
Minimizing Value-at-Risk in Single Machine Scheduling Problems

Semih Atakan

Submitted to the Graduate School of Engineering and NaturalSciences

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2012

Minimizing Value-at-Risk in Single Machine Scheduling Problems

Approved by:

Assoc. Prof. Dr. Kerem Bülbül

(Thesis Supervisor)

Assist. Prof. Dr. Nilay Noyan Bülbül

(Thesis Supervisor)

Prof. Dr. Gündüz Ulusoy

Assist. Prof. Dr. Kemal Kılıç

Prof. Dr. Ali Rana Atılgan

Date of Approval:

Acknowledgements

I would like to express my deepest gratitude to my thesis advisors Kerem Bülbül and

Nilay Noyan for their huge and never-ending support. The ingenuity, the unyielding char-

acter, and the great deal of effort of Kerem Bülbül, and theskills, the knowledge and the

guidance of Nilay Noyan were the factors that kept this research going. Without their

hope, motivation, and assistance, this research would havenever existed.

Secondly, I am grateful to my beloved fiancée, Birce, for herearly contributions to

this research, and her moral support through my thesis. She was always there for me,

whenever I needed help.

I am thankful to many of our faculty members for their helpfuladvices and support. I

am also thankful to my dear colleagues, Mahir, Çetin, Muzaffer, Halil, Nurşen, Mustafa,

Belma and Ceyda, for sharing their experiences and their smile whenever necessary.

Finally, I would like to thank to my family for all the supportthey have provided.

Without their wisdom, I would have never been able to earn a master’s degree or write a

thesis.

iv

© Semih Atakan 2012

All Rights Reserved

Tek Makinalı Çizelgeleme Problemlerinde Riske Maruz Değerin
Enküçüklenmesi

Semih Atakan

Endüstri Mühendislĭgi, Yüksek Lisans Tezi, 2012

Tez Danışmanları: Kerem B̈ulbül, Nilay Noyan B̈ulbül

Anahtar Kelimeler: tek makinalı çizelgeleme; rassal işleme süreleri; rassal

çizelgeleme; riske maruz değer; olasılıksal kısıt; rassal programlama; senaryo ayrışımı;

kesi yaratma; eşlenik sabitleştirme; paralel programlama

Özet

Çizelgeleme literatürünün büyük bir çoğunluğu tüm verinin önceden bilindiği belir-

lenimci problemlere odaklanır. Bu varsayım, problem parametrelerindeki değişkenlik se-

viyesinin düşük olduğu durumlar için mantıklı olabilir; ancak değişkenlik seviyesi arttıkça

oluşabilecek kötü sonuçları engellemek için belirsizliğin modele dahil edilmesi büyük

önem taşımaktadır. Bu tezde, belirsiz problem parametreleri içeren tek makinalı çizelgele-

me problemleri incelenmektedir. Rassal bir performans ölçütüne (örneğin tamamlanma

süresi, ağırlıklı tamamlanma süresi, ağırlıklı gecikme süresi) ilişkin bir olasılıksal kısıt

tanımlanarak riskten kaçınan genel bir rassal programlama modeli önerilmektedir. Bu

modelin hedefi, rassal performans ölçütüne ilişkin belli bir güven seviyesindeki riske

maruz değeri (VaR) enküçükleyen, statik ve kesinti içermeyen bir görev işleme sırası bul-

maktır. Bu çalışmada en iyi VaR değeri için sıkı üst ve alt sınırlar bulabilmek amacıyla La-

grange gevşetmesini temel alan bir ayrıştırma stratejisi izlenmektedir. Lagrange eşleniği

problemini çözmek için sabitleştirilmiş bir kesi yaratma algoritması geliştirilmiştir. Ayrıca,

önerilen modelin ve çözüm yöntemlerinin önemini göstermek amacıyla, üç rassal perfor-

mans ölçütü kullanarak sayısal analiz yapılmıştır.

vi

Minimizing Value-at-Risk in Single Machine Scheduling Problems

Semih Atakan

Industrial Engineering, Master’s Thesis, 2012

Thesis Supervisors: Kerem Bülbül, Nilay Noyan B̈ulbül

Keywords: single-machine scheduling; stochastic processing times;stochastic

scheduling; value-at-risk; probabilistic constraint; stochastic programming; scenario

decomposition; cut-generation; dual stabilization; parallel programming

Abstract

The vast majority of the machine scheduling literature focuses on deterministic prob-

lems in which all data is known with certainty a priori. This may be a reasonable assump-

tion when the variability in the problem parameters is low. However, as variability in

the parameters increases incorporating this uncertainty explicitly into a scheduling model

is essential to mitigate the resulting adverse effects. In this thesis, we consider single-

machine scheduling problems in the presence of uncertain problem parameters. We im-

pose a probabilistic constraint on the random performance measure of interest (such as

the total completion time, total weighted completion time,and total weighted tardiness),

and introduce a generic risk-averse stochastic programming model. In particular, the ob-

jective of the proposed model is to find a non-preemptive static job processing sequence

that minimizes the value-at-risk (VaR) of the random performance measure at a specified

confidence level. In this study, we propose a Lagrangian relaxation based decomposi-

tion strategy to obtain tight lower and upper bounds for the optimal VaR. In order to

solve the Lagrangian dual problem we provide a stabilized cut-generation algorithm. We

also present an extensive computational study on three selected performance measures

to demonstrate the effectiveness of our solution methods and the value of the proposed

model.

vii

Contents

1 Introduction 1

2 Modeling Value-at-Risk 6

2.1 Underlying Deterministic Single Machine Scheduling Model 6

2.2 Risk-Averse Stochastic Programming Model 9

3 Solution Methods 14

3.1 Scenario Decomposition Using Lagrangian Relaxation 15

3.2 Bounding the Value-at-Risk .. 18

3.3 Solving the Lagrangian Subproblems 20

3.3.1 Preprocessing . 21

3.3.2 A Polynomially Solvable Case for TCT 22

3.3.3 Solving Subproblems as Mixed Integer Programs 23

3.3.4 Parallel Programming . 24

3.4 Solving the Lagrangian Dual Problem 26

3.4.1 Updating Bounds & Cuts . 28

3.4.2 Updating the Non-anticipativities 29

3.4.3 Optimal Solution for a Special Case of the Lagrangian Function . 29

3.4.4 Dual Stabilization . 31

3.4.5 Suboptimal Cuts . 34

3.4.6 Cut Management . 35

3.4.7 The Cut-Generation Algorithm 36

4 Computational Study 37

4.1 Generation of problem instances .. . 37

4.2 Computational Performance of the Cut-Generation Algorithm 38

4.3 Value of the Risk-Averse Model .45

viii

5 Conclusion and Future Work 48

ix

List of Figures

2.1 VaR . 10

3.1 Effect of preprocessing .22

3.2 Stabilizing function onu. 33

4.1 Gap of VaR with respect to the number of scenarios 43

4.2 Comparison of risk-averse, risk-neutral and deterministic models 46

x

List of Tables

4.1 Effectiveness of the cut-generation algorithm (TCT) 39

4.2 Effectiveness of the cut-generation algorithm (TWCT) 39

4.3 Effectiveness of the cut-generation algorithm (TWT) 40

4.4 Effectiveness of the cut-generation algorithm for unsolved cases (TWT) . 42

4.5 The effect of parallel programming 43

4.6 Number of iterations of the cut-generation algorithm 45

4.7 The risk-averse model versus the risk-neutral model 47

xi

Chapter 1

Introduction

In the scheduling literature, many objectives are proposedfor different production envi-

ronments. Among all of them, one of the most common objectives is to minimize the

total completion times (TCT) of jobs at hand. This objectivecould be extended by as-

signing unit weights to jobs where the weights would represent the jobs’ importance or

urgency. As a result, in an optimal job sequence, the jobs with higher weights will more

likely to be processed at earlier stages. Such an objective is called the minimization of

the total weighted completion time (TWCT). In the single-machine scheduling literature,

both of these objectives are considered as easy problems dueto their special structures.

A more difficult problem has the total weighted tardiness (TWT) objective which is a due

date related performance measure in make-to-order environments. The goal is to find a

job (order) processing sequence in order to minimize the total cost incurred due to missed

due dates. For a given job, the cost is directly proportionalto the associated tardiness. The

unit tardiness cost (weight) may either be associated with the perceived penalty due to a

loss of customer goodwill or may represent actual contractual penalties. The interested

reader is referred to Sen et al. (2003) for a recent survey on the topic.

In the traditional single-machine problems described above, all processing times, re-

lease dates, due dates, and weights are known in advance at time zero with certainty.

However, in many practical settings the exact values of one or several of these parameter

types may not be available at the time the dispatcher determines a job processing se-

quence. In particular, possible machine breakdowns, variable setup times, inconsistency

of the worker performance, or changes in tool quality may introduce uncertainty into the

processing times. The uncertainty in the processing time ofa job is resolved at the time of

the job completion. The models developed in this thesis can be generalized to incorporate

1

randomness into all parameters. However, from a practical point of view it is reasonable

to presume that a due date is quoted as a result of a mutual agreement with the customer,

and the unit tardiness weight associated with a customer is also known based on either

the internal priority of the customer or the contractual agreement. Therefore, in our com-

putational experiments the due dates and the unit weights are deterministic. Furthermore,

we assume that all jobs are ready to be released at time zero. Consequently, we focus

on the uncertainty in the processing times which leads to uncertain completion times and

tardiness values. Our objective is to determine a risk-averse fixed job processing sequence

at time zero that hedges against the uncertainty in the processing times. In the stochas-

tic scheduling terminology (see Pinedo (2008)), we construct a non-preemptive static list

policy.

Traditional models for decision making under uncertainty define optimality criteria

based on expected values and disregard variability inherent in the system. Following this

mainstream risk-neutral approach, most of the classical stochastic scheduling puts a lot

of effort into analyzing the expected performance by assuming that uncertain parameters

such as processing times follow specific distributions. SeePinedo (2008) for an excellent

overview of conventional stochastic scheduling. However,variability typically implies a

deterioration in performance, and risk-neutral models mayprovide solutions that perform

poorly under certain realizations of the random data. Capturing the effect of variabil-

ity can be accomplished by incorporating the appropriate risk measures into the model

that reflect the preferences of the decision maker. Several criteria to select risk measures

have been discussed in the literature (see, e.g., Ogryczak and Ruszczyński (1999, 2002);

Artzner et al. (1999)). Considering the wide range of criteria, there is no universally ac-

cepted single risk measure appropriate for all decision making contexts. In this study, we

consider the VaR measure which is a very popular and widely applied risk measure in the

finance literature. For the studies related to VaR we refer tothe chapter by Larsen et al.

(2002). In our context, we focus on either the TCT, or the TWCT, or the TWT as the ran-

dom outcome associated with a fixed job processing sequence selected at time zero. The

goal is to specify the smallest possible upper bound on the random performance measure

that will be exceeded with at most a pre-specified small probability. Here, the selected

upper bound is the VaR of the random performance measure at the desired probability

level, and we minimize VaR. The concept of VaR is closely related to probabilistic con-

straints. Stochastic programming models with probabilistic constraints were introduced

by Charnes et al. (1958) and have been employed successfullyin a variety of fields. The

interested reader can refer to Prékopa (1995) and Dentcheva (2006) for reviews and a

2

comprehensive list of references. Our proposed approach isan intuitive and practical way

of modeling a service level requirement for the performancemeasure under the stochastic

setup and leads to a novel risk-averse stochastic programming model. To the best of our

knowledge, this is a first in the machine scheduling literature.

It is well known that models incorporating VaR exhibit a non-convex structure even

if the underlying deterministic problem is convex. The existing solution methods primar-

ily deal with VaR integrated into a linear program (LP). Thus, the decision variables are

continuous, and VaR is introduced on a random outcome expressed as a linear function of

the decision variables. Larsen et al. (2002) provide a review of the algorithms available

for solving such problems. Note that these studies are generally concerned with portfolio

optimization problems. Larsen et al. (2002) also introducetwo heuristic algorithms which

solve a series of problems involving a related risk measure known as conditional-value-

at-risk (CVaR). In contrast to VaR, the problem of minimizing CVaR can be formulated

as an LP if the uncertainty is represented by a set of scenarios, and the proposed heuris-

tics use LP techniques iteratively. However, in our study the underlying problem involves

sequencing decisions that can only be expressed by employing binary variables; and there-

fore, even minimizing CVaR is hard. Consequently, the proposed solution methods do not

apply in our case.

We characterize the randomness associated with the uncertain parameters by a finite

set of scenarios, where a scenario represents a joint realization of all random parameters.

It is important to point out that the scenario approach allows us to generate data from any

distribution and, for instance, to model the correlation ofthe random processing times

among different jobs by considering their joint realizations. In this sense, a scenario-

based approach is more general than assuming specific distributions. On the down side,

the computational complexity of solving the problem is closely affected by the number of

scenarios. There are only a few studies utilizing a scenario-based approach for machine

scheduling problems. For example, Gutjahr et al. (1999) minimize the expected TWT

with stochastic processing times and propose a stochastic branch-and-bound technique,

where a sampling approach is embedded into their bounding schemes. Alternatively, other

existing scenario-based studies develop robust optimization models in order to optimize

the worst-case performance over all scenarios. Such a worst-case analysis does not require

the probabilities of the scenarios. The sum of completion times is employed in Daniels

and Kouvelis (1995); Yang and Yu (2002), and the weighted sumof completion times is

considered by de Farias et al. (2010), while Kasperski (2005) focuses on the maximum

lateness as the random performance criterion. One or several of the robustness measures

3

known as the maximum deviation from optimality, the maximumrelative deviation from

optimality, and the maximum value over all scenarios are incorporated in these papers.

Except de Farias et al. (2010), all these studies design specialized algorithms for the ro-

bustness measure and random performance criterion of interest. de Farias et al. (2010)

identify a family of valid inequalities to strengthen the mixed-integer formulation of their

problem. Furthermore, Alouloua and Croce (2008) provide several complexity results in

the domain of robust scheduling. In contrast to robust approaches adopting a conserva-

tive worst-case view, we define our optimality criterion based on VaR which is a quantile

of the random outcome at a specified probability level. That is, we utilize probabilistic

information and develop a risk-averse stochastic programming model alternative to exist-

ing robust optimization models. Note that setting the required probability level to exactly

one, subsumes the robust optimization problem of minimizing the maximum performance

measure over all scenarios. However, when the required probability level is specified as

α < 1, we minimize the maximum performance measure over a subset of scenarios with

an aggregate probability of at leastα. Our risk-averse model identifies the optimal subset

of scenarios with the specified minimum aggregate probability level and minimizes the

maximum performance measure over this subset. Thus, it is less conservative than the

robustness approach which considers all scenarios.

The major contribution of this study is to develop a risk-averse model that is novel in

machine scheduling. We analyze the behavior of the proposedmodel in comparison to

that of the risk-neutral model and provide insights on the impact of the risk preference.

Furthermore, in all papers on robust scheduling mentioned above the corresponding de-

terministic single-machine problems are polynomially solvable. In our study, the TCT

and TWCT objectives are polynomially solvable too. However, the single-machine TWT

problem is stronglyNP-hard (Lenstra et al. (1977)), and incorporating VaR poses addi-

tional computational difficulties.

Not limited to VaR, stochastic programming models are generally known to be com-

putationally challenging. This can be partially attributed to the potentially large number

of scenario-dependent variables and constraints. Variousdecomposition based solution

methods have been proposed to deal with such large scale programs. For example, the

L-shaped method proposed by Van Slyke and Wets (1969) is a widely applied Benders-

decomposition approach to solve the two-stage linear stochastic programming problems

with the expected recourse functions for the case of a finite probability space. Such L-

shaped algorithms are based on a cutting plane algorithm, where the cuts are constructed

using the dual information of the second-stage problems associated with each scenario.

4

However, when the second-stage problems involve integer variables, the standard decom-

position methods utilizing the linear programming dualitycannot be applied. Introducing

integer variables into linear stochastic programs furthercomplicates solving these models.

In the stochastic programming literature, the studies thatfocus on developing solution

methods for such integer programs mainly consider the two-stage framework. The inte-

ger L-shaped decomposition algorithm proposed by Laporte and Louveaux (1993) is the

first one that uses a decomposition method for stochastic programs with integer decisions

in the second-stage. It utilizes a branch-and-cut scheme inthe master problem and it is

proposed only for the case of pure binary first-stage variables. Carøe and Tind (1998)

generalize the integer L-shaped algorithm for the models with mixed-integer first- and

second-stage variables. They use general duality theory toapproximate the second-stage

value function in the space of the first-stage variables and obtain non-linear cuts. How-

ever, there is no practical method for solving the resultingmaster problem as emphasized

in Ahmed et al. (2004).

Alternatively, Carøe and Schultz (1999) use the scenario decomposition approach of

Rockafellar and Wets (1991) and develop a branch-and-boundalgorithm based on the

Lagrangian relaxation of non-anticipativity. Recently, this solution approach has been

adapted to two-stage stochastic integer programs incorporating risk measures such as ex-

cess probabilities (Schultz and Tiedemann, 2003) and CVaR (Schultz and Tiedemann,

2006). In this thesis, we adapt their Lagrangian-relaxation based decomposition approach,

which is originally developed for two-stage models, to our single-stage stochastic integer

programming model. For a detailed discussion on various algorithms for stochastic inte-

ger programming we refer the reader to Birge and Louveaux (1997), Klein Haneveld and

van der Vlerk (1999), and Louveaux and Schultz (2003). In order to solve the Lagrangian

dual problem, we propose a cut generation algorithm which isenhanced with dual sta-

bilization methods to achieve faster convergence. We also utilize parallel programming

techniques in order to improve the performance of our algorithm. We note that our pro-

posed solution method is not limited to machine scheduling but could be applied to a wide

variety of problems.

In the next chapter, we formally define the risk-averse scheduling problems and present

their mathematical programming formulations. In Chapter 3, we introduce our solution

strategy and discuss the implementation details of the proposed cut-generation algorithm.

Computational results are presented in Chapter 4, and we conclude in Chapter 5 with

further research directions.

5

Chapter 2

Modeling Value-at-Risk

In this section, we first present the underlying deterministic model of the stochastic single-

machine scheduling problem that we are focusing on. Then, wediscuss how to model the

uncertainty inherent in the system and develop our risk-averse stochastic programming

model.

2.1 Underlying Deterministic Single Machine Scheduling

Model

A machine scheduling problem can be considered as a two-phase optimization problem.

In the first phase, a feasible job processing sequence is determined for each machine

involved, and then in the second phase the optimal start and completion times are com-

puted for fixed job processing sequences. The difficult combinatorial structure of machine

scheduling problems stems from the first phase, while the second phase - also referred to

as theoptimal timing problem- is a simple optimization problem for many important ma-

chine scheduling problems. On a single machine, the optimaltiming problem is trivial for

regular objectives, and it can often be solved by a low-orderpolynomial time algorithm or

as a linear programming problem for non-regular objectives. Since our focus is on regular

objectives, we will not require custom optimal timing algorithms in our work.

For single-machine scheduling problems, four frequently used alternate deterministic

formulations appear in the literature (see Keha et al. (2009)): disjunctive (DF), time-

indexed (TIF), linear ordering (LOF), and the assignment and positional date formula-

tions (APDF). TIF has a tight LP relaxation and is the best contender among these four

formulations if the processing times are small (Keha et al. (2009)). TIF, however, can-

6

not be adapted to our stochastic setting directly, because it infers the sequence from the

completion times represented by binary decision variables. Recall that our goal is to

find a non-preemptive static job processing sequence at timezero. That is, the decisions

are independent of the random realizations of data, and therefore, relying on completion

time information that is contingent on the random processing times (and random release

dates if applicable) is not appropriate to construct a static job processing sequence. Our

preliminary results indicate that DF is outperformed by LOFand APDF in terms of com-

putational time. This observation is also supported by the extensive computational study

presented in Keha et al. (2009). Thus, among the common formulations only LOF and

APDF are viable options for our proposed risk-averse model.In this study, we work

with both of these formulations in order to exploit their structural properties for different

objective functions.

We define the set of jobs to be processed asN := {1, . . . , n}, wheren denotes the

number of jobs. Associated with each jobj ∈ N are several parameters: a processing

timepj , a due datedj, and a tardiness cost or a completion time penalty per unit timewj

depending on the objective function used. In the APDF formulation presented next, the

binary variablexjk takes the value 1 if jobj is assigned to positionk in the sequence,

and is set to zero otherwise. Assuming zero release dates, a deterministic single-machine

scheduling problem, described as1//f(x) following the common three field notation of

Graham et al. (1979), is formulated below:

min f(x)

subject to
∑

k∈N

xjk = 1, ∀j ∈ N, (2.1)

∑

j∈N

xjk = 1, ∀k ∈ N, (2.2)

xjk ∈ {0, 1} ∀j, k ∈ N. (2.3)

The constraints (2.1)-(2.2) ensure that jobj is placed to exactly one position and the

positionk is used exactly by a single job. Constraints (2.3) are the integrality restrictions.

If we are only interested in the TCT, we can express the objective function as:

∑

j∈N

Cj =
∑

j∈N

n
∑

k=1

(n− k + 1)pjxjk, (2.4)

whereCj is the completion time of jobj. Notice that, for other objective functions such

7

as TWCT or TWT we must know the individualCj ’s. This requires additional constraints

and variables which are discussed in Keha et al. (2009).

The LOF of single machine scheduling problems uses a binary variableδjk which

takes the value 1, if jobj precedes jobk in the processing sequence, and is zero otherwise.

By convention, we setδjj = 1 for all j ∈ N . The formulation is presented below:

min f(δ)

subject to δjj = 1, ∀j ∈ N (2.5)

δjk + δkj = 1, 1 ≤ j < k ≤ n, (2.6)

δjk + δkl + δlj ≤ 2, ∀j, k, l ∈ N : j 6= k, k 6= l, l 6= j, (2.7)

δjk ∈ {0, 1} ∀j, k ∈ N. (2.8)

Constraints (2.6) ensure that for each pair of jobsj andk either jobj precedes jobk or

vice versa. Constraints (2.7) represent the transitivity requirements for a linear ordering of

the jobs. In other words, they guarantee that for any tripletof jobsj, k, l, if job j precedes

job k and jobk precedes jobl then jobj precedes jobl. Constraints (2.8) are the binary

variable restrictions required for the sequencing decisions. The completion time of job

j is the sum of the processing times of all of its predecessorsCj =
∑

k∈N δkjpk, (recall

thatδjj = 1 by convention). Thus, the LOF for minimizing TWCT on a single-machine

is stated as:

min
∑

j∈N

wjCj

subject to (2.5)− (2.8).

The tardinessTj of job j is expressed byTj = max(0, Cj − dj). Due to its structure, in

order to model due date related performance measures, we require the following set of

constraints:

Tj ≥ Cj − dj ∀j ∈ N (2.9)

Tj ≥ 0 ∀j ∈ N. (2.10)

The LOF for minimizing TWT can now be stated as:

min
∑

j∈N

wjTj

8

subject to (2.5)− (2.10).

In the remainder of the thesis, we will use the APDF in order todecribe our risk-averse

model and our solution approach. Note that the discussion will be general and applies to

both APDF and LOF. When necessary, the modifications to use LOF will also be provided.

2.2 Risk-Averse Stochastic Programming Model

In our setting, the actual values of the processing times arenot certain at the time we

determine the job processing sequence, and the processing times can be represented by

random variables. This implies that the completion timesC(x) and the tardiness values

T (x) associated with a sequence are also random variables, sincethey are functions of the

random processing times. In this case, comparing alternatecandidate sequences requires

comparing their respective randomf(x) values. We propose a risk-averse approach which

evaluates a sequence with respect to a certain quantile of the distribution of the associated

randomf(x). Let Υ andξj denote the randomf(x) and the random processing time of

job j ∈ N , respectively. The random variableΥ is a random outcome associated with a

sequencex ∈ {0, 1}n×n. Using the expression in (2.4), we can representΥ as a function

of the decision vectorx ∈ {0, 1}n×n for the TCT objective as follows:

Υ =
∑

j∈N

n
∑

k=1

(n− k + 1)ξjxjk. (2.11)

Similarly, using the decision vectorδ ∈ {0, 1}n×n, the random TWT is expressed as:

Υ =

n
∑

j=1

wj max

(

n
∑

k=1

ξkδkj − dj, 0

)

. (2.12)

We intend to model the risk associated with the variability of the random outcomeΥ by

introducing the following probabilistic constraint:

P (Υ ≤ θ) ≥ α, (2.13)

whereα is a specified large probability such as0.90 or 0.95. Hereθ denotes an upper

bound on thef(x) that is exceeded with at most a small probability of1 − α. If α = 1,

Υ ≤ θ holds almost surely. As discussed in more depth in Chapter 1,such a probabilistic

9

constraint is intuitive and allows us to model a service level requirement for thef(x)

under the stochastic setup. We refer toα as the risk parameter which reflects the level

of risk-aversion of the decision maker. Clearly, increasing α results in allowing a higher

value of the upper boundθ. We propose not to specify the value ofθ as an input, but

consider it as a decision variable with the purpose of identifying the sequence with the

smallest possible value ofθ given the risk aversion of the decision maker. Thus, in our

model we minimizeθ for a specified parameterα, which is equivalent to minimizing

theα-quantile of the randomf(x). Theα-quantile has a special name in risk theory as

presented in the next definition.

Definition 1 LetX be a random variable. Theα-quantile

inf{η ∈ R : FX(η) ≥ α}

is called the Value at Risk (VaR) at the confidence levelα and denoted by VaRα(X),

α ∈ (0, 1].

Figure 2.1 visualizes the concept of VaR associated with therandom TWT using an in-

stance from our computational study.

0 500 1,000 2,500 3,000 3,500 4,000 4,500 5,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

F ϒ(η
)

α

VaR
α
 (ϒ)

Figure 2.1: The VaRα(Υ) associated with the best feasible sequence obtained for an in-
stance from our computational study.

The probabilistic constraint (2.13) can equivalently be formulated as a constraint on

the VaR of the randomf(x):

VaRα(Υ) ≤ θ. (2.14)

In other words, by considering the proposed probabilistic constraint (2.13) we specify the

VaR as the risk measure on the randomf(x), and minimizingθ corresponds to seeking

the sequence with the smallest possible VaR value for a specifiedα value.

10

A model with a probabilistic constraint similar to that in (2.13) with randomness on

the left hand side was first studied by de Panne and Popp (1963)and Kataoka (1963).

Kataoka introduces a transportation type model and Van de Panne and Popp present a diet

(cattle feed) optimization model with a single probabilistic constraint. In these studies, the

random outcome of interest is a linear function of the decision vector, and in both studies

the solution methods are specific to random coefficients witha joint normal distribution.

In contrast, the random outcomeΥ in our work is not a linear function of the decision

vector as evident from (2.12), and we do not assume that it hasa specific distribution.

We characterize the random processing times by a finite set ofscenarios denoted by

S, where a scenario represents a joint realization of the processing times of all jobs. To

develop our stochastic programming formulation, previously introduced parameters and

variables are augmented with scenario indices and a probability vectorπ is added:

πs: probability of scenarios, s ∈ S.

psj: processing time of jobj under scenarios, s ∈ S.

Cs
j : completion time of jobj under scenarios, s ∈ S.

T s
j : tardiness of jobj under scenarios, s ∈ S.

Then, using APDF we formulate the problem of minimizing the VaR in the single

machine scheduling problem as follows:

min θ (2.15)

subject to
∑

k∈N

xjk = 1, ∀j ∈ N, (2.16)

∑

j∈N

xjk = 1, ∀k ∈ N, (2.17)

f s(x)− θ ≤ f s
maxβ

s, ∀s ∈ S, (2.18)
∑

s∈S

πsβs ≤ 1− α, (2.19)

βs ∈ {0, 1}, ∀s ∈ S, (2.20)

xjk ∈ {0, 1}, ∀j, k ∈ N, (2.21)

θLB ≤ θ ≤ θUB. (2.22)

We emphasize that the constraints (2.16), (2.17) and (2.21)in the model above are iden-

tical to the constraints (2.1)-(2.3). That is, the sequencing decisions are independent of

11

the uncertainty. The constraints (2.18)-(2.20) represents the probabilistic constraint in

(2.14). The parameterf s
max stands for a valid upper bound onf s(x) for any sequencex

under scenarios. This parameters guarantees that the binary variableβs is set to1 by

the corresponding constraint (2.19) iff s(x) exceeds the threshold valueθ in scenarios.

Constraint (2.19) mandates that the probability of exceeding the threshold valueθ for the

random outcome is no more than1− α. For the validity of the formulation (2.16)-(2.22),

we must ensure thatf s
max is no smaller than the maximum possiblef s(x) under scenarios.

In order to obtain a reasonably tight formulation, we sort the processing times under sce-

narios in non-increasing order and denote thejth largest processing time under scenario

s by ps[j]. Then, the maximum possible completion time of thekth job in the sequence,

k ∈ N , under scenarios is computed asCs
[k] =

∑k

j=1 p
s
[j]. Next, the due dates and the unit

tardiness or processing weights are assigned to the completion times in non-increasing

and non-decreasing order, respectively. A standard pairwise interchange argument (not

necessarily adjacent) demonstrates that the resulting TWTis an upper bound on the TWT

of any job processing sequence under scenarios. Similar bounds can easily be computed

for the other objectives of interest as well.

The final constraint (2.22) is incorporated in order to improve the convergence of our

proposed algorithm in Section 3.4.7. While,θUB could be set to the VaR of any feasible

sequence of jobs, in the absence of a validθLB, one can simply use0 in its place. The

LOF for minimizing VaR is the same as (2.15)-(2.22) once (2.16), (2.17) and (2.21) are

replaced by their counterparts (2.5)-(2.8). In order to calculate the resulting job tardiness

values, the tardiness constrains (2.9)-(2.10) should be duplicated for every scenario and

appended to the formulation above. At an optimal solution,T s
j may be strictly larger than

max{Cs
j − dj , 0} for some scenarios ∈ S because the tardiness values are not associated

with positive cost coefficients in the objective. Obviously, we preserve optimality by

settingT s
j = max{Cs

j − dj, 0}.

Uncertainty in the due dates and/or the unit tardiness or processing costs may be in-

corporated in our formulation in a straightforward manner by replacing the parametersdj
andwj by dsj andws

j while calculating thef s(x). This modification does not affect the

number of variables and constraints. However, if the release dates are not known in ad-

vance, then the completion time expression must be replacedby a set of constraints which

is adapted from the deterministic formulation in Nemhauserand Savelsbergh (1992):

Cs
j ≥ rsi δij +

∑

{k : rs
k
<rs

i
, k 6=j}

psk(δik + δkj − 1) +
∑

{k : rs
k
≥rs

i
}

pskδkj, ∀i, j ∈ N.

12

Notice that the constraints above are for LOF. In the remainder of the thesis, we refer to

the formulation (2.15)-(2.22) as VaR-f(x).

13

Chapter 3

Solution Methods

As discussed in Chapter 1, several decomposition based solution methods have been of-

fered to solve stochastic programming models but mainly forthe two-stage stochastic

integer programs. Among these existing methods, we utilizethe one proposed by Carøe

and Schultz (1999) for the stochastic models with mixed-integer first and second-stage

variables. They consider a scenario decomposition approach and develop a branch-and-

bound algorithm based on the Lagrangian relaxation of non-anticipativity. We adapt their

approach to obtain a Lagrangian relaxation based decomposition to obtain tight lower and

upper bounds for the optimal objective value of our single-stage stochastic integer pro-

gramming model. In particular, we consider a split-variable formulation which is essen-

tially based on the idea of creating copies of variables and then relaxing the constraints

that force all these variables to be equal. This idea has beenintroduced in combina-

torial optimization as variable splitting by Jörnsten et al. (1985). In studies that focus

on two-stage models (Carøe and Schultz, 1999; Schultz and Tiedemann, 2003), the non-

anticipativity conditions state that the first-stage decision should not depend on the sce-

nario which will prevail in the second stage. In our single-stage setting they guarantee

that the static job sequence decisions should not depend on the scenario. We note that

our proposed solution method is not limited to the machine scheduling problem of inter-

est. To the best of our knowledge, considering such a variable splitting based Lagrangian

relaxation algorithm for minimizing VaR is the first in the literature.

In the following sections, we will present this Lagrangian relaxation based decompo-

sition strategy. Then, we will present a method to provide upper and lower bounds on the

optimal VaR measure which is used as an initialization to oursolution approach. Next,

we will discuss our solution methods for the Lagrangian problems, and finally introduce

14

the stabilizedcut-generation algorithmto solve the Lagrangian dual problem.

3.1 Scenario Decomposition Using Lagrangian Relaxation

In order to carry out the decomposition, we create copies of the variablesθ, xjk and

δjk, ∀j, k ∈ N , for each scenario. Accordingly,θ is replaced byθs in constraints (2.18),

the constraints (2.16), (2.17) and (2.21) are replicated for each scenario, and the following

non-anticipativity constraints are appended to the formulation (2.16)-(2.22):

(1− π1)x1
jk =

|S|
∑

s=2

πsxs
jk ∀j, k ∈ N (3.1)

θ1 = θs ∀s ∈ S, s 6= 1. (3.2)

Note that the non-anticipativity constraints (3.1) are valid because the variablesxjk, ∀j, k ∈

N , are binary. The objective termθ in (2.15) is replaced by the equivalent expression
∑

s∈S π
sθs based on (3.2) and

∑

s∈S π
s = 1. In addition, note that

(1− α) =
∑

s∈S

πs(1− α), (3.3)

and the term(1 − α) on the right hand side of (2.19) is substituted accordingly.The

resulting model is presented below.

min
∑

s∈S

πsθs

subject to
∑

k∈N

xs
jk = 1, ∀j ∈ N, s ∈ S

∑

j∈N

xs
jk = 1, ∀k ∈ N, s ∈ S

f s(x)− θs ≤ f s
maxβ

s, ∀s ∈ S,
∑

s∈S

πsβs ≤
∑

s∈S

πs(1− α),

βs ∈ 0, 1, ∀s ∈ S,

xs
jk ∈ 0, 1, ∀j, k ∈ N, s ∈ S

θLB ≤ θs ≤ θUB,

15

(1− π1)x1
jk =

|S|
∑

s=2

πsxs
jk, ∀j, k ∈ N,

θ1 = θs ∀s ∈ S, s 6= 1.

Notice that this model is exactly the same as (2.15)-(2.22) due to the appended nonan-

ticipativity constraints. The LagrangianL(λ,µ,u) is then obtained by dualizing the

constraint (2.19) by a non-negative multiplierλ, and the constraints (3.1) and (3.2) by

unrestricted multipliersujk, ∀j, k ∈ N , andµs, s = 2, . . . , |S|, respectively:

L(λ,µ,u) =

|S|
∑

s=2

µsπs(θs − θ1) + λ
∑

s∈S

πs (βs − 1 + α)

+
∑

j∈N

∑

k∈N

ujk





|S|
∑

s=2

πsxs
jk − (1− π1)x1

jk



 .

(3.4)

or in a more compact form:

L(λ,µ,u) =
∑

s∈S

πsθs+λ
∑

s∈S

πs(βs−1+α)+
∑

s∈S

µsθs+
∑

j∈N

∑

k∈N

∑

s∈S

ujkH
sxs

jk, (3.5)

where

µ1 = −

|S|
∑

s=2

µs, (3.6)

H =
[

(π1 − 1) π2 π3 · · · π|S|
]

, and (3.7)

Hs represents thesth component of the vectorH defined in (3.7). As a result, the La-

grangian decomposes for each scenario:

Ls(λ, µs,u) = (πs + µs)θs + λπs(βs − 1 + α) +
∑

j∈N

∑

k∈N

ujkH
sxs

jk, (3.8)

L(λ,µ,u) =
∑

s∈S

Ls(λ, µs,u). (3.9)

Note thatµ1 is only defined for notational convenience and is not a component ofµ =

[µ2 µ3 . . . µ|S|].

The analysis above provides us with|S|-many minimization problems, and for fixed

16

λ,µ,u, the Lagrangian subproblems are defined as:

D(λ,µ,u) = min
x,β,θ

∑

s∈S

Ls(λ, µs,u). (3.10)

Here,D(λ,µ,u) is called the dual function. Our goal is to find the maximum value that

D can take which we achieve by solving the Lagrangian dual problem:

max
λ≥0,µ,u

D(λ,µ,u) = max
λ≥0,µ,u

∑

s∈S

Ds(λ, µs,u), (3.11)

where

Ds(λ, µs,u) = min
x,βs,θs

Ls(λ, µs,u) (3.12)

subject to
∑

k∈N

xs
jk = 1, ∀j ∈ N, (3.13)

∑

j∈N

xs
jk = 1, ∀k ∈ N, (3.14)

f s(xs)− θ ≤ f s
maxβ

s, (3.15)

βs ∈ {0, 1}, (3.16)

xjk ∈ {0, 1}, ∀j, k ∈ N, (3.17)

θLB ≤ θ ≤ θUB. (3.18)

Note that the dual function is non-differentiable and non-smooth. Therefore, we have

to employ methods from nondifferentiable optimization in order to solve the Lagrangian

dual problem.

To formulate this problem using LOF, one must replacex with δ and substitute con-

straints (3.13)-(3.14) with the replicated versions of their counterparts described in (2.5)-

(2.7). Unfortunately, the structure of the Lagrangian subproblems (3.12)-(3.18) formu-

lated using either APDF or LOF do not seem amenable to an efficient solution procedure.

Therefore, we will be tackling the subproblems using an integer programming solver as

described in Section 3.3.

17

3.2 Bounding the Value-at-Risk

As discussed earlier, in order to improve the quality of our solutions, we impose a lower

and an upper bound onθs. Notice that adding more constraints to our subproblems re-

duces the feasible region. Within a more restricted feasible region, the optimal solution

of the new subproblem will be greater or equal to the optimal solution of the original sub-

problem. In return, the optimal objective function value ofthe Lagrangian dual problem

will be greater than or equal to the original Lagrangian dualproblem’s objective function

value. This means that by adding bounds onθs, we can actually improve the quality of

our solutions. Below, we provide a method to generate tight bounds for the optimal VaR

value as a preprocessing method.

The relation of stochastic dominance is one of the fundamental concepts to compare

random variables (Mann and Whitney (1947); Lehmann (1955)). It introduces a preorder

in the space of real random variables. We refer to Muller and Stoyan (2002) for a de-

tailed and comprehensive discussion on stochastic dominance relations. In a stochastic

dominance based approach, random variables are compared bya point-wise compari-

son of some performance functions constructed from their distribution functions. In this

study, we utilize the first-order stochastic dominance (FSD) which considers the cumula-

tive distribution function itself as the performance function. LetFX andFY denote the

distribution functions of the random variablesX andY , respectively. The FSD relation

betweenX andY is defined as below:

Definition 2 A random variableX dominates another random variableY in the first

order; that is,X is stochastically larger thanY , if

FX(η) ≤ FY (η) for all η ∈ R. (3.19)

This ordering is denoted byX �(1) Y .

It is easy to see that by the definition of the FSD relation we have

[

X �(1) Y
]

⇔
[

VaRα(X) ≥ VaRα(Y) for all 0 < α ≤ 1
]

. (3.20)

We leverage on this fundamental relation between the concepts of VaR and FSD in order

to obtain a lower bound on the optimal objective value of VaR-f(x). We consider a

finite probability space where the sample space is given byΩ = {ω1, . . . , ω|S|} with

corresponding probabilitiesπ1, . . . , π|N |. Let yi = Y (ωi), i ∈ S, andxi = X(ωi), i ∈ S,

18

denote the realizations of the random variablesY andX, respectively. In our study,

we are interested in the random performance measure of our scheduling problem. In

particular, the realizations of the random variableY are obtained by solving a single-

machine problem independently for each scenario. On the other hand, the random variable

X denotes the random performance measure associated with theoptimal sequence of the

problem VaR-f(x). Next, we state formally that VaRα(Y) is a lower bound on the optimal

VaR obtained by solving VaR-f(x) for any given fixedα.

Proposition 1 Let Y represent a random variable, where the realizationY (ωi) is equal

to the objective value associated with the sequence that minimizes a predetermined ob-

jective under scenarioi, i ∈ S. Furthermore, the random variableX denotes the random

performance measure associated with the optimal sequencex∗ of the problem VaR-f(x).

Then, VaRα(Y) ≤ VaRα(X) for all 0 < α ≤ 1.

Proof. X(ωi) is the performance measure associated with the sequencex∗ under scenario

i. Sincex∗ is a feasible sequence for the problem of minimizing the performance measure

under scenarioi, we haveX(ωi) ≥ Y (ωi) for all i ∈ S. It trivially follows that P (X ≤

η) ≤ P (Y ≤ η) for all η ∈ R, i.e., X dominatesY in the first-order. Consequently,

VaRα(Y) ≤ VaRα(X) for all 0 < α ≤ 1 by (3.20).

Note that the random variableY does not have a special interpretation in the context

of our problem. It only serves the purpose of obtaining a valid lower bound on the optimal

objective function value of our problem.

Calculating the lower bound in Proposition 1 could be performed inO(|S|n logn)

time for the TCT and TWCT objectives by sorting the jobs in Shortest Processing Time

(SPT) and Weighted Shortest Processing Time (WSPT) orders,respectively. For total

tardiness, a pseudo-polynomial time algorithm by Lawler (1977) could be employed. On

the other hand, for TWT this lower bounding scheme isNP-hard since it requires solving

|S| instances of the deterministic TWT problem. Although a remedy to this issue would

be constructing a lower bound on the optimal TWT under each scenario, we prefered

solving the scheduling problems to optimality. This is due to the presence of a very fast

algorithm for the single-machine TWT problem proposed by Tanaka et al. (2009)

FindingθUB is easier than obtainingθLB since any feasible job sequence could be used

to compute an upper bound. To this end, we employ the optimal sequences of the deter-

ministic single scenario problems. For each sequence, the Value-at-Risk associated with

the random performance measure is computed and the smallestvalue over|S| sequences

is set as the initial upper bound onθ andθs, s ∈ S.

19

3.3 Solving the Lagrangian Subproblems

We start our discussion by assuming thatθUB = ∞. We differentiate between three

cases in our solution approach for (3.12)-(3.18) dependingon the value of the expression

µs + πs. If µs < −πs, then the objective function coefficient of the non-negative variable

θs is negative in (3.8), and the subproblem is unbounded. Otherwise, ifµs > −πs then we

can determine the optimal solution by analyzing the dichotomy that results from fixingβs

to zero or one:

βs = 1 → Ls(λ, µs,u) =
∑

j∈N

∑

k∈N

ujkH
sxs

jk + (µs + πs)θLB + λαπs, (3.21)

βs = 0 → Ls(λ, µs,u) =
∑

j∈N

∑

k∈N

ujkH
sxs

jk + (µs + πs)θs + λ(α− 1)πs. (3.22)

The last two expressions in (3.21) and the final expression in(3.22) are constant terms.

Observe that if(µs + πs) > 0 andβs = 1, then the optimal value ofθs is θs∗ = θLB,

and (3.8) is reduced to (3.21). In this case, the Lagrangian subproblem is anassignment

problem(AP) which minimizes the first term in (3.21) subject to (3.13), (3.14), and (3.17).

The optimal job processing sequencexAP for this case is then obtained by any standard

assignment algorithm, such as the famousHungarian algorithm, and the optimal objective

value is denoted as

Ds(λ, µs,u, βs = 1) = zAP + (µs + πs)θLB + λαπs, (3.23)

wherezAP is the optimal objective value of the assignment problem. Alternatively, if

LOF is used the subproblem for(µs + πs) > 0 andβs = 1 reduces to alinear ordering

problem(LOP). Unlike the polynomial time AP, LOP is known to beNP-hard (Rafael

and Reinelt (2011)). Nevertheless, LOP could be consideredas “easy” when compared to

directly solving the Lagrangian subproblems.

Unfortunately, ifβs = 0 then there is a trade-off between the direct cost of the as-

signmentxs (or linear orderingδs) expressed by the first term in (3.22) and the cost

(µs + πs)θs, whereθs is set asmax(θLB, f
s(xs)) due to the structure of the constraints

(3.15), (3.18), and becauseθs appears with a positive coefficient in the objective. Finally,

once we relax our initial assumption and setθUB < ∞, we immediately notice that the

feasible region of the Lagrangian subproblems shrink. Therefore, feasibility also becomes

an issue. In the next section, we will use these observationsin order to compute the opti-

20

mal solution of subproblems analytically rather than tackling these subproblems using an

integer programming solver.

3.3.1 Preprocessing

Depending on the preferred objective function, tackling the subproblems using an integer

programming solver may take extreme amounts of time. Therefore, our primary strategy

is to avoid solving subproblems as integer programs for somespecial cases where the

optimal objective function value could be easily computed.

Our first observation is regarding the feasibility of the subproblem for the caseβs = 0.

Remember that in Section 3.2, we computed the minimum possibleθs under each scenario

s, call it f s
min. Now that we havef s

min at hand, we can compare it with theθUB. If

f s
min > θUB, thenβs = 0 cannot be a feasible solution since even the minimum possible

f s(x) exceeds the upper bound. Therefore, we can fixβs = 1 and solve AP or LOP to

get the optimal sequence and the objective function value. Notice that the tighterθUB is,

the more likely that this routine will eliminate subproblems.

A second observation is forθs having a zero coefficient in (3.8), i.e.πs + µs = 0. In

this case, the trade-off described above forβs = 0 disappears. Notice that the constant

term in (3.22) causesβs = 0 to be in the optimal solution unless it is not feasible due to

θUB. The optimal job sequence and the rest of the objective function will be determined

again by solving an AP or a LOP.

Finally, we compare the cost of a sequence,
∑

j,k∈N ujkH
sxjk, for two candidate se-

quences. First one is thexAP which is the optimal solution of AP. The other candidate

xs
min is the sequence wheref s(xs

min) = f s
min. If the difference between the cost of the

sequencexAP andxs
min is 0, then we may claim thatxs

min is the optimal solution of the

subproblem. Once the sequence is known, it is trivial to compute the other components of

the solution, as it was the case before. Similar to above, if LOF is being used,xAP should

be substituted with theδLOP of the LOP.

Notice that the coefficient ofx depends on the scenario index only throughHs. Ob-

serve thatH1 = π1 − 1 < 0 andHs = πs > 0 for s ≥ 2. Therefore, the optimal job

sequence obtained from AP or LOP will be the same in scenarioss ≥ 2. For these sce-

narios, we simply minimize
∑

j∈N

∑

k∈N ujkxjk and then multiply the objective function

value withHs. As a result, solving two instances of AP or LOP at a single iteration suf-

fices. In Figure 3.1, the percentage of subproblems that are solved through the described

procedures are displayed. The figure is created using the results of 10 representative in-

21

stances. Here, Case 1, 2 and 3 represent the procedures described above in the order of

Case 4 (45%)

Case 3 (8%)

Case 2 (15%)

Case 1 (32%)

Figure 3.1: Percentages of subproblems that are solved using the proprocessing proce-
dures and by solving mixed integer programs.

explanation. Case 4, on the other hand, represents the subproblems which require mixed

integer programs to be solved. It is notable that more than50% of the subproblems could

be solved during the preprocessing stage.

3.3.2 A Polynomially Solvable Case for TCT

If we remove theθLB andθUB, then for the TCT objective the subproblems turn out to be

polynomial under APDF. Remember that forβs = 1 the problem is already polynomial.

For β = 0, we will use the closed form of TCT in (2.4) and plug it into (3.22) which

becomes:

Ls(λ, µs,u | βs = 0)

=
∑

j∈N

∑

k∈N

ujkH
sxs

jk + (µs + πs)

(

∑

j∈N

∑

k∈N

(n− k + 1)pjx
s
jk

)

+ λ(α− 1)πs,

=
∑

j∈N

∑

k∈N

ūjkx
s
jk + λ(α− 1)πs,

where

ūjk = ujkH
s + (µs + πs)(n− k + 1)pj.

Ignoring the constant part, the problem becomes another AP which is again polynomially

solvable. We compare the objective function values of two casesβs = 1 andβs = 0

where the minimum becomes the optimal solution of the subproblem. Note that we can

still put a positive lower bound onθs not greater thanmins∈S f
s
min, resulting in improved

22

results. Nevertheless, removing the bounds onθs in Lagrangian dual problem resulted in

worse outcomes than the lower bound described in Section 3.2. Therefore, we preferred

solving mixed integer programs.

3.3.3 Solving Subproblems as Mixed Integer Programs

If the preprocessing procedure cannot solve a subproblem, we have to solve it as a mixed

integer program. In this section, we pick the best formulations for TCT, TWCT, and TWT

objectives and provide the necessary modifications to (3.13)-(3.18).

VaR-TCT: Our preliminary computational experience suggested that the APDF for-

mulation is superior to LOF when the objective function is TCT. Replacingf s(xs) with

(2.4) in (3.15), and without the need of additional constraints, we are able to model the

VaR-TCT problem.

VaR-TWCT: Due to the job-dependent unit costswj, we need additional constraints

to express TWCT in APDF. On the other hand, using linear ordering variables one can

simply express TWCT as:

∑

j∈N

wjCj =
∑

j∈N

wjpj
∑

k∈N

δjk. (3.24)

Oncef s(xs) in (3.15) is replaced with the expression above, and substituting (3.13)-(3.14)

with their counterparts in LOF, the model is complete.

VaR-TWT: Unfortunately, TWT cannot be expressed in closed form using either the

assignment or the linear ordering variables. As a result, werequire additional constraints

to model tardiness as described in Chapter 2. We prefer usingLOF since our preliminary

studies suggested that the computational performance is better when compared to the

performance of subproblems formulated with APDF. For completeness, we present the

Lagrangian subproblem formulated using LOF below:

min Ls(λ, µs,u) (3.25)

subject to δsjj = 1, ∀j ∈ N, (3.26)

δsjk + δskj = 1, 1 ≤ j < k ≤ n, (3.27)

δsjk + δskl + δslj ≤ 2, ∀j, k, l ∈ N : j 6= k, k 6= l, l 6= j, (3.28)

Cs
j =

∑

k∈N

pskδ
s
kj, ∀j ∈ N, (3.29)

T s
j ≥ Cs

j − dj, ∀j ∈ N, (3.30)

23

T s
j ≥ 0, ∀j ∈ N, (3.31)
∑

j∈N

wjT
s
j − θs ≤ T s

maxβ
s, (3.32)

βs ∈ {0, 1}, (3.33)

δsjk ∈ {0, 1}, ∀j, k ∈ N. (3.34)

θLB ≤ θs ≤ θUB. (3.35)

We provide the pseudocode of our proposed method for solvingthe Lagrangian subprob-

lems in Algorithm 1.

3.3.4 Parallel Programming

In the stochastic programming literature, parallelization of stochastic optimization meth-

ods receives considerable attention due to the independentstructure of the subproblems.

Ruszczyński (1993) uses the notion of parallel computing in order to solve a multi-stage

stochastic inventory management problem. Birge et al. (1996) similarly focus on multi-

stage problems where the decomposed components of the scenario tree are tackled using

independent processors. Further, Linderoth and Wright (2003) work on algorithms for

two-stage stochastic linear programming models with recourse on a grid computing plat-

form.

Similar to such studies, our single-stage stochastic programming model could benefit

from the parallel computing of subproblems. Noting that thelargest portion of time in our

solution algorithm is spent on solving subproblems, parallel programming offers a great

potential on improving the overall performance. In order toincorporate parallelization,

at every iteration we gather all the subproblems, which could not be solved analytically,

into a set. At every step, we pickK subproblems from this set and solve them using

K-many processors. Once this batch of subproblems are all completed, we pickK more

subproblems from the remaining of the set and continue untilall the subproblems are

solved. This allows us to solve the subproblems in⌈ |S|−A

K
⌉ steps whereA is the number

of subproblems that could be solved analytically. Comparedto the serial algorithm, in

which we require|S| − A steps to solve the integer programs at every iteration, parallel

computing offers a good advantage as the number of processors grows.

An important point should be made regarding the balancing ofworkload among the

processors. Our subproblems do not necessarily have similar solution times. In fact, the

parameters of a scenario could make a subproblem relativelymore difficult compared to

24

Algorithm 1: Solving the Lagrangian subproblems.
input : Values of the dual variablesλ, µ, andu.
output: The optimal objective value ofDs(λ, µs,u) and the optimal solutionxs

∗,
βs
∗, θs∗ for all scenarioss ∈ S.

1 Solve two assignment problems, retrievexAP+ ,xAP− andzAP+ , zAP−;
/* xAP− and zAP− will be used in scenario 1, and their

positive counterparts will be used for the other
scenarios. For brevity, in the description below we
use xAP for both xAP+ and xAP− and zAP for both zAP+

and zAP−. */
2 for s = 1 to |S| do
3 if f s

min ≤ θUB then
4 if πs + µs = 0, andf s(xAP) ≤ θUB then
5 βs = 0; θs = max{θLB, f s(xAP)}; xs = xAP ;
6 continue with the next scenario;
7 end

8 if u⊤xAPH
s − u⊤xs

minH
s = 0 then

/* xs
min is an alternate optimal solution to the
assignment problem. */

9 if Ds(λ, µs,u | βs = 0) < Ds(λ, µs,u | βs = 1) then
10 βs = 0; θs = max{θLB, f s(xs

min)}; xs = xs
min;

11 else
12 βs = 1; θs = θLB; xs = xmin;
13 end
14 continue with the next scenario;
15 end

/* If the subproblem is not solved up to this
point, then we have to solve an integer
program. */

16 Solve integer program;
17 else
18 βs = 1; θs = θLB; xs = xAP ;
19 end
20 end

25

the other subproblems. In order to efficiently utilize the processors, one must carefully

balance the workload and avoid assigning difficult subproblems to the same processor.

In our study, before solving the integer programs, we sortedthe subproblems by looking

at their most recent solution times. We used the Longest Processing Time (LPT) rule

which is a pretty good approximation to minimizing the makespan on parallel processors

(see Pinedo (1995)). This strategy not only reduces the makespan, but also decreases

the probability of leaving a processor idle by assigning similar difficulty subproblems to

different processors. As a result, the workload is more balanced and we are able to utilize

the given processors more effectively.

3.4 Solving the Lagrangian Dual Problem

In order to attain the best lower bound on VaR-f(x), several methods are proposed in the

literature. Among all, the simplest is called thesubgradient method. In this method, at ev-

ery iteration the Lagrangian subproblems are solved. Then,the dual variables are updated

in the opposite direction of the subgradient using an appropriate step size. More infor-

mation on the algorithm and the step size rules for minimization can be obtained from

Wolsey (1998). In addition, several sophisticated algorithms have been developed, such

as thebundle methods(see Hiriart-Urruty and Lemaréchal (1993)). In our preliminary

studies, we have tried both of these methods in order to solveour Lagrangian dual prob-

lem. However, we have faced several convergence issues which prevented the algorithm

to reach to a solution in a sufficient amount of time. Therefore, we implemented another

strategy known as thecut-generation algorithm. This algorithm is based on the idea that

the Lagrangian dual problem (3.11) can be equivalently represented by a linear program:

max
λ≥0,µ,u

D(λ,µ,u) = max
λ≥0,µ,u

∑

s∈S

ηs (3.36)

subject to

ηs ≤ Ls(λ, µs,u | xs, βs, θs)
∀s ∈ S,

∀(xs, βs, θs) ∈ Φ
s

(3.37)

λ ≥ 0, (3.38)
∑

s∈S

ηs ≤ θUB (3.39)

µs ≥ −πs ∀s ∈ S, (3.40)

26

∑

s∈S

µs = 0. (3.41)

This linear program (3.36)-(3.41) is called themaster problem. The right hand side of

the term in (3.37) represents the Lagrangian function described in (3.8) evaluated at the

solution(xs, βs, θs) under scenarios. Here,Φs represents the set of all feasible solutions

under scenarios. Fortunately, we do not need to generate all elements of the set Φs

∀s ∈ S, but a small portion of it will suffice to obtain the optimal objective function value

of the master problem. As a matter of fact, instead of solvingthe master problem, we solve

a restricted master problemwhere we start with a small subset of the constraints (3.37),

also known as ’cuts’. The algorithm works iteratively wherethe Lagrangian subproblems

(3.10) are solved at each iteration, a set of new cuts is constructed based on this solution

and appended to the restricted master problem, then the duals are updated according to

the new solution of the restricted master problem. The constraints (3.39) ensure that the

restricted master problem is always bounded, whereθUB is an upper bound on the VaR

and the optimal objective function value of the master problem.

As theΦs is not completely generated, the master problem may containextreme rays.

Therefore, we put an upper bound (3.39) on the objective function of the master problem

to avoid unboundedness. In order to increase the stability of the algorithm, we eliminated

unbounded subproblems (see Section 3.3) using the constraint (3.40). In order to preserve

the relation described in (3.6), constraint (3.41) is enforced. We also imposed (3.38) since

the dualized constraint is in inequality form. Finally, if LOF is used instead of APDF, due

to (3.26), the following set of constraints must be appendedto the master problem:

ujj = 1 ∀ j ∈ N.

We note that (3.36)-(3.41) is a “multi-cut” formulation. Analternative would be using

a “single-cut” formulation where the constraint (3.37) should be replaced by

η ≤
∑

s∈S

Ls(λ, µs,u | xs, βs, θs)
(

(x1, β1, θ1), ..., (x|S|, β |S|, θ|S|)
)

∈ Φ,

where

Φ = Φ
1 ×Φ

2 × ...×Φ
|S|.

Such a modelling will result into less number of constraintsin the master problem, making

it easier to solve. On the other hand, this increases the required number of iterations

for convergence tremendously. In our case, solving the subproblems is more expensive

27

than solving a relatively difficult linear program. Therefore, our primary objective is to

decrease the number of iterations. In consequence adding|S|-many cuts at every iteration

is more favorable to our cause.

3.4.1 Updating Bounds & Cuts

Recall that the cut generation algorithm creates feasible job processing sequences through

its progress. At every iteration, we use the sequences from the solutions of Lagrangian

subproblems, and compute the VaR associated with these sequences. We compare these

VaR measures with the best primal solution that we have obtained so far. If one of these

sequences produces a better objective function value, we update our best primal solution.

Similarly, one can update the best lower bound attained by using the objective function

value of the Lagrangian problem. Note that a better primal solution and a better lower

bound could be used to update theθUB andθLB in the master problem and the Lagrangian

subproblems. In fact, when the bounds onθs ∀s ∈ S are updated, we observe a consider-

able improvement in the convergence rate of the algorithm and the quality of the terminal

lower bound. This observation is supported by the fact that tighter bounds reduce the

size of the convex hull of Lagrangian subproblems. In consequence, the objective func-

tion value associated with a sequence in the modified Lagrangian subproblem will be no

smaller than the objective function value in the original subproblem. Therefore, the op-

timal objective function value of the modified master problem will be at least as large as

the optimal objective function value of the current master problem.

One major problem that arises due to this update is the infeasibility regarding the

previously appended cuts. More specifically, a value ofθs obtained at a previous iteration

may not necessarily be feasible due to the newθLB andθUB. However, thisθs is already

appended as a cut to the restricted master problem. As a result, we over-constraint the

master problem, so the algorithm may terminate prematurely. In order to fix this issue,

we have to ensure that the previously appended cuts are feasible with respect to the new

boundaries. Notice that we only need to check the values ofθs’s. If they are turn out to

be infeasible, we either have to delete them from the master problem or reoptimize the

solution. In our study, we prefer to extract the sequence from the cut, which contains

infeasibility, then solve the Lagrangian subproblem without changing this sequence. In

other words, we recompute the value ofβs andθs for the previously generatedxs. We

empirically observed that using the initial values of the dual variables,λ = 0,µ = u = 0,

while reoptimizing theβs andθs provided the best results in terms of convergence speed.

28

If this cut-update routine is performed whenever one of the bounds is updated, we

ensure that the algorithm converges to the true optimal solution of the Lagrangian dual

problem. Furthermore, the routine allowed us to updateθUB andθLB during an interme-

diate iteration, hence considerably improved our results.

3.4.2 Updating the Non-anticipativities

Remember that in Section 3.1 we have used the set of non-anticipativity constraints in

(3.2) for θs, ∀s ∈ S, s 6= 1. Obviously, the choice of usingθ1 in the left hand side of

this constraint is arbitrary. In fact, anyθs could be used instead ofθ1. However, it turns

out that the optimal objective function value of the Lagrangian dual problem is highly

dependent on the scenario that is used in the left hand side ofthese constraints. This is

equivalent to saying that the quality of our lower bound depends on the non-anticipativity

that we pick. Notice that this only applies to the relaxed version of the problem. In other

words, the choice of non-anticipativity cannot affect the optimal objective function value

of the non-relaxed problem. We set up a computational study in order to find a scenariok

for the non-anticipativity constraints redefined below:

θk = θs ∀s ∈ S, s 6= k.

We have identified that the scenario, which defines the VaR in the initial lower bound

obtained by optimally solving the underlying deterministic problems (see Section 3.2),

should be selected as scenariok. In fact, in almost all instances this selection resulted

in the best lower bounds that we have ever achieved for those instances. Consequently,

as an initialization step, we incorporate this update on thenon-anticipativity constraints

to our algorithm so that the terminal quality of our results is improved. Notice that the

implementation could easily be handled by a simple re-indexing of the scenarios. Once

the objective function values of the deterministic problems are obtained, it is sufficient to

swap the scenariok with scenario1 in the data just before initializing subproblems.

3.4.3 Optimal Solution of the Lagrangian Dual Problem for a Special

Case of the Lagrangian Function

In this section, we present a proof regarding the optimal solution of the Lagrangian dual

problem when the direct cost of assignment,
∑

j∈N

∑

k∈N ujkH
sxjk, is neglected (i.e.

whenu = 0).

29

Proposition 2 If the dual variablesu are restricted to zero, then the lower bound on VaR

obtained from the Lagrangian Dual problem(3.11) is no better thanθ0
LB

whereθ0
LB

is

obtained by optimally solving the deterministic problems for each scenario and computing

the(1 − α)-quantile of the objective function values as described in Section 3.2. That is,

maxλ≥0 ,µ,u=0D(λ,µ,u) = θ0
LB

.

Proof. We claim that the optimal solution tomaxλ≥0,µ,u=0 D(λ,µ,u) is given by

λ∗ = 0, µ∗ = (1−π1,−π2, ...,−π|S|), u∗ = 0. It is a well known fact thatD(λ,µ,u) is

a non-differentiable piecewise linear and concave function. Therefore, we can complete

the proof by showing that the zero vector is a subgradient ofD(λ,µ,u) at (λ∗,µ∗,u∗).

Our strategy is to first show thatD(λ∗,µ∗,u∗) = θ0LB and then prove that0 is a sub-

gradient at(λ∗,µ∗,u∗). DefineS0 = {s | f s(xs
min) ≤ θ0LB}, wheref s(xs

min) andxs
min

are the optimal objective function value and the optimal solution of the corresponding

deterministic problem for scenarios. Similarly, defineS1 = {s | f s(xs
min) > θ0LB}, so

thatS = S0 ∪ S1. Further, assume that the scenarios are re-indexed according to Section

3.4.2, so that scenario1 has an objective function value equal toθ0LB.

Observe that the objective functions of the Lagrangian subproblems reduce to

Ls(λ, µs,u) =

{

θ1 for s = 1

0 for s ≥ 2.

at (λ∗,µ∗,u∗). Thus, we haveD(λ∗,µ∗,u∗) =
∑

s∈S D
s(λ∗, µs

∗,u
∗) = θ1∗, whereθ1∗ =

f 1(x1
∗) = θ0LB andβ1

∗ = 0. For other scenarios, we specify the optimal subproblem

solutions as
{

θs∗ = θ0LB, β
s
∗ = 0 if s ∈ S0 \ {1}

θs∗ = θ0LB, β
s
∗ = 1 if s ∈ S1

.

For these subproblem solutions,d
1 = (d1λ,d

1

µ,d
1

u) is a subgradient at(λ∗,µ∗,u∗), where

d1λ =
∑

s∈S

πsβs
∗ − (1− α) =

∑

s∈S1

πs − (1− α) ≤ 0

d
1

µ = (θ2∗ − θ1∗, θ
3
∗ − θ1∗, ..., θ

|S|
∗ − θ1∗) = 0

d
1

u = 0.

A crucial observation is that the subproblems have many alternate optimal solutions.

In particular,θs∗ = θ0LB, βs
∗ = 1 ∀s ∈ S is also optimal for the Lagrangian subproblems at

30

(λ∗,µ∗,u∗). We compute a second subgradientd
2 = (d2λ,d

2

µ,d
2

u) at (λ∗,µ∗,u∗) with:

d2λ =
∑

s∈S

πsβs
∗ − (1− α) = α > 0

d
2

µ = 0

d
2

u = 0.

Since the convex combination of two subgradients is anothersubgradient, we are ensured

thatd3 = 0 is a subgradient at(λ∗,µ∗,u∗). Clearly, we can always identifym1, m2 ≥

0, m1 +m2 = 1 such thatm1d
1
λ +m2d

2
λ = m1

(
∑

s∈S1 πs − (1− α)
)

+m2α = 0.

3.4.4 Dual Stabilization

Although theoretically correct, the straightforward implementation of the cut-generation

algorithm may lead to instability in terms of convergence. More specifically, the objective

function value of the Lagrangian dual at the current iteration might be significantly better

than the objective function value in the next iteration (Kallehauge et al. (2006)). As a

matter of fact, even initializing the cut-generation algorithm with the ‘best’ values of the

dual variables has little effect on convergence (Frangioniand Gendron (2010)). This is

due to the incapability of the Lagrangian problem to generate the necessary subset of

(xs, βs, θs) to prove the optimality of the Lagrangian dual problem. Therefore, a remedy

to this issue would be forcing the algorithm to explore the region where improvement on

the objective function value of Lagrangian dual problem is more likely to be observed.

In our study, we have also observed high fluctuations in the values of the dual vari-

ables and consequently in the objective function value of the Lagrangian problem at every

iteration. Due to such instability, the algorithm requiresa large number of iterations to

be able to converge to a solution. In order to prevent the instability, several stabilization

functions are proposed in the literature. One of these approaches, theBox-Step Method

or theTrust Region Method(Frangioni and Gendron, 2010; Kallehauge et al., 2006), con-

fines the dual variables into a ‘box’. This method prevents the duals from taking values

far from the center of the box, known as thestability center. Another type of stabilization

functions is thelinear penalty functions(Frangioni and Gendron (2010)) where the dual

variables are penalized according to their distance from the stability center. In fact, the

imposing linear penalty functions could be considered as anextension of the box-step

method where the cost is∞ across the boundaries of the box. In both methods, we update

the stability center whenever a sufficient improvement in the best objective function value

31

of the Lagrangian dual is observed(Serious Step). If there is no sufficient improvement,

the center is kept the same(Null Step)to explore the current region more. A more elab-

orate discussion on the stabilization functions and additional methods could be found in

Frangioni and Gendron (2010). In our study, we adapt the stabilization logic described in

Kallehauge et al. (2006) with additional linear penalty functions on the dual variables. In

particular, we use the Box-Step Method and linear penalty functions together.

We have empirically observed that the major source of instability is due tou, therefore

employed dual stabilization techniques only onu. In addition, we have also observed that

many components ofu are0 in the optimal solution of the Lagrangian dual problem.

Therefore, we fixed the stability center of everyujk to 0 which not only improved the

stability of the algorithm but also the performance of the subproblems. This is because

the closerujk’s are to0, the more our subproblem looks like the underlying deterministic

problem. Below we present the stabilization functionΨ(u) we used in our study:

Ψ(u) =
∑

j∈N

∑

k∈N

Ψjk(ujk),

where

Ψjk(ujk) =























+∞, if ujk > ∆+

−ujkΓ, if 0 ≤ ujk ≤ ∆+

ujkΓ, if ∆− ≤ ujk ≤ 0

−∞ if ujk < ∆−

.

Here∆ represents the width of the box that our dual variables are restricted into, andΓ is

the linear penalty cost term. We note that the stabilizationfunctionΨ(u) is directly added

to the objective function of the restricted master problem.This function is a4-piecewise

linear penalty functionwhich can be modeled by defining two copies of the dual variables

ujk, namelyu+
jk andu−

jk, ∀j, k ∈ N . We can then express|ujk| asu+
jk + u−

jk, andujk as

u+
jk − u−

jk. Notice that the number of variables in the master problem only increases by

|N | which does not have any significant effect on the solution times. We illustrate the our

stabilizing function in Figure 3.2.

We will now describe our stabilization scheme. We propose a 3-phase stabilization

strategy. At the start of the algorithm, we setu = 0 (Phase I). In Section 3.4.3, we

have already given the optimal solution of this case. Therefore, we only need to solve

the master problem to get the new values ofλ andµ. Once the gap between the objective

function value of master problem, call itzLD andθLB is closed, we set the new boundaries

for u such that∆− ≤ u ≤ ∆+ (Phase II). From this point on, anyujk could take nonzero

32

0 ∆+∆−

Γ Γ

Figure 3.2: Stabilizing function onu.

values. Therefore, the stabilization effect of the linear penalty functions is observed from

this point on.

At every iteration, we compute a parameterρ which is defined as:

ρ =
Dk −Dk−1

zk−1
LD −Dk−1

.

Here,Dk andDk−1 represent the value of the dual function at iterationk andk − 1,

respectively, andzkLD is the objective function value of the master problem at iteration

k. Observingρ = 1 is a strong indication that the current bounds onu are restricting

the potential improvement ofD, therefore we increase the width of the box,∆. On the

other hand, ifρ < 0, then we decrease∆ to explore the region more. Whenever the

bounds are updated, we increase the value of the linear penalty costs in the new problem

to keep theujk close to0. Finally, after solving the master problem, ifzLD−D

D
is within

a predetermined gap, we reduce the linear penalty costs to prevent the algorithm from

terminating prematurely. If these costs become smaller than 10−4, we completely remove

them.

In order to move on to Phase III, one of two termination conditions of Phase II must

be fulfilled. The first condition occurs when the optimality gap, zLD−D

D
, reaches a very

tight tolerance value. In our study, we set this value to10−8. This suggests that in Phase

II, we have to solve the Lagrangian dual problem very close tooptimality. This phase

is essential for the achievement of large improvements on the Lagrangian dual problem

since such improvements could only be achieved by making small improvements at the

initial stages. Note that the tolerance value suggested in this phase is too strict, therefore

may not be achieved within a reasonable amount of iterations. Our second condition is

a remedy to this problem. This condition is related to the number of times the bound

33

attained in Phase I is exceeded in Phase II. First, we wait forthe algorithm to exceed

the lower bound of Phase I for at least 15 times. We expect the larger improvements on

the objective function value of the Lagrangian dual problemduring and after this stage.

In order to terminate, we make sure that no sufficient improvements will be observed in

this phase any more. After the lower bound of Phase I is exceeded 15 times, we wait

for another 15 iterations. Once these iterations are also carried out, at each iteration we

check whether the improvement within 15 iterations is larger than a limit,%0.1. If the

improvement is less than this limit, we move on the Phase III.

As described previously, one of the conditions to enter Phase III is achieved when

the optimality gap is below a strict tolerance. In such a case, we immediately remove

the bounds onu to provide room for improvement for the objective function value of

the Lagrangian dual problem. On the other hand, if Phase II ends due to our second

condition we keep these bounds until termination. Furthermore, we update the box width

according to the value ofρ as described previously. We continue in Phase III until the

linear penalty functions onu are removed and a relatively loose optimality gap(10−3)

has been achieved. This is the final termination criteria that we check before terminating

the whole algorithm.

3.4.5 Suboptimal Cuts

An important note is that the cut-generation algorithm can also utilize any suboptimal

solutions for a given values of the dual variables. In other words, we can use any feasible

job sequence, compute the correspondingθs andβs, then append the solution as a new

cut to the master problem. Using such suboptimal cuts is equivalent to multiple-pricing

in column generation where a set of non-basic variables are selected instead of a single

non-basic variable (see Chvátal (1983)). This strategy isfruitful when it comes to de-

creasing the number of iterations that our algorithm requires for convergence. In order to

implement it, we gather all the suboptimal solutions from the solution pool of the mixed

integer program solver we use at every iteration, and appendthem to the master problem.

In order to control the amount of suboptimal cuts, we impose alimit on the number of

suboptimal solutions, and their gap of optimality. In our study, we preferred at most 10

suboptimal solutions per scenario which should be within atmost40% optimality gap.

A further use of suboptimal cuts would be when the integer programming subproblem

takes too much time to be solved to optimality. Occasionally, the objective function of a

subproblem can make it extremely difficult. In fact, a singlesubproblem could consume

34

more than three or four times larger amount of seconds than the total solution times of

all other subproblems. On the other hand, we could avoid solving such subproblems to

optimality by utilizing a suboptimal solution of the Lagrangian subproblem. Neame et al.

(2000) present an outer approximate subdifferential method applied to an uncapacitated

facility location problem where they use a dynamically updated approximation parameter.

In our study, we impose a time limit on our integer programming subproblems resulting

in suboptimal solutions with uncertain optimality gaps. Inorder to increase the quality

of the suboptimal solutions, we can use of the optimal solution of the subproblem for

βs = 1 by a simple comparison of its objective function value and the value returned

from the prematurely terminated integer program. Notice that the time limit may result

into poor convergence. Therefore, we expand the limit by 50%at every iteration if the

subproblem could not be solved to optimality. We also note that there will be at least

one feasible solution to the integer programming subproblems, coming from previous

iterations, which prevents the program from terminating with no solution at hand.

3.4.6 Cut Management

Since we are adding at least|S| constraints to our master problem at every iteration, it is

likely that this linear program will slow down the cut-generation algorithm as the number

of iterations grow. Further, the linear programming solverfaces numerical difficulties

due to the huge number of constraints. In order to prevent these, we developed a cut

management strategy. Once the master problem is solved, we analyze values of the dual

variables which correspond to the cuts in the master problem. Note that, observing a dual

variable, which has a value of0, suggests that the corresponding constraints is likely to be

inactive. We record a statistic for each cut in the restricted master problem which counts

the successive number of iterations that the correspondingdual variable is fixed at0. Once

this statistic exceeds 5 iterations, we labeled the cut as redundant. However, we do not

carry out an immediate deletion since removing cuts at everyiteration may slow down the

convergence. Instead, we remove constraints from the master problem every 5 iterations.

To summarize, at every 5 iterations, if we observe a constraint with an associated dual

fixded at0 for more than 5 iterations, we remove that constraint. Otherwise, we keep it.

This approach successfully prevents the growth of the number of constraints, resulting in

steady and fast solution times for the master problem.

35

3.4.7 The Cut-Generation Algorithm

Below, we provide the pseudocode of our algorithm for solving the Lagrangian dual prob-

lem.

Algorithm 2: Solving the Cut-Generation Algorithm.

1 Compute initialθLB andθUB; // Section 3.2
2 Update non-anticipativities; // Section 3.4.2

3 while termination criteria are not satisfieddo

4 Compute
∑

s∈S D(λ,µ,u); // Algorithm 1
5 UpdateθLB andθUB;

6 Add optimality cuts;
7 Add suboptimal cuts;

8 if bounds are updatedthen
9 Update cuts; // Section 3.4.1

10 Update subproblems and master problem;
11 IncreaseΓ; // Section 3.4.4
12 end

13 Adjust∆; // Section 3.4.4
14 Solve the restricted master problem;
15 Eliminate redundant cuts;
16 end

36

Chapter 4

Computational Study

The goals of our computational study are two-fold. In the first part, we demonstrate

that the cut-generation algorithm described in Chapter 3 produces good lower bounds for

the VaR measure on the three random performance measures, TCT, TWCT and TWT.

Furthermore, the results indicate that the algorithm yields feasible solutions of very high

quality for the risk-averse single-machine scheduling problems for almost all instances

that we have experimented. In the second part, the value of the proposed risk-averse

model is investigated with respect to that of a risk-neutralmodel.

All runs were conducted on a machine with Intel®Core™i7 960 3.20GHz CPU and

24 GB of memory. The mathematical programming formulationswere solved byCPLEX

12.4, and the cut-generation algorithm was implemented in C++. Further, the Boost

Library was used to implement multi-threading in the cut-generation algorithm. In this

study we allowed only two cores to be utilized simultaneously. Note that,CPLEX 12.4

is able to utilize more than one core to solve a single mathematical program. As our

parallelization strategy aims to solve multiple subproblems at the same time, we limited

CPLEX to use only a single core while solving the mixed integer program subproblems.

However, when solving the master problem, assignment or linear ordering problems, we

allowedCPLEX to utilize up to two cores.

4.1 Generation of problem instances

While our modeling framework allows for randomness in all problem parameters, we

focus on the uncertainty in the processing times in our computational study as justified

by the discussion in Chapter 1. For each instance, we generate a set of equally likely

37

scenarios representing the joint realizations of the processing times by adding negative or

positive perturbations to each estimated processing timep̂j , wherep̂j follows an integer

uniform distributionU [1, 100] for j = 1, . . . , n. To this end, letεj denote the random

perturbation for jobj, whereεsj is the realization ofεj for scenarios. Then, the processing

time of job j under scenarios is given bypsj = p̂j + εsj. In our first set of experiments,

we setεj ∼ U(−p̂j/4, p̂j/3), which results inE(p̂j + εj) = p̂j + p̂j/24 and a coefficient

of variation (CV) of0.16. CV is a normalized measure of dispersion and is defined as

CV (p̂j + εj) = standard deviation(p̂j + εj)/E(p̂j + εj) for the processing time of job

j. We also generated an additional data with a higher CV (0.26)to further analyze the

value of our risk-averse model in Section 4.3. This data was generated by drawingǫj from

U(−p̂j/4, p̂j).

In the literature, it is well established that the tightnessand the range of the due dates is

a primary determinant of difficulty for due date related problems. Thus, by following the

popular scheme of Potts and van Wassenhove (1982), we first generate the due dates from

a discrete uniform distribution[⌈(1−TF −RDD/2)× P̄⌉, ⌈(1−TF +RDD/2)× P̄⌉],

whereP̄ is the sum of the expected processing times, i.e.,P̄ =
∑n

j=1

∑

s∈S π
spsj . The

tardiness factor TF is a rough estimate of the proportion of jobs that might be expected

to be tardy in an arbitrary sequence (Srinivasan (1971)) andis set to 0.4 and 0.6. Hard

instances generally result from small values of TF (see Bulbul et al. (2007); Sen (2010)).

The due date range factor RDD is set to 0.8 to have mediocre contention around the mean

due date. The weights are drawn from an integer uniform distributionU(10, 20).

4.2 Computational Performance of the Cut-Generation

Algorithm

In the first part of our study, we generate 5 instances for eachcombination of TF= 0.4, 0.6,

n = 10, 15, 20, 30, and|S| = 50, 100, 150, 200, as described in the previous section. The

risk parameterα = 0.90. For each instance, we run our cut-generation algorithm and

useCPLEX to solve the VaR-f(x) problem to optimality. The results averaged over 5

instances appear in Tables 4.1-4.3 for TCT, TWCT and TWT performance measures,

respectively.

The time limit forCPLEX is set to 3600 seconds, and if optimality is not proven in the

time allotted, then we record both the best lower bound and the incumbent solution avail-

able. Similarly, we impose a time limit of 3600 seconds on thecut-generation algorithm,

38

|S|
50 100 150 200

n = 10

UB Gap 0.2% 0.0% 0.0% 0.0%
LB Gap -1.0% -1.1% -1.2% -1.5%
Time (Cut-Gen) 5.9 11.5 31.4 17.9
Time (CPLEX) 0.1 0.2 0.5 0.6

n = 20

UB Gap 0.7% 0.5% 0.6% 0.4%
LB Gap -1.6% -1.3% -1.5% -1.5%
Time (Cut-Gen) 19.2 39.8 34.5 60.7
Time (CPLEX) 1.4 2.1 6.5 6.3

n = 30

UB Gap 0.9% 0.9% 0.9% 0.7%
LB Gap -1.4% -1.4% -1.7% -1.4%
Time (Cut-Gen) 43.0 71.5 120.7 180.2
Time (CPLEX) 19.0 22.9 102.8 104.9

Table 4.1: Effectiveness of the cut-generation algorithm under TCT performance measure
(α = 0.90).

|S|
50 100 150 200

n = 10

UB Gap 0.1% 0.1% 0.0% 0.0%
LB Gap -1.0% -1.1% -1.4% -1.2%
Time (Cut-Gen) 4.8 10.2 13.5 15.1
Time (CPLEX) 0.1 0.1 0.2 0.4

n = 20

UB Gap 0.5% 0.4% 0.3% 0.2%
LB Gap -1.1% -1.0% -1.4% -1.6%
Time (Cut-Gen) 47.7 72.9 115.5 152.7
Time (CPLEX) 0.8 1.1 3.3 7.1

n = 30

UB Gap 0.6% 0.5% 0.4% 0.3%
LB Gap -1.0% -1.1% -1.1% -1.2%
Time (Cut-Gen) 311.3 570.2 1381.5 1356.2
Time (CPLEX) 11.5 18.1 95.6 171.9

Table 4.2: Effectiveness of the cut-generation algorithm under TWCT performance mea-
sure (α = 0.90).

39

|S|
50 100 150 200

T
F

=
0.

4

n = 10

UB Gap 0.0% 0.0% 0.0% 0.0%
LB Gap -2.6% -0.5% -1.7% -0.9%
Time (Cut-Gen) 21.7 9.1 75.6 33.4
Time (CPLEX) 3.4 34.7 69.1 120.4

n = 15

UB Gap 0.0% 1.6% 1.9% 1.8%
LB Gap -1.1% -1.6% -2.1% -1.8%
Time (Cut-Gen) 1199.6 1009.1 1183.9 2134.6
Time (CPLEX) 207.7 1926.5 2720.0 3085.6

n = 20

UB Gap 1.4% 1.2% 3.3% 2.4%
LB Gap -1.4% -1.2% -3.3% -2.4%
Time (Cut-Gen) 1965.5 1944.4 1955.0 1805.2
Time (CPLEX) 3600.5 3600.4 3601.1 3600.5

T
F

=
0.

6

n = 10

UB Gap 0.0% 0.0% 0.0% 0.0%
LB Gap -1.0% -1.7% -1.1% -1.7%
Time (Cut-Gen) 28.6 27.8 22.1 62.3
Time (CPLEX) 3.7 15.2 82.7 314.9

n = 15

UB Gap 0.1% 0.3% 0.5% 0.9%
LB Gap -1.4% -2.4% -1.0% -1.7%
Time (Cut-Gen) 351.0 867.4 869.7 1582.9
Time (CPLEX) 68.3 730.4 3407.5 3195.4

n = 20

UB Gap 2.6% 0.9% 4.7% 5.2%
LB Gap -3.4% -1.8% -4.9% -5.6%
Time (Cut-Gen) 3417.8 3413.9 3491.1 3282.3
Time (CPLEX) 2088.5 1219.7 3600.1 3600.1

Table 4.3: Effectiveness of the cut-generation algorithm under TWT performance mea-
sure (α = 0.90).

40

and retrieve the best upper and lower bounds that could be achieved within this limit. For

the Lagrangian subproblems of the cut-generation algorithm, we imposed an initial time

limit of n/2 seconds for TWT measure andn/4 seconds for TCT and TWCT measures.

For a given instance, the upper bound gap is computed with respect to the optimal

solution if it is available. Otherwise, the best known lowerbound is determined by taking

the maximum of our lower bound and the best lower bound retrieved fromCPLEX, and the

optimality gap is computed with respect to this lower bound.Similarly, lower bound gap

is computed with respect to the optimal solution. If the optimal solution is not available,

the difference between the lower bound obtained by the cut-generation algorithm and

the best known upper bound is divided to the best known lower bound that is achieved.

The formulas for gap calculations, when the knowledge of optimality does not exist, are

presented below.

UB Gap=
UBcut−gen −max(LBcplex, LBcut−gen)

max(LBcplex, LBcut−gen)
,

LB Gap=
LBcut−gen −min(UBcplex, UBcut−gen)

max(LBcplex, LBcut−gen)
.

whereUB andLB corresponds to the best feasible solution and best lower bound ob-

tained from the solution routine described in the subscript. For eachn, the first two rows

in Tables 4.1-4.3 specify the average upper and lower boundson the gaps (“UB Gap”

and “LB Gap”) for the cut-generation algorithm. The last tworows presents the average

elapsed times in seconds for the cut-generation algorithm and forCPLEX.

Several conclusions may be drawn from Tables 4.1-4.3. First, it is obvious that the

algorithm does not work well for the objectives TCT and TWCT.Although the gaps are

fairly small,CPLEX is able to solve the instances to optimality within very small amounts

of time. This could be partially attributed to the fact that asmall number of constraints is

required to model the scheduling objectives of minimizing TCT and TWCT. On the other

hand, in order to minimize TWT, we require additional sets ofconstraints and variables.

Further, incorporating VaR makes the problem more difficult, causingCPLEX to perform

poorly. We observe this in Table 4.3. Solving VaR-TWT is verytime consuming even for

small|N | as the number of scenarios grows. In fact many instances are failed to be solved

to optimality after|N | = 15 and |S| = 100. On the other hand, the quality of bounds

provided by the cut-generation algorithm is quite high for all |N |, although there is a slight

decrease when|N | = 20 which could be attributed to the premature termination due to

the time limit. Here, we underline the capability of our algorithm to handle large number

41

of scenarios whileCPLEX fails to provide sufficient lower bounds. Since we achieved the

best results for TWT, we will further continue our analysis using only this objective.

Our second analysis compares the upper and lower bound gaps of the cut-generation

algorithm andCPLEX where the optimal solution is unknown, i.e.CPLEX was aborted

due to time limit. In order to make a fair comparison, we also exclude the cases where

the initial bounding scheme of the cut-generation algorithm is sufficient to determine the

optimal solution. In order to obtain a large sample, we ignored the differences on the

tardiness factors and aggregated the data.

|S|
50 100 150 200

n = 15

UB Gap (Cut-Gen) - 8.20% 2.91% 2.29%
LB Gap (Cut-Gen) - -7.93% -3.42% -2.45%
UB Gap (CPLEX) - 7.93% 2.66% 2.21%
LB Gap (CPLEX) - -11.66% -10.68% -30.14%

n = 20

UB Gap (Cut-Gen) 3.75% 2.07% 5.06% 4.74%
LB Gap (Cut-Gen) -3.58% -1.89% -5.16% -4.96%
UB Gap (CPLEX) 3.60% 1.89% 4.98% 4.94%
LB Gap (CPLEX) -23.91% -31.53% -23.06% -47.22%

Table 4.4: Effectiveness of the cut-generation algorithm under TWT performance mea-
sure only for cases whereCPLEX terminated due to time limit (α = 0.90).

Table 4.4 supports the fact thatCPLEX is unable to provide sufficient lower bounds

when|N | ≥ 15. In fact, when|N | = 20, it returns a trivial lower bound of 0 for several

instances. On the contrary, the lower bound gap of cut-generation algorithm is in general

less than5%, and the maximum gap is below9%. Furthermore, the upper bound gaps

of both algorithms is quite close to each other which suggests that the cut-generation

algorithm can achieve sufficient upper bounds in a reasonable amount of time when the

number of scenarios is high.

Our third study was carried out in order to analyze the effectof the number of sce-

narios to the VaR that is achieved. More specifically, we would like to know at least how

many scenarios should be generated so that the VaR remains unchanged henceforth. We

assumed that true value of VaR is approximated the best when|S| = 200, since we could

at most solve up to this many scenarios. In this study, we focused on 5 instances with

|N | = 10 and|S| = 200, where we iteratively decremented the number of scenarios and

reoptimized the problem. We computed the gap of VaR with respect to the case where

|S| = 200. Figure 4.1 displays our results where the number of scenarios were varied

42

between 25 and 200.

25 50 75 100 125 150 175 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Number of Scenarios

V
aR

Figure 4.1: Gap of VaR with respect to the number of scenariosfor 5 instances. Gap is
computed according to the best available approximation of the true VaR which is|S| =
200 in our case.

We immediately notice that for small numbers of scenarios, we observe high fluc-

tuations in the VaRs. However, these fluctuations tend to decrease when the number of

scenarios is increased. Nevertheless, even when|S| = 175, we observe a gap as large as

5% which suggests that|S| should be increased even further to approximate the true value

of VaR better.

In our fourth study, we present the effect of parallel programming on the solution

times of the cut-generation algorithm. We have used the instances withTF = 0.4 and

n < 20 in order to keep the analysis concise. The results are presented in Table 4.5.

Nb. of Subproblem Threads
1 2 4

n = 10

|S| = 50 31.53 21.69 16.65
|S| = 100 13.21 9.13 7.59
|S| = 150 113.38 75.56 53.17
|S| = 200 44.96 33.36 26.40

n = 15

|S| = 50 1536.19 1199.57 789.81
|S| = 100 824.05 1009.13 815.89
|S| = 150 1298.33 717.96 674.83
|S| = 200 2081.81 2134.62 2140.70

Table 4.5: The effect of using multiple threads for subproblems on the average elapsed
times of cut-generation algorithm.

Forn = 10, we clearly observe the effect of parallelization where thesolution times

43

decrease on average30% with 2 threads and46% with 4 threads, when compared to the

serial algorithm. Notice that the solution times do not halve when the number of threads

is doubled, which would correspond to an ideal100% efficiency. Efficiency is a measure,

commonly used in the context of parallel programming in order to examine the utilization

of multiple threads. We measure efficiency using the formulabelow:

Efficency=
Elapsed time using a single thread
Elapsed time using N threads× N

We observe on average72% and47% efficiencies for 2 and 4 threads, respectively. The

loss on efficiency could be both attributed to internal operations other than solving sub-

problems, and to our parallelization strategy. Remember that we tackle the subproblems

in batches and continue with the next batch if only all the members of the current batch

is completely solved. Notice that if we increase the size of the batches we would be more

likely to keep the processors idle, therefore observe a lower utilization. This is supported

by the fact that the efficiency decreases with increasing numbers of threads.

Forn = 15, the rates of improvement in average solution times drop down to10% and

24%, and the average efficiencies decrease to61% and37% for 2 and 4 threads, respec-

tively. This decrease in performance can be explained by thedifficulty of the VaR-TWT

problem even whenn = 15. The differences between the solution times of the subprob-

lems are more sharp when compared to the subproblems ofn = 10, leading to more idle

processors. Moreover, the algorithm cannot converge to a solution within the time limit

for several instances, therefore aborted prematurely. Forinstance, when|S| = 200, either

the optimal solution is determined in the initialization orthe algorithm terminates due to

time limit. As a result, we cannot fully observe the effect ofparallelization. Nevertheless,

even a small percentage of improvement leads to a significantreduction in total solution

times as can be observed in Table 4.5. Further, using multiple threads increases the qual-

ity of the final outcome for prematurely terminated instances. This is because a larger

number of iterations can be carried out within the same time limit. In conclusion, we

claim that parallel programming has a great impact on the computational performance of

our algorithm, and carries a great potential.

Finally, in Table 4.6, we give the average number of iterations required for our pro-

posed algorithm to solve the problems. We observe that the number of iterations for larger

values of|N | and|S| are higher when compared to the smaller values of these parameters.

We note that this is due to the time limit of the algorithm. In general, we do not observe

any significant trends between the number of iterations and the rest of the parameters.

44

|S|
50 100 150 200

T
F

=
0.

4 n = 10 39.4 18.8 72.0 46.4

n = 15 44.4 103.2 27.8 30.2

n = 20 1.6 11.8 9.2 10.0

T
F

=
0.

6 n = 10 48.2 64.2 33.6 52.2

n = 15 63.0 41.2 34.7 47.8

n = 20 24.8 38.2 15.4 19.8

Table 4.6: The number of iterations spend by the cut-generation algorithm to solve the
problems.

4.3 Value of the Risk-Averse Model

The value of a risk-averse solution depends on the relative performance of the correspond-

ing deterministic and risk-neutral solutions as a functionof the risk appetite. Therefore,

in this part, we benchmark VaR-f(x) against corresponding deterministic and risk-averse

models as the risk parameterα is varied. In this section, we focused on only TWT prob-

lem, whereas similar results could be obtained for any otherperformance measure. The

deterministic counterpart of VaR-TWT problem is the conventional single-machine TWT

problem, in which all processing times take on their expected values; that is, we have

pj = p̄j =
∑

s∈S π
spsj. In the risk-neutral version of our problem, we minimize the

expected TWT by solving the following formulation:

min
n
∑

j=1

wj

∑

s∈S

πsT s
j (4.1)

subject to (2.5)− (2.10).

In Figure 4.2, we zoom into two instances from Table 4.3 to illustrate how the VaR

changes asα is varied. For this data set we obtain risk-averse solutionswithout sacrificing

much from the expected TWT asα increases.

Finally, we use the additional data that is described in Section 4.1 which have higher

variability in the processing times. All scenarios are assumed to be equally likely. A total

of 10 instances forn = 10, 15 and TF=0.6 are solved by the risk-neutral model and cut-

45

0.7 0.75 0.8 0.85 0.9 0.95 1
5000

6500

8000

9500

11000

12000
Value−at−Risk vs. Risk Parameter

α

V
a

R

Risk−Averse
Risk−Neutral
Deterministic

(a) n = 10, | S |= 200, Instance I

0.7 0.75 0.8 0.85 0.9 0.95 1
5000

6500

8000

9500

11000

12000
Expected TWT vs. Risk Parameter

α

E
xp

ec
te

d
T

W
T

Risk−Averse
Risk−Neutral
Deterministic

(b) n = 10, | S |= 200, Instance I

0.7 0.75 0.8 0.85 0.9 0.95 1
5000

6000

7000

8000

9000

10000
Value−at−Risk vs. Risk Parameter

α

V
a

R

Risk−Averse
Risk−Neutral
Deterministic

(c) n = 10, | S |= 200, Instance II

0.7 0.75 0.8 0.85 0.9 0.95 1
5000

6000

7000

8000

9000

10000
Expected TWT vs. Risk Parameter

α

E
xp

e
ct

e
d

 T
W

T

Risk−Averse
Risk−Neutral
Deterministic

(d) n = 10, | S |= 200, Instance II

Figure 4.2: Comparison of the risk-averse model to its deterministic and risk-neutral
counterparts.

46

generation algorithm forα = 0.90. For these 10 instances, the entries in Table 4.7 indicate

the relative decrease in VaR and the relative increase in theexpected TWT for the solution

of the cut-generation algorithm in comparison to that of therisk-neutral model. In this

table, we refer to the data with CV= 0.16 as Data Set 1, and CV= 0.26 as Data Set 2.

The risk-averse solution exhibits significant improvements over the risk-neutral solution,

albeit at times at the expense of the expected TWT to hedge against the uncertainty.

n = 10 n = 15

DataSet 1 DataSet 2 DataSet 1 DataSet 2
| S | θ E(TWT) θ E(TWT) θ E(TWT) θ E(TWT)

50 -3.15% 3.02% -5.03% 5.05% -2.23% 0.70% -3.89% 2.40%
100 -5.49% 6.90% -4.75% 5.99% -0.32% 1.60% -3.78% 2.89%
150 -5.17% 0.71% -0.62% 0.62% -15.83% 0.00% -1.51% 2.33%
200 -13.81% 10.35% -2.28% 5.55% -16.18% 3.54% -5.41% 7.71%

Table 4.7: The risk-averse model (cut-generation algorithm) versus the risk-neutral model
(α = 0.90).

47

Chapter 5

Conclusion and Future Work

In this thesis, we modeled the problem of minimizing VaR in the single-machine schedul-

ing problems under the presence of uncertainty and illustrated the value of the proposed

risk-averse model. To solve our single-stage risk-averse stochastic model, we adapted

the Lagrangian based solution strategy of Carøe and Schultz(1999) which was originally

developed for two-stage stochastic programming models. Furthermore, we considered a

variable splitting based Lagrangian relaxation algorithmfor minimizing Value-at-Risk.

To the extent of our knowledge, this is the first in the stochastic programming litera-

ture, and can be applied to a wide variety of settings other than machine scheduling.

We proposed solution methods in order to solve the Lagrangian subproblems, and intro-

duced a promising cut-generation algorithm to solve the Lagrangian dual problem. In

this study, we focused on minimizing completion time, weighted completion time, and

weighted tardiness. However, a wider variety of objectivescould also be examined. An

extension of our work would be incorporating non-regular objectives such as minimiz-

ing earliness-tardiness. Moreover, the solution approachwe have implemented could be

embedded into a branch and bound algorithm. As a result, we could be able to solve the

problem of minimizing VaR to optimality. Finally, additional risk measures, such as the

conditional-value-at-risk, could be considered instead of VaR, leading to more choices for

the preferences of a decision maker.

In order to improve the performance of our solution procedure, a ranking assign-

ments algorithm could be used. This algorithm successivelysolves assignment problems

in order to generate K-many solutions with increasing coststo the original assignment

problem. It was first proposed by Murty (1968), and later its computational performance

and complexity was improved by Pascoal et al. (2003). Noticethat the use of such an

48

algorithm could allow us to compute the optimal solution of more subproblems with-

out requiring solving integer programs. By generating and evaluating the K suboptimal

solutions of the assignment problem, the trade-off betweenthe term(πs + µs)θs and
∑

j∈N

∑

k∈N ujkH
sxjk in (3.22) could be resolved easily. Even if the K suboptimal as-

signments are insufficient to resolve the trade-off, we can still make use of the best avail-

able solution and append it as a suboptimal cut to the restricted master problem. Unfortu-

nately, such a strategy is only valid when the subproblems are modeled using APDF. This

is because to the best of our knowledge a ranking based algorithm for the linear ordering

problem does not exist.

A final improvement on the computational performance would be regarding the par-

allelization strategy that we follow. In our current algorithm, we solve the subproblems

in batches. Further, in order to move on to the next batch we wait all the subproblems in

the current batch to be completely solved. Due to this waiting, we are not able to utilize

the processors in full efficiency. Although we try to balancethe load of the processors,

we still observe idle processors and excess waiting times. Asuggestion would be gath-

ering all the subproblems to a pool, then dequeuing subproblems whenever a processor

becomes idle. Such a strategy will considerably enhance theutilization of the processors.

Since the subproblems consume the largest portion of the total effort we spend on our

solution method, such a modification will surely result in a more efficient and a faster

algorithm.

49

Bibliography

Ahmed, S., Tawarmalani, M., and Sahinidis, N. V. (2004). A finite branch-and-bound

algorithm for two-stage stochastic integer programs.Mathematical Programming,

100:355–377.

Alouloua, M. A. and Croce, F. D. (2008). Complexity of singlemachine scheduling

problems under scenario-based uncertainty.Operations Research Letters, 36:338–342.

Artzner, P., Delbaen, F., Eber, J. M., and Heath, D. (1999). Coherent measures of risk.

Mathematical Finance, 9:203–227.

Birge, J., Donohue, C. J., Holmes, D. F., and Svintsiski, O. G. (1996). A parallel imple-

mentation of nested decomposition algorithm for multistage stochastic linear programs.

Mathematical Programming, 75:327–352.

Birge, J. and Louveaux, F. (1997).Introduction to stochastic programming. Springer,

New York.

Bulbul, K., Kaminsky, P., and Yano, C. (2007). Preemption insingle machine earli-

ness/tardiness scheduling.Journal of Scheduling, 10(4-5):271–292.

Carøe, C. and Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs

with integer recourse.Mathematical Programming, 83:451–464.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer program-

ming. Operations Research Letters, 24:37 45.

Charnes, A., Cooper, W., and Symonds, G. (1958). Cost horizons and certainty equiv-

alents: An approach to stochastic programming of heating oil. Management Science,

4:235–263.

Chvátal, V. (1983).Linear programming. W. H. Freeman and Company, New York.

50

Daniels, R. and Kouvelis, P. (1995). Robust scheduling to hedge against processing time

uncertainty in single stage production.Management Science, 41:363–376.

de Farias, JR, I. R., Zhao, H., and Zhao, M. (2010). A family ofinequalities valid for the

robust single machine scheduling polyhedron.Computers and Operations Research,

37:1610–1614.

de Panne, C. V. and Popp, W. (1963). Minimum cost cattle feed under probabilistic

constraints.Management Science, 9:405–430.

Dentcheva, D. (2006).Probabilistic and Randomized Methods for Design under Uncer-

tainty, chapter Optimization Models with Probabilistic Constraints. Springer-Verlag,

London. editor: Calafiore, G. and Dabbene, F.

Frangioni, A. and Gendron, B. (2010). A Stabilized Structured Dantzig- Wolfe Decom-

position Method. Technical report, Interuniversity Research Centre on Enterprise Net-

works, Logistics and Transportation.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimization and ap-

proximation in deterministic sequencing and scheduling: asurvey.Annals of Discrete

Mathematics, 5:287–326.

Gutjahr, W. J., Hellmayr, A., and Pflug, G. C. (1999). Optimalstochastic single-machine-

tardiness scheduling by stochastic branch-and-bound.European Journal of Opera-

tional Research, 117:396–413.

Hiriart-Urruty, J. B. and Lemaréchal, C. (1993).Convex Analysis and Minimization Al-

gorithms. Springer, Berlin.

Jörnsten, K. O., Näsberg, M., and Smeds, P. A. (1985). Variable splitting a new la-

grangean relaxation approach to some mathematical programming models. Technical

Report Department of Mathematics Report LiTH-MAT-R-85-04, Linköping Institute

of Technology, Sweden.

Kallehauge, B., Larsen, J., and G.., M. O. B. (2006). Lagrangian duality applied to

the vehicle routing problem with time windows.Computers & Operations Research,

33:1464–1487.

Kasperski, A. (2005). Minimizing maximal regret in the single machine sequencing prob-

lem with maximum lateness criterion.Operations Research Letters, 33:431–436.

51

Kataoka, S. (1963). A stochastic programming model.Econometrica, 31:181–196.

Keha, A. B., Khowala, K., and Fowler, J. W. (2009). Mixed integer programming formula-

tions for single machine scheduling problems.Computers and Industrial Engineering,

56(1):357–367.

Klein Haneveld, W. K. and van der Vlerk, M. H. (1999). Stochastic integer program-

ming:general models and algorithms.Annals of Operations Research, 85:39–57.

Laporte, G. and Louveaux, F. (1993). The integer l-shaped method for stochastic integer

programs with complete recourse.Operations Research Letters, 13(3):133–142.

Larsen, N., Mausser, H., and Uryasev, S. (2002).Financial Engineering, e-commerce and

Supply Chain, chapter Algorithms for Optimization of Value-at-Risk, pages 129–157.

Kluwer Academic Publishers, Berlin. P. Pardalos and V. K. Tsitsiringos (Eds.).

Lawler, E. L. (1977). A ’pseudo-polynomial’ time algorithmfor sequencing jobsto mini-

mize total tardiness.Annals of Discrete Mathematics, 1:331–342.

Lehmann, E. (1955). Ordered families of distributions.Annals of Mathematical Statistics,

26:399–419.

Lenstra, J., Rinnooy Kan, A., and Brucker, P. (1977). Complexity of machine scheduling

problems.Annals of Discrete Mathematics, 1:343–362.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic program-

ming on a computational grid.Computational Optimization and Applications, 24:207–

250.

Louveaux, F. and Schultz, R. (2003).Stochastic Programming, Handbooks in Operations

Research and Management Science 10. Elsevier, Amsterdam. editors: A. Ruszczyński

and A. Shapiro.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables

is stochastically larger than the other.Annals of Mathematical Statistics, 18:50–60.

Muller, A. and Stoyan, D. (2002).Comparison methods for stochastic models and risks.

Wiley, New York.

Murty, K. G. (1968). An Algorithm for Ranking all the Assignments in Order of Increas-

ing Cost.Operations Research, 16(3):682–687.

52

Neame, P., Boland, N., and Ralph, D. (2000). An outer approximate subdifferential

method for piecewise affine optimization.Mathematical Programming, 86:57–86.

Nemhauser, G. L. and Savelsbergh, M. W. P. (1992).Combinatorial Optimization: New

Frontiers in the Theory and Practice, volume 82 of NATO ASI Series F: Computer and

System Sciences, chapter A cutting plane algorithm for the single machine scheduling

problem with release times, pages 63–84. Springer, Berlin.M. Akgül, H. Hamacher,

and S. Tufekci (Eds.).

Ogryczak, W. and Ruszczyński, A. (1999). From stochastic dominance to mean-risk

models: semideviations as risk measures.European Journal of Operational Research,

116:33–50.

Ogryczak, W. and Ruszczyński, A. (2002). Dual stochastic dominance and related mean-

risks models.SIAM Journal of Optimization, 13(2):60–78.

Pascoal, M., Captivo, M. E., and Clı́maco, J. a. (2003). A note on a new variant of Murty’s

ranking assignments algorithm.4OR, 255(1):243–255.

Pinedo, M. (1995).Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Engle-

wood Cliffs,NJ.

Pinedo, M. (2008).Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edition.

Potts, C. and van Wassenhove, L. (1982). A decomposition algorithm for the single

machine total tardiness problem.Operations Research Letters, 1(5):177–181.

Prékopa, A. (1995).Stochastic Programming. Kluwer Academic, Dordrecht, Boston.

Rafael, M. and Reinelt, G. (2011).Linear Ordering Problem: Exact and Heuristic Meth-

ods in Combinatorial Optimization. Springer.

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation in opti-

mization under uncertainty.Mathematics of Operations Research, 16:119–147.

Ruszczyński, A. (1993). Parallel decomposition of multistage stochastic programming

problems.Mathematical Programming, 58:201–228.

Schultz, R. and Tiedemann, S. (2003). Risk aversion via excess probabilities in stochastic

programs with mixed-integer recourse.SIAM J. on Optimization, 14(1):115–138.

53

Schultz, R. and Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs

with mixed-integer recourse.Mathematical Programming, 105(2):365–386.

Sen, H. (2010). A simple, fast, and effective heuristic for the single-machine total

weighted tardiness problem. Master’s thesis, Sabancı University, Istanbul, Turkey.

Sen, T., Sulek, J. M., and Dileepan, P. (2003). Static scheduling research to minimize

weighted and unweighted tardiness: A state-of-the-art survey. International Journal of

Production Economics, 83(1):1–12.

Srinivasan, V. (1971). A hybrid algorithm for the one machine sequencing problem to

minimize total tardiness.Naval Research Logistics Quarterly, 18(3):317–327.

Tanaka, S., Fujikuma, S., and Araki, M. (2009). An exact algorithm for single-machine

scheduling without machine idle time.Journal of Scheduling, 12:575–593.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to

optimal control and stochastic programming.SIAM Journal on Applied Mathematics,

17(4):638–663.

Wolsey, L. A. (1998).Integer Programming. Wiley, USA.

Yang, J. and Yu, G. (2002). On the robust single machine scheduling problem.Journal

of Combinatorial Optimization, 6:17–33.

54

	Introduction
	Modeling Value-at-Risk
	Underlying Deterministic Single Machine Scheduling Model
	Risk-Averse Stochastic Programming Model

	Solution Methods
	Scenario Decomposition Using Lagrangian Relaxation
	Bounding the Value-at-Risk
	Solving the Lagrangian Subproblems
	Preprocessing
	A Polynomially Solvable Case for TCT
	Solving Subproblems as Mixed Integer Programs
	Parallel Programming

	Solving the Lagrangian Dual Problem
	Updating Bounds & Cuts
	Updating the Non-anticipativities
	Optimal Solution for a Special Case of the Lagrangian Function
	Dual Stabilization
	Suboptimal Cuts
	Cut Management
	The Cut-Generation Algorithm

	Computational Study
	Generation of problem instances
	Computational Performance of the Cut-Generation Algorithm
	Value of the Risk-Averse Model

	Conclusion and Future Work

