pattern dependent, in order to estimate the

dynamic power consumption, timing simulation of the placed and routed netlist of that

hardware implementation is done for several input patterns using Mentor Graphics

ModelSim and the signal activities are stored in a Value Change Dump (VCD) file. This

VCD file is used for estimating the dynamic power consumption of that hardware using

Xilinx XPower tool.

6

1.3 Thesis Contributions

We propose pixel equality based computation reduction (PECR) technique for

reducing the amount of computations performed by H.264 intra prediction algorithm and

therefore reducing the power consumption of H.264 intra prediction hardware significantly

without any PSNR and bit rate loss. The proposed technique performs a small number of

comparisons among neighboring pixels of the current block before the intra prediction

process. If the neighboring pixels of the current block are equal, the prediction equations of

H.264 intra prediction modes simplify significantly for this block. By exploiting the

equality of the neighboring pixels, the proposed technique reduces the amount of

computations performed by 4x4 luminance, 16x16 luminance, and 8x8 chrominance

prediction modes up to 60%, 28%, and 68% respectively with a small comparison

overhead. We also implemented an efficient 4x4 intra prediction hardware including the

proposed technique using Verilog HDL. We quantified the impact of the proposed

technique on the power consumption of this hardware on a Xilinx Virtex II FPGA using

Xilinx XPower, and it reduced the power consumption of this hardware up to 46% [8].

We also propose pixel similarity based computation reduction (PSCR) technique for

reducing the amount of computations performed by H.264 intra prediction algorithm and

therefore reducing the power consumption of H.264 intra prediction hardware significantly.

The proposed technique performs a small number of comparisons among neighboring

pixels of the current block before the intra prediction process. If the neighboring pixels of

the current block are similar, the prediction equations of H.264 intra prediction modes are

simplified for this block. The proposed technique reduces the amount of computations

performed by 4x4 luminance, 16x16 luminance, and 8x8 chrominance prediction modes up

to 68%, 39%, and 65% respectively with a small comparison overhead. The proposed

technique does not change the PSNR for some video frames, it increases the PSNR slightly

for some video frames and it decreases the PSNR slightly for some video frames. We also

implemented an efficient 4x4 intra prediction hardware including the proposed technique

using Verilog HDL. We quantified the impact of the proposed technique on the power

7

consumption of this hardware on a Xilinx Virtex II FPGA using Xilinx XPower. The

proposed technique reduced the power consumption of this hardware up to 57% [9, 10].

We, then, propose to calculate the common prediction equations only once and to use

the results for the corresponding 4x4 intra modes, and to apply the PECR and PSCR

techniques for each intra prediction equation separately. These techniques exploit pixel

equality and similarity in a video frame by performing a small number of comparisons

among pixels used in prediction equations before the intra prediction process. If the pixels

used in prediction equations are equal or similar, prediction equations simplify

significantly. By exploiting the equality and similarity of the pixels used in prediction

equations, the proposed PECR and PSCR techniques reduce the amount of computations

performed by 4x4 intra prediction modes up to 78% and 89%, respectively, with a small

comparison overhead. We also implemented an efficient 4x4 intra prediction hardware

including the proposed techniques using Verilog HDL. We quantified the impact of the

proposed techniques on the power consumption of this hardware on a Xilinx Virtex II

FPGA using Xilinx XPower. The proposed PECR and PSCR techniques reduced the power

consumption of this hardware up to 13.7% and 17.2%, respectively. The proposed PECR

technique does not affect the PSNR and bitrate. The proposed PSCR technique increases

the PSNR slightly for some videos frames and it decreases the PSNR slightly for some

videos frames [11, 12].

We also propose pixel equality and pixel similarity based techniques for reducing the

amount of computations performed by H.264 DBF algorithm, and therefore reducing the

energy consumption of H.264 DBF hardware. These techniques avoid unnecessary

calculations in H.264 DBF algorithm by exploiting the equality and similarity of the pixels

used in DBF equations. The proposed techniques reduce the amount of addition and shift

operations performed by H.264 DBF algorithm up to 52% and 67% respectively with a

small comparison overhead. The pixel equality based technique does not affect PSNR. The

pixel similarity based technique does not affect the PSNR for some video frames, but it

decreases the PSNR slightly for some video frames. We also implemented an efficient

H.264 DBF hardware including the proposed techniques using Verilog HDL. We

quantified the impact of the proposed techniques on the energy consumption of this

hardware on a Xilinx Virtex4 FPGA using Xilinx XPower. The proposed pixel equality and

8

pixel similarity based techniques reduced the energy consumption of this H.264 DBF

hardware up to 35% and 39%, respectively [14, 15].

We propose a novel energy reduction technique for H.264 intra mode decision. The

proposed technique reduces the number of additions performed by Sum of Absolute

Transformed Difference (SATD) based 4x4, 16x16 and 8x8 intra mode decision

algorithms used in H.264 joint model reference software encoder by 46%, 43% and

42% respectively for a CIF size frame without any PSNR loss. In addition, it avoids the

calculation of intra 16x16 and intra 8x8 plane prediction modes by slightly modifying

SATD criterion used in H.264 Joint Model (JM) reference software encoder which slightly

impacts the coding efficiency. It doesn’t affect the PSNR for some videos, it increases the

PSNR slightly for some videos and it decreases the PSNR slightly for some videos. Since

plane mode is the most computationally intensive 16x16 and 8x8 prediction mode,

avoiding plane mode calculations reduces the computational complexity of 16x16 and 8x8

intra prediction algorithm by 80%. We also implemented an efficient H.264 16x16 intra

mode decision hardware including the proposed technique using Verilog HDL. We

quantified the impact of the proposed technique on the energy consumption of this

hardware on a Xilinx Virtex II FPGA using Xilinx XPower. The proposed technique

reduced the energy consumption of this H.264 16x16 intra mode decision hardware

up to 59.6% [16].

H.264 intra prediction algorithm is not well suited for processing complex

textures at low bit rates. Therefore, intra prediction with Template Matching (TM) is

proposed for improving H.264 intra prediction. However, intra prediction with TM has

high computational complexity. Therefore, in this thesis, we propose a novel technique for

reducing the amount of computations performed by intra prediction with TM, and

therefore reducing the energy consumption of intra prediction with TM hardware.

The proposed technique does not change the PSNR for some video frames, but it

decreases the PSNR slightly for some video frames. We also designed and implemented

a high performance 4x4 intra prediction with TM hardware including the proposed

technique using Verilog HDL, and mapped it to a Xilinx Virtex 6 FPGA. The FPGA

implementation is capable of processing 53 HD (1280x720) frames per second, and the

proposed technique reduced its energy consumption up to 50% [13].

9

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II, first, explains H.264 intra prediction algorithm. It, then, presents the

proposed PECR and PSCR techniques for H.264 intra prediction. An efficient H.264 intra

prediction hardware including these techniques and its power consumption analysis are also

presented in this chapter.

Chapter III, presents the data reuse and the application of PECR and PSCR

techniques for each intra prediction equation separately. An efficient H.264 intra prediction

hardware including these techniques and its power consumption analysis are also presented

in this chapter.

Chapter IV, first, explains H.264 DBF algorithm. It, then, presents pixel equality and

pixel similarity based techniques for reducing the amount of computations performed by

H.264 DBF algorithm. An efficient H.264 DBF hardware including the proposed technique

and its energy consumption analysis are also presented in this chapter.

Chapter V, first, explains H.264 intra mode decision algorithm. It, then, presents a

novel computational complexity and power reduction technique for H.264 intra mode

decision. An efficient H.264 16x16 intra mode decision hardware including the

proposed technique and its energy consumption analysis are also presented in this chapter.

Chapter VI, first, explains intra prediction with Template Matching (TM) algorithm.

It, then, presents a novel technique for reducing the amount of computations performed by

intra prediction with TM. A high performance 4x4 intra prediction with TM hardware

including the proposed technique and its energy consumption analysis are also presented in

this chapter.

Chapter VII presents conclusions and future work.

10

2 CHAPTER II

PIXEL EQUALITY AND PIXEL SIMILARITY BASED

COMPUTATION AND POWER REDUCTION TECHNIQUES FOR

H.264 INTRA PREDICTION

H.264 intra prediction algorithm achieves better coding results than the intra

prediction algorithms used in previous video compression standards. However, this coding

gain comes with a significant increase in computational complexity. Therefore, in this

thesis, we propose pixel equality and pixel similarity based techniques for reducing the

amount of computations performed by H.264 intra prediction algorithm and therefore

reducing the power consumption of H.264 intra prediction hardware. Both techniques are

applicable to 4x4 luminance, 16x16 luminance and 8x8 chrominance prediction modes.

Both techniques perform a small number of comparisons among neighboring pixels of the

current block before the intra prediction process.

Pixel equality based computation reduction (PECR) technique checks the equality of

the neighboring pixels. If the neighboring pixels used for calculating the predicted pixels by

an intra 4x4 prediction mode are equal, the predicted pixels by this mode are equal to one

of these neighboring pixels. Therefore, the prediction equations simplify to a constant value

and prediction calculations for this mode become unnecessary. Furthermore, if the

neighboring pixels used for calculating the predicted pixels by an intra 16x16 or an intra

11

8x8 prediction mode are equal, the prediction equations used by this mode simplify

significantly. In this way, the amount of computations performed by H.264 intra prediction

algorithm is reduced significantly without any PSNR loss [8].

Pixel similarity based computation reduction (PSCR) technique checks the similarity

of the neighboring pixels, and if the neighboring pixels used for calculating the predicted

pixels by an intra 4x4 prediction mode are similar, the predicted pixels by this mode are

assumed to be equal to one of these neighboring pixels. Therefore, the prediction equations

are simplified to a constant value and prediction calculations for this mode become

unnecessary. Furthermore, if the neighboring pixels used for calculating the predicted

pixels by an intra 16x16 or an intra 8x8 prediction mode are similar, the prediction

equations used by this mode are simplified significantly. In this way, the proposed

technique reduces the amount of computations performed by H.264 intra prediction

algorithm even further with a small PSNR loss [9, 10].

The simulation results obtained by H.264 reference software, JM 14.0 [17], for

several video sequences showed that PECR technique reduces the amount of computations

performed by H.264 intra 4x4, 16x16 and 8x8 prediction modes up to 60%, 28%, and 68%

respectively and PSCR technique reduces the amount of computations performed by H.264

intra 4x4, 16x16 and 8x8 prediction modes up to 68%, 39%, and 65% respectively with a

small comparison overhead. The proposed techniques, for each MB, requires 12 and 24

comparisons for intra 4x4 and intra 8x8 prediction modes respectively. Since intra 4x4 and

intra 16x16 prediction modes operate on the same MB, the comparison results for intra 4x4

prediction modes are also used for intra 16x16 prediction modes. The simulation results

also showed that the proposed PSCR technique does not change the PSNR for some video

frames, it increases the PSNR slightly for some video frames and it decreases the PSNR

slightly for some video frames.

Several techniques are reported in the literature for reducing the computational

complexity of H.264 intra prediction algorithm [18, 19, 20, 21]. These techniques reduce

the amount of computation for H.264 intra prediction algorithm by trying selected intra

prediction modes rather than trying all intra prediction modes. However, the techniques

proposed in this thesis try all intra prediction modes, and they can also be used together

with the techniques proposed in [18, 19, 20, 21]. Several hardware architectures for H.264

12

4x4 intra prediction algorithm are reported in the literature [22, 23, 24, 25]. However, they

do not report their power consumption and they do not implement the techniques proposed

in this thesis.

We also designed an efficient H.264 4x4 intra prediction hardware architecture

including the proposed PECR and PSCR techniques. The hardware architecture is

implemented in Verilog HDL. The Verilog RTL codes are verified to work at 50 MHz in a

Xilinx Virtex II FPGA. The impacts of the proposed techniques on the power consumption

of this hardware implementation on a Xilinx Virtex II FPGA are quantified using Xilinx

XPower tool. The proposed PECR and PSCR techniques reduced the power consumption

of this hardware on this FPGA up to 46% and 57%, respectively.

2.1 H.264 Intra Prediction Algorithm

Intra prediction algorithm predicts the pixels in a MB using the pixels in the available

neighboring blocks. For the luma component of a MB, a 16x16 predicted luma block is

formed by performing intra predictions for each 4x4 luma block in the MB and by

performing intra prediction for the 16x16 MB. There are nine prediction modes for each

4x4 luma block and four prediction modes for a 16x16 luma block. A mode decision

algorithm is then used to compare the 4x4 and 16x16 predictions and select the best luma

prediction mode for the MB. 4x4 prediction modes are generally selected for highly

textured regions while 16x16 prediction modes are selected for flat regions.

There are nine 4x4 luma prediction modes designed in a directional manner. A 4x4

luma block consisting of the pixels a to p is shown in Figure 2.1. The pixels A to M belong

to the neighboring blocks and are assumed to be already encoded and reconstructed and are

therefore available in the encoder and decoder to generate a prediction for the current MB.

Each 4x4 luma prediction mode generates 16 predicted pixel values using some or all of the

neighboring pixels A to M as shown in Figure 2.2. The examples of each 4x4 luma

prediction mode for real images are given in Figure 2.3. The arrows indicate the direction

of prediction in each mode. The predicted pixels are calculated by a weighted average of

the neighboring pixels A-M for each mode except Vertical, Horizontal and DC modes.

13

The prediction equations used in each 4x4 luma prediction mode are shown in

Figure 2.4 where [x, y] denotes the position of the pixel in a 4x4 block (the top left, top

right, bottom left, and bottom right positions of a 4x4 block are denoted as [0, 0], [0, 3], [3,

0], and [3, 3], respectively) and pred[x, y] is the prediction for the pixel in the position [x,

y].

Figure 2.1 A 4x4 Luma Block and Neighboring Pixels

Figure 2.2 4x4 Luma Prediction Modes

14

Figure 2.3 Examples of Real Images for 4x4 Luma Prediction Modes

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels A-M are available. If pixels E, F,

G and H have not yet been encoded and reconstructed, the value of pixel D is copied to

these positions and they are marked as available for DC mode. The other prediction modes

can only be used if all of the required neighboring pixels are available [1, 3]. Available 4x4

luma prediction modes for a 4x4 luma block depending on the availability of the

neighboring 4x4 luma blocks are given in Table 2.1.

pred[0, 0] = A pred[0, 0] = I

pred[0, 1] = B pred[0, 1] = I

pred[0, 2] = C pred[0, 2] = I

pred[0, 3] = D pred[0, 3] = I

pred[1, 0] = A pred[1, 0] = J

pred[1, 1] = B pred[1, 1] = J

pred[1, 2] = C pred[1, 2] = J

15

pred[1, 3] = D pred[1, 3] = J

pred[2, 0] = A pred[2, 0] = K

pred[2, 1] = B pred[2, 1] = K

pred[2, 2] = C pred[2, 2] = K

pred[2, 3] = D pred[2, 3] = K

pred[3, 0] = A pred[3, 0] = L

pred[3, 1] = B pred[3, 1] = L

pred[3, 2] = C pred[3, 2] = L

pred[3, 3] = D pred[3, 3] = L

(a) 4x4 Vertical Mode (b) 4x4 Horizontal Mode

pred[x, y] = (A + B + C + D + I + J + K + L + 4) >> 3

If the left and the top neighboring
pixels are available

pred[x, y] = (I + J + K + L + 2) >> 2
Else If only the left neighboring
pixels are available

pred[x, y] = (A + B + C + D + 2) >> 2
Else If only the top neighboring
pixels are available

pred[x, y] = 128 Else

(c) 4x4 DC Mode

pred[0, 0] = A + 2B + C + 2 >> 2 pred[0, 0] = A + 2M + I + 2 >> 2

pred[0, 1] = B + 2C + D + 2 >> 2 pred[0, 1] = M + 2A + B + 2 >> 2

pred[0, 2] = C + 2D + E + 2 >> 2 pred[0, 2] = A + 2B + C + 2 >> 2

pred[0, 3] = D + 2E + F + 2 >> 2 pred[0, 3] = B + 2C + D + 2 >> 2

pred[1, 0] = B + 2C + D + 2 >> 2 pred[1, 0] = M + 2I + J + 2 >> 2

pred[1, 1] = C + 2D + E + 2 >> 2 pred[1, 1] = A + 2M + I + 2 >> 2

pred[1, 2] = D + 2E + F + 2 >> 2 pred[1, 2] = M + 2A + B + 2 >> 2

pred[1, 3] = E + 2F + G + 2 >> 2 pred[1, 3] = A + 2B + C + 2 >> 2

pred[2, 0] = C + 2D + E + 2 >> 2 pred[2, 0] = I + 2J + K + 2 >> 2

16

pred[2, 1] = D + 2E + F + 2 >> 2 pred[2, 1] = M + 2I + J + 2 >> 2

pred[2, 2] = E + 2F + G + 2 >> 2 pred[2, 2] = A + 2M + I + 2 >> 2

pred[2, 3] = F + 2G + H + 2 >> 2 pred[2, 3] = M + 2A + B + 2 >> 2

pred[3, 0] = D + 2E + F + 2 >> 2 pred[3, 0] = J + 2K + L + 2 >> 2

pred[3, 1] = E + 2F + G + 2 >> 2 pred[3, 1] = I + 2J + K + 2 >> 2

pred[3, 2] = F + 2G + H + 2 >> 2 pred[3, 2] = M + 2I + J + 2 >> 2

pred[3, 3] = G + 3H + 2 >> 2 pred[3, 3] = A + 2M + I + 2 >> 2

(d) 4x4 Diagonal Down Left Mode (e) 4x4 Diagonal Down Right Mode

pred[0, 0] = M + A + 1 >> 1

pred[0, 0] = M + I + 1 >> 1

pred[0, 1] = A + B + 1 >> 1 pred[0, 1] = I + 2M + A + 2 >> 2

pred[0, 2] = B + C + 1 >> 1 pred[0, 2] = B + 2A + M + 2 >> 2

pred[0, 3] = C + D + 1 >> 1 pred[0, 3] = C + 2B + A + 2 >> 2

pred[1, 0] = I + 2M + A + 2 >> 2 pred[1, 0] = I + J + 1 >> 1

pred[1, 1] = M + 2A + B + 2 >> 2 pred[1, 1] = M + 2I + J + 2 >> 2

pred[1, 2] = A + 2B + C + 2 >> 2 pred[1, 2] = M + I + 1 >> 1

pred[1, 3] = B + 2C + D + 2 >> 2 pred[1, 3] = I + 2M + A + 2 >> 2

pred[2, 0] = M + 2I + J + 2 >> 2 pred[2, 0] = J + K + 1 >> 1

pred[2, 1] = M + A + 1 >> 1 pred[2, 1] = I + 2J + K + 2 >> 2

pred[2, 2] = A + B + 1 >> 1 pred[2, 2] = I + J + 1 >> 1

pred[2, 3] = B + C + 1 >> 1 pred[2, 3] = M + 2I + J + 2 >> 2

pred[3, 0] = I + 2J + K + 2 >> 2 pred[3, 0] = K + L + 1 >> 1

pred[3, 1] = I + 2M + A + 2 >> 2 pred[3, 1] = J + 2K + L + 2 >> 2

pred[3, 2] = M + 2A + B + 2 >> 2 pred[3, 2] = J + K + 1 >> 1

pred[3, 3] = A + 2B + C + 2 >> 2 pred[3, 3] = I + 2J + K + 2 >> 2

(f) 4x4 Vertical Right Mode (g) 4x4 Horizontal Down Mode

17

pred[0, 0] = A + B + 1 >> 1 pred[0, 0] = I + J + 1 >> 1

pred[0, 1] = B + C + 1 >> 1 pred[0, 1] = I + 2J + K + 2 >> 2

pred[0, 2] = C + D + 1 >> 1 pred[0, 2] = J + K+ 1 >> 1

pred[0, 3] = D + E + 1 >> 1 pred[0, 3] = J + 2K + L + 2 >> 2

pred[1, 0] = A + 2B + C + 2 >> 2 pred[1, 0] = J + K+ 1 >> 1

pred[1, 1] = B + 2C + D + 2 >> 2 pred[1, 1] = J + 2K + L + 2 >> 2

pred[1, 2] = C + 2D + E + 2 >> 2 pred[1, 2] = K + L + 1 >> 1

pred[1, 3] = D + 2E + F + 2 >> 2 pred[1, 3] = K + 3L + 2 >> 2

pred[2, 0] = B + C + 1 >> 1 pred[2, 0] = K + L + 1 >> 1

pred[2, 1] = C + D + 1 >> 1 pred[2, 1] = K + 3L + 2 >> 2

pred[2, 2] = D + E + 1 >> 1 pred[2, 2] = L

pred[2, 3] = E + F + 1 >> 1 pred[2, 3] = L

pred[3, 0] = B + 2C + D + 2 >> 2 pred[3, 0] = L

pred[3, 1] = C + 2D + E + 2 >> 2 pred[3, 1] = L

pred[3, 2] = D + 2E + F + 2 >> 2 pred[3, 2] = L

pred[3, 3] = E + 2F + G + 2 >> 2 pred[3, 3] = L

(h) 4x4 Vertical Left Mode (i) 4x4 Horizontal Up Mode

Figure 2.4 Prediction Equations for 4x4 Luma Prediction Modes

Table 2.1 Availability of 4x4 Luma Prediction Modes

Availability of Neighboring 4x4

Luma Blocks

Available 4x4 Luma Prediction

Modes

None available DC

Left available, Top not available Horizontal, DC, Horizontal Up

Top available, Left not available
Vertical, DC, Vertical Left, Diagonal

Down-Left

Both available All Modes

18

There are four 16x16 luma prediction modes designed in a directional manner. Each

16x16 luma prediction mode generates 256 predicted pixel values using some or all of the

upper (H) and left-hand (V) neighboring pixels as shown in Figure 2.5. Vertical, Horizontal

and DC modes are similar to 4x4 luma prediction modes. Plane mode is an approximation

of bilinear transform with only integer arithmetic. The examples of each 16x16 luma

prediction mode for real images are given in Figure 2.6. The prediction equations used in

16x16 luma prediction modes are shown in Figure 2.7 where [y, x] denotes the position of

the pixel in a MB (the top left, top right, bottom left, and bottom right positions of a MB

are denoted as [0,0], [0,15], [15,0], and [15,15], respectively), p represents the neighboring

pixel values and Clip1 is to clip the result between 0 and 255.

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available [1,

3]. Available 16x16 luma prediction modes for a MB depending on the availability of the

neighboring MBs are given in Table 2.2.

Figure 2.5 16x16 Luma Prediction Modes

Figure 2.6 Examples of Real Images for 16x16 Luma Prediction Modes

Table

Availability of Neighboring 16x16

Luma Blocks

None available

Left available, Top not available

Top available, Left not available

Both available

pred[x, 0] = p[

pred[x, 1] = p[

pred[x, 2] = p[

pred[x, 3] = p[

pred[x, 4] = p[

pred[x, 5] = p[

19

Examples of Real Images for 16x16 Luma Prediction Modes

Table 2.2 Availability of 16x16 Luma Prediction Modes

Availability of Neighboring 16x16

Luma Blocks

Available 16x16 Luma

Prediction Modes

None available DC

Left available, Top not available Horizontal, DC

Top available, Left not available Vertical, DC

Both available All Modes

pred[x, 0] = p[-1, 0] pred[0, y] = p[0, -1]

pred[x, 1] = p[-1, 1] pred[1, y] = p[1, -1]

pred[x, 2] = p[-1, 2] pred[2, y] = p[2, -1]

pred[x, 3] = p[-1, 3] pred[3, y] = p[3, -1]

pred[x, 4] = p[-1, 4] pred[4, y] = p[4, -1]

[x, 5] = p[-1, 5] pred[5, y] = p[5, -1]

Examples of Real Images for 16x16 Luma Prediction Modes

16x16 Luma Prediction Modes

Luma

Prediction Modes

Horizontal, DC

Vertical, DC

20

pred[x, 6] = p[-1, 6] pred[6, y] = p[6, -1]

pred[x, 7] = p[-1, 7] pred[7, y] = p[7, -1]

pred[x, 8] = p[-1, 8] pred[8, y] = p[8, -1]

pred[x, 9] = p[-1, 9] pred[9, y] = p[9, -1]

pred[x, 10] = p[-1, 10] pred[10,y] = p[10, -1]

pred[x, 11] = p[-1, 11] pred[11, y] = p[11, -1]

pred[x, 12] = p[-1, 12] pred[12, y] = p[12, -1]

pred[x, 13] = p[-1, 13] pred[13, y] = p[13, -1]

pred[x, 14] = p[-1, 14] pred[14, y] = p[14, -1]

pred[x, 15] = p[-1, 15] pred[15, y] = p[15, -1]

(a) 16x16 Vertical Mode (b) 16x16 Horizontal Mode

[] [] [] 516,11,,
15

0

,
15

0

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpred

If the left and the top neighboring
pixels are available

[] [] 48,1,
15

0

,

,

>>

+−= ∑

=y

ypyxpred

Else If only the left neighboring pixels
are available

[] [] 481,,
15

0

,

,

>>

+−= ∑

=x

xpyxpred

Else If only the top neighboring pixels
are available

[] 128, =yxpred
Else //If the left and the upper
neighboring pixels are not available

(c) 16x16 DC Mode with x=0..15 and y=0..15

21

[] () ()()()
[] []()

()
()

() [] []()

() [] [](),,
7

0

,

,,
7

0

,

6,18,1*1

1,61,8*1

632*5

632*5

1,1515,1*16

5167*7*1,

,

,

ypypyV

xpxpxH

Vc

Hb

ppa

ycxbaClipyxpred

y

x

−−−+−+=

−−−−++=

>>+=

>>+=

−+−=

>>+−+−+=

∑

∑

=

=

(d) 16x16 Plane Mode with x, y = 0..15

Figure 2.7 Prediction Equations for 16x16 Luma Prediction Modes

For the chroma components of a MB, a predicted 8x8 chroma block is formed for

each 8x8 chroma component by performing intra prediction for the MB. The chroma

component of a MB and its neighboring pixels are shown in Figure 2.8. There are four 8x8

chroma prediction modes which are similar to 16x16 luma prediction modes. A mode

decision algorithm is used to compare the 8x8 predictions and select the best chroma

prediction mode for each chroma component of the MB. Both chroma components of a MB

always use the same prediction mode. The prediction equations used in 8x8 chroma

prediction modes are shown in Figure 2.9 where [x, y] denotes the position of the pixel in a

MB (the top left, top right, bottom left, and bottom right positions of a MB are denoted as

[0,0], [0,7], [7,0], and [7,7], respectively), p represents the neighboring pixel values and

Clip1 is to clip the result between 0 and 255.

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available

[1,3]. Available 8x8 chroma prediction modes for a MB depending on the availability of

the neighboring MBs are given in Table 2.3.

22

Figure 2.8 Chroma Component of a MB and its Neighboring Pixels

Table 2.3 Availability of 8x8 Luma Prediction Modes

Availability of Neighboring 8x8

Luma Blocks

Available 8x8 Luma

Prediction Modes

None available DC

Left available, Top not available Horizontal, DC

Top available, Left not available Vertical, DC

Both available All Modes

23

predc[x, 0] = p[-1, 0] predc[0, y] = p[0, -1]

predc[x, 1] = p[-1, 1] predc[1, y] = p[1, -1]

predc[x, 2] = p[-1, 2] predc[2, y] = p[2, -1]

predc[x, 3] = p[-1, 3] predc[3, y] = p[3, -1]

predc[x, 4] = p[-1, 4] predc[4, y] = p[4, -1]

predc[x, 5] = p[-1, 5] predc[5, y] = p[5, -1]

predc[x, 6] = p[-1, 6] predc[6, y] = p[6, -1]

predc[x, 7] = p[-1, 7] predc[7, y] = p[7, -1]

(a) 8x8 Vertical Mode (b) 8x8 Horizontal Mode

[] [] [] 34,11,,
3

0

,
3

0

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpredc

If p[x, –1] with x = 0..3, and p[–1, y]

with y = 0..3 are available

[] [] 22,1,
3

0

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 0..3 are

available and p[x, –1] with x = 0..3

are not available

[] [] 221,,
3

0

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 0..3 are

available and p[–1, y] with y = 0..3

are not available

[] 128, =yxpredc
Else //If p[x, –1] with x = 0..3, and

p[–1, y] with y = 0..3 are not available

(c) 8x8 DC Mode with x=0..3 and y=0..3 (Block 0 in Fig. 2.8)

[] [] 321,,
7

4

,

,

>>

+−= ∑

=x

xpyxpredc

If p[x, –1] with x = 4..7 are available

[] [] 22,1,
3

0

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 0..3 are

available

24

[] 128, =yxpredc
Else //If p[x, –1] with x = 4..7, and p[–1,

y] with y = 0..3 are not available

(c) 8x8 DC Mode with x=4..7 and y=0..3 (Block 1 in Fig. 2.8)

[] [] 22,1,
7

4

,

,

>>

+−= ∑

=y

ypyxpredc

If p[–1, y] with y = 4..7 are available

[] [] 221,,
3

0

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 0..3 are

available

[] 128, =yxpredc
Else //If p[x, –1] with x = 0..3, and p[–1,

y] with y = 4..7 are not available

(c) 8x8 DC Mode with x=0..3 and y=4..7 (Block 2 in Fig. 2.8)

[] [] [] 34,11,,
7

4

,
7

4

,

,,

>>

+−+−= ∑∑

== yx

ypxpyxpredc

If p[x, –1] with x = 4..7, and p[–1, y]

with y = 4..7 are available

[] [] 22,1,
7

4

,

,

>>

+−= ∑

=y

ypyxpredc

Else If p[–1, y] with y = 4..7 are

available and p[x, –1] with x = 4..7

are not available

[] [] 221,,
7

4

,

,

>>

+−= ∑

=x

xpyxpredc

Else If p[x, –1] with x = 4..7 are

available and p[–1, y] with y = 4..7

are not available

[] 128, =yxpredc
Else //If p[x, –1] with x = 4..7, and

p[–1, y] with y = 4..7 are not available

(c) 8x8 DC Mode with x=4..7 and y=4..7 (Block 3 in Fig. 2.8)

25

[] () ()()()
[] []()

()
()

() [] []()

() [] [](),,
3

0

,

,,
3

0

,

2,14,1*1

1,21,4*1

516*17

516*17

1,77,1*16

5167*7*1,

,

,

ypypyV

xpxpxH

Vc

Hb

ppa

ycxbaClipyxpred

y

x

−−−+−+=

−−−−++=

>>+=

>>+=

−+−=

>>+−+−+=

∑

∑

=

=

(d) 8x8 Plane Mode with x, y = 0..7

Figure 2.9 Prediction Equations for 8x8 Chroma Prediction Modes

2.2 Proposed Computational Complexity and Power Reduction Techniques

PECR technique exploits equality of neighboring pixels for simplifying the

prediction calculations done by H.264 intra prediction modes. PSCR technique exploits

similarity of neighboring pixels for simplifying the prediction calculations done by H.264

intra prediction modes. Both techniques are applied to H.264 4x4 luminance, 16x16

luminance and 8x8 chrominance prediction modes.

Intra 4x4 modes use 13 neighboring pixels for prediction calculations. PECR

technique for intra 4x4 modes is based on the equality of the neighboring pixels A, B, C,

D, E, F, G, H, I, J, K, L, M of the currently processed 4x4 block. Each intra 4x4 prediction

mode uses some of these neighboring pixels to predict a 4x4 block. H.264 4x4 intra

prediction modes and the neighboring pixels they use for prediction calculations are shown

in Table 2.4. The prediction equations of a 4x4 intra prediction mode simplify to a constant

value if the neighboring pixels used by this mode are all equal.

The prediction equation used by DC mode is given in equation (2.1). If the

neighboring pixels A, B, C, D, I, J, K, L are equal, we can substitute one of the neighboring

pixels, e.g. pixel A, in place of every neighboring pixel in equation (2.1). Therefore, the

equation (2.1) simplifies to A as shown in (2.2).

26

Table 2.4 4x4 Intra Modes and Corresponding Neighboring Pixels

4x4 Intra Modes Neighboring Pixels
Vertical A, B, C, D
Horizontal I, J, K, L
DC A, B, C, D, I, J, K, L
Diagonal Down Left A, B, C, D, E, F, G, H
Diagonal Down Right A, B, C, D, I, J, K, L, M
Vertical Right A, B, C, D, I, J, K, M
Horizontal Down A, B, C, I, J, K, L, M
Vertical Left A, B, C, D, E, F, G
Horizontal Up I, J, K, L

pred[y,x] = [(A+B)+(C+D)+(I+J)+(K+L)+4] >> 3 (2.1)

 pred[y,x] = [8A+4] >>3 = A (2.2)

This is the case for other prediction modes as well. For example, as shown in Figure

2.4, DDL mode uses A, B, C, D, E, F, G, H neighboring pixels in its prediction equations.

The prediction equation for the pixel [0, 0] is given in equation (2.3). If neighboring pixels

A, B, C, D, E, F, G, H are all equal, all prediction equations of DDL mode simplifies to a

constant value as shown in (2.4).

pred[0, 0] = A + 2B + C + 2 >> 2 (2.3)

pred[0,0] = [4A+2] >>2 = A (2.4)

Since, in this case, all predicted pixels by DDL mode will be the same and equal to

one of the neighboring pixels, the calculations done by DDL prediction mode become

unnecessary. Therefore, during 4x4 intra prediction, the calculations done by DDL mode

can be avoided by only comparing a few neighboring pixels at the beginning of the

prediction process. During 4x4 intra prediction, the calculations done by the other

prediction modes can be avoided in the same way by comparing the neighboring pixels

used by the prediction equations of these modes.

PSCR technique for intra 4x4 modes is based on the similarity of the neighboring

pixels of the currently processed 4x4 block. If the neighboring pixels used by the prediction

equations of a 4x4 intra prediction mode are similar, the pixels predicted by this mode will

27

also be similar. PSCR technique determines the similarity of the neighboring pixels by

truncating their least significant bits by the specified truncation amount (1, 2, 3, or 4 bits)

and comparing the truncated pixels. If the truncated neighboring pixels of a prediction

mode are all equal, one of the original neighboring pixels is substituted in place of every

neighboring pixel in the prediction equations of this prediction mode. Therefore, prediction

equations simplify to a constant value and prediction equation calculations become

unnecessary.

The number of 4x4 intra prediction modes with equal and similar neighboring pixels

in a frame varies from frame to frame. We analyzed CIF sized Foreman, Akiyo and

Mother&Daughter frames at 28, 35 and 42 QP values using JM 14.0 to determine how

many prediction modes have equal and similar neighboring pixels. The percentages of 4x4

modes that have equal neighboring pixels for each frame are given in Table 2.5. The

percentage of prediction modes with equal neighboring pixels vary from 14% to 89%.

The percentages of 4x4 modes that have similar neighboring pixels for different

truncation amounts for each frame are given in Table 2.6. The percentage of prediction

modes with similar neighboring pixels vary from 11% to 94%. The percentage increases

with higher QP values. Vert, Horz, Horz_up, DDL and Vert_left modes typically, on the

average, have more than 50% similar neighboring pixels. DDR, Horz_down and Vert_right

have relatively lower percentage with a typical value of more than 20%.

Table 2.7 shows the amount of computation performed by the prediction equations of

each 4x4 intra mode in terms of number of addition and shift operations. Vertical and

Horizontal modes require no computation. The prediction equations of the other modes

include only addition and shift operations. Vertical right, Horizontal down and Vertical left

modes have large amount of computation. A total of 882337 addition and 528045shift

operations are performed by the H.264 4x4 intra prediction algorithm for a CIF (352x288)

frame.

Based on this information and the information given in Tables 2.5, 2.6 and 2.7, we

calculated the computation reduction achieved by the PECR and PSCR techniques for CIF

size Foreman, Akiyo and Mother&Daughter frames. As shown in Table 2.8, the

computation reduction ranges from 28% to 60% by PECR technique. As shown in Table

2.9, the computation reduction ranges from 18% to 68% by PSCR technique. The proposed

28

techniques, on the other hand, have an overhead of only 74882 comparisons for a CIF

(352x288) frame.

Table 2.5 Percentage of 4x4 Intra Prediction Modes with Equal Neighboring Pixels

 4x4 Intra Modes QP = 28 QP = 35 QP = 42

F
or

em
an

VERT 50.17% 68.75% 84.31%
HORZ/HORZ_UP 47.76% 65.74% 79.51%
DC 29.34% 48.93% 68.77%
DDL 40.94% 61.10% 80.26%
DDR 14.08% 21.26% 24.61%
VERT_RIGHT 14.55% 21.61% 25.02%
HORZ_DOWN 14.47% 21.89% 24.78%
VERT_LEFT 41.56% 61.58% 80.51%

A
k

iy
o

VERT 65.01% 75.14% 85.89%
HORZ/HORZ_UP 66.19% 78.82% 87.06%
DC 48.94% 62.52% 76.69%
DDL 56.66% 67.52% 81.06%
DDR 28.54% 34.00% 35.05%
VERT_RIGHT 28.88% 34.20% 35.31%
HORZ_DOWN 29.25% 34.44% 35.50%
VERT_LEFT 57.20% 67.93% 81.66%

M
ot

h
er

 D
au

gh
te

r VERT 57.58% 74.23% 87.58%
HORZ/HORZ_UP 62.06% 77.90% 89.13%
DC 43.62% 60.24% 78.31%
DDL 48.33% 65.75% 82.04%
DDR 29.20% 37.03% 37.50%
VERT_RIGHT 29.34% 37.34% 37.86%
HORZ_DOWN 30.59% 38.01% 38.19%
VERT_LEFT 48.82% 66.16% 82.51%

29

Table 2.6 Percentage of 4x4 Intra Prediction Modes with Similar Neighboring Pixels

 Original (%) 1 bit Trunc. (%) 2 bit Trunc. (%) 3 bit Trunc. (%) 4 bit Trunc. (%)

QP QP QP QP QP

 Modes 28 35 42 28 35 42 28 35 42 28 35 42 28 35 42

F
or

em
an

V 50.1 70.9 85.1 52.1 70.7 85.6 54.0 72.3 85.6 59.5 74.0 87.6 68.3 78.4 89.0
H/HU 46.4 65.6 79.9 48.5 66.9 80.4 50.5 67.3 80.0 55.9 70.4 82.2 65.1 75.4 84.7
DDL 26.9 40.2 47.7 29.5 43.2 52.1 33.0 46.4 56.2 41.6 52.2 61.5 53.1 61.9 69.4
VL 27.1 40.5 47.9 29.8 43.5 52.3 33.4 46.9 56.6 42.5 52.6 61.9 54.7 62.9 70.0
HD 8.03 11.8 11.6 10.3 16.4 15.7 14.0 21.3 23.2 25.1 28.4 29.6 38.9 44.0 45.8
VR 8.09 11.6 11.5 10.3 16.2 15.7 13.9 21.3 23.2 25.2 28.5 29.6 39.4 43.9 45.8
DDR 7.92 11.5 11.4 10.1 15.9 15.5 13.5 21.0 22.8 24.4 27.9 29.1 37.2 42.8 45.2
DC 9.91 13.4 13.6 13.2 18.4 18.4 18.0 25.0 26.1 27.9 32.8 33.8 40.3 46.6 50.1

A
k

iy
o

V 65.4 78.1 87.1 67.0 78.0 87.2 68.0 79.3 89.1 70.7 80.2 90.2 74.7 83.0 91.4
H/HU 66.6 81.0 90.2 68.6 80.4 90.6 70.8 82.1 91.6 74.1 83.3 92.3 80.2 86.7 93.6
DDL 43.4 51.3 55.8 44.3 52.4 58.7 49.3 56.5 64.0 56.1 61.8 70.6 61.8 69.5 75.3
VL 43.6 51.5 56.2 44.5 52.5 58.8 49.7 56.8 64.1 57.2 62.1 70.9 63.6 70.3 75.6
HD 17.2 20.7 23.0 20.7 26.3 27.6 28.2 33.0 34.9 41.2 41.5 45.8 53.7 56.0 55.8
VR 17.1 20.7 22.7 20.6 26.3 27.6 28.0 32.8 34.8 40.5 41.7 45.5 52.4 55.7 55.7
DDR 16.9 20.5 22.6 20.5 26.2 27.5 27.8 32.7 34.7 40.0 41.3 45.4 51.1 55.0 55.5
DC 20.2 24.0 25.8 25.1 30.1 31.5 33.1 37.6 39.0 44.3 46.5 50.2 54.5 58.9 60.8

M
&

D

V 59.5 77.4 90.2 61.2 78.5 91.0 63.2 79.6 91.7 66.3 81.2 92.9 72.8 84.1 93.4
H/HU 62.2 78.7 90.6 62.5 79.2 91.0 65.3 81.0 92.1 69.7 82.7 92.9 75.9 85.7 93.9
DDL 38.0 50.2 56.3 42.9 55.5 60.6 46.6 57.8 65.4 51.7 62.0 69.6 59.3 68.8 76.3
VL 38.1 50.5 56.4 43.1 55.8 60.9 46.8 58.0 65.5 52.5 62.3 69.8 61.0 69.3 76.6
HD 20.4 23.4 24.0 26.0 31.4 29.6 32.7 36.5 38.6 41.4 43.6 45.2 52.5 55.4 58.5
VR 20.4 23.3 23.9 26.1 31.4 29.5 32.7 36.7 38.5 40.9 43.6 45.1 51.6 55.2 58.4
DDR 20.3 23.1 23.9 25.8 31.1 29.4 32.5 36.3 38.4 40.5 43.3 44.9 50.3 54.7 58.2
DC 23.1 25.7 26.2 29.3 34.0 32.5 36.8 40.2 42.3 44.3 48.3 50.0 53.2 59.3 63.4

Table 2.7 Computation Amount of 4x4 Intra Modes

Modes
Number of
Addition

Number of Shift

DDL 21 14
DDR 21 14
VERT_RIGHT 26 16
HORZ_DOWN 26 16
VERT_LEFT 25 15
HORZ_UP 15 9
DC (Left Avail.) 4 1
DC (Top Avail.) 4 1
DC (Both Avail.) 8 1

30

Table 2.8 Intra 4x4 Modes Computation Reduction Results by PECR Technique

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

28 246939 27.93% 146816 27.74%

35 365863 41.38% 216263 40.87%

42 459269 51.94% 269710 50.97%

A
k

iy
o 28 386890 43.76% 229707 43.41%

35 461728 52.22% 273099 51.61%

42 521463 58.98% 306887 57.99%

M
ot

h
er

D

au
gh

te
r 28 359883 40.70% 214067 40.45%

35 469840 53.14% 278673 52.66%

42 539033 60.96% 317345 59.97%

Table 2.9 Intra 4x4 Modes Computation Reduction Results by PSCR Technique

PSCR

1 bit Truncation
PSCR

2 bit Truncation
PSCR

3 bit Truncation
PSCR

4 bit Truncation

Q
P

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

F
or

em
an

 28
183794
%20.83

111155
%21.05

214423
%24.30

129167
%24.46

300422
%34.05

180625
%34.21

410869
%46.57

246741
%46.73

35
269853
%30.58

163547
%30.97

305898
%34.67

184558
%34.95

361121
%40.93

217274
%41.15

470764
%53.35

282662
%53.53

42 305594
%34.63

185751
%35.18

354949
%40.23

214871
%40.69

404623
%45.86

244140
%46.23

511344
%57.95

307139
%58.17

A
k

iy
o

28 297732
%33.74

179575
%34.01

351813
%39.87

211561
%40.06

437888
%49.63

262795
%49.77

519800
%58.91

311536
%59.00

35 359847
%40.78

217158
%41.12

407028
%46.13

244912
%46.38

466843
%52.91

280299
%53.08

562924
%6380

337540
%63.92

42 393978
%44.65

238060
%45.08

446557
%50.61

269246
%50.99

520684
%59.01

313053
%59.29

586565
%66.48

351819
%66.63

M
&

D

28 314438
%35.64

189134
%35.82

361454
%40.97

216771
%41.05

422357
%47.87

253059
%47.92

503723
%57.09

301789
%57.15

35 392699
%44.51

236762
%44.84

427529
%48.45

257091
%48.69

477127
%54.08

286213
%54.20

557736
%63.21

334094
%63.27

42 409721
%46.44

247572
%46.88

469649
%53.23

282807
%53.56

516205
%58.50

310142
%58.73

603375
%68.38

361596
%68.48

31

Figure 2.10 Four Pixel Groups of Neighboring Pixels of a MB

Intra 8x8 chrominance modes use 17 neighboring pixels for prediction calculations

and intra 16x16 luminance modes use 33 neighboring pixels for prediction calculations.

Therefore, the probability of all the neighboring pixels of an intra 8x8 or an intra 16x16

mode being equal is much smaller than that of an intra 4x4 mode. Therefore, as shown in

Figure 2.10, we divide the neighboring pixels of intra 16x16 and intra 8x8 modes into four

pixel groups (H1, H2, H3, H4, V1, V2, V3, V4) and check the equality of the neighboring

pixels in each group separately.

We analyzed CIF sized Foreman, Akiyo and Mother Daughter frames at 28, 35 and

42 QP values respectively using JM 14.0 to determine how many 16x16 luminance and 8x8

chrominance four pixel groups have equal/similar pixels. The percentages of 16x16

luminance and 8x8 chrominance four pixel groups that have equal pixels for each frame are

given in Tables 2.10 and 2.11 respectively. The percentages of 16x16 luminance and 8x8

chrominance four pixel groups that have similar pixels for each frame are given in Tables

2.12 and 2.13 respectively.

There are 396 MBs in CIF sized frame, but 378 MBs have horizontal groups H1, H2,

H3, H4 and 374 MBs have vertical groups V1, V2, V3, V4. For intra 16x16 luminance

modes, the percentage of four pixel groups with equal pixels ranges from 43% to 77% and

it is typically greater than 50%. For intra 8x8 chrominance modes, the percentage ranges

from 73% to 90% and it is typically more than 80%. For intra 16x16 luminance modes, the

percentage of four pixel groups with similar pixels ranges from 42% to 90% and it is

32

typically greater than 50%. For intra 8x8 chrominance modes, the percentage ranges from

73% to 95% and it is typically more than 80%.

Table 2.14 shows the amount of computation performed by the prediction equations

of each 16x16 and 8x8 intra mode in terms of number of addition and shift operations.

Vertical and Horizontal modes require no computation. The prediction equations of the DC

mode include only addition and shift operations. Plane mode have large amount of

computation, and as shown in Figure 2.8, it uses multiplication in the prediction equations.

But the multiplication operation can be replaced with addition and shift operations [22, 24].

Therefore, a total of 121631 addition and 106067 shift operations are performed by the

H.264 16x16 intra prediction algorithm for a CIF (352x288) frame, and a total of 30778

Table 2.10 Percentage of 16x16 Intra Prediction Modes with Equal Neighboring Pixels

 QP = 28 QP = 35 QP = 42

F
or

em
an

H1 45.96% 61.36% 68.43%
H2 46.21% 65.15% 72.22%
H3 47.22% 62.12% 71.97%
H4 43.94% 62.12% 71.46%
V1 46.97% 58.59% 65.15%
V2 45.20% 58.33% 65.91%
V3 45.71% 56.06% 67.17%
V4 43.69% 56.57% 62.37%

A
k

iy
o

H1 61.36% 63.38% 70.45%
H2 58.33% 64.65% 71.46%
H3 58.59% 66.67% 71.21%
H4 57.83% 60.86% 70.71%
V1 61.87% 65.91% 70.96%
V2 58.59% 67.93% 71.46%
V3 58.84% 67.93% 70.20%
V4 61.11% 69.70% 71.21%

M
ot

h
er

 D
au

gh
te

r

H1 48.99% 65.15% 74.49%
H2 52.53% 67.93% 71.46%
H3 49.24% 65.91% 74.49%
H4 47.47% 64.39% 68.18%
V1 51.77% 65.66% 74.49%
V2 58.59% 71.97% 76.52%
V3 57.32% 70.45% 76.77%
V4 60.10% 74.24% 77.53%

33

Table 2.11 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Equal

Neighboring Pixels

 QP = 28 QP = 35 QP = 42

F
or

em
an

Cb

H1 78.03% 84.85% 87.37%
H2 78.79% 85.35% 87.12%
V1 79.04% 85.86% 86.11%
V2 78.54% 84.85% 86.87%

Cr

H1 83.33% 85.35% 84.60%
H2 84.60% 85.35% 87.12%
V1 86.62% 85.10% 85.10%
V2 83.59% 85.35% 85.10%

A
k

iy
o

Cb

H1 73.23% 79.55% 82.07%
H2 74.75% 81.31% 84.34%
V1 75.51% 78.79% 84.09%
V2 77.53% 79.55% 83.33%

Cr

H1 78.03% 83.08% 85.10%
H2 80.81% 83.59% 86.87%
V1 80.05% 83.08% 87.37%
V2 79.80% 81.57% 86.11%

M
ot

h
er

 D
au

gh
te

r

Cb

H1 84.85% 84.09% 80.30%
H2 80.05% 82.32% 84.09%
V1 81.57% 86.36% 87.37%
V2 83.59% 87.37% 87.63%

Cr

H1 82.83% 85.10% 86.36%
H2 85.10% 86.62% 88.38%
V1 82.83% 86.62% 89.14%
V2 85.61% 86.62% 89.90%

34

Table 2.12 Percentage of 16x16 Intra Prediction Modes with Similar Neighboring Pixels

PSCR

1 bit Trunc. (%)
PSCR

2 bit Trunc. (%)
PSCR

3 bit Trunc. (%)
PSCR

4 bit Trunc. (%)

QP QP QP QP

 28 35 42 28 35 42 28 35 42 28 35 42

F
or

em
an

H1 49.7 63.1 72.4 51.2 66.1 74.2 59.6 70.4 78.0 64.6 73.9 80.8
H2 52.2 67.4 76.5 54.0 71.4 77.5 58.5 73.9 83.3 68.1 79.8 87.1
H3 47.2 64.9 75.5 50.7 68.9 75.7 60.3 72.4 81.0 67.1 77.5 83.5
H4 48.2 63.8 75.5 49.7 67.1 75.5 54.5 69.9 80.3 62.3 71.7 82.3
V1 49.7 62.8 68.1 51.7 64.9 70.7 56.3 68.6 76.0 64.6 72.2 79.2
V2 47.9 61.1 70.4 48.9 62.8 70.2 54.8 67.1 74.7 62.6 69.7 78.7
V3 46.4 58.5 71.4 51.0 62.6 71.7 54.8 66.4 76.0 60.8 71.2 80.3
V4 46.2 59.8 67.6 47.7 59.8 67.9 52.2 64.6 70.4 62.1 69.9 77.7

A
k

iy
o

H1 62.6 70.2 78.2 64.9 72.2 80.0 66.9 73.9 83.3 69.4 77.7 84.8
H2 60.1 68.1 75.7 62.3 71.4 80.3 63.3 73.2 83.8 69.1 76.7 84.8
H3 63.8 71.2 78.0 62.8 74.4 83.8 68.4 75.7 85.6 72.2 80.0 85.6
H4 62.6 67.4 78.0 62.3 69.1 79.8 65.4 71.2 83.5 70.7 76.0 85.6
V1 64.1 69.9 80.5 69.4 73.9 81.8 70.7 77.2 86.1 77.2 82.8 88.6
V2 63.6 72.2 81.3 67.6 75.5 83.0 69.7 78.2 86.8 75.7 82.5 87.3
V3 64.6 73.4 79.5 66.1 76.2 83.8 69.1 80.0 85.3 73.9 82.5 87.8
V4 65.4 74.7 81.3 65.6 77.7 85.3 71.9 77.7 87.1 78.7 83.5 88.3

M
&

D

H1 52.7 71.9 80.5 57.0 74.7 84.0 60.6 77.2 85.6 67.4 81.3 87.6
H2 58.0 70.4 77.7 58.8 75.5 80.0 61.6 78.2 85.1 68.9 79.5 87.8
H3 55.3 72.2 79.2 58.5 75.0 82.0 63.6 78.2 85.3 69.9 79.2 86.8
H4 54.0 69.7 73.2 56.5 71.2 78.7 60.1 73.2 79.5 66.6 75.2 83.5
V1 53.5 69.1 78.0 56.3 71.7 81.0 62.1 75.7 85.1 68.6 76.2 86.3
V2 59.6 73.9 81.8 63.3 78.7 85.6 66.9 81.3 88.6 72.7 82.8 90.6
V3 57.3 71.4 83.5 60.3 75.5 85.8 66.1 77.5 86.3 71.9 80.0 89.6
V4 61.6 78.0 82.8 66.4 79.8 84.8 69.9 81.3 89.1 76.2 84.3 90.1

addition and 106067 shift operations are performed by the H.264 8x8 intra prediction

algorithm for a CIF (352x288) frame.

The proposed PECR technique simplifies both 16x16 and 8x8 DC and plane mode

prediction equations significantly. As shown in (2.5), 16x16 DC mode prediction equations

add the upper and left neighboring pixels with a constant value and divide the result by 32.

The part of the prediction equation using the neighboring pixels in H1 group is shown in

equation (2.6). If the neighboring pixels in H1 group are equal, in this part of the prediction

equation, instead of adding the four neighboring pixels in the H1 group, one of the

neighboring pixels can be shifted by 2 as shown in (2.6). In this way, three addition

operations are replaced with one shift operation. This is the case for the other four

neighboring pixel groups as well. Whenever the four pixels in a group are equal, three

35

addition operations are avoided by doing one shift operation. A similar computation

reduction is achieved for 16x16 plane mode as well.

Table 2.13 Percentage of 8x8 Intra Prediction Modes (Chroma CB, CR) with Similar

Neighboring Pixels

PSCR

1 bit Trunc. (%)
PSCR

2 bit Trunc. (%)
PSCR

3 bit Trunc. (%)
PSCR

4 bit Trunc. (%)

 QP QP QP QP

 28 35 42 28 35 42 28 35 42 28 35 42

F
or

em
an

 Cb

H1 81.82 88.38 89.14 86.62 89.39 91.67 87.63 93.18 93.69 91.67 93.94 94.19
H2 82.83 90.40 89.39 83.84 91.92 90.91 85.61 92.42 93.94 90.91 94.44 93.94
V1 81.82 86.11 88.64 83.84 88.38 91.16 85.61 90.91 92.68 89.14 92.68 95.20
V2 80.30 86.62 88.89 84.34 88.38 90.66 86.36 90.15 92.17 90.66 92.68 93.69

Cr

H1 85.61 88.64 90.40 87.88 88.89 90.66 89.65 92.17 92.42 91.16 93.18 93.69
H2 87.88 89.39 87.88 89.14 91.67 91.16 91.92 92.93 93.69 92.42 92.68 93.94
V1 84.09 87.63 85.35 87.88 90.91 91.41 91.16 93.18 93.94 92.17 93.43 93.43
V2 85.61 88.89 85.86 86.11 90.66 92.68 88.38 92.42 91.67 90.40 93.18 92.93

A
k

iy
o

Cb

H1 76.77 82.83 82.07 78.54 83.84 83.84 79.80 84.34 84.34 83.33 85.35 86.62
H2 77.27 84.09 84.34 79.04 86.11 86.36 81.57 87.88 88.38 86.62 88.38 89.14
V1 76.52 81.31 85.10 79.80 84.34 86.11 84.85 86.36 86.36 86.36 87.12 88.13
V2 79.04 82.58 83.84 81.57 84.85 86.87 84.09 86.62 87.63 85.10 87.63 88.64

Cr

H1 79.04 83.33 83.59 81.06 86.36 86.62 83.84 87.37 89.14 87.63 88.64 90.66
H2 82.83 86.36 85.61 84.34 85.35 86.36 86.11 88.64 89.39 89.65 88.89 90.15
V1 83.84 85.61 89.14 84.34 87.88 89.65 86.62 90.91 93.18 90.91 92.42 94.95
V2 80.05 84.60 87.63 84.34 88.64 88.13 85.61 89.90 90.15 89.39 90.15 92.17

M
&

D

Cb

H1 84.34 87.37 87.12 87.12 89.65 90.15 87.88 92.17 92.17 90.40 92.68 93.69
H2 79.80 84.34 88.13 84.09 86.87 90.66 85.10 88.38 92.93 87.37 89.65 93.43
V1 82.07 89.90 90.15 86.11 90.91 92.93 86.87 92.93 91.92 89.65 95.20 94.44
V2 88.38 90.91 88.89 88.89 92.93 93.18 92.68 93.43 93.94 91.92 94.70 94.95

Cr

H1 83.33 87.37 89.65 86.62 89.65 89.90 89.14 91.41 92.17 90.15 92.42 93.69
H2 85.35 89.39 88.89 89.65 89.90 90.66 90.15 91.67 92.42 92.68 93.69 93.18
V1 85.35 86.62 88.64 87.12 90.40 91.41 89.14 93.94 92.93 91.92 94.95 93.94
V2 89.39 90.15 87.88 90.66 93.69 93.43 92.93 94.70 92.93 94.19 94.70 94.70

pred[y,x] = (∑ (p[x’,-1]+p[-1, x’])+16) >> 5, with x’ = 0, 1, …,15

 = (p[0,-1]+ p[1,-1]+…+p[15,-1] + p[-1,0]+ p[-1,1]+…+p[-1,15]+16)>>5 (2.5)

p[0,-1]+p[1,-1]+p[2,-1]+p[3,-1] = 4*p[0,-1] = p[0,-1]<<2 (2.6)

36

Table 2.14 Computation Amount of Intra 16x16 and Intra 8x8 Modes

MODES
Intra 16x16 Intra 8x8

Number of
Addition

Number
of Shift

Number of
Addition

Number
of Shift

PLANE 307 296 89 82
DC (Left Available) 16 1 8 2
DC (Top Available) 16 1 8 2
DC (Both Available) 32 1 24 4

Plane mode prediction equations, however, are more complex than DC mode

prediction equations. Plane mode has two calculation steps as shown in Figure 2.7. The

first step calculates a, b, c parameters from the neighboring pixels of the current MB, and

only 16% of the total plane mode calculations are performed in the first step. The second

step calculates the predicted pixels from a, b, c parameters and 84% of the total plane mode

calculations are performed in the second step. The predicted pixel values by the plane mode

are the weighted sum of a, b and c parameters. If b or c or both are equal to zero, the plane

mode prediction equations simplify significantly. Therefore, the proposed PECR and PSCR

techniques also check whether b and c parameters are equal/similar to zero or not before

the second step, and in this way, it avoids many additional unnecessary calculations with an

additional small comparison overhead.

Based on the information given in Tables 2.10, 2.11 and 2.14, we calculated the

computation reduction achieved by the PECR technique for intra 16x16 and intra 8x8

prediction modes for CIF-sized Foreman, Akiyo and Mother Daughter frames. As shown

in Tables 2.15 and 2.16, the computation reduction by PECR technique ranges from 28% to

68%. Based on the information given in Tables 2.12, 2.13, and 2.14, we calculated the

computation reduction achieved by the PSCR technique for intra 16x16 and intra 8x8

prediction modes for different truncation amounts for CIF-sized Foreman, Akiyo and

Mother Daughter frames. As shown in Tables 2.17 and 2.18, the computation reduction by

PSCR technique ranges from 13% to 65%.

37

Table 2.15 Intra 16x16 Computation Reduction Results by PECR

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

28 16183 13.30% 9403 8.87%

35 19662 16.17% 10764 10.15%

42 21831 17.95% 11786 11.11%

A
k

iy
o 28 28865 23.73% 20182 19.03%

35 30204 24.83% 20608 19.43%

42 30950 25.45% 20604 19.43%

M
ot

h
er

D

au
gh

te
r 28 25660 21.10% 17911 16.89%

35 34543 28.40% 24566 23.16%

42 33779 27.77% 22875 21.57%

Table 2.16 Intra 8x8 (Chroma CB, CR) Computation Reduction Results by PECR

 QP
Addition Reduction Shift Reduction

Number Percent Number Percent

F
or

em
an

 Cb

28 19347 47.60% 11293 36.69%

35 24624 60.58% 15847 51.49%
42 26018 64.01% 17055 55.41%

Cr
28 23379 57.52% 14688 47.72%
35 26925 66.24% 18113 58.85%
42 27771 68.33% 18885 61.36%

A
k

iy
o

Cb
28 19712 48.50% 12035 39.10%
35 21863 53.79% 13650 44.35%

42 24893 61.24% 16277 52.89%

Cr

28 21746 53.50% 13557 44.05%

35 23199 57.08% 14678 47.69%
42 25498 62.73% 16591 53.91%

M
ot

h
er

 D
au

gh
te

r

Cb

28 20844 51.28% 12318 40.02%

35 23833 58.64% 15046 48.89%

42 25751 63.36% 17022 55.31%

Cr

28 21327 52.47% 12706 41.28%

35 25386 62.46% 16496 53.60%

42 27618 67.95% 18482 60.05%

38

Table 2.17 Intra 16x16 Computation Reduction Results by PSCR

PSCR

1 bit Truncation
PSCR

2 bit Truncation
PSCR

3 bit Truncation
PSCR

4 bit Truncation

QP
Add. Red. Shift Red. Add. Red. Shift Red. Add. Red. Shift Red. Add. Red. Shift Red.

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

F
or

em
an

 28
16663

%13.70
9466

%8.92
16622

%13.67
9089

%8.57
16525

%13.59
8132

%7.67
18935

%15.57
9428

%8.89

35 23891
%19.64

14594
%13.76

22441
%18.45

12723
%12.00

24890
%20.46

14614
%13.78

25477
%20.95

14601
%13.77

42 27631
%22.72

16963
%15.99

27738
%22.81

16960
%15.99

28135
%23.13

16672
%15.72

30801
%25.32

18793
%17.72

A
k

iy
o

28 27958
%22.99

18687
%17.62

28059
%23.07

18508
%17.45

25759
%21.18

15761
%14.86

26765
%22.01

15992
%15.08

35
32819

%26.98
22446

%21.16
34101

%28.04
23287

%21.95
32756

%26.93
21627

%20.39
34397

%28.28
22622

%21.33

42
41978

%34.51
30419

%28.68
43263

%35.57
31236

%29.45
48364

%39.76
35885

%33.83
43436

%35.71
30744

%28.99

M
&

D

28
28253

%23.23
20024

%18.88
29854

%24.54
21160

%19.95
30238

%24.86
20905

%19.71
33663

%27.68
23376

%22.04

35 37207
%30.59

26633
%25.11

37820
%31.09

26755
%25.22

38265
%31.46

26814
%25.28

36790
%30.25

25030
%23.60

42 41987
%34.52

30278
%28.55

42844
%35.22

30668
%28.91

43436
%35.71

30829
%29.07

43635
%35.87

30692
%28.94

H.264 intra 4x4 prediction equations and intra 16x16 prediction equations use the

same neighboring pixels at MB boundaries. Since the proposed techniques check the

equality/similarity of these neighboring pixels for intra 4x4 modes, these equality/similarity

results are re-used for checking the equality/similarity of four neighboring pixel groups for

intra 16x16 modes, and therefore, 3008 1-bit comparisons are performed for intra 16x16

DC and plane modes. In addition, 714 comparisons are performed for checking the

equality/similarity of parameters b and c to zero for 16x16 plane mode. The both proposed

techniques, on the other hand, requires 3x4x2=24 comparison operations for checking the

equality/similarity of four neighboring pixel groups for intra 8x8 prediction calculations of

the current Cb and Cr chrominance blocks. Therefore, they have an overhead of 5226

comparisons for intra 8x8 prediction modes.

39

Table 2.18 Intra 8x8 (Chroma CB, CR) Computation Reduction Results by PSCR

PSCR
1 bit Truncation

PSCR
2 bit Truncation

PSCR
3 bit Truncation

PSCR
4 bit Truncation

 QP

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Add.
Red.

Shift
Red.

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

Number
Percent

F
or

em
an

Cb

28
16947

%45.03
10524

%35.05
17031

%45.25
10376

%34.56
17135

%45.53
10351

%34.47
17936

%47.66
10834

%36.08

35
21674

%57.59
14731

%49.06
21613

%57.42
14544

%48.44
22410

%59.54
15161

%50.49
23525

%62.50
16123

%53.70

42
23386

%62.14
16338

%54.41
23873

%63.43
16655

%55.47
23685

%62.93
16313

%54.33
23871

%63.42
16407

%54.64

Cr

28
20416

%54.24
13646

%45.45
20643

%54.85
13717

%45.68
21148

%56.19
14017

%46.68
21080

%56.01
13851

%46.13

35
23695

%62.96
16671

%55.52
24055

%63.91
16879

%56.21
23448

%62.30
16116

%53.67
23948

%63.63
16574

%55.20

42
24768

%65.81
17821

%59.35
24654

%65.50
17389

%57.91
24157

%64.18
16787

%55.91
24637

%65.46
17217

%57.34

A
k

iy
o

Cb

28
17704

%47.04
11640

%38.77
18141

%48.20
11889

%39.60
18233

%48.44
11757

%39.16
18410

%48.91
11717

%39.02

35
19759

%52.50
13257

%44.15
19877

%52.81
13210

%44.00
20547

%54.59
13752

%45.80
20293

%53.92
13438

%44.75

42
22107

%58.74
15479

%51.55
22046

%58.58
15267

%50.85
21795

%57.91
14950

%49.79
21967

%58.37
15005

%49.97

Cr

28
19555

%51.96
13154

%43.81
19735

%52.44
13169

%43.86
19646

%52.20
12925

%43.05
19809

%52.63
12787

%42.59

35
20883

%55.49
14187

%47.25
20523

%54.53
13671

%45.53
21142

%56.17
14113

%47.00
21510

%57.15
14411

%48.00

42
21889

%58.16
15060

%50.16
22191

%58.96
15265

%50.84
22375

%59.45
15229

%50.72
22213

%59.02
14952

%49.80

M
&

D

Cb

28
18210

%48.38
11561

%38.50
18311

%48.65
11437

%38.09
18602

%49.42
11600

%38.63
18539

%49.26
11406

%37.99

35
21034

%55.89
14021

%46.70
21443

%56.97
14271

%47.53
21687

%57.62
14383

%47.90
21371

%56.78
13969

%46.52

42
23154

%61.52
16141

%53.76
23130

%61.46
15872

%52.86
23489

%62.41
16148

%53.78
23126

%61.44
15682

%52.23

Cr

28
18340

%48.73
11620

%38.70
19296

%51.27
12354

%41.14
19273

%51.21
12189

%40.59
19634

%52.17
12396

%41.28

35
22015

%58.49
15039

%50.09
22280

%59.20
15103

%50.30
22345

%59.37
15010

%49.99
22433

%59.60
15018

%50.02

42
23822

%63.29
16788

%55.91
23934

%63.59
16697

%55.61
23649

%62.83
16318

%54.35
23548

%62.57
16120

%53.69

We also quantified the impact of the proposed PSCR technique on the rate-distortion

performance of the 4x4 intra prediction algorithm by using H.264 JM reference software

encoder version 14.0. The rate distortion curves and average PSNR comparison of the

original 4x4 intra prediction algorithm and the 4x4 intra prediction algorithm with the

proposed technique for several CIF size benchmark video frames and different neighboring

40

pixel truncation amounts are shown in Fig. 2.11 and Table 2.19 respectively. The average

PSNR values shown in Table 2.19 are calculated using the technique described in [26].

The proposed technique does not change the PSNR for some video frames, it increases the

PSNR slightly for some video frames and it decreases the PSNR slightly for some video

frames.

Figure 2.11 Rate Distortion Curves of the Original 4x4 Intra Prediction Algorithm and 4x4

Intra Prediction Algorithm with Proposed Technique

41

Table 2.19 Average PSNR Comparison of the Proposed PSCR Technique

Frame
Org.
(dB)

PSCR
1bT
 (dB)

Diff.
(dB)

PSCR
2bT
(dB)

Diff.
(dB)

PSCR
3bT
(dB)

Diff.
(dB)

PSCR
4bT
 (dB)

Diff.
(dB)

F
M

 Y 35.28 35.26 -0.02 35.26 -0.02 35.21 -0.08 35.01 -0.27
Cb 40.40 40.37 -0.03 40.41 0.01 40.36 -0.04 40.34 -0.06
Cr 42.53 42.60 0.07 42.64 0.11 42.66 0.13 42.53 0.00

A
K

 Y 37.25 37.28 0.03 37.21 -0.04 37.17 -0.08 36.96 -0.30
Cb 40.48 40.44 -0.04 40.48 0.00 40.46 -0.03 40.28 -0.21
Cr 42.61 42.64 0.03 42.60 -0.01 42.52 -0.09 42.29 -0.32

M
&

D
 Y 36.82 36.86 0.03 36.80 -0.02 36.74 -0.08 36.54 -0.28

Cb 42.20 42.23 0.02 42.08 -0.12 42.10 -0.10 41.99 -0.21
Cr 43.29 43.21 -0.08 43.16 -0.14 43.22 -0.07 43.07 -0.23

2.3 Proposed Intra Prediction Hardware Architecture

The proposed hardware architecture for implementing H.264 4x4 intra prediction

algorithm is shown in Fig. 2.12.

Three local neighboring buffers, top neighboring buffer, left neighboring buffer and

reconstructed pixel neighboring buffer are used to store the neighboring pixels in the

previously coded and reconstructed neighboring 4x4 luma blocks in the current MB. After

a 4x4 luma block in the current MB is coded and reconstructed, the neighboring pixels in

this block are stored in the corresponding local buffers. 9 parallel datapaths are used to

calculate the predicted pixels. Each datapath is used to calculate the predicted pixels by a

different 4x4 intra prediction mode.

13 registers are used to store the neighboring pixels (A, B, C, D, E, F, G, H, I, J, K,

L, M) for the current 4x4 block. When a new 4x4 block comes, neighboring pixel registers

are loaded with the current neighboring pixels or the current neighboring pixels truncated

by the corresponding truncation amount (1, 2, 3, or 4 bits) in four cycles. 12 8-bit

comparators are used to check for the equality of these truncated neighboring pixels. Based

on the comparison results, a disable signal is generated and sent to the datapaths used for

implementing the prediction modes with similar neighboring pixels.

9 4x32 register files are used to store the predicted pixels for 9 4x4 intra prediction

modes. When a datapath implementing a prediction mode is disabled, one of the

neighboring pixels is taken as the predicted pixel, the clock signal for the corresponding

predicted pixel register file is gated, and therefore this register file is not loaded.

42

Figure 2.12 4x4 Intra Prediction Hardware Architecture

The proposed hardware architecture is implemented in Verilog HDL. The

implementation is verified with RTL simulations. The Verilog RTL code is synthesized to

2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics Precision

RTL 2005b. The resulting netlist is placed and routed to the same FPGA at 50MHz using

Xilinx ISE 8.2i. The resulting hardware uses 2448 4 input LUTs, 359 DFFs and 2

BlockRAMs.

2.4 Power Consumption Analysis

The power consumption of intra prediction hardware on a Xilinx Virtex II FPGA is

estimated using Xilinx XPower tool. In order to estimate its power consumption, timing

simulation of the placed and routed netlist of intra prediction hardware is done using

Mentor Graphics ModelSim SE. Foreman, Akiyo and Mother&Daughter frames are used as

inputs for timing simulations and the signal activities are stored in VCD files. These VCD

files are used for estimating the power consumption of intra prediction hardware using

Xilinx XPower tool.

The power consumptions of the proposed hardware implementations on a Xilinx

Virtex II FPGA at 25 MHz are shown in Tables 2.20 - 2.22 for different QP values and

video frames. As shown in Tables 2.20, 2.21 and 2.22, proposed PECR and PSCR power

43

reduction techniques reduce the power consumption of the intra 4x4 prediction hardware up

to 46% and 57%, respectively.

Since intra prediction hardware will be used as part of an H.264 video encoder, only

internal power consumption is considered and input and output power consumptions are

ignored. Therefore, the power consumption of an intra prediction hardware can be divided

into three main categories; signal power, logic power and clock power. Signal power is the

power dissipated in routing tracks between logic blocks. Logic power is the amount of

power dissipated in the parts where computations take place. Clock power is due to clock

tree used in the FPGA.

There are several reasons for the differences between the computation reduction

percentages shown in Tables 2.15 and 2.17, and the power reduction percentages shown in

Tables 2.20 - 2.22. The first reason is the power consumption overhead for the comparisons

performed before the prediction process. For intra 4x4 prediction hardware, there are at

most 12 comparisons among 13 neighboring pixels. These comparison operations add some

power consumption overhead to 4x4 intra prediction hardware.

The second reason is the clock power. Since we did not do clock gating in the FPGA

for the disabled datapaths, the datapaths for all prediction modes are supplied with clock

regardless of the equality of the neighboring pixels. Therefore, as shown in Tables 2.20 –

2.22, this implementation of the power reduction technique does not reduce the clock

power.

The third reason is that even if the datapath of a prediction mode is disabled, address

generator, control unit, neighboring registers and local neighboring buffers consume power

for writing the predicted pixels for that prediction mode into the corresponding register file.

44

Table 2.20 Power Consumption Reduction (QP=28) by PECR and PSCR Techniques
F

ra
m

es

C
ae

tg
or

y

Power (mW)

Org.
PECR
Tech.

PSCR
Tech.
(1bT)

PSCR
Tech.
(2bT)

PSCR
Tech.
(3bT)

PSCR
Tech.
(4bT)

F
or

em
an

 Clock 35 20 20 20 21 17
Logic 29.32 12.44 12.28 12.22 11.55 10.2
Signal 55.15 41.52 40.95 40.73 37.02 33.74
Total 119.47 73.96 73.23 72.95 69.57 60.93
Red. (%) 38.09 38.70 38.94 41.77 49.00

A
k

iy
o

Clock 35 20 20 20 21 17
Logic 28.55 10.81 10.45 10.27 9.55 8.46
Signal 50.98 35.45 34.28 33.63 29.94 27.07
Total 114.53 66.25 64.73 63.9 60.49 52.53
Red. (%) 42.15 43.48 44.21 47.18 54.13

M
&

D

Clock 35 20 20 20 21 17
Logic 28.37 10.76 10.45 10.28 9.68 8.7
Signal 50.58 35.61 34.4 33.63 30.51 28
Total 113.95 66.37 64.84 63.91 61.19 53.7
Red. (%) 41.76 43.10 43.91 46.30 52.87

Table 2.21 Power Consumption Reduction (QP=35) by PECR and PSCR Techniques

F

ra
m

es

C
ae

tg
or

y

Power (mW)

Org.
PECR
Tech.

PSCR
Tech.
(1bT)

PSCR
Tech.
(2bT)

PSCR
Tech.
(3bT)

PSCR
Tech.
(4bT)

F
or

em
an

 Clock 35 20 20 20 21 17
Logic 28.8 11.3 11.12 11.07 10.44 9.28
Signal 53.58 37.76 37.13 36.9 33.48 30.61
Total 117.37 69.06 68.25 67.97 64.92 56.88
Red. (%)

41.16 41.85 42.09 44.69 51.54

A
k

iy
o

Clock 35 20 20 20 21 17
Logic 28.32 10.13 9.85 9.82 9.13 8.08
Signal 50.23 33.17 32.26 32.03 28.57 25.93
Total 113.55 63.31 62.1 61.85 58.69 51.01
Red. (%) 44.24 45.31 45.53 48.31 55.08

M
&

D

Clock 35 20 20 20 21 17
Logic 28.1 9.78 9.47 9.34 8.76 7.85
Signal 49.53 32.27 31.32 30.59 27.63 25.26
Total 112.63 62.05 60.79 59.93 57.39 50.11
Red. (%) 44.91 46.03 46.79 49.05 55.51

45

Table 2.22 Power Consumption Reduction (QP=42) by PECR and PSCR Techniques
F

ra
m

es

C
ae

tg
or

y

Power (mW)

Org.
PECR
Tech.

PSCR
Tech.
(1bT)

PSCR
Tech.
(2bT)

PSCR
Tech.
(3bT)

PSCR
Tech.
(4bT)

F
or

em
an

 Clock 35 20 20 20 21 17
Logic 28.5 10.61 10.31 10.21 9.68 8.55
Signal 52.27 35.29 34.31 33.98 30.88 28.25
Total 115.77 65.9 64.62 64.19 61.56 53.79
Red. (%) 43.08 44.18 44.55 46.83 53.54

A
k

iy
o

Clock 35 20 20 20 21 17
Logic 28.07 9.54 9.24 9.12 8.57 7.46
Signal 49.11 31.25 30.25 29.74 26.82 23.69
Total 112.18 60.79 59.49 58.86 56.39 48.14
Red. (%) 45.81 46.97 47.53 49.73 57.09

M
&

D

Clock 35 20 20 20 21 17
Logic 27.77 9.3 8.96 8.83 8.35 7.4
Signal 48.6 30.55 29.55 28.92 26.26 23.74
Total 111.37 59.86 58.51 57.75 55.61 48.14
Red. (%) 46.25 47.46 48.15 50.07 56.77

46

3 CHAPTER III

DATA REUSE, PECR AND PSCR TECHNIQUES

FOR COMPUTATION AND POWER REDUCTION

IN H.264 INTRA PREDICTION

H.264 4x4 intra prediction modes have identical equations and calculating these

common equations for each mode is unnecessary. Therefore, we calculated the common

prediction equations only once and used the results for the corresponding 4x4 intra modes,

and we applied the PECR and PSCR techniques for each prediction equation separately

[11, 12]. The proposed PECR technique reduces the amount of computations performed by

H.264 intra prediction without any PSNR and bitrate loss. It compares the pixels used in a

prediction equation. If the pixels used in this prediction equation are equal, the predicted

pixel by this equation is equal to the pixels used in this equation. Therefore, this prediction

equation simplifies to a constant value and prediction calculation for this equation becomes

unnecessary. The proposed PSCR technique reduces the amount of computations

performed by H.264 intra prediction even further with a small PSNR loss. It also compares

the pixels used in a prediction equation. If the pixels used in this prediction equation are

similar, the predicted pixel by this equation is assumed to be equal to one of the pixels used

in this equation. Therefore, this prediction equation simplifies to a constant value and

prediction calculation for this equation becomes unnecessary.

47

The simulation results obtained by H.264 reference software, JM 14.0 [17], for

several video sequences showed that PECR technique reduces the amount of computations

performed by H.264 4x4 intra prediction modes up to 78%, more than the technique pro-

posed in [8], with a small comparison overhead. PSCR technique reduces the amount of

computations performed by H.264 4x4 intra prediction modes up to 89%, more than the

technique proposed in [9], with a small comparison overhead. For each 4x4 block, both

techniques require 12 comparisons for 4x4 intra prediction modes. PSCR technique

increases the PSNR slightly for some video frames and it decreases the PSNR slightly for

some video frames, and its PSNR loss is less than the PSNR loss of the technique proposed

in [9].

We also designed an efficient H.264 4x4 intra prediction hardware including the

proposed PECR and PSCR techniques. The hardware architecture is implemented in

Verilog HDL. The Verilog RTL code is verified to work at 50 MHz in a Virtex II FPGA.

The proposed PECR and PSCR techniques reduced the power consumption of this

hardware on this FPGA up to 13.7% and 17.2%, respectively.

Data reuse techniques, similar to the one used in this thesis, are proposed for

reducing the computational complexity of H.264 intra prediction algorithm in [24, 27] .

Several other techniques are proposed for reducing the computational complexity of H.264

intra prediction algorithm in [18, 19]. These techniques reduce the amount of computations

performed by H.264 intra prediction algorithm by trying selected intra prediction modes

rather than trying all intra prediction modes and they require significant amount of pre-

computation. However, the techniques proposed in this thesis try all intra prediction modes

and they are applicable to computation reduction techniques proposed in literature [18, 19,

24, 27]. Several hardware architectures for H.264 4x4 intra prediction algorithm are

reported in literature [22, 23, 24, 25, 28]. However, they do not report their power

consumption and they do not implement the techniques proposed in this thesis.

3.1 Proposed Computational Complexity and Power Reduction Techniques

H.264 4x4 intra prediction modes have identical equations and calculating these

common equations for each mode is unnecessary. Therefore, in this chapter, we calculated

48

the common prediction equations for all 4x4 intra prediction modes only once and used the

results for the corresponding prediction modes instead of calculating the same equations

again.

As it can be seen from Fig. 2.5, Eq. (3.1) is common in Diagonal Down-Left and

Diagonal Down-Right prediction modes, and Diagonal Down-Right mode prediction

equations for pred[0, 2] and pred[1, 3] are identical. Vertical Right mode prediction

equations for pred[1, 2] and pred[3, 3], Vertical Left mode prediction equation for pred[1,

0], and Horizontal Down mode prediction equation for pred[0, 3] are also identical to the

following equation.

pred[0, 0] = A + 2B + C + 2 >> 2 (3.1)

There are 96 (6x16) prediction equations in H.264 4x4 intra prediction modes

Diagonal Down-Left (DDL), Diagonal Down-Right (DDR), Vertical Right (VR), Vertical

Left (VL), Horizontal Down (HD), Horizontal Up (HUP). Twenty three of these equations

are distinct. Vertical and Horizontal prediction modes require no computation. These 23

prediction equations, the pixels used in these equations, number of modes these equations

are used, number of pixels predicted by these equations and number of addition and shift

operations performed by these prediction equations are shown in Table 3.1.

H.264 4x4 intra prediction performs 884183 addition and 529181 shift operations for

a CIF (352x288) frame. When these 23 prediction equations are calculated only once,

417997 addition and 230839 shift operations are performed which corresponds to 53% and

56% reduction in addition and shift operations respectively.

The proposed PECR technique in [8] compares the pixels used in all prediction

equations of a 4x4 intra prediction mode. If the pixels used in all equations of a prediction

mode are equal, the predicted pixels by this mode are equal to these pixels. Therefore, the

prediction equations for this mode simplify to a constant value and prediction calculations

for this mode become unnecessary.

The proposed PSCR technique in [9] compares the pixels used in all prediction

equations of a 4x4 intra prediction mode. If the pixels used in all equations of a prediction

mode are similar, the predicted pixels by this mode are assumed to be equal to one of these

49

pixels. Therefore, the prediction equations for this mode simplify to a constant value and

prediction calculations for this mode become unnecessary.

The neighboring pixels used in the prediction equations of each 4x4 intra prediction

mode are shown in Table 3.2. For example, as shown in Fig. 2.4, the neighboring pixels

A–H are used in the prediction equations of DDL mode. If all of these neighboring pixels

are equal, all prediction equations of DDL mode simplify to a constant value as shown in

the following equation.

pred[y,x] = [4A+2] >>2 = A (3.2)

Table 3.1 Prediction Equations of 4x4 Intra Prediction Modes

Pixels Equations Used Modes Predicted Pixels # Add. # Shift

A,B,C [(A + 2B + C) + 2] >> 2 5 7 3 2

B,C,D [(B + 2C + D) + 2] >> 2 4 6 3 2

C,D,E [(C + 2D + E) + 2] >> 2 2 5 3 2

D,E,F [(D + 2E + F) + 2] >> 2 2 6 3 2

E,F,G [(E + 2F + G) + 2] >> 2 2 4 3 2

F,G,H [(F + 2G + H) + 2] >> 2 1 2 3 2

J,K,L [(J + 2K+ L) + 2] >> 2 3 4 3 2

I,J,K [(I + 2J + K) + 2] >> 2 4 6 3 2

I,J,M [(M + 2I + J) + 2] >> 2 3 6 3 2

A,I,M [(A + 2M + I) + 2] >> 2 3 8 3 2

A,B,M [(B + 2A + M) + 2] >> 2 3 6 3 2

A,B [(A + B) + 1] >> 1 2 3 2 1

A,M [(M + A) + 1] >> 1 1 2 2 1

B,C [(B + C) + 1] >> 1 2 4 2 1

C,D [(C + D) + 1] >> 1 2 3 2 1

D,E [(D + E) + 1] >> 1 1 2 2 1

E,F [(E + F) + 1] >> 1 1 1 2 1

G,H [(G + 2H + H) + 2] >> 2 1 1 3 2

I,J [(I + J) + 1] >> 1 2 3 2 1

I,M [(M + I) + 1] >> 1 1 2 2 1

J,K [(J + K) + 1] >> 1 2 4 2 1

K,L [(K + L) + 1] >> 1 2 3 2 1

K,L [(K + 2L + L) + 2)] >>2 1 2 3 2

L [L] 1 6 0 0

50

Table 3.2 4x4 Intra Modes and Corresponding Neighboring Pixels

4x4 Intra Modes Neighboring Pixels

Vertical A, B, C, D

Horizontal I, J, K, L

DC A, B, C, D, I, J, K, L

Diagonal Down Left A, B, C, D, E, F, G, H

Diagonal Down Right A, B, C, D, I, J, K, L, M

Vertical Right A, B, C, D, I, J, K, M

Horizontal Down A, B, C, I, J, K, L, M

Vertical Left A, B, C, D, E, F, G

Horizontal Up I, J, K, L

In this chapter, we applied the PECR technique for each prediction equation

separately. The proposed technique compares the pixels used in a prediction equation. If

the pixels used in this prediction equation are equal, the predicted pixel by this equation is

equal to the pixels used in this equation. Therefore, this prediction equation simplifies to a

constant value and prediction calculation for this equation becomes unnecessary. For

example, the prediction Eq. (3.1) is used in DDL, DDR, VR, VL and HD modes. If pixels

A, B, and C are equal, Eq. (3.1) simplifies to a constant value as shown in (3.2).

We also applied the PSCR technique for each prediction equation separately. The

proposed PSCR technique determines the similarity of the pixels used in a prediction

equation by truncating their least significant bits by the specified truncation amount (1–4

bits) and comparing the truncated pixels. If these truncated pixels are all equal, one of the

original pixels is substituted in place of every pixel used in this prediction equation.

Therefore, this prediction equation simplifies to a constant value and prediction calculation

for this equation becomes unnecessary.

The number of 4x4 intra prediction equations with equal and similar pixels in a frame

varies from frame to frame. We analyzed CIF sized Foreman, Akiyo and Mother &

Daughter frames coded with Quantization Parameters (QP) 28, 35 and 42 using JM 14.0 to

determine how many prediction equations have equal and similar pixels. For each 4x4 intra

prediction equation, the percentages of 4x4 blocks that have equal pixels and the

percentages of 4x4 blocks that have similar pixels for 4 bits truncation (4bT) in these

frames are given in Table 3.3. The percentages of 4x4 blocks with equal pixels vary from

10% to 94%, and the percentages of 4x4 blocks with similar pixels vary from 50% to 97%.

51

The percentages increase with higher QP values. Half of the prediction equations have

equal pixels in more than 50% of the 4x4 blocks in these frames.

Based on the results given in Tables 3.1 and 3.3, we calculated the computation

reductions achieved by the proposed PECR and PSCR techniques for CIF size Foreman,

Akiyo and Mother & Daughter frames. The amount of computations performed by 4x4

intra prediction, 4x4 intra prediction with the PECR technique proposed in [8], 4x4 intra

prediction with data reuse, and 4x4 intra prediction with both data reuse and the PECR

technique proposed in this chapter are shown in Table 3.4.

Table 3.3 Percentage of 4x4 Intra Prediction Blocks with Equal and Similar Prediction

Equation Pixels

PECR PSCR (4bT)

 Foreman Akiyo M&D Foreman Akiyo M&D
4x4 Intra
Equations

QP
28

QP
35

QP
42

QP
28

QP
35

QP
42

QP
28

QP
35

QP
42

QP
28

QP
35

QP
42

QP
28

QP
35

QP
42

QP
28

QP
35

QP
42

A,B,C 51.7 72.3 85.9 66.5 78.8 87.8 60.3 78.2 90.8 73.7 81.5 90.9 79.4 84.8 92.3 78.0 85.8 94.4

B,C,D 52.1 72.2 86.1 66.6 79.4 88.2 62.0 79.8 91.5 74.0 81.0 90.4 78.8 84.4 92.3 77.4 85.9 94.3

C,D,E 31.0 43.5 50.0 46.4 53.9 58.5 42.6 53.9 58.5 71.4 72.3 73.6 77.4 77.5 78.2 76.0 79.2 79.6

D,E,F 46.2 53.0 53.5 57.3 60.6 61.7 54.3 60.8 60.7 76.2 76.5 76.0 82.2 81.4 80.2 80.4 81.1 81.3

E,F,G 67.5 81.4 90.4 76.8 84.7 91.1 72.2 84.5 92.2 82.8 88.0 94.4 85.7 89.5 94.7 85.0 89.6 95.6

F,G,H 67.8 81.4 90.5 76.7 84.9 91.2 73.4 85.2 92.6 83.1 87.6 94.1 85.2 89.1 94.6 84.3 89.9 95.4

J,K,L 49.0 67.4 81.0 69.0 82.2 91.3 63.9 81.0 91.8 71.3 78.5 87.3 83.7 88.3 94.8 80.7 87.4 94.9

I,J,K 48.1 66.4 80.4 67.8 81.6 90.7 62.9 79.3 91.0 70.8 78.7 86.4 83.6 88.1 94.3 79.7 87.5 94.4

I,J,M 20.9 27.9 27.9 35.3 39.5 41.5 37.8 43.0 40.1 63.6 64.3 63.6 74.5 74.2 73.3 73.1 73.2 74.8

A,I,M 10.4 13.7 12.4 19.8 22.0 24.3 22.2 25.2 24.9 58.3 54.4 50.4 68.4 63.8 58.4 66.8 63.4 61.3

A,B,M 20.6 29.7 29.5 37.3 40.2 40.5 31.5 40.4 39.6 64.9 65.5 64.8 73.7 73.1 70.2 71.5 71.9 72.7

A,B 55.3 74.9 88.1 68.8 80.3 88.9 63.4 80.8 91.9 83.2 87.8 93.5 87.0 89.8 93.6 86.5 91.7 95.9

A,M 24.0 31.6 30.4 39.8 41.8 41.8 34.3 42.4 40.6 72.2 69.7 66.5 79.6 76.8 71.8 77.9 75.6 74.2

B,C 57.1 74.6 87.3 70.2 81.1 89.4 65.2 81.8 92.4 82.5 86.4 92.6 86.0 88.5 94.1 85.6 89.8 95.6

C,D 55.4 73.8 87.1 68.6 81.0 89.4 65.2 81.5 92.6 83.8 87.4 92.6 86.7 89.5 93.8 87.0 92.4 95.7

D,E 48.5 54.3 54.2 59.2 61.7 62.7 56.2 62.2 61.6 81.2 79.2 77.2 86.2 84.0 81.4 84.7 83.8 82.5

E,F 70.1 83.2 92.1 78.3 85.9 92.0 74.6 86.6 93.2 89.2 92.4 96.2 91.2 92.8 95.6 90.6 93.8 96.8

G,H 70.1 82.4 91.3 78.4 86.3 92.2 75.7 86.6 93.7 89.6 92.0 95.7 90.6 92.5 95.7 90.9 94.5 96.5

I,J 51.6 69.8 82.5 69.3 82.7 91.5 65.8 81.0 91.9 81.7 86.0 89.5 90.5 92.5 95.7 87.6 92.2 95.8

I,M 24.6 29.8 29.1 37.8 40.3 42.3 40.2 44.7 41.0 72.3 69.3 66.1 79.2 77.2 74.4 78.8 76.2 75.8

J,K 53.5 69.4 82.0 71.3 83.4 92.2 66.4 82.2 92.5 80.8 84.3 90.0 89.0 91.5 95.8 86.8 91.1 95.5

K,L 53.4 71.7 83.5 72.1 84.3 92.9 67.9 84.2 93.3 81.2 86.1 90.3 90.9 93.3 96.5 88.5 92.1 96.3

52

Table 3.4 Addition and Shift Operations Performed by 4x4 Intra Prediction for a CIF

Frame with PECR Technique

4x4 Intra
Prediction

4x4 Intra Prediction
with PECR Technique

Proposed in [8]

4x4 Intra
Prediction with Data

Reuse

4x4 Intra Prediction
with Data Reuse and

PECR Technique
QP Add. Shift Add. Shift Add. Shift Add. Shift

28 884183 529181 652779 400120 417997 230839 186593 101778

35 884183 529181 602186 372580 417997 230839 136000 74238

42 884183 529181 571858 356330 417997 230839 105672 57988

Table 3.5 Addition and Shift Operations Performed by 4x4 Intra Prediction for a CIF

Frame with PSCR Technique

4x4 Intra
Prediction

4x4 Intra Prediction
with PSCR Technique
(4bT) Proposed in [9]

4x4 Intra
Prediction with Data

Reuse

4x4 Intra Prediction
with Data Reuse and

PSCR Technique (4bT)
QP Add. Shift Add. Shift Add. Shift Add. Shift

28 884183 529181 419857 250334 417997 230839 87142 46413

35 884183 529181 327753 195549 417997 230839 63142 33788

42 884183 529181 329238 196688 417997 230839 63669 34103

The amount of computations performed by 4x4 intra prediction, 4x4 intra prediction

with the PSCR technique with 4bT proposed in [9], 4x4 intra prediction with data reuse,

and 4x4 intra prediction with both data reuse and the PSCR technique with 4bT proposed in

this chapter are shown in Table 3.5. The average number of addition and shift operations

performed for Foreman, Akiyo and Mother & Daughter frames coded with QP values 28,

35 and 42 are given in Tables 3.4 and 3.5.

The computation reductions achieved by the proposed PECR technique and PSCR

technique with 4bT are shown in Table 3.6. The computation reduction ranges from 47%

to 78% for PECR technique, and it ranges from 75% to 89% for PSCR technique with 4bT.

PSCR technique achieves more computation reduction than PECR technique at the expense

of a small PSNR loss. The computation reductions achieved by the PECR technique

proposed in [8] and by the data reuse and PECR technique proposed in this chapter are

shown in Table 3.7. The computation reductions achieved by the PSCR technique with 4bT

proposed in [9] and by the data reuse and PSCR technique with 4bT proposed in this

chapter are shown in Table 3.8. The data reuse and PECR technique together achieved 90%

53

computation reduction, and the data reuse and PSCR technique with 4bT together achieved

95% computation reduction.

The PECR and PSCR techniques proposed in this chapter, the PECR technique

proposed in [8] and the PSCR technique proposed in [9] have an overhead of only 74882

comparisons for a CIF (352x288) frame. However, the PECR and PSCR techniques

proposed in this chapter achieve more computation reduction than the PECR technique

proposed in [8] and the PSCR technique proposed in [9], respectively.

Table 3.6 Computation Reduction by PECR and PSCR (4bT) Techniques for 4x4 Intra

Prediction with Data Reuse

Table 3.7 Computation Reduction for 4x4 Intra Prediction by PECR Technique

 QP

Reduction by PECR Tech.
Proposed in [8]

Reduction by Data Reuse
and PECR Technique

Addition Reduction Shift Reduction Addition Reduction Shift Reduction

% # % # % # %

F
M

 28 246939 27.9 146816 27.7 662350 74.9 408181 77.1

35 365863 41.4 216263 40.9 722417 81.7 440934 83.3

42 459269 51.9 269710 50.9 758590 85.8 460350 87.0

A
k

iy
o 28 386890 43.8 229707 43.4 722826 81.8 441285 83.4

35 461728 52.2 273099 51.6 760791 86.0 461740 87.3

42 521463 58.9 306887 57.9 786741 89.0 475764 89.9

M
&

D
 28 359883 40.7 214067 40.5 707595 80.0 432743 81.8

35 469840 53.1 278673 52.6 761340 86.1 462156 87.3

42 539033 60.9 317345 59.9 790203 89.4 477466 90.2

 PECR Technique PSCR Technique with 4bT

Addition
Reduction

Shift
Reduction

Addition
Reduction

Shift
Reduction

QP # % # % # % # %

F
M

 28 196164 46.9 109839 47.6 314058 75.1 176142 76.3

35 256231 61.3 142592 61.8 330313 79.0 184022 79.7

42 292404 70.0 162008 70.2 348193 83.3 193115 83.7

A
k

iy
o 28 256640 61.4 142943 61.9 344143 82.3 191945 83.2

35 294605 70.5 163398 70.8 353911 84.7 196438 85.1

42 320555 76.7 177422 76.9 366512 87.7 202769 87.8

M
&

D
 28 241409 57.8 134401 58.2 336906 80.6 188069 81.5

35 295154 70.6 163814 71.0 354610 84.8 196753 85.2

42 324017 77.5 179124 77.6 371468 88.9 205386 89.0

54

Table 3.8 Computation Reduction for 4x4 Intra Prediction by PSCR Technique with 4bT

 QP

Reduction by PSCR Technique with
4bT Proposed in [9]

Reduction by Data Reuse
and PSCR Technique with 4bT

Addition Reduction Shift Reduction Addition Reduction Shift Reduction

% # % # % # %

F
M

 28 410869 46.6 246741 46.7 780244 88.24 474484 89.7

35 470764 53.3 282662 53.5 796499 90.08 482364 91.2

42 511344 57.9 307139 58.2 814379 92.11 491457 92.9

A
k

iy
o 28 519800 58.9 311536 59.0 810329 91.65 490287 92.7

35 562924 63.8 337540 63.9 820097 92.75 494780 93.5

42 586565 66.5 351819 66.6 832698 94.18 501111 94.7

M
&

D
 28 503723 57.1 301789 57.2 803092 90.83 486411 91.9

35 557736 63.2 334094 63.3 820796 92.83 495095 93.6

42 603375 68.4 361596 68.5 837654 94.74 503728 95.2

This is because the PECR technique proposed in [8] and the PSCR technique

proposed in [9] achieve computation reduction for a 4x4 intra prediction mode only if the

pixels used in all of its prediction equations are equal and similar, respectively. The

probability of the pixels used in all prediction equations of a 4x4 intra prediction mode

being equal/similar is less than the probability of the pixels used in a prediction equation

being equal/similar. For example, the PECR technique proposed in [8] achieves

computation reduction for DDL mode only if all the pixels used in DDL mode (A–H) are

equal. But, the PECR technique proposed in this chapter can achieve computation reduction

for DDL mode even if all of these pixels are not equal. For example, if the pixels A–C are

equal, it achieves a computation reduction for a prediction equation of DDL mode.

Since there is only one prediction equation in DC prediction mode, the computation

reduction achieved by the PECR and PSCR techniques proposed in this chapter for DC

mode is same as the computation reduction achieved by the PECR and PSCR techniques

proposed in [8, 9], respectively.

Since the PSCR technique achieves more computation reduction than PECR

technique at the expense of a PSNR loss, we quantified the impact of the proposed PSCR

technique on the rate-distortion performance of the 4x4 intra prediction algorithm by using

H.264 JM reference software encoder version 14.0. The rate distortion curves and average

PSNR comparison of the original 4x4 intra prediction algorithm, 4x4 intra prediction

algorithm with the PSCR technique proposed in [9] and 4x4 intra prediction algorithm with

55

the PSCR technique proposed in this chapter for several CIF size video frames are shown

in Fig. 3.1 and Table 3.9, respectively. The average PSNR values shown in Table 3.9 are

calculated using the technique described in [26].

 a) b)

Figure 3.1 Rate Distortion Curves of the Original 4x4 Intra Prediction Algorithm and

a) 4x4 Intra Prediction Algorithm with PSCR Technique proposed in [9]

b) 4x4 Intra Prediction Algorithm with Proposed PSCR Technique

2000 4000 6000 8000
25

30

35

40

45

FM original

FM 4 bit trunc.

AK original

AK 4 bit trunc.

BitRate(byte)

P
S

N
R

(d
B

)

2000 4000 6000 8000
25

30

35

40

45

FM original

FM 4 bit trunc.

AK original

AK 4 bit trunc.

BitRate (byte)

P
SN

R
(d

B
)

2000 4000 6000 8000
25

30

35

40

45

M&D original

M&D 4 bit trunc.

BitRate(byte)

P
S

N
R

(d
B

)

2000 4000 6000 8000
25

30

35

40

45

M&D original

M&D 4 bit trunc.

BitRate (byte)

P
S

N
R

(d
B

)

56

Table 3.9 Average PSNR Comparison of the PSCR Techniques

 Proposed PSCR Technique
PSCR Tech.

Proposed in [9]

Frame Orig.
(dB)

1 bit
Trunc.

(dB)

∆PSNR
(dB)

2 bits
Trunc.

(dB)

∆PSNR
(dB)

3 bits
Trunc.

(dB)

∆PSNR
(dB)

4 bits
Trunc.

(dB)

∆PSNR
(dB)

4 bits
Trunc.

(dB)

∆PSNR
(dB)

F
or

em
an

Y 35.28 35.28 0.00 35.27 0.00 35.27 -0.01 35.19 -0.09 35.01 -0.27

Cb 40.40 40.38 -0.02 40.43 0.03 40.40 0.00 40.45 0.05 40.34 -0.06

Cr 42.49 42.62 0.13 42.66 0.17 42.72 0.23 42.68 0.19 42.53 0.04

A
k

iy
o Y 37.25 37.30 0.06 37.24 -0.01 37.21 -0.04 37.12 -0.13 36.96 -0.29

Cb 40.48 40.46 -0.02 40.50 0.03 40.49 0.01 40.37 -0.11 40.28 -0.20

Cr 42.60 42.66 0.06 42.62 0.02 42.54 -0.06 42.36 -0.24 42.29 -0.32

M
ot

h
er

&

D
au

gh
te

r Y 36.82 36.87 0.05 36.87 0.05 36.80 -0.02 36.72 -0.10 36.54 -0.28

Cb 42.20 42.24 0.04 42.11 -0.09 42.12 -0.08 42.07 -0.14 41.99 -0.21

Cr 43.29 43.22 -0.07 43.18 -0.11 43.24 -0.05 43.14 -0.15 43.07 -0.22

The results show that the proposed PSCR technique increases the PSNR slightly for

some video frames and it decreases the PSNR slightly for some video frames. The results

also show that the proposed PSCR technique with 4bT has less PSNR loss than the PSCR

technique with 4bT proposed in [9]. This is because the PSCR technique proposed in [9]

substitutes one of the original pixels in place of every pixel used in all prediction equations

of a 4x4 intra prediction mode if the pixels used in all of its prediction equations are

similar. However, PSCR technique proposed in this chapter substitutes one of the original

pixels in place of every pixel used in a prediction equation if the pixels used in that

prediction equation are similar.

3.2 Proposed Intra Prediction Hardware Architecture

The top-level block diagram of the proposed hardware architecture for implementing

H.264 4x4 intra prediction algorithm is shown in Fig. 3.2.

Three local neighboring buffers, top neighboring buffer, left neighboring buffer and

reconstructed pixel neighboring buffer are used to store the neighboring pixels in the

previously coded and reconstructed neighboring 4x4 blocks in the current MB. After a 4x4

block in the current MB is coded and reconstructed, the neighboring pixels in this block are

stored in the corresponding local buffers.

57

Three parallel datapaths are used to calculate the predicted pixels. The first datapath

calculates the pixels predicted by vertical mode, the second datapath calculates the pixels

predicted by horizontal mode and the third datapath calculates the pixels predicted by DDL,

DDR, VR, VL, HD, HUP and DC modes. As shown in Fig. 3.3, the third datapath

calculates two predicted pixels in parallel. The predicted pixels are stored in the register

files for the corresponding prediction modes.

Thirteen registers are used to store the neighboring pixels (A–M) for the current 4x4

block. When a new 4x4 block comes, neighboring pixel registers are loaded with the

current neighboring pixels (A–M) in four cycles. Twelve 8-bit comparators are used to

check the equality or similarity of the neighboring pixels. Based on the comparison results,

disable signals are generated and sent to the datapaths implementing the prediction

equations with equal or similar pixels.

Nine 4x32 register files are used to store the predicted pixels for 9 4x4 intra

prediction modes. Based on the comparison results, disable signals are also generated and

sent to these register files. When a disable signal is generated for a predicted pixel register

file, this register file is loaded with one of the neighboring pixels.

The proposed hardware architecture is implemented in Verilog HDL. The

implementation is verified with RTL simulations. RTL simulation results matched the

results of a software model of the H.264 4x4 intra prediction algorithm.

Figure 3.2 Top-Level Block Diagram of 4x4 Intra Prediction Hardware Architecture

58

Figure 3.3 Datapath for The Prediction Equations Used in DDL, DDR, VR, VL, HD,

HUP and DC Modes

Table 3.10 Comparison of 4x4 Intra Prediction Hardware

Hardware

Proposed in [8, 9]
Proposed
Hardware

On-Chip Memory (bits) 6144 6144

Area 2448 LUTs
359 DFFs

1070 LUTs
497 DFFs

Maximum Frequency (MHz) 89.97 94.47

Technology FPGA FPGA

Average Clock Cycles
for a 4x4 block 18.10 22.17

The comparison of the proposed 4x4 intra prediction hardware and 4x4 intra

prediction hardware presented in [8, 9] is shown in Table 3.10 . Both hardware

59

architectures are implemented in Verilog HDL, and the Verilog RTL codes are synthesized

to a 2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics

Precision RTL 2005b. The resulting netlists are placed and routed to the same FPGA at 50

MHz using Xilinx ISE 8.2i. Both 4x4 intra prediction hardware use 2 BlockRAMs. The

proposed hardware uses 1070 LUTs and 497 DFFs. The hardware presented in [8, 9] uses

2448 LUTs and 359 DFFs. The proposed intra prediction hardware has 57% less LUTs and

38% more DFFs than the intra prediction hardware presented in [8, 9]. Because the

proposed hardware uses smaller number of parallel datapaths, but it uses additional

registers to store the results of common prediction equations.

The hardware architecture presented in [8, 9] has nine parallel datapaths and 4x4 intra

prediction for a 4x4 block takes 18.10 clock cycles on the average. Since the hardware

architecture proposed in this chapter has three parallel datapaths, 4x4 intra prediction for a

4x4 block takes 22.17 clock cycles on the average.

3.3 Power Consumption Analysis

The power consumption of the proposed 4x4 intra prediction hardware on a Xilinx

Virtex II FPGA is estimated using Xilinx XPower tool. In order to estimate its power

consumption, timing simulation of the placed and routed netlist of 4x4 intra prediction

hardware is done using Mentor Graphics ModelSim SE. Foreman, Akiyo and Mother &

Daughter frames are used as inputs for timing simulations and the signal activities are

stored in VCD files. These VCD files are used for estimating the power consumption of the

proposed 4x4 intra prediction hardware using Xilinx XPower tool.

The power consumptions (mW) of the proposed 4x4 intra prediction hardware

implementation and 4x4 intra prediction hardware implementation presented in [8, 9] on

the same FPGA at 25 MHz are shown in Tables 3.11–3.13 for different pixel truncation

amounts, QP values and video frames. Since these intra prediction hardware

implementations will be used as part of an H.264 video encoder, only internal power

consumption is considered, and input and output power consumptions are ignored.

The internal power consumption is divided into three main categories; signal power,

logic power and clock power. Signal power is the power dissipated in routing tracks

between logic blocks. Logic power is the amount of power dissipated in the parts where

60

computations take place. Clock power is due to clock tree used in the FPGA. As shown in

Table 3.11, power consumption of the original 4x4 intra prediction hardware

implementation proposed in [8, 9] is 119.5 mW for a CIF size Foreman frame for QP 28.

PECR technique proposed in [8] reduced the power consumption of this hardware to 74

mW, and PSCR technique with 4bT proposed in [9] reduced the power consumption of this

hardware to 61 mW.

The power consumption of the original 4x4 intra prediction hardware implementation

proposed in this chapter is 55.2 mW for the same CIF size Foreman frame for QP 28.

PECR technique proposed in this chapter reduced the power consumption of this hardware

to 49.8 mW, and PSCR technique with 4bT proposed in this chapter reduced the power

consumption of this hardware to 46.5 mW.

As shown in Tables 3.11–3.13, even though the power consumption of the 4x4 intra

prediction hardware proposed in this chapter is significantly less than the power

consumption of the 4x4 intra prediction hardware proposed in [8, 9], the proposed PECR

technique reduced its power consumption up to 13.7%, while the proposed PSCR technique

reduced its power up to 17.2%.

Table 3.11 Power Consumption Reduction (QP = 28)

F
ra

m
e

Category
Intra Prediction Hardware proposed in [8, 9] Proposed Intra Prediction Hardware

Org. PECR
PSCR
(1bT)

PSCR
(2bT)

PSCR
(3bT)

PSCR
(4bT)

Org. PECR
PSCR
(1bT)

PSCR
(2bT)

PSCR
(3bT)

PSCR
(4bT)

F
or

em
an

Clock 35 20 20 20 21 17 24 21 21.83 21.94 20.79 21

Logic 29.32 12.44 12.28 12.22 11.55 10.2 7.29 6.15 6.35 6.18 5.67 5.48

Signal 55.15 41.52 40.95 40.73 37.02 33.74 23.90 22.66 23.00 23.14 20.80 20.02

Total 119.47 73.96 73.23 72.95 69.57 60.93 55.19 49.81 51.18 51.26 47.26 46.50

Red. (%) 38.09 38.70 38.94 41.77 49.00 9.76 7.27 7.12 14.37 15.75

A
k

iy
o

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.55 10.81 10.45 10.27 9.55 8.46 7.06 5.62 5.96 5.74 5.37 5.22

Signal 50.98 35.45 34.28 33.63 29.94 27.07 22.87 20.85 21.22 21.19 19.32 18.56

Total 114.53 66.25 64.73 63.9 60.49 52.53 53.93 47.47 49.18 48.93 45.69 44.78

Red. (%) 42.15 43.48 44.21 47.18 54.13 11.99 8.81 9.28 15.29 16.97

M
ot

h
er

D

au
gh

te
r

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.37 10.76 10.45 10.28 9.68 8.7 7.06 5.71 6.01 5.84 5.5 5.27

Signal 50.58 35.61 34.4 33.63 30.51 28 22.85 20.85 21.22 21.2 19.54 18.66

Total 113.95 66.37 64.84 63.91 61.19 53.7 53.91 47.55 49.23 49.04 46.04 44.93

Red. (%) 41.76 43.10 43.91 46.30 52.87 11.79 8.68 9.03 14.59 16.65

61

Table 3.12 Power Consumption Reduction (QP = 35)

F
ra

m
e

Category

Intra Prediction Hardware proposed in [8, 9] Proposed Intra Prediction Hardware

Org. PECR
PSCR
(1bT)

PSCR
(2bT)

PSCR
(3bT)

PSCR
(4bT)

Org. PECR
PSCR
(1bT)

PSCR
(2bT)

 PSCR
(3bT)

PSCR
(4bT)

F
or

em
an

Clock 35 20 20 20 21 17 24 21 22 22 21 20.95

Logic 28.8 11.3 11.12 11.07 10.44 9.28 7.16 5.75 6.03 5.85 5.54 5.33

Signal 53.58 37.76 37.13 36.9 33.48 30.61 23.44 21.68 22.04 22.13 20.29 19.52

Total 117.37 69.06 68.25 67.97 64.92 56.88 54.60 48.43 50.07 49.98 46.83 45.80
Red.
(%)

 41.16 41.85 42.09 44.69 51.54 11.30 8.30 8.48 14.23 16.13

A
k

iy
o

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.32 10.13 9.85 9.82 9.13 8.08 6.98 5.49 5.79 5.57 5.3 5.18

Signal 50.23 33.17 32.26 32.03 28.57 25.93 22.68 20.31 20.61 20.69 19.05 18.39

Total 113.55 63.31 62.1 61.85 58.69 51.01 53.65 46.80 48.4 48.26 45.35 44.57

Red.
(%)

 44.24 45.31 45.53 48.31 55.08 12.77 9.79 10.05 15.48 16.93

M
ot

h
er

D

au
gh

te
r

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.1 9.78 9.47 9.34 8.76 7.85 6.89 5.42 5.71 5.53 5.31 5.21

Signal 49.53 32.27 31.32 30.59 27.63 25.26 22.51 20.07 20.45 20.45 18.98 18.28

Total 112.63 62.05 60.79 59.93 57.39 50.11 53.40 46.49 48.16 47.98 45.29 44.49

Red.
(%)

 44.91 46.03 46.79 49.05 55.51 12.94 9.82 10.15 15.19 16.69

Table 3.13 Power Consumption Reduction (QP = 42)

F
ra

m
e

Category

Intra Prediction Hardware proposed in [8, 9] Proposed Intra Prediction Hardware

Org. PECR
PSCR
(1bT)

PSCR
(2bT)

PSCR
(3bT)

PSCR
(4bT)

Org. PECR
 PSCR
(1bT)

PSCR
(2bT)

 PSCR
(3bT)

PSCR
(4bT)

F
or

em
an

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.8 11.3 11.12 11.07 10.44 9.28 7.04 5.59 5.79 5.61 5.38 5.29

Signal 53.58 37.76 37.13 36.9 33.48 30.61 23.11 21.05 21.34 21.32 19.67 19.13

Total 117.37 69.06 68.25 67.97 64.92 56.88 54.15 47.64 49.130 48.93 46.05 45.42
Red.
(%)

 41.16 41.85 42.09 44.69 51.54 12.02 9.27 9.64 14.96 16.12

A
k

iy
o

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.32 10.13 9.85 9.82 9.13 8.08 6.90 5.34 5.61 5.41 5.18 5.11

Signal 50.23 33.17 32.26 32.03 28.57 25.93 22.33 19.71 20 20.02 18.53 17.99

Total 113.55 63.31 62.1 61.85 58.69 51.01 53.23 46.05 47.61 47.43 44.71 44.10

Red.
(%)

 44.24 45.31 45.53 48.31 55.08 13.49 10.56 10.90 16.01 17.15

M
ot

h
er

D

au
gh

te
r

Clock 35 20 20 20 21 17 24 21 22 22 21 21

Logic 28.1 9.78 9.47 9.34 8.76 7.85 6.83 5.22 5.55 5.38 5.2 5.11

Signal 49.53 32.27 31.32 30.59 27.63 25.26 22.18 19.53 19.8 19.76 18.44 17.81

Total 112.63 62.05 60.79 59.93 57.39 50.11 53.02 45.75 47.35 47.14 44.64 43.92

Red.
(%)

 44.91 46.03 46.79 49.05 55.51 13.71 10.69 11.09 15.80 17.16

62

4 CHAPTER IV

ENERGY REDUCTION TECHNIQUES FOR H.264 DEBLOCKING

FILTER

The DBF algorithm used in H.264 standard is more complex than the DBF

algorithms used in previous video compression standards. The H.264 DBF algorithm can

easily account for one-third of the computational complexity of an H.264 video decoder

[36]. Therefore, in this thesis, we propose pixel equality and pixel similarity based

techniques for reducing the amount of computations performed by H.264 DBF algorithm,

and therefore reducing the energy consumption of H.264 DBF hardware. These techniques

avoid unnecessary calculations in H.264 DBF algorithm by exploiting the equality and

similarity of the pixels used in DBF equations.

PECR technique compares the pixels in the current edge before the filtering process.

If some or all of these pixels are equal, H.264 DBF equations simplify significantly. PECR

technique reduces the amount of computations performed by H.264 DBF algorithm with no

PSNR loss. PSCR technique also compares the pixels in the current edge before the

filtering process. If some or all of these pixels are similar, H.264 DBF equations are

assumed to simplify significantly. PSCR technique reduces the amount of computations

performed by H.264 DBF algorithm even further with a small PSNR loss.

63

The simulation results obtained by H.264 joint model (JM) reference software

version 14.0 [17] for several video sequences showed that the amount of addition and shift

operations performed by H.264 DBF algorithm are reduced up to 43% and 55%

respectively by PECR technique, and up to 52% and 67% respectively by PSCR technique

with a small comparison overhead. The simulation results also showed that the proposed

PSCR technique does not affect the PSNR for some video frames, but it decreases the

PSNR slightly for some video frames.

We also applied the proposed PECR and PSCR techniques separately to the H.264

DBF hardware architecture proposed in [37]. The DBF hardware architectures are

implemented in Verilog HDL. The Verilog RTL codes are verified to work at 98 MHz in a

Virtex 4 FPGA. The FPGA implementations can code 44 CIF (288x352) frames per

second. The power consumptions of the DBF hardware implementations on the same

FPGA are estimated using a gate level power estimation tool. The proposed PECR and

PSCR techniques reduced the energy consumption of this H.264 DBF hardware on this

FPGA up to 35% and 39% respectively.

Several hardware architectures for real-time implementation of H.264 adaptive DBF

algorithm are presented in the literature [38, 39, 40, 41, 42]. In order to increase the

throughput, different memory organizations are proposed in [38, 39, 40], and an efficient

four-stage pipelined hardware is proposed in [41]. The proposed PECR and PSCR

techniques can be used in these DBF hardware. In [42], an efficient five-stage pipelined

DBF hardware with clock gating is proposed. The proposed PECR and PSCR techniques

can be used in Pre-Computation stage of this DBF hardware to achieve additional power

reduction. In [43], the order of the branch operations is changed based on the probability of

occurrence of certain conditions in order to reduce the amount of computation. The

proposed PECR and PSCR techniques can be used in this algorithm to further reduce the

amount of computation.

4.1 H.264 Adaptive Deblocking Filter Algorithm

H.264 DBF algorithm removes visually disturbing blocking artifacts and

discontinuities in a frame created by coarse quantization of MBs and motion compensated

64

prediction. Filtering is applied to each edge of all the 4x4 luma and chroma blocks in a MB

as shown in Figure 4.1. The vertical 4×4 block edges in a MB are filtered before the

horizontal 4×4 block edges in the order shown in Fig. 4.2 [1].

H.264 DBF algorithm for one row/column of a vertical/horizontal edge, which is

called a filtering unit, is shown in Fig. 4.3 [36]. There are several conditions that determine

whether a 4×4 block edge will be filtered or not. There are additional conditions that

determine the strength of the filtering for the 4x4 block edges that will be filtered. As

shown in Fig. 4.3, H.264 DBF algorithm can be divided into eight modes based on the

outcomes of these conditions. Boundary strength (BS) parameter, α and β threshold values

and the pixels in the edge determine the outcomes of these conditions, and up to 3 pixels on

both sides of an edge can be changed depending on the outcomes of these conditions. α, β,

c0 and c1 values are determined by quantization parameter (QP), BS, OffsetA and OffsetB

parameters.

Figure 4.1 Edge Filtering Order Specified in H.264 Standard

65

Figure 4.2 Illustration of H.264 DBF Algorithm

66

Figure 4.3 H.264 Deblocking Filter Algorithm

67

H.264 DBF algorithm is adaptive in three levels; slice level, edge level and sample

level [1, 36]. Slice level adaptivity is used to adjust the filtering strength in a slice to the

characteristics of the slice data. The filtering strength in a slice is adjusted by encoder using

OffsetA and OffsetB parameters. The α and β threshold values that determine whether a

4x4 block edge will be filtered or not and how strong the filtering will be for an edge are a

function of quantization parameter (QP) and these two offset parameters.

Edge level adaptivity is used to adjust the filtering strength for an edge to the

characteristics of that edge. The filtering strength for an edge is adjusted using the BS

parameter. Every edge is assigned a BS value depending on the coding modes and

conditions of the 4x4 blocks. The conditions used for determining the BS value for an edge

between two neighboring 4x4 blocks are summarized in Table 4.1 [36]. The strength of the

filtering done for an edge is proportional to its BS value. No filtering is done for the edges

with a BS value of 0, whereas strongest filtering is done for the edges with a BS value of 4.

4.2 Proposed Energy Reduction Techniques

The eight H.264 DBF modes and the pixels used in filtering equations of these modes

are listed in Table 4.2. The filtering equations used in each mode are given in Fig. 4.3. As it

can be seen from these filtering equations, H.264 DBF algorithm can be implemented using

only addition and shift operations.

Table 4.1 Conditions that Determine BS

Coding Modes and Conditions BS

One of the blocks is intra and the edge is a macroblock edge 4

One of the blocks is intra 3

One of the blocks has coded residuals 2

Difference of block motion ≥ 1 luma sample distance and Motion
compensation from different reference frames

1

Else 0

68

Table 4.2 DBF Modes

BS |p2-p0|<β |q2-q0|<β Pixels used in filtering equations Mode

B
S

=
4

False False p1, p0, q0, q1 1
False True p1, p0, q0, q1, q2, q3 3
True False p3, p2, p1, p0, q0, q1, 5
True True p3, p2, p1, p0, q0, q1, q2, q3 7

4>
B

S
>

0 False False p1, p0, q0, q1 0
False True p1, p0, q0, q1, q2 2
True False p2, p1, p0, q0, q1 4
True True p2, p1, p0, q0, q1, q2 6

PECR technique exploits equality of the pixels used in the filtering equations of DBF

modes for reducing the amount of computation performed by H.264 DBF algorithm. If all

the pixels used in the equations of a mode are equal, then these equations simplify

significantly. PSCR technique exploits similarity of the pixels used in the filtering

equations of DBF modes for reducing the amount of computation performed by H.264 DBF

algorithm. PSCR technique determines the similarity of the pixels by truncating their least

significant bits by the specified truncation amount (1 or 2 bits) and comparing the truncated

pixels. If the truncated pixels used in the equations of a mode are all equal, then these

equations are assumed to simplify significantly.

In order to reduce the overhead for determining the equality of the pixels used in the

equations of a mode, we propose to use the subtraction operations performed in conditional

branches of H.264 DBF algorithm. As shown in Fig. 4.3, these conditional branches include

the five subtraction operations shown in (4.1) - (4.5). If two pixels are equal, their difference

is equal to zero. Therefore, by checking the results of these five subtraction operations, we

can determine the equality of the pixels used in the equations of a mode without performing

additional comparison operations.

p0 – q0 (4.1)

p1 – p0 (4.2)

q1 – q0 (4.3)

p2 – p0 (4.4)

q2 – q0 (4.5)

69

PECR technique compares 8-bit pixels. PSCR technique compares truncated pixels.

If the results of equations (4.1) - (4.5) are zero, then the pixels p2, p1, p0, q0, q1, and q2 are

equal. If the most significant 6 or 7 bits of the results of equations (4.1) - (4.5) are zero,

then the pixels p2, p1, p0, q0, q1, and q2 are similar. If the results of equations (4.1), (4.2),

and (4.4) are zero, then the pixels p2,p1,p0, and q0 are equal. If the most significant 6 or 7

bits of the results of equations (4.1), (4.2), and (4.4) are zero, then the pixels p2, p1, p0,

and q0 are similar.

The equations of mode 6 are given in Table 4.3. p'0, q'0, p'1, q'1 are filtered values of

p0, q0, p1, q1 pixels, respectively. If the pixels used in the equations of mode 6 are all

equal, ∆0, ∆p1 and ∆q1 are zero, and all the filtered pixels are equal to one of the input

pixels (p'0 = q'0 = p'1 = q'1 = p0). If the pixels used in the equations of mode 6 are all

similar, ∆0, ∆p1 and ∆q1 are assumed to be zero, and therefore all the filtered pixels are

assumed to be equal to their corresponding input pixels (p'0 = p0, q'0 = q0, p'1 = p1,

q'1 = q1). Therefore, if the pixels used in the equations of mode 6 are all equal or similar,

all the addition and shift operations performed by the equations of mode 6 are avoided.

Table 4.3 Equations for Mode 6 and their Simplified Versions when p2=p1=p0=q0=q1=q2

Equations for mode 6
Simplified equations for mode 6 when

p2=p1=p0=q0=q1=q2
p'0 = p0+∆0 p'0 = p0
q'0 = q0-∆0 q'0 = q0
p'1 = p1+∆p1 p'1 = p1
q'1 = q1+∆q1 q'1 = q1
∆0i = (4(q0-p0)+(p1-q1)+4)>>3 ∆0i = 0
∆0 = Min(Max(-c0, ∆0i),c0) ∆0 = 0
∆p1i = (p2+((p0+q0+1)>>1)-2p1)>>1 ∆p1i = 0
∆p1 = Min(Max(-c1, ∆p1i),c1) ∆p1 = 0
∆q1i = (q2+((p0+q0+1)>>1)-2q1)>>1 ∆q1i = 0
∆q1 = Min(Max(-c1, ∆q1i),c1) ∆q1 = 0

We calculated the amount of addition and shift operations performed by each mode,

and the amount of addition and shift operations performed by each mode when the pixels

used in the equations of this mode are all equal or similar. The amount of addition and shift

operations performed by all DBF modes are shown in Tables 4.4 – 4.12 respectively. In the

CB row, the subtraction operations performed before the filtering are shown.

70

Table 4.4 The Amount of Computation Required by DBF Mode 0 For Different Equal

Pixel Combinations

Table 4.5 The Amount of Computation Required by DBF Mode 1 For Different Equal

Pixel Combinations

Category
Original p1=p0=q0=q1

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0

p'0, q'0 6 4 0 0

Total 11 4 5 0

Table 4.6 The Amount of Computation Required by DBF Mode 2 For Different Equal

Pixel Combinations

Category
Original p1=p0=q0 =q1=q2

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
∆oi 4 2 0 0
∆q1i 4 3 0 0
p'0, q'0, q'1 3 0 0 0
c0 1 0 0 0
Total 17 5 5 0

Category
Original p1=p0=q0=q1

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0

∆oi 4 2 0 0

p'0, q'0 2 0 0 0

Total 11 2 5 0

71

Table 4.7 The Amount of Computation Required by DBF Mode 3 For Different Equal

Pixel Combinations

Category
Original p1=p0= q0=q1=q2=q3

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
p'0 3 2 0 0
q'0 2 2 0 0
q'1 2 1 0 0
q'2 3 2 0 0
(α>>2)+2 1 1 0 0
Total 16 8 5 0

Table 4.8 The Amount of Computation Required by DBF Mode 4 For Different Equal

Pixel Combinations

Category
Original p2= p1=p0=q0=q1

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
∆oi 4 2 0 0
∆p1i 4 3 0 0
p'0, q'0, p'1 3 0 0 0
c0 1 0 0 0
Total 17 5 5 0

72

Table 4.9 The Amount of Computation Required by DBF Mode 5 For Different Equal

Pixel Combinations

Category
Original p3=p2= p1=p0=q0=q1

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
p'0 2 2 0 0
p'1 2 1 0 0
p'2 3 2 0 0
q'0 3 2 0 0
(α>>2)+2 1 1 0 0
Total 16 8 5 0

Table 4.10 The Amount of Computation Required by DBF Mode 6 For Different Equal

Pixel Combinations

Category
Original p2=p1=p0=q0=q1=q2

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
∆oi 4 2 0 0
∆p1i 4 3 0 0
∆q1i 4 3 0 0
p'0, q'0, p'1, q'1 4 0 0 0
c0 1 0 0 0
Total 22 8 5 0

73

Table 4.11 The Amount of Computation Required by DBF Mode 7 For Different Equal

Pixel Combinations

Category
Original p3=p2=p1=p0=q0=q1=q2=q3

of Add. # of Shifts # of Add. # of Shifts

CB 5 0 5 0
p'0 2 2 0 0
p'1 4 1 0 0
p'2 3 2 0 0
q'0 2 2 0 0
q'1 2 1 0 0
q'2 3 2 0 0
(α>>2)+2 1 1 0 0
Total 22 11 5 0

Table 4.12 Amount of Operations Performed by All DBF Modes

Modes

Original
Pixel Equality /

Similarity

of Add. # of Shifts # of Add. # of Shifts

Mode 0 11 2 5 0
Mode 1 11 4 5 0
Mode 2 17 5 5 0
Mode 3 16 8 5 0
Mode 4 17 5 5 0
Mode 5 16 8 5 0
Mode 6 22 8 5 0
Mode 7 22 11 5 0

The amount of computation reductions achieved by PECR and PSCR techniques

depend on how many filtering units in a frame have all equal or similar pixels. Therefore,

we determined how many filtering units in CIF (352x288) size Foreman, Akiyo,

Mother&Daughter and Ice video frames (one frame from each video) at 28, 35 and 42 QP

values have all equal or similar (with 1 bit truncation (1bT) and 2 bit truncation (2bT))

pixels using H.264 JM reference software version 14.0, and presented the results for luma

and chroma components in Tables 4.13 and 4.14 respectively.

74

Table 4.13 Filtering Units with All Equal or Similar Pixels for Luma Components

 PECR PSCR (1bT) PSCR (2bT)

F
ra

m
e

QP Total Equal

Total Equal

Total Equal

% # # % # # %

F
or

em
an

28 37902 4767 12.6 38458 6531 17.0 36539 10492 28.7

35 42334 8365 19.8 41993 10609 25.3 42519 14135 33.2

42 45584 11666 25.6 45215 13746 30.4 45511 17294 38.0

A
k

iy
o 28 42716 12515 29.3 42961 15720 36.6 42011 20721 49.3

35 45057 15967 35.4 44906 18631 41.5 45213 22071 48.8

42 47243 18505 39.2 46858 20995 44.8 47139 24052 51.0

M
&

D
 28 40952 12694 31.0 41421 15410 37.2 39936 19559 49.0

35 45658 15424 33.8 45388 18224 40.2 45768 21518 47.0

42 48231 18229 37.8 47714 20511 43.0 48134 24177 50.2

Ic
e

28 40842 17573 43.0 41081 21375 52.0 40272 25976 64.5

35 42653 21862 51.3 42471 24905 58.6 42846 28465 66.4

42 44926 24922 55.5 44507 27572 62.0 44905 30195 67.2

Table 4.14 Filtering Units with All Equal or Similar Pixels for Chroma (CbCr)

Components

 PECR PSCR (1bT) PSCR (2bT)

F
ra

m
e

QP

Total Equal

Total Equal

Total Equal

% # # % # # %

F
or

em
an

28 24197 12497 51.7 24237 14502 59.8 24156 17550 72.7
35 24542 16370 66.7 24551 17782 72.4 24572 19548 79.6
42 24652 16613 67.4 24652 18063 73.3 24651 20192 81.9

A
k

iy
o 28 23554 12624 53.6 23602 13975 59.2 23423 16602 70.9

35 23764 13932 58.6 23845 15317 64.2 23931 17289 72.3
42 23986 16126 67.2 23990 17000 70.9 23972 18174 75.8

M
&

D
 28 24574 12517 50.9 24575 14262 58.0 24563 17377 70.7

35 24704 15500 62.7 24704 17036 69.0 24704 18456 74.7
42 24704 17077 69.1 24704 18262 73.9 24704 19570 79.2

Ic
e

28 24277 17018 70.1 24277 18233 75.1 24205 20100 83.0

35 24404 17469 71.6 24421 19056 78.0 24450 20420 83.5

42 24546 20910 85.2 24548 21273 86.7 24534 21850 89.1

75

Luma and chroma components of a CIF size frame have 50048 and 24704 filtering

units, respectively. The column Total shows the number of filtering units that are filtered.

The column Equal shows how many of these filtering units have all equal or similar pixels.

The percentages of filtering units which have all equal or similar pixels vary from 12% to

67% for luma components, and 51% to 89% for chroma components. The percentages

increase with higher QP values and truncation amounts.

We calculated the computation reduction achieved by the proposed PECR and PSCR

techniques for H.264 DBF algorithm using H.264 JM reference software version 14.0 for

Foreman, Akiyo, Mother&Daughter and Ice video frames (one frame from each video) at

28, 35 and 42 QP values. As shown in Tables 4.15 and 4.16, the amount of reductions

achieved in addition and shift operations ranges from 10% to 52% and 14% to 67%

respectively for luma components. The amount of reductions achieved in addition and shift

operations ranges from 28% to 48% and 50% to 87% respectively for chroma components.

Since H.264 DBF algorithm is highly adaptive, the number of addition and shift operations

in a frame varies from frame to frame. In these tables, the column Total shows the total

number of addition and shift operations in a frame, and the column Reduction shows the

reductions achieved in addition and shift operations by the proposed PECR and PSCR

techniques for a frame.

The proposed techniques, on the other hand, have to check if the results of at least 3

and at most 5 subtraction operations are equal to zero or not for one row/column of a

vertical/horizontal edge based on BS, α and β parameters. However, this overhead is quite

small considering that checking whether a number is zero or not can be efficiently

implemented in hardware.

By using the subtraction operations shown in (4.1) - (4.5), we can only check the

equality of three pixels (p2 - q2) on each side of an edge. However, for modes 3, 5, and 7,

when BS = 4, DBF algorithm can access up to four pixels on each side of an edge, and

therefore p3 or q3 or both can be used in filtering equations.

76

Table 4.15 Computation Reductions for Luma Components

PECR PSCR (1bT) PSCR (2bT)

F
ra

m
e

QP

Addition Shift Addition Shift Addition Shift

Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. %

F
or

em
an

28 803402 82105 10 295290 41353 14 818603 111494 14 302944 56306 19 778095 176418 23 283934 89187 31

35 913494 143034 16 346610 71066 21 907300 180608 20 343823 90047 26 918952 239294 26 349431 120201 34

42 991821 198848 20 383863 97580 25 986226 233691 24 381568 115135 30 991359 293135 30 383784 145092 38

A
k

iy
o 28 908417 213855 24 343440 106339 31 919334 267059 29 349299 134398 38 895968 348976 39 337953 176342 52

35 974458 272054 28 375299 133795 36 972272 316579 33 374437 156580 42 978300 373578 38 377201 186790 50

42 1034674 315226 30 404414 154579 38 1029293 357081 35 402122 175359 44 1033452 408192 39 403844 201464 50

M
 &

 D
 28 869923 216830 25 325398 107854 33 883125 261807 30 332110 131702 40 851255 329477 39 317080 166608 53

35 980533 263040 27 377044 130305 35 976084 309950 32 375197 154037 41 985010 364486 37 379513 183153 48

42 1052760 310296 29 412626 153361 37 1045649 348563 33 409543 172592 42 1051807 410040 39 412155 203419 49

Ic
e

28 895329 299755 33 341275 148739 44 901174 362657 40 344190 182279 53 884867 438044 50 336662 221623 66

35 937683 372397 40 359848 184561 51 934922 422788 45 358693 211434 59 941709 481615 51 361673 242634 67

42 986790 424246 43 382198 211425 55 981126 468430 48 379826 234123 62 986781 511883 52 382144 257103 67

77

Table 4.16 Computation Reductions for Chroma (CbCr) Components

 PECR PSCR (1bT) PSCR (2bT)

F
ra

m
e

QP

Addition Shift Addition Shift Addition Shift

Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. % Total Reduc. %

F
or

em
an

28 267688 74982 28 72062 35856 50 268008 87012 32 72180 41766 58 267360 105300 39 719

51482 72

35 270448 98220 36 73064 46734 64 270520 106692 39 73080 51234 70 918952 239294 26 349431 120201 34

42 271328 99678 37 73356 47982 65 271328 108378 40 73356 52166 71 991359 293135 30 383784 145092 38

A
k

iy
o 28 262544 75744 29 70168 35924 51 262928 83850 32 70332 40098 57 261496 99612 38 69774 48466 69

35 264224 83592 32 70708 39900 56 264872 91902 35 70986 44106 62 265560 103734 39 71278 50116 70

42 266000 96756 36 71372 45584 64 266032 102000 38 71386 48376 68 265888 109044 41 71338 52034 73

M
 &

 D
 28 270704 75102 28 72982 35212 48 270712 85572 32 72984 40558 56 270616 104262 39 72942 50410 69

35 271744 93000 34 73472 43106 59 271744 102216 38 73472 47844 65 271744 110736 41 73472 52306 71

42 271744 102462 38 73472 48514 66 271744 109572 40 73472 52028 71 271744 117420 43 73472 55884 76

Ic
e

28 268328 102108 38 72194 49632 69 268328 109398 41 72188 53268 74 267752 120600 45 71978 59242 82

35 269344 104814 39 72552 50860 70 269480 114336 42 72610 55416 76 269712 122520 45 72712 59716 82

42 270480 125460 46 72994 60810 83 270496 127638 47 72998 61952 85 270384 131100 48 72966 63780 87

78

Additional comparison operations can be performed to determine the equality of p3

and q3 with the other pixels in the filtering equations of modes 3, 5, and 7. However, the

simulation results obtained by H.264 JM reference software version 14.0 for several video

sequences showed that a small number of filtering units filtered with mode 3 and mode 5

have all equal or similar pixels. On the other hand, a large number of filtering units filtered

with mode 7 have all equal or similar pixels. Therefore, we propose that p3 and q3 are

compared only with the pixels in the filtering equations of mode 7.

Table 4.17 shows the number of comparisons of p3 and q3 with the other pixels in

the filtering equations, the number of addition reductions achieved by the proposed

techniques, and the percentage of the comparisons to the addition reductions. As shown in

the table, the overhead of comparing p3 and q3 with the other pixels in the filtering

equations is much smaller than the amount of addition reductions achieved by the proposed

techniques, and it decreases with higher QP values and truncation amounts.

We also quantified the impact of the proposed PSCR technique on the rate-distortion

performance of the H.264 DBF algorithm using H.264 JM reference software 14.0. The

rate distortion curves and average PSNR comparison of the original DBF algorithm and the

DBF algorithm with the proposed PSCR technique for luma components of several CIF

size video frames (one frame from each video) and different pixel truncation amounts are

shown in Fig. 4.4 and Table 4.18 respectively. The average PSNR values shown in Table

4.18 are calculated using the technique described in [26]. The proposed PSCR technique

does not change the PSNR for some video frames, but it decreases the PSNR slightly for

some video frames.

79

Table 4.17 Comparison Overhead

 PECR PSCR (1bT) PSCR (2bT)

 Q
P

Comp.

Addition
Reduction

%

Comp.
Addition

Reduction
%

Comp.

Addition
Reduction

%

F
or

em
an

28 13570 157087 8.6 14166 198506 7.1 12914 281718 4.6

35 17330 241254 7.2 17224 287300 6.0 17600 478588 3.7

42 19878 298526 6.7 19802 342069 5.8 19890 586270 3.4

A
k

iy
o

28 16818 289599 5.8 17174 350909 4.9 16478 448588 3.7

35 18836 355646 5.3 18876 408481 4.6 19082 477312 4.0

42 21396 411982

5.2 21386 459081 4.7 21382 517236 4.1

M
 &

 D
 28 15078 291932 5.2 15584 347379 4.5 14480 433739 3.3

35 18316 356040 5.1 18328 412166 4.4 18680 475222 3.9

42 21632 412758 5.2 21620 458135 4.7 21648 527460 4.1

Ic
e

28 17344 401863 4.3 17570 472055 3.7 17116 558644 3.1

35 18486 477211 3.9 18452 537124 3.4 18600 604135 3.1

42 19910 549706 3.6 19908 596068 3.3 19876 642983 3.1

Table 4.18 Average PSNR Comparison of PSCR Technique

Frame
Original

(dB)

1 bit
Trunc.

(dB)

∆PSNR

(dB)

2 bits
Trunc.

(dB)

∆PSNR

(dB)

F
or

em
an

Y 35.28 35.28 0.00 35.26 -0.02

Cb 40.40 40.39 0.00 40.36 -0.04

Cr 42.49 42.48 -0.01 42.42 -0.07

A
k

iy
o

Y 37.25 37.25 0.00 37.23 -0.02

Cb 40.48 40.46 -0.02 40.43 -0.05

Cr 42.61 42.60 -0.01 42.53 -0.08

M
 &

 D
 Y 36.80 36.79 -0.02 36.77 -0.04

Cb 42.19 42.19 0.00 42.15 -0.05

Cr 43.28 43.28 0.00 43.22 -0.06

Ic
e

Y 36.74 36.73 -0.01 36.71 -0.02

Cb 42.98 42.97 -0.01 42.93 -0.05

Cr 43.65 43.64 -0.01 43.58 -0.07

80

2000 4000 6000 8000
25

30

35

40

45

FM original

FM 2 bit trunc.

AK original

AK 2 bit trunc.

BitRate(byte)

P
S

N
R

(d
B

)

2000 4000 6000 8000
25

30

35

40

45

M&D original

M&D 2 bit trunc.

ICE original

ICE 2 bit trunc.

BitRate(byte)

P
S

N
R

(d
B

)

Figure 4.4 Rate Distortion Curves of the Original H.264 DBF Algorithm and H.264 DBF

Algorithm with Proposed PSCR Technique

81

4.3 H.264 DBF Hardware and Its Energy Consumption

 The block diagram of H.264 DBF hardware proposed in [37] is shown in Fig. 4.5.

This DBF hardware consists of a datapath, a control unit, two 384×8 register files, and two

dual-port on-chip SRAMs to store partially filtered pixels.

 A 384×8 register file, IBUF, is used to store one 16x16 reconstructed MB (256

luminance pixels and 128 chrominance pixels) that will be filtered by DBF hardware. As

shown in Fig. 4.6, there are sixteen 4×4 blocks in a MB and they are processed by IT/IQ in

the order given in the H.264 standard [1]. The DBF hardware starts filtering after a new

16x16 reconstructed MB is ready.

Figure 4.5 H.264 DBF Hardware Architecture

82

Figure 4.6 Processing Order of 4×4 Blocks

A 384×8 register file, SPAD, is used to store partially filtered pixels in a 16×16 MB

until all the edges in this MB are fully filtered. In the M×N frame shown in Fig. 4.7,

squares represent 16x16 MBs. In order to filter a MB, its upper and left neighboring 4×4

blocks should be available. Since DBF hardware gets its input MB from IT/IQ hardware

and it does not access off-chip frame memory, the upper neighboring 4×4 blocks of all

MBs in a row of the frame and the left neighboring 4×4 blocks of the current MB are stored

in on-chip local memory. The left neighboring 4×4 blocks of the current MB are stored in

SPAD. The upper neighboring 4×4 luminance and chrominance blocks of all MBs in a row

of a CIF size frame are stored in the 4×352×8 = 1408×8 LUMA SRAM and

4x88x8+4x88x8 = 704×8 CHRM SRAM respectively.

As shown in Fig. 4.8, the datapath is implemented as a two stage pipeline to improve

the clock frequency and throughput. The first pipeline stage includes one 12-bit

adder/subtractor and two shifters to perform numerical calculations. The second pipeline

stage includes one 12-bit comparator, several two’s complementers and multiplexers to

determine conditional branch results.

83

Figure 4.7 4x4 Blocks Stored in LUMA and CHRM SRAMs

The edges 1, 2, 3, 4, 33, 34, 41, 42 of a MB shown in Fig. 4.2 are not filtered if this

MB is located in the left frame boundary, and the edges 17, 18, 19, 20, 37, 38, 45, 46 of a

MB are not filtered if this MB is located in the top frame boundary. This is not the case for

the MBs located inside the frame. In order to avoid this irregularity and therefore simplify

the control unit, we have extended the frames at the upper and left frame boundaries for 4

pixels in depth as shown in Fig. 4.7. We assigned zero to these pixels and assigned zero to

the BS values of these edges in order to avoid filtering these edges without causing an

irregularity in the control unit.

84

This H.264 DBF hardware architecture is implemented in Verilog HDL. We applied

the PECR and PSCR techniques separately to this H.264 DBF hardware. The equality and

similarity of the pixels are determined by checking whether the output of the 12-bit

subtractor in the datapath is zero or not.

The Verilog RTL codes are mapped to a Xilinx Virtex 4 FPGA with 24576 slices,

and the FPGA implementations are verified with post place&route simulations. The FPGA

resource usage and the clock frequency of the DBF hardware implementations are shown in

Table 4.19. DBF hardware with PECR technique works at 98 MHz and it takes 5574 clock

cycles in the worst-case to process a MB. Therefore, the FPGA implementation can process

a CIF (352x288) frame in 22.54 ms (396 MB * 5574 clock cycles per MB * 10.21 ns clock

cycle = 22.54 ms), and it can process 1000/22.54 = 44 CIF frames per second.

Fig. 4.9 shows an unfiltered frame from Akiyo video and the same frame filtered by

H.264 DBF algorithm with PECR technique. As it can be seen from Fig. 4.9, some of the

blocking artifacts are reduced and some of them are totally removed.

The power consumptions of the DBF hardware implementations at 25 MHz on the

same FPGA are estimated using Xilinx XPower Analyzer tool. In order to estimate the

power consumption of a DBF hardware implementation, timing simulation of its placed

and routed netlist is done. Foreman, Akiyo, Mother&Daughter and Ice video frames (one

frame from each video) are used as inputs for timing simulations and the signal activities

are stored in VCD files. These VCD files are used for estimating the power consumptions

of the DBF hardware implementations using Xilinx XPower Analyzer tool.

Table 4.19 FPGA Resource Usage and Clock Frequency After P&R

Resource
DBF

Hardware [37]

DBF Hardware

with

PECR Tech.

DBF Hardware

with

PSCR Tech. (2bT)

LUTs 1198 1301 1339

DFFs 293 288 307

Block RAMs 7 7 7

Clock Frequency 97 MHz 98 MHz 100 MHz

85

Figure 4.8 H.264 DBF Datapath

86

a)

b)

Figure 4.9 a) Unfiltered Video Frame and b) The Same Frame Filtered by H.264

Deblocking Filter Algorithm

87

The energy consumptions of the H.264 DBF hardware implementations on the same

FPGA for different QP values and video frames are shown in Tables 4.20, 4.21 and 4.22.

As shown in these tables, the proposed PECR and PCSR techniques reduced both total

computation time and power consumption of the H.264 DBF hardware. The proposed

PECR and PSCR techniques reduced the energy consumption of the H.264 DBF hardware

up to 35% and 39%, respectively.

Table 4.20 Energy Consumption Reduction By PECR Technique

F
ra

m
e Total Computation Time (µs)

Power
 (mW)

Energy
(µJ)

QP
Org.
[37]

LP ∆ time
Org.
[37]

LP
Org.
[37]

LP %

F
or

em
an

28 81607 79809 1798 51.44 37.81 4198 3018 28.1

35 84643 81396 3247 51.43 37.76 4353 3074 29.4

42 86689 82096 4593 51.48 37.77 4463 3101 30.5

A
k

iy
o 28 84317 79454 4863 51.33 37.65 4328 2991 30.9

35 86152 79859 6293 51.35 37.62 4424 3004 32.1

42 87678 80373 7305 51.37 37.59 4504 3021 32.9

M
 &

 D
 28 83502 78578 4924 51.32 37.63 4285 2957 31.0

35 86528 80493 6035 51.33 37.62 4441 3028 31.8

42 88295 81106 7189 51.79 37.61 4573 3050 33.3

Ic
e

28 83847 77012 6835 51.24 37.45 4296 2884 32.9

35 85049 76461 8588 51.21 37.40 4355 2860 34.3

42 83695 74302 9393 51.03 37.37 4271 2777 35.0

Table 4.21 Energy Consumption Reduction By PSCR (1bT) Technique

F
ra

m
e Total Computation Time (µs)

Power
 (mW)

Energy
(µJ)

QP
Org.
[37]

LP ∆ time
Org.
[37]

LP
Org.
[37]

LP %

F
or

em
an

28 81607 77326 4281 51.44 34.4 4198 2660 32.6

35 84643 78942 5701 51.43 34.37 4353 2713 33.7

42 86689 78975 7714 51.48 34.42 4463 2718 34.1

A
k

iy
o 28 84317 78432 5885 51.33 36.32 4328 2692 35.8

35 86152 77103 9049 51.35 36.22 4424 2638 36.4

42 87678 78809 8869 51.37 36.47 4504 2717 36.7

M
 &

 D
 28 83502 75833 7669 51.32 34.24 4285 2597 35.4

35 86528 78269 8259 51.33 34.25 4441 2681 36.2

42 88295 79953 8342 51.79 34.29 4573 2742 39.0

Ic
e

28 83847 74128 9719 51.24 36.21 4296 2536 37.5

35 85049 74512 10537 51.21 36.33 4355 2558 38.8

42 83695 74761 8934 51.03 36.40 4271 2572 36.3

88

Table 4.22 Energy Consumption Reduction By PSCR (2bT) Technique
F

ra
m

e Total Computation Time (µs)
Power
 (mW)

Energy
(µJ)

QP
Org.
[37]

LP ∆ time
Org.
[37]

LP
Org.
[37]

LP %

F
or

em
an

28 81607 78398 3209 51.44 36.03 4198 2825 32.7

35 84643 79778 4865 51.43 36.01 4353 2873 34.0

42 86689 80381 6308 51.48 36.01 4463 2895 35.1

A
k

iy
o 28 84317 77368 6949 51.33 35.83 4328 2772 35.9

35 86152 78063 8089 51.35 35.83 4424 2797 36.8

42 87678 78676 9002 51.37 35.82 4504 2818 37.4

M
 &

 D
 28 83502 76917 6585 51.32 35.83 4285 2756 35.7

35 86528 78717 7811 51.33 35.82 4441 2820 36.5

42 88295 79418 8877 51.79 35.84 4573 2846 37.8

Ic
e

28 83847 74846 9001 51.24 35.63 4296 2667 37.9

35 85049 74767 10282 51.21 35.59 4355 2661 38.9

42 83695 75332 8363 51.03 35.56 4271 2679 37.3

89

5 CHAPTER V

A NOVEL ENERGY REDUCTION TECHNIQUE FOR H.264 INTRA

MODE DECISION

H.264 intra prediction algorithm uses 9 4x4 luma, 4 16x16 luma, and 4 8x8 chroma

modes. The luma component of each MB in a frame has 16 4x4 blocks and each 4x4 block

can be coded with one of 9 different 4x4 prediction modes. The same MB can also be

coded with one of 4 different 16x16 prediction modes. Therefore, in order to choose the

best mode for the luma component of a MB, intra predictions for 148 different prediction

modes are calculated.

H.264 Joint Model (JM) reference software encoder implements two different intra

mode decision algorithms; Lagrangian Rate Distortion Optimization (RDO) based mode

decision and Sum of Absolute Transformed Difference (SATD) based mode decision [17].

Lagrangian RDO based mode decision algorithm selects the prediction mode that

minimizes the Lagrangian cost function shown in (5.1). Distortion (D) and rate (R) for each

prediction mode are determined by encoding the current block using this prediction mode

and calculating the distortion and rate. λ is calculated based on Quantization Parameter

(QP). This technique has extremely high computational complexity.

RDJ λ+= (5.1)

90

SATD based intra mode decision algorithm also selects the prediction mode that

minimizes the Lagrangian cost function shown in (5.1). However, it estimates distortion as

SATD and rate as the number of bits used for encoding the prediction mode. This SATD

based cost function is defined as

RSATDJ SATD λ4+= (5.2)

SATD based intra 16x16 mode decision algorithm used in JM software calculates the

cost of each intra 16x16 mode and selects the mode with minimum cost. For each intra

16x16 mode, the SATD value for a MB is calculated as follows: For each 4x4 block in a

MB, denoted as (0,…,15) in Figure 5.1, find residue block by subtracting predicted block

from current block, and apply Hadamard Transform (HT) to each 4x4 residue block as

illustrated in Figure 5.2. Form a 4x4 DC block, as shown in Figure 5.1, by extracting DC

coefficients (upper leftmost coefficient, shown as gray in Figure 5.1) of each transformed

4x4 block and dividing them by 2, and apply HT to this 4x4 DC block. Add the absolute

values of all AC coefficients and Hadamard transformed and scaled DC coefficients.

Intra 4x4 mode decision algorithm calculates the cost of each 4x4 mode for each 4x4

block denoted as 0,…,15 in Figure 5.1 and chooses the mode with the minimum cost for

each 4x4 block. After the best modes are selected for all 4x4 blocks, the costs of the best

modes for all 4x4 blocks are added to determine the total cost of the current MB. This cost

is compared with the cost of the best 16x16 mode to decide the intra mode for the luma

component of this MB. The Intra 8x8 mode decision algorithm is very similar to intra

16x16 mode decision algorithm except that a 4x4 DC block is not formed.

91

Figure 5.1 Formation of DC Block for Intra 16x16 Prediction Modes

Figure 5.2 SATD Calculation for Each 4x4 Block

The computational complexity of the SATD based mode decision algorithm is also

high. As it is shown in Figure 5.3, only 11% of all the addition operations performed for

intra search are performed for intra prediction and 89% are performed for intra mode

decision. Intra prediction shown in Figure 5.3 is implemented using only addition and shift

operations as explained in [22, 24, 25]. Intra mode decision shown in Figure 5.3 includes

residue operations (subtractions are counted as additions), HT operations, and addition of

absolute values.

In this thesis, we propose a novel energy reduction technique for H.264 intra mode

decision. The proposed technique reduces the number of additions and shifts performed by

16x16 and 8x8 intra prediction algorithms by 80% and it reduces the number of additions

performed by SATD based 4x4, 16x16 and 8x8 intra mode decision algorithms used in

92

H.264 JM reference software encoder by 46%, 64% and 62% respectively for a CIF size

frame with very small PSNR loss. We also implemented an efficient H.264 16x16 intra

mode decision hardware including the proposed technique using Verilog HDL. The

proposed technique reduced the energy consumption of this H.264 16x16 intra mode

decision hardware up to 59.6%.

Several techniques are proposed in the literature to reduce the computational

complexity of H.264 intra mode decision. In [29], a new cost function and rate predictor,

and a technique similar to the technique proposed in this thesis are proposed only for intra

4x4 mode decision. Selective intra mode decision techniques proposed in [22, 30, 31, 32,

33, 34] calculate only the cost of the intra modes likely to be selected by the mode decision

and select one of these intra modes at the expense of PSNR loss. The proposed technique

can be used together with these selective mode decision techniques for further reducing

computational complexity of H.264 intra mode decision.

Figure 5.3 Addition Operations Performed by Intra Prediction and Mode Decision

 16x16

prediction

1.2%

4x4 prediction

9.4%

 8x8 mode

decision

12%

 16x16 mode

decision

24%

8x8 prediction

0.4%

 4x4 mode

decision

53%

93

5.1 Proposed Energy Reduction Technique

HT is a linear transform and HT of a 4x4 block Z is defined as:

HZHT **= (5.3)

where

−−

−−

−−
=

1111

1111

1111

1111

H (5.4)

If we write block Z explicitly then, Equation (5.3) becomes:

−−

−−

−−

−−

−−

−−

1111

1111

1111

1111

1111

1111

1111

1111

15141312

111098

7654

3210

zzzz

zzzz

zzzz

zzzz

 (5.5)

Only binary shift and integer addition/subtraction operations are used in HT. HT

defined in (5.5) can be implemented with 64 additions using the fast HT algorithm shown

in Figure 5.4 [35].

HT is a linear operation and it can be applied before subtraction operation as shown

in (5.6). H, C, P are Hadamard matrix, current 4x4 block, predicted 4x4 block respectively.

Hadamard matrix is shown in (5.4). In this way, two HTs are performed instead of one.

However, this decreases the computational complexity of SATD based H.264 intra mode

decision. Since the predicted blocks have regular patterns, HTs of the predicted blocks

(H*P*H) can be calculated with a small amount of computation. In addition, since HT of

the current block (H*C*H) is common to all intra modes, it can be calculated only once.

94

Figure 5.4 Fast HT Algorithm for a 4x4 Block

() ()HPHHCHHPCHT *****)(* −=−= (5.6)

A similar technique is proposed only for intra 4x4 mode decision in [29, 35]. In this

thesis, we generalized this technique for the mode decision of all intra prediction modes,

we showed that this technique reduces the number of residue calculations required for intra

mode decision as well and we applied this technique to 16x16 and 8x8 plane modes by

proposing a small modification in the prediction equations used for calculating the cost of

the 16x16 and 8x8 plane modes for intra mode decision.

95

The predicted block patterns of horizontal, vertical and DC prediction modes and the

result of performing HT for these predicted block patterns are shown in Figure 5.5. HT of a

4x4 block can be calculated with 64 addition operations [29]. On the other hand, as shown

in Figure 5.5, HT of a 4x4 block predicted by vertical or horizontal modes can be

calculated with 8 addition and 4 shift operations and HT of a 4x4 block predicted by DC

mode can be calculated with only 1 shift operation.

Figure 5.5 Hadamard Transform of Vertical, Horizontal and DC Modes

The predicted block pattern of DDL mode is shown in (5.7) where k-s are defined in

[1]. HT of this predicted block, shown as TDDL in (5.8), can be efficiently calculated if

equations in Table 5.1 are pre-calculated. TDDL can be calculated by using pre-calculated

values as shown in Table 5.2. The predicted block pattern of DDR mode is shown in (5.9)

where k-s are defined in [1]. HT of this predicted block, shown as TDDR in (5.10), can be

efficiently calculated if equations in Table 5.3 are pre-calculated. TDDR be calculated by

using pre-calculated values as shown in Table 5.4. The predicted block pattern of VR mode

() () () ()

 −+−+−−−−++++

→

0000

0000

0000

4444 pnmkpnmkpnmkpnmk

pnmk

pnmk

pnmk

pnmk

Vertical

HT

()
()
()
()

−+−

+−−

−−+

+++

→

0004

0004

0004

0004

pnmk

pnmk

pnmk

pnmk

pppp

nnnn

mmmm

kkkk

Horizontal

HT

→

0000

0000

0000

00016 p

pppp

pppp

pppp

pppp

DC

HT

96

is shown in (5.11) where k-s are defined in [1]. HT of this predicted block, shown as TVR

in (5.12), can be efficiently calculated if equations in Table 5.5 are pre-calculated. TVR can

be calculated by using pre-calculated values as shown in Table 5.6.

The predicted block pattern of HD mode is shown in (5.13). HT of this predicted

block is shown in (5.14). Since this mode is similar to VR, we did not show its equations.

The predicted block pattern of VL mode is shown in (5.15). HT of this predicted block is

shown in (5.16). Since this mode is similar to VR, we did not show its equations. The

predicted block pattern of HUP mode is shown in (5.17) where k-s are defined in [1]. HT of

this predicted block, shown as THUP in (5.18), can be efficiently calculated if equations in

Table 5.7 are pre-calculated. THUP can be calculated by using pre-calculated values as

shown in Table 5.8.

In addition to the computation reduction achieved for HT of a 4x4 block, since a MB

is partitioned into 4x4 blocks for HT as shown in Figure 5.6, the proposed technique

significantly reduces amount of computations required for intra 16x16 and 8x8 mode

decisions by data reuse. For intra 16x16 vertical mode, the predicted pixels in the 4x4

predicted blocks 0, 2, 8, and 10 are the same as shown in (5.19) and HT of this block is

shown in (5.20). HT of the predicted block 0 can be reused for predicted blocks 2, 8, and 10

as well. The same is true for the other vertical predicted 4x4 blocks in the same column.

For intra 16x16 horizontal mode, the predicted pixels in the 4x4 predicted blocks 0, 1, 4,

and 5 are the same as shown in (5.21) and HT of this block is shown in (5.22). Therefore,

HT of the predicted block 0 can be reused for predicted blocks 1, 4, and 5 as well. The

same is true for the other horizontal predicted 4x4 blocks in the same row. For DC mode,

the predicted pixels in all the 4x4 predicted blocks are the same as shown in (5.23) and HT

of this block is shown in (5.24). Therefore, HT of the predicted block 0, shown in (5.24),

can be reused for all the other 4x4 DC predicted blocks.

97

=

srqp

rqpn

qpnm

pnmk

DDL

 (5.7)

=

s+2r-3q+4p-3n+2m-ks-2r+q-n+2m-ks+q-n-ks-q-n+k

s-2r+q-n+2m-k s+2r-q-4p+n-2m-ks-3q+3n-ks+q-n-k

s+q-n-ks-3q+3n-ks+2r+q-4p-n-2m+ks-2r-q-n+2m+k

s-q-n+ks+q-n-ks-2r-q-n+2m+ks+2r+3q+4p+3n+2m+k

TDDL

 (5.8)

=

kqrs

mkqr

nmkq

pnmk

DDR

 (5.9)

=

p-2n+3m-s-2r+3q-4kp+2n-m+s-2r+q-p-m+s-qp+m+s-q-

p-2n+m-s+2r-q p+2n-m-s+2r-q-4kp-3m+s+3q-p+m-s+q-

p-m+s-qp+3m-s-3qp-2n-m+s-2r-q+4kp+2n+m+s-2r-q-

p-m-s+qp+m-s+q-p-2n-m-s+2r+qp+2n+3m+s+2r+3q+4k

TDDR

 (5.10)

98

=

srqy

nmkx

tsrq

pnmk

VR

 (5.11)

=

t+p-y-xt-p+2r+2m-y-xt+p-2s+2n-y-x+2q-2kt-p+2s-2n+2r-2m+y-x+2q-2k

t+p-2s-2n+2r+2m-y+x-2q-2k t-p+2s+2n-y+x-2q-2kt+p-2r-2m+y+x-t-p+y+x-

t-p-2s+2n+2r-2m-y-x-2q+2kt+p+2s-2n-y-x-2q+2kt-p-2r+2m+y-x-t+p+y-x-

t-p-y+xt+p+2r-2m-y+xt-p-2s-2n-y+x+2q+2kt+p+2s+2n+2r+2m+y+x+2q+2k

TVR

 (5.12)

=

tsyx

rqts

mkrq

pnmk

HD

 (5.13)

=

p-n+y+x-p+n-y+2t-2r+2m-x-2s+2q-2kp-n-y-2t+2r-2m+x-2s+2q-2kp+n+y-x-

p-n+y-2r+x+2q-p+n-y-2t+2m-x+2s-2kp-n-y+2t-2m+x+2s-2kp+n+y+2r-x+2q-

p-n+y+2t+2m-x-2s-2kp+n-y+2r-x-2qp-n-y-2r+x-2qp+n+y-2t-2m+x-2s-2k

p-n+y-2t-2r-2m-x+2s+2q+2kp+n-y-xp-n-y+xp+n+y+2t+2r+2m+x+2s+2q+2k

THD

(5.14)

99

=

ytsr

xpnm

tsrq

pnmk

VL

 (5.15)

=

y+x-q-ky-x+2s+2n-q-ky+x-2t+2p-2r-q-k+2my-x+2t-2p+2s-2n+2r-q-k+2m

y-x+2t+2p-2s-2n+2r+q-2m-ky+x-2t-2p+2r+q-k+2m-y-x+2s+2n-q-ky+x-q-k

y+x+2t-2p-2s+2n+2r-q+2m-ky-x-2t+2p+2r-q+k+2m-y+x+2s-2n-q+ky-x-q+k

y-x-q+ky+x+2s-2n-q+ky-x-2t-2p-2r+q+k+2my+x+2t+2p+2s+2n+2r+q+k+2m

TVL

(5.16)

=

ssss

ssrq

rqpn

pnmk

HUP

 (5.17)

=

m-k2r-2p+m-2q+2n-k2r+2p-m+2s-2q+2n-km+2s-k

2r+m-2q-k2p+m-2n-k2p-m+2s+2n-k2r-m+2s+2q-k

2p-m-2n+k2r+m-2q-k2r-m+2s+2q-k2p+m+6s-2n+k

2r-2p-m-2q+k+2nm-km+2s-k2r+2p+m+6s+2q+k+2n

THUP

 (5.18)

100

Table 5.1 Pre-calculated Values for DDL Prediction Mode

Equations
Number of

Addition/Subtractions
Number of Shift

() pa 41 = 0 1

() nqa +=2 1 0

() nqa −=3 1 0

() () () ()nqnqnqa +=+++= 324 1 1

() () () ()nqnqnqa −=−+−= 325 1 1

() ()rma += 26 1 1

() ()rma −= 27 1 1

ska +=)8(1 0
ska −=)9(1 0

Total 8 5

Table 5.2 DDL Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Addition/Subtractions
Number of Shift

[] () () () ()86410,0 aaaaTDDL +++= 3 0

[] () () ()3971,0 aaaTDDL −+= 2 0

[] () ()282,0 aaTDDL −= 1 0

[] () ()393,0 aaTDDL −= 1 0

[] []1,00,1 TDDLTDDL = 0 0

[] () () () ()21861,1 aaaaTDDL −−+= 3 0

[] () ()952,1 aaTDDL += 1 0

[] () ()283,1 aaTDDL −= 1 0

[] []2,00,2 TDDLTDDL = 0 0

[] []2,11,2 TDDLTDDL = 0 0

[] () () () ()86212,2 aaaaTDDL +−−= 3 0

[] () () ()7393,2 aaaTDDL −−= 2 0

[] []3,00,3 TDDLTDDL = 0 0

[] []3,11,3 TDDLTDDL = 0 0

[] []3,22,3 TDDLTDDL = 0 0

[] () () () ()14683,3 aaaaTDDL −+−= 3 0
Total 20 0

101

Table 5.3 Pre-calculated Values for DDR Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() ka 41 = 0 1

() mqa +=2 1 0

() mqa −=3 1 0

() () () ()mqmqmqa +=+++= 324 1 1

() () () ()mqmqmqa −=−+−= 325 1 1

() ()rna += 26 1 1

() ()rna −= 27 1 1

spa +=)8(1 0
spa −=)9(1 0

Total 8 5

Table 5.4 DDR Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () () ()86410,0 aaaaTDDR +++= 3 0

[] () () ()9731,0 aaaTDDR −−= 2 0

[] () ()282,0 aaTDDR −= 1 0

[] () ()933,0 aaTDDR −= 1 0

[] []1,00,1 TDDRTDDR −= 1 0

[] () () () ()86211,1 aaaaTDDR −−+= 3 0

[] () ()952,1 aaTDDR += 1 0

[] () ()823,1 aaTDDR −= 1 0

[] []2,00,2 TDDRTDDR = 0 0

[] []2,11,2 TDDRTDRR −= 1 0

[] () () () ()86212,2 aaaaTDDR +−−= 3 0

[] () () ()9733,2 aaaTDDR −+= 2 0

[] []3,00,3 TDDRTDDR −= 1 0

[] []3,11,3 TDDRTDDR = 0 0

[] []3,22,3 TDDRTDDR −= 1 0

[] () () () ()86413,3 aaaaTDDR −+−= 3 0
Total 24 0

102

Table 5.5 Pre-calculated Values for VR Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() xya +=1 1 0

() xya −=2 1 0

() tpa +=3 1 0

() tpa −=4 1 0

() () ()315 aaa += 1 0

() () ()426 aaa += 1 0

() () ()317 aaa −= 1 0

() ()24)8(aaa −= 1 0

()nka += 2)9(1 1

()nka −= 2)10(1 1

()sqa += 2)11(1 1

()sqa −= 2)12(1 1

() ()119)13(aaa −= 1 0

() ()119)14(aaa += 1 0

() ()1210)15(aaa += 1 0

() ()1210)16(aaa −= 1 0

()rma += 2)17(1 1

()rma −= 2)18(1 1
Total 18 6

103

Table 5.6 VR Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () ()517140,0 aaaTVR ++= 2 0

[] () ()7151,0 aaTVR += 1 0

[] () ()1752,0 aaTVR −= 1 0

[] ()73,0 aTVR = 0 0

[] ()70,1 aTVR −= 1 0

[] () ()5171,1 aaTVR −= 1 0

[] () ()7152,1 aaTVR −= 1 0

[] () () ()517143,1 aaaTVR −−= 2 0

[] ()60,2 aTVR = 0 0

[] () ()8181,2 aaTVR −= 1 0

[] () ()1662,2 aaTVR += 1 0

[] () () ()818133,2 aaaTVR −−= 2 0

[] () () ()181380,3 aaaTVR ++= 2 0

[] () ()6161,3 aaTVR −= 1 0

[] () ()1882,3 aaTVR −= 1 0

[] ()63,3 aTVR −= 1 0
Total 18 0

Table 5.7 Pre-calculated Values for HUP Prediction Mode

Equations
Number of

Additions/Subtractions
Number of Shifts

() mka −=1 1 0

() mka +=2 1 0

() ()pna += 23 1 1

() ()pna −= 24 1 1

() ()rqa += 25 1 1

() ()rqa −= 26 1 1

() sa 27 = 0 1

() ssaa 647)8(=+= 1 1

() ()72)9(aaa += 1 0

() ()52)10(aaa += 1 0

() ()61)11(aaa += 1 0
Total 10 6

104

Table 5.8 HUP Mode Prediction Calculations Using Pre-calculated Values

Equations
Number of

Additions/Subtractions
Number of Shifts

[] () () ()83100,0 aaaTHUP ++= 2 0

[] () ()721,0 aaTHUP −= 1 0

[] ()12,0 aTHUP = 0 0

[] () ()4113,0 aaTHUP += 1 0

[] () () ()8320,1 aaaTHUP −+= 2 0

[] () ()591,1 aaTHUP −= 1 0

[] () ()612,1 aaTHUP −= 1 0

[] () ()413,1 aaTHUP += 1 0

[] []1,10,2 THUPTHUP = 0 0

[] () ()391,2 aaTHUP −= 1 0

[] () ()412,2 aaTHUP −= 1 0

[] []2,13,2 THUPTHUP = 0 0

[] () ()720,3 aaTHUP −= 1 0

[] () () ()73101,3 aaaTHUP −−= 2 0

[] () ()4112,3 aaTHUP −= 1 0

[] ()13,3 aTHUP = 0 0
Total 15 0

====

3210

3210

3210

3210

10820

hhhh

hhhh

hhhh

hhhh

BBBB

 (5.19)

() () () ()

 −+−+−−−−++++

====

0000

0000

0000

hhhh4hhhh4hhhh4hhhh4

HT(B10)HT(B8)HT(B2)HT(B0)

3210321032103210

 (5.20)

105

====

3333

2222

1111

0000

vvvv

vvvv

vvvv

vvvv

5410 BBBB (5.21)

()
()
()
()

−+−

+−−

−−+

+++

====

000vvvv4

000vvvv4

000vvvv4

000vvvv4

)5()4()1()0(

3210

3210

3210

3210

BHTBHTBHTBHT

 (5.22)

v0

0
v1

v2

v3

v4

v5

v6

v7

h0 h1 h2 h3 h4 h5 h6 h7

1

2 3

4

h8 h9 h10 h11 h12 h13 h14 h15

5

6 7

v8

8
v9

v10

v11

v12

v13

v14

v15

9

10 11

12 13

14 15

Figure 5.6 16x16 MB and its Neighboring Pixels

106

() 516

15...0

15

0
>>

++=

===

∑
=i

ii vhpwhere

pppp

pppp

pppp

pppp

BB

 (5.23)

 ()

===

0000

0000

0000

00016

)15(...0

p

BHTBHT (5.24)

Intra 16x16 mode decision algorithm also includes applying HT to 4x4 DC blocks

formed by DC coefficients of HT of each 4x4 block shown in Figure 5.6. We propose to

apply the same technique to 4x4 DC blocks as well. After HT is applied to current block

(C) and predicted block (P), a 4x4 DC block is formed by DC coefficients of HT of C and

a 4x4 DC block is formed by DC coefficients of HT of P as shown in (5.6). Then, HT is

applied to these 4x4 DC blocks and the results are subtracted. 4x4 DC blocks formed by

DC coefficients of HT of predicted blocks by intra modes have the same block patterns as

the HT of predicted blocks themselves. For example, 4x4 DC block formed by DC

coefficients of HT of predicted block by vertical mode is shown in (5.25) and its HT is

shown in (5.26). It has 4 nonzero elements same as the HT of predicted block itself.

Horizontal mode is similar to vertical mode. 4x4 DC block formed by DC coefficients of

HT of predicted block by horizontal mode is shown in (5.27) and its HT is shown in

(5.28). 4x4 DC block formed by DC coefficients of HT of predicted block by DC mode is

shown in (5.29) and its HT is shown in (5.30). It has 1 nonzero element same as the HT

of predicted block itself. Therefore, HT of 4x4 DC blocks for each intra 16x16 prediction

mode can be calculated with small amount of computation by using the proposed

technique.

107

Intra 8x8 Vertical, Horizontal and DC modes are very similar to corresponding

intra 16x16 modes except that no 4x4 DC block is formed. Therefore, similar

computation reductions are achieved for intra 8x8 Vertical, Horizontal and DC modes.

++++++++++++

++++++++++++

++++++++++++

++++++++++++

×

1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

4

 (5.25)

()

()
()
()
()1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

hhhhhhhhhhhhhhhh16

0000

0000

0000

−−−−++++−−−−+++=

++++−−−−−−−−+++=

−−−−−−−−+++++++=

+++++++++++++++=

=

T

Z

Y

X

where

TZYX

DCHT

(5.26)

++++++++++++

++++++++++++

++++++++++++

++++++++++++

×

15141312151413121514131215141312

111098111098111098111098

3210321032107654

3210321032103210

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

vvvvvvvvvvvvvvvv

4

(5.27)

(5.28)

()

−−−−++++−−−−+++

++++−−−−−−−−+++

−−−−−−−−+++++++

+++++++++++++++

×

=

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

000vvvvvvvvvvvvvvvv

16

1514131211109876543210

1514131211109876543210

1514131211109876543210

1514131211109876543210

DCHT

108

=

pppp

pppp

pppp

pppp

DC

16161616

16161616

16161616

16161616

 (5.29)

()

=

0000

0000

0000

000256 p

DCHT

 (5.30)

Plane mode is the most complex prediction mode and it constitutes almost 90% of

addition and 100% of shift operations performed by 16x16 and 8x8 intra predictions.

Plane mode first calculates a, b, c parameters from the neighboring pixels of the current

MB. It then calculates the predicted pixels using a, b, c as shown in (2.7.d). If the

following two small modifications are made in plane mode equations, HT of a block

predicted by plane mode can be calculated with a very small amount of computation;

Clip1 in (5.31) is removed (Clip1 is a function which clips the predicted pixel value

between 0 and 255) and right shift by 5 in (5.31) is changed to divide by 32. The new

plane mode equation shown in (5.32) is only used for calculating the cost of 16x16 and

8x8 plane modes for intra mode decision. If plane mode is selected by mode decision, the

actual predicted pixels will be calculated using a, b, and c.

[] () ()()()5167*7*1, >>+−+−+= ycxbaClipyxpred (5.31)

[] () ()() 32/167*7*, +−+−+= ycxbayxpred (5.32)

Modified plane mode equation shown in (5.32) simplifies HT of 16x16 plane mode

significantly. Equation (5.33) shows HT of 16x16 plane mode. Using the modified

equation shown in (5.32), we can calculate the cost of the plane mode by only using a, b,

c parameters without calculating actual predicted pixels. Therefore, the number of

additions and shifts performed by 16x16 and 8x8 intra prediction algorithms for intra

mode decision is reduced by approximately 80%. As shown in (5.33) for modified plane

109

mode, HT of predicted blocks 1,…,15 are exactly the same as HT of predicted block 0

except DC coefficient. Therefore, HT of predicted block 0 can be reused for all other

predicted 4x4 blocks.

In addition, proposed technique can be applied to 4x4 DC block formed by DC

coefficients of HT of predicted block by plane mode as well. 4x4 DC block formed by

DC coefficients of HT of predicted block by plane mode is shown in (5.34) and its HT is

shown in (5.35). As shown in (5.34) and (5.35), HT of plane mode as well as HT of its

DC block can be calculated easily once a, b, c parameters are calculated.

Residue calculations require more subtraction operations than the addition

operations required by intra prediction. The proposed technique also significantly reduces

the number of residue calculations in intra mode decision algorithm. The residue

calculation is only needed for the nonzero elements in the HT of a predicted block. As

shown in Figure 5.5, since HT of a 4x4 block predicted by DC prediction mode has only

1 nonzero element, only 1 residue calculation is needed and 15 subtraction operations are

avoided for this 4x4 block. Similarly, since HT of a 4x4 block predicted by vertical and

horizontal prediction modes have only 4 nonzero elements, 12 subtraction operations are

avoided for each 4x4 block for vertical and horizontal prediction modes. In addition, as

shown in (5.33), since HT of a 4x4 block predicted by modified plane mode has 5

nonzero elements, 11 subtraction operations are avoided for each 4x4 block.

110

++++++++++

++++++++++

++++++

++++++

×

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-256104c104b16a8b-016b-256c041b0416a8b-016b-256104c24b-16a8b-016b-256104c88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-256c04b04116a8b-016b-25640c40b16a8b-016b-25640c24b-16a8b-016b-25640c88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-25624c-104b16a8b-016b-25624c-40b16a8b-016b-25624c-24b-16a8b-016b-25624c-88b-16a

0008c-0008c-0008c-0008c-

0000000000000000

00016c-00016c-00016c-00016c-

8b-016b-25688c-104b16a8b-016b-25688c-40b16a8b-016b-25688c-24b-16a8b-016b-25688c-88b-16a

32

1

(5.33)

++++++++−++−

++++++++−++−

+−++−++−−+−−

+−++−++−−+−−

×

25610410416256104401625610424162561048816

2564010416256404016256402416256408816

2562410416256244016256242416256248816

2568810416256884016256882416256888816

32

1

cbacbacbacba

cbacbacbacba

cbacbacbacba

cbacbacbacba

 (5.34)

−

−

−−+++

00016

0000

00032

16032128448

c

c

bbcba

 (5.35)

111

We quantified the computation reductions achieved by the proposed technique for the

SATD based intra mode decision algorithm used in H.264 JM software encoder version

14.0 [17]. For 4x4 modes the computation amounts for a 4x4 block and for 16x16 and 8x8

modes the computation amounts for a 16x16 MB are shown in Table 5.9. The columns

labeled I show the amount of computation performed by the original SATD mode decision

and the columns labeled II show the amount of computation performed by the SATD mode

decision using the proposed technique. Since current block HT is common for both intra

16x16 and 4x4 mode decision, the results of the current block HT for intra 16x16 mode

decision are reused for intra 4x4 mode decision. The results show that the proposed

technique significantly reduces the computational complexity of SATD based intra 4x4,

16x16 and 8x8 mode decision algorithms.

We also quantified the impact of the proposed modifications for the 16x16 and 8x8

plane mode equations on the rate-distortion performance of the SATD based intra mode

decision algorithm used in H.264 JM reference software encoder version 14.0. Rate

distortion curves and average PSNR comparison of the original SATD mode decision and

the SATD mode decision using modified plane mode equations for several CIF size

benchmark video frames are shown in Figure 5.7 and Table 5.10. The proposed plane mode

equation modifications don’t affect the PSNR for Football, they increase the PSNR slightly

for Foreman and Mother&Daughter, and they decrease the PSNR slightly for other video

frames shown in Table 5.10. The average PSNR values shown in Table 5.10 are calculated

using the technique described in [26].

112

Table 5.9 Computation Reductions for Intra Prediction Modes

 Prediction Modes

Hadamard Transform Residue

Addition Shift Subtraction

I II I II I II

In
tr

a
4x

4

Vertical 64 8 0 4 16 4
Horizontal 64 8 0 4 16 4
DC 64 0 0 1 16 1
Diagonal down left 64 28 0 5 16 16
Diagonal down right 64 32 0 5 16 16
Vertical right 64 36 0 6 16 16
Horizontal down 64 36 0 6 16 16
Vertical left 64 36 0 6 16 16
Horizontal up 64 25 0 6 16 16
Total 576 209 0 43 144 105

In
tr

a
16

x1
6

Vertical 1088 40 16 36 256 52
Horizontal 1088 40 16 36 256 52
DC 1088 0 16 17 256 1
Plane 1088 3 16 26 256 69
Current block HT 0 1088 0 0 0 0
Total 4352 1171 64 115 1024 174

In
tr

a
8x

8

Vertical 256 16 0 8 64 16
Horizontal 256 16 0 8 64 16
DC 256 0 0 4 64 4
Plane 256 7 0 9 64 20
Current block HT 0 256 0 0 0 0
Total 1024 295 0 29 256 56

Table 5.10 Average PSNR (dB) Comparison of Original SATD Mode Decision and SATD

Mode Decision with Proposed Technique

VIDEO FRAME Original
(dB)

Proposed
Technique (dB)

Difference
(dB) MOBILE 30.638 30.634 -0.004

MOTHER&DAUGHTER 36.804 36.815 0.011

FOREMAN 35.279 35.303 0.024

FOOTBALL 31.980 31.980 0

SOCCER 32.461 32.448 -0.013

AKIYO 37.253 37.226 -0.027

113

2000 4000 6000 8000
25

30

35

40

Foreman Original

Foreman Proposed Tech.

Akiyo Original

Akiyo Proposed Tech.

M&D Original

M&D Proposed Tech.

BitRate(byte)

P
SN

R
(d

B
)

3000 8000 13000 18000 23000 28000

24

26

28

30

32

34

36

38

Mobile Original

Mobile Proposed Tech.

Soccer Original

Soccer Proposed Tech.

Football Original

Football Proposed Tech.

BitRate(byte)

P
S

N
R

(d
B

)

Figure 5.7 Rate Distortion Curves of Original SATD Mode Decision and SATD Mode

Decision with Proposed Technique

5.2 Proposed 16x16 Intra Mode Decision Hardware Architectures

We designed two different hardware architectures for H.264 16x16 intra mode

decision. The first hardware architecture, shown in Figure 5.8, implements the original

SATD intra mode decision algorithm used in H.264 JM software encoder. The second

114

hardware architecture, shown in Figure 5.9, includes the proposed energy reduction

technique.

H.264 16x16 intra mode decision hardware consists of two parts; the first part

generates predicted blocks by each prediction mode in parallel and the second part

calculates SATD cost for each prediction mode using the predicted blocks. The main

differences between two architectures are the residue operation and simplification of HT

because of fixed prediction block pattern of each intra mode. The first hardware

architecture first performs the residue operation and then performs HT. The second

hardware architecture, on the other hand, first performs HT and then performs residue

operation.

As shown in Figure 5.8, three local buffers are used to store the inputs to intra mode

decision hardware; 352x8 top neighboring buffer, 16x8 left neighboring buffer and 256x8

current block buffer. Horizontal predicted block (16x8), vertical predicted block (16x8),

DC predicted block (1x8), and plane predicted block (256x8) are used to store the predicted

blocks by the corresponding intra prediction modes. Residue block (256x8) is used to store

the difference between the current MB and the predicted MB. Top neighboring buffer,

plane predicted block, current block, and residue block are implemented as Block

SelectRAMs, and other buffers are implemented as Distributed SelectRAMs.

When a new MB arrives, the intra prediction module starts to calculate prediction

values for each mode in parallel. After intra prediction is finished, the mode decision

hardware starts to process each mode by subtracting predicted block from current block.

HT is applied to residue block and absolute values of resulting AC coefficients are added.

Then, HT is applied to the 4x4 DC block formed by DC coefficients and the resulting

coefficients are added. HT module in Figure 5.8 implements the fast HT algorithm

described in section 5.1. It has two pipeline stages to improve clock frequency, and it has

16 adders/subtractors. It finishes HT operations of a 4x4 block in 4 clock cycles.

As shown in Figure 5.9, the proposed hardware for SATD intra mode decision with

proposed energy reduction technique has the same intra prediction search hardware except

that the size of the buffer used for storing the predicted block by plane mode is reduced

from 256x8 to 3x8. Since this hardware calculates the SATD cost using only a, b, c

parameters, it stores only a, b, c parameters.

115

After intra prediction, HT is applied to predicted blocks by each prediction mode.

Since HT of horizontal, vertical, DC and plane prediction modes simplify significantly

using the proposed technique, HT module in Figure 5.9 is much simpler than HT module in

Figure 5.8. After HT, AC coefficients of predicted blocks by each prediction mode are

subtracted from corresponding AC coefficients of transformed current block. HT is applied

to DC coefficients of both current block and predicted blocks by each prediction mode

again. Then, DC coefficients of predicted blocks by each prediction mode are subtracted

from corresponding DC coefficients of current block. Finally, absolute values of AC and

DC coefficient differences are added to calculate SATD cost.

5.3 Energy Consumption Analysis

The energy consumptions of 16x16 intra mode decision hardware on a Xilinx Virtex

II FPGA are estimated using Xilinx XPower tool. In order to estimate its energy

consumption, timing simulation of the placed and routed netlist of 16x16 intra mode

decision hardware is done using Mentor Graphics ModelSim SE. Foreman, Akiyo and

Mother&Daughter frames are used as inputs for timing simulations and the signal activities

are stored in VCD files. These VCD files are used for estimating the energy consumption

of 16x16 intra mode decision hardware using Xilinx XPower tool.

The energy consumptions of 16x16 intra mode decision hardware implementations

on a Xilinx Virtex II FPGA at 25 MHz are shown in Table 5.11 for different video frames.

As shown in the table, the proposed energy reduction technique reduced the energy

consumption of 16x16 intra mode decision hardware up to 59.6%.

116

Figure 5.8 Proposed Hardware for Original Intra 16x16 Mode Decision

117

Figure 5.9 Proposed Hardware for Intra 16x16 Mode Decision with Proposed Technique

118

Table 5.11 Energy Consumption Reductions

 Computation Time (µs) Power (mW) Energy (µJ)

QP Org. Prop. ∆t Org. Prop Org. Prop. %

F
M

 28 15351 6332 9019 114.2 111.8 1753 708 59.6

35 15351 6332 9019 105.5 104.1 1620 659 59.3

42 15351 6332 9019 99.4 98.7 1526 625 59.0

A
K

 28 15351 6332 9019 101.7 102 1561 646 58.6

35 15351 6332 9019 96.4 98.1 1480 621 58.0

42 15351 6332 9019 92.8 94.9 1425 601 57.8

M
&

D
 28 15351 6332 9019 105 104.7 1612 663 58.9

35 15351 6332 9019 96.6 97.7 1483 619 58.3

42 15351 6332 9019 90.9 93.5 1395 592 57.6

119

6 CHAPTER VI

A NOVEL ENERGY REDUCTION TECHNIQUE FOR INTRA

PREDICTION WITH TEMPLATE MATCHING

H.264 intra prediction algorithm predicts the pixels in a MB using the pixels in the

available neighboring blocks. A 4x4 luma block consisting of the pixels a to p is shown in

Fig. 6.1. The pixels A to M belong to the neighboring blocks and are assumed to be already

encoded and reconstructed, and are therefore available in the encoder and decoder to

generate a prediction for the current MB.

 For the luminance (luma) component of a MB, a 16x16 predicted luma block is

formed by performing intra predictions for each 4x4 luma block in the MB and by

performing intra prediction for the 16x16 MB. There are 9 prediction modes for each 4x4

luma block and 4 prediction modes for a 16x16 luma block. 4x4 prediction modes are

generally selected for highly textured regions while 16x16 prediction modes are selected

for flat regions.

120

Figure 6.1 Intra Prediction with Template Matching

H.264 intra prediction algorithm has better compression efficiency than the intra

prediction algorithms used in previous video compression standards. However, it is not

well suited for processing complex textures at low bit rates. Therefore, several new intra

prediction algorithms such as bi-directional intra prediction [44] and intra prediction with

Template Matching (TM) [45, 46, 47] are proposed to improve H.264 intra prediction.

Template matching is used for performing image-based texture synthesis [48], where the

current pixel to be synthesized is generated by looking at a neighbourhood of pixels that are

already synthesized. It is later proposed for performing intra prediction.

121

 Fig. 6.1 illustrates intra prediction with TM. A template is formed by a group of

neighboring pixels on the top and to the left of the current 4x4 block (A, B, C, D, I, J, K, L,

M), and best matching candidate template (CT) is searched in the reconstructed search

window (SW) in the current frame based on minimum SAD criterion. The 4x4 candidate

prediction (CP) block adjacent to the best matching CT is assigned as the TM prediction for

the current block.

Intra prediction with TM has high computational complexity. Therefore, in this

thesis, we propose a novel technique for reducing the amount of computations performed

by intra prediction with TM, and therefore reducing the energy consumption of intra

prediction with TM hardware. This technique reduces the amount of computations by

reducing the amount of template search operations. For a 4x4 current block, the proposed

technique first calculates the predictions for 9 H.264 4x4 intra prediction modes and their

Sum of Absolute Difference (SAD) values. It, then, determines the minimum SAD value

among these 9 SAD values. If the minimum SAD value is less than a pre-defined SAD

threshold (ThSAD), it selects the prediction with minimum SAD value as the intra prediction

of the 4x4 current block.

 If the minimum SAD value is larger than ThSAD, then it performs TM search for the

current block. In order to increase the compression efficiency of intra prediction with TM,

N best matching CTs are saved while TM search is performed in the already coded and

reconstructed search window. After TM search is performed, SAD values of the CPs for

these N best matching CTs are calculated. If the SAD value of a CP is less than the

minimum SAD value of 9 H.264 4x4 intra prediction modes, it is selected as the intra

prediction of the 4x4 current block.

 The simulation results for several video sequences reconstructed by H.264 reference

software, JM 14.0 [17], showed that the proposed technique reduces the amount of template

search operations up to 41% with a small comparison overhead. For each 4x4 block, the

proposed technique requires one comparison with minimum SAD value of 9 H.264 4x4

intra prediction modes. The simulation results also showed that the proposed technique

does not change the PSNR for some video frames, but it decreases the PSNR slightly for

some video frames.

122

 We also designed a high performance 4x4 intra prediction with TM hardware

including the proposed technique. The proposed hardware is implemented in Verilog HDL.

Verilog RTL code is mapped to a Xilinx Virtex 6 FPGA. The FPGA implementation is

verified to work at 150 MHz with post place & route simulations. It is capable of

processing 53 HD (1280x720) frames per second. The proposed technique reduced the

energy consumption of this hardware on this FPGA up to 50%.

 Several hardware architectures for H.264 4x4 intra prediction algorithm are

proposed in the literature [8, 9, 24, 49]. However, a hardware architecture for 4x4 intra

prediction with TM is not reported in the literature.

6.1 Proposed Computation and Energy Reduction Technique

For a 4x4 current block, the proposed technique first calculates the predictions for 9

H.264 4x4 intra prediction modes. For each 4x4 intra prediction mode, it generates 16

predicted pixels using some or all of the neighboring pixels. Then, it calculates the SAD

values for each 4x4 intra prediction mode by substracting their predicted pixels from the

4x4 current block pixels. It compares these SAD values and determines the intra prediction

mode that has the minimum SAD value. If the minimum SAD value is less than the pre-

defined ThSAD, it does not perform TM search for this 4x4 current block, and it selects the

prediction with minimum SAD value as the intra prediction of the 4x4 current block.

If the minimum SAD value is larger than ThSAD, it performs TM search for the

current block. In order to increase the compression efficiency of intra prediction with TM,

N best matching CTs are saved while TM search is performed in the already coded and

reconstructed search window. After TM search is performed, SAD values of the CPs for

these N best matching CTs are calculated. If the SAD value of a CP is less than the

minimum SAD value of 9 H.264 4x4 intra prediction modes, it is selected as the intra

prediction of the 4x4 current block.

123

Figure 6.2 Different Size Templates and Search Windows

Table 6.1 PSNR Results (dB) of Different Size SWs and Templates

Frame Size
32x32 48x48 Diff. Diff.

4x4 8x8 4x4 8x8 4x4 8x8
ParkRun 1280x720 21.28 20.06 21.44 20.21 0.16 0.15
NMobCal 1280x720 24.45 23.28 24.69 23.50 0.24 0.22
T.Tennis 704x480 27.21 26.09 26.94 25.94 -0.27 -0.15
Susie 704x480 29.32 26.86 29.38 26.12 0.06 -0.74
Flower 704x480 24.07 22.56 24.09 22.40 0.02 -0.16
Akiyo 352x288 31.34 28.96 31.37 28.71 0.03 -0.25
MD 352x288 33.79 31.67 34.13 31.11 0.34 -0.56
Container 352x288 23.13 21.92 22.85 21.26 -0.28 -0.66

124

We determined the PSNR results obtained by using the different size templates and

SWs shown in Fig. 6.2 during TM search for several HD (1280x720), VGA (704x480) and

CIF (352x288) size video frames (one frame from each video sequence) reconstructed by

H.264 reference software JM 14.0. 32x32 SW has 528 4x4 CTs and 320 8x8 CTs, and

48x48 SW has 1680 4x4 CTs and 1344 8x8 CTs. As shown in Table 6.1, the simulation

results show that using 4x4 template gives better PSNR results than using 8x8 template in

both 32x32 and 48x48 SWs. The simulation results also show that, although 48x48 SW has

more CTs than 32x32 SW, using 4x4 and 8x8 templates in a 48x48 SW gives similar PSNR

results with using 4x4 and 8x8 templates in a 32x32 SW. Therefore, we decided using 4x4

template in a 32x32 SW.

As shown in Table 6.2, the simulation results for several video frames show that

better PSNR results are obtained with larger N values. However, computational complexity

significantly increases with larger N values.

In order to achieve more computation reduction with less PSNR loss, ThSAD should

be determined based on the following criteria.

a) ThSAD should separate the SAD values of H.264 4x4 intra predictions and

TM predictions (CPs) as much as possible.

b) The number of TM predictions (CPs) selected by intra mode decision when

ThSAD is not used and when ThSAD is used should be the same as much as possible.

We analyzed 9 HD (1280x720), VGA (704x480) and CIF (352x288) size video

frames (one frame from each video sequence) to determine ThSAD. The SAD values of

H.264 4x4 intra prediction modes selected by intra mode decision are distributed in the [0,

120] interval with the mean, µ = 65, and standard deviation, σ = 39. The SAD values of TM

predictions selected by intra mode decision are distributed in the [40, 170] interval with the

mean, µ = 85, and standard deviation, σ = 30.

125

Table 6.3 shows the total number of 4x4 blocks in a frame, the number of TM

predictions selected by intra mode decision when ThSAD is not used, and the number of TM

predictions selected by intra mode decision when ThSAD is used. The average PSNR

comparison of the H.264 4x4 intra prediction algorithm and the 4x4 intra prediction

algorithm with TM including the proposed technique for several HD, VGA and CIF size

video frames (one frame from each video sequence) for 4 CTs are shown in Tables 6.4 and

6.5. The proposed technique does not change the PSNR for some video frames, but it

decreases the PSNR slightly for some video frames. The average PSNR values shown in

Tables 6.1, 6.2, 6.4 and 6.5 are calculated using the technique described in [26].

As shown in Tables 6.4 and 6.5, using a large ThSAD value achieves more

computation reduction, but it causes more PSNR loss. Using a small ThSAD value causes

less PSNR loss, but it achieves less computation reduction.

The computation reductions achieved by the proposed technique for intra prediction

algorithm with TM for several HD, VGA and CIF size video frames (one frame from each

video sequence) for 4 CTs are shown in Table 6.6. As shown in Table 6.6, the amount of

reductions achieved in addition and comparison operations ranges from 7% to 56%. In this

table, the column Total Block shows the total number of blocks TM search is done.

Table 6.2 PSNR Results (dB) of Intra Prediction with TM

Frame
Intra

Intra w TM
(1 CT)

Intra w TM
 (2 CTs)

Intra w TM
 (4 CTs)

PSNR PSNR Diff. PSNR Diff. PSNR Diff.

H
D

 ParkRun 21.28 21.43 0.15 21.56 0.28 21.64 0.36

NMobCal 24.45 24.77 0.32 24.94 0.49 25.01 0.56

Ducks 27.57 27.87 0.30 28.02 0.44 28.11 0.54

V
G

A
 T.Tennis 27.21 27.66 0.46 27.98 0.77 27.95 0.75

MobCal 35.00 35.53 0.54 35.66 0.66 35.76 0.77

Flag 34.04 34.49 0.45 34.60 0.56 34.66 0.62

C
IF

 Akiyo 31.34 31.71 0.38 31.92 0.59 31.87 0.53

MD 33.79 33.96 0.16 34.01 0.22 34.08 0.29

Container 23.13 23.26 0.12 23.39 0.26 23.38 0.26

126

Table 6.3 Number of TM Predictions Selected when ThSAD Used

Frame
Total
block

TM
pred.

ThSAD = 40 ThSAD = 50 ThSAD = 60

Ducks 58832 6517
6441 6221 5929

% 98.83 95.46 90.98

ParkRun 58832 4573
4248 4236 4214

% 92.89 92.63 92.15

TableTennis 21932 2779
2743 2672 2547

% 98.7 96.15 91.65

Container 6320 662
538 525 499

% 81.27 79.31 75.38

Table 6.4 Average PSNR (dB) Comparison of the Proposed Technique for Small ThSAD

Frame
Intra

Intra w TM
(4 CTs)

Intra w TM
(4 CTs)

ThSAD = 40

Intra w TM
(4 CTs)

ThSAD = 50

Intra w TM
(4 CTs)

ThSAD = 60

PSNR PSNR Diff. PSNR Diff. PSNR Diff. PSNR Diff.

ParkRun 21.28 21.64 0.36 21.64 0.36 21.64 0.36 21.64 0.36

NewMobCal 24.45 25.01 0.56 25.01 0.56 25.01 0.56 25.01 0.56

Ducks 27.57 28.11 0.54 28.11 0.54 28.11 0.54 28.11 0.54

T.Tennis 27.21 27.95 0.75 27.95 0.75 27.95 0.75 27.95 0.75

MobCal 35.00 35.76 0.77 35.76 0.76 35.76 0.76 35.75 0.76

Flag 34.04 34.66 0.62 34.66 0.62 34.65 0.61 34.64 0.60

Akiyo 31.34 31.87 0.53 31.86 0.52 31.85 0.52 31.85 0.52

MD 33.79 34.08 0.29 34.07 0.28 34.06 0.27 34.05 0.26

Container 23.13 23.38 0.25 23.38 0.25 23.38 0.25 23.38 0.25

127

Table 6.5 Average PSNR (dB) Comparison of the Proposed Technique for Large ThSAD

Frame
Intra

Intra w TM
(4 CTs)

Intra w TM
(4 CTs)

ThSAD = 70

Intra w TM
(4 CTs)

ThSAD = 90

Intra w TM
(4 CTs)

ThSAD = 110

PSNR PSNR Diff. PSNR Diff. PSNR Diff. PSNR Diff.

ParkRun 21.28 21.64 0.36 21.56 0.28 21.40 0.12 21.34 0.06

NewMobCal 24.45 25.01 0.56 24.86 0.41 24.69 0.24 24.56 0.11

Ducks 27.57 28.11 0.54 28.01 0.44 27.79 0.22 27.67 0.10

T.Tennis 27.21 27.95 0.75 27.93 0.72 27.79 0.58 27.35 0.14

MobCal 35.00 35.76 0.77 35.65 0.66 35.47 0.47 35.16 0.16

Flag 34.04 34.66 0.62 34.54 0.50 34.31 0.27 34.09 0.05

Akiyo 31.34 31.87 0.53 31.75 0.41 31.63 0.29 31.42 0.08

MD 33.79 34.08 0.29 34.01 0.22 33.89 0.10 33.81 0.02

Container 23.13 23.38 0.25 23.30 0.17 23.21 0.08 23.13 0.00

128

Table 6.6 Computation Reductions for Intra Prediction with TM for Different ThSAD values

 Original ThSAD = 40 ThSAD = 50 ThSAD = 60

Frame
Total

Blocks
Total Operations

Blocks

Operations

%

Blocks

Operations
%

Blocks

Operations

%

Ducks 58832
Add/Sub 528076032

54770
36460512 7%

50848
71664384 14%

46670
109166112 21%

Comp. 31063296 2144736 7% 4215552 14% 6421536 21%

ParkRun 58832
Add/Sub 528076032

56682
19298400 4%

56119
24351888 50%

54620
37806912 70%

Comp. 31063296 1135200 4% 1432464 50% 2223936 70%

Table
Tennis

21932
Add/Sub 196861632

19846
18723936 10%

17520
39602112 20%

15133
61027824 31%

Comp. 11580096 1101408 10% 2329536 20% 3589872 31%

Container 6320
Add/Sub 56728320

4320
17952000 32%

3424
25994496 46%

2772
31846848 56%

Comp. 3336960 1056000 32% 1529088 46% 1873344 56%

129

Figure 6.3 Top Level Block Diagram of Proposed 4x4 Intra Prediction with Template Matching Hardware

130

Figure 6.4 Template Search PE Array and 16 Adder Tree

131

6.2 Proposed Intra Prediction with Template Matching Hardware

Top level block diagram of the proposed 4x4 intra prediction with TM hardware is

shown in Fig. 6.3. Top, left and reconstructed local neighboring buffers are used to store

the neighboring pixels in the previously coded and reconstructed neighboring blocks.

Search Window memory is used to store the pixels in the previously coded and

reconstructed search window in the current frame. These on-chip memories reduce the

required off-chip memory bandwidth.

 For a current 4x4 block, the proposed hardware calculates the predictions for 9

H.264 4x4 intra prediction modes using the neighboring pixels, and their SAD values.

Depending on the minimum SAD value of H.264 intra prediction modes, it performs TM

search to find the best matching 4 CTs in a [-32, 32] pixel search window. If TM search is

not performed, the H.264 4x4 intra prediction mode which has the minimum SAD value is

selected as the best prediction mode. If TM search is performed, then, it compares the SAD

values of 4 CPs with the minimum SAD value of H.264 intra prediction modes. The

prediction which has the minimum SAD value is selected as the best prediction mode.

 The architecture of Template Search PE Array (TSPEA) is shown in Fig. 6.4.

TSPEA latency is 8 clock cycles; 1 cycle for Addres Generator and Control Unit, 1 cycle

for synchronous read from memory and Rotator, 2 cycles for Adder Tree and 4 cycles for

Comparator. Control Unit generates the required address and control signals for TSPEA to

calculate the SAD values of CTs in 32x32 SW.

 There are 9x16 = 144 PEs in the TSPEA. The architecture of a PE is shown in Fig.

6.5. Each PE is composed of a comparator, two 2x1 multiplexers and an 8-bit subtractor.

The comparator and the multiplexers are used to send the larger pixel to the first input of

the subtractor and the smaller pixel to the second input of the subtractor. This ensures that

the result of the subtractor is always positive.

132

Figure 6.5 PE Architecture

144 PEs calculate the absolute differences in one clock cycle for 16 different CTs.

The outputs of 9 parallel PEs are connected to an adder tree which calculates sum of

absolute differences. The adder tree has 2 pipeline stages for faster operation. Even though

the SAD calculation for a block takes 2 clock cycles, after the first SAD calculation, the

throughput is 1 SAD calculation per clock cycle. The 32x32 SW has 528 CTs, and TSPEA

calculates the SAD values of 16 different CTs in 1 cycle. Therefore, calculation of SAD

values of 528 CTs takes 34 (528/16 + 1 = 34) clock cycles.

After PE array calculates the SAD values of 16 CTs, Comparator compares these 16

SAD values and determines the CT that has the minimum SAD value and the

corresponding CP. Then, PE array calculates the SAD values of the next 16 CTs in the

same 32x32 SW. The pixels of 16 CTs needed for calculating the SAD values of these first

16 CTs in SW are loaded from BRAMs into PE arrays. Data alignment for the PEs is

achieved by using a Rotator and 2 Splitters. Pixels in 16 different CTs and pixels in the

current template are connected to the 144 PEs by 2 Splitters.

133

Figure 6.6 SAD Calculation PE Array and Adder Tree

The architecture of SAD Calculation PE Array (SCPEA) is shown in Fig. 6.6.

SCPEA latency is 7 clock cycles; 1 cycle for Addres Generator and Control Unit, 1 cycle

for synchronous read from memory, 4 cycles for Adder Tree and 1 cycle for Comparator.

Control Unit also generates the required address and control signals to calculate the SAD

values of 9 H.264 4x4 intra predictions and 4 CPs. After the SAD values are calculated,

Comparator compares them and determines the prediction mode that has the minimum

SAD value. There are 4x4 = 16 PEs in the SCPEA. The architecture of a PE is shown in

Fig. 6.5.

134

 16 PEs calculate the absolute differences between the 4x4 current block and a 4x4

block predicted by a prediction mode in one clock cycle. The outputs of the 16 PEs are

connected to an adder tree. The adder tree has 4 pipeline stages for faster operation. Even

though the SAD calculation for a prediction mode takes 4 clock cycles, after the first SAD

calculation, the throughput is 1 SAD calculation per clock cycle. Therefore, calculating the

SAD values of 9 H.264 4x4 intra prediction modes takes 14 clock cycles.

After PE array calculates the SAD value of an intra prediction mode, it calculates the

SAD value of the next intra prediction mode. 16 pixels needed for calculating the SAD

value of a 4x4 block predicted by a prediction mode are loaded from 4x32 register files into

PE arrays. Data alignment for the PEs is achieved by using a Shifter and 2 Splitters.

The memory organization of 32x32 Search Window (SW) is shown in Fig. 6.7.

Horizontally and vertically adjacent pixels of 32x32 SW can be read with one clock cycle

latency using the proposed ladder-shaped SW data organization. Each address of a BRAM

contains four pixels. 8 dual-port BRAMs in the FPGA are used to store the 32x32 SW. In

Fig. 6.7, the numbers show the BRAM addresses containing the corresponding pixels in

SW. The complexity of read address generation logic for BRAMs and the complexity of

control logic for the Rotator, the Splitter and the multiplexers in the PEs are reduced by the

symmetric arrangement of 32x32 SW pixels in the BRAMs.

The proposed intra prediction with TM hardware architecture is implemented in

Verilog HDL. The Verilog RTL code is synthesized and mapped to a Xilinx

XC6VLX550T-2FF1760 FPGA using Xilinx ISE 11.5. The hardware implementation is

verified with post place & route simulations using Mentor Graphics ModelSim SE. The

FPGA implementation consumes 10678 LUTs and 5291 DFFs. In addition, 6144 bits on-

chip memory is used for storing 32x32 SW. These 6144 bits are stored in 8 dual port

BRAMs. 6656 bits on-chip memory is used for storing 352x8 top neighboring buffer, 16x8

left neighboring buffer, 256x8 reconstructed neighboring buffer and 13 Register Files.

These 6656 bits are stored in 2 RAMB36E1 and 16 RAMB18E1.

135

Figure 6.7 Memory Organization of 32x32 SW

The proposed hardware has 4 clock cycles initial latency for starting the intra

prediction due to neighboring pixels and current block loading. Calculating the predictions

for 9 H.264 4x4 intra prediction modes and their SAD values takes 17 clock cycles. TM

search and comparison of SADs take 34+7=41 clock cycles. Calculating the SADs for 4

CPs takes 9 clock cycles. The proposed hardware calculates the predictions for 9 H.264

intra prediction modes for the current 4x4 block and searches the best matching CTs for the

previous 4x4 block in parallel. Therefore, in worst case, it requires 34 + 7 + 9 = 50 clock

136

cycles. The proposed hardware can work at 150 MHz on the same FPGA after place &

route. Therefore, it is capable of processing 53 HD (1280x720) frames per second.

A frame from VGA size MobileCalander video predicted by H.264 4x4 intra

prediction modes and the same frame predicted by H.264 4x4 intra prediction modes with

TM including the proposed technique for 4 CTs with ThSAD = 40 are shown in Fig. 6.8.

6.3 Energy Consumption Analysis

The power consumption of the proposed 4x4 intra prediction with TM hardware on a

Xilinx Virtex 6 FPGA is estimated using Xilinx XPower Analyzer tool. In order to estimate

its power consumption, timing simulation of the placed and routed netlist of the proposed

hardware is done using Mentor Graphics ModelSim SE. VGA size Flag, MobileCalendar

and CIF size Foreman, Akiyo and Mother&Daughter video frames (one frame from each

video sequence) are used as input for timing simulations and the signal activities are stored

in VCD files. These VCD files are used for estimating the power consumption of the

proposed 4x4 intra prediction with TM hardware using Xilinx XPower Analyzer tool.

The energy consumptions of the proposed hardware implementation on a Xilinx

Virtex 6 FPGA at 50 MHz are shown in Tables 6.7, 6.8 and 6.9 for different ThSAD values.

As shown in the tables, the proposed technique reduced both total computation time and

power consumption of this hardware. The proposed technique reduced the energy

consumption of this hardware up to 50%.

137

a)

b)

Figure 6.8 a) Video Frame Predicted by H.264 4x4 Intra Prediction Modes and b) The

Same Frame Predicted by H.264 4x4 Intra Prediction Modes with TM Including Proposed

Technique

138

Table 6.7 Energy Consumption Reduction when ThSAD = 40

Frame Size

Total
Computation

Time (µs)
Power (mW) Energy (mJ)

Org. LE Org. LE Org. LE %

Flag 720x480 24921 17095 116 113 2895 1931 33.3

MobCal 720x480 24921 15588 104 106 2596 1658 36.1

Form. 352x288 7257 4563 115 123 831 560 32.7

Akiyo 352x288 7257 3977 109 107 788 427 45.8

M&D 352x288 7257 4398 108 111 783 489 37.6

Table 6.8 Energy Consumption Reduction when ThSAD = 50

Frame Size

Total
Computation

Time (µs)
Power (mW) Energy (mJ)

Org. LE Org. LE Org. LE %

Flag 720x480 24921 15655 116 109 2895 1702 41.2

MobCal 720x480 24921 15324 104 104 2596 1598 38.4

Form. 352x288 7257 4340 115 118 831 511 38.6

Akiyo 352x288 7257 3879 109 105 788 408 48.2
M&D

352x288 7257 4156 108 111 783 463 40.9

Table 6.9 Energy Consumption Reduction when ThSAD = 60

Frame Size

Total
Computation

Time (µs)
Power (mW) Energy (mJ)

Org. LE Org. LE Org. LE %

Flag 720x480 24921 14597 116 105 2895 1532 47.1

MobCal 720x480 24921 15055 104 103 2596 1554 40.1

Form. 352x288 7257 4123 115 113 831 466 44.0

Akiyo 352x288 7257 3793 109 103 788 391 50.4
M&D

352x288 7257 3965 108 107 783 424 45.8

139

7 CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed PECR technique for reducing the amount of computations

performed by H.264 intra prediction algorithm and therefore reducing the power

consumption of H.264 intra prediction hardware significantly without any PSNR and bit

rate loss. By exploiting the equality of the neighboring pixels, the proposed technique

reduced the amount of computations performed by 4x4 luminance, 16x16 luminance, and

8x8 chrominance prediction modes up to 60%, 28%, and 68% respectively with a small

comparison overhead. We also implemented an efficient 4x4 intra prediction hardware

including the proposed technique using Verilog HDL. We quantified the impact of the

proposed technique on the power consumption of this hardware on a Xilinx Virtex II FPGA

using Xilinx XPower, and it reduced the power consumption of this hardware up to 46%.

We also proposed PSCR technique for reducing the amount of computations

performed by H.264 intra prediction algorithm and therefore reducing the power

consumption of H.264 intra prediction hardware significantly. The proposed technique

reduced the amount of computations performed by 4x4 luminance, 16x16 luminance, and

8x8 chrominance prediction modes up to 68%, 39%, and 65% respectively with a small

140

comparison overhead. The proposed technique does not change the PSNR for some video

frames, it increases the PSNR slightly for some video frames and it decreases the PSNR

slightly for some video frames. We also implemented an efficient 4x4 intra prediction

hardware including the proposed technique using Verilog HDL. We quantified the impact

of the proposed technique on the power consumption of this hardware on a Xilinx Virtex II

FPGA using Xilinx XPower. The proposed technique reduced the power consumption of

this hardware up to 57%.

We, then, proposed to calculate the common prediction equations only once and to

use the results for the corresponding 4x4 intra modes, and to apply the PECR and PSCR

techniques for each intra prediction equation separately. By exploiting the equality and

similarity of the pixels used in prediction equations, the proposed PECR and PSCR

techniques reduced the amount of computations performed by 4x4 intra prediction modes

up to 78% and 89%, respectively, with a small comparison overhead. We also implemented

an efficient 4x4 intra prediction hardware including the proposed techniques using Verilog

HDL. We quantified the impact of the proposed techniques on the power consumption of

this hardware on a Xilinx Virtex II FPGA using Xilinx XPower. The proposed PECR and

PSCR techniques reduced the power consumption of this hardware up to 13.7% and 17.2%,

respectively. The proposed PECR technique does not affect the PSNR and bitrate. The

proposed PSCR technique increases the PSNR slightly for some videos frames and it

decreases the PSNR slightly for some videos frames.

We also proposed pixel equality and pixel similarity based techniques for reducing

the amount of computations performed by H.264 DBF algorithm, and therefore reducing

the energy consumption of H.264 DBF hardware. The proposed techniques reduced the

amount of addition and shift operations performed by H.264 DBF algorithm up to 52% and

67% respectively with a small comparison overhead. The pixel equality based technique

does not affect PSNR. The pixel similarity based technique does not affect the PSNR for

some video frames, but it decreases the PSNR slightly for some video frames. We also

implemented an efficient H.264 DBF hardware including the proposed techniques using

Verilog HDL. We quantified the impact of the proposed techniques on the energy

consumption of this hardware on a Xilinx Virtex4 FPGA using Xilinx XPower. The

141

proposed pixel equality and pixel similarity based techniques reduced the energy

consumption of this H.264 DBF hardware up to 35% and 39%, respectively.

We proposed a novel energy reduction technique for H.264 intra mode decision. The

proposed technique reduced the number of additions performed by SATD based 4x4,

16x16 and 8x8 intra mode decision algorithms used in H.264 joint model reference

software encoder by 46%, 43% and 42% respectively for a CIF size frame without any

PSNR loss. In addition, it avoids the calculation of intra 16x16 and intra 8x8 plane

prediction modes by slightly modifying SATD criterion used in H.264 JM reference

software encoder which slightly impacts the coding efficiency. It doesn’t affect the PSNR

for some videos, it increases the PSNR slightly for some videos and it decreases the PSNR

slightly for some videos. Since plane mode is the most computationally intensive 16x16

and 8x8 prediction mode, avoiding plane mode calculations reduced the computational

complexity of 16x16 and 8x8 intra prediction algorithm by 80%. We also implemented an

efficient H.264 16x16 intra mode decision hardware including the proposed technique

using Verilog HDL. We quantified the impact of the proposed technique on the energy

consumption of this hardware on a Xilinx Virtex II FPGA using Xilinx XPower. The

proposed technique reduced the energy consumption of this H.264 16x16 intra mode

decision hardware up to 59.6%.

We proposed a novel technique for reducing the amount of computations performed

by intra prediction with TM, and therefore reducing the energy consumption of intra

prediction with TM hardware. The proposed technique does not change the PSNR for

some video frames, but it decreases the PSNR slightly for some video frames. We also

designed and implemented a high performance 4x4 intra prediction with TM hardware

including the proposed technique using Verilog HDL, and mapped it to a Xilinx Virtex 6

FPGA. The FPGA implementation is capable of processing 53 HD (1280x720) frames per

second, and the proposed technique reduced its energy consumption up to 50%.

As future work, the proposed computational complexity and power reduction

techniques can be applied to other modules of an H.264 video encoder such as motion

estimation and to the modules of a High Efficiency Video Coding (HEVC), the emerging

international standard for video compression, video encoder. The impact of the proposed

142

computational complexity and power reduction techniques on the power consumptions of

ASIC implementations of the proposed hardware designs can be quantified.

143

8 BIBLIOGRAPHY

 [1] Joint Video Team of ITU-T VCEG and ISO/IEC MPEG, “Draft ITU-T Recommendation

and Final Draft International Standard of Joint Video Specification”, ITU-T Rec. H.264

and ISO/IEC 14496-10 AVC, May 2003.

[2] Thomas Wiegand and Heiko Schwarz Ralf Schäfer, "The emerging H.264/AVC standard,"

Heinrich Hertz Institute, Berlin, EBU Technical Review 2003.

[3] I. Richardson, “The H.264 Advanced Video Compression Standard”, Wiley, 2010.

[4] G. J. Sullivan, G. Bjøntegaard, and A. Luthra T. Wiegand, "Overview of the H.264/AVC

Video Coding Standard," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[5] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, "Adaptive Deblocking

Filter", IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, pp. 614-619,

July 2003.

[6] L. Benini, G. De Micheli and E. Macii, "Designing Low-power Circuits: Practical Recipes,"

IEEE Circuits and Systems Magazine, vol. 1, no. 1, pp. 6 – 25, 2001.

[7] E. Ross, "Beat the Heat", IEEE Spectrum, vol. 41, no. 5, p. 38–43, May 2004.

[8] Mustafa Parlak, Yusuf Adibelli and Ilker Hamzaoglu, "A Novel Computational Complexity

and Power Reduction Technique for H.264 Intra Prediction," IEEE Transactions on

Consumer Electronics, vol. 54, no. 4, pp. 2006-2014, November 2008.

144

[9] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "Pixel Similarity Based Computation

and Power Reduction Technique for H.264 Intra Prediction", IEEE Transactions on

Consumer Electronics, vol. 56, no. 2, pp. 1079-1087, May 2010.

[10] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "Pixel Similarity Based Computation

and Power Reduction Technique for H.264 Intra Prediction", International Conference on

Field Programmable Logic and Applications, pp. 171 - 174, Aug. 2010.

[11] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "Computation and Power Reduction

Techniques for H.264 Intra Prediction", Microprocessors and Microsystems: Embedded

Hardware Design, Volume 36, Issue 3, Pages 205–214, May 2012.

[12] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "A Computation and Power

Reduction Technique for H.264 Intra Prediction", Euromicro Conference on Digital System

Design, Pages: 753 – 760, September 2010.

[13] Yusuf Adibelli and Ilker Hamzaoglu, "A High Performance and Low Energy Hardware for

Intra Prediction with Template Matching", Submitted to an Int. Conference, 2012.

[14] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "Energy Reduction Techniques for

H.264 Deblocking Filter Hardware", IEEE Transactions on Consumer Electronics, vol. 57,

no. 3, August 2011.

[15] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "A Computation and Energy

Reduction Technique for H.264 Deblocking Filter Hardware", IEEE Signal Processing and

Communications Applications Conference, Pages: 210 – 213, April 2011.

[16] Yusuf Adibelli, Mustafa Parlak and Ilker Hamzaoglu, "A Novel Energy Reduction

Technique for H.264 Intra Mode Decision", IEEE International Conference on Image

Processing, September 2011.

[17] Joint Video Team of ITU-T VCEG and ISO/IEC MPEG. Joint Model Reference Software,

Version 14.0. [Online]. http://iphome.hhi.de/suehring/tml

[18] Feng Pan, Xiao Lin, S. Rahardja, K.P. Lim, Z.G. Li, Dajun Wu, Si Wu, "Fast Mode

Decision Algorithm for Intraprediction in H.264/AVC Video Coding," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 15, no. 7, p. 813 – 822, July 2005.

[19] I. Choi, J. Lee and B. Jeon, "Fast Coding Mode Selection With Rate-Distortion

145

Optimization for MPEG-4 Part-10 AVC/H.264," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 16, no. 12, p. 1557 – 1561, December 2006.

[20] An-Chao Tsai, A. Paul, Jai-Ching Wang and Jhing-Fa Wang, "Efficient Intra Prediction in

H.264 Based on Intensity Gradient Approach," IEEE International Symposium on Circuits

and Systems, pp. 3952 – 3955, May 2007.

[21] Ling-Jiao Pan and Yo-Sung Ho, "A Fast Mode Decision Algorithm for H.264/AVC Intra

Prediction," IEEE Workshop on Signal Processing Systems, pp. 704 – 709, October 2007.

[22] Yu-Wen Huang, B. Y. Hsieh, T. C. Chen and L. G. Chen, "Analysis, Fast Algorithm, and

VLSI Architecture Design for H.264/AVC Intra Frame Coder," IEEE Trans. on Circuits

and Systems for Video Technology, vol. 15, no. 3, pp 378 – 401, March 2005.

[23] Genhua Jin, Jin-Su Jung and Hyuk-Jae Lee, "An Efficient Pipelined Architecture for

H.264/AVC Intra Frame Processing," IEEE International Symposium on Circuits and

Systems, pp. 1605 – 1608, May 2007.

[24] Esra Sahin and Ilker Hamzaoglu, "An Efficient Hardware Architecture for H.264 Intra

Prediction Algorithm," Design, Automation and Test in Europe, April 2007.

[25] Ilker Hamzaoglu, Ozgur Tasdizen and Esra Sahin, "An Efficient H.264 Intra Frame Coder

System," IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 1903 - 1911,

November 2008.

[26] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” 13th

Video Coding Experts Group Meeting, 2001.

[27] Y. Lai, T. Liu, Y. Li, C. Lee, “Design of an intra predictor with data reuse for high-profile

H.264 applications”, IEEE International Symposium on Circuits and Systems, May 2009.

[28] Esra Sahin and Ilker Hamzaoglu, "An Efficient Intra Prediction Hardware Architecture for

H.264 Video Decoding", Euromicro Conference on Digital System Design, August 2007.

[29] C. H. Tseng, H. M. Wang and J. F. Yang, "Enhanced Intra-4x4 Mode Decision for

H.264/AVC Coders," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 8, pp. 1027-1032, August 2006.

[30] F.Pan; X. Lin; S.Rahardja,; K.P.Lim,; Li, Z.G.; D. Wu; Si Wu, “Fast mode decision

algorithm for intra prediction in H.264/AVC video coding”, IEEE Trans. on CAS for Video

146

Technology, July 2005.

[31] Choi, I.; Lee, J.; Jeon, B. “Fast Coding Mode Selection with Rate-Distortion Optimization

for MPEG-4 Part-10 AVC/H.264”, IEEE Trans. on CAS for Video Technology, vol. 16, no.

12, Dec. 2006.

[32] An-Chao Tsai, Paul, A., Jai-Ching Wang, Jhing-Fa Wang, “Efficient Intra Prediction in

H.264 Based on Intensity Gradient Approach”, IEEE ISCAS, May 2007.

[33] Changsung Kim and C. C. J. Kuo, "Feature-Based Intra-/InterCoding Mode Selection for

H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,

no. 4, pp. 441 - 453, April 2007.

[34] Jia-Ching Wang, Jhing-Fa Wang, Jar-Ferr Yang and Jang-Ting Chen, "A Fast Mode

Decision Algorithm and Its VLSI Design for H.264/AVC Intra-Prediction," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 17, no. 10, pp. 1414 -

1422 , October 2007.

[35] H.-M. Wang, C.-H. Tseng, and J.-F. Yang, "Computation Reduction for Intra 4x4 Mode

Decision with SATD Criterion in H.264/AVC," IET Signal Processing, vol. 1, no. 2, pp.

121 - 127, September 2007.

[36] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, "Adaptive Deblocking

Filter", IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, pp. 614-619,

July 2003.

[37] Mustafa Parlak and Ilker Hamzaoglu, "Low Power H.264 Deblocking Filter Hardware

Implementations", IEEE Trans. on Consumer Electronics, vol. 54, no. 2, May 2008.

[38] Y. Huang, T. Chen, B. Hsieh, T. Wang, T. Chang, L. Chen, “Architecture design for

deblocking filter in H.264/JVT/AVC”, IEEE International Conference on Multimedia and

Expo, July 2003.

[39] H. Lin, J. Yang, B. Liu, J. Yang, “Efficient deblocking filter architecture for H.264 video

coders”, IEEE International Symposium on Circuits and Systems, May 2006.

[40] Y-K. Lai, L-F. Chen, W-C. Chiou, “A Memory Interleaving and Interlacing Architecture

for Deblocking Filter in H.264/AVC”, IEEE Trans. on Consumer Electronics, vol. 56, no.

4, November 2010.

147

[41] G. Khurana, A.A. Kassim, T.P. Chua, M.B. Mi, “A pipelined hardware implementation of

in-loop deblocking filter in H.264/AVC”, IEEE Trans. on Consumer Electronics, May

2006.

[42] K. Xu, C.-S.Choy, “A Five-Stage Pipeline, 204 Cycles/MB, Single-Port SRAM-Based

Deblocking Filter for H.264/AVC”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 18, no. 3, March 2008.

[43] J. Lou, A. Jagmohan, D. He, L. Lu, M.-T. Sun, “H.264 Deblocking Speedup”, IEEE Trans.

on Circuits and Systems for Video Technology, vol. 19, no. 8, August 2009.

[44] Yan Ye and M. Karczewicz, “Improved H.264 intra coding based on bi-directional intra

prediction, directional transform, and adaptive coefficient scanning,” IEEE International

Conference on Image Processing, 2008.

[45] T. K. Tan, C. S. Boon, and Y. Suzuki, “Intra prediction by template matching,” IEEE

International Conference on Image Processing, 2006.

[46] C. Lan, J. Xu, F. Wu, G Shi “Intra frame coding with template matching prediction and

adaptive transform”, IEEE International Conference on Image Processing, 2010.

[47] T.K. Tan, C.S. Boon, and Y. Suzuki, “Intra prediction by averaged template matching

predictors,” IEEE Consumer Communications and Networking Conference, Jan. 2007.

[48] A.A. Efros and T.K. Leung, “Texture synthesis by non-parametric sampling,” International

Conference on Computer Vision, 1999.

[49] L. V. Agostini, S. Bampi, “FPGA Based Architectures for H. 264/AVC Video Compression

Standard”, International Conference on Field Programmable Logic and Applications, Aug.

2006.

