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Tek Makinali Cizelgeleme Problemlerinde Riske MaruzjBen
Enkiigiklenmesi
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Tez Danismanlari: KeremiBbul, Nilay Noyan Bilbul
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cizelgeleme; riske maruz deger; olasiliksal kisit;ahpsogramlama; senaryo ayrisimi;
kesi yaratma, eslenik sabitlestirme; paralel programnala

Ozet

Cizelgeleme literaturtiniin buyuk bir cogunlu@unt verinin dnceden bilindigi belir-
lenimci problemlere odaklanir. Bu varsayim, problem pateierindeki degiskenlik se-
viyesinin diistk oldugu durumlar icin mantikli olabilancak degiskenlik seviyesi arttikca
olusabilecek kotl sonuclari engellemek icin betiligin modele dahil edilmesi buyik
onem tasimaktadir. Bu tezde, belirsiz problem pararegtieeren tek makinali cizelgele-
me problemleri incelenmektedir. Rassal bir performarsitiine (drnegin tamamlanma
suresi, agirhkh tamamlanma siresi, agirlikli gee& siresi) iliskin bir olasiliksal kisit
tanimlanarak riskten kacinan genel bir rassal programlaemdeli dnerilmektedir. Bu
modelin hedefi, rassal performans olgutune iliskidlid@r given seviyesindeki riske
maruz degeri (VaR) enkiciikleyen, statik ve kesirgrigeyen bir gorev isleme sirasi bul-
maktir. Bu calismada eniyi VaR degeriicin siki Ust ltesenirlar bulabilmek amaciyla La-
grange gevsetmesini temel alan bir ayristirma straielenmektedir. Lagrange eslenigi
problemini cozmek icin sabitlestiriimis bir kesi y@ima algoritmasi gelistirilmistir. Ayrica,
onerilen modelin ve ¢coziim yontemlerinin 6neminstgrmek amaciyla, t¢ rassal perfor-
mans ol¢utl kullanarak sayisal analiz yapiimistir.
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Abstract

The vast majority of the machine scheduling literature g@suon deterministic prob-
lems in which all data is known with certainty a priori. Thigybe a reasonable assump-
tion when the variability in the problem parameters is lowowever, as variability in
the parameters increases incorporating this uncertaxptycély into a scheduling model
is essential to mitigate the resulting adverse effects.his thesis, we consider single-
machine scheduling problems in the presence of uncertainigm parameters. We im-
pose a probabilistic constraint on the random performaneasnre of interest (such as
the total completion time, total weighted completion tiragd total weighted tardiness),
and introduce a generic risk-averse stochastic programmmivdel. In particular, the ob-
jective of the proposed model is to find a non-preemptivecsjalb processing sequence
that minimizes the value-at-risk (VaR) of the random perfance measure at a specified
confidence level. In this study, we propose a Lagrangiarxaélan based decomposi-
tion strategy to obtain tight lower and upper bounds for théneal VaR. In order to
solve the Lagrangian dual problem we provide a stabilizédyeneration algorithm. We
also present an extensive computational study on threetsdl@erformance measures
to demonstrate the effectiveness of our solution methodsttze value of the proposed
model.
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Chapter 1

Introduction

In the scheduling literature, many objectives are propdsedifferent production envi-
ronments. Among all of them, one of the most common objestiggo minimize the
total completion times (TCT) of jobs at hand. This objecierild be extended by as-
signing unit weights to jobs where the weights would repnesige jobs’ importance or
urgency. As a result, in an optimal job sequence, the jobs gher weights will more
likely to be processed at earlier stages. Such an objedicalied the minimization of
the total weighted completion time (TWCT). In the singleatime scheduling literature,
both of these objectives are considered as easy problem® dleir special structures.
A more difficult problem has the total weighted tardiness (IT)Wbjective which is a due
date related performance measure in make-to-order emegnts. The goal is to find a
job (order) processing sequence in order to minimize ttegd tatst incurred due to missed
due dates. For a given job, the cost is directly proportitm#ie associated tardiness. The
unit tardiness cost (weight) may either be associated Wwetperceived penalty due to a
loss of customer goodwill or may represent actual contedgignalties. The interested
reader is referred to Sen et al. (2003) for a recent surveli®topic.

In the traditional single-machine problems described aball processing times, re-
lease dates, due dates, and weights are known in advanceeakzéiro with certainty.
However, in many practical settings the exact values of arseeeral of these parameter
types may not be available at the time the dispatcher detesra job processing se-
guence. In particular, possible machine breakdowns, Marsetup times, inconsistency
of the worker performance, or changes in tool quality masohice uncertainty into the
processing times. The uncertainty in the processing tinagalb is resolved at the time of
the job completion. The models developed in this thesis eagelmeralized to incorporate



randomness into all parameters. However, from a practimial pf view it is reasonable
to presume that a due date is quoted as a result of a mutuainagne with the customer,
and the unit tardiness weight associated with a customdsaskaown based on either
the internal priority of the customer or the contractuakggnent. Therefore, in our com-
putational experiments the due dates and the unit weigatdeterministic. Furthermore,
we assume that all jobs are ready to be released at time zenoseGuently, we focus
on the uncertainty in the processing times which leads temairn completion times and
tardiness values. Our objective is to determine a riskse/ixed job processing sequence
at time zero that hedges against the uncertainty in the psougtimes. In the stochas-
tic scheduling terminology (see Pinedo (2008)), we comstuinon-preemptive static list
policy.

Traditional models for decision making under uncertaingfirte optimality criteria
based on expected values and disregard variability inh@rehe system. Following this
mainstream risk-neutral approach, most of the classioghsistic scheduling puts a lot
of effort into analyzing the expected performance by asagrthiat uncertain parameters
such as processing times follow specific distributions. Baedo (2008) for an excellent
overview of conventional stochastic scheduling. Howevariability typically implies a
deterioration in performance, and risk-neutral models prayide solutions that perform
poorly under certain realizations of the random data. Gapjuhe effect of variabil-
ity can be accomplished by incorporating the appropriaie measures into the model
that reflect the preferences of the decision maker. Sevetatia to select risk measures
have been discussed in the literature (see, e.g., OgryecehRaszczyhski (1999, 2002);
Artzner et al. (1999)). Considering the wide range of ciétethere is no universally ac-
cepted single risk measure appropriate for all decisionimgadontexts. In this study, we
consider the VaR measure which is a very popular and widgliegprisk measure in the
finance literature. For the studies related to VaR we reféiheéochapter by Larsen et al.
(2002). In our context, we focus on either the TCT, or the TW&@The TWT as the ran-
dom outcome associated with a fixed job processing sequetexted at time zero. The
goal is to specify the smallest possible upper bound on theomm performance measure
that will be exceeded with at most a pre-specified small gridiya Here, the selected
upper bound is the VaR of the random performance measure atetsired probability
level, and we minimize VaR. The concept of VaR is closelyteglao probabilistic con-
straints. Stochastic programming models with probakdlisbnstraints were introduced
by Charnes et al. (1958) and have been employed successfallyariety of fields. The
interested reader can refer to Prékopa (1995) and Derdcf2806) for reviews and a



comprehensive list of references. Our proposed approaohirguitive and practical way
of modeling a service level requirement for the performaneasure under the stochastic
setup and leads to a novel risk-averse stochastic prognagnmodel. To the best of our
knowledge, this is a first in the machine scheduling literatu

It is well known that models incorporating VaR exhibit a noonvex structure even
if the underlying deterministic problem is convex. The @rg solution methods primar-
ily deal with VaR integrated into a linear program (LP). Thtie decision variables are
continuous, and VaR is introduced on a random outcome esguless a linear function of
the decision variables. Larsen et al. (2002) provide a vewkthe algorithms available
for solving such problems. Note that these studies are giyeoncerned with portfolio
optimization problems. Larsen et al. (2002) also introdweeheuristic algorithms which
solve a series of problems involving a related risk measnovk as conditional-value-
at-risk (CVaR). In contrast to VaR, the problem of minimgi@VaR can be formulated
as an LP if the uncertainty is represented by a set of scenanal the proposed heuris-
tics use LP techniques iteratively. However, in our stuayuhderlying problem involves
sequencing decisions that can only be expressed by emglbyiary variables; and there-
fore, even minimizing CVaR is hard. Consequently, the psagcsolution methods do not
apply in our case.

We characterize the randomness associated with the uimcpai@meters by a finite
set of scenarios, where a scenario represents a jointagahzf all random parameters.
It is important to point out that the scenario approach atloa to generate data from any
distribution and, for instance, to model the correlatiorthed random processing times
among different jobs by considering their joint realizagso In this sense, a scenario-
based approach is more general than assuming specifibdigiris. On the down side,
the computational complexity of solving the problem is elgsaffected by the number of
scenarios. There are only a few studies utilizing a scedAzag®d approach for machine
scheduling problems. For example, Gutjahr et al. (1999)mie the expected TWT
with stochastic processing times and propose a stochastic-and-bound technique,
where a sampling approach is embedded into their boundivenses. Alternatively, other
existing scenario-based studies develop robust optiizatodels in order to optimize
the worst-case performance over all scenarios. Such awasstanalysis does not require
the probabilities of the scenarios. The sum of completiores is employed in Daniels
and Kouvelis (1995); Yang and Yu (2002), and the weighted sticompletion times is
considered by de Farias et al. (2010), while Kasperski (R8@&ises on the maximum
lateness as the random performance criterion. One or $@fe¢he robustness measures



known as the maximum deviation from optimality, the maximuatative deviation from
optimality, and the maximum value over all scenarios arernporated in these papers.
Except de Farias et al. (2010), all these studies designadized algorithms for the ro-
bustness measure and random performance criterion oégttede Farias et al. (2010)
identify a family of valid inequalities to strengthen thexad-integer formulation of their
problem. Furthermore, Alouloua and Croce (2008) provideiss# complexity results in
the domain of robust scheduling. In contrast to robust agugtes adopting a conserva-
tive worst-case view, we define our optimality criterion &sn VaR which is a quantile
of the random outcome at a specified probability level. Thatve utilize probabilistic
information and develop a risk-averse stochastic progrengmodel alternative to exist-
ing robust optimization models. Note that setting the rezgflprobability level to exactly
one, subsumes the robust optimization problem of miningine maximum performance
measure over all scenarios. However, when the requiredaprlitly level is specified as
a < 1, we minimize the maximum performance measure over a subseenarios with
an aggregate probability of at least Our risk-averse model identifies the optimal subset
of scenarios with the specified minimum aggregate prolighédvel and minimizes the
maximum performance measure over this subset. Thus, isssdenservative than the
robustness approach which considers all scenarios.

The major contribution of this study is to develop a riskiaeemodel that is novel in
machine scheduling. We analyze the behavior of the proposetel in comparison to
that of the risk-neutral model and provide insights on thpant of the risk preference.
Furthermore, in all papers on robust scheduling mentiobegdathe corresponding de-
terministic single-machine problems are polynomiallyable. In our study, the TCT
and TWCT objectives are polynomially solvable too. Howettee single-machine TWT
problem is strongly\VP-hard (Lenstra et al. (1977)), and incorporating VaR posies-a
tional computational difficulties.

Not limited to VaR, stochastic programming models are galheknown to be com-
putationally challenging. This can be partially attribiite the potentially large number
of scenario-dependent variables and constraints. Vadeasmposition based solution
methods have been proposed to deal with such large scaleapreg For example, the
L-shaped method proposed by Van Slyke and Wets (1969) is elywapplied Benders-
decomposition approach to solve the two-stage linear agichprogramming problems
with the expected recourse functions for the case of a finiability space. Such L-
shaped algorithms are based on a cutting plane algorithererthe cuts are constructed
using the dual information of the second-stage problemscésted with each scenario.



However, when the second-stage problems involve integehlas, the standard decom-
position methods utilizing the linear programming duatignnot be applied. Introducing
integer variables into linear stochastic programs furtivenplicates solving these models.

In the stochastic programming literature, the studiesfti@ts on developing solution
methods for such integer programs mainly consider the tagesframework. The inte-
ger L-shaped decomposition algorithm proposed by Laportel@auveaux (1993) is the
first one that uses a decomposition method for stochastgrgmas with integer decisions
in the second-stage. It utilizes a branch-and-cut schentteeimaster problem and it is
proposed only for the case of pure binary first-stage vamblCarge and Tind (1998)
generalize the integer L-shaped algorithm for the modeth wiixed-integer first- and
second-stage variables. They use general duality the@ypmximate the second-stage
value function in the space of the first-stage variables dotdio non-linear cuts. How-
ever, there is no practical method for solving the resultiragster problem as emphasized
in Ahmed et al. (2004).

Alternatively, Carge and Schultz (1999) use the scenagordgosition approach of
Rockafellar and Wets (1991) and develop a branch-and-balgatithm based on the
Lagrangian relaxation of non-anticipativity. Recentlyistsolution approach has been
adapted to two-stage stochastic integer programs incatipgrrisk measures such as ex-
cess probabilities (Schultz and Tiedemann, 2003) and C\&RUltz and Tiedemann,
2006). Inthis thesis, we adapt their Lagrangian-relaxeb@sed decomposition approach,
which is originally developed for two-stage models, to angke-stage stochastic integer
programming model. For a detailed discussion on variousraglgns for stochastic inte-
ger programming we refer the reader to Birge and Louveaud () Xlein Haneveld and
van der Vlerk (1999), and Louveaux and Schultz (2003). Ireotd solve the Lagrangian
dual problem, we propose a cut generation algorithm whiantsanced with dual sta-
bilization methods to achieve faster convergence. We diineuparallel programming
techniques in order to improve the performance of our algori We note that our pro-
posed solution method is not limited to machine schedulirtgbuld be applied to a wide
variety of problems.

In the next chapter, we formally define the risk-averse saleglproblems and present
their mathematical programming formulations. In Chaptew8 introduce our solution
strategy and discuss the implementation details of theqsegbcut-generation algorithm.
Computational results are presented in Chapter 4, and welumin Chapter 5 with
further research directions.



Chapter 2

Modeling Value-at-Risk

In this section, we first present the underlying determinisbdel of the stochastic single-
machine scheduling problem that we are focusing on. Thewliseeiss how to model the
uncertainty inherent in the system and develop our risksgvetochastic programming
model.

2.1 Underlying Deterministic Single Machine Scheduling
Model

A machine scheduling problem can be considered as a tweemBnization problem.
In the first phase, a feasible job processing sequence isndatd for each machine
involved, and then in the second phase the optimal start angbletion times are com-
puted for fixed job processing sequences. The difficult coatbrial structure of machine
scheduling problems stems from the first phase, while thengephase - also referred to
as theoptimal timing problem is a simple optimization problem for many important ma-
chine scheduling problems. On a single machine, the optimaig problem is trivial for
regular objectives, and it can often be solved by a low-opdérnomial time algorithm or
as a linear programming problem for non-regular objecti&sce our focus is on regular
objectives, we will not require custom optimal timing algloms in our work.

For single-machine scheduling problems, four frequenglydualternate deterministic
formulations appear in the literature (see Keha et al. (P008isjunctive (DF), time-
indexed (TIF), linear ordering (LOF), and the assignment positional date formula-
tions (APDF). TIF has a tight LP relaxation and is the besteoder among these four
formulations if the processing times are small (Keha et2000)). TIF, however, can-
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not be adapted to our stochastic setting directly, becdusters the sequence from the
completion times represented by binary decision variabRecall that our goal is to
find a non-preemptive static job processing sequence atzZgre That is, the decisions
are independent of the random realizations of data, anéftiver, relying on completion
time information that is contingent on the random proceagsimes (and random release
dates if applicable) is not appropriate to construct asjab processing sequence. Our
preliminary results indicate that DF is outperformed by L&t APDF in terms of com-
putational time. This observation is also supported by #tersive computational study
presented in Keha et al. (2009). Thus, among the common fations only LOF and
APDF are viable options for our proposed risk-averse modielthis study, we work
with both of these formulations in order to exploit theinstiural properties for different
objective functions.

We define the set of jobs to be processedvVas= {1,...,n}, wheren denotes the
number of jobs. Associated with each jpbe N are several parameters: a processing
timep;, a due datel;, and a tardiness cost or a completion time penalty per umé ti;
depending on the objective function used. In the APDF foatioh presented next, the
binary variabler;; takes the value 1 if jolj is assigned to positiok in the sequence,
and is set to zero otherwise. Assuming zero release dateseandnistic single-machine
scheduling problem, described BY f(x) following the common three field notation of
Graham et al. (1979), is formulated below:

min  f(x)
subjectto Y =1, Vj € N, (2.1)
keN
d =1, Vk € N, (2.2)
JEN
2 € {0,1} Vj,k € N. (2.3)

The constraints (2.1)-(2.2) ensure that jpls placed to exactly one position and the
positionk is used exactly by a single job. Constraints (2.3) are thegnatlity restrictions.
If we are only interested in the TCT, we can express the albgfiinction as:

= (n—k+ D, (2.4)

jeN JEN k=1

where(; is the completion time of jolh. Notice that, for other objective functions such



as TWCT or TWT we must know the individu@l;'s. This requires additional constraints
and variables which are discussed in Keha et al. (2009).

The LOF of single machine scheduling problems uses a binamated,;, which
takes the value 1, if job precedes joly in the processing sequence, and is zero otherwise.
By convention, we se;; = 1 for all j € N. The formulation is presented below:

min  f(4)
subjectto 4,; =1, Vie N (2.5)
Ok + 0pj = 1, 1<j<k<n, (2.6)
S+ 0m+0; <2, Vi kleN: j#k k#L1#7 (27)
d;r € {0,1} Vi, ke N. (2.8)

Constraints (2.6) ensure that for each pair of jgplandk either job; precedes joli or
vice versa. Constraints (2.7) represent the transitieiirements for a linear ordering of
the jobs. In other words, they guarantee that for any trigigbs ;, &, [, if job j precedes
job k and jobk precedes jol then job; precedes jold. Constraints (2.8) are the binary
variable restrictions required for the sequencing dengiolhe completion time of job
j is the sum of the processing times of all of its predecesSprs: >, _\ dx;px, (recall
thatd;; = 1 by convention). Thus, the LOF for minimizing TWCT on a singh@chine
IS stated as:

min g w;C;

jEN

subjectto (2.5} (2.8).

The tardinesq; of job j is expressed b¥; = max(0,C; — d;). Due to its structure, in
order to model due date related performance measures, weeehe following set of
constraints:

T, > C; — d, VjeN (2.9)
T, >0 Vj € N. (2.10)

The LOF for minimizing TWT can now be stated as:

min g w;T5

JEN

8



subjectto (2.5} (2.10)

In the remainder of the thesis, we will use the APDF in ordeddoribe our risk-averse
model and our solution approach. Note that the discussitoa/general and applies to
both APDF and LOF. When necessary, the modifications to usevi®also be provided.

2.2 Risk-Averse Stochastic Programming Model

In our setting, the actual values of the processing timesatecertain at the time we
determine the job processing sequence, and the procesgsieg ¢an be represented by
random variables. This implies that the completion tirt¥s:) and the tardiness values
T (x) associated with a sequence are also random variablestlseycare functions of the
random processing times. In this case, comparing altenaatdidate sequences requires
comparing their respective randoffic) values. We propose a risk-averse approach which
evaluates a sequence with respect to a certain quantile distribution of the associated
randomf(x). Let T and¢; denote the randorfi(z) and the random processing time of
job 5 € N, respectively. The random variableis a random outcome associated with a
sequence: € {0,1}"*". Using the expression in (2.4), we can represgiis a function

of the decision vectat € {0, 1}"*" for the TCT objective as follows:

Y= (n—k+1)§u. (2.11)

JEN k=1

Similarly, using the decision vectdre {0, 1}"*", the random TWT is expressed as:

T =) w;max (Z ExOr; — dj, o) : (2.12)
j=1 k=1

We intend to model the risk associated with the variabilityh@ random outcom& by
introducing the following probabilistic constraint:

P(Y<0)>a, (2.13)

wherea is a specified large probability such @90 or 0.95. Heref denotes an upper
bound on thef(x) that is exceeded with at most a small probabilityl of «. If @ = 1,
T < 0 holds almost surely. As discussed in more depth in Chaptaich a probabilistic



constraint is intuitive and allows us to model a service lleequirement for thef (x)
under the stochastic setup. We refert@s the risk parameter which reflects the level
of risk-aversion of the decision maker. Clearly, incregsirresults in allowing a higher
value of the upper bouné. We propose not to specify the value bfs an input, but
consider it as a decision variable with the purpose of idg@nty the sequence with the
smallest possible value @éfgiven the risk aversion of the decision maker. Thus, in our
model we minimizef for a specified parameter, which is equivalent to minimizing
the a-quantile of the randonf(x). The a-quantile has a special name in risk theory as
presented in the next definition.

Definition 1 Let X be a random variable. The-quantile
inf{n e R: Fx(n) > a}

is called the Value at Risk (VaR) at the confidence leveind denoted by VaRX),
a € (0,1].

Figure 2.1 visualizes the concept of VaR associated withhdhdom TWT using an in-
stance from our computational study.

0]

o 500 1,000 VvaR_ (Y) 2,500 3,000 3,500 4,000 4,500 5,000
]

Figure 2.1: The VaR(Y) associated with the best feasible sequence obtained for-an i
stance from our computational study.

The probabilistic constraint (2.13) can equivalently berfolated as a constraint on
the VaR of the randonf(x):
VaR,(T) < 6. (2.14)

In other words, by considering the proposed probabiligiitstraint (2.13) we specify the
VaR as the risk measure on the rand¢(), and minimizingd corresponds to seeking
the sequence with the smallest possible VaR value for afsgeai value.

10



A model with a probabilistic constraint similar to that in13) with randomness on
the left hand side was first studied by de Panne and Popp (E9@BKataoka (1963).
Kataoka introduces a transportation type model and Van ded”and Popp present a diet
(cattle feed) optimization model with a single probabidisbnstraint. In these studies, the
random outcome of interest is a linear function of the deaisiector, and in both studies
the solution methods are specific to random coefficients svjthint normal distribution.
In contrast, the random outcomein our work is not a linear function of the decision
vector as evident from (2.12), and we do not assume that i lsgecific distribution.

We characterize the random processing times by a finite sstesfarios denoted by
S, where a scenario represents a joint realization of thegsing times of all jobs. To
develop our stochastic programming formulation, previpugroduced parameters and
variables are augmented with scenario indices and a pidigalgictor 7 is added:

7. probability of scenaria, s € S.

pj: processing time of jop under scenarie, s € S.
Cs5: completion time of joly under scenarie, s € S.
T7: tardiness of joly under scenarie, s € S.

Then, using APDF we formulate the problem of minimizing theRVin the single
machine scheduling problem as follows:

min 6 (2.15)
subjectto > aj =1, Vj e N, (2.16)
keN
> =1, Vk € N, (2.17)
JEN
f(x)—0< [0 Vs €S, (2.18)
Y mp<1-aq, (2.19)
seS
B* € {0,1}, Vs € S, (2.20)
z;, € {0, 1}, Vi, k € N, (2.21)
O <0 < 0yp. (2.22)

We emphasize that the constraints (2.16), (2.17) and (Z22he model above are iden-
tical to the constraints (2.1)-(2.3). That is, the sequagcdiecisions are independent of
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the uncertainty. The constraints (2.18)-(2.20) represémd probabilistic constraint in
(2.14). The parametefi’ . stands for a valid upper bound gti(x) for any sequence
under scenaria. This parameters guarantees that the binary varidable set tol by
the corresponding constraint (2.19)fif(x) exceeds the threshold valden scenarios.
Constraint (2.19) mandates that the probability of exaegthe threshold valuéfor the
random outcome is no more than- «.. For the validity of the formulation (2.16)-(2.22),
we must ensure thdf . is no smaller than the maximum possilfféz) under scenarie.

In order to obtain a reasonably tight formulation, we sogtphocessing times under sce-
nario s in non-increasing order and denote tftle largest processing time under scenario
s by Pl Then, the maximum possible completion time of tik job in the sequence,
k € N, under scenarig is computed aé?fk} = Zj’zlpfﬂ. Next, the due dates and the unit
tardiness or processing weights are assigned to the caorpléhes in non-increasing
and non-decreasing order, respectively. A standard pserwiterchange argument (not
necessarily adjacent) demonstrates that the resulting iBV&i upper bound on the TWT
of any job processing sequence under scenariimilar bounds can easily be computed
for the other objectives of interest as well.

The final constraint (2.22) is incorporated in order to inyarthe convergence of our
proposed algorithm in Section 3.4.7. White,z could be set to the VaR of any feasible
sequence of jobs, in the absence of a véalig, one can simply use in its place. The
LOF for minimizing VaR is the same as (2.15)-(2.22) once§2.12.17) and (2.21) are
replaced by their counterparts (2.5)-(2.8). In order tewulalte the resulting job tardiness
values, the tardiness constrains (2.9)-(2.10) should Ip&adtied for every scenario and
appended to the formulation above. At an optimal solutignmay be strictly larger than
max{C5 — d;, 0} for some scenarie € S because the tardiness values are not associated
with positive cost coefficients in the objective. Obvioyshe preserve optimality by
setting?’? = max{C? — d;,0}.

Uncertainty in the due dates and/or the unit tardiness argsging costs may be in-
corporated in our formulation in a straightforward mannerdplacing the parametets
andw; by d$ andw; while calculating thef*(x). This modification does not affect the
number of variables and constraints. However, if the reletges are not known in ad-
vance, then the completion time expression must be replacadet of constraints which
is adapted from the deterministic formulation in Nemhawset Savelsbergh (1992):

Cy=ridi+ Y pOu+os—1+ > i, VijeEN.

{k : ri<re, k#j} {k:ri>ri}
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Notice that the constraints above are for LOF. In the reneziiod the thesis, we refer to
the formulation (2.15)-(2.22) as VaRx).
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Chapter 3

Solution Methods

As discussed in Chapter 1, several decomposition basetisoiuethods have been of-
fered to solve stochastic programming models but mainlyttier two-stage stochastic
integer programs. Among these existing methods, we utitieeone proposed by Carge
and Schultz (1999) for the stochastic models with mixedget first and second-stage
variables. They consider a scenario decomposition appraad develop a branch-and-
bound algorithm based on the Lagrangian relaxation of miicipativity. We adapt their
approach to obtain a Lagrangian relaxation based decotigpo® obtain tight lower and
upper bounds for the optimal objective value of our singégs stochastic integer pro-
gramming model. In particular, we consider a split-vamafolrmulation which is essen-
tially based on the idea of creating copies of variables &ed telaxing the constraints
that force all these variables to be equal. This idea has @mduced in combina-
torial optimization as variable splitting by Jornsten £t(&4985). In studies that focus
on two-stage models (Carge and Schultz, 1999; Schultz adéfiann, 2003), the non-
anticipativity conditions state that the first-stage diecishould not depend on the sce-
nario which will prevail in the second stage. In our singlage setting they guarantee
that the static job sequence decisions should not depenkeoscenario. We note that
our proposed solution method is not limited to the machimedaling problem of inter-
est. To the best of our knowledge, considering such a vargtiltting based Lagrangian
relaxation algorithm for minimizing VaR is the first in thédrature.

In the following sections, we will present this Lagrangiataxation based decompo-
sition strategy. Then, we will present a method to provideanand lower bounds on the
optimal VaR measure which is used as an initialization tosmlution approach. Next,
we will discuss our solution methods for the Lagrangian peots, and finally introduce
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the stabilizectut-generation algorithnto solve the Lagrangian dual problem.

3.1 Scenario Decomposition Using Lagrangian Relaxation

In order to carry out the decomposition, we create copiehefvariabled), z;, and
d;k, Vj, k € N, for each scenario. Accordingl§,is replaced by* in constraints (2.18),
the constraints (2.16), (2.17) and (2.21) are replicateddch scenario, and the following
non-anticipativity constraints are appended to the foatioih (2.16)-(2.22):

5]
(1 —ahaf, => w3 Vi ke N (3.1)
s=2

o' = 6° Vs € S,s# 1. (3.2)

Note that the non-anticipativity constraints (3.1) ared/abcause the variables;, Vj, k €
N, are binary. The objective teréhin (2.15) is replaced by the equivalent expression
Y ses 0% based on (3.2) any _, 7° = 1. In addition, note that

(1—a)= Zﬂ's(l — ), (3.3)

and the term(1 — «) on the right hand side of (2.19) is substituted accordingiize
resulting model is presented below.

min g T°0°

seS

subjectto Y af, =1, VieN,seS
keN
> oat =1, VkeN,se S
JEN
fx) —0° < fo..05° Vs €S,
YIRS S
ses ses
p*e0,1, Vs €8S,
T3 €0,1, Vi ke N,se S

O <0° <0yg,
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5]
(1—7ag, = Y wxsy, Vj k€N,

o' = 6° Vs e S, s # 1.

Notice that this model is exactly the same as (2.15)-(2.2@) td the appended nonan-
ticipativity constraints. The Lagrangian(\, u, w) is then obtained by dualizing the
constraint (2.19) by a non-negative multiplier and the constraints (3.1) and (3.2) by

unrestricted multipliers,;;,, Vj,k € N, andy®, s =2,...,]S|, respectively:
5]
L\ p,u Z,u 91)4—)\27?8(68—14—04)
ses
a (3.4)
DR RIPRERNELIEY)
jEN keEN

or in a more compact form:

L\ p,u ZWSGS—FAZW —1+4a) —l—Z,uWﬂ—ZZZuijS %, (3.5)

ses ses ses JEN kEN seS
where
S|
ph==> "1, (3.6)
s=2
H = [(71’1 —1) 7% m ... 7T|S‘:| , and (3.7)

H’ represents theth component of the vectal defined in (3.7). As a result, the La-
grangian decomposes for each scenario:

L\ pf,u) = (7 4+ p)0° + A\ (B° — 1+ ) + Z Z wip H x5y, (3.8)

JEN kEN

L\ pou) =Y L'\ ', u (3.9)

seS

Note thatu! is only defined for notational convenience and is not a corapbof u =

[w? . ],
The analysis above provides us wjt$i-many minimization problems, and for fixed
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A, i, u, the Lagrangian subproblems are defined as:

D(\, p, u) = min ZLS (N 1’ u (3.10)

]
=B, seS

Here,D(\, u, u) is called the dual function. Our goal is to find the maximunuesthat
D can take which we achieve by solving the Lagrangian duallprob

Jnax - DO\, ) = max ZD (A i w), (3.11)
where
D\ p'u) = min L'\ p"u) (3.12)
subjectto Y %, =1, Vj € N, (3.13)
keN
> oat =1, Vk € N, (3.14)
JEN
fs(ws) —0 S frflaxﬂs7 (315)
B € {0,1}, (3.16)
z;, € {0, 1}, Vi, k € N, (3.17)
Orp <0 < 0yp. (3.18)

Note that the dual function is non-differentiable and namsth. Therefore, we have
to employ methods from nondifferentiable optimization nd@r to solve the Lagrangian
dual problem.

To formulate this problem using LOF, one must replaceith 6 and substitute con-
straints (3.13)-(3.14) with the replicated versions ofitheunterparts described in (2.5)-
(2.7). Unfortunately, the structure of the Lagrangian sabfems (3.12)-(3.18) formu-
lated using either APDF or LOF do not seem amenable to anezffisolution procedure.
Therefore, we will be tackling the subproblems using angetgprogramming solver as
described in Section 3.3.
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3.2 Bounding the Value-at-Risk

As discussed earlier, in order to improve the quality of augons, we impose a lower
and an upper bound aif. Notice that adding more constraints to our subproblems re-
duces the feasible region. Within a more restricted feagifjion, the optimal solution
of the new subproblem will be greater or equal to the optirkitson of the original sub-
problem. In return, the optimal objective function valugloé Lagrangian dual problem
will be greater than or equal to the original Lagrangian gwablem’s objective function
value. This means that by adding boundsfénwe can actually improve the quality of
our solutions. Below, we provide a method to generate tiglnis for the optimal VaR
value as a preprocessing method.

The relation of stochastic dominance is one of the fundaateoihcepts to compare
random variables (Mann and Whitney (1947); Lehmann (1936Ntroduces a preorder
in the space of real random variables. We refer to Muller armya& (2002) for a de-
tailed and comprehensive discussion on stochastic doménaatations. In a stochastic
dominance based approach, random variables are comparadbnt-wise compari-
son of some performance functions constructed from thstridution functions. In this
study, we utilize the first-order stochastic dominance (JF&bich considers the cumula-
tive distribution function itself as the performance fuoat Let F'x and Fy denote the
distribution functions of the random variabl&@sandY’, respectively. The FSD relation
betweenX andY is defined as below:

Definition 2 A random variableX dominates another random variabl€ in the first
order; that is, X is stochastically larger thaiy’, if

Fx(n) < Fy(n) forall neR. (3.19)

This ordering is denoted h¥ = Y.

It is easy to see that by the definition of the FSD relation wesha
[X = Y} = [VaRa(X) > VaR,(Y) forall0 <o <1]. (3.20)

We leverage on this fundamental relation between the cascéfyaR and FSD in order
to obtain a lower bound on the optimal objective value of VAR). We consider a
finite probability space where the sample space is givefby {wi,...,wg} with
corresponding probabilities,, . .., my|. Lety; = Y (w;), ¢ € S, andz; = X (w;), i € S,
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denote the realizations of the random variablesnd X, respectively. In our study,
we are interested in the random performance measure of dedskng problem. In
particular, the realizations of the random variableare obtained by solving a single-
machine problem independently for each scenario. On thex btind, the random variable
X denotes the random performance measure associated witptihel sequence of the
problem VaR{ (x). Next, we state formally that VaRY") is a lower bound on the optimal
VaR obtained by solving VaR{z) for any given fixed.

Proposition 1 LetY represent a random variable, where the realizatid(w;) is equal
to the objective value associated with the sequence thatmzies a predetermined ob-
jective under scenarig i € S. Furthermore, the random variabl® denotes the random
performance measure associated with the optimal sequehoéthe problem VaRHx).
Then, VaR(Y') < VaR,(X) forall 0 < o < 1.

Proof. X (w;) is the performance measure associated with the sequéno®ler scenario
i. Sincex* is a feasible sequence for the problem of minimizing theqrerhnce measure
under scenario, we haveX (w;) > Y (w;) forall i € S. It trivially follows that P(X <
n) < P(Y < n)forallnp € R, ie., X dominatesY in the first-order. Consequently,
VaR,(Y) < VaR,(X)forall0 < o <1by(3.20).m

Note that the random variablé does not have a special interpretation in the context
of our problem. It only serves the purpose of obtaining adMakver bound on the optimal
objective function value of our problem.

Calculating the lower bound in Proposition 1 could be perfed in O(|S|nlogn)
time for the TCT and TWCT objectives by sorting the jobs in S&st Processing Time
(SPT) and Weighted Shortest Processing Time (WSPT) ordespectively. For total
tardiness, a pseudo-polynomial time algorithm by Lawl&7(@) could be employed. On
the other hand, for TWT this lower bounding schem#&/i®-hard since it requires solving
|S| instances of the deterministic TWT problem. Although a rdyn this issue would
be constructing a lower bound on the optimal TWT under eaemaio, we prefered
solving the scheduling problems to optimality. This is doeite presence of a very fast
algorithm for the single-machine TWT problem proposed byaka et al. (2009)

Findingd, 5 is easier than obtaininty 5 since any feasible job sequence could be used
to compute an upper bound. To this end, we employ the optiatplences of the deter-
ministic single scenario problems. For each sequence,dhes\at-Risk associated with
the random performance measure is computed and the smallestover.S| sequences
is set as the initial upper bound érandé®, s € S.
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3.3 Solving the Lagrangian Subproblems

We start our discussion by assuming thai; = oc. We differentiate between three
cases in our solution approach for (3.12)-(3.18) dependmtie value of the expression
w® + 75 If p® < —x®, then the objective function coefficient of the non-negatiariable
0¢ is negative in (3.8), and the subproblem is unbounded. @ikerif u* > —7° then we
can determine the optimal solution by analyzing the dichmytthat results from fixings*

to zero or one:

pP=1—= L\ p’u)= Z Z ujp H25), + (p° + 7°)0p + Aar?®, (3.21)
JEN kEN

B =0— L\ u) =) Y upH )+ (' +7°)0° + Ma—1)7°.  (3.22)
jEN keN

The last two expressions in (3.21) and the final expressi¢B.22) are constant terms.
Observe that if x* + 7°) > 0 andg® = 1, then the optimal value of* is 6 = 6,5,
and (3.8) is reduced to (3.21). In this case, the Lagrangibpreblem is arassignment
problem(AP) which minimizes the first termin (3.21) subject to (3,13.14), and (3.17).
The optimal job processing sequenegp for this case is then obtained by any standard
assignment algorithm, such as the famblusigarian algorithmand the optimal objective
value is denoted as

D\, 1w, 5° = 1) = zap + (u° 4+ 7°)01p + Aar?, (3.23)

wherez,p is the optimal objective value of the assignment problemterisitively, if
LOF is used the subproblem for* + =) > 0 and3®* = 1 reduces to dinear ordering
problem(LOP). Unlike the polynomial time AP, LOP is known to WéP-hard (Rafael
and Reinelt (2011)). Nevertheless, LOP could be considesédasy” when compared to
directly solving the Lagrangian subproblems.

Unfortunately, if 5° = 0 then there is a trade-off between the direct cost of the as-
signmentz?® (or linear orderingd®) expressed by the first term in (3.22) and the cost
(u® + 7°)0°, where6” is set asnax(0.p, f°(x*)) due to the structure of the constraints
(3.15), (3.18), and becauseappears with a positive coefficient in the objective. Fipall
once we relax our initial assumption and 8gk < oo, we immediately notice that the
feasible region of the Lagrangian subproblems shrink. dloee, feasibility also becomes
an issue. In the next section, we will use these observaitiomigier to compute the opti-

20



mal solution of subproblems analytically rather than tamgkthese subproblems using an
integer programming solver.

3.3.1 Preprocessing

Depending on the preferred objective function, tacklingghbproblems using an integer
programming solver may take extreme amounts of time. Thezebur primary strategy
is to avoid solving subproblems as integer programs for sspeeial cases where the
optimal objective function value could be easily computed.

Our first observation is regarding the feasibility of thegudiblem for the casg® = 0.
Remember thatin Section 3.2, we computed the minimum plessinnder each scenario
s, call it f2. . Now that we havef?. at hand, we can compare it with tife . If

2w > Ous, thenp® = 0 cannot be a feasible solution since even the minimum p@ssibl
f#(x) exceeds the upper bound. Therefore, we camfix= 1 and solve AP or LOP to
get the optimal sequence and the objective function valwichl that the tightef 5 is,
the more likely that this routine will eliminate subproblem

A second observation is fé¥ having a zero coefficient in (3.8), i.e’ + x* = 0. In
this case, the trade-off described abovegor= 0 disappears. Notice that the constant
termin (3.22) causes® = 0 to be in the optimal solution unless it is not feasible due to
0y 5. The optimal job sequence and the rest of the objective imetill be determined
again by solving an AP or a LOP.

Finally, we compare the cost of a sequenge,, .\ u;xH°z;, for two candidate se-
quences. First one is the,» which is the optimal solution of AP. The other candidate
x;, IS the sequence wherg€(x;;,) = f:.,. If the difference between the cost of the
sequencer,p andx; ;, is 0, then we may claim that? ; is the optimal solution of the
subproblem. Once the sequence is known, it is trivial to asenphe other components of
the solution, as it was the case before. Similar to aboveQF Iis being usedg 4 » should
be substituted with thé; o of the LOP.

Notice that the coefficient of depends on the scenario index only throudh. Ob-
serve thatH' = 7' — 1 < 0 andH*® = 7* > ( for s > 2. Therefore, the optimal job
sequence obtained from AP or LOP will be the same in scenari®. For these sce-
narios, we simply minimizé _,_\ >, . v ujxz;x and then multiply the objective function
value with H®. As a result, solving two instances of AP or LOP at a singletten suf-
fices. In Figure 3.1, the percentage of subproblems thatodwedthrough the described

procedures are displayed. The figure is created using théges 10 representative in-
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stances. Here, Case 1, 2 and 3 represent the procedurebegsdyove in the order of

Case 3 (8%)

Case 4 (45%)

Figure 3.1: Percentages of subproblems that are solved tisnproprocessing proce-
dures and by solving mixed integer programs.

explanation. Case 4, on the other hand, represents theahémrs which require mixed
integer programs to be solved. It is notable that more #téh of the subproblems could
be solved during the preprocessing stage.

3.3.2 A Polynomially Solvable Case for TCT

If we remove theé); g andd; 5, then for the TCT objective the subproblems turn out to be
polynomial under APDF. Remember that fot = 1 the problem is already polynomial.
For 5 = 0, we will use the closed form of TCT in (2.4) and plug it into43) which
becomes:

L\ p’u | 5 =0)

_ZZquH A VA (ZZ n—k-+1)px ]k> + Ma—1)7®

JEN keEN JEN keEN

= Z Z Uiy, + Mo —1)7°

JEN kEN

where
ujp = uH® + (p° + 7°)(n — k + 1)p;

Ignoring the constant part, the problem becomes another Wéhwvis again polynomially
solvable. We compare the objective function values of twaesg@® = 1 and5® = 0

where the minimum becomes the optimal solution of the sutdpr. Note that we can
still put a positive lower bound o’ not greater thamin,cs 5., resulting in improved

in?
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results. Nevertheless, removing the boundgoim Lagrangian dual problem resulted in
worse outcomes than the lower bound described in SectionT®&refore, we preferred
solving mixed integer programs.

3.3.3 Solving Subproblems as Mixed Integer Programs

If the preprocessing procedure cannot solve a subproblenhawe to solve it as a mixed
integer program. In this section, we pick the best formatagifor TCT, TWCT, and TWT
objectives and provide the necessary modifications to }43.38).

VaR-TCT: Our preliminary computational experience sugggkshat the APDF for-
mulation is superior to LOF when the objective function iSTT®eplacingf*(x*®) with
(2.4) in (3.15), and without the need of additional constisiwe are able to model the
VaR-TCT problem.

VaR-TWCT: Due to the job-dependent unit costs we need additional constraints
to express TWCT in APDF. On the other hand, using linear andevariables one can
simply express TWCT as:

D owiCi=Y wip Yy b (3.24)
JEN JEN keN
Oncef*(x*) in (3.15) is replaced with the expression above, and suiltisiif (3.13)-(3.14)
with their counterparts in LOF, the model is complete.

VaR-TWT: Unfortunately, TWT cannot be expressed in closgdhfusing either the
assignment or the linear ordering variables. As a resultegaire additional constraints
to model tardiness as described in Chapter 2. We prefer wskgsince our preliminary
studies suggested that the computational performancettisr vehen compared to the
performance of subproblems formulated with APDF. For catgriess, we present the
Lagrangian subproblem formulated using LOF below:

min  L*(\, p, u) (3.25)
subjectto 47, =1, Vj € N, (3.26)
Yt on =1, 1<j<k<n, (3.27)
05 + 05 + 65 < 2, Vi, k,le N : j#k k#1, 1+#j, (3.28)
C=> " pidi Vj € N, (3.29)
keN
;> C5 —dy, Vj e N, (3.30)
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T3 >0, Vj € N, (3.31)

> wiTy =6 < T35 (3.32)
jEN

B € {0,1}, (3.33)
55 € {0,1}, Vi ke N. (3.34)
Orp < 0° < 0Oyp. (3.35)

We provide the pseudocode of our proposed method for sottimfiagrangian subprob-
lems in Algorithm 1.

3.3.4 Parallel Programming

In the stochastic programming literature, parallelizatd stochastic optimization meth-
ods receives considerable attention due to the indepestteicture of the subproblems.
Ruszczyhski (1993) uses the notion of parallel computingrder to solve a multi-stage
stochastic inventory management problem. Birge et al. §1L9Bnilarly focus on multi-
stage problems where the decomposed components of theisdeea are tackled using
independent processors. Further, Linderoth and Wrighd32Work on algorithms for
two-stage stochastic linear programming models with ressan a grid computing plat-
form.

Similar to such studies, our single-stage stochastic pragring model could benefit
from the parallel computing of subproblems. Noting thatltrgest portion of time in our
solution algorithm is spent on solving subproblems, pafrglifogramming offers a great
potential on improving the overall performance. In ordeirtcorporate parallelization,
at every iteration we gather all the subproblems, whichd@oalt be solved analytically,
into a set. At every step, we pick’ subproblems from this set and solve them using
K-many processors. Once this batch of subproblems are ajpleted, we picki’ more
subproblems from the remaining of the set and continue atitthe subproblems are
solved. This allows us to solve the subproblem$'%}’41 steps whered is the number
of subproblems that could be solved analytically. Compaoethe serial algorithm, in
which we requirg S| — A steps to solve the integer programs at every iteration|lphra
computing offers a good advantage as the number of procegsnws.

An important point should be made regarding the balancingarkload among the
processors. Our subproblems do not necessarily have ssoiliation times. In fact, the
parameters of a scenario could make a subproblem relativebg difficult compared to
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Algorithm 1: Solving the Lagrangian subproblems.

input : Values of the dual variables p, andw.
output: The optimal objective value dD*(\, u*, w) and the optimal solutiom?,
s, 02 for all scenarios € S.

1 Solve two assignment problems, retriewgp+, x 4p- andzap+, zap-;

[* x,p- and z4p- Will be used in scenario 1, and their
positive counterparts will be used for the other
scenarios. For brevity, in the description bel ow we
use x4p for both x,p+ and x,p- and zup for both zyp+
and z,p-. */

2 for s = 1to|S| do

3 if fr?ain < Oyp then

4 if 7%+ w =0, andfs(wAp) < Oy then

5 B°=0; 0°=max{0.p, f*(rap)}; =° =xap,

6 continue with the next scenario;

7

end

8 if w'zapH® —u'xs, H®=0then
[+ x5, 1is an alternate optimal solution to the
assi gnnment probl em * [

9 if DS\, pf,u|p®=0)< D\, pfu|p®=1)then
10 | B =0; 6" =max{0rp, [H(®hn)}; & =i,
11 else
12 | Bf=1; 0 =0 *° =T
13 end
14 continue with the next scenario;
15 end

[+ 1f the subproblemis not solved up to this
poi nt, then we have to solve an integer

program */
16 Solve integer program;
17 else
18 | B=1; 0°=0rp; 2 =xap;
19 end
20 end
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the other subproblems. In order to efficiently utilize theqassors, one must carefully
balance the workload and avoid assigning difficult subpoid to the same processor.
In our study, before solving the integer programs, we sdtiedsubproblems by looking
at their most recent solution times. We used the LongesteBsimg Time (LPT) rule
which is a pretty good approximation to minimizing the maleson parallel processors
(see Pinedo (1995)). This strategy not only reduces the spake but also decreases
the probability of leaving a processor idle by assigningilsindifficulty subproblems to
different processors. As a result, the workload is morerizadd and we are able to utilize
the given processors more effectively.

3.4 Solving the Lagrangian Dual Problem

In order to attain the best lower bound on VdRe), several methods are proposed in the
literature. Among all, the simplest is called th&gradient methadn this method, at ev-
ery iteration the Lagrangian subproblems are solved. Ttherdual variables are updated
in the opposite direction of the subgradient using an appatgpstep size. More infor-
mation on the algorithm and the step size rules for mininoratan be obtained from
Wolsey (1998). In addition, several sophisticated alhong have been developed, such
as thebundle methodgsee Hiriart-Urruty and Lemaréchal (1993)). In our pretiary
studies, we have tried both of these methods in order to salwvéagrangian dual prob-
lem. However, we have faced several convergence issue$ wragented the algorithm
to reach to a solution in a sufficient amount of time. Therefave implemented another
strategy known as theut-generation algorithmThis algorithm is based on the idea that
the Lagrangian dual problem (3.11) can be equivalentlyesgmted by a linear program:

)\IZI(l]E,);fu D\, p,u) = ,\g(lﬁfu n’ (3.36)
ses
subject to
< DOt u | @, 5, 60°) ES T 3a)
V(x®, 5%, 6°) € ®°

A >0, (3.38)
> 0t <bus (3.39)

seS
u’ > —n’ Vs e S, (3.40)
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> pr=0. (3.41)
ses

This linear program (3.36)-(3.41) is called theaster problem The right hand side of
the term in (3.37) represents the Lagrangian function dssdrin (3.8) evaluated at the
solution(x?®, 5%, 6°) under scenarie. Here,®* represents the set of all feasible solutions
under scenaria. Fortunately, we do not need to generate all elements of ah@$s
Vs € S, but a small portion of it will suffice to obtain the optimaljebtive function value
of the master problem. As a matter of fact, instead of soltliegnaster problem, we solve
arestricted master problewhere we start with a small subset of the constraints (3.37),
also known as 'cuts’. The algorithm works iteratively whére Lagrangian subproblems
(3.10) are solved at each iteration, a set of new cuts is ngristl based on this solution
and appended to the restricted master problem, then the dtmlupdated according to
the new solution of the restricted master problem. The camis (3.39) ensure that the
restricted master problem is always bounded, widgrgis an upper bound on the VaR
and the optimal objective function value of the master peobl

As the®* is not completely generated, the master problem may coasdiame rays.
Therefore, we put an upper bound (3.39) on the objectivetiomof the master problem
to avoid unboundedness. In order to increase the stabilttyecalgorithm, we eliminated
unbounded subproblems (see Section 3.3) using the carg8al0). In order to preserve
the relation described in (3.6), constraint (3.41) is erddr We also imposed (3.38) since
the dualized constraint is in inequality form. Finally, IOE is used instead of APDF, due
to (3.26), the following set of constraints must be appertdetde master problem:

ujj:]- V]EN

We note that (3.36)-(3.41) is a “multi-cut” formulation. Aternative would be using
a “single-cut” formulation where the constraint (3.37) glibbe replaced by

n<y LOitulat 507 (@80, (2 55, 0) € @,
ses

where
® = x P> x .. xd

Such a modelling will result into less number of constrainthie master problem, making
it easier to solve. On the other hand, this increases tharegfjunumber of iterations
for convergence tremendously. In our case, solving the redbgms is more expensive

27



than solving a relatively difficult linear program. Therefpour primary objective is to
decrease the number of iterations. In consequence agiglimgany cuts at every iteration
IS more favorable to our cause.

3.4.1 Updating Bounds & Cuts

Recall that the cut generation algorithm creates feasiti@jocessing sequences through
its progress. At every iteration, we use the sequences fnensalutions of Lagrangian
subproblems, and compute the VaR associated with theserssggs We compare these
VaR measures with the best primal solution that we have bteso far. If one of these
sequences produces a better objective function value, date@ur best primal solution.
Similarly, one can update the best lower bound attained mgube objective function
value of the Lagrangian problem. Note that a better primhltsm and a better lower
bound could be used to update thg; andd;  in the master problem and the Lagrangian
subproblems. In fact, when the bounds#1vs € S are updated, we observe a consider-
able improvement in the convergence rate of the algorithdntlae quality of the terminal
lower bound. This observation is supported by the fact tiggateér bounds reduce the
size of the convex hull of Lagrangian subproblems. In coneage, the objective func-
tion value associated with a sequence in the modified Lagaarsgbproblem will be no
smaller than the objective function value in the originabgwblem. Therefore, the op-
timal objective function value of the modified master probleill be at least as large as
the optimal objective function value of the current mastebfem.

One major problem that arises due to this update is the imiéigsregarding the
previously appended cuts. More specifically, a valué’afbtained at a previous iteration
may not necessarily be feasible due to the Agwandé,;; 5. However, thig)* is already
appended as a cut to the restricted master problem. As d,resubver-constraint the
master problem, so the algorithm may terminate prematutalprder to fix this issue,
we have to ensure that the previously appended cuts ardlieasth respect to the new
boundaries. Notice that we only need to check the valuégé'sf If they are turn out to
be infeasible, we either have to delete them from the mastdrigm or reoptimize the
solution. In our study, we prefer to extract the sequencenftioe cut, which contains
infeasibility, then solve the Lagrangian subproblem withochanging this sequence. In
other words, we recompute the value@fandg® for the previously generatect. We
empirically observed that using the initial values of thaldtariables)A = 0, 4 = uw = 0,
while reoptimizing the3® andf® provided the best results in terms of convergence speed.
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If this cut-update routine is performed whenever one of thenlls is updated, we
ensure that the algorithm converges to the true optimatisolwf the Lagrangian dual
problem. Furthermore, the routine allowed us to update andd, z during an interme-
diate iteration, hence considerably improved our results.

3.4.2 Updating the Non-anticipativities

Remember that in Section 3.1 we have used the set of nongatiuty constraints in
(3.2) foro®,¥s € S,s # 1. Obviously, the choice of using' in the left hand side of
this constraint is arbitrary. In fact, a§ could be used instead 6f. However, it turns
out that the optimal objective function value of the Lagrangdual problem is highly
dependent on the scenario that is used in the left hand sitteesé constraints. This is
equivalent to saying that the quality of our lower bound ahejseson the non-anticipativity
that we pick. Notice that this only applies to the relaxedsiaar of the problem. In other
words, the choice of non-anticipativity cannot affect tipgimal objective function value
of the non-relaxed problem. We set up a computational studyder to find a scenarie
for the non-anticipativity constraints redefined below:

ok = ¢° Vs € S, s#k.

We have identified that the scenario, which defines the VaReniritial lower bound
obtained by optimally solving the underlying determiragbroblems (see Section 3.2),
should be selected as scenakioln fact, in almost all instances this selection resulted
in the best lower bounds that we have ever achieved for thstarices. Consequently,
as an initialization step, we incorporate this update omibreanticipativity constraints
to our algorithm so that the terminal quality of our resugtsmproved. Notice that the
implementation could easily be handled by a simple re-imigrf the scenarios. Once
the objective function values of the deterministic proldeare obtained, it is sufficient to
swap the scenarib with scenariol in the data just before initializing subproblems.

3.4.3 Optimal Solution of the Lagrangian Dual Problem for a $ecial
Case of the Lagrangian Function

In this section, we present a proof regarding the optimaltgm of the Lagrangian dual
problem when the direct cost of assignment, . >,y urH *z;x, is neglected (i.e.
whenu = 0).
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Proposition 2 If the dual variablea are restricted to zero, then the lower bound on VaR
obtained from the Lagrangian Dual proble(8.11)is no better tharg? , where6? , is
obtained by optimally solving the deterministic probleorssfach scenario and computing
the (1 — «)-quantile of the objective function values as describedeictiSn 3.2. That is,

mMaxx>o,u,u=0 D()\, M, ’U,) = ‘9[013

Proof. We claim that the optimal solution t@axy>¢ . u=0 D(X, p, ) is given by
N=0, p*=(1—7' -2 .., —7¥h, u* = 0. Itis a well known fact thaD (), u, u) is
a non-differentiable piecewise linear and concave functibherefore, we can complete
the proof by showing that the zero vector is a subgradier® ©f, s, w) at (\*, u*, u*).
Our strategy is to first show thd@(\*, u*, u*) = 6%, and then prove thal is a sub-
gradient at( \*, u*, u*). DefineS® = {s | f5(x5,,) < 095}, wheref*(z2,,) andzs,;,
are the optimal objective function value and the optimaugoh of the corresponding
deterministic problem for scenario Similarly, defineS! = {s | f*(x5,;,) > 625}, so
thatS = S° U S*. Further, assume that the scenarios are re-indexed angdmdSection
3.4.2, so that scenariohas an objective function value equabtb;.

Observe that the objective functions of the Lagrangian saliipms reduce to

9t fors=1
0 fors>2.

L\ w8 u) = {

at (\*, p*, u*). Thus, we haveD(\*, p*, u*) = > o D3(\*, uS, u*) = 6, whered, =
fHxl) = 6% and B! = 0. For other scenarios, we specify the optimal subproblem

solutions as
0: =005 =0 ifseS°\ {1}
05 =609, B*=1 ifse s '

For these subproblem solutionE, = (d}, d},, d;,) is a subgradient &i\*, u*, u*), where

dy=> mf-(1-a)=> 7 —(1-a)<0

seS sest
1 _ 2 1 3 1 S 1y
d. =o0.

A crucial observation is that the subproblems have manyreite optimal solutions.
In particular,g? = 69 5, 35 = 1 Vs € S'is also optimal for the Lagrangian subproblems at
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(A", u*, u*). We compute a second subgradidit= (d3,d?, dZ) at (\*, u*, u*) with:

B=> T8 -(1-a)=a>0

seS
2 _
d“—O
d2 =o.

Since the convex combination of two subgradients is anathlegradient, we are ensured
thatd® = 0 is a subgradient at\*, u*, u*). Clearly, we can always identify.;, m, >
0,m; + mg = 1 such thatn,d}, + myd3 = my (Zsesl ™ —(1-— a)) +mea=0. =

3.4.4 Dual Stabilization

Although theoretically correct, the straightforward implentation of the cut-generation
algorithm may lead to instability in terms of convergencear®specifically, the objective
function value of the Lagrangian dual at the current iterathight be significantly better
than the objective function value in the next iteration (Khhuge et al. (2006)). As a
matter of fact, even initializing the cut-generation algon with the ‘best’ values of the
dual variables has little effect on convergence (Frangama Gendron (2010)). This is
due to the incapability of the Lagrangian problem to gemethe necessary subset of
(x*, 5°, 0%) to prove the optimality of the Lagrangian dual problem. Efiere, a remedy
to this issue would be forcing the algorithm to explore thgiage where improvement on
the objective function value of Lagrangian dual problem @erikely to be observed.

In our study, we have also observed high fluctuations in tteegaof the dual vari-
ables and consequently in the objective function value®ftigrangian problem at every
iteration. Due to such instability, the algorithm requieetarge number of iterations to
be able to converge to a solution. In order to prevent thalsty, several stabilization
functions are proposed in the literature. One of these ages, théBox-Step Method
or theTrust Region Metho@Frangioni and Gendron, 2010; Kallehauge et al., 2006); con
fines the dual variables into a ‘box’. This method prevenésdbals from taking values
far from the center of the box, known as ttability center Another type of stabilization
functions is thdinear penalty functiongFrangioni and Gendron (2010)) where the dual
variables are penalized according to their distance fragrsthbility center. In fact, the
imposing linear penalty functions could be considered asxension of the box-step
method where the costi® across the boundaries of the box. In both methods, we update
the stability center whenever a sufficient improvement enliast objective function value
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of the Lagrangian dual is observé8erious Step)If there is no sufficient improvement,
the center is kept the sanflull Step)to explore the current region more. A more elab-
orate discussion on the stabilization functions and aoiolti methods could be found in
Frangioni and Gendron (2010). In our study, we adapt theltaton logic described in
Kallehauge et al. (2006) with additional linear penaltydtions on the dual variables. In
particular, we use the Box-Step Method and linear penaltgtions together.

We have empirically observed that the major source of inléhais due tou, therefore
employed dual stabilization techniques onlywnin addition, we have also observed that
many components of are(0 in the optimal solution of the Lagrangian dual problem.
Therefore, we fixed the stability center of every, to 0 which not only improved the
stability of the algorithm but also the performance of thbmoblems. This is because
the closen;;’s are to0, the more our subproblem looks like the underlying deteistim
problem. Below we present the stabilization functibfu) we used in our study:

Wlw) =Y > Wilum),

JEN kEN

where
+00, if Uik > AT

—uij, if 0 S Uk S AJ'_
uij, if A~ < Uk <0 .
—00 it w, < A7

Wi (ujn) =

Here A represents the width of the box that our dual variables ateiceed into, and” is
the linear penalty cost term. We note that the stabilizéftioction W (w) is directly added
to the objective function of the restricted master probldinis function is a4-piecewise
linear penalty functionvhich can be modeled by defining two copies of the dual vaggbl
uj, Namelyu, andw,, Vj,k € N. We can then express ;| asu, + u;,, andu,; as
ujk — uy,. Notice that the number of variables in the master probleiy imcreases by

| N| which does not have any significant effect on the solutiom&inWe illustrate the our
stabilizing function in Figure 3.2.

We will now describe our stabilization scheme. We proposephdase stabilization
strategy. At the start of the algorithm, we set= 0 (Phase I). In Section 3.4.3, we
have already given the optimal solution of this case. Tleegfwe only need to solve
the master problem to get the new values .@ndw. Once the gap between the objective
function value of master problem, calkit , andf; 5 is closed, we set the new boundaries
for w such thatA~ < w < A* (Phase Il). From this point on, anmy;,, could take nonzero
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Figure 3.2: Stabilizing function on.

values. Therefore, the stabilization effect of the lineamagdty functions is observed from
this point on.
At every iteration, we compute a parametexhich is defined as:

Dk _ Dk—l

-1 _ Nk-1
2p —D

Here, D* and D*~! represent the value of the dual function at iteratioand k& — 1,
respectively, and} , is the objective function value of the master problem attien

k. Observingp = 1 is a strong indication that the current boundswiare restricting
the potential improvement db, therefore we increase the width of the bdx, On the
other hand, ifp < 0, then we decreasA to explore the region more. Whenever the
bounds are updated, we increase the value of the lineartp@osts in the new problem
to keep theu,;, close to0. Finally, after solving the master problem,fﬁ‘DD;D is within

a predetermined gap, we reduce the linear penalty costst@iptrthe algorithm from
terminating prematurely. If these costs become small@rtba?, we completely remove
them.

In order to move on to Phase lll, one of two termination caondi of Phase Il must
be fulfilled. The first condition occurs when the optimali@m%, reaches a very
tight tolerance value. In our study, we set this value@o®. This suggests that in Phase
II, we have to solve the Lagrangian dual problem very closepiimality. This phase
is essential for the achievement of large improvements erLfgrangian dual problem
since such improvements could only be achieved by makindl sim@arovements at the
initial stages. Note that the tolerance value suggestdusmhase is too strict, therefore
may not be achieved within a reasonable amount of iteratiGng second condition is
a remedy to this problem. This condition is related to the bernof times the bound
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attained in Phase | is exceeded in Phase Il. First, we waith®ralgorithm to exceed
the lower bound of Phase | for at least 15 times. We expectattget improvements on
the objective function value of the Lagrangian dual probluming and after this stage.
In order to terminate, we make sure that no sufficient impmosets will be observed in
this phase any more. After the lower bound of Phase | is exatké&8 times, we wait
for another 15 iterations. Once these iterations are alggedaout, at each iteration we
check whether the improvement within 15 iterations is lathan a limit,%0.1. If the
improvement is less than this limit, we move on the Phase Il

As described previously, one of the conditions to enter @hkds achieved when
the optimality gap is below a strict tolerance. In such a caseimmediately remove
the bounds oru to provide room for improvement for the objective functioalue of
the Lagrangian dual problem. On the other hand, if Phaseds elue to our second
condition we keep these bounds until termination. Furtloeegwe update the box width
according to the value gf as described previously. We continue in Phase Il until the
linear penalty functions om are removed and a relatively loose optimality dap—3)
has been achieved. This is the final termination criteriavireacheck before terminating
the whole algorithm.

3.4.5 Suboptimal Cuts

An important note is that the cut-generation algorithm clso atilize any suboptimal
solutions for a given values of the dual variables. In otherds, we can use any feasible
job sequence, compute the correspondifh@nd 5%, then append the solution as a new
cut to the master problem. Using such suboptimal cuts isvagrit to multiple-pricing
in column generation where a set of non-basic variablesaeleeted instead of a single
non-basic variable (see Chvatal (1983)). This stratedyuisful when it comes to de-
creasing the number of iterations that our algorithm rexgufor convergence. In order to
implement it, we gather all the suboptimal solutions from slelution pool of the mixed
integer program solver we use at every iteration, and apgiend to the master problem.
In order to control the amount of suboptimal cuts, we impo$end on the number of
suboptimal solutions, and their gap of optimality. In owrdst, we preferred at most 10
suboptimal solutions per scenario which should be withimast40% optimality gap.

A further use of suboptimal cuts would be when the integegramming subproblem
takes too much time to be solved to optimality. Occasionétlg objective function of a
subproblem can make it extremely difficult. In fact, a singdproblem could consume
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more than three or four times larger amount of seconds thautotial solution times of

all other subproblems. On the other hand, we could avoidrsplsuch subproblems to
optimality by utilizing a suboptimal solution of the Lagigian subproblem. Neame et al.
(2000) present an outer approximate subdifferential ntedpplied to an uncapacitated
facility location problem where they use a dynamically updaapproximation parameter.
In our study, we impose a time limit on our integer programgrsanbproblems resulting
in suboptimal solutions with uncertain optimality gaps.olmler to increase the quality
of the suboptimal solutions, we can use of the optimal sotutf the subproblem for

B* = 1 by a simple comparison of its objective function value anel ¥alue returned

from the prematurely terminated integer program. Noti@ the time limit may result

into poor convergence. Therefore, we expand the limit by B@%very iteration if the

subproblem could not be solved to optimality. We also notd there will be at least

one feasible solution to the integer programming subproblecoming from previous

iterations, which prevents the program from terminatinthwio solution at hand.

3.4.6 Cut Management

Since we are adding at legst| constraints to our master problem at every iteration, it is
likely that this linear program will slow down the cut-geagon algorithm as the number
of iterations grow. Further, the linear programming solfares numerical difficulties
due to the huge number of constraints. In order to preversethewe developed a cut
management strategy. Once the master problem is solvedhalgze values of the dual
variables which correspond to the cuts in the master probote that, observing a dual
variable, which has a value 0f suggests that the corresponding constraints is likelygto b
inactive. We record a statistic for each cut in the restrictester problem which counts
the successive number of iterations that the correspomtliabvariable is fixed dt. Once
this statistic exceeds 5 iterations, we labeled the cut dsneant. However, we do not
carry out an immediate deletion since removing cuts at etergtion may slow down the
convergence. Instead, we remove constraints from the nyastelem every 5 iterations.
To summarize, at every 5 iterations, if we observe a comgtraith an associated dual
fixded at0 for more than 5 iterations, we remove that constraint. Qtfser, we keep it.
This approach successfully prevents the growth of the nawib@onstraints, resulting in
steady and fast solution times for the master problem.
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3.4.7 The Cut-Generation Algorithm

Below, we provide the pseudocode of our algorithm for sa\hre Lagrangian dual prob-
lem.

Algorithm 2: Solving the Cut-Generation Algorithm.

1 Compute initiald;, 5 anddy g; /[l Section 3.2
2 Update non-anticipativities; /'l Section 3.4.2

3 while termination criteria are not satisfiedo

4 Computed .o D(\, p, w); /1 Al gorithm1
Updated; z anddy p;

6 Add optimality cuts;
7 Add suboptimal cuts;

8 if bounds are updatethen

9 Update cuts; /1l Section 3.4.1
10 Update subproblems and master problem;

11 Increasd’; /'l Section 3.4.4
12 end

13 AdjustA; /'l Section 3.4.4

14 Solve the restricted master problem;
15 Eliminate redundant cuts;
16 end
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Chapter 4

Computational Study

The goals of our computational study are two-fold. In thet fpart, we demonstrate
that the cut-generation algorithm described in Chapteo8yres good lower bounds for
the VaR measure on the three random performance measurés,TWZCT and TWT.
Furthermore, the results indicate that the algorithm wééasible solutions of very high
quality for the risk-averse single-machine schedulingofgms for almost all instances
that we have experimented. In the second part, the valueeopithposed risk-averse
model is investigated with respect to that of a risk-neutratiel.

All runs were conducted on a machine with Intel®Core™i7 96I00&Hz CPU and
24 GB of memory. The mathematical programming formulatswese solved bYCPLEX
12. 4, and the cut-generation algorithm was implemented in C+utrthér, the Boost
Library was used to implement multi-threading in the cutgmtion algorithm. In this
study we allowed only two cores to be utilized simultanepusbte thatCPLEX 12. 4
is able to utilize more than one core to solve a single mathieedgprogram. As our
parallelization strategy aims to solve multiple subpraideat the same time, we limited
CPLEX to use only a single core while solving the mixed integer piagsubproblems.
However, when solving the master problem, assignment eatinordering problems, we
allowedCPLEX to utilize up to two cores.

4.1 Generation of problem instances

While our modeling framework allows for randomness in albblgem parameters, we
focus on the uncertainty in the processing times in our cdatmnal study as justified
by the discussion in Chapter 1. For each instance, we genaraet of equally likely
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scenarios representing the joint realizations of the m®iog times by adding negative or
positive perturbations to each estimated processing fimeherep, follows an integer
uniform distributionU[1, 100] for j = 1,...,n. To this end, let; denote the random
perturbation for joby, wherez; is the realization of; for scenarios. Then, the processing
time of job j under scenaris is given byp; = p; + ¢;. In our first set of experiments,
we sets; ~ U(—p;/4,p,/3), which results inE(p; + ;) = p; + p;/24 and a coefficient
of variation (CV) of(0.16. CV is a normalized measure of dispersion and is defined as
CV(p; + ¢;) = standard deviation(p; + ¢;)/ E(p; + ¢;) for the processing time of job
j. We also generated an additional data with a higher CV (@@@&)rther analyze the
value of our risk-averse model in Section 4.3. This data veaeoated by drawing from
U(=p;/4. ;).

In the literature, it is well established that the tightnasd the range of the due dates is
a primary determinant of difficulty for due date related penhs. Thus, by following the
popular scheme of Potts and van Wassenhove (1982), we firstaje the due dates from
a discrete uniform distributioj (1 — TF — RDD/2) x P], [(1—-TF + RDD/2) x P]],
where P is the sum of the expected processing times, Pe= Z?:l > ses™°p5- The
tardiness factor TF is a rough estimate of the proportiorobs jthat might be expected
to be tardy in an arbitrary sequence (Srinivasan (1971))issét to 0.4 and 0.6. Hard
instances generally result from small values of TF (see @udbal. (2007); Sen (2010)).
The due date range factor RDD is set to 0.8 to have mediocterton around the mean
due date. The weights are drawn from an integer uniformibigion U (10, 20).

4.2 Computational Performance of the Cut-Generation
Algorithm

In the first part of our study, we generate 5 instances for eaatbination of TE= 0.4, 0.6,
n = 10, 15,20, 30, and|S| = 50, 100, 150, 200, as described in the previous section. The
risk parameterr = 0.90. For each instance, we run our cut-generation algorithm and
useCPLEX to solve the VaRf(z) problem to optimality. The results averaged over 5
instances appear in Tables 4.1-4.3 for TCT, TWCT and TWTaqgoerance measures,
respectively.

The time limit forCPLEX is set to 3600 seconds, and if optimality is not proven in the
time allotted, then we record both the best lower bound aadtumbent solution avail-
able. Similarly, we impose a time limit of 3600 seconds ondhegeneration algorithm,
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|51
50 100 150 200

UB Gap 0.2% 0.0% 0.0% 0.0%
n—10 LB Gap -1.0% -1.1% -1.2% -1.5%
Time (Cut-Gen) 59 115 314 179
Time (CPLEX) 0.1 0.2 0.5 0.6
UB Gap 0.7% 05% 0.6% 0.4%
0 — 20 LB Gap -1.6% -1.3% -1.5% -1.5%
Time (Cut-Gen) 19.2 39.8 345 60.7
Time (CPLEX) 1.4 2.1 6.5 6.3
UB Gap 09% 0.9% 0.9% 0.7%
n— 30 LB Gap -14% -1.4% -1.7% -1.4%

Time (Cut-Gen)  43.0 715 120.7 180.2
Time (CPLEX)  19.0 22.9 102.8 104.9

Table 4.1: Effectiveness of the cut-generation algoritimaiar TCT performance measure
(o = 0.90).

B
50 100 150 200
UB Gap 0.1% 0.1% 0.0% 0.0%
LB Gap -1.0% -1.1% -1.4% -1.2%

Time (Cut-Gen) 48 10.2 13.5 15.1
Time (CPLEX) 01 0.1 0.2 0.4

UB Gap 05% 0.4% 0.3% 0.2%
LB Gap 1.1% -1.0% -1.4% -1.6%
Time (Cut-Gen)  47.7 729 1155 152.7
Time (CPLEX) 08 1.1 3.3 7.1

UB Gap 06% 05% 04% 0.3%
LB Gap -1.0% -1.1% -1.1% -1.2%
Time (Cut-Gen) 311.3 570.2 1381.5 1356.2
Time (CPLEX) 115 18.1 956 171.9

Table 4.2: Effectiveness of the cut-generation algoritmdar TWCT performance mea-
sure ¢ = 0.90).
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|51
50 100 150 200

UB Gap 0.0% 0.0% 0.0% 0.0%

n_10 LBGap -2.6% -05% -1.7% -0.9%

- Time (Cut-Gen)  21.7 91 756 334

Time (CPLEX) 34 347 69.1 1204

S UB Gap 0.0% 1.6% 1.9% 1.8%
| _ 45 LBGap -1.1%  -1.6% -2.1% -1.8%
L Time (Cut-Gen) 1199.6 1009.1 1183.9 2134.6
Time (CPLEX)  207.7 1926.5 2720.0 3085.6

UB Gap 1.4% 12% 3.3% 2.4%

n—oo LBGap -1.4%  -1.2% -3.3% -2.4%
Time (Cut-Gen) 1965.5 1944.4 1955.0 1805.2

Time (CPLEX) 3600.5 3600.4 3601.1 3600.5

UB Gap 0.0% 0.0% 0.0% 0.0%

n_10 LBGap -1.0%  -1.7%  -1.1%  -1.7%
Time (Cut-Gen) 286 27.8 221 623

Time (CPLEX) 37 152 827 3149

p UB Gap 01% 0.3% 05% 0.9%
| _q5 LBGap -1.4%  -24% -1.0% -1.7%
L Time (Cut-Gen) 351.0 867.4 869.7 1582.9
Time (CPLEX) 68.3 730.4 3407.5 3195.4

UB Gap 26% 0.9% 4.7% 5.2%

n_oo LBGap -3.4% -1.8% -4.9% -5.6%
Time (Cut-Gen) 3417.8 34139 3491.1 3282.3

Time (CPLEX) 2088.5 1219.7 3600.1 3600.1

Table 4.3: Effectiveness of the cut-generation algoritmdaer TWT performance mea-
sure ¢ = 0.90).
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and retrieve the best upper and lower bounds that could bewachwithin this limit. For
the Lagrangian subproblems of the cut-generation alguorithe imposed an initial time
limit of »/2 seconds for TWT measure and seconds for TCT and TWCT measures.

For a given instance, the upper bound gap is computed wigfeotdo the optimal
solution if it is available. Otherwise, the best known loweund is determined by taking
the maximum of our lower bound and the best lower bound retdéromCPLEX, and the
optimality gap is computed with respect to this lower bouBmhilarly, lower bound gap
is computed with respect to the optimal solution. If the wyati solution is not available,
the difference between the lower bound obtained by the eoegation algorithm and
the best known upper bound is divided to the best known lowend that is achieved.
The formulas for gap calculations, when the knowledge oiihoglity does not exist, are
presented below.

UBcut—gen - maX(LBcplema LBcut—gen>
max(LBeptes, LBout—gen)

LBeu—gen — min(UBeptew, U Beus—gen)
max(LBeptes, LBeur—gen)

UB Gap=

LB Gap=

whereU B and LB corresponds to the best feasible solution and best lowendob-
tained from the solution routine described in the subscHpt each, the first two rows
in Tables 4.1-4.3 specify the average upper and lower boandke gaps (“UB Gap”
and “LB Gap”) for the cut-generation algorithm. The last twavs presents the average
elapsed times in seconds for the cut-generation algoritiof@ CPLEX.

Several conclusions may be drawn from Tables 4.1-4.3. ,Rirs obvious that the
algorithm does not work well for the objectives TCT and TW@TXhough the gaps are
fairly small, CPLEX is able to solve the instances to optimality within very draaiounts
of time. This could be partially attributed to the fact thatraall number of constraints is
required to model the scheduling objectives of minimizir@giTand TWCT. On the other
hand, in order to minimize TWT, we require additional setsafistraints and variables.
Further, incorporating VaR makes the problem more diffi@dtisingCPLEX to perform
poorly. We observe this in Table 4.3. Solving VaR-TWT is veénye consuming even for
small|N| as the number of scenarios grows. In fact many instancesited to be solved
to optimality after| N| = 15 and|S| = 100. On the other hand, the quality of bounds
provided by the cut-generation algorithm is quite high 1bf & |, although there is a slight
decrease whefiV| = 20 which could be attributed to the premature termination due t
the time limit. Here, we underline the capability of our aigfom to handle large number
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of scenarios whil€PLEX fails to provide sufficient lower bounds. Since we achieved t
best results for TWT, we will further continue our analysssng only this objective.

Our second analysis compares the upper and lower bound §#pes cut-generation
algorithm andCPLEX where the optimal solution is unknown, i.€PLEX was aborted
due to time limit. In order to make a fair comparison, we alzsol@de the cases where
the initial bounding scheme of the cut-generation algaritk sufficient to determine the

optimal solution. In order to obtain a large sample, we igdothe differences on the
tardiness factors and aggregated the data.

S|
50 100 150 200
UB Gap (Cut-Gen) - 820% 2.91%  2.29%
_ 15 LB Gap (Cut-Gen) - -7.93% -3.42% -2.45%
n= UB Gap (CPLEX) - 7.93% 266% 2.21%

LB Gap (CPLEX) -11.66% -10.68% -30.14%

UB Gap (Cut-Gen) 3.75%  2.07% 5.06%  4.74%
L _ oo LBGap(CutGen) -358% -189% -516% -4.96%
UB Gap (CPLEX)  3.60%  1.89%  4.98%  4.94%
LB Gap (CPLEX) -23.91% -31.53% -23.06% -47.22%

Table 4.4: Effectiveness of the cut-generation algoritmder TWT performance mea-
sure only for cases whef@PLEX terminated due to time limit{ = 0.90).

Table 4.4 supports the fact th@PLEX is unable to provide sufficient lower bounds
when|N| > 15. In fact, when| N| = 20, it returns a trivial lower bound of 0 for several
instances. On the contrary, the lower bound gap of cut-géioeralgorithm is in general
less tharb%, and the maximum gap is beld®¥o. Furthermore, the upper bound gaps
of both algorithms is quite close to each other which suggtsit the cut-generation
algorithm can achieve sufficient upper bounds in a reaserabbunt of time when the
number of scenarios is high.

Our third study was carried out in order to analyze the efeddhe number of sce-
narios to the VaR that is achieved. More specifically, we ddike to know at least how
many scenarios should be generated so that the VaR remaihanged henceforth. We
assumed that true value of VaR is approximated the best y#jea 200, since we could
at most solve up to this many scenarios. In this study, wededwon 5 instances with
|N| = 10 and|S| = 200, where we iteratively decremented the number of scenands a
reoptimized the problem. We computed the gap of VaR withaelsto the case where
|S| = 200. Figure 4.1 displays our results where the number of scenavere varied
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between 25 and 200.

— I I I I I I
‘25 50 75 100 125 150 175 200
Number of Scenarios

Figure 4.1: Gap of VaR with respect to the number of scendan$ instances. Gap is
computed according to the best available approximatiohetitue VaR which i$S| =
200 in our case.

We immediately notice that for small numbers of scenarios,olvserve high fluc-
tuations in the VaRs. However, these fluctuations tend toedse when the number of
scenarios is increased. Nevertheless, even WHea: 175, we observe a gap as large as
5% which suggests thab| should be increased even further to approximate the trueval
of VaR better.

In our fourth study, we present the effect of parallel progmang on the solution
times of the cut-generation algorithm. We have used thamtsts with7' ' = 0.4 and
n < 20 in order to keep the analysis concise. The results are gexsanTable 4.5.

Nb. of Subproblem Threads
1 2 4

S| = 50 3153 2169  16.65
IS|=100 1321  9.13 759

n=10 g _150 11338 7556  53.17
S| =200 4496 3336  26.40
S| =50 1536.19 119957 789.81
. IS|=100 82405 1009.13 81589

S| =150 1298.33 717.96 674.83
|S| =200 2081.81 2134.62 2140.70

Table 4.5: The effect of using multiple threads for subpeaid on the average elapsed
times of cut-generation algorithm.

Forn = 10, we clearly observe the effect of parallelization wheredbkition times
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decrease on averagé’% with 2 threads and6% with 4 threads, when compared to the
serial algorithm. Notice that the solution times do not kalkhen the number of threads
is doubled, which would correspond to an id&ad % efficiency. Efficiency is a measure,
commonly used in the context of parallel programming in otdexamine the utilization
of multiple threads. We measure efficiency using the fornbelaw:

Elapsed time using a single thread
Elapsed time using N threads N

Efficency=

We observe on averag®% and47% efficiencies for 2 and 4 threads, respectively. The
loss on efficiency could be both attributed to internal opens other than solving sub-
problems, and to our parallelization strategy. Rememlantie tackle the subproblems
in batches and continue with the next batch if only all the rnera of the current batch
is completely solved. Notice that if we increase the sizéneftiatches we would be more
likely to keep the processors idle, therefore observe adomigzation. This is supported
by the fact that the efficiency decreases with increasingamusof threads.

Forn = 15, the rates of improvement in average solution times dropow0% and
24%, and the average efficiencies decreaselté and37% for 2 and 4 threads, respec-
tively. This decrease in performance can be explained byliffieulty of the VaR-TWT
problem even when = 15. The differences between the solution times of the subprob-
lems are more sharp when compared to the subproblems-0t0, leading to more idle
processors. Moreover, the algorithm cannot converge tdudicio within the time limit
for several instances, therefore aborted prematurelyinstance, whehS| = 200, either
the optimal solution is determined in the initializationtbe algorithm terminates due to
time limit. As a result, we cannot fully observe the effecpafallelization. Nevertheless,
even a small percentage of improvement leads to a signifredniction in total solution
times as can be observed in Table 4.5. Further, using mailtiptads increases the qual-
ity of the final outcome for prematurely terminated instamcé&his is because a larger
number of iterations can be carried out within the same timé.| In conclusion, we
claim that parallel programming has a great impact on thepedational performance of
our algorithm, and carries a great potential.

Finally, in Table 4.6, we give the average number of iteragicequired for our pro-
posed algorithm to solve the problems. We observe that thbeuof iterations for larger
values of | and|S| are higher when compared to the smaller values of these péeesn
We note that this is due to the time limit of the algorithm. kEngral, we do not observe
any significant trends between the number of iterations l@ddst of the parameters.
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5]
50 100 150 200

¥ |n=10 394 188 720 464
I|n=15 444 1032 27.8 302
Fln=20 1.6 118 9.2 10.0
©[n=10 482 642 33.6 522
I|n=15 630 412 347 478
"

n=20 248 38.2 154 1938

Table 4.6: The number of iterations spend by the cut-geio@ralgorithm to solve the
problems.

4.3 Value of the Risk-Averse Model

The value of a risk-averse solution depends on the relaéiviepnance of the correspond-
ing deterministic and risk-neutral solutions as a functibthe risk appetite. Therefore,

in this part, we benchmark VaRfx) against corresponding deterministic and risk-averse
models as the risk parameteiis varied. In this section, we focused on only TWT prob-
lem, whereas similar results could be obtained for any gileeiormance measure. The
deterministic counterpart of VaR-TWT problem is the corti@mal single-machine TWT
problem, in which all processing times take on their expge@ues; that is, we have
pj = Dj = D™ p;- In the risk-neutral version of our problem, we minimize the
expected TWT by solving the following formulation:

min 2": wj Z s (4.1)
j=1

ses

subjectto (2.5} (2.10)

In Figure 4.2, we zoom into two instances from Table 4.3 tasilate how the VaR
changes as is varied. For this data set we obtain risk-averse solutiatisut sacrificing
much from the expected TWT asincreases.

Finally, we use the additional data that is described iniGeet.1 which have higher

variability in the processing times. All scenarios are assd to be equally likely. A total
of 10 instances fon = 10, 15 and TF%).6 are solved by the risk-neutral model and cut-
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Value-at-Risk vs. Risk Parameter Expected TWT vs. Risk Parameter
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Figure 4.2: Comparison of the risk-averse model to its deftastic and risk-neutral
counterparts.
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generation algorithm far = 0.90. For these 10 instances, the entries in Table 4.7 indicate
the relative decrease in VaR and the relative increase iexpected TWT for the solution

of the cut-generation algorithm in comparison to that ofrik&-neutral model. In this
table, we refer to the data with GV 0.16 as Data Set 1, and C¥ 0.26 as Data Set 2.
The risk-averse solution exhibits significant improvensanter the risk-neutral solution,
albeit at times at the expense of the expected TWT to hedgesidglae uncertainty.

n=10 n=15
DataSet 1 DataSet 2 DataSet 1 DataSet 2
|S | 0 E(TWT) 60 E(TWT) 0 E(TWT) 60 E(TWT)
50| -3.15% 3.02% -5.03% 5.05% -2.23% 0.70% -3.89% 2.40%
100| -5.49% 6.90% -4.75% 5.99% -0.32% 1.60% -3.78% 2.89%
150| -5.17% 0.71% -0.62% 0.62% -15.83% 0.00% -1.51% 2.33%
200| -13.81% 10.35% -2.28% 5.55% -16.18% 3.54% -5.41% 7.71%

Table 4.7: The risk-averse model (cut-generation algarjthersus the risk-neutral model

(o = 0.90).

47



Chapter 5

Conclusion and Future Work

In this thesis, we modeled the problem of minimizing VaR ia $mgle-machine schedul-
ing problems under the presence of uncertainty and illtesirthe value of the proposed
risk-averse model. To solve our single-stage risk-avetsehastic model, we adapted
the Lagrangian based solution strategy of Carge and Sqii9i#®) which was originally
developed for two-stage stochastic programming modelgh&umore, we considered a
variable splitting based Lagrangian relaxation algorittemminimizing Value-at-Risk.
To the extent of our knowledge, this is the first in the stothgzogramming litera-
ture, and can be applied to a wide variety of settings othan timachine scheduling.
We proposed solution methods in order to solve the Lagrangiidproblems, and intro-
duced a promising cut-generation algorithm to solve ther&agian dual problem. In
this study, we focused on minimizing completion time, wegghcompletion time, and
weighted tardiness. However, a wider variety of objectivasld also be examined. An
extension of our work would be incorporating non-regulajeobves such as minimiz-
ing earliness-tardiness. Moreover, the solution appreaeihave implemented could be
embedded into a branch and bound algorithm. As a result, wiel @ able to solve the
problem of minimizing VaR to optimality. Finally, additiahrisk measures, such as the
conditional-value-at-risk, could be considered instefadb?, leading to more choices for
the preferences of a decision maker.

In order to improve the performance of our solution procegwa ranking assign-
ments algorithm could be used. This algorithm successa@lyes assignment problems
in order to generate K-many solutions with increasing ctstithe original assignment
problem. It was first proposed by Murty (1968), and later dmputational performance
and complexity was improved by Pascoal et al. (2003). Ndte¢ the use of such an
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algorithm could allow us to compute the optimal solution abren subproblems with-
out requiring solving integer programs. By generating avaluating the K suboptimal
solutions of the assignment problem, the trade-off betwteenterm(7° + x*)6* and

D ien 2ren UikHzj in (3.22) could be resolved easily. Even if the K suboptingl a
signments are insufficient to resolve the trade-off, we ¢t#imsake use of the best avail-
able solution and append it as a suboptimal cut to the resdrimaster problem. Unfortu-
nately, such a strategy is only valid when the subproblemserdeled using APDF. This
is because to the best of our knowledge a ranking based thigofor the linear ordering
problem does not exist.

A final improvement on the computational performance wowddnarding the par-
allelization strategy that we follow. In our current algbhm, we solve the subproblems
in batches. Further, in order to move on to the next batch wealdhe subproblems in
the current batch to be completely solved. Due to this wgjtime are not able to utilize
the processors in full efficiency. Although we try to balatice load of the processors,
we still observe idle processors and excess waiting timesuggestion would be gath-
ering all the subproblems to a pool, then dequeuing subgnobMwhenever a processor
becomes idle. Such a strategy will considerably enhancatileation of the processors.
Since the subproblems consume the largest portion of tlaé effort we spend on our
solution method, such a modification will surely result in armefficient and a faster
algorithm.
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