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TEK BACAKLI HAVA KARGO GEL IR YONETIMI ICIN ACIK
DONGU POLITIKALARI

Birce Tezel
Endistri Muhendislgi, Yiksek Lisans Tezi, 2012
Tez Danismanlari: Nilay Noyanibul, J.B.G Frenk

Anahtar Kelimeler: hava kargo, gelir yonetimi, cokboyutlu kapasite, kajeagsti
rezervasyon, yer ayirtma limitleri, teklif fiyatlari, radgrogramlama.

Ozet

Kargo nakliyati havayollari endustrisinde belirgin bilig kaynagidir. Bu sebeple,
kargo isinin kendine mahsus zorluklarini hesaba kataayetma politikalari gelistirmek
kritik bir oneme sahiptir. Bu zorluklar arasinda coguki hacim ve agirlik olarak olgulen
cok boyutlu kapasite yapisi ve rezervasyon yaplilirkeargm kapasite gereksinimlerinin
genelde kesin olarak bilinememesi siranalabilir. Yolclirgénetiminde yoneylem arastir-
mas!I methodlarinin, kapasite Usti satim yuzindenémeeza maliyetleri ile kapasite alti
satim ytizinden olusan firsat maliyetleri arasinddkirdesimi goz 6nuine alarak kisith ka-
pasitenin etkin bir sekilde kullaniimasinda oldukcadaly oldugu gorulmustir. Bu tezde,
benzer methodlar gesitli kargo tiplerini tasiyan tekdidi ugcuslarin kapasite kontrol prob-
lemi icin gelistirildi. Gelen rezervasyon talepleriger ayirtma limitlerine veya teklif fi-
yatlarina bagl olarak kabul eden veya reddeden acigdpolitikalari tzerinde ¢alisildi.
Uygun yer ayirtma limitlerini ve teklif fiyatlarini hesapiabilmek icin, belirsiz hacim
ve agirhk gereksinimleri varliginda, kapasite Usgilis maliyetlerini goz oniinde bulun-
duran eniyileme modelleri gelistirildiOnerilen modellerin yararliligini degerlendirmek
icin kapsamli bir sayisal calisma yapildi. Sayisal starypolitikalarimizin literattrdeki
cesitliyontemlerle elde edilen gostergeler ile kigasliklarinda iyi bir performans sergile-
diklerini gosterdi.
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Abstract

Transporting cargo is a significant source of revenue inittie@industry. It is there-
fore of critical importance to develop booking policiestthddress the unique challenges
presented by the cargo business: the capacity is multiftsroeal, generally measured
in terms of volume and weight, and the exact capacity remergs of a shipment are
usually not known with certainty at the time of making boakitkecisions. Operations
research methods have proven highly useful in passengemwevmanagement to effec-
tively allocate a limited capacity while considering thede-off between the penalty costs
for oversold capacity and the opportunity costs for havingsed capacity at the depar-
ture time. In this thesis, we develop similar methods fordéyegacity control problem over
a single-leg flight with multiple cargo types. We study opeog policies that accept or
reject a booking request for a certain type of cargo shiprbaséd on booking limits or
bid-prices. In order to compute suitable booking limits ddHprices, we develop op-
timization models that incorporate off-loading costs ungiecertain volume and weight
requirements. We conduct a comprehensive computationdy $0 evaluate the effec-
tiveness of our proposed models. Numerical results demaiaghat our policies perform
well compared to benchmarks established by various meihdtis literature.
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Chapter 1

Introduction

Transporting cargo, either on a dedicated cargo fleet orarb#tys of passenger aircratft,
is a significant and rapidly growing source of revenue in tinkna industry. The In-
ternational Air Transport Association (IATA) reports trgtstem-wide global revenues
from cargo in 2010 amounted to $49 billion, versus $37 1dnillirom passengers (IATA,
2009). Moreover, during the same period cargo traffic volhamincreased b§/0, versus
a4.5% increase in passenger traffic volume. Boeing's 2012 CuiMeamket Outlook fore-
casts that the air-cargo industry will continue to grow abaarage annual rate 6f2%
through 2031 (Boeing Company, 2012). Despite the obvioygmmance of the problem,
only a relatively limited number of research studies havenbéedicated to cargo rev-
enue and capacity management, in sharp contrast to thesesdditerature on passenger
bookings.

Airlines typically sell cargo capacity either through aifeent contracts, reserved for
major customers, or on the spot market (also referred tceasstale), where there are no
guaranteed capacities. In this thesis we focus on manalggncgipacity available for free
sale. The main objective is to obtain booking policies thakenaccept/reject decisions
as booking requests arrive over a booking period. The furddash choice is between
accepting a request for a relatively cheap shipment, aedtreg it to save capacity for a
potential later arrival that could yield higher revenuetHis context, the capacity is per-
ishable: unused (spoiled) capacity after the departurefliigta is worthless. Therefore,
it is common practice to allow more bookings than the avélaapacity can accommo-
date, in order to compensate for late cancelations, no-shamd overestimated capacity
requirements of accepted shipments. The trade-off thagnied booking decisions is
then between the denied service costs for oversold cap@igy known as off-loading



costs), and opportunity costs for spoiled capacity at thpadare time. As discussed in
Kasilingam (1997), off-loading costs may include the cadtsansporting excess cargo
by alternative means, the costs of additional handling aochge, and the cost of lost
goodwill.

The literature on the cargo revenue management highligimernous essential differ-
ences between passenger and air-cargo services (se&asijngam, 1996):

e Capacity is not necessarily integer-valued, and it is rdiliensional, generally
measured in terms of volume and weight. Sometimes an addit@dimension is
also considered, namely, the number of container posi{ees, e.g., Kasilingam,
1998). However, this third dimension is rarely mentionedha literature, and,
according to Pak and Dekker (2004), has no significant imipgatactice.

e The exact volume and weight requirements of a cargo shiper@entisually not
known with certainty at the time of making booking decisioasd are observed
only immediately prior to departure.

e Unlike in a passenger case, where each booking request & $orgle uniform
seat regardless of the fare class, different types of caaye Wifferent capacity
requirements. In addition, cargo types are also distifgaa sy their contents (e.qg.,
flowers, clothes, electronics, or food), which affects pinig rates.

e The available capacity may also be uncertain until loadinlgeadeparture time, due
to dependence on various factors including the capacitizedi by the allotment
contracts, and the capacity requirements of passengeifliagargo is carried on
a passenger aircraft.

These differences provide a significant incentive to dgvblaoking policies that are spe-
cific to cargo capacity management, and address some of ifpgeuchallenges outlined
above. The two main classes of booking policies commonlyl use¢he revenue man-

agement literature are those based on booking limits, amektbased on bid-prices. A
booking limit is an upper bound on the number of requests ttzanbe accepted for a
particular type of product. According to a booking limit ledspolicy, requests are ac-
cepted as long as booking limits are not reached. On the btrat, a bid-price policy

specifies a threshold price that should be charged for a hgplind a booking request is
accepted only if its net revenue exceeds the this price. shiotd prices for a shipment
are usually set as the sum of the bid-prices of its expecieaoty resource requirements,



and the bid-prices themselves can be interpreted as thetamgropportunity costs asso-
ciated with the resources consumed. These monetary vatyend on factors such as
the remaining capacity, the remaining time to departure, epectations about future
demand.

When the booking limits or bid-prices are allowed to changer dime in response to
such factors, they lead to dynamic booking policies thabantfor the behavior of the
system over time. It is obvious that dynamic policies hawegbtential to perform better
than their static counterparts. However, dynamic model€amputationally challenging
due to potentially intractable multi-dimensional statacgs, and solving them typically
requires elaborate decomposition methods. For exampl@) eeal. (2011) formulate the
booking control problem on the spot market as a dynamic pragand use a Lagrangian-
based decomposition strategy to approximate its valudifume: We mention that there
exist other, comparatively easier decomposition-basetiods that provide approximate
solutions for dynamic cargo booking control models, sag, dAmaruchkul et al. (2007).
As an alternative, we focus on open-loop, or static, modelsch are generally more
tractable for practical use. Such methods can be used witlliagrtime horizon ap-
proach, preserving the favorable computational propedfestatic models, while taking
into the dynamic behavior of the booking system.

In this thesis we limit our attention to cargo bookings oveirayle-leg flight. Some
airline companies, in particular charter airlines, onlgegut booking requests for single-
leg flights. However, larger airline companies typicalrtsport cargo through a network
of locations connected by flights, and cargo booking regugstcify an origin-destination
pair (in contrast to passenger booking requests, whiclc&jlyi specify an itinerary of
flights). The resulting network cargo capacity managemesiilpms are notoriously dif-
ficult, and solution methods often involve solving a seriesimgle-leg subproblems. Sim-
ilarly to the passenger case (see, e.g. Topaloglu, 2009)mbans that efficient solution
methods for single-leg problems are of high importance @avamnetwork context.

The simplest booking limit policies (sometimes known askKeti@llocations), par-
tition the available capacity according to fare classeswél@r, in practice partitioned
booking limits are rarely applied in a strict fashion. Fostance, in a passenger con-
text it is clearly not beneficial to reject a higher fare clesguest when there is available
capacity for lower fare classes. Booking limits are therefiypically implemented in a
nested, or hierarchical, manner. Under a nested policienifare classes are allowed to
use all the capacity reserved for lower fare classes. Siacke accepted booking request
consumes a single unit of resource (namely, a uniform sem)nested structure can be



specified solely on the basis of the net revenues associatecach fare class. How-
ever, in the cargo case, each shipment consumes differentrasmof multi-dimensional

capacity. Therefore, it is not trivial how to rank the cargpds when defining a nested
structure. In this thesis, we propose various methods teldpwested cargo booking
limits. To the best of our knowledge, this is the first suclerafpt in the cargo revenue
management literature.

Our work on booking limits extends some of the passengeribgaokodels proposed
in Aydin et al. (2010) to cargo bookings. We first consider a-phase method, where
in the first phase we solve either a risk-based model or aceetevel-based model to
determine a total booking limit. The risk-based model aimmaximize expected prof-
its, while the service level-based one enforces a bound @prbbability of overselling
capacity. In the second phase we use an allocation methed loaisexpected marginal
seat revenue (EMSR) models to obtain nested booking li@iis.second-phase methods
provide several ways to rank cargo types according to pholiita We also present a
single-phase risk-based optimization model, which diyedttermines partitioned book-
ing limits. These partitioned limits are then used in a reegashion, using our EMSR-
based ranking methods.

The booking limit approaches described above make the comamsumption that
off-loading costs follow a specific structure, namely, ttiety can be written as the sum
of two convex functions, which represent the costs due tosole volume and oversold
weight (see, e.g., Amaruchkul et al., 2007; Huang and Cha8§0). While this cost
structure is more complex than overbooking costs in theqrags case (often assumed
either to be constant (Chatwin, 1999), or to depend only erfidte class), the assumption
that off-loading costs can be separated according to volmdeneight is still somewhat
restrictive. In addition to our booking limit policies, wésa present two bid-price-based
approaches, which do not rely on such assumptions. Firsgdapt a traditional ran-
domized linear programming (RLP) model that defines bidgwifor units of volume and
weight capacity using the optimal dual variables assodiatiéh capacity constraints in
the RLP formulations. We then present a two-stage RLP muadwre booking decisions
are made in the first stage, followed by off-loading decisipmhich explicitly determine
the shipments that are to be denied loading) in the secoge.siEhe cargo off-loading
problem we encounter in the second stage has previouslydoesidered by Levin et al.
(2011), while a similar two-stage approach has been praposthe passenger literature
by Kunnumkal et al. (2012).

We now briefly list the main contributions of this thesis.



e We develop new optimization models to compute booking Bnaibd bid-prices
for air-cargo capacity control on a single-leg flight. Thesedels prove useful in
developing computationally tractable and practical peic

e We propose various methods to rank different cargo typesttaus obtain nested
booking policies.

e We conduct a comprehensive computational study to evathateffectiveness of
our proposed models. In particular, we compare our poliitls those provided
by various benchmark methods in the literature. Numergsiiits demonstrate that
our policies perform well in general compared to the benckma

The rest of the thesis is organized as follows. In Chapter 2evew the literature
on cargo revenue management, with a particular emphasiswtirematical programming
based approaches. In Chapter 3 we describe the generatprabtting, and present our
optimization models. Section 4 is dedicated to implemaémialetails, numerical results
and managerial insights, while Section 5 contains our eatiefy remarks.



Chapter 2

Literature Review

Revenue management (RM), also known as yield managemeribelem one of the most
successful application areas of operations researchu(ifatid van Ryzin, 2005; Phillips,
2005). The primary objective of RM is to maximize revenueséNing the right product
to the right customer at the right time for the right pficeDperations research meth-
ods have proven highly useful in airline passenger revenaeagement to effectively
allocate a limited capacity while considering the tradiebeftween the penalty costs for
oversold capacity and the opportunity costs for having adusapacity at the departure
time. However, there is a less extensive literature on cRigan contrast to the passenger
case. This can be partially attributed to the relativelyhieigcomplexity of cargo business
as discussed in Kasilingam (1996) and Becker and Dill (20D@ypite these challenges,
cargo RM has recently received increasingly more attertiaihe literature. Some of
the existing approaches from the rich passenger revenuagearent literature have been
and can be adapted to the cargo case. In this direction,ssesngial to highlight the dif-
ferences between cargo and passenger transportation asilmgam (1996). Billings
et al. (2003), Slager and Kapteijns (2004), and Becker atidZ007) also discuss the
unique features of cargo RM and review the related operstiod implementations from
a practical point of view.

Many studies consider the cargo capacity management pndblea single-leg flight
and the most popular issues include the two-dimensionaafypand random volume
and weight requirements. Considering these issues Amiantiel al. (2007) formulate
the booking control problem as a Markov decision process P)[Blowever, due to the
high dimensionality of this formulation, they cannot prdeioptimal policies. Instead,

http://en.wikipedia.org/wiki/Revenu@anagement



they propose various heuristics and an upper bounding apprdrheir best performing
heuristic is based on the decoupling idea; decomposing EhenDdel over volume and
weight dimensions. There are many papers which base tregareh on the dynamic
model introduced by Amaruchkul et al. (2007). Huang and @H{&2010) tackle the same
problem and develop an approximate algorithm which joiaf{imates the expected rev-
enue from weight and volume by sampling a limited number afifsan the state space
instead of decoupling the problem and estimating the erpecvenue in a sequential
manner as in Amaruchkul et al. (2007). Similarly, Zhuang le{(2011) propose two
heuristics but for a single-resource (one-dimensionahciy) problem. Huang and Hsu
(2005) study uncertainty in supply; but they measure thacigponly in terms of weight
and they ignore the off-loading costs. Kasilingam (199%paonsiders the uncertainty in
one-dimensional supply while trying to find the overbookiimgit which minimizes the
total expected off-loading and spoilage costs. Xiao andgY@®10) consider the two-
dimensional capacity, formulate the booking control peoiblas a continuous time MDP
but for only two types of demand and propose a threshold paller some concavity
assumptions. Different than the above studies, Levin €R8l11) present a model that
integrates multiple allotment contracts and spot markeklmgs of an airline for a set of
parallel flights. Unlike the existing studies, they also sider a off-loading problem to
compute the boundary condition of the DP optimality equetiavhich accounts for the
total cost incurred at the departure time. As in Amaruchkale(2007), they formulate
the booking control problem on the sport market as a dynamaigram. However, they
construct approximations to its value functions using araagian approach to estimate
the total expected profit from the spot market. Using thegeag@mations and a cutting
plane algorithm, they solve the allotment selection pnohihich maximizes the sum of
the profit from the allotments and the estimated total exqueptofit from the spot market.
After this brief review of studies on dynamic models for tivegée-leg problem, we next
focus on the static approaches which are particularlyedltd this thesis.

Although static models are widely studied in the passengse,dhere are a few static
models introduced for cargo RM. Among the heuristics prepgas Amaruchkul et al.
(2007), there are two static methods that solve deterngrisear programs based on the
expected values of the uncertain parameters. One is propos®mpute the bid-prices
and the other one is used to obtain the partitioned bookmgdi To the best of our
knowledge, Amaruchkul et al. (2007) is the only study présgna (partitioned) book-
ing limit policy. Even if there has been little work on bidige policies for controlling
cargo booking, we can say that they are still the most comrtadit policies. Therefore,



we focus on the literature on bid-price policies. Han et 2010) model the air-cargo
booking process as a discrete-time Markov chain for a sitegdlight by discretizing
the volume and weight requirements and capacities. Theceegheevenue is written as
a function of the bid-prices and the optimal bid-prices dseamed using the Markovian
model. There are also bid-price policies for the networkgoarapacity management. Pak
and Dekker (2004) model the booking process as a two-dimmeakon-line knapsack
problem and use the greedy algorithm proposed in Rinnooydfah (1993) to solve the
knapsack problem and compute the bid-prices. As in Han é€@L0), it is assumed that
no penalty is incurred when a booking request is rejectedfamdapacity requirements
are known with certainty when a booking request arrives. l@ndther hand, Karaes-
men (2001) introduces a LP based bid pricing model with ainaous attribute space
for a simplified cargo booking control problem, where atités represent the capacity
requirements. Sandhu and Klabjan (2006) also present eematital programming for-
mulation that provides bid-prices for controlling origilestination cargo bookings on a
network. However, they consider the fleet assignment mé@dej which assigns a par-
ticular equipment type to each given flight-leg while maxdimg profit. They develop a
FAM that incorporates both passenger and cargo revenuejaldel is obtained by com-
bining the traditional leg-based FAM model with the passerand cargo mix bid price
models. Recently, Popescu et al. (2012) have developeahization models to compute
the bid-prices to control the booking over a network for a exixdemand pattern with
individual and batch requests. They decompose the demamdnmall and largo cargo
bookings. For the small and large cargo booking they use laghibstic nonlinear pro-
gram from passenger literature and a DP model to computeidhprices, respectively.
However, the proposed model is based on itinerary-sped@fitathd rather than the origin-
destination-specific demand.

Another type of static policy is based on overbooking limitsaccepting a booking
request for a cargo would bring the total volume and/or wegjlthe accepted cargoes
above the specified overbooking limits, that cargo woulddjeated. The overbooking
strategy is meaningful in the existence of cancellatiorgsramshows. Luo et al. (2009)
and Moussawi and Cakanyildirim (2005) allow no-shows andlgttwo-dimensional
cargo overbooking models to obtain a overbooking limit ldagelicy. Moussawi and
Cakanyildirim (2005) develop two (aggregate and detaitgges of models to obtain
weight and volume overbooking limits maximizing the netffrol heir off-loading cost
does not depend on the individual cargoes; it is a lineartion®of the maximum of the
total off-loaded volume and weight. They express the shgwimvolume and weight in



terms of the cargo density and provide equations to find amapbverbooking curve
parameterized by the cargo density, which is proved to bexa e modeling approach
used in Moussawi and Cakanyildirim (2005) is adapted fror eual. (2009). Differ-
ently, Luo et al. (2009) ignore the revenues and focus onmizing the expected total
spoilage and off-loading costs, which are additive oveuna and weight dimensions.

Air-cargo RM problems feature some similarities to passer®®gM problems with
group (multiple seat) bookings. Van Slyke and Young (20QQy the finite-horizon
stochastic knapsack problem and consider a single-legpgesRM problem with group
bookings as a special case of it. As emphasized in Amaru@tlall (2007), the algorithm
proposed in Van Slyke and Young (2000) may be computatipimajpractical for solving
large air-cargo booking control problems. Moreover, theacity requirements and the
available capacities are assumed to be integer. Due tortdemaconsumption of the ca-
pacity, air-cargo booking control problems are relatedhtostochastic multi-dimensional
knapsack problem. There are other studies on the dynanubasttc knapsack problem
(see, e.g., Kleywegt and Papastavrou, 1998; 2001), butithggneral propose models
that do not allow arrivals to have multi-dimensional capasequirements.

Another stream of literature on cargo transportation iategl to the network cargo
RM. It is a fairly recent research topic investigated amotigers by Karaesmen (2001);
Popescu (2006); Levina et al. (2011).



Chapter 3

Stochastic Optimization Models

In this chapter, we first describe the general setting forpooblem of interest: determin-
ing booking policies for cargo capacity management in tles@nce of uncertain capacity
requirements. We consider three types of modeling appesaahd develop correspond-
ing optimization models.

e We first consider a two-phase approach: in the first phase Wwe sadher a risk-
based or a service level-based model to determine a tot&irdmplimit. Then, in the
second phase we use axpected marginal seat reven(lEMSR) based allocation
method to obtain nested booking limits. In order to impletrserch a method it is
necessary to rank different types of cargo in order to specifested structure. We
introduce and discuss several such ranking heuristics.

e We next consider an optimization model which directly obsgpartitioned book-
ing limits for each cargo type, without the use of a predeieech total booking
limit. Similarly to the first approach, these partitioneuiiis can be used in a nested
fashion.

e The third modeling approach focuses on bid-price polici#s.adapt two existing
methods from the literature on passenger revenue managiestéch use random-
ized linear programming (RLP) techniques.

3.1 Problem Setting

We consider the problem of controlling cargo bookings fongle-leg flight which trans-
ports multiple types of cargo between a particular origegstthation pair. Our goal is to

10



find booking policies that make accept/reject decisionstah cargo shipment request.
In particular, we focus on open loop policies based on bapkmits or bid-prices.

Booking requests typically specify the type of a cargo sk@ptmbut not its exact vol-
ume and weight requirements. However, we assume that thtedjstribution for the vol-
ume and weight of a shipment is available for each cargo type the exact volume and
weight are observed immediately before the departure tireeus denote the available
volume and weight capacities of a flight by, andC',, respectively. If these capacities
are not sufficient to accommodate all reserved cargo, soipenshts are off-loaded to
be transported by alternative flights or other cargo cariér such situations the airline
incurs a penalty cost, similar to the overbooking penaltpimed for passengers that are
denied boarding. We note that in the literature off-loadsgften considered in the con-
text of overbooking, i.e., when requests can be acceptexiciess of available capacities
in order to compensate for potential cancelations and oasstiMoussawi and Cakany-
ildirim, 2005; Luo et al., 2009). In contrast, in our modef§loading can occur even
under conservative booking policies, as a consequencedhastic volume and weight
requirements.

To quantify off-loading costs we adopt a common approachgArchkul et al., 2007;
Huang and Chang, 2010), and consider the sum of two convexiéms/, andh,,, which
represent the costs due to the oversold volume and weigiptecévely. In the literature
the following choice of convex functions is commonly used:

ho(zy) = 0,[x, — Culy,  hy(xw) = Ou[re — Culy, (3.1)

whered, andf,, are non-negative constants, and the variableand x,, represent the
total volume and weight of accepted shipments, respeygtivehis approach implicitly
assumes that cargo shipments are divisible, and can balpadif-loaded; Moussawi
and Cakanyildirim (2005) provide a discussion on the cooils under which such an
assumption is justified. Recently, Levin et al. (2011) hanappsed an alternate method
which explicitly solves an “off-loading problem” by idefting the individual shipments
that are to be denied loading. To implement this idea, weldpwetwo-stage stochastic
programming model which leads to an RLP formulation. Whilendumkal et al. (2012)
consider a similar model to control passenger booking$edest of our knowledge no
analogous developments exist in the cargo literature.

We now introduce some additional notation used throughwutest of the thesis. We
consider booking requests for a single-leg flight; eachestjconcerns a single shipment
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which belongs to one of: cargo types. For= 1, ..., m we let(V;, W;) denote a random
vector whose two components have the same joint probadibtyibution as the volume
and weight of a shipment which belongs to typ#&lore precisely, we denote the volumes
and weights of individual type+equests by(V;;, W), (Via, Wia), ..., and assume that
these vectors are mutually independent and identicallyildiged (i.i.d.) agV;, W;). In
our models the distributions df;, W), ..., (V,,, W,,) are assumed to be given, with
respective expected values(@f, %), ..., (uo,, o).

Remark 1 While cancelations lie outside the scope of this thesispmaaieling approach
can naturally incorporate no-shows by allowing the randaraters(V;, ;) to take value
(0,0) with a positive probability.

The dimensional weighof a shipment with volume is v/~, where is a constant
(sometimes referred to @&sverse densifydefined by the IATA volumetric standard. The
revenue (or margin) obtained from accepting a typeoking request with volume and
weightw is given byr;(max(w, v/v)), wherer; : R — R is a revenue function associated
with the cargo type. The corresponding expected revenuenistdd by

pi = E[r;(max(W;, Vi/v))], t€{l,...,m}. (3.2)

We also use some standard mathematical notation and camwenRandom variables
are typically denoted by uppercase letters, while vecteslanoted by lowercase bold-
face letters. The indicator random variable of an evgnwhich takes valué if the event
A occurs and) otherwise, is denoted hly,. The cumulative distribution function (CDF)
of a random variableX is denoted byF'y. If two random variablesX andY have the
same distribution, we denote this fact By 2y. The positive part of a number is
denoted byz], = max(z,0). The set of natural numbers is denoted¥y- {0, 1,... },
while the set of the first positive integers is denoted bby] = {1,...,n}.

3.2 Booking Limit Policies

A booking limit is an upper bound on the number of requesta ttem be accepted for a
particular type of product (for a fare class in the passeogee, and for a certain shipment
type in the cargo case). According to a booking limit poligguests are accepted as
long as limits are not reached. There are two main types okibgdimits: partitioned
andnested Partitioned booking limits are enforced in a strict fashiowhere capacities

12



reserved for a particular product type cannot be used tonacmmate booking requests
for a different type. However, such restrictive policies ¢@ad to suboptimal results. For
instance, in a passenger booking context it is not desittabteject a higher fare class
request when there is capacity available for lower fareselasTherefore, booking limits
are typically used in a hierarchical, or nested, manner. edrdnested policy, higher
ranked classes are allowed to use the capacity reservealfer Fanked classes.

To the best of our knowledge, Amaruchkul et al. (2007) is thly study in the cargo
revenue management literature which develops a partdiboeking limit based policy,
and this thesis is the first to develop nested booking limiits.also remark that in a cargo
context it is possible to establish booking limits in termis@ume and weight capacities
(instead of the number of shipments). While this appearg t@ hatural approach, we are
not aware of any existing studies featuring such bookings$im

3.2.1 A Two-Phase Method

In this section we describe a two-phase method to obtain kibgbmit policy. In the first
phase we determine a total booking limit, then use an EMSfedaapacity allocation
method in the second phase to calculate nested booking liarivarious cargo types. A
similar two-phase scheme has been considered for conggiissenger bookings (see,
e.g., Phillips, 2005; Aydin et al., 2010), and Kasilingar@9T) highlights the importance
of such an approach for cargo bookings. However, as existgtfpods cannot be directly
applied to the cargo case, we need to develop non-triviahskbns.

We note that the methods mentioned above tackle the sliglitirent problem of de-
termining overbooking limits in the presence of no-showsl(aometimes cancelations).
There are a number of papers in the cargo literature thatsfoouthe initial phase of
finding an overbooking limit in terms of capacity units (Klasggam, 1997; Moussawi and
Cakanyildirim, 2005; Luo et al., 2009). To the best of our\kiexlge, there are no corre-
sponding studies that develop partitioned or nested @alici a two-phase framework.

3.2.1.1 First Phase: Total Booking Limit

In this section we detail two methods to determine a totakbaplimit. A total booking
limit b can be used to define a greedy policy, which accepts any bgpoéquests regard-
less of cargo type, as long as the total number of resensttobelowb. Our goal is to
find booking limits that lead to optimal performance undestsa greedy policy.

In our model we consider booking requests that arrive acegitd a point process dur-
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ing the time period leading up to the departure of a flight. tbit@ number of requests that
arrive during this period is denoted y; we assume that this non-negative integer ran-
dom variable is bounded, and its distribution is known. |ddime greedy policy outlined
above, the total number of accepted booking requests is giyéV (b) := min(b, D).

We denote the probability that an individual booking redque$or cargo of type by
pi, © € [m|, and assume that the types of various requests are mutndépéndent. The
probabilitiesp;, which in our model are considered to be known, necessatlgfg the

equationy ;" , p; = 1.

Observation 1 Recalling that the volume of a typeshipment is distributed as the ran-
dom variableV;, it is easy to see that the volume of a shipment associatédanitin-
dividual booking request of undetermined type has a mixdistibution obtained from
Vi, i € [m], with corresponding mixing weighis, i € [m]. Formally, the volumes of
shipments are i.i.d. as a random variaffewith CDF Fy; = >_7" | p;Fy,. Analogously,
the weights of shipments are i.i.d. as a random variablevith CDF Fyr = -7 | pi Fiw,.

Let us denote the total number of accepted typegquests byV;(b). Conditional on
N(b), the valuesV;(b), i € [m], follow binomial distributions, while their joint distrib
tion is multinomial. More precisely, we have

’ 4 Binomial(n, p;) fori € [m],

(N1(b), ’ <

Multinomial(n, py, . . ., Pm)-

If we aggregate shipments by type, the total volume of sh'rpmeorresponding to
accepted booking requests can be expressdd'as: Y ", Z VU On the other
hand, Observation 1 provides an alternative way to comﬂnﬁezlllstrlbutlon of this total
volume, leading to the following formula:

m  Ni(b) N
=SS v L3, (3.3)

=1 j=1 7=1

where the random variablés; are i.i.d. asV. The following analogous formula holds
for the total weight:

WTZZZWHiZWJ” (3.4)
where the random variablég; are i.i.d. ad¥’. For the sake of completeness, in Appendix

14



A we also provide an analytical proof for the above resutEtésl as the essentially equiv-
alent Lemma 6).

We now proceed to propose two stochastic optimization ngoithelt determine total
booking limits; the choice between these two models dependbie decision maker’s
preferences. The first one is a risk-based model which cerssithe trade-off between
the potential revenue from accepting an additional book&agiest, and the penalty cost
of an additional off-loaded shipment. The second model amniisd the largest possible
booking limit which still allows the airline to guarantee ertain level of service.

A Risk-Based Model

We now present an optimization problem, adapted from Aydlial.e(2010), where the
goal is to find a total booking limit which maximizes the exygetnet revenue under the
greedy policy outlined in the beginning of this section.

max {Z piDi B[N (D)] — E[hy (V"] = E[hy(WT)] : b€ N} (Risk_TB)

We can utilize formulas (3.3)-(3.4) to reformulate the ab@voblem. Let us introduce
the functionf : N — R given by

FO)=> " pipib—E ~E

hv(zvj)

b
P Wﬁ] : (3.5)

where allV; are i.i.d. as the random variablé while all W; are i.i.d. as¥ (as intro-
duced in Observation 1). Then we can write problétizk_TB) as

max {E[f(N(b))] : b € N}. (3.6)

The following two lemmas show that both the functipmand the objective functiob —
E[f(N(b))] are discrete concave.

Lemmal Let X, X5,... be i.i.d. non-negative random variables with common CDF
Fx, and leth be a non-decreasing convex function. Then the magpingt [h(zg’.zl X]—)}
is discrete convex.
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Proof. It is sufficient to show thafl [h (Z;’E Xj)] ~E [h (Z;’.Zl){j)] is a non-
decreasing function df. Using the law of total expectation, we have
Xb+1] ]

b b
W Xo + Y X)) = (D X))
j=1 =1
b b

hz+ ) X;) —h(>_X;)

j=1 j=1

b

h(>_X;)

Jj=1

b+1

—E ~E

_ / E
0
It follows from the convexity o, and the non-negativity at F'x that the above function
is non-decreasing iy which completes our proofm

E

Lemma 2 If f is a discrete concave function, then the mapging E[f(N(b))] is also
discrete concave.

Proof. Similarly to the previous lemma, it is sufficient to show ttiae difference
E[f(N(b+ 1))] — E[f(N(b))] is a non-increasing function &f SinceD < b implies
N(b+1)= N(b) = D, we have

E[f(N(b+1)]=E[f (N (b))] = E[f(N(b+1))=f(N(b))] = P(D = b+1)(f(b+1)—f(b))-

As the functionf is discrete concave/,(b+ 1) — f(b) is non-increasing in. In addition,
the probabilityP(D > b+ 1) is clearly also a non-increasing functionigfvhich implies
the desired resultm

Interestingly, under our assumptions the optimal totalkdoog limit does not depend
on the distribution of the number of booking requests. Ferghoof of the following
result we refer the reader to Aydin et al. (2010).

Lemma 3 If f is a discrete concave function and the problemx{f(b) : b € N}
has a finite optimal solutiohgpr, then this is also an optimal solution of the problem
max {E [f (N(b))] : b € N},

Since Lemmas 1 and 2 show that the objective function of (8.6)screte concave,
we can obtain an optimal solution as follows.

bopr = inf{b € N : E[f(N(b+ 1))] — E[f(N(b))] < 0}. (3.7)
Taking into account Lemma 3, the above formula can be fugimeplified:

bopr = inf{b € N: f(b+ 1) — f(b) < 0}. (3.8)
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We note that since the total number of booking requests iaded from above, it is
sufficient to consider a bounded range of possible bookmgdi It follows that we can
replace thanf operator in (3.8) bynin, and perform a discrete one-dimensional search
to obtain an optimal solutiobopr. To Nnumerically evaluate the functiofiduring this
search, one can use Monte Carlo simulation, or, under peatdditional assumptions,
use analytical approximations. In Appendix C we provideitholtial details on how to
perform the necessary calculations, and discuss a normeb@amation.

A Service Level Based Model

Service level constraints are often considered in the pgsseevenue management lit-
erature in order to control the extent of overbooking. Faregle, a type-| service level

constraint imposes the requirement that the probabilitpw@rbooking be less than or
equal to a specified value (see, e.g., Phillips, 2005). Tbdéséof our knowledge, similar

constraints have not yet been discussed in the cargo literatin this section we aim

to introduce this approach in a cargo context, taking intmaat the multi-dimensional

capacity requirements. We propose a constraint that litheésprobability of oversale,

i.e., of the event that either the total volume or the totaighteof accepted shipments
exceeds the available capacity. This leads to the followiitgynative to the risk based
model Risk_TB):

N(b) N(b)
max{beN : P ZVJ- > C, OR ZWJ >C, | <1—ayp, (Service.TB)
j=1

Jj=1

wherea is a specified service level (such @95). One can use a Monte Carlo simula-
tion method to approximate the probability of oversale,chtis typically hard compute
otherwise.

3.2.1.2 Second Phase: EMSR-Based Heuristics

In passenger revenue management, booking limits are tipicsed in a nested fash-
ion, where the capacity that is available for sale to a paldicfare class can also be
sold to a more expensive fare class. Littlewood’s rule [&wbod, 1972) provides a well-
known method to optimally determine such booking limitstfee case of two fare classes.
Heuristics based on expected marginal seat revenue (EMEfR)aba, 1987; 1989) ex-
tend Littlewood’s rule to multiple classes, and are widebgd to find nested booking
limits. The popularity of EMSR-based methods is in a large gae to their intuitive
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and practical nature (see, e.g., Talluri and van Ryzin, 20@Bich motivates us to de-
velop similar heuristics for cargo bookings. Before we preasour methods, we briefly
outline the EMSR-based approach as it is used in the passkiegature, then discuss
the challenges that arise when one attempts to adapt thiedwbgy to a cargo context.

EMSR in Passenger Booking

Let us consider a passenger flight withseats available for sale ta classes of pas-
sengers, and assume that passenger classes are indexedeisohg order of revenue
values, i.e.p; > --- > p,,. In accordance with common practice in the literature gadt
of referring to booking limits we can equivalently descrix@oking controls in terms of
protection levelsThese levels can be viewed as the complements of bookiriig kmth
respect to the capacity available for sale, and represerdartiount of capacity saved for
various classes of products. More precisely, itheprotection level, which we denote by
y;, Is the amount of capacity saved for sale to clagsasd lower. Protection levels form
an increasing sequenge < - -- <y, = (', and thus define a nested structure.

There are two main types of EMSR heuristics to determinesptmn levels. EMSR-a
first calculates protection levels by applying Littlewosdlle to successive fare classes,
then aggregates these to obtain the protection levels wdefine the booking policy.
Since EMSR-a ignores statistical averaging effects, itehtendency to produce protec-
tion levels that are overly conservative. EMSR-b addredsesssue by aggregating the
demand across classes (instead of aggregating proteetrets). While some studies
that compare these heuristics have shown mixed resultsggeeTalluri and van Ryzin,
2005), EMSR-b appears to be more popular in practice, andrisidered to generally
perform better than EMSR-a. Accordingly, in this thesis weus on EMSR-b. Before
attempting to adapt this heuristic to a cargo context, weigea short formal description
of the method in the passenger case.

Let D, denote the random total demand for claseats. At stage of the EMSR-

b heuristic we compute how much capacity to protect for tlassds;, j — 1,...,1 as
follows.

J
gj:max{ye{o,...,C} L piv1 — ;P (ZDi2y> §0,}, j € [m—1], (3.9)
i=1

wherep; denotes the weighted-average revenue, calculatﬁpﬂs%. Since the

y; values are not guaranteed to form a non-decreasing sequescefine the protection
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levels as
yjzmax{lglu7lgj}7 .]e [m_l]

The main challenge in applying EMSR-b is to calculate thérithstions of the aggre-
gated demands that appear in (3.9). We list here some ap@®#cat lead to tractable
formulations under appropriate modeling assumptions.

e If the demandsD;, ¢ € [m], are i.i.d with Poisson or normal distribution, the
distributions of the aggregated demands are of the sameataptype.

e More generally, ifD;, ¢ € |[m], are independent, we can numerically calculate
the distributions of the aggregated demands using the tasidf transform (FFT)
method (see, e.g., Tijms, 2003).

¢ If the demandsD; are not independent, but have a multinomial structure (gami
to the situation outlined in Section 3.2.1.1), then the eggted demands follow
binomial distributions.

Adapting EMSR Methodology to Cargo Booking

In the passenger case, every accepted booking requesthoesisine uniform seat,
therefore fare classes with higher revenues are always proféable. This property
leads to a naturally defined nested structure, based solelgvenue values. In contrast,
cargo shipments have capacity requirements in multipleedsions. A shipment which
brings higher revenue may consume more capacity, and trerbé less profitable, than
another shipment which brings lower revenue. Defining aeuestructure among cargo
types is therefore a highly non-trivial problem. Analogigus EMSR-b, we aim to find
appropriate coefficients;, associated with each cargo typec |[m], that quantify the
marginal profitability of typershipments.

We now turn our attention to the problem of finding suitablefpability coefficients.
We take as our starting point the following two-dimensiokiaapsack problem, which
provides capacity allocations based on expected demandsx@ected capacity require-
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ments.

m
max E Pils
=1

subject toz pla; < C,
=1

m
> uiz <0y
1=1

(KS_Alloc)

SL’Z'EN izl,...,m

We refer to the continuous relaxation of the above integegm@m asRKS_Alloc). Sim-
ilar knapsack-based allocation models are widely usedaipéssenger booking literature
to obtain bid-prices (see Section 3.3). In a cargo contextauchkul et al. (2007) con-
sider the problemKKS_Alloc), while Pak and Dekker (2004) utilize ttiel version of
(KS_Alloc) in an on-line booking system. Along these lines, we propbsee types
of profitability coefficients based on knapsack formulasiowhich in turn define cor-
responding nested structures for our cargo booking psaliclatuitively, a profitability
coefficientp; can be interpreted as the ratio of the net revenue and sora steasure
of the capacity requirements associated with shipmentgoafit

Type 1: Based on effective capacity Akgay et al. (2007) propose a greedy algo-
rithm to solve multi-dimensional knapsack problems. Thewpsider theeffective ca-
pacity for an item, which in our context can be computed for shipmeaittypei as
%J, L%J). Their greedy algorithm then ranks items based on the ptasfuas-
sociated revenue and effective capacity. Accordingly, mioduce the following coeffi-
cients:

min(|

1 Cv,  Cy
Qi = pymun | —= |, [ —~
(LMZ‘ | Lﬂi
Note that the inverse of the effective capacity for a cargretgan be viewed as the “ef-
fective capacity requirement” of typeshipments.

1), iem] (3.10)

Type 2: Based on weighted sums of expected capacity requiremts Another
class of greedy algorithms to solve multi-dimensional lgzag problems, proposed by
Rinnooy Kan et al. (1993), ranks items based on the ratioaf grofit and a weighted
sum of their capacity requirements. Accordingly, for angipiee weightsa’ anda®, we
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can consider coefficients of the form

Pi

=————— 1€ |m| 3.11
Qufly + upft’ [ ] ( )

Qi
Note that under the non-restrictive assumptQn+ «,, = 1 the denominator becomes a
weighted average of capacity requirements. Rinnooy Kah €1293) propose a simple
method, based on combinatorial enumeration, to determaighits that lead to optimal
performance of the greedy algorithm. For the sake of corapéss, in Appendix F we
briefly describe how to obtain these optimal weights.

Remark 2 Pak and Dekker (2004) use the optimal weights in a cargo sbmbeobtain
bid-prices for units of capacity. Along these lines, it isvays possible to define prof-
itability coefficients based on bid-prices. Given respaxhid-prices\, and \,, for units
of volume and weight, one can calculate a scalar measuresafdpacity requirements of
type< cargo as the weighted averaééw. Omitting a constant factor, this leads to
the following coefficients:

Pi

P el
Aoty + Awpts ]

0;i =

Type 3: Based on a Lagrangian approach One-dimensional continuous knapsack
problems can be solved optimally by a simple greedy approabith ranks items ac-
cording to the ratio of their value and either their volumetair weight. To make use
of this natural ordering, we consider continuous Lagramgeaxations of RKS_Alloc),
where one of the capacity constraints is dropped, and a teatrpenalizes its violation
amount is added to the objective function. For example, if@lax the weight capacity
constraint, we obtain the following Lagrangian relaxation

maxipixi + >\w (Cw - i:u;uxz>
i=1 i=1

. = LRPY
subjecttoy _ pfz; < C, ( )
=1

For any fixed value of the Lagrange multipligy the above linear program can be viewed
as a continuous knapsack problem, where typkeipments correspond to items of value
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pi — ity and volumewy. Accordingly, we can define profitability coefficients as

T )\w b .
o =22l e ). (3.12)

143
If we rank cargo types according to these coefficients, tlasnmentioned above, we
can find an optimal solution to problenhiRP*) by using a greedy algorithm. As an
alternative to [RP"), we can consider the Lagrangian relaxation obtained bpping
the volume capacity constraint. Analogously to the presicase, we arrive at profitability
coefficients of the form §
0i = W, i € [ml. (3.13)
H
It remains to provide suitable values for the Lagrangiantipligrs \,, and\,. A natural
choice is to use the optimal dual variables associated Wétcapacity constraints in the
LP (RKS_Alloc). In this case both of the Lagrangian relaxations have theesaptimal
solution as RKS_Alloc), in accordance with the theory of LP duality. Notice thag th
Lagrange multipliers can be interpreted as shadow priaeshd passenger literature it
is common practice to use shadow prices from randomized biRuiations (see, e.g.,
Talluri and van Ryzin, 1999). Along similar lines, in Secti®.3.1 we outline a method to
obtain Lagrange multipliers,, and )\, by solving a randomized version dRKS_Alloc).
If the profitability coefficients are given based on one of ttee methods, one can

use Algorithm 1 to obtain EMSR-type protection levels.

3.2.2 A Risk-Based Model for Partitioned Booking Limits

As an alternative to the two-phase method, we present abdskd model, originally
introduced for passenger bookings by Aydin et al. (201@Y, dibtains partitioned booking
limits without relying on a predefined total booking limit.h& goal is to maximize the
expected total net revenue, defined as the difference bettheeexpected revenue from
the accepted booking requests, and the expected totadaudfrig cost paid as a penalty
for not shipping booked cargo.

As before, we denote the number of typbeoking requests by, i € [m], and
assume that these random variables are bounded, and #gtelations are known. How-
ever, due to our use of approximation methods, knowledgkejdint distribution is not
necessary. b, denotes a booking limit for typé€argo, the number of accepted type-
booking requests is given hy;(b;) = min(b;, D;). If we denote an upper bound of the
random variableD; by M; then, as the inequality; > A, implies N;(b;) = N;(M;),
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Algorithm 1 Two Phase Method for Computing the Nested Booking Limits

1: [INPUTS] Cargo types are ordered according to their profitabilitgfoients, i.e.,
01 > -+ > p,,. Denote the total number of typdsooking requests that arrive during
the booking period by;. The joint distribution ofD, . .., D,, is given.

2: [FIRST PHASE] Define a total booking limib. A suitable value can be found by
solving either problemRisk_TB) or problem Gervice_TB).

3: [SECOND PHASEH Analogously to (3.9), compute protection levels via thikoiw-
ing formula:

J
Qj:max{ye{o,...,b}:Qj+1—§jP<ZDi2y>§Oa}a jE[m—l],
i=1

E‘Z:_l 0:E[D;]

wherep; denotes the weighted-average profitability, calculated, as D]

To ensure that protection levels are non-decreasing, wia aga

y; = max{y,...,Yj}, J€E[m—1].

we can restrict ourselves to only considering booking liputicies given by vectors
b= (b,...,b,)InthesetB ={beN™ : by < M,...,b, < M,}. Using this nota-
tion, we can express the expected total net revenue undeianiggoolicy given by some
b € B as follows:
m m N;i(b) m  Ni(bs)
3(b) = pEN:(b)] —E [hy [ DD Vi | +he { DD Wiy || (314)

i=1 i=1 j=1 i=1 j=1

However, the corresponding optimization model, given by
max {¢(b) : b € B}, (3.15)

is typically very difficult to solve, ag is not a separable function of the booking limits. To
overcome this issue, we now describe an upper bound tbat gives rise to a separable
formulation.

Proposition 4 The functiomyV : B — R given by
¢”(b) = ZPiE[Ni(bi)] — h, (Z E[M(@)]Mf) — hy (Z E[M(@)]M?)
=1 =1 i=1
provides an upper bound for the functigrdefined in(3.14)
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Proof. Let us recall that the functions, andh,, are convex, and that, according to our
notation, we havé&[V;;| = u?, i € [m],j € [N;(b;)]. Then Jensen’s inequality implies
that, for allb € N, the following holds:

As an analogous inequality is valid for the weight penaltynteour claim follows.m
If we now replace the net revenue functio(b) by its upper boundV (b) in (3.15), we
arrive at an approximate problem:

max {¢"(b) : b € B}. (Riskp)

When the off-loading cost functiorn’s, and h,, are defined as in (3.1), we can use a
standard linearization of the positive part function totddsiskp) as a mixed integer
program. Let us introduce the binary decision variablgsi € [m], j € {0,..., M;},

to represent the indicatoik,—;. Furthermore, to simplify our notation, let us define
a;; = E[N;(j)] = E[min(j, D;)] forall i € [m], j € {0,..., M;}. Since the distributions

of the random variable®; are known, these expected values can easily be computed.
Then, similarly to Aydin et al. (2010), we arrive at the fallmg formulation:

m M
max Z Di Z ;i — 0p0y — Oy, (3.16)
=1 j=0
m M;
subjectto 9, > Z/,Lg’ Z agri — Oy (3.17)
=1 =0
Uy, >0 (3.18)
m M;
Uy > Z i’ Z a;jxi; — Cy (3.19)
=1 j=0
Uy >0 (3.20)
M;
» ay=1 i=1,...,m (3.21)
=0
z;; € {0,1} i=1,...,m,j=0,..., M, (3.22)

Proposition 5 Let functionsh, andh,, be defined as if3.1), and let(x*, ¥, J% ) be an

r Vvl Y w
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optimal solution of the probler{8.16)(3.22) Then the booking limits" = Zﬁljxjj,

i € [m], provide an optimal solution ofRiskp). In addition, the two problems have the
same optimum value, i.e., if we letx, J,,, 9,,) denote the objective expression given in
(3.16) we have the equality(x*, 9%, 0% ) = ¢V (bX").

YT vr Yw

Proof. Assume thak = (2i;);c(, jefo..1,y Satisfies the constraints (3.21)-(3.22). Itis
easy to see that, for evefye [m|, exactly one of the binary variablesy, x;1, . .., iy,
takes valuel. It follows that the sunb} = Zﬁljxij belongs to the sefo, ..., M,},
and thus the vectds* is a feasible solution ofRiskp). Let us introduce the additional
notation

m M;

X v

= > ayw, —C,
=1 =0

m M;
X w
, U= E Mi§ aijzij — Cuw|
=1 j=0

+ +

and note thatx, ¥, 9% ) satisfies all of the constraints (3.17)-(3.22), and has gexctise

value of(x, 9%, 9%) = ¢ (b¥). In addition, constraints (3.17)-(3.20) imply that the in-
equalities), > ¥* andd,, > ¥ hold for any other feasible solutids, ., J,,), therefore
we havep(x, 0, U,) < o(x, 9%, 0%).

On the other hand, let us consider an arbitrary soluti@f (Risk ), and definer;; =
1,,—;. Itis clear thaik satisfies the constraints (3.21)-(3.22), &%d= b holds. Therefore,
taking into account the optimality ¢k*, ¥, ¥ ), we can combine our previous results to

) v w
prove our claim as follows:

~ ~

¢"(b) = ¢" (b%) = §(x, 05, 0%) < $(x", 05, 9;,) < (x",05 ,0%) = oV (b).

y Yoy Yw » Yur Yw rYv ) Y w

We note that the proposed formulation (3.16)-(3.22) canfbeiently solved by a
standard mixed integer programming solver such as CPLEKussrated in Chapter 4.

3.3 Bid-Price Policies

Bid-price policies make accept/reject decisions for boghkiequests by comparing their
net revenues to a threshold price. In a cargo context, tlnessttolds are based on bid-
prices for units of volume and weight capacities, and camtezpreted as marginal values
of the capacity resources. Given such bid-prices, one ctairoh threshold price for a
given type of cargo by adding up the prices of expected volanteweight requirements
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of a shipment; see (3.23).

Bid-prices can be updated periodically during the bookinacpss, based on the re-
maining available capacity, the time to departure, and egpiens about the future de-
mand. This widely used approach (see, e.g., Kunnumkal,2@l2; Levin et al., 2011)
leads to dynamic booking policies which lie outside of thepeof this thesis. However,
in lieu of updates to the bid-price, it is necessary to inticladditional controls to pre-
vent oversale. In our proposed policies we adopt the follgwule: the expected capacity
requirements of accepted shipments are not allowed to exaeslable capacities.

Let AV and\" denote bid-prices for unit volume and weight capacitiespeetively.
Then, in accordance with the principles outlined above rawiag type- booking request
is accepted if and only the following conditions hold:

pi 2 Ao 1 A, iy < Cy = 2%, andp < Gy — 2%, (3.23)

wherez" andz" denote the total expected volume and weight capacity reougints of al-
ready accepted shipments. Notice that the net revenisébeing compared to the thresh-
old priceu? A\, + 1’ A\, Which expresses the price of the expected capacity regaines
of a type+ shipment.

In this section we first consider an approach based on a wigsdyg method in the
passenger literature (Simpson, 1992; Williamson, 199B)¢cincomputes bid prices as the
optimal values of dual variables associated with the cé#paonstraints in a deterministic
capacity assignment LP. Amaruchkul et al. (2007) proposeauie of such an LP-based
heuristic (not incorporating off-loading costs) in a sexgg cargo context. We extend
their model by using a randomized method originally propdse Talluri and van Ryzin
(1999) for controlling passenger bookings over networks.

All of the models discussed so far either ignore off-loadingts, or make the common
simplifying assumption that these costs can be separated additive fashion, as in
(3.1). In contrast, Levin et al. (2011) propose an optimaaaproblem which determines
which shipments are to be off-loaded; a similar approachal&sbeen suggested in the
passenger literature by Bertsimas and Popescu (2003), amaliknkal et al. (2012). The
latter study provides a two-stage framework for networlereie management, extending
the RLP methods proposed by Talluri and van Ryzin (1999).h&ngecond half of this
section we describe a way to compute bid-prices using aaifRILP model, which allows
us to consider off-loading costs as a more accurate funofitime capacity requirements
of accepted reservations.
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We mention here two other relevant studies: Han et al. (26id@jel the single-leg
booking process by a discrete-time Markov chain and comipidt@rices that maximize
expected revenue, while Pak and Dekker (2004) consider-aimensional on-line knap-
sack formulation for networks, and use the greedy algoripnoposed in Rinnooy Kan
et al. (1993) to solve this problem and compute bid-pricesthBtudies assume that no
penalty is incurred when a booking request is rejected, hatidapacity requirements
are known with certainty when a booking request arrives. utheir practicality, we
consider the methods proposed in Amaruchkul et al. (200d@)RPak and Dekker (2004)
as benchmarks in our computational study.

3.3.1 A Traditional Randomized Linear Programming Method

Deterministic LP formulations, based on the expected whfethe random demands,
have been widely used to compute bid-prices for passengdirigpin a network context
(Simpson, 1992; Williamson, 1992). Amaruchkul et al. (206@nsider a similar deter-
ministic LP model for a single-leg cargo capacity contralgem; their formulation is
essentially equivalent to the probleRRIKS_Alloc). This approach analyzes a scenario
when various random variables take on their expected valigish might not be suffi-
cient to capture the randomness inherent in the bookingegeodAs an alternative to de-
terministic LPs, Talluri and van Ryzin (1999) propose the oSRLPs to obtain bid-prices
for controlling passenger bookings in the absence of nevshioe., under the assumption
that all the passengers with a reservation show up at thetdepaime. We adapt this
approach to a cargo context, and introduce an RLP-basedth&itcompute bid-prices
for volume and weight capacities. The underlying idea issiwa Monte Carlo simulation
to estimate the total demands, instead of relying on expecies.

Suppose thafl*, k € [K], are K independent samples of the random total demand
vectorD = {D;, i € [m]}. To obtain the RLP under theth sample, we replace the
expected total demarie[D;] by d* for all i € [m] in the allocation problemRKS_Alloc):

max{z pir; » 0 < <df, i€ m], Z,uf:cl < Cy, Z,u;“xz < Cy}
=1 =1 =1
(Random_RKS)
We solve the above RLP to find the optimal dual variabi&sand \** associated with the
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capacity constraints. Then, bid-prices can be calculaye/braging over all samples:

1 SN, 1S
L N UL L N LS
K K

Remark 3 Consider a discrete-time framework, where the bookingzworis divided in

T time periods andl’ is sufficiently large so that there is at most one booking estju
arrives in each time period. Suppose that we are given thbghilities of observing a
particular type of cargo at each time perio®(D;; = 1) = p;; forall i € [m], t € [T].
Then, alternatively, we can generate independent samples-0{D,;, i € [m],t € [T}
instead oD = {D;, i € [m]}. Inthis case, denoting the demands unikbrsample byi¥,

we replacel[D;] by Y, d¥ for all i € [m]. In our computational study, we assume that
we are giverp;; parameters. However, by using the FFT method, we can examtipute
the distributions ofD;, i € [m] and still generate samples & = {D,, i € [m]}.

While the above model incorporates the randomness in thébauwf booking re-
quests, it does not account for the uncertainty in the capesguirements of individual
shipments. In the next section we present a two-stage agiptbat addresses this issue.

3.3.2 A Two-Stage Randomized Linear Programming Method

In this section we develop a two-stage RLP model following template laid out by
Kunnumkal et al. (2012): booking decisions are made in tts¢ $itage, and off-loading
decisions are made in the second stage. Using a Monte Caitoagh, we first gener-
ate K samples of the demand distribution, then solve a two-stdyéok. each sample.
Similarly to our previous RLP method, we compute bid-pribgsaveraging over alk’
samples the optimal dual variables associated with capeaitstraints.

In order to arrive at a tractable formulation, we need to nedditional assumptions
about the demand structure. In accordance with commonigeaict the literature, we
divide the booking horizon int@ time periods, where departure occurs at the end of
the T'th period. We make the standard assumption Thé&t sufficiently large so that no
two booking requests arrive in the same time period. We detied probability that a
booking request for typé-cargo arrives in period by p;, fori € [m], t € [T]. The
random demand for type€argo in period;, denoted byD,;, then follows a Bernoulli
distribution with success probability;. We note that the demands,,, ..., D,,, for a
given time period, together with the indicator of the event that no requestseam the
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period, follow a multinomial joint distribution. We next sleribe a two-stage model under
a given sample realizatio(rd?t) e OF these demands.

Booking decisions for shipments are made without knowleofggheir exact future
capacity requirements. At the departure time, when theg@nements are realized, we
determine which accepted shipments should be off-loadetizLrepresent the number
of type+ shipments accepted in time periodand lety® represent the number of these
shipments that are off-loaded. If the random volume and eigguirements are given

by the pair of random vectof&/*, W*), we have the following first-stage problem:

m T
0> pirh —ElQ(x", VE, W) (3.24)

i=1 t=1

s.t. 0<ak <db i € [m], t €T, (3.25)

whereE[Q(x", V, W)] denotes the expected second-stage off-loading costs. ivr g
booking decisions* and a given realizatiofw*s, w**) of the random capacity require-
ments(V*, W*), the off-loading decisions and costs are given by the optsoiation of
the following second-stage LP:

m T
Q(x*, v* w") = min Z syl (3.26)
i=1 t=1
m T
st > D il —uh) <G, (3.27)
i=1 t=1
m T
ZZU} — k) <O, (3.28)
i=1 t=1
0 <yp; <af i€[m], tell], (3.29)

wherecks denotes the penalty cost paid for off-loading a shipmentadime v%* and
weightw’s. We point out that constraints (3.27)-(3.28) ensure thatehal volume and
weight requirements of boarded shipments do not exceeatpective available capaci-
ties of the flight.

Remark 4 It is possible to approximate the standard off-loading dosiction given in
(3.1) by settingcts = 6,0k + 0,wks. On the other hand, Levin et al. (2011) consider
penalty costs for typécargo to be proportlonal to the shipping ratg and computed as
ek = r;(0.150F + 1.5wk*). We also consider the penalty ce4t to be a deterministic

function of the capacity requirement§ and w3, hence the omission @f* from the
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arguments of the functiof). However, this is not a necessary assumption; our approach
can accommodate arbitrary choices«f. Similarly, we can incorporate uncertainty in
available volume and weight capacities into our model byaeipg C,, and C, by C*s

and C**, respectively. However, it is potentially very challengio generate scenarios
that accurately represent the joint distributions of alhdom parameters .

Itis possible to obtain a point estimation of the expectédazfding costE[Q(x*, V, Wk)]
via Monte Carlo simulation as follows. Let us generdtesamples(v*s, w*®), s €
[L], of the random capacity requirements, then obtain corredipg off-loading costs
Q(x*, vk wks) by solving the second-stage LP, and finally take the avertifyese costs
across allL samples. Accordingly, we can combine our first-stage prol{&24)-(3.25)
and our second-stage problem (3.26)-(3.29) into a singielacale LP:

m T L m T
1
max Y ¥ prh— 7DDy (3.30)
i=1 t=1 s=1 i=1 t=1
s.t. 0<af <dj iem], te[T], (3.31)
m T
DO ik -yl <, sell], (3.32)
=1 t=1
m T
SO wliah -y < sell], (333
=1 t=1
0<yhs <ok i€[ml, tel[T], sel[L]. (3.34)

Let us solve the above two-stage model for each offhdemand realizations, and let
5\55 andﬁ\ﬁf denote the optimal values of the dual variables correspgidi the capacity
constraints (3.32) and (3.33), respectively. Then, sityila the traditional RLP method,
we can set the bid-prices for unit volume and weight capesids
1 & 1 -
o \ ks o N ks
N DD MNPV 3 9P

7j=1 s=1 7j=1 s=1

3.3.2.1 Solving the Two-Stage Model

For a given demand sample, the proposed large-scale LP fatiorugiven by (3.30)-
(3.34) involvesn LT decision variables an@(m LT') constraints. Depending on the size
of the problem instances, it can be computationally chgllemto solve this problem.
In our computational study, we use the Monte Carlo approaith W = 25 samples
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when drawing first-stage parameters, dne- 200 samples for each set of second-stage
parameters. For instances with = 240, we could easily solve the resulting problems
using CPLEX. However, if solving the large-scale LP forntiga eventually becomes a
computational bottleneck, one can use the well-known Lpstanethod (Van Slyke and
Wets, 1969), a widely applied Benders-decomposition aggr@¢Benders, 1962) to solve
two-stage stochastic programming problems with the exgle@course functions for the
case of a finite probability space. For a detailed discussiothe L-shaped method, we
refer the reader to Van Slyke and Wets (1969), Birge and Laux€¢1997) and Prékopa
(1995). In our setup, this decomposition based approaahire=gto solve the second-
stage problem for each sample of volume and weight requin&sria order to obtain
the subgradient inequalities for the total off-loadingtdosiction. Observe that using a
change of variablesy, = =;; — y;;) we can formulate the second-stage problem under
each realization as a continuous relaxation of the mulkippsack problem (MKP) with
two constraints:

Q(X7 VS7 WS) = Cftxit

m T m T m T
— maX{ZZcftgjit : ZZU%@]M < C,, Zwatgit < Cy, 0 <y <x}.

=1 t=1 =1 t=1 =1 t=1
The relaxed MKP problem can be solved using a off-the-sludtivare such as CPLEX.
One can also solve it using an alternative approach. Forsgiesial class of MKP, we
can use the Lagrangian method penalizing the violation efadithe capacity constraints,
which leads to the well-known continuous knapsack problerhus, for a given La-
grangian multiplier associated with a capacity constranethave an analytical expression
for the optimal solution of a Lagrangian relaxation of thew®d-stage problem. Then,
we can optimize over the single Lagrange multiplier to ab&m optimal solution of the
second-stage problem. Such an approach has been propolstdtbilo and Toth (2003)
to solve the continuous relaxation of the MKP with two coastts.
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Chapter 4

Implementation Details and Computational Study

In this chapter, we first discuss in detail how different biogkpolicies are implemented.
Then, we describe our simulation setup and explain how wéhsetalues of the input
parameters used in the presented models. We also brieflyilees$loe policies used as
benchmarks and provide insights about the performancdfefelnt policies.

4.1 Implementing Cargo Booking Policies

In this section we outline various ways to implement opeploargo booking policies for
use in practice, or for the purpose of evaluation by simoieti We also describe methods
to convert between different types of booking controls.

4.1.1 General Implementation Notes

In Section 3.3 we introduce the rule that, when we employiigdgprice policy, we do
not accept booking requests for shipments that would bhegdtal expected capacity
requirements (either volume or weight) for the flight oves #vailable capacity. In our
implementations we adopt this rule for all booking polici&is practice has been sug-
gested by Pak and Dekker (2004) and Amaruchkul et al. (2a6@)]atter study states
that adopting it leads to improved performance. We have@bserved that this practice,
which considers the capacity constraints given in (3.28}, $ignificantly improved the
performance of our booking policies.

As we briefly touched upon in Section 3.3, open loop method®#ien used with a
rolling horizon scheme, where booking controls (i.e., bhogKimits, or bid-prices) are
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periodically updated to take into account changes in avigleapacity and/or changes in
predicted demands. Such approaches, which occupy a pobgitween static and fully
dynamic booking policies, are outside the scope of our ¢hesi

In practice, partitioned booking limits are rarely implemed directly; instead, they
are usually converted to a nested policy. This conversionbeaperformed naturally in
the passenger case, since net revenues define a uniquegraekiveen the fare classes.
In Section 4.1.3 we discuss how to perform similar conversior cargo booking limits.
In our computational results we only report the performamiceested implementations
of partitioned booking limits; the reason for this decisisrthat nested implementations
consistently outperform partitioned ones to a significagrde.

4.1.2 Implementing Booking Limit Policies

We consider booking requests that arrive in sequence. Whremuast arrives, we make an
accept/reject decision based on our current booking ljraitd if the request is accepted,
we update the booking limits to reflect the decrease in availeapacity.

Partitioned booking limits

Let b,(t),...,b,(t) denote the booking limits for various cargo types after pting ¢
booking requests. A new request for typeargo is accepted if and only if we have
b;(t) > 1. If the request is accepted, we decrease tyji@it, and leave the other limits
unchanged. Thatis, we sigtt + 1) = b;(t) — 1, andb; (t + 1) = b;(t) for j # i.

Nested booking limits
We note that there are two ways of implementing nested bggkiticies: standard nest-
ing and theft nesting. Talluri and van Ryzin (2005) staté¢ teandard nesting is the norm
in revenue management practicéccordingly, in our study, we only consider this more
natural approach, and refer the reader to Haerian et al6j200a detailed description of
theft nesting. The nested booking limitdenotes the maximum total number of booking
requests that we intend to accept for cargo types , m.

Let by(t) > --- > b, (t) denote the nested booking limits after acceptirmpoking
requests. A new request for typeargo is accepted if and only if we havgt) > 1.
If the request is accepted, we decrease the booking limitsgmo typed., ..., i, and
update other limits to preserve the nested structure. Bhatd seb; (¢t + 1) = b;(t) — 1
for j <, andb;(t + 1) = min(b;(t), b;(t + 1)) for j > 4.
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Capacity-based booking limits

Instead of considering limits on the number of accepted bapfequests, it is natural to
consider limits on the expected capacity requirementsh 8ots represent volume and
weight capacities that are made available to cargo of varigpes. Accordingly, upon
accepting a booking request for a shipment, the approgdimates are decreased by the
expected volume and weight of this shipment.

Partitioned capacity limits  Let By(t),..., B (t) andB{(t), ..., B (t) denote the
volume and weight limits, respectively, for various cargpes after acceptingbooking
requests. A new request for typeargo is accepted if and only if we hay# (t) > pY
andBy(t) > uf. If the request is accepted, we decrease tyjpeits, and leave the other
limits unchanged. That is, we set

(t+1)
(t+1)

(t+1) = BY() j#i
(t+1) = BY() j#i.

Nested capacity limits Let BY(t) > --- > BY(t) andB¥(t) > --- > B“(t) the
nested capacity limits after acceptingooking requests. A new request for typeargo
is accepted if and only if we hav@? (¢) > u? and B (t) > u¥. If the request is accepted,
we decrease the limits for shipments of tyipe. ., i, and update other limits to preserve
the nested structure. That is, we set

j(t+1) = Bj(t) — j<i
B (t+1) = By (t) — j<i
BY(t + 1) = min (Bj(t), By (t + 1)) j>i
BY(t+1) = min (B (t), Bf'(t + 1)) j >

4.1.3 Conversions Between Booking Controls

We have discussed several classes of booking controlsidimg) partitioned and nested
booking limits, expressed both in terms of the number of hapkequests and in terms of
capacity. We now describe some ways in which a cargo boolatigypbased on controls
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of a certain class can be converted to a related (but not s&dlgsequivalent) policy
based on controls of a different class.

Conversion between nested booking limits and protection leels

In the EMSR literature, and accordingly in our related Set8.2.1.2, nested booking
policies are described in terms of protection levgls< . . .y,,. Here the level;; denotes
the maximal number of booking requests that can be acceptechfgo typed, ..., .
Protection levels can be interpreted as “protecting” add capacity for requests with
high profitability. In contrast, nested booking limits e&ps the amounts of capacity made
available for requests of lower profitability. These two wemtions provide equivalent
descriptions of nested booking policies, and we can corueiection levels to nested
booking limits via the following simple formulas:

Bl:yma bi = vi — yi1 fori=2,....m.

Conversion to capacity limits

Instead of considering limits on the number of accepted bmplequests, it is natural to
consider limits on the expected capacity requirements cé@ed requests. i, ..., b,

are partitioned booking limits, we can define correspondiagking limits in terms of
volume asB} = b;u.¢, and in terms of weight aB}* = b;, fori € [m]. Similarly, given
nested booking limitg, > --- > b,,, we can define corresponding nested capacity limits
as

m—1

BZ) - Bm”;}n + Z(l_)j-i-l - Z_)]):uga 1€ [m]v
j=i

m—1

BY = b+ (bjsa —b)py, i€ [ml].

j=i

Nested implementations of partitioned booking limits

If the various types of cargo are ranked in such a fashionltvegr-indexed types are
considered to be more preferable, then partitioned boolkmigs naturally give rise to
nested booking limits. More precisely, given partitionexbking limitsb;, ¢ € [m|, we
can definé, = Z;”:Z. b;. Analogously, for partitioned capacity limif$! andB}*, i € [m],
we defineBy = 37", BY andBY = > "", BY. In our numerical experiments we consider
nested implementations of partitioned booking limits lokbse the rankings of cargo types
implied by the profitability coefficients introduced in Sect3.2.1.2.
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4.2 Simulation Setup and Parameters

Following the setup presented in Amaruchkul et al. (2007)haee set the following
parameters: cargo types, volume and weight requiremenitsne and weight capacities,
revenue function, off-loading costs, number of decisionqas and the demand arrival
probabilities.

In all of our computational study we assume that each cargorsnt has determin-
istic weight and random volume requirements at the time okbay. This is because it
is relatively easier for the shipper to measure the weigbiydver it requires more so-
phisticated tools to measure the volume. Therefore, volismepresented by a random
variable which follows a log-normal distribution.

As in Amaruchkul et al. (2007), a shipment type is defined by t@mponents: class
and category. Class of the shipment is characterized byitgeat, e.g. flowers, clothes,
electronics or fresh products. Therefore, class is theggrmomponent that determines
the rate which company will charge per chargeable unfSee Table 4.2). On the other
hand, category of the shipment is defined by its expectedweland weight (See Table
4.1). There are 24 categories and 10 classes. Consequleathyymber of different cargo
types becomes: = 24 x 10 = 240.

Table 4.1: Weight (kg) and Expected Volumel()* cm?) for Category
Category 1 2 3 4 5 6 7 8 9 10 11 12
Weight 50 50 50 50 100 100 100 100 200 200 200 250
Meanvol. 30 29 27 25 59 58 55 52 125 119 100 147

13 14 15 16 17 18 19 20 21 22 23 24
Weight 250 300 400 500 1000 1500 2500 3500 70 70 210 210
Meanvol. 138 179 235 277 598 898 1488 2083 233 17 700 52

Table 4.2: Revenue Function for Classes
Class 1 2 3 4 5 6 7 8 9 10

0<w<90 1.12 104 092 082 0.8 087 099 0.72 0.7 0.55
90 < w <990 1.11 103 091 081 0.79 086 098 0.71 0.69 0.54
990 <w <1990 1.09 101 089 0.79 0.77 084 096 0.69 0.67 0.52
1990 < w 1.08 1.00 0.88 0.78 0.76 0.83 0.95 0.68 0.66 0.51

In our numerical experiments, the revenue functign) appearing in (3.2) is taken to
be a piecewise linear function as described in Table 4.2 lamdhverse density constant
~ is equal to 6 M/ton. Our models require the revenue obtained when a siraylkibg
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request is accepted. However, because volume is taken todoelam variable, we esti-
mated this immediate contribution by usii§y; (max{w, V/~})] instead. Please refer to
Appendix D for related calculations.

There are50 decision periods in which at most one arrival occurs. Boghiorizon
starts at = 60 and plane leaves at= 0. We use the time dependent arrival probabilities
presented in Amaruchkul et al. (2007) (for details, seedall3 and 4.4); each value is
associated with the probability that an arriving bookinguest belongs to a certain class
and category at a particular time period. The probabilitpla$erving a booking request
arrival for types cargo at time, denoted byp;,, is obtained by multiplying the arrival
probabilities associated with the category and the clasargjo type.

Table 4.3: Arrival Probabilities for Classes
Periods 1-10 11-20 21-30 31-40 41-50 51-60

Class1 0.02 0.03 0.04 004 0.05 0.05
Class2 0.006 0.007 0.01 0.01 0.015 0.02
Class3 0.005 0.005 0.05 0.07 0.065 0.08
Class4 0.02 0.02 0.02 0.045 0.045 0.07
Class5 0.025 0.025 0.025 0.025 0.025 0.03
Class6 0.03 0.02 0.03 0.02 0.03 0.04
Class7 005 005 005 0.05 0.05 0.06
Class8 0.078 0.06 0.07 0.06 0.07 0.09
Class9 0.03 0.035 0.04 0.045 0.05 0.055
Class 10 0.001 0.045 0.002 0.002 0.05 0.05

Table 4.4: Arrival Probabilities for Categories
Categories 1-10 11-16 17-20 21-24
Probability 0.072 0.04 0.009 0.001

Volume and weight capacitigs”,, C,,) are determined as fractions of the expected
total demandsl, = Y27, 27 pyut andd, = 3., S0 puu. Basically, given the
capacity demand ratios(,/d,, C,/d,), we determine the volume and weight capacities.

As mentioned in Chapter 3 we consider two ways of modellimgati-loading costs.

In the first approach, we assume that off-loading cost fonsti,, andh., are defined as in
(3.1). On the other hand, the second approach calculatedftleading cost by solving a
net revenue maximization problem which identifies the irdiial shipments that are to be
denied loading. In both approaches we assume that paridirigs are allowed. For the
first approach, we need to specify the off-loading cost coefitsd, andd,, per unit of
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off-loaded volume and weight, respectively. To do this, wet italculate the benchmark
penalty costs$n,, n,,) using the following equations:

T m

SO papi = nud,

t=1 i=1
T m

D> piapi = thud.

t=1 i=1

Then, given the penalty cost rate ratids/n,, 6.,/n. ), we set the values @, andd,,. In
our second approach, the cost of off-loading a tygaipment at period under scenario
s is taken a9, v}, + 6, w;,. Remark 4 explains the motivation behind our selection.

We utilized a Monte Carlo simulation for all our models whéstimating hard-to-
compute expressions. First, we used this approach to dstthreacomplicated expectation
terms for finding the optimal solution oR{sk_TB) (see Appendix C) and we selected
the sample size a8), 000 which gave quite stable results among different samplings.
Secondly, for our traditional randomized linear programgnmodel we sampled000
demand realizations in order to estimate the dual variabksally, for our two stage
stochastic linear programming model, we sampléd= 25 realizations of demand and
L = 200 realizations of volume and weight.

Recall that the problenR(isk_TB) requires the probability;, i € [m], that a booking
request is for typé-cargo. These probabilities are calculated by

P E[D;] _ Zthl Dit
Z;ll E[Dz] Z;n:l Zthl Pit

Using these multinomial probabilities, we generate thetunexrandom variables; and
W; in the corresponding Monte Carlo simulation.

In order to obtain the bid-prices by solving the traditioR&lP, we generate samples
of total demand for each cargo type. Thus, we need the josttilblution of D+, ..., D,,.
Obtaining this probability distribution is not very straifprward becaus®; is the sum of
T independent Bernoulli random variables each having areéifiteprobability of success.
Under the assumption of independent total demands, werdibgaimarginal distributions
of D;, i € [m| by using the Fast Fourier Transform (FFT), see Appendix Eébails. We
utilize the FFT also for the EMSRb heuristic, since it regaithe distribution 0§_7_, D;
for all j € [m]. Similarly, Zle D; is the sum of;T" independent Bernoulli random
variables. Therefore, calculations are quite similar tisthfor the distribution obD;.
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A single problem instance is defined by the combination cfelsets of parameters.
The first is the capacity demand ratios for volume and weightd,, C\,/d,). Second
is the coefficient of variation denoted by. The final parameter is the penalty cost rate
ratios @, /7., 0., /n.). From this point on, we will represent a single instancegshe
notation: (C,/d,, Cy/dy, cv,0,/n,,0,/1n,). We generated 154 different instances for
our computational experiments and we next present thelsletagt us denote the set of
values we used as capacity demand ratio, coefficient ofti@miand penalty cost rate pa-
rameters by, Cs, andC’; respectively. The generated instances can be dividedvrto t
groups. The first group involves tighter capacities on atleae dimension, whereas the
second group involves more moderate capacities. Theredairestances within the first
group and the associated parameter values are as follows= {(0.1,1.0),(0.2,1.0),
(0.3,0.3),(0.3,1.0),(0.4,0.4), (0.4,1)}, Cy = {0.2,0.8}, C5 = {(1.5,1.5),(2.0,2.0)}.
The parameter values of the second group ag:= {(0.5,0.5),(0.5,1.0),(1.0,0.5),
(0.75,0.75),(0.75,1.0), (1.0,0.75),(0.9,0.9), (0.9,1.0),(1.0,0.9), (1.0,1.0), (1.1, 1.1),
(1.1, 1.0), (1.0,1.1)}, Cy = {0.2,0.8}, C5 = {(0.8,0.8), (1.0,1.0), (1.2,1.2), (1.5, 1.5),
(2.0,2.0)}. In order to estimate the expected revenue under eachgettenconducted
simulation and for each instance we reit0 replications. Solving Ry takes less than
10 seconds, RiMland EMSR based heuristics take less than 1 second, RLP4 lede
than 1 minute on average. Solving 25 large scale linear progring models in order
to obtain bid-prices for RLP-2, took around 15 minutes onrage. Please note that
given times are in terms of wall clock time all and the compatel experiments were
conducted on an Int8l CoréM2 Quad, 2.33 GHz processor, 8 GB RAM (Windows 7,
64-bit) computer.

4.3 Benchmark Policies

We implemented three of the heuristics proposed by Amamickikal. (2007), the al-
gorithm proposed by Pak and Dekker (2004) and the first corse darve policy as
benchmark policies. Amaruchkul et al. (2007)’s first hetizislevelops a policy based
on two approximate DP formulations whereas the other twaoiskts propose bid-price
and booking-limit policies. Pak and Dekker (2004)’s algfum also provides bid-prices
and utilizes these bid-prices during the decision procéssst come first serve policy
accepts all booking requests unless it results in exceegdagapacity.

The DP formulation of the cargo capacity control problenresgnted in Amaruchkul
et al. (2007). The state space of this DP formulation is aord€g) of sizem denoting the
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number of accepted typeeargoes. As a result, this problem becomes computationally
intractable. Letx = (z1,...,z,) € Z7 be the state vector with; representing the
number of accepted requests for cargo tyge-far. The initial state, at the beginning of
the booking horizon is the zena-vector, denoted by, andgr(ey) gives the optimal
function value wherg,(x) denotes the recursive equations of the DP formulation.

gi(x) = sz‘t max{p; + g—1(x + €;), gi—1(X)} + porge—1(x), t=1,....7, (4.1)
i=1

+ Oy , (4.2)

2.2 Wi =Cu

i=1 j=1

2.2 Vi=C

i=1 j=1

go(x) = —E |0,

+ +

whereV;; andW;; are the volume and weight requirementsjthf accepted typeé-cargo
booking ande; denotes then-dimensional unit vector with & in the ;th position and O
anywhere else. Because it is computationally challengrgptve this high-dimensional
DP problem, Amaruchkul et al. (2007) propose different agpnations to the formula-
tion above. We next briefly describe one of their heuristies tve used for benchmarking.

HD Heuristic

This heuristic is based on an approximation approach whiohdlates two separate DP
problems (, ;") based on volume and weight dimensions. The state spackddm
based on volume is taken as the expected total volume accaptefor DP based on
weight, it is expected total weight accepted so far. Imntediavenue for} is f¥ =
E [[ri(Vi/7) — ri(wi) 1 {v;5w,} | @nd foruy, itis f = E[r;(w;)]. Boundary equations
for both dimensions are equal to the related dimension’seepl off-loading costs. This
approximation is used for both providing an upper bound @nekpected net revenue
value 4(0) + u%(0)) and determining the decision policy of HD heuristic.

In HD heuristic, a type-booking request arrival at timels accepted when the states

arer =y " wipf andy = >0 wpg if

pi 2 [ui_y(x) +u ()] = [ugy (v + i) +ui ) (y + )]
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Partitioned Allocations (PA) Policy

Booking limits for PA heuristic are derived by solving theplem:
¢(E[D]) = max{¢(x) : x < E[D]},

where
¢(x) = Z Pili — HU[Z piwi = Coly = Ou [Z i’ — oy
=1 =1 =1

Let z* be the optimal solution of the above optimization probleniei, PA accepts a
type+ booking request if and only if

T+ M;} < Cva Y+ ,u;u < Cw, and T; < I_ZZ-I

Bid-Price (BP) Policy

Dual variables X, and )\,) associated with the volume and weight constraints of the
problem KS_Alloc) are used as bid-prices for the BP heuristic. Then a #yipeeking
request is accepted if and only if

r4pg <Oy y+pd <Cy, and  pp > pf N, 4 ' Ay (4.3)

Pak and Dekker’s Bid-Price (PD) Policy

Pak and Dekker (2004) model the booking process as a tworgiigal on-line knapsack
problem and obtain the bid-prices using the greedy algorphoposed by Rinnooy Kan
et al. (1993) (See Appendix F). A booking request is accepteejected according to the
rule given (4.3), but the dual variablels,(@and),,) are replaced by the bid-prices obtained
by Rinnooy Kan et al. (1993)’s algorithm. In order to make arenfair comparison with
our two stage stochastic linear programming model, we raralgorithm for1000 times
and took the average of the bid-prices.

First Come First Serve (FCFS) Policy

The FCFS policy accepts all the booking requests as longeasxpected total volume
and weight of the already accepted bookings do not exceegtipective capacities. In
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other words, a typeébooking request is accepted if and only if
r+p; <C, and y+pf < Cy.

Note that FCFS policy can also be considered as a bid-prikeypohere the bid-prices
are equal to zero.

4.4 An Overview of Implemented Methods

In the computational study, we implemented the policiesioletd by solving our models
(presented in Chapter 3) and the benchmark policies (dextin the previous section)
according to the details explained in Section 4.1.2. Inipalgr, we consider four types
of booking limit polices and three types of bid-price paisi

As discussed in Chapter 3, the proposed two-phase methetheeavailable capac-
ity to be equal to the total booking limit obtained by solvitlg problem Risk_TB) or
(Service_TB). Then, it uses a particular type of profitability coeffidieno obtain the
nested booking limits as summarized in Algorithm 1. We rédathis approach as RM.
Our modelRiskp, and the PA approach provide us with the partitioned bookimgtd.
Then, we use the proposed nested structures to convert thém nested ones. Thus,
the nested booking limits are obtained for three models;RMisk, and PA. For each
model, we use three types of profitability coefficients tcagibthe nested booking limits.
With the randomized version of the third type of profitalyitbefficients, we consider six
types of nested structures. For convenience, we introchecalibreviations summarized
in Tables 4.5 and 4.6.

Obtaining Bid-Price Policies

RLP-1 Traditional Randomized Linear Programming Model
RLP-2 Two Stage Stochastic Linear Programming Model
PD Pak and Dekker (2004)’s Bid-Price Policy
FCFS First Come First Serve Policy

Obtaining Booking Limit Policies
RM,r Two-Phase Risk-Based Model
RMp  Risk-Based Model for Partitioned Booking Limits
PA Partitioned-Allocations Heuristic of Amaruchkul et @007)

Table 4.5: Implemented Models

42



Profitability coefficients
x-1 Type 1: (3.10)
*-2 Type 2: (3.11)
Type 3: LP used to estimate,, and\,

*-3 (3.12) (KS_Alloc)

*V-3 (3.13) (KS_Alloc)
*x-R3 (3.12) (Random_RKS)
*x"-R3 (3.13) (Random_RKS)

“* " Stands for the model RMy, RMp or PA

Table 4.6: Implemented Nested Structures

4.5 Numerical Results and Insights

According to the numerical results presented in Amaruclekall. (2007), HD heuristic
outperforms their all other heuristics. Therefore, we tblikas a benchmark while eval-
uating the performance of different heuristics that we agrin our computational study.
We quantify the solution quality of different heuristics kgfative percent difference with
respect to HD heuristic and it is calculated as:

Zup — 7Z
100 x 22227 (4.4)
ZHD
wherer represents one of the heuristics, afig, and Z, represent the net revenues
(averaged over all replications) of the policies obtaingdHb andr, respectively.
Abbreviations in Tables (4.12) and (4.16) stand for:

Rel. Dif. Equation (4.4)

F ; Total Volume Accepte Total Weight Accepte
Utilization 100 x AVg Volume Capacity ;100 % AVg Weight Capacity

Offloaded Volume Offloaded Weight
Offloaded 100 x Avg Total Volume Accepted ’ 100 x Avg Total Weight Accepte

Number of Requests Accept
Acc. 100 x AVg ( Total Number of Requestsjd
Offloading Cos
OC 100 x AVg ( Total Revenueﬁ'

4.5.1 Booking Limit Policies

Relative percent differences from HD heuristic of all thekiag limit policies are pre-
sented in Tables (4.7)-(4.12) and Figures (4.2)-(4.3).
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Like PA heuristic of (Amaruchkul et al., 2007), RMnitially provides partitioned
booking limits. When these partitioned booking limits anedtly utilized in the decision
process, mean net revenue obtained is 4% worse than thel nestons of RM on
average. In almost all instances, using booking limits ireated structure performed
better than using partitioned booking limits. Thereforedigtnot represent the results of
policies where partitioned booking limits were used. Fegy(#.1) represents the average
revenue over all instances for each booking limit model d@neéwveals that, out of six
different nesting methodsy-3 and«w-3 performed the worst. Therefore, results given
by these nesting methods are not presented either.

In figure (4.2), we present how total booking limit respondlsite penalty cost rate
ratios under different capacity demand ratio values (eehdine corresponds to a differ-
ent capacity demand ratio). Selected instances in thisdjduave coefficient of variation
0.2 and equal volume and weight capacity demand ratios. It & ¢tem the figure that
RMop is quite sensitive to the changes in penalty cost rate ratito@l booking limit
decreases strictly with increasing penalty coefficientss Dehaviour leads Rp to per-
form more conservatively resulting in small volume and visticapacity utilizations (See
Table (4.12)). Because of unused capacity, the opportengyincreases and the overall
performance of R¥b decreases.

Figures (4.3(a))-(4.3(n)) show that it is not possible tdkenatrict comparisons be-
tween different models and different nesting structureachEmodel and each nesting
structure have proven useful under different setups. Hewanw all figures, there are a
number of instances, where for a single model, differentimgstructures give the same
result. This event does not necessarily imply that the andsrgiven by different nesting
methods are the same. This can also be due to large bookiitg. li§o, if the non-zero
booking limits are relatively larger, those booking redsesghich have a non-zero book-
ing request are always accepted and remaining requestjeceed. Since the set of cargo
types which have zero booking limit were almost the sameifterént nesting structures,
their performances were quite close to each other. So, egsalts of different nesting
methods do not imply that the ordering of cargo types are edsal.

Figures (4.3(a)) and (4.3(b)) represent the performaned ofodels implemented us-
ing all nesting methods when all parameters are fixed excephé capacity demand ra-
tios which are equal to each other for volume and weight. feigd.3(a)) show the results
under low coefficient of variation, whereas Figure (4.3fepresent a setting with high
coefficient of variation. These figures illustrate how vhility effects the performance
of all the models. Under both settings Rdperforms poorly. PA and RMmodels per-
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formed quite similarly. The differences in solutions weesulted because of different
nesting strategies. Under low coefficient of variation wiies capacity demand ratio is
low, xV-R3 and«"-R3 performed the best. However, when the capacity demdialisa
higher,«-1 gave the best results. High coefficient of variation onater hand, favoured
x-2 and«"-R3 methods.

Remaining figures in this section are organized in the falowvay: For each pa-
rameter set, we present two figures, each comparing twaeliffenodels. For instance
Figure (4.3(c)) and (4.3(d)) are plotted using the sameaitss, however in the first fig-
ure, we compare Rbs and RM, and in the second figure, we compare Rdhd PA. This
was done to emphasize the settings where each model perbaties. Because PA was
mostly outperformed by other models, we decided to make enisgns of PA separately.
This way, it became easier to identify each model’s behavioder different settings.

We fixed all instance parameters and observed results uhdegimg weight capacity
demand ratio in Figures (4.3(c))-(4.3(f)). Coefficient @iriation of the instances were
0.2 in Figures (4.3(c)) and (4.3(d)).8 in Figures (4.3(e)) and (4.3(f)). Although RM
mostly gives the best results, RMperformed the best among all models when the weight
capacity demand ratio is equal to 0.5 and it performed b#ttar PA when it is equal to
0.75. First type£-1) of nesting gave the most satisfactory results undeethetances.

Similarly in Figures (4.3(g))-(4.3(j)), we fix all parameseexcept for volume capacity
demand ratio. RNMb performed the best when the capacity demand ratio is lowedet
these instances PA also performed close to,R&d for all models type 2«(2) nesting
method gave the best results.

Figures (4.3(k))-(4.3(n)) capture the effect of changiegaity cost rate ratios. Fig-
ures (4.3(k)) and (4.3(m)) directly illustrate the effeEpenalty cost rate ratio on the per-
formance of RMp. Increasing penalty rate causes RNb perform too conservatively.
However, when the penalty costs are decreasegdpRIVesults were quite competitive to
RMp. Among different, nesting methoe$-R3 and«-1 respond to the changes in penalty
cost rate ratio the best.
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Figure 4.1: Net Revenues Averaged Over All Instances
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Table 4.7: Relative Difference (%) of Booking Limit Polisie

Instance RMop-1  RMzp-2 RMY-R3 RMj-R3 RMp-1 RMp-2 RM)-R3 RMBE-R3 PA-1 PA-2  PA-R3 PA'-R3  PA
(0.10,1.00,0.20,1.50,1.50) -4.55 -5.91 21.48 -455 2422 -2.20 24.22 2422 30.05 -256 2531 30.05 32.01
(0.10,1.00,0.20,2.00,2.00) 2.24 -2.68 25.59 2.24 21.36 -4.79 21.36 21.36 27.14 -5.18 2242 27.14 28.99
(0.10,1.00,0.80,1.50,1.50) -11.15 -9.37 17.46 -11.15 17.56 0.59 13.87 1756 22.12 -7.93  22.05 22.12 23.87
(0.10,1.00,0.80,2.00,2.00) -11.13  -14.40 17.38 -11.13 9.74 -4.23 5.66 9.74 1512 -13.29 14.90 15.12 16.63
(0.20,1.00,0.20,1.50,1.50) -5.76 -5.78 21.98 -5.76 3.44 -5.56 414 3.44 15.01 -3.95 15.02 15.01 18.01
(0.20,1.00,0.20,2.00, 2.00) -1.66 -4.08 25.10 -1.66 1.39 -5.64 2.22 1.39 1290 -5.53 12.91 12.90 15.62
(0.20,1.00,0.80,1.50,1.50) -11.83 -11.62 9.86 -11.83 7.24 -11.58 3.56 7.24 734 -4.00 4.29 7.34 10.43
(0.20,1.00,0.80,2.00,2.00) -5.72 -4.52 19.34 -5.72 1.71 -6.08 -2.08 171 182 -6.29 -1.17 1.82 4.68
(0.30,0.30,0.20,1.50,1.50) 23.80 23.29 27.66 31.62 6.70 7.89 4.51 3.30 6.71 7.92 471 6 328.46
(0.30,0.30,0.20, 2.00, 2.00) 29.57 34.28 36.15 35.42 6.29 6.93 4.00 3.19 6.30 6.94 423 4 3%/.45
(0.30,0.30,0.80,1.50,1.50) 26.55 27.87 30.97 33.36 6.72 5.12 3.57 299 6.69 5.17 3.75 4 3ZB.47
(0.30,0.30,0.80,2.00,2.00) 33.74 33.92 34.85 33.91 6.71 3.44 2.11 251 6.71 3.30 1.87 6 218.44
(0.30,1.00,0.20,1.50,1.50) 0.99 1.70 19.49 0.99 18.56 -3.79 18.40 18.56 18.54 -1.94 18.40 18.54 21.79
(0.30,1.00,0.20,2.00,2.00) 3.57 1.71 23.36 3.57 17.25 -5.33 17.08 17.25 17.21 -3.68 17.08 17.21 20.69
(0.30,1.00,0.80,1.50,1.50) -3.64 -3.82 13.05 -3.64 2.38 -2.88 0.03 238 1229 -3.34 12.18 12.29 15.65
(0.30,1.00,0.80,2.00,2.00) -5.98 -6.54 12.65 -5.98 -6.52 -5.32 -1.13 -6.52 6.84 -6.38 6.72 6.84 10.48
(0.40,0.40,0.20,1.50,1.50) 23.16 22.44 23.94 27.40 6.77 4.38 4.34 6.79 6.51 7.70 592 2 82.78
(0.40,0.40,0.20, 2.00, 2.00) 34.90 33.37 37.82 41.46 6.40 4.31 4.13 6.32 6.05 6.92 536 6 72b.62
(0.40,0.40,0.80,1.50,1.50) 19.19 18.60 20.63 22.87 6.47 2.90 3.57 492 488 3.51 358 0 52240
(0.40,0.40,0.80,2.00, 2.00) 29.69 28.91 31.43 35.74 8.66 4.62 4.60 8.71 472 2.72 222 4 43.03
(0.40,1.00,0.20,1.50,1.50) 1.74 1.19 15.60 1.74 15.57 3.17 15.39 15.57 15.590.58 15.42 15.59 18.9¢
(0.40,1.00,0.20,2.00,2.00) 7.70 6.97 22.47 7.70 13.98 -3.06 13.92 13.98 14.28 -1.83 14.17 14.28 17.58
(0.40,1.00,0.80,1.50,1.50) -0.26 -2.23 12.10 -0.26 10.36  -3.75 10.35 10.36 10.36 -3.65 10.35 10.36 13.47
(0.40,1.00,0.80,2.00,2.00) -0.83 -1.26 12.79 -0.83 -2.42 -4.42 -2.72 -2.42 6.83 -4.77 6.89 6.83 9.93
(0.50,0.50,0.20,0.80,0.80) 6.67 6.69 8.63 9.67 4.68 4.71 4.64 491 330 1381 13.25 142206
(0.50,0.50,0.20,1.00, 1.00) 11.40 11.70 12.92 13.67 4.43 3.29 3.27 3.55 3.08 15.07 14.356.071 23.81
(0.50,0.50,0.20,1.20,1.20) 14.12 13.51 14.45 17.88 4.16 4.37 411 454 277 1461 13.765.521 22.88
(0.50,0.50,0.20,1.50,1.50) 20.72 21.04 24.00 26.30 2.66 13.32 13.01 1443 265 1391 1613. 14.85 22.49
(0.50,0.50,0.20, 2.00,2.00) 31.88 30.27 32.00 36.10 4.18 3.57 3.46 3.72 246 13.63 13.014.451 22.45
(0.50,0.50,0.80,0.80,0.80) 6.21 6.30 7.77 8.58 5.16 4.21 571 7.34 4.30 6.38 9.29 9.304621.
(0.50,0.50,0.80,1.00,1.00) 9.35 9.85 10.93 11.05 4.36 3.46 5.12 6.42 351 5.56 9.07 9.08917

*: The policy based on the partitioned booking limits is impénted.
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Table 4.8: Relative Difference (%) of Booking Limit Polisié€Continued)

Instance RMop-1  RMyp-2 RMY-R3 RMJ,-R3 RMp-1 RMp-2 RM)-R3 RME-R3 PA-1  PA-2 PA-R3 PA'-R3 PA
(0.50,0.50,0.80,1.20,1.20) 13.12 13.38 16.00 16.58 4.04 2.87 4.61 563 3.13 441 8.03 3 8IB.17
(0.50,0.50,0.80,1.50,1.50) 16.30 16.84 19.07 21.56 3.37 2.64 7.35 735 336 3.77 7.35 6 718.00
(0.50,0.50,0.80,2.00,2.00) 26.18 25.74 27.57 30.15 4.36 2.75 6.11 6.11 433 371 6.11 1 616.95
(0.50,1.00,0.20,0.80,0.80) 13.05 13.07 17.96 13.04 12.97 12.98 12.97 12.97 1298 12982971 1298 14.13
(0.50,1.00,0.20,1.00,1.00) 7.40 7.29 15.33 7.42 19.69 6.29 20.19 19.69 22.01 9.07 21.942.012 25.52
(0.50,1.00,0.20,1.20,1.20) 6.10 5.84 15.60 6.11 15.84 2.03 16.43 15.84 18.44 4.80 18.448.441 22.17
(0.50,1.00,0.20,1.50,1.50) 8.54 8.60 19.69 8.58 16.82 0.40 16.80 16.82 17.24 211 17.227.241 20.75
(0.50,1.00,0.20,2.00, 2.00) 14.09 11.70 25.32 14.14 1490 -2.51 14.84 1490 15.28 0.44 15.22 15.28 18,
(0.50,1.00,0.80,0.80,0.80) 16.84 16.95 20.69 16.84 16.77 16.81 18.22 16.77 16.77 16.817.951 16.77 17.8]
(0.50,1.00,0.80,1.00,1.00) 9.44 9.16 15.26 9.44 18.71 8.92 21.99 18.71 21.79 10.04 21.321.79 25.00
(0.50,1.00,0.80,1.20,1.20) 4.59 4.63 12.60 4.68 12.29 2.25 15.89 1229 15.60 3.34 15.105.601 19.15
(0.50,1.00,0.80,1.50,1.50) 3.75 4.21 13.67 3.78 6.88 3.11 11.59 6.88 11.542.10 10.80 11.51 14.9¢
(0.50,1.00,0.80,2.00,2.00) 4.55 2.02 13.91 4.63 -4.89 -6.36 -3.23 -4.89 6.08 -6.14 5.47 6.08  8.97
(1.00,0.50,0.20,0.80,0.80) 14.18 14.14 14.17 19.97 13.98 13.98 13.98 14.03 13.98 13.983.981 14.03 15.03
(1.00,0.50,0.20,1.00,1.00) 9.86 10.08 10.05 17.70 24.05 19.45 24.05 24.05 24.08 19.66 .0824 24.08 27.49
(2.00,0.50,0.20,1.20,1.20) 9.22 9.33 9.40 19.81 13.41 16.90 13.41 15.36 21.72 17.10 221.721.72 25.11
(2.00,0.50,0.20,1.50,1.50) 11.39 12.63 11.92 25.52 12.98 16.85 12.98 15.22 21.57 17.001.572 21.57 24.65
(2.00,0.50,0.20,2.00,2.00) 17.64 17.40 18.40 29.35 12.64 16.23 12.64 14.81 20.66 16.380.662 20.67 23.80
(1.00,0.50,0.80,0.80,0.80) 10.42 10.39 10.41 16.05 10.37 10.21 10.37 10.37 10.37 10.210.371 10.37 11.34
(1.00,0.50,0.80,1.00,1.00) 6.17 5.99 6.27 13.43 16.25 16.29 16.25 17.44 20.39 16.89 920.319.36 23.89
(1.00,0.50,0.80,1.20,1.20) 5.86 6.07 5.88 14.46 14.43 14.22 14.43 15.64 18.63 14.75 318.617.66 22.17
(2.00,0.50,0.80,1.50,1.50) 10.73 11.35 10.78 22.37 15.59 15.43 15.59 16.67 19.84 15.889.841 18.84 22.95
(2.00,0.50,0.80, 2.00,2.00) 20.60 21.64 20.35 30.36 14.95 14.67 14.95 1573 17.99 14.997.991 16.93 21.23
(0.75,0.75,0.20,0.80,0.80) 3.69 3.77 4.00 4.01 2.94 7.30 7.47 542 294 8.38 8.54 7.39021
(0.75,0.75,0.20,1.00,1.00) 6.58 6.42 9.21 9.34 2.73 7.87 7.33 821 281 8.76 8.83 7.904212.
(0.75,0.75,0.20,1.20,1.20) 8.77 9.68 10.68 12.30 2.17 8.58 8.31 770 227 831 8.35 7.47.081
(0.75,0.75,0.20,1.50,1.50) 17.13 18.62 19.24 19.57 1.48 7.94 7.71 681 154 7.71 782 2 651.86
(0.75,0.75,0.20, 2.00, 2.00) 23.83 23.20 24.10 25.09 1.58 8.08 7.59 6.88 1.68 7.59 7.66 2 6M.47
(0.75,0.75,0.80,0.80,0.80) 3.22 3.34 3.52 3.46 2.88 4.13 3.66 296 284 7.65 5.52 3.22201]
(0.75,0.75,0.80,1.00,1.00) 3.65 3.50 4.30 4.68 2.27 5.89 3.33 226 227 7.12 4.82 2.51611
(0.75,0.75,0.80,1.20,1.20) 6.50 7.95 8.64 9.07 1.61 6.08 411 1.83 165 6.83 4.36 2.33401

NEN

cor
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Table 4.9: Relative Difference (%) of Booking Limit Polisié€Continued)

Instance

RMz-1 RM;p2 RM5,-R3 RMSLR3 RMp-1 RMp-2 RMY-R3 RME-R3 PA1

PA-2 PA-R3 PAY-R3 PA

(0.75,0.75,0.80, 1.50, 1.5(
(0.75,0.75,0.80, 2.00, 2.0
(0.75,1.00, 0.20,0.80, 0.8(
(0.75,1.00, 0.20,1.00, 1.0
(0.75,1.00,0.20,1.20, 1.2(
(0.75,1.00,0.20, 1.50, 1.5(
(0.75,1.00,0.20, 2.00, 2.0
(0.75,1.00, 0.80,0.80, 0.8(
(0.75,1.00,0.80,1.00, 1.0
(0.75,1.00,0.80,1.20, 1.2(
(0.75,1.00,0.80,1.50, 1.5(
(0.75,1.00,0.80, 2.00, 2.04
(2.00,0.75,0.20,0.80, 0.8(
(1.00,0.75,0.20,1.00, 1.0
(1.00,0.75,0.20,1.20, 1.2(
(2.00,0.75,0.20, 1.50, 1.5(
(2.00,0.75,0.20, 2.00, 2.0
(2.00,0.75,0.80,0.80, 0.8(
(1.00,0.75,0.80,1.00, 1.0
(1.00,0.75,0.80,1.20, 1.2(
(1.00,0.75,0.80,1.50, 1.5(
(2.00,0.75,0.80, 2.00, 2.0
(0.90,0.90, 0.20, 0.80, 0.8(
(0.90,0.90, 0.20,1.00, 1.0
(0.90,0.90,0.20,1.20, 1.2(
(0.90,0.90,0.20,1.50, 1.5(
(0.90,0.90, 0.20, 2.00, 2.0
(0.90,0.90,0.80,0.80, 0.8(
(0.90,0.90,0.80,1.00, 1.0
(0.90,0.90,0.80,1.20, 1.2(
(0.90,0.90,0.80,1.50, 1.5(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

14.00
21.02
6.76
5.66
5.63
9.68
17.36
7.74
5.49
4.42
6.37
11.71
5.56
5.14
6.07
8.80
15.96
3.16
2.64
3.43
5.95
16.14
2.64
3.92
4.37
10.39
15.53
2.56
2.77
3.19
6.99

15.59
20.14
6.79
5.46
5.51
9.94
18.34
7.76
5.36
4.27
6.42
12.49
5.50
5.44
6.07
10.75
19.72
3.12
2.55
3.27
7.60
18.03
2.58
3.91
4.40
11.38
17.77
2.49
2.79
3.26
8.28

16.38
21.21
7.50
6.58
10.51
15.24
19.92
8.12
5.98
8.36
11.48
14.57
5.55
5.27
6.24
9.23
17.07
3.17
2.75
3.52
6.20
16.09
2.71
451
4.94
12.91
18.97
2.61
3.50
3.63
9.12

16.89
21.39
6.76
5.64
5.63
9.69
17.33
7.74
5.52
4.45
6.40
11.77
6.34
7.82
10.98
16.26
21.31
3.81
4.07
8.00
12.58
20.44
2.63
4.44
4.75
12.73
18.91
2.47
3.42
3.59
9.18

1.65
2.09
7.46
5.72
4.90
3.78
2.29
7.91
4.99
2.98
2.38
-1.55
6.20
5.11
4.49
3.62
2.75
3.46
2.28
1.74
1.21
0.81
2.37
2.46
2.16
1.70
1.11
2.39
1.68
1.66
0.41

2.55
1.19
7.36
4.99
411
2.94
1.56
7.96
4.96
3.04
0.78
-1.36
6.19
7.20
7.40
6.08
5.58
3.64
4.99
4.37
3.77
3.37
3.60
3.69
3.31
2.99
2.42
3.30
2.65
2.16
1.26

1.71
1.08
7.39
8.01
7.08
6.22
4.45
7.93
7.09
5.47
3.37
-0.53
6.53
11.54
11.20
9.02
8.91
4.20
9.22
8.37
7.50
8.40
3.60
3.69
3.31
2.99
2.42
3.26
2.59
2.13
1.24

1.08
1.08
7.46
10.18
8.10
7.37
5.62
8.05
8.37
4.47
2.38
-0.46
6.19
8.15
8.36
6.66
6.27
3.65
5.17
454
3.95
3.52
3.60
3.69
3.31
2.99
2.42
3.07
2.33
1.97
1.04

1.66
2.11
7.50
6.18
5.35
4.27
2.79
7.93
5.45
3.41
1.57
-1.08
6.20
6.74
6.07
5.20
4.32
3.48
4.35
3.63
291
2.66
2.47
2.54
2.22
1.71
1.13
2.42
1.71
1.70
0.43

5.39
4.69
7.36
5.00
412
2.95
1.54
7.96
4.96
3.04
1.00
-1.38
6.19
7.69
7.31
6.30
6.02
3.64
5.00
4.37
3.78
3.40
3.58
3.92
3.72
3.19
2.49
3.37
2.71
231
1.26

3.53
2.53
7.39
8.10
7.60
6.68
4.92
7.93
7.13
5.55
3.56
-0.45
6.53
12.04
11.06
9.74
9.91
4.24
9.22
8.36
7.50
8.40
3.58
3.92
3.72
3.19
2.49
3.32
2.60
2.15
1.14

31811
4 1.8.19
7.5076]
10.13.691
9.51821
8.74291
3 610.83
8.0508]
9.1753]
7.43601
5.4382
1.01 456
6.19 1
8.82561
81849
7.13.411
4 71B.70
3.65 5
5.18721
4.55941
3.96431
5 3R.31
3.60 3
369 1
3311
9 2.%.97
2 2.56.26
3.07 3
234 1
201 0
1.09 8

6.7
6.2
5.6
4.8
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Table 4.10: Relative Difference (%) of Booking Limit Poks (Continued)

Instance

RMz-1 RM;p2 RM5,-R3 RML-R3 RMp-1 RMp-2 RMY-R3 RMI-R3 PA1

PA-2 PA-R3 PAY-R3 PA

(0.90,0.90,0.80, 2.00, 2.0
(0.90,1.00,0.20,0.80, 0.8(
(0.90, 1.00,0.20,1.00, 1.04
(0.90,1.00,0.20,1.20, 1.2(
(0.90,1.00,0.20,1.50, 1.5(
(0.90,1.00,0.20, 2.00, 2.0
(0.90,1.00,0.80,0.80, 0.8(
(0.90, 1.00,0.80,1.00, 1.04
(0.90,1.00,0.80,1.20, 1.2(
(0.90,1.00,0.80,1.50, 1.5(
(0.90,1.00,0.80, 2.00, 2.04
(2.00,0.90,0.20,0.80, 0.8(
(2.00,0.90,0.20,1.00, 1.0
(1.00,0.90,0.20,1.20, 1.2(
(1.00,0.90, 0.20,1.50, 1.5(
(2.00,0.90,0.20, 2.00, 2.0
(2.00,0.90,0.80,0.80, 0.8(
(2.00,0.90,0.80,1.00, 1.0
(1.00,0.90,0.80,1.20, 1.2(
(1.00,0.90,0.80,1.50, 1.5(
(1.00,0.90, 0.80, 2.00, 2.0
(2.00,1.00,0.20,0.80, 0.8(
(2.00,1.00,0.20,1.00, 1.0
(1.00,1.00,0.20,1.20, 1.2(
(1.00, 1.00,0.20,1.50, 1.5(
(1.00, 1.00, 0.20, 2.00, 2.0
(2.00,1.00,0.80,0.80, 0.8(
(2.00,1.00,0.80,1.00, 1.04
(2.00,1.00,0.80,1.20, 1.2(
(1.00,1.00,0.80,1.50, 1.5(

(1.00,1.00, 0.80, 2.00, 2.0(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

14.45
3.98
3.84
5.18
7.92

14.63
4.02
3.02
2.77
3.81

13.79
3.07
3.44
4.19
7.76

11.64
2.48
2.05
2.45
3.78

12.90
2.36
2.34
3.63
5.66

10.94
2.24
1.73
2.32
291
7.30

16.26
3.98
3.78
4.96
8.15

13.65
4.02
2.90
2.66
3.65

12.26
3.04
3.39
4.33
8.02

14.18
2.44
1.98
2.39
3.48

13.72
2.36
2.29
3.82
5.57

11.91
2.24
1.63
2.35
2.94
9.20

16.09
4.05
4.67
6.61

11.96

18.61
411
3.45
3.73
5.92

16.87
3.09
3.48
4.32
8.23

12.71
2.48
2.09
2.66
3.77

12.42
2.37
2.40
4.40
6.40

12.30
2.25
1.84
3.06
3.31

10.07

16.41
3.98
3.82
5.18
8.31

15.30
4.02
2.98
2.89
3.80

14.13
3.09
4.59
5.34

12.68

19.01
2.48
2.84
3.41
6.45

17.81
2.36
2.33
4.21
6.04

13.51
2.23
1.66
3.00
3.22
9.85

0.11
4.80
4.26
3.58
3.44

2.71
3.98
2.46
1.60
1.36

-0.25
3.82
3.68
3.23

3.34

2.43
2.40
1.48
1.02
0.69

-0.29
231
2.04
1.54
1.54

1.29
2.19
1.43
0.76
1.02
0.01

1.26
5.36
4.63
4.25
412

3.19
4.99
3.31
2.54
1.87

0.51
4.26
4.20
4.00
3.87

3.15
3.50
2.70
231
1.61

0.45
2.31
2.04
1.54
1.54

1.29
2.19
1.43
0.76
1.02
0.01

1.21
5.36
4.63
4.25
4.12

3.19
4.99
3.33
2.56
1.88

0.46
4.65
4.56
4.24
3.98

3.46
4.10
3.79
3.35
2.64

0.91
2.31
2.04
1.54
1.54

1.29
2.19
1.43
0.76
1.02
0.01

0.93 0.10.29
549 480 5.36
460 427 463
3.87 364 4.25
3.69 350 412
3.11 272 3.19
513 410 4.99
352 266 331
262 174 254
1.86 143 1.87
-0.21 -0.26 0.51
425 389 4.26
420 3.73 4.20
399 339 4.00
3.87 343 3.87
3.15 258 3.15
3.50 249 3.50
270 155 270
231 108 231
161 076 161
0.45 -0.30 0.45
231 231 231
204 204 2.04
154 154 154
154 154 154
129 129 1.29
219 219 219
143 143 1.43
0.76 0.76 0.76
1.02 1.02 1.02
0.01 0.01 o0.01

0.15
5.36
4.63
4.25
4.12

3.19
4.99
3.33
2.56
1.88

0.46
4.63
4.86
4.52
4.24

3.71
4.15
3.97
3.50
2.82

1.79
231
2.04
1.54
1.54

1.29
2.19
1.43
0.76
1.02
0.01

0.93 3.36
5.543 8.8
4811 8.3
4.325 |7.7
4.089 |7.

0 3285
5.143 8.4
3.694 [1.2
2.747 6.1
2.131 5.3

-0.17 3.46
4.256 [7.8
4.205 8.4
3.999 B.0
3.897 |7.

5 3732
3.507 |7.3
2.706 |7.6
2.316 [7.1
1.617 6.3

0.45 5.57
2.315 5.8
2.049 5.6
1.548 5.0
1547 4.9

9 1487
2.191 5.6
1.437 4.9
0.762 4.2
1.022 4.2
0.0B7 |3.
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Table 4.11: Relative Difference (%) of Booking Limit Poks (Continued)

Instance

RMz-1 RM;p2 RM5,-R3 RML-R3 RMp-1 RMp-2 RM{-R3 RMI-R3 PA1

PA-2 PA-R3 PAY-R3 PA

(2.10,1.10,0.20,0.80, 0.8(
(1.10,1.10,0.20,1.00, 1.0
(1.10,1.10,0.20,1.20, 1.2(
(1.10,1.10,0.20,1.50, 1.5(
(2.10,1.10,0.20, 2.00, 2.0
(2.10,1.10,0.80,0.80, 0.8(
(2.10,1.10,0.80,1.00, 1.0
(1.10,1.10,0.80,1.20, 1.2(
(1.10,1.10,0.80,1.50, 1.5(
(2.10,1.10,0.80, 2.00, 2.0
(2.10,1.00,0.20,0.80, 0.8(
(2.10,1.00,0.20,1.00, 1.0
(1.10,1.00,0.20,1.20, 1.2(
(1.10,1.00,0.20,1.50, 1.5(
(1.10,1.00, 0.20, 2.00, 2.0
(2.10,1.00,0.80,0.80, 0.8(
(2.10,1.00,0.80,1.00, 1.0
(2.10,1.00,0.80,1.20, 1.2(
(1.10,1.00,0.80,1.50, 1.5(
(1.10,1.00, 0.80, 2.00, 2.04
(2.00,1.10,0.20,0.80, 0.8(
(2.00,1.10,0.20,1.00, 1.0
(2.00,1.10,0.20,1.20, 1.2(
(1.00,1.10,0.20,1.50, 1.5(
(1.00,1.10,0.20, 2.00, 2.0
(1.00,1.10,0.80,0.80, 0.8(
(2.00,1.10,0.80,1.00, 1.0
(2.00,1.10,0.80,1.20, 1.2(
(1.00,1.10,0.80,1.50, 1.5(
(1.00,1.10,0.80, 2.00, 2.0

e N N N N N N N N N N N N N N N N N N N N N N N N N N N N N

2.62
2.15
2.23
3.61
5.61
2.21
1.78
1.45
1.64
2.99
3.37
3.00
3.01
521
7.99
2.36
2.07
1.55
3.28
6.04
4.24
3.43
3.13
4.97
7.74
4.15
3.18
2.35
2.45
5.09

2.61
2.11
2.19
3.94
5.48
2.20
1.76
1.39
1.77
3.03
3.36
2.95
2.97
5.14
8.03
2.35
2.02
1.47
3.07
5.70
4.24
3.46
3.03
4.75
7.56
4.15
3.19
2.18
2.25
4.85

2.63
2.15
2.28
4.33
6.73
2.20
1.87
1.52
2.40
4.12
3.37
3.02
3.07
531
8.69
2.36
2.10
1.63
3.27
6.29
4.26
3.57
4.22
5.90
12.47
4.17
3.34
3.22
3.20
9.42

2.61
2.12
2.20
3.84
5.92
2.20
1.77
1.37
1.92
3.55
3.37
3.06
4.35
5.95
12.84
2.36
2.06
2.66
3.75
10.40
4.25
3.45
3.13
5.01
8.21
4.15
3.17
2.33
2.51
5.44

261
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
281
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
251
1.98
1.59
4.12
3.06
1.70
0.79
0.25

2.61
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
2.81
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
251
1.98
1.59
4.12
3.06
1.70
0.79
0.25

2.61
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
2.81
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
251
1.98
1.59
412
3.06
1.70
0.79
0.25

2.61
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
281
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
2.51
1.98
1.59
4.12
3.06
1.70
0.79
0.25

2.61
2.05
1.89
1.37
0.90
2.20
1.71
112
0.17
-0.18
3.33
2.81
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
2.51
1.98
1.59
4.12
3.06
1.70
0.79
0.25

2.61
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
2.81
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
2.51
1.98
1.59
4.12
3.06
1.70
0.79
0.25

261
2.05
1.89
1.37
0.90
2.20
1.71
1.12
0.17
-0.18
3.33
281
2.36
1.94
1.89
2.33
1.89
0.91
0.83
0.31
4.22
3.32
251
1.98
1.59
4.12
3.06
1.70
0.79
0.25

2.614
2.052
1.899
1.376
0.906
2.200
1.717
1.120
0.179
-0.18.21
3.339
2.817
2.364
1.944
1.883
2.339
1.897
0.917
0.838
0.380
4.227
3.323
2.516
1.983
1.5922
4.127
3.066
1.709
0.794
0.256

5.9
5.5
5.4
4.8
4.5
5.6
5.1
4.8
3.6

6.7
6.1
5.9
5.6

5.7
5.2
4.4
4.2

7.5
6.6
6.0
5.5

7.4
6.2
5.1
4.1
3.5
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Table 4.12: Some Performance Measures of Booking Limitciadi

RMyp-2 RMp-2 PA-2

Instance Rel. Diff. Utilization Offloaded Acc  OC | Rel. Diff. Utilization Offloaded Acc  OC| Rel. Diff. Utilization Offloaded Acc OC

(0.50,0.50,0.20,1.00,1.00) 11.70 (79.72,80.30) (0.65,0.00) 59.16 5/65 3.29 (93.29,94.53) (1.03,0.00) 70.52 1.04 17.75 (74.74,75.20) (0.59,0.00) 54.05 4,
(0.50,0.50,0.20,1.50,1.50) 21.04 (68.4,68.64) (0.36,0.00) 48.83 2,60 13.32 (75.72,75.97) (0.54,0.00) 55.35 0,77 16.15 (75.07,75.32) (0.53,0.00) 54.30 4.
(0.50,0.50,0.20, 2.00,2.00) 30.27 (58.17,58.51) (0.18,0.00) 40.07 1/40 3.57 (90.82,92.10) (0.78,0.00) 68.03 1.59 15.79 (74.35,74.98) (0.37,0.00) 54.34 3,
(0.50,0.50,0.80, 1.00, 1.00) 9.85 (80.33,80.31) (3.66,0.00) 59.14 10,35 3.46 (91.48,92.46) (5.10,0.00) 68.15 5,59 5.89 (86.00,86.02) (4.43,0.00) 63.15 12,
(0.50,0.50,0.80,1.50,1.50) 16.84 (69.26,68.58) (2.22,0.00) 48.75 6/75 2.64 (88.18,88.04) (4.64,0.00) 65.79 7.32 3.91 (85.61,85.54) (4.23,0.00) 63.33 13
(0.50,0.50,0.80,2.00,2.00) 25.74 (56.49,57.50) (1.14,0.00) 40.26 355 2.75 (86.73,87.79) (4.16,0.00) 65.66 876 3.85 (84.03,85.29) (3.76,0.00) 62.92 11
(2.00,0.50,0.20,1.00,1.00) 10.08 (45.88,92.21) (0.00,0.00) 68.02 0/00 19.45 (38.29,76.70) (0.00,0.00) 51.97 0,00 24.48 (38.16,76.43) (0.00,0.00) 51.88 O,
(2.00,0.50,0.20,1.50,1.50) 12.63 (40.36,81.07) (0.00,0.00) 58.81 0/00 16.85 (37.33,74.86) (0.00,0.00) 52.61 0,00 20.47 (37.22,74.64) (0.00,0.00) 52.57 O,
(1.00,0.50, 0.20, 2.00, 2.00) 17.4 (37.51,74.95) (0.00,0.00) 52.47 0,00 16.23 (37.58,74.92) (0.00,0.00) 52.68 0J00 19.58 (37.50,74.71) (0.00,0.00) 52.63 O,
(1.00,0.50,0.80, 1.00, 1.00) 5.99 (46.43,92.62) (0.05,0.00) 67.41 0,20 16.29 (38.40,76.63) (0.13,0.00) 51.93 0/15 20.32 (38.08,75.98) (0.13,0.00) 51.41 O,
(2.00,0.50,0.80,1.50,1.50) 11.35 (40.53,80.74) (0.14,0.00) 58.90 0/35 15.43 (37.60,74.84) (0.13,0.00) 52.65 0,23 18.88 (37.37,74.24) (0.13,0.00) 52.03 O,
(1.00,0.50,0.80,2.00,2.00) 21.64 (35.02,69.02) (0.19,0.00) 4857 0/45 14.67 (38.08,75.07) (0.19,0.00) 52.92 0,44 17.64 (37.97,74.54) (0.19,0.00) 52.36 O,
(0.75,0.75,0.20, 1.00, 1.00) 6.42 (82.50,83.00) (0.83,0.00) 78.63 745 7.87 (79.27,79.87) (0.84,0.00) 77.73 0.84 9.60 (78.15,78.66) (0.79,0.00) 75.14 6.
(0.75,0.75,0.20,1.50,1.50) 18.62 (65.94,66.20) (0.50,0.00) 64.72 3/60 7.94 (77.00,77.32) (0.72,0.00) 7498 1,06 836 (77.37,77.63) (0.74,0.00) 74.86 5.
(0.75,0.75,0.20, 2.00,2.00) 23.20 (61.37,61.22) (0.67,0.00) 56.90 3/20 8.08 (76.62,76.93) (0.82,0.00) 75.06 1,2 8.22 (77.22,77.47) (0.83,0.00) 75.05 5.
(0.75,0.75,0.80, 1.00, 1.00) 3.50 (84.79,85.09) (4.09,0.00) 80.33 12,10 5.89 (80.16,80.31) (3.57,0.00) 78.34 3.88 7.67 (78.28,78.62) (3.36,0.00) 74.85 10,
(0.75,0.75,0.80,1.50,1.50) 15.59 (66.03,66.08) (2.15,0.00) 64.86 5/75 255 (83.36,83.36) (3.87,0.00) 79.28 6.65 5.69 (77.31,77.22) (3.09,0.00) 74.91 9.
(0.75,0.75,0.80,2.00,2.00) 20.14 (62.49,61.22) (2.44,0.00) 57.00 5/10 1.19 (85.82,85.22) (4.21,0.00) 82.39 9,1 4.92 (77.49,76.83) (3.25,0.00) 74.99 8.
(2.00, 1.00,0.20, 1.00, 1.00) 2.29 (78.05,78.63) (1.03,0.00) 91.47 620 2.04 (78.24,78.81) (1.03,0.00) 91.75 113 2.08 (78.24,78.81) (1.03,0.00) 91.75 6.
(1.00, 1.00,0.20, 1.50, 1.50) 5.57 (74.49,74.75) (0.86,0.00) 83.52 570 1.54 (79.77,80.15) (0.95,0.00) 91.68 1,54 1.57 (79.77,80.15) (0.95,0.00) 91.68 6.
(2.00,1.00,0.20,2.00,2.00) 11.91 (67.08,67.07) (0.75,0.00) 78.62 4/65 1.29 (79.20,79.40) (0.97,0.00) 92.09 2,06 1.31 (79.20,79.40) (0.97,0.00) 92.09 6.
(2.00, 1.00,0.80, 1.00, 1.00) 1.63 (77.84,78.64) (3.41,0.00) 91.46 815 143 (77.99,78.81) (3.43,0.00) 91.75 446 145 (77.99,78.81) (3.43,0.00) 91.75 8,
(2.00, 1.00,0.80, 1.50, 1.50) 2.94 (75.86,75.40) (3.37,0.00) 85.73 895 1.02 (80.53,80.01) (3.84,0.00) 91.63 6.89 1.03 (80.53,80.01) (3.84,0.00) 91.63 10,
(2.00, 1.00,0.80, 2.00, 2.00) 9.20 (67.63,66.67) (2.60,0.00) 78.86 6,00 0.01 (79.52,79.40) (3.64,0.00) 92.09 853 0.01 (79.52,79.40) (3.64,0.00) 92.09 9.
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4.5.2 Bid-Price Policies

Relative percent difference of the bid-price policies frbi@ heuristic are presented in
Tables (4.13)-(4.16). Figure (4.4) present the relativegra differences of each bid-price
policy from HD heuristic under selected instances. For éastance we generated 1000
realizations of our random parameters and evaluated nehuevof each policy under
these individual realizations. In Figure (4.5), under fealected instances, we plot the
histogram of realized differences in net revenues given blp-R and BP. Similarly, in
Figure (4.6), we plot the differences between RLP-2 and Pieuthe same instances.

Table (4.15) reveals that when the capacity demand rat®lgeger than 1 on either
dimensions, all bid-price policies except for PD perforre same as FCFS (Also see
figure (4.5(d))). This is because capacity constraints oPRL. RLP-2 and BP models
gets looser leading to smaller bid-prices. Consequentlyn@ming booking requests
are accepted unless they violate the capacity constraRilson the other hand, gives
larger bid-prices and therefore rejects some of the incgmequests.

In all instances with capacity demand ratio smaller than htleast one of the di-
mensions, BP was outperformed by all other bid-price pati¢See Figures (4.4)).

Although accepting more requests causes higher off-lgexbsts on average, because
bid-price policies accept booking requests with margiealinn larger than a threshold
value, they mostly compensate the off-loading costs in oorutational studies. The re-
sults showed that accepting requests so that a certain dwiceffloading is allowed gave
better net revenue values. This might be because the offigadsts are not high enough.
Utilization, relative difference and offloading cost pertage columns of Table (4.16)
also reveal that prioritizing the utilization of volume aneight capacities increases the
overall performance under our parameters.

PD’s bid-prices are more robust among different instandesreas bid-prices given
by RLP-1 and RLP-2 are more responsive to the capacity-démsiv. Unlike RLP-2,
RLP-1 and PD do not incorporate the off-loading cost to theidels, therefore bid-prices
given by RLP-2 are also affected by the penalty cost ratesatUnder some instances,
this might result in conservative bid-prices causing RLPoHcy to accept less. Average
net revenue over all instances with penalty cost rate ragatgr than or equal to 1.5
was largest for RLP-2. Under instances with higher coefiice variation, the best
average net revenue is given by RLP-2. So, when there exgdtplnalty costs and high
variability, RLP-2 performs satisfactorily.

RLP-2 mostly outperforms other policies however under sors@nces it's solution

53



Total Booking Limit

B | |—\—1
% k/\ -©-09

‘N A 075
=y-:05
—<4—04
-% -03
0.2
== 0.1
=11

Figure 4.2: Total Booking Limits Obtained by R

Relative Difference (%)

T T
—a—RM’-R3
o 35 T T
- A-RMI-R3 || —a— RM}-R3
. -0 RMp-1 ol + - A -RM-R3 ||
N ——RM-2 x\ o RM-1
N = % - PA-R3 *:
H 3 —6—RM -2
ST e N -v- PA"-R3 g 5 o L
R 2N & PA-1 < o =% = pA'-R3
Ko -4~ PA-2 3 A -v- PA"-R3
. H e L BV % PA-1
~ -+ -RM)_-R3 o 20 <~
N o ] ¥, Tt--_C —4- PA-2
—#—RM-R3 £ S - 4+ -RM,-R3
- RM, -1 @ 157 - R -3l
% RM, -2 =
2 % k- RM,-1
] @ 10- ©%. RM -2 H
5 4
03 04 05 075 08 09 1 11
| L I L I | 1 (k/d ,k /d)
03 0.4 0.5 0.75 0.8 0.9 1 11 VoV wow

(k/d, . k/d)

(b) (+,+,0.8,1.5,1.5)
(@) (*,%,0.2,1.5,1.5)

54



Relative Difference (%)

Relative Difference (%)

Relative Difference (%)

- A -RMJ-R3
-0- RM_-1
——RM-2
-+ -RM,-R3
R
%= RM,-1

2~

T
—8—RM-R3 ||

L L
0.5 075 08 0.9 1 11

k /d
W oW

(c) (1.0,%,0.2,1.5,1.5)

T
—8—RM;-R3
w
- A -RM!-R3
-0- RM_-1
——RM-2
v
-+ -RM, -R3

o
- RM,, -1

2~

PfRB H

k /d
W oW

(e) (1.0,%,0.8,1.5,1.5)

(9) (*,1.0,0.2,1.5,1.5)

95

10f

Relative Difference (%)

—&—RM_-R3

X - A -RM!-R3
Y
'~ —0- RM-1
B —6—RM -2
NN o
N

0.5 075 08 0.9 1 11

k /d
W oW

(d) (1.0,%,0.2,1.5,1.5)

18

16

14

121

Relative Difference (%)

* —B—RM‘S—RS*
LA .
AT - A -RM}-R3|]
TON
A N -0~ RM-1

—o—RM-2 1
- % - PA-R3
PA"-R3
% PA-1
PA-2

k /d
W oW

() (1.0,%,0.8,1.5,1.5)

30

251

e e N
5 & S
T T T

Relative Difference (%)
o
T

-5

(h) (x,1.0,0.2,1.5,1.5)



Relative Difference (%)

Relative Difference (%)

Relative Difference (%)

() (

L
0.1 0.2 0.3 0.4 05 0.75 0.9 1 11

k /d

Vv

«,1.0,0.8,1.5,1.5)

T T
|| —s—RM;-R3

- A -RM-R3
-0~ RM_-1
H —o—RM -2
- +-RM,-R3
—*—RM} -R3
M= RM, -1

szfZ

15
®,/n,.8,/m)

(k) (0.75,0.75,0.2, %, *)

T T
—8—RM[-R3

H- 4 -RWi-R3
-0~ RM_-1
—o—RM-2
- +-RM,-R3
—%— RM;_-R3
—k RM,-1
RM, -2

15
®,n,.8,/m,)

(M) (0.75,0.75,0.8, %, %)

25

20

151

10r

Relative Difference (%)
o
T

:

‘ — RML*RQ&
\ -A- RMngS

a3 o AL

L L
0.1 0.2 0.3 0.4 05 0.75 0.9 1 11

k /d

Vv

() (,1.0,0.8,1.5,1.5)

Relative Difference (%)
o
T

15
®/m,.8,/n)

(1) (0.75,0.75,0.2, *, )

Relative Difference (%)

15
®/n,.8,n)

(n) (0.75,0.75,0.8, %, %)
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quality decreases. When the capacity demand ratio is equafdr volume and 0.5 or
0.75 for weight, RLP-1 mostly performs better than RLP-2.r @xperimental results
revealed that under those instances, bid-prices given BRivere smaller. PD on the
other hand, outperforms all other bid-price policies whiea ¢apacity demand ratio is
smaller than or equal to 0.3 on at least one of the dimenses Figure (4.4(a)) for an
example). Although in terms of average net revenue RLP-2iigasformed under these
instances, Figure (4.5(d)) shows that out of 1000 repbeoati there are a large number of
realizations where RLP-2 performs better than PD.

Bid-price policies performed better than the booking lipoticies. This is caused by
the fact that booking limit policies set a number limit on hovany booking requests to
accept from a certain class. However, arriving booking estgihave different volume and
weight values. Therefore, it is less logical to ignore thigme and weight requirements
and accept booking requests solely based on a booking IBidkprice policies on the
other hand, propose a more logical way to allocate capaaityng different booking
requests.
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Table 4.13: Relative Difference (%) of Bid-Price Policies

Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(0.10,1.00,0.20,1.50,1.50) 9.76 -9.49 30.05 -6.35 3.30| (0.50,0.50,0.80,0.80,0.80) 9.31 8.38 1790 5.96 5.3b
(0.10,1.00,0.20,2.00,2.00) 7.22 -12.78 27.14 -9.24 0.86| (0.50,0.50,0.80,1.00,1.00) 9.08 264 17.68 5.33 4.4p
(0.10,1.00,0.80,1.50,1.50) 8.32 -13.52 21.80 -10.29 4.88| (0.50,0.50,0.80,1.20,1.20) 8.03 254 16.17 4.27 4.1p
(0.10,1.00,0.80,2.00,2.00) -0.19 -17.41 14.73 -18.24 1.40| (0.50,0.50,0.80,1.50,1.50) 7.36 236 1490 3.72 4.3
(0.20,1.00,0.20,1.50,1.50) 2.40 -7.04 1500 -8.89 1.40| (0.50,0.50,0.80,2.00,2.00) 6.12 2.82 1354 3.22 6.0D
(0.20,1.00,0.20, 2.00, 2.00) -0.22 -9.69 12.89 -11.07 0.10| (0.50,1.00,0.20,0.80,0.80) 15.72 12.77 26.71 13.09 14.12
(0.20,1.00,0.80,1.50,1.50) -6.14 -13.82 7.24 -1355 1.49] (0.50,1.00,0.20,1.00,1.00) 9.53 11.22 2199 6.49 7.36
(0.20,1.00,0.80,2.00, 2.00)-10.79 -15® 1.71 -17.17 -1.51} (0.50,1.00,0.20,1.20,1.20) 5.30 5.07 18.41 2.47 3.4
(0.30,0.30,0.20,1.50, 1.50) 12.72 7.39 25.49 4.96 9.6p (0.50,1.00,0.20,1.50,1.50) 3.18 -0.99 17.23 -0.47 0.53
(0.30,0.30,0.20,2.00,2.00) 11.64 10.09 24.36 4.47 9.12 (0.50, 1.00, 0.20,2.00,2.00) 1.27 -2.55 15.27 -2.14 -0.84
(0.30,0.30,0.80,1.50,1.50) 10.11 2.37 20.32 3.47 10.25(0.50,1.00,0.80,0.80,0.80) 18.64 17.98 28.08 16.86 18.26
(0.30,0.30,0.80, 2.00,2.00) 6.79 2.28 15.43 1.50 10.5f (0.50,1.00,0.80, 1.00,1.00) 10.82 8.47 21.77 890 10.25
(0.30,1.00,0.20,1.50,1.50) 3.01 -3.49 2042 -523 1.09] (0.50,1.00,0.80,1.20,1.20) 3.97 2.08 1559 2.69 4.01L
(0.30,1.00,0.20,2.00,2.00)0 0.54 -5.69 19.29 -7.42 -0.25} (0.50,1.00,0.80,1.50,1.50) -1.25 -3.10 1150 -2.65 -0.89
(0.30,1.00,0.80,1.50, 1.50) -0.92 -7.76 13.82 -8.66 0.62| (0.50,1.00,0.80,2.00,2.00) -6.32 -6.25 6.08 -7.44 -4.32
(0.30,1.00,0.80,2.00,2.00) -7.29 -9.71 880 -13.45 -1.15|| (1.00,0.50,0.20,0.80,0.80) 19.73 17.03 27.30 18.56 15.22
(0.40,0.40,0.20,1.50,1.50) 9.86 455 23.29 5.55 6.7% (1.00,0.50,0.20,1.00, 1.00) 15.46 9.04 24.05 14.02 10.05
(0.40,0.40,0.20, 2.00, 2.00) 8.97 3.55 22.37 5.17 6.4% (1.00,0.50,0.20,1.20,1.20) 12.51 6.80 21.69 11.11 7.32
(0.40,0.40,0.80,1.50, 1.50) 8.07 2.30 18.75 3.60 8.4l (1.00,0.50,0.20,1.50,1.50) 12.11 17.85 21.56 10.52 5.24
(0.40,0.40,0.80, 2.00, 2.00) 6.82 252 16.84 2.31 8.69 (1.00,0.50,0.20,2.00,2.00) 11.77 18.89 20.71 10.13 4.74
(0.40,1.00,0.20,1.50,1.50) 3.10 -1.85 1551 -0.49 0.62] (1.00,0.50,0.80,0.80,0.80) 15.05 17.58 23.19 1450 11.37
(0.40,1.00,0.20,2.00,2.00) 1.72 -3.14 1422 -1.85 -0.29| (1.00,0.50,0.80,1.00,1.00) 10.77 11.02 20.38 9.82 6.26
(0.40,1.00,0.80,1.50,1.50) -3.35 -4.23 10.36 -4.28 -1.17| (1.00,0.50,0.80,1.20,1.20) 8.22 2.60 1863 7.31 4.08
(0.40,1.00,0.80, 2.00, 2.00) -6.57 -4.36 6.83 -6.73 -1.31| (1.00,0.50,0.80,1.50,1.50) 9.20 9.20 19.81 8.24 4.08
(0.50, 0.50, 0.20,0.80, 0.80) 10.04 3.62 19.42 6.96 4.7¢ (1.00,0.50,0.80,2.00,2.00) 8.78 5,96 17.92 7.86 4.2D
(0.50,0.50,0.20,1.00, 1.00) 11.01 2.87 2051 7.43 4.48 (0.75,0.75, 0.20,0.80,0.80) 2.94 294 837 344 2.94
(0.50,0.50,0.20,1.20, 1.20) 10.87 8.87 19.72 7.06 4.1 (0.75,0.75,0.20,1.00,1.00) 2.73 273 876 3.25 2.78
(0.50,0.50,0.20,1.50, 1.50) 10.34 3.10 19.40 6.78 4.1 (0.75,0.75,0.20,1.20,1.20) 2.17 197 831 2.80 2.1y
(0.50,0.50,0.20, 2.00, 2.00) 9.81 8.62 19.01 6.36 4.1% (0.75,0.75,0.20,1.50, 1.50) 1.48 141 771 222 1.48
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Table 4.14: Relative Difference (%) of Bid-Price Polici€otinued)

Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(0.75,0.75,0.20,2.00,2.00) 1.58 1.78 759 2.27 1.58 (0.90,0.90,0.20,1.50,1.50) 1.70 1.70 3.65 2.99 1.70
(0.75,0.75,0.80,0.80,0.80) 2.88 288 7.62 2.95 2.88 (0.90,0.90,0.20,2.00,2.00) 1.11 1.11 2.98 2.42 1.11
(0.75,0.75,0.80,1.00,1.00) 2.25 225 7.06 222 2.24% (0.90, 0.90, 0.80,0.80,0.80) 2.39 239 384 331 2.39
(0.75,0.75,0.80,1.20,1.20) 1.61 159 6.77 1.83 1.61 (0.90,0.90,0.80,1.00,1.00) 1.68 1.68 292 2.65 1.68
(0.75,0.75,0.80,1.50,1.50) 1.65 1.66 530 1.09 1.6% (0.90,0.90,0.80,1.20,1.20) 1.66 1.66 2.58 2.17 1.66
(0.75,0.75,0.80, 2.00, 2.00) 2.09 210 4.62 1.09 2.09% (0.90,0.90,0.80,1.50,1.50) 0.41 041 175 1.26 0.41
(0.75,1.00,0.20,0.80,0.80) 6.68 6.68 1290 7.38 6.6% (0.90,0.90,0.80,2.00,2.00) 0.11 0.11 0.05 1.26 0.11
(0.75,1.00,0.20,1.00,1.00) 4.62 462 10.04 5.11 4.6p (0.90,1.00,0.20,0.80,0.80) 3.95 3.95 549 5.18 3.96
(0.75,1.00,0.20,1.20,1.20) 3.47 3.47 941 3.97 3.4Y (0.90, 1.00,0.20,1.00,1.00) 3.31 3.31 475 452 3.31
(0.75,1.00,0.20,1.50,1.50) 2.24 224 858 293 2.24 (0.90,1.00,0.20,1.20,1.20) 2.70 270 428 3.85 2.70
(0.75,1.00,0.20, 2.00, 2.00) 0.94 094 6.77 156 0.94 (0.90,1.00,0.20,1.50,1.50) 2.49 249 404 3.73 2.49
(0.75,1.00,0.80,0.80,0.80) 7.68 7.68 12.83 7.97 7.66 (0.90, 1.00,0.20,2.00,2.00) 1.69 1.69 3.15 3.14 1.69
(0.75,1.00,0.80,1.00,1.00) 5.08 5.08 9.05 4.96 5.06 (0.90, 1.00, 0.80,0.80,0.80) 3.99 3.99 513 499 3.99
(0.75,1.00,0.80,1.20,1.20) 3.15 273 7.33 3.04 3.14 (0.90, 1.00,0.80,1.00,1.00) 2.44 244 3.63 3.31 2.44
(0.75,1.00,0.80,1.50,1.50) 0.75 0.75 5.30 1.00 0.79 (0.90, 1.00,0.80,1.20,1.20) 1.58 1.58 2.70 2.55 1.58
(0.75,1.00,0.80, 2.00,2.00) -0.16 -0.16 0.87 -1.36 -0.18| (0.90,1.00,0.80,1.50,1.50) 1.35 1.35 2.09 1.88 1.3b
(2.00,0.75,0.20,0.80,0.80) 5.40 6.19 13.31 6.23 5.3p (0.90, 1.00,0.80, 2.00, 2.00) -0.21 -0.21 -0.21 0.51 -0.21

(2.00,0.75,0.20,1.00, 1.00) 4.45 452 12.18 5.08 4.46 (1.00,0.90, 0.20,0.80,0.80) 3.00 3.00 541 425 3.00
(1.00,0.75,0.20,1.20,1.20) 3.84 3.84 11.24 441 3.84 (1.00,0.90,0.20, 1.00, 1.00) 2.87 287 562 424 2.87
(1.00,0.75,0.20,1.50,1.50) 2.78 2.78 10.03 3.59 2.78 (1.00,0.90,0.20, 1.20, 1.20) 2.60 260 5.09 3.99 2.60
(2.00,0.75,0.20,2.00,2.00) 1.71 2.72 10.09 2.72 1.7 (1.00,0.90,0.20,1.50,1.5Q0) 2.45 245 467 3.72 2.45
(2.00,0.75,0.80,0.80,0.80) 2.96 296 10.66 3.64 2.9% (1.00,0.90,0.20,2.00,2.00) 1.56 156 4.10 3.12 1.56
(2.00,0.75,0.80,1.00,1.00) 1.96 197 9.18 2.37 1.9} (1.00,0.90,0.80,0.80,0.80) 2.40 240 477 3.50 2.40
(1.00,0.75,0.80,1.20,1.20) 1.58 1.58 833 181 1.58 (1.00,0.90,0.80,1.00,1.00) 1.49 149 3.97 270 1.49
(1.00,0.75,0.80,1.50,1.50) 0.68 0.68 7.45 1.22 0.68 (1.00,0.90,0.80,1.20,1.20) 1.01 1.01 350 231 1.01
(1.00,0.75,0.80, 2.00, 2.00) 0.59 058 8.31 0.90 0.58 (1.00,0.90,0.80,1.50,1.50) 0.68 0.68 282 1.61 0.68
(0.90,0.90,0.20,0.80,0.80) 2.37 237 436 3.60 2.3} (1.00,0.90,0.80,2.00, 2.00) -0.29 -0.29 1.79 0.45 -0.29

(0.90,0.90,0.20,1.00,1.00) 2.46 246 455 3.69 2.46 (1.00,1.00,0.20,0.80,0.80) 4.22 422 422 5182 4.2p
(0.90,0.90,0.20,1.20,1.20) 2.16 216 425 331 2.16 (1.00,1.00,0.20,1.00,1.00) 3.32 3.32 3.32 5.01 3.32
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Table 4.15: Relative Difference (%) of Bid-Price Polici€oatinued)

Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(2.00,1.00,0.20,1.20,1.20) 2.51 251 251 431 2.51 (1.10,1.00,0.20, 1.00, 1.00) 2.05 205 2.05 3.82 2.0b
(2.00,1.00,0.20,1.50,1.50) 1.98 1.98 198 3.58 1.98 (1.10,1.00,0.20,1.20,1.20) 1.89 1.89 1.89 3.66 1.89
(2.00,1.00,0.20, 2.00, 2.00) 1.59 159 159 3.05 1.5% (1.10,1.00,0.20,1.50,1.50) 1.37 1.37 137 3.21 1.37
(2.00,1.00,0.80,0.80,0.80) 4.12 4,12 4.12 5.40 4.1 (1.10, 1.00,0.20, 2.00,2.00) 0.90 0.90 090 2.72 0.90
(2.00,1.00,0.80,1.00,1.00) 3.06 3.06 3.06 4.46 3.06 (1.10, 1.00,0.80,0.80,0.80) 2.20 220 2.20 4.08 2.20
(2.00,1.00,0.80,1.20,1.20) 1.70 1.70 1.70 3.18 1.70 (1.10,1.00,0.80,1.00,1.00) 1.71 1.71 171 3.39 1.71
(2.00,1.00,0.80,1.50,1.50) 0.79 0.79 0.79 2.07 0.79% (1.10,1.00,0.80,1.20,1.20) 1.12 1.12 112 274 1.1p
(2.00,1.00,0.80,2.00,2.00) 0.25 0.25 0.25 1.33 0.2% (1.10,1.00,0.80,1.50,1.50) 0.17 0.17 0.17 1.38 0.1y
(2.20,1.10,0.20,0.80,0.80) 2.31 231 231 3.99 2.3l (1.10,1.00,0.80, 2.00, 2.00) -0.18 -0.18 -0.18 0.91 -0.18

(2.120,1.10,0.20,1.00, 1.00) 2.04 204 204 392 2.04 (1.00,1.10,0.20,0.80,0.80) 3.33 333 3.33 494 3.38
(2.10,1.10,0.20,1.20,1.20) 1.54 154 154 3.39 1.54 (1.00,1.10,0.20,1.00, 1.00) 2.81 281 281 4.53 2.81
(2.10,1.10,0.20,1.50,1.50) 1.54 154 154 2.99 1.54 (1.00,1.10,0.20,1.20,1.20) 2.36 236 2.36 4.33 2.36
(2.10,1.10,0.20,2.00,2.00) 1.29 1.29 129 2.78 1.29 (1.00,1.10,0.20,1.50,1.50) 1.94 194 194 3.80 1.94
(2.20,1.10,0.80,0.80,0.80) 2.19 219 219 353 2.19 (1.00,1.10,0.20, 2.00,2.00) 1.89 1.89 1.89 3.50 1.89
(2.20,1.10,0.80,1.00,1.00) 1.43 143 143 3.12 1.43 (1.00,1.10,0.80,0.80,0.80) 2.33 233 233 3.92 2.38
(2.20,1.10,0.80,1.20,1.20) 0.76 0.76 0.76 2.18 0.76 (1.00, 1.10,0.80,1.00,1.00) 1.89 1.89 1.89 3.54 1.89
(2.10,1.10,0.80,1.50,1.50) 1.02 1.02 1.02 1.77 1.02 (1.00,1.10,0.80,1.20,1.20) 0.91 0.91 091 270 0.91
(2.10,1.10,0.80, 2.00,2.00) 0.01 0.01 0.01 1.39 0.08 (1.00,1.10,0.80,1.50,1.50) 0.83 0.83 0.83 1.92 0.88
(2.20,1.00,0.20,0.80,0.80) 2.61 261 261 471 2.611 (1.00,1.10,0.80,2.00,2.00) 0.31 0.31 031 1.62 0.31




Table 4.16: Some Performance Measures of Bid-Price Pslicie

T9

RLP-2 PD
Instance Rel. Diff.  Utilization Offloaded Acc OC | Rel. Diff.  Utilization Offloaded Acc ocC
(0.50,0.50, 0.20,1.00, 1.00) 2.87 (93.12,94.40) (1.01,0.00) 71.49 1.02 7.43 (84.32,85.07) (0.79,0.00) 65.57 O.
(0.50,0.50,0.20,1.50, 1.50) 3.10 (89.97,91.46) (0.76,0.00) 69.92 1.14 6.78 (84.02,84.54) (0.64,0.00) 65.65 O.
(0.50,0.50, 0.20, 2.00, 2.00) 8.62 (80.02,81.88) (0.43,0.00) 60.39 0.81 6.36 (83.56,84.49) (0.51,0.00) 65.39 O.
(0.50,0.50,0.80,1.00, 1.00) 2.64 (93.89,94.84) (5.47,0.00) 7136 6.p4 533 (86.24,85.92) (4.46,0.00) 63.40 4.
(0.50,0.50,0.80,1.50, 1.50) 2.36 (93.75,94.37) (5.62,0.00) 71.60 9.7 3.72 (86.08,85.52) (4.35,0.00) 63.57 6.
(0.50,0.50, 0.80, 2.00, 2.00) 2.82 (92.35,94.72) (5.10,0.00) 71.08 11p8 3.22 (83.89,85.25) (3.67,0.00) 63.4 7.
(1.00,0.50, 0.20,1.00, 1.00) 9.04 (46.98,94.29) (0.00,0.00) 67.95 0.p0 14.02 (41.83,83.76) (0.00,0.00) 59.15 O
(1.00,0.50,0.20,1.50,1.50) 17.85 (36.93,73.60) (0.00,0.00) 50.82 0.p0 10.52 (41.21,82.75) (0.00,0.00) 60.03 O
(1.00,0.50,0.20,2.00,2.00) 18.89 (36.22,71.68) (0.00,0.00) 49.43 0.0 10.13 (41.32,82.42) (0.00,0.00) 59.84 oO.
(1.00,0.50,0.80,1.00,1.00) 11.02 (41.78,82.98) (0.17,0.00) 56.72 0.0 9.82 (42.65,84.48) (0.17,0.00) 60.11 O.
(2.00,0.50,0.80,1.50, 1.50) 9.20 (41.38,82.29) (0.15,0.00) 58.73 0.6 8.24 (41.96,83.52) (0.15,0.00) 61.00 O.
(1.00,0.50, 0.80, 2.00, 2.00) 5.96 (43.56,85.56) (0.21,0.00) 62.12 049 7.86 (42.26,83.09) (0.20,0.00) 61.10 O.
(0.75,0.75,0.20, 1.00, 1.00) 2.73 (88.44,89.18) (1.07,0.00) 86.34 1.15 3.25 (85.58,86.26) (0.94,0.00) 82.38 0.
(0.75,0.75,0.20, 1.50, 1.50) 1.41 (88.24,88.64) (1.22,0.00) 86.45 1.6 2.22 (85.25,85.59) (1.09,0.00) 82.57 1.
(0.75,0.75,0.20, 2.00, 2.00) 1.78 (86.03,86.62) (1.13,0.00) 85.09 2.835 2.27 (84.99,85.40) (1.12,0.00) 82.61 2.
(0.75,0.75,0.80, 1.00, 1.00) 2.25 (89.24,89.44) (4.78,0.00) 85.88 5pb6 2.22 (86.16,86.47) (4.32,0.00) 82.09 4.
(0.75,0.75,0.80, 1.50, 1.50) 1.66 (89.12,88.67) (4.77,0.000 86.30 8b0 1.09 (8555,85.58) (4.15,0.00) 8256 7.
(0.75,0.75,0.80, 2.00, 2.00) 2.10 (89.61,88.50) (4.79,0.00) 86.33 11383 1.09 (85.94,85.39) (4.22,0.00) 82.6 9.
(1.00, 1.00, 0.20, 1.00, 1.00) 2.04 (78.24,78.81) (1.03,0.00) 91.75 1.13 3.92 (74.75,75.23) (0.95,0.00) 87.05 1.
(2.00,1.00,0.20,1.50, 1.50) 154 (79.77,80.15) (0.95,0.00) 91.68 1.b4 2.99 (76.53,76.78) (0.90,0.00) 86.45 1.
(2.00,1.00,0.20, 2.00, 2.00) 1.29 (79.20,79.40) (0.97,0.00) 92.09 2.p6 2.78 (76.29,76.28) (0.99,0.00) 86.83 2.
(1.00, 1.00, 0.80,1.00, 1.00) 143 (77.99,78.81) (3.43,0.00) 91.75 4.16 3.12 (74.64,75.22) (3.17,0.00) 87.04 3.
(1.00, 1.00,0.80,1.50, 1.50) 1.02 (80.53,80.01) (3.84,0.00) 91.63 6.89 1.77 (76.81,76.43) (3.46,0.00) 86.61 5.
(1.00, 1.00, 0.80, 2.00, 2.00) 0.01 (79.52,79.40) (3.64,0.00) 92.09 8.63 1.39 (76.98,76.28) (3.55,0.00) 86.83 8.
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Figure 4.4: Relative Difference of Bid-Price Policies
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Chapter 5

Conclusions and Future Research

We have introduced new optimization models to develop dpep-booking limit and
bid-price policies for air-cargo capacity control on a $algg flight. While our expo-
sition is presented in a setting which does not explicitigsider no-shows, they can be
naturally incorporated into our models by allowing shipnseto have zero capacity re-
guirements. Our methods can therefore be useful in devedapierbooking policies. We
have conducted a comprehensive computational study toaeethe effectiveness of our
proposed models, and have illustrated that they are cortiquidly tractable, and yield
policies that perform well compared to the benchmarks éstedal by various methods in
the literature.

One of our main aims was to adapt existing methods from thenskte passenger
literature to the relatively little-studied cargo cases$tager booking methods often rely
on a complete ranking of fare classes, which can be useddbless$t a nested structure.
We therefore developed various novel methods to rank eifitetypes of cargo. To the
best of our knowledge, these are the first rankings of this tgghe cargo revenue man-
agement literature. However, in certain cases (in padronhen volume and weight play
a symmetrical role), any complete ranking of cargo type®tessarily arbitrary, and can
therefore lead to suboptimal decisions. Consequentlyuimfuture research we aim to
develop booking policies with nested structures based draparderings of cargo types.

We note that our two-stage RLP model can accommodate rareksimthe available
volume and weight capacities. Since there is often sigmifioacertainty in the capacity
utilized by allotment contracts, as well as in the capa@tyuirements of passenger bags,
extending our other methods to similarly allow random cépegcis also an important
research goal. Finally, we mention that, as discussed ifiddet.1.3, our booking limits
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can be converted to limits on the expected volume and wegghitirements of shipments.
Since such capacity limits appear to be more natural in aocceogtext than limits on

the number of accepted requests, we plan to evaluate imptatiens of our booking

limits based on this approach. Furthermore, if the resubisifthe evaluation justify this
capacity-based interpretation, we propose to directhelbgvseparate booking limits in
terms of volume and weight.
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Appendix A

Mixture distributions

Here we provide an alternative analytical proof for Form@la&). A corresponding proof
for Formula (3.4) can be obtained analogously.

Lemma 6 Suppose that the random variabié has the following mixture cumulative
distribution function (CDF)

m

P(V <v) = ZPZP(V@' <w).

=1
Then it follows for every. € N that

m B(pi7n) n

S Y wEy v (A.1)

i=1 j=1 j=1
where the random variablds; are independent copies of the random variable

Proof. We prove the assertion by showing that the Laplace-Stditgnsform of both
sides of the equation (A.1) are equal to each otherBLet (B(p1, n), B(pa, n), ..., B(pm,n))
be a multinomially distributed random vector independéthe random variables;;, i €
[m], j € N. By the total law of expectation, the Laplace-Stieltjessfarm ofy " | fo{i’”) Vi
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is obtained as follows:

= (ZpﬂE[exp(—sVQ]) , (A.2)

whereK :={k e N™ : ky + -+ k,, = n}.
Similarly, we also derive the Laplace-Stieltjes transfai) J7_, vV

Elexp(—sV)])"
_ ( /0 " exp(—sv) fv(v)dv)n
= /OOO exp(—sv) ipzfvi(v)dvy
_ sz / exp! sv)fvi(v)dv>n
- ;piE[eXp(—SVi)Qn. (A.3)

The assertion immediately follows from (A.2) and (A.3.

exp(— Z V)
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Appendix B

Partial expectations

Partial expectation of the random variab{ehaving probability density functioff(.) is
defined as

E[X] := /ab:cf(:c)dx.

Closed form of partial expectations is needed while catowdatermsE[(X — y).] or
similarly E[max (X, y)]. Therefore we will be using the equations below very fredjyen
For some of the most popular choices for the volume distobutve will illustrate these
calculations. (For more detailed study see Winkler et &7¢))

Normal Distribution

Winkler et al. (1972) shows that, foX normally distributed with meap and variance
o2, we have

BT = - | 002+ (2 B

Log-normal Distribution

For X Log-normally distributed with parametersando?,

E[X]> = exp (u + %O—Z) o (w) (B.2)

g

Mixtures
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For X having a mixture distribution, i.eP(X < z) = > " p,P(X; < z) whereX,
follows any of the distributions above, we have:

00
Y

B = [ afeode=Yop [ afx@)ds =3 pEXE @3
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Appendix C

Calculations required for the risk based model

As in most of the existing studies, we assume that off-logudost functions., andh,, are
defined as in (3.1). In order to investigate whether it is flmego obtain a critical ratio
rule as in newsvendor models, we derive the expressiofi(fo# 1) — f(b). Such a rule
has been developed for the passenger case in Aydin et aD)2Bar ease of exposition
let us introduceSy = >0, V; and Sy := 37 ;. Then, the following chain of
equalities holds:

b+1

fb+1) Z piDi — [evvb—l—l Lisy>c,y + 0u(Sy — Co) sy >0, andS“<CU}}

b+1

~E |:9wa+11{Sg’20w} + 0w (Spy1 — Cuw)lisy >c, ands;,ugcw}]

b+1

- Zplpl E (V] P(S; 2 C) = 0 |(S5a1 — Co)Lgsy, 20, andsyciy]|
—0,E [Wbﬂ} P(Sy > Cy) — 0,E [(Sbﬂ Cu )1{5“’ >Cu andsw<cw}]- (C.1)

The above difference function involves complicated exgtans and convolution distri-
butions, itis really hard to obtain an analytical form forTitius, unlike the passenger case
this analysis does not lead to a critical ratio rule. Instefachlculating this difference, we
can calculate the functiofi(b) and search for the optimal total booking limit. However, it
is still computationally challenging to calculate the exieel off-loading costs. One can
estimate these costs using approximation methods. Forggaonder the condition that

b would be large enougl; and S}’ may be assumed to be normally distributed by the
Central Limit Theorem.
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For Sy .= >"_, V; we have

— /OOO v? fir(v)dv — 2E[V] /OOO vfy(v)do + E[V]?

soo2(SE) = o0 pE(V)?] — (O0, pip?)?) Thus, under the normality assumption,
we haveS; ~ Norm(E[S}],02(SP)). This impliessi%f‘ﬂ =Y ~ N(0,1). Next, by
using (B.1) we calculat&[max{Sy — C,, 0}].

E[max{S; — C,,0}] =E [max (Yo (S}) + E[S;] — C,, 0)]

o (S!)E [max (Y, %I%L%])} FE[SY] - C,

=o(}) [a(®)P(Y < a)) + EV]%,] +EIS;] - C,
=o(5}) [0(0) (a(b)) + 6 (a(B))] + E[S}] — C.,

Cy—E[S}]
o(Sy)

wherea(b) = , ®(.) andg(.) are the cumulative and probability density functions

79



of the standard normal distribution. Then we have:

f(b) = Z pipib — 0y (0(5y) [(D)® ( (b)) + ¢ ((0))] + E[Sp] — C1)
—0u, (0(5") [B(0)® (8(b)) + ¢ (B(0)] + E[Sy'] — Cu) ,

wherej(b) = C‘;&E‘?y 1,
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Appendix D

Expected revenue calculations

In this section, we show how to calculdir;(max{w;, V;/v})] whenr;(.) is a piece-
wise linear function in chargeable weight’() with three kinks. Let/,, be the range of
changeable weight where the slope of revenue functign is equal toc,,. Lower and
upper limits of rangd,, are equal td,_, andb,, respectively. (See Figure (D.1) for an
illustration.) We calculate the expected revenue in thiefahg way:

Revenue

i |
b b,

< > >

< T —>< T ><€ T

x

3
Chargeable Weight

Figure D.1: An lllustrative Figure of Revenue Function
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pi = E[ri(W)] = E[E[r;(W)|W; € L] = > P(W; € L,)Elri(W:)|W; € I,]

n=1
4 n—1
=Y P(W; € L)E[(W; = bu_t)en + Y (b — br—i1)c]
n=1 k=1
4 n—1
= ZP(WZ € [n) Cp, <E[WZ] — bnfl) + ch<bk — bkl)]
n=1 k=1

BV = Bfmax{Vi/7, wi}] = ~Elmax{V;, w1}
— % (/0 ' wiy f(x)dx + /wﬂ :cf(:c)d:c) fly (wiy Fy; (wi) —|—E[V]ww)

and

P(W; < x) = P(max(yw;, V;) < 72) = 1zzw)P(max(yuw;, V;) < yz)
= 1wy [P(max(yw;, Vi) < ya|Vi < yw; < 42)P(Vi < yw; < yz)
+P(max(yw;, V;) < yzlyw; < Vi < yz)P(yw; <V; < x)
+P(max(yw;, V) < yzlyw; < ya < Vp)P(yw; < yz < Vi)

= Liozw [P(Vi < qw;) + Pyw; < Vi <42)] = LpswyP(Vi < ).
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Appendix E

Fast Fourier Transform

The discrete Fourier transform (DFT) is defined by:

Fast Fourier Transform is an algorithm to compute DFT omterse. In our case, we will
use it to obtain the inverse of DFT. In other words, we will garte the value o, and
obtainz,,n =0,..., N — 1. We utilized FFT for calculating the probability distrilbomn
of random variable®; and} "7, D,

Recall that we consider a discrete-time framework, wheeebttoking horizon is di-
vided inT" time periods and’ is sufficiently large so that there is at most one booking
request in each time period. The random demand for fypargo at time period € T,
denoted byD,,, is a Bernoulli random variable with success probabilitypgf Then,
the total demand for typg-cargo is the sum df’ independent Bernoulli random variables
with different success probabilities and it can take vabfés 1, . .., 7. The characteristic
function of D; is given by

T
vp,(2) = ¢l Z e*"P(D . (E.1)
n=0

We can easily calculate this function using the charadterianctions of independent
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Bernoulli random variables:

T

T
SODj (Z) _ E[eisz] _ H ZZD]t H e pjt +1— pjt)- (EZ)
t=1

t=1

Basically, FFT method evaluates the characteristic fonc{E.2) atz = T%ff for all
k=0,1,...,7T and retrieves the probabilitig3(D; = n) using (E.1) and (E.2). In other
words, it solves the following set of equations to provide piobabilities”(D; = n) as
output:

27Tk; d k T 12mkn
=11 i Dir) =3 o — _
—tlEe + nZOP(D]—n)eXp( Tl ), k=0,...,T.
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Appendix F

Greedy Algorithm of Rinnooy Kan et al. (1993)

Let n denote the number of booking request arrivalsandv; be the observed volume
and weight ofjth booking request arrival. Ther) andy; are defined as;/C,, andv;/C,
respectively, for allj € [n].

Algorithm 2 Algorithm for Obtaining Bid-Prices

1:
2:
3:

© N AR

10:
11:
12:
13:
14:
15:

Order the requests by increasing valuerpf
for j=1ton—1do
for | = j+1ton andy; > y; do
Lety := %
for h =1tondo
Letny :== yn — yZh-
Order the requests by increasing value)pf
Start accepting requests in this order until no more reguest be accepted.
Let = be the profit obtained angl be the order value for the last request that is ac-
cepted.
end for
end for
end for
Find the maximum profit™ over all orderings.
Let~y* andn* be the corresponding slope and order value.
return X\, = —y*/n* and\, = 1/n*.
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