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TEK BACAKLI HAVA KARGO GEL İR YÖNEṪIMİ İÇİN AÇIK
DÖNGÜ POL̇ITİKALARI

Birce Tezel

Endüstri Mühendislĭgi, Yüksek Lisans Tezi, 2012

Tez Danışmanları: Nilay Noyan B̈ulbül, J.B.G Frenk

Anahtar Kelimeler: hava kargo, gelir yönetimi, çokboyutlu kapasite, kapasite üstü

rezervasyon, yer ayırtma limitleri, teklif fiyatlari, rassal programlama.

Özet

Kargo nakliyatı havayolları endüstrisinde belirgin bir gelir kaynağıdır. Bu sebeple,

kargo işinin kendine mahsus zorluklarını hesaba katan yerayırtma politikaları geliştirmek

kritik bir öneme sahiptir. Bu zorluklar arasında çoğunlukla hacim ve ağırlık olarak ölçülen

çok boyutlu kapasite yapısı ve rezervasyon yapılırken siparişin kapasite gereksinimlerinin

genelde kesin olarak bilinememesi sıranalabilir. Yolcu gelir yönetiminde yöneylem araştır-

ması methodlarının, kapasite üstü satım yüzünden ödenen ceza maliyetleri ile kapasite altı

satım yüzünden oluşan fırsat maliyetleri arasındaki ödünleşimi göz önüne alarak kısıtlı ka-

pasitenin etkin bir şekilde kullanılmasında oldukça faydalı olduğu görülmüştür. Bu tezde,

benzer methodlar çeşitli kargo tiplerini taşıyan tek bacaklı uçuşların kapasite kontrol prob-

lemi için geliştirildi. Gelen rezervasyon taleplerini,yer ayırtma limitlerine veya teklif fi-

yatlarına bağlı olarak kabul eden veya reddeden açık döngü politikaları üzerinde çalışıldı.

Uygun yer ayırtma limitlerini ve teklif fiyatlarını hesaplayabilmek için, belirsiz hacim

ve ağırlık gereksinimleri varlığında, kapasite üstü satım maliyetlerini göz önünde bulun-

duran eniyileme modelleri geliştirildi.̈Onerilen modellerin yararlılığını değerlendirmek

için kapsamlı bir sayısal çalışma yapıldı. Sayısal sonuçlar, politikalarımızın literatürdeki

çeşitli yöntemlerle elde edilen göstergeler ile kıyaslandıklarında iyi bir performans sergile-

diklerini gösterdi.
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Abstract

Transporting cargo is a significant source of revenue in the airline industry. It is there-

fore of critical importance to develop booking policies that address the unique challenges

presented by the cargo business: the capacity is multi-dimensional, generally measured

in terms of volume and weight, and the exact capacity requirements of a shipment are

usually not known with certainty at the time of making booking decisions. Operations

research methods have proven highly useful in passenger revenue management to effec-

tively allocate a limited capacity while considering the trade-off between the penalty costs

for oversold capacity and the opportunity costs for having unused capacity at the depar-

ture time. In this thesis, we develop similar methods for thecapacity control problem over

a single-leg flight with multiple cargo types. We study open loop policies that accept or

reject a booking request for a certain type of cargo shipmentbased on booking limits or

bid-prices. In order to compute suitable booking limits andbid-prices, we develop op-

timization models that incorporate off-loading costs under uncertain volume and weight

requirements. We conduct a comprehensive computational study to evaluate the effec-

tiveness of our proposed models. Numerical results demonstrate that our policies perform

well compared to benchmarks established by various methodsin the literature.
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Chapter 1

Introduction

Transporting cargo, either on a dedicated cargo fleet or in the bays of passenger aircraft,

is a significant and rapidly growing source of revenue in the airline industry. The In-

ternational Air Transport Association (IATA) reports thatsystem-wide global revenues

from cargo in 2010 amounted to $49 billion, versus $371 billion from passengers (IATA,

2009). Moreover, during the same period cargo traffic volumehas increased by7%, versus

a4.5% increase in passenger traffic volume. Boeing’s 2012 CurrentMarket Outlook fore-

casts that the air-cargo industry will continue to grow at anaverage annual rate of5.2%

through 2031 (Boeing Company, 2012). Despite the obvious importance of the problem,

only a relatively limited number of research studies have been dedicated to cargo rev-

enue and capacity management, in sharp contrast to the extensive literature on passenger

bookings.

Airlines typically sell cargo capacity either through allotment contracts, reserved for

major customers, or on the spot market (also referred to as free sale), where there are no

guaranteed capacities. In this thesis we focus on managing the capacity available for free

sale. The main objective is to obtain booking policies that make accept/reject decisions

as booking requests arrive over a booking period. The fundamental choice is between

accepting a request for a relatively cheap shipment, and rejecting it to save capacity for a

potential later arrival that could yield higher revenue. Inthis context, the capacity is per-

ishable: unused (spoiled) capacity after the departure of aflight is worthless. Therefore,

it is common practice to allow more bookings than the available capacity can accommo-

date, in order to compensate for late cancelations, no-shows, and overestimated capacity

requirements of accepted shipments. The trade-off that underlies booking decisions is

then between the denied service costs for oversold capacity(also known as off-loading
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costs), and opportunity costs for spoiled capacity at the departure time. As discussed in

Kasilingam (1997), off-loading costs may include the costsof transporting excess cargo

by alternative means, the costs of additional handling and storage, and the cost of lost

goodwill.

The literature on the cargo revenue management highlights numerous essential differ-

ences between passenger and air-cargo services (see, e.g.,Kasilingam, 1996):

• Capacity is not necessarily integer-valued, and it is multi-dimensional, generally

measured in terms of volume and weight. Sometimes an additional dimension is

also considered, namely, the number of container positions(see, e.g., Kasilingam,

1998). However, this third dimension is rarely mentioned inthe literature, and,

according to Pak and Dekker (2004), has no significant impactin practice.

• The exact volume and weight requirements of a cargo shipmentare usually not

known with certainty at the time of making booking decisions, and are observed

only immediately prior to departure.

• Unlike in a passenger case, where each booking request is fora single uniform

seat regardless of the fare class, different types of cargo have different capacity

requirements. In addition, cargo types are also distinguished by their contents (e.g.,

flowers, clothes, electronics, or food), which affects shipping rates.

• The available capacity may also be uncertain until loading at the departure time, due

to dependence on various factors including the capacity utilized by the allotment

contracts, and the capacity requirements of passenger bagsif the cargo is carried on

a passenger aircraft.

These differences provide a significant incentive to develop booking policies that are spe-

cific to cargo capacity management, and address some of the unique challenges outlined

above. The two main classes of booking policies commonly used in the revenue man-

agement literature are those based on booking limits, and those based on bid-prices. A

booking limit is an upper bound on the number of requests thancan be accepted for a

particular type of product. According to a booking limit based policy, requests are ac-

cepted as long as booking limits are not reached. On the otherhand, a bid-price policy

specifies a threshold price that should be charged for a booking, and a booking request is

accepted only if its net revenue exceeds the this price. Threshold prices for a shipment

are usually set as the sum of the bid-prices of its expected capacity resource requirements,
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and the bid-prices themselves can be interpreted as the monetary opportunity costs asso-

ciated with the resources consumed. These monetary values depend on factors such as

the remaining capacity, the remaining time to departure, and expectations about future

demand.

When the booking limits or bid-prices are allowed to change over time in response to

such factors, they lead to dynamic booking policies that account for the behavior of the

system over time. It is obvious that dynamic policies have the potential to perform better

than their static counterparts. However, dynamic models are computationally challenging

due to potentially intractable multi-dimensional state spaces, and solving them typically

requires elaborate decomposition methods. For example, Levin et al. (2011) formulate the

booking control problem on the spot market as a dynamic program, and use a Lagrangian-

based decomposition strategy to approximate its value functions. We mention that there

exist other, comparatively easier decomposition-based methods that provide approximate

solutions for dynamic cargo booking control models, see, e.g., Amaruchkul et al. (2007).

As an alternative, we focus on open-loop, or static, models,which are generally more

tractable for practical use. Such methods can be used with a rolling time horizon ap-

proach, preserving the favorable computational properties of static models, while taking

into the dynamic behavior of the booking system.

In this thesis we limit our attention to cargo bookings over asingle-leg flight. Some

airline companies, in particular charter airlines, only accept booking requests for single-

leg flights. However, larger airline companies typically transport cargo through a network

of locations connected by flights, and cargo booking requests specify an origin-destination

pair (in contrast to passenger booking requests, which typically specify an itinerary of

flights). The resulting network cargo capacity management problems are notoriously dif-

ficult, and solution methods often involve solving a series of single-leg subproblems. Sim-

ilarly to the passenger case (see, e.g. Topaloglu, 2009), this means that efficient solution

methods for single-leg problems are of high importance evenin a network context.

The simplest booking limit policies (sometimes known as bucket allocations), par-

tition the available capacity according to fare classes. However, in practice partitioned

booking limits are rarely applied in a strict fashion. For instance, in a passenger con-

text it is clearly not beneficial to reject a higher fare classrequest when there is available

capacity for lower fare classes. Booking limits are therefore typically implemented in a

nested, or hierarchical, manner. Under a nested policy, higher fare classes are allowed to

use all the capacity reserved for lower fare classes. Since each accepted booking request

consumes a single unit of resource (namely, a uniform seat),the nested structure can be
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specified solely on the basis of the net revenues associated with each fare class. How-

ever, in the cargo case, each shipment consumes different amounts of multi-dimensional

capacity. Therefore, it is not trivial how to rank the cargo types when defining a nested

structure. In this thesis, we propose various methods to develop nested cargo booking

limits. To the best of our knowledge, this is the first such attempt in the cargo revenue

management literature.

Our work on booking limits extends some of the passenger booking models proposed

in Aydin et al. (2010) to cargo bookings. We first consider a two-phase method, where

in the first phase we solve either a risk-based model or a service level-based model to

determine a total booking limit. The risk-based model aims to maximize expected prof-

its, while the service level-based one enforces a bound on the probability of overselling

capacity. In the second phase we use an allocation method based on expected marginal

seat revenue (EMSR) models to obtain nested booking limits.Our second-phase methods

provide several ways to rank cargo types according to profitability. We also present a

single-phase risk-based optimization model, which directly determines partitioned book-

ing limits. These partitioned limits are then used in a nested fashion, using our EMSR-

based ranking methods.

The booking limit approaches described above make the common assumption that

off-loading costs follow a specific structure, namely, thatthey can be written as the sum

of two convex functions, which represent the costs due to oversold volume and oversold

weight (see, e.g., Amaruchkul et al., 2007; Huang and Chang,2010). While this cost

structure is more complex than overbooking costs in the passenger case (often assumed

either to be constant (Chatwin, 1999), or to depend only on the fare class), the assumption

that off-loading costs can be separated according to volumeand weight is still somewhat

restrictive. In addition to our booking limit policies, we also present two bid-price-based

approaches, which do not rely on such assumptions. First, weadapt a traditional ran-

domized linear programming (RLP) model that defines bid-prices for units of volume and

weight capacity using the optimal dual variables associated with capacity constraints in

the RLP formulations. We then present a two-stage RLP model,where booking decisions

are made in the first stage, followed by off-loading decisions (which explicitly determine

the shipments that are to be denied loading) in the second stage. The cargo off-loading

problem we encounter in the second stage has previously beenconsidered by Levin et al.

(2011), while a similar two-stage approach has been proposed in the passenger literature

by Kunnumkal et al. (2012).

We now briefly list the main contributions of this thesis.
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• We develop new optimization models to compute booking limits and bid-prices

for air-cargo capacity control on a single-leg flight. Thesemodels prove useful in

developing computationally tractable and practical policies.

• We propose various methods to rank different cargo types, and thus obtain nested

booking policies.

• We conduct a comprehensive computational study to evaluatethe effectiveness of

our proposed models. In particular, we compare our policieswith those provided

by various benchmark methods in the literature. Numerical results demonstrate that

our policies perform well in general compared to the benchmarks.

The rest of the thesis is organized as follows. In Chapter 2 wereview the literature

on cargo revenue management, with a particular emphasis on mathematical programming

based approaches. In Chapter 3 we describe the general problem setting, and present our

optimization models. Section 4 is dedicated to implementation details, numerical results

and managerial insights, while Section 5 contains our concluding remarks.
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Chapter 2

Literature Review

Revenue management (RM), also known as yield management, has been one of the most

successful application areas of operations research (Talluri and van Ryzin, 2005; Phillips,

2005). The primary objective of RM is to maximize revenues byselling the right product

to the right customer at the right time for the right price1. Operations research meth-

ods have proven highly useful in airline passenger revenue management to effectively

allocate a limited capacity while considering the trade-off between the penalty costs for

oversold capacity and the opportunity costs for having unused capacity at the departure

time. However, there is a less extensive literature on cargoRM in contrast to the passenger

case. This can be partially attributed to the relatively higher complexity of cargo business

as discussed in Kasilingam (1996) and Becker and Dill (2007). Despite these challenges,

cargo RM has recently received increasingly more attentionin the literature. Some of

the existing approaches from the rich passenger revenue management literature have been

and can be adapted to the cargo case. In this direction, it is essential to highlight the dif-

ferences between cargo and passenger transportation as in Kasilingam (1996). Billings

et al. (2003), Slager and Kapteijns (2004), and Becker and Dill (2007) also discuss the

unique features of cargo RM and review the related operations and implementations from

a practical point of view.

Many studies consider the cargo capacity management problem for a single-leg flight

and the most popular issues include the two-dimensional capacity and random volume

and weight requirements. Considering these issues Amaruchkul et al. (2007) formulate

the booking control problem as a Markov decision process (MDP). However, due to the

high dimensionality of this formulation, they cannot provide optimal policies. Instead,

1http://en.wikipedia.org/wiki/Revenuemanagement
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they propose various heuristics and an upper bounding approach. Their best performing

heuristic is based on the decoupling idea; decomposing the DP model over volume and

weight dimensions. There are many papers which base their research on the dynamic

model introduced by Amaruchkul et al. (2007). Huang and Chang (2010) tackle the same

problem and develop an approximate algorithm which jointlyestimates the expected rev-

enue from weight and volume by sampling a limited number of points in the state space

instead of decoupling the problem and estimating the expected revenue in a sequential

manner as in Amaruchkul et al. (2007). Similarly, Zhuang et al. (2011) propose two

heuristics but for a single-resource (one-dimensional capacity) problem. Huang and Hsu

(2005) study uncertainty in supply; but they measure the capacity only in terms of weight

and they ignore the off-loading costs. Kasilingam (1997) also considers the uncertainty in

one-dimensional supply while trying to find the overbookinglimit which minimizes the

total expected off-loading and spoilage costs. Xiao and Yang (2010) consider the two-

dimensional capacity, formulate the booking control problem as a continuous time MDP

but for only two types of demand and propose a threshold policy under some concavity

assumptions. Different than the above studies, Levin et al.(2011) present a model that

integrates multiple allotment contracts and spot market bookings of an airline for a set of

parallel flights. Unlike the existing studies, they also consider a off-loading problem to

compute the boundary condition of the DP optimality equations which accounts for the

total cost incurred at the departure time. As in Amaruchkul et al. (2007), they formulate

the booking control problem on the sport market as a dynamic program. However, they

construct approximations to its value functions using a Lagrangian approach to estimate

the total expected profit from the spot market. Using these approximations and a cutting

plane algorithm, they solve the allotment selection problem, which maximizes the sum of

the profit from the allotments and the estimated total expected profit from the spot market.

After this brief review of studies on dynamic models for the single-leg problem, we next

focus on the static approaches which are particularly related to this thesis.

Although static models are widely studied in the passenger case, there are a few static

models introduced for cargo RM. Among the heuristics proposed in Amaruchkul et al.

(2007), there are two static methods that solve deterministic linear programs based on the

expected values of the uncertain parameters. One is proposed to compute the bid-prices

and the other one is used to obtain the partitioned booking limits. To the best of our

knowledge, Amaruchkul et al. (2007) is the only study presenting a (partitioned) book-

ing limit policy. Even if there has been little work on bid-price policies for controlling

cargo booking, we can say that they are still the most common static policies. Therefore,
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we focus on the literature on bid-price policies. Han et al. (2010) model the air-cargo

booking process as a discrete-time Markov chain for a single-leg flight by discretizing

the volume and weight requirements and capacities. The expected revenue is written as

a function of the bid-prices and the optimal bid-prices are obtained using the Markovian

model. There are also bid-price policies for the network cargo capacity management. Pak

and Dekker (2004) model the booking process as a two-dimensional on-line knapsack

problem and use the greedy algorithm proposed in Rinnooy Kanet al. (1993) to solve the

knapsack problem and compute the bid-prices. As in Han et al.(2010), it is assumed that

no penalty is incurred when a booking request is rejected andthe capacity requirements

are known with certainty when a booking request arrives. On the other hand, Karaes-

men (2001) introduces a LP based bid pricing model with a continuous attribute space

for a simplified cargo booking control problem, where attributes represent the capacity

requirements. Sandhu and Klabjan (2006) also present a mathematical programming for-

mulation that provides bid-prices for controlling origin-destination cargo bookings on a

network. However, they consider the fleet assignment model (FAM) which assigns a par-

ticular equipment type to each given flight-leg while maximizing profit. They develop a

FAM that incorporates both passenger and cargo revenue; themodel is obtained by com-

bining the traditional leg-based FAM model with the passenger and cargo mix bid price

models. Recently, Popescu et al. (2012) have developed optimization models to compute

the bid-prices to control the booking over a network for a mixed demand pattern with

individual and batch requests. They decompose the demand into small and largo cargo

bookings. For the small and large cargo booking they use a probabilistic nonlinear pro-

gram from passenger literature and a DP model to compute the bid-prices, respectively.

However, the proposed model is based on itinerary-specific demand rather than the origin-

destination-specific demand.

Another type of static policy is based on overbooking limits; if accepting a booking

request for a cargo would bring the total volume and/or weight of the accepted cargoes

above the specified overbooking limits, that cargo would be rejected. The overbooking

strategy is meaningful in the existence of cancellations and no-shows. Luo et al. (2009)

and Moussawi and Cakanyildirim (2005) allow no-shows and study two-dimensional

cargo overbooking models to obtain a overbooking limit based policy. Moussawi and

Cakanyildirim (2005) develop two (aggregate and detailed)types of models to obtain

weight and volume overbooking limits maximizing the net profit. Their off-loading cost

does not depend on the individual cargoes; it is a linear function of the maximum of the

total off-loaded volume and weight. They express the showing up volume and weight in
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terms of the cargo density and provide equations to find an optimal overbooking curve

parameterized by the cargo density, which is proved to be a box. The modeling approach

used in Moussawi and Cakanyildirim (2005) is adapted from Luo et al. (2009). Differ-

ently, Luo et al. (2009) ignore the revenues and focus on minimizing the expected total

spoilage and off-loading costs, which are additive over volume and weight dimensions.

Air-cargo RM problems feature some similarities to passenger RM problems with

group (multiple seat) bookings. Van Slyke and Young (2000) study the finite-horizon

stochastic knapsack problem and consider a single-leg passenger RM problem with group

bookings as a special case of it. As emphasized in Amaruchkulet al. (2007), the algorithm

proposed in Van Slyke and Young (2000) may be computationally impractical for solving

large air-cargo booking control problems. Moreover, the capacity requirements and the

available capacities are assumed to be integer. Due to the random consumption of the ca-

pacity, air-cargo booking control problems are related to the stochastic multi-dimensional

knapsack problem. There are other studies on the dynamic stochastic knapsack problem

(see, e.g., Kleywegt and Papastavrou, 1998; 2001), but theyin general propose models

that do not allow arrivals to have multi-dimensional capacity requirements.

Another stream of literature on cargo transportation is related to the network cargo

RM. It is a fairly recent research topic investigated among others by Karaesmen (2001);

Popescu (2006); Levina et al. (2011).
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Chapter 3

Stochastic Optimization Models

In this chapter, we first describe the general setting for ourproblem of interest: determin-

ing booking policies for cargo capacity management in the presence of uncertain capacity

requirements. We consider three types of modeling approaches and develop correspond-

ing optimization models.

• We first consider a two-phase approach: in the first phase we solve either a risk-

based or a service level-based model to determine a total booking limit. Then, in the

second phase we use anexpected marginal seat revenue(EMSR) based allocation

method to obtain nested booking limits. In order to implement such a method it is

necessary to rank different types of cargo in order to specify a nested structure. We

introduce and discuss several such ranking heuristics.

• We next consider an optimization model which directly obtains partitioned book-

ing limits for each cargo type, without the use of a predetermined total booking

limit. Similarly to the first approach, these partitioned limits can be used in a nested

fashion.

• The third modeling approach focuses on bid-price policies.We adapt two existing

methods from the literature on passenger revenue management, which use random-

ized linear programming (RLP) techniques.

3.1 Problem Setting

We consider the problem of controlling cargo bookings for a single-leg flight which trans-

ports multiple types of cargo between a particular origin-destination pair. Our goal is to
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find booking policies that make accept/reject decisions foreach cargo shipment request.

In particular, we focus on open loop policies based on booking limits or bid-prices.

Booking requests typically specify the type of a cargo shipment, but not its exact vol-

ume and weight requirements. However, we assume that the joint distribution for the vol-

ume and weight of a shipment is available for each cargo type,and the exact volume and

weight are observed immediately before the departure time.Let us denote the available

volume and weight capacities of a flight byCv andCw, respectively. If these capacities

are not sufficient to accommodate all reserved cargo, some shipments are off-loaded to

be transported by alternative flights or other cargo carriers. In such situations the airline

incurs a penalty cost, similar to the overbooking penalty incurred for passengers that are

denied boarding. We note that in the literature off-loadingis often considered in the con-

text of overbooking, i.e., when requests can be accepted in excess of available capacities

in order to compensate for potential cancelations and no-shows (Moussawi and Cakany-

ildirim, 2005; Luo et al., 2009). In contrast, in our models off-loading can occur even

under conservative booking policies, as a consequence of stochastic volume and weight

requirements.

To quantify off-loading costs we adopt a common approach (Amaruchkul et al., 2007;

Huang and Chang, 2010), and consider the sum of two convex functionshv andhw, which

represent the costs due to the oversold volume and weight, respectively. In the literature

the following choice of convex functions is commonly used:

hv(xv) = θv[xv − Cv]+, hw(xw) = θw[xw − Cw]+, (3.1)

whereθv andθw are non-negative constants, and the variablesxv andxw represent the

total volume and weight of accepted shipments, respectively. This approach implicitly

assumes that cargo shipments are divisible, and can be partially off-loaded; Moussawi

and Cakanyildirim (2005) provide a discussion on the conditions under which such an

assumption is justified. Recently, Levin et al. (2011) have proposed an alternate method

which explicitly solves an “off-loading problem” by identifying the individual shipments

that are to be denied loading. To implement this idea, we develop a two-stage stochastic

programming model which leads to an RLP formulation. While Kunnumkal et al. (2012)

consider a similar model to control passenger bookings, to the best of our knowledge no

analogous developments exist in the cargo literature.

We now introduce some additional notation used throughout the rest of the thesis. We

consider booking requests for a single-leg flight; each request concerns a single shipment
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which belongs to one ofm cargo types. Fori = 1, . . . , m we let(Vi,Wi) denote a random

vector whose two components have the same joint probabilitydistribution as the volume

and weight of a shipment which belongs to typei. More precisely, we denote the volumes

and weights of individual type-i requests by(Vi1,Wi1), (Vi2,Wi2), . . . , and assume that

these vectors are mutually independent and identically distributed (i.i.d.) as(Vi,Wi). In

our models the distributions of(V1,W1), . . . , (Vm,Wm) are assumed to be given, with

respective expected values of(µv
1, µ

w
1 ), . . . , (µ

v
m, µ

w
m).

Remark 1 While cancelations lie outside the scope of this thesis, ourmodeling approach

can naturally incorporate no-shows by allowing the random vectors(Vi,Wi) to take value

(0, 0) with a positive probability.

The dimensional weightof a shipment with volumev is v/γ, whereγ is a constant

(sometimes referred to asinverse density) defined by the IATA volumetric standard. The

revenue (or margin) obtained from accepting a type-i booking request with volumev and

weightw is given byri(max(w, v/γ)), whereri : R → R is a revenue function associated

with the cargo type. The corresponding expected revenue is denoted by

ρi = E[ri(max(Wi, Vi/γ))], i ∈ {1, . . . , m}. (3.2)

We also use some standard mathematical notation and conventions. Random variables

are typically denoted by uppercase letters, while vectors are denoted by lowercase bold-

face letters. The indicator random variable of an eventA, which takes value1 if the event

A occurs and0 otherwise, is denoted by1A. The cumulative distribution function (CDF)

of a random variableX is denoted byFX . If two random variablesX andY have the

same distribution, we denote this fact byX d
= Y . The positive part of a numberx is

denoted by[x]+ = max(x, 0). The set of natural numbers is denoted byN = {0, 1, . . . },

while the set of the firstn positive integers is denoted by[n] = {1, . . . , n}.

3.2 Booking Limit Policies

A booking limit is an upper bound on the number of requests than can be accepted for a

particular type of product (for a fare class in the passengercase, and for a certain shipment

type in the cargo case). According to a booking limit policy,requests are accepted as

long as limits are not reached. There are two main types of booking limits: partitioned

andnested. Partitioned booking limits are enforced in a strict fashion, where capacities
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reserved for a particular product type cannot be used to accommodate booking requests

for a different type. However, such restrictive policies can lead to suboptimal results. For

instance, in a passenger booking context it is not desirableto reject a higher fare class

request when there is capacity available for lower fare classes. Therefore, booking limits

are typically used in a hierarchical, or nested, manner. Under a nested policy, higher

ranked classes are allowed to use the capacity reserved for lower ranked classes.

To the best of our knowledge, Amaruchkul et al. (2007) is the only study in the cargo

revenue management literature which develops a partitioned booking limit based policy,

and this thesis is the first to develop nested booking limits.We also remark that in a cargo

context it is possible to establish booking limits in terms of volume and weight capacities

(instead of the number of shipments). While this appears to be a natural approach, we are

not aware of any existing studies featuring such booking limits.

3.2.1 A Two-Phase Method

In this section we describe a two-phase method to obtain a booking limit policy. In the first

phase we determine a total booking limit, then use an EMSR-based capacity allocation

method in the second phase to calculate nested booking limits for various cargo types. A

similar two-phase scheme has been considered for controlling passenger bookings (see,

e.g., Phillips, 2005; Aydin et al., 2010), and Kasilingam (1997) highlights the importance

of such an approach for cargo bookings. However, as existingmethods cannot be directly

applied to the cargo case, we need to develop non-trivial extensions.

We note that the methods mentioned above tackle the slightlydifferent problem of de-

termining overbooking limits in the presence of no-shows (and sometimes cancelations).

There are a number of papers in the cargo literature that focus on the initial phase of

finding an overbooking limit in terms of capacity units (Kasilingam, 1997; Moussawi and

Cakanyildirim, 2005; Luo et al., 2009). To the best of our knowledge, there are no corre-

sponding studies that develop partitioned or nested policies in a two-phase framework.

3.2.1.1 First Phase: Total Booking Limit

In this section we detail two methods to determine a total booking limit. A total booking

limit b can be used to define a greedy policy, which accepts any booking requests regard-

less of cargo type, as long as the total number of reservations is belowb. Our goal is to

find booking limits that lead to optimal performance under such a greedy policy.

In our model we consider booking requests that arrive according to a point process dur-
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ing the time period leading up to the departure of a flight. Thetotal number of requests that

arrive during this period is denoted byD; we assume that this non-negative integer ran-

dom variable is bounded, and its distribution is known. Using the greedy policy outlined

above, the total number of accepted booking requests is given byN(b) := min(b,D).

We denote the probability that an individual booking request is for cargo of typei by

pi, i ∈ [m], and assume that the types of various requests are mutually independent. The

probabilitiespi, which in our model are considered to be known, necessarily satisfy the

equation
∑m

i=1 pi = 1.

Observation 1 Recalling that the volume of a type-i shipment is distributed as the ran-

dom variableVi, it is easy to see that the volume of a shipment associated with an in-

dividual booking request of undetermined type has a mixturedistribution obtained from

Vi, i ∈ [m], with corresponding mixing weightspi, i ∈ [m]. Formally, the volumes of

shipments are i.i.d. as a random variableV with CDFFV =
∑m

i=1 piFVi
. Analogously,

the weights of shipments are i.i.d. as a random variableW with CDFFW =
∑m

i=1 piFWi
.

Let us denote the total number of accepted type-i requests byNi(b). Conditional on

N(b), the valuesNi(b), i ∈ [m], follow binomial distributions, while their joint distribu-

tion is multinomial. More precisely, we have

Ni(b)
∣

∣

∣
(N(b) = n)

d
= Binomial(n, pi) for i ∈ [m],

(N1(b), . . . , Nm(b))
∣

∣

∣
(N(b) = n)

d
= Multinomial(n, p1, . . . , pm).

If we aggregate shipments by type, the total volume of shipments corresponding to

accepted booking requests can be expressed asV r =
∑m

i=1

∑Ni(b)
j=1 Vij. On the other

hand, Observation 1 provides an alternative way to compute the distribution of this total

volume, leading to the following formula:

V r =

m
∑

i=1

Ni(b)
∑

j=1

Vij
d
=

N(b)
∑

j=1

V j, (3.3)

where the random variablesV j are i.i.d. asV . The following analogous formula holds

for the total weight:

W r =
m
∑

i=1

Ni(b)
∑

j=1

Wij
d
=

N(b)
∑

j=1

W j , (3.4)

where the random variablesW j are i.i.d. asW . For the sake of completeness, in Appendix

14



A we also provide an analytical proof for the above results (stated as the essentially equiv-

alent Lemma 6).

We now proceed to propose two stochastic optimization models that determine total

booking limits; the choice between these two models dependson the decision maker’s

preferences. The first one is a risk-based model which considers the trade-off between

the potential revenue from accepting an additional bookingrequest, and the penalty cost

of an additional off-loaded shipment. The second model aimsto find the largest possible

booking limit which still allows the airline to guarantee a certain level of service.

A Risk-Based Model

We now present an optimization problem, adapted from Aydin et al. (2010), where the

goal is to find a total booking limit which maximizes the expected net revenue under the

greedy policy outlined in the beginning of this section.

max

{

m
∑

i=1

ρipiE[N(b)] − E[hv(V
r)]− E[hw(W

r)] : b ∈ N

}

(Risk TB)

We can utilize formulas (3.3)-(3.4) to reformulate the above problem. Let us introduce

the functionf : N → R given by

f(b) =
m
∑

i=1

ρipib− E

[

hv(
b
∑

j=1

V j)

]

− E

[

hw(
b
∑

j=1

W j)

]

, (3.5)

where allV j are i.i.d. as the random variableV , while all W j are i.i.d. asW (as intro-

duced in Observation 1). Then we can write problem (Risk TB) as

max {E[f(N(b))] : b ∈ N} . (3.6)

The following two lemmas show that both the functionf and the objective functionb 7→

E[f(N(b))] are discrete concave.

Lemma 1 Let X1, X2, . . . be i.i.d. non-negative random variables with common CDF

FX , and leth be a non-decreasing convex function. Then the mappingb 7→ E

[

h(
∑b

j=1Xj)
]

is discrete convex.
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Proof. It is sufficient to show thatE
[

h
(

∑b+1
j=1Xj

)]

− E

[

h
(

∑b
j=1Xj

)]

is a non-

decreasing function ofb. Using the law of total expectation, we have

E

[

h(
b+1
∑

j=1

Xj)

]

− E

[

h(
b
∑

j=1

Xj)

]

= E

[

E

[

h(Xb+1 +
b
∑

j=1

Xj)− h(
b
∑

j=1

Xj)

∣

∣

∣

∣

∣

Xb+1

]]

=

∫ ∞

0

E

[

h(x+

b
∑

j=1

Xj)− h(

b
∑

j=1

Xj)

]

dFX(x).

It follows from the convexity ofh and the non-negativity ofdFX that the above function

is non-decreasing inb, which completes our proof.

Lemma 2 If f is a discrete concave function, then the mappingb 7→ E[f(N(b))] is also

discrete concave.

Proof. Similarly to the previous lemma, it is sufficient to show thatthe difference

E[f(N(b + 1))] − E[f(N(b))] is a non-increasing function ofb. SinceD ≤ b implies

N(b+ 1) = N(b) = D, we have

E[f(N(b+1))]−E[f(N(b))] = E[f(N(b+1))−f(N(b))] = P(D ≥ b+1)(f(b+1)−f(b)).

As the functionf is discrete concave,f(b+ 1)− f(b) is non-increasing inb. In addition,

the probabilityP(D ≥ b+1) is clearly also a non-increasing function ofb, which implies

the desired result.

Interestingly, under our assumptions the optimal total booking limit does not depend

on the distribution of the number of booking requests. For the proof of the following

result we refer the reader to Aydin et al. (2010).

Lemma 3 If f is a discrete concave function and the problemmax{f(b) : b ∈ N}

has a finite optimal solutionbOPT, then this is also an optimal solution of the problem

max {E [f (N(b))] : b ∈ N}.

Since Lemmas 1 and 2 show that the objective function of (3.6)is discrete concave,

we can obtain an optimal solution as follows.

bOPT = inf{b ∈ N : E[f(N(b+ 1))]− E[f(N(b))] < 0}. (3.7)

Taking into account Lemma 3, the above formula can be furthersimplified:

bOPT = inf{b ∈ N : f(b+ 1)− f(b) < 0}. (3.8)
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We note that since the total number of booking requests is bounded from above, it is

sufficient to consider a bounded range of possible booking limits. It follows that we can

replace theinf operator in (3.8) bymin, and perform a discrete one-dimensional search

to obtain an optimal solutionbOPT. To numerically evaluate the functionf during this

search, one can use Monte Carlo simulation, or, under certain additional assumptions,

use analytical approximations. In Appendix C we provide additional details on how to

perform the necessary calculations, and discuss a normal approximation.

A Service Level Based Model

Service level constraints are often considered in the passenger revenue management lit-

erature in order to control the extent of overbooking. For example, a type-I service level

constraint imposes the requirement that the probability ofoverbooking be less than or

equal to a specified value (see, e.g., Phillips, 2005). To thebest of our knowledge, similar

constraints have not yet been discussed in the cargo literature. In this section we aim

to introduce this approach in a cargo context, taking into account the multi-dimensional

capacity requirements. We propose a constraint that limitsthe probability of oversale,

i.e., of the event that either the total volume or the total weight of accepted shipments

exceeds the available capacity. This leads to the followingalternative to the risk based

model (Risk TB):

max







b ∈ N : P





N(b)
∑

j=1

V j ≥ Cv OR

N(b)
∑

j=1

W j ≥ Cw



 ≤ 1− α







, (Service TB)

whereα is a specified service level (such as0.95). One can use a Monte Carlo simula-

tion method to approximate the probability of oversale, which is typically hard compute

otherwise.

3.2.1.2 Second Phase: EMSR-Based Heuristics

In passenger revenue management, booking limits are typically used in a nested fash-

ion, where the capacity that is available for sale to a particular fare class can also be

sold to a more expensive fare class. Littlewood’s rule (Littlewood, 1972) provides a well-

known method to optimally determine such booking limits forthe case of two fare classes.

Heuristics based on expected marginal seat revenue (EMSR) (Belobaba, 1987; 1989) ex-

tend Littlewood’s rule to multiple classes, and are widely used to find nested booking

limits. The popularity of EMSR-based methods is in a large part due to their intuitive
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and practical nature (see, e.g., Talluri and van Ryzin, 2005), which motivates us to de-

velop similar heuristics for cargo bookings. Before we present our methods, we briefly

outline the EMSR-based approach as it is used in the passenger literature, then discuss

the challenges that arise when one attempts to adapt this methodology to a cargo context.

EMSR in Passenger Booking

Let us consider a passenger flight withC seats available for sale tom classes of pas-

sengers, and assume that passenger classes are indexed in decreasing order of revenue

values, i.e.,ρ1 ≥ · · · ≥ ρm. In accordance with common practice in the literature, instead

of referring to booking limits we can equivalently describebooking controls in terms of

protection levels. These levels can be viewed as the complements of booking limits with

respect to the capacity available for sale, and represent the amount of capacity saved for

various classes of products. More precisely, thejth protection level, which we denote by

yj, is the amount of capacity saved for sale to classesj and lower. Protection levels form

an increasing sequencey1 ≤ · · · ≤ ym = C, and thus define a nested structure.

There are two main types of EMSR heuristics to determine protection levels. EMSR-a

first calculates protection levels by applying Littlewood’s rule to successive fare classes,

then aggregates these to obtain the protection levels whichdefine the booking policy.

Since EMSR-a ignores statistical averaging effects, it hasa tendency to produce protec-

tion levels that are overly conservative. EMSR-b addressesthis issue by aggregating the

demand across classes (instead of aggregating protection levels). While some studies

that compare these heuristics have shown mixed results (see, e.g., Talluri and van Ryzin,

2005), EMSR-b appears to be more popular in practice, and is considered to generally

perform better than EMSR-a. Accordingly, in this thesis we focus on EMSR-b. Before

attempting to adapt this heuristic to a cargo context, we provide a short formal description

of the method in the passenger case.

Let Di denote the random total demand for class-i seats. At stagej of the EMSR-

b heuristic we compute how much capacity to protect for the classesj, j − 1, . . . , 1 as

follows.

ŷj = max

{

y ∈ {0, . . . , C} : ρj+1 − ρjP

(

j
∑

i=1

Di ≥ y

)

≤ 0,

}

, j ∈ [m−1], (3.9)

whereρj denotes the weighted-average revenue, calculated asρj =
∑j

i=1
ρiE[Di]

∑j
i=1

E[Di]
. Since the

ŷj values are not guaranteed to form a non-decreasing sequence, we define the protection
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levels as

yj = max{ŷ1, . . . , ŷj}, j ∈ [m− 1].

The main challenge in applying EMSR-b is to calculate the distributions of the aggre-

gated demands that appear in (3.9). We list here some approaches that lead to tractable

formulations under appropriate modeling assumptions.

• If the demandsDi, i ∈ [m], are i.i.d with Poisson or normal distribution, the

distributions of the aggregated demands are of the same respective type.

• More generally, ifDi, i ∈ [m], are independent, we can numerically calculate

the distributions of the aggregated demands using the fast Fourier transform (FFT)

method (see, e.g., Tijms, 2003).

• If the demandsDi are not independent, but have a multinomial structure (similar

to the situation outlined in Section 3.2.1.1), then the aggregated demands follow

binomial distributions.

Adapting EMSR Methodology to Cargo Booking

In the passenger case, every accepted booking request consumes one uniform seat,

therefore fare classes with higher revenues are always moreprofitable. This property

leads to a naturally defined nested structure, based solely on revenue values. In contrast,

cargo shipments have capacity requirements in multiple dimensions. A shipment which

brings higher revenue may consume more capacity, and therefore be less profitable, than

another shipment which brings lower revenue. Defining a nested structure among cargo

types is therefore a highly non-trivial problem. Analogously to EMSR-b, we aim to find

appropriate coefficients̺i, associated with each cargo typei ∈ [m], that quantify the

marginal profitability of type-i shipments.

We now turn our attention to the problem of finding suitable profitability coefficients.

We take as our starting point the following two-dimensionalknapsack problem, which

provides capacity allocations based on expected demands and expected capacity require-
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ments.

max

m
∑

i=1

ρixi

subject to
m
∑

i=1

µv
ixi ≤ Cv

m
∑

i=1

µw
i xi ≤ Cw

xi ≤ E[Di] i = 1, . . . , m

xi ∈ N i = 1, . . . , m

(KS Alloc)

We refer to the continuous relaxation of the above integer program as (RKS Alloc). Sim-

ilar knapsack-based allocation models are widely used in the passenger booking literature

to obtain bid-prices (see Section 3.3). In a cargo context, Amaruchkul et al. (2007) con-

sider the problem (RKS Alloc), while Pak and Dekker (2004) utilize the0-1 version of

(KS Alloc) in an on-line booking system. Along these lines, we proposethree types

of profitability coefficients based on knapsack formulations, which in turn define cor-

responding nested structures for our cargo booking policies. Intuitively, a profitability

coefficient̺i can be interpreted as the ratio of the net revenue and some scalar measure

of the capacity requirements associated with shipments of typei.

Type 1: Based on effective capacity Akçay et al. (2007) propose a greedy algo-

rithm to solve multi-dimensional knapsack problems. They consider theeffective ca-

pacity for an item, which in our context can be computed for shipments of type i as

min(⌊Cv

µv
i

⌋, ⌊Cw

µw
i

⌋). Their greedy algorithm then ranks items based on the product of as-

sociated revenue and effective capacity. Accordingly, we introduce the following coeffi-

cients:

̺i = ρi min(⌊
Cv

µv
i

⌋, ⌊
Cw

µw
i

⌋), i ∈ [m]. (3.10)

Note that the inverse of the effective capacity for a cargo type can be viewed as the “ef-

fective capacity requirement” of type-i shipments.

Type 2: Based on weighted sums of expected capacity requirements Another

class of greedy algorithms to solve multi-dimensional knapsack problems, proposed by

Rinnooy Kan et al. (1993), ranks items based on the ratio of their profit and a weighted

sum of their capacity requirements. Accordingly, for any positive weightsαv andαw, we
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can consider coefficients of the form

̺i =
ρi

αvµv
i + αwµw

i

, i ∈ [m]. (3.11)

Note that under the non-restrictive assumptionαv + αw = 1 the denominator becomes a

weighted average of capacity requirements. Rinnooy Kan et al. (1993) propose a simple

method, based on combinatorial enumeration, to determine weights that lead to optimal

performance of the greedy algorithm. For the sake of completeness, in Appendix F we

briefly describe how to obtain these optimal weights.

Remark 2 Pak and Dekker (2004) use the optimal weights in a cargo context to obtain

bid-prices for units of capacity. Along these lines, it is always possible to define prof-

itability coefficients based on bid-prices. Given respective bid-pricesλv andλw for units

of volume and weight, one can calculate a scalar measure of the capacity requirements of

type-i cargo as the weighted averageλvµ
v
i +λwµw

i

λv+λw
. Omitting a constant factor, this leads to

the following coefficients:

̺i =
ρi

λvµv
i + λwµw

i

, i ∈ [m].

Type 3: Based on a Lagrangian approach One-dimensional continuous knapsack

problems can be solved optimally by a simple greedy approach, which ranks items ac-

cording to the ratio of their value and either their volume ortheir weight. To make use

of this natural ordering, we consider continuous Lagrangian relaxations of (RKS Alloc),

where one of the capacity constraints is dropped, and a term that penalizes its violation

amount is added to the objective function. For example, if werelax the weight capacity

constraint, we obtain the following Lagrangian relaxation:

max
m
∑

i=1

ρixi + λw

(

Cw −
m
∑

i=1

µw
i xi

)

subject to
m
∑

i=1

µv
i xi ≤ Cv

xi ≤ E[Di] i = 1, . . . , m.

(LRPw)

For any fixed value of the Lagrange multiplierλw the above linear program can be viewed

as a continuous knapsack problem, where type-i shipments correspond to items of value
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ρi − λwµ
w
i and volumeµv

i . Accordingly, we can define profitability coefficients as

̺i =
ρi − λwµ

w
i

µv
i

, i ∈ [m]. (3.12)

If we rank cargo types according to these coefficients, then,as mentioned above, we

can find an optimal solution to problem (LRPw) by using a greedy algorithm. As an

alternative to (LRPw), we can consider the Lagrangian relaxation obtained by dropping

the volume capacity constraint. Analogously to the previous case, we arrive at profitability

coefficients of the form

̺i =
ρi − λvµ

v
i

µw
i

, i ∈ [m]. (3.13)

It remains to provide suitable values for the Lagrangian multipliersλw andλv. A natural

choice is to use the optimal dual variables associated with the capacity constraints in the

LP (RKS Alloc). In this case both of the Lagrangian relaxations have the same optimal

solution as (RKS Alloc), in accordance with the theory of LP duality. Notice that the

Lagrange multipliers can be interpreted as shadow prices. In the passenger literature it

is common practice to use shadow prices from randomized LP formulations (see, e.g.,

Talluri and van Ryzin, 1999). Along similar lines, in Section 3.3.1 we outline a method to

obtain Lagrange multipliersλw andλv by solving a randomized version of (RKS Alloc).

If the profitability coefficients are given based on one of thethree methods, one can

use Algorithm 1 to obtain EMSR-type protection levels.

3.2.2 A Risk-Based Model for Partitioned Booking Limits

As an alternative to the two-phase method, we present a risk-based model, originally

introduced for passenger bookings by Aydin et al. (2010), that obtains partitioned booking

limits without relying on a predefined total booking limit. The goal is to maximize the

expected total net revenue, defined as the difference between the expected revenue from

the accepted booking requests, and the expected total off-loading cost paid as a penalty

for not shipping booked cargo.

As before, we denote the number of type-i booking requests byDi, i ∈ [m], and

assume that these random variables are bounded, and their distributions are known. How-

ever, due to our use of approximation methods, knowledge of the joint distribution is not

necessary. Ifbi denotes a booking limit for type-i cargo, the number of accepted type-i

booking requests is given byNi(bi) = min(bi, Di). If we denote an upper bound of the

random variableDi by Mi then, as the inequalitybi > Mi impliesNi(bi) = Ni(Mi),
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Algorithm 1 Two Phase Method for Computing the Nested Booking Limits
1: [INPUTS] Cargo types are ordered according to their profitability coefficients, i.e.,

̺1 ≥ · · · ≥ ̺m. Denote the total number of type-i booking requests that arrive during
the booking period byDi. The joint distribution ofD1, . . . , Dm is given.

2: [FIRST PHASE] Define a total booking limitb. A suitable value can be found by
solving either problem (Risk TB) or problem (Service TB).

3: [SECOND PHASE] Analogously to (3.9), compute protection levels via the follow-
ing formula:

ŷj = max

{

y ∈ {0, . . . , b} : ̺j+1 − ̺jP

(

j
∑

i=1

Di ≥ y

)

≤ 0,

}

, j ∈ [m− 1],

where̺j denotes the weighted-average profitability, calculated as̺j =
∑j

i=1
̺iE[Di]

∑j
i=1

E[Di]
.

To ensure that protection levels are non-decreasing, we again set

yj = max{ŷ1, . . . , ŷj}, j ∈ [m− 1].

we can restrict ourselves to only considering booking limitpolicies given by vectors

b = (b1, . . . , bm) in the setB = {b ∈ N
m : b1 ≤ M1, . . . , bm ≤ Mm}. Using this nota-

tion, we can express the expected total net revenue under a booking policy given by some

b ∈ B as follows:

φ(b) =
m
∑

i=1

ρiE[Ni(bi)]− E



hv





m
∑

i=1

Ni(bi)
∑

j=1

Vij



+ hw





m
∑

i=1

Ni(bi)
∑

j=1

Wij







 , (3.14)

However, the corresponding optimization model, given by

max {φ(b) : b ∈ B} , (3.15)

is typically very difficult to solve, asφ is not a separable function of the booking limits. To

overcome this issue, we now describe an upper bound forφ that gives rise to a separable

formulation.

Proposition 4 The functionφU : B → R given by

φU(b) =
m
∑

i=1

ρiE[Ni(bi)]− hv

(

m
∑

i=1

E[Ni(bi)]µ
v
i

)

− hw

(

m
∑

i=1

E[Ni(bi)]µ
w
i

)

provides an upper bound for the functionφ defined in(3.14)
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Proof. Let us recall that the functionshv andhw are convex, and that, according to our

notation, we haveE[Vij ] = µv
i , i ∈ [m], j ∈ [Ni(bi)]. Then Jensen’s inequality implies

that, for allb ∈ N
m, the following holds:

E



hv





m
∑

i=1

Ni(bi)
∑

j=1

Vij







 ≥ hv



E





m
∑

i=1

Ni(bi)
∑

j=1

Vij







 = hv

(

m
∑

i=1

E[Ni(bi)]µ
v
i

)

.

As an analogous inequality is valid for the weight penalty term, our claim follows.

If we now replace the net revenue functionφ(b) by its upper boundφU(b) in (3.15), we

arrive at an approximate problem:

max
{

φU(b) : b ∈ B
}

. (RiskD)

When the off-loading cost functionshv andhw are defined as in (3.1), we can use a

standard linearization of the positive part function to cast (RiskD) as a mixed integer

program. Let us introduce the binary decision variablesxij , i ∈ [m], j ∈ {0, . . . ,Mi},

to represent the indicators1bi=j . Furthermore, to simplify our notation, let us define

aij = E[Ni(j)] = E [min(j,Di)] for all i ∈ [m], j ∈ {0, . . . ,Mi}. Since the distributions

of the random variablesDi are known, these expected values can easily be computed.

Then, similarly to Aydin et al. (2010), we arrive at the following formulation:

max

m
∑

i=1

ρi

Mi
∑

j=0

aijxij − θvϑv − θwϑw (3.16)

subject to ϑv ≥
m
∑

i=1

µv
i

Mi
∑

j=0

aijxij − Cv (3.17)

ϑv ≥ 0 (3.18)

ϑw ≥
m
∑

i=1

µw
i

Mi
∑

j=0

aijxij − Cw (3.19)

ϑw ≥ 0 (3.20)
Mi
∑

j=0

xij = 1 i = 1, . . . , m (3.21)

xij ∈ {0, 1} i = 1, . . . , m, j = 0, . . . ,Mi. (3.22)

Proposition 5 Let functionshv andhw be defined as in(3.1), and let(x∗, ϑ∗
v, ϑ

∗
w) be an
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optimal solution of the problem(3.16)-(3.22). Then the booking limitsbx
∗

i =
∑Mi

j=1 jx
∗
ij ,

i ∈ [m], provide an optimal solution of(RiskD). In addition, the two problems have the

same optimum value, i.e., if we letφ̂(x, ϑv, ϑw) denote the objective expression given in

(3.16), we have the equalitŷφ(x∗, ϑ∗
v, ϑ

∗
w) = φU(bx∗

).

Proof. Assume thatx = (xij)i∈[m],j∈{0,...,Mi}
satisfies the constraints (3.21)-(3.22). It is

easy to see that, for everyi ∈ [m], exactly one of the binary variablesxi0, xi1, . . . , xiMi

takes value1. It follows that the sumbxi =
∑Mi

j=1 jxij belongs to the set{0, . . . ,Mi},

and thus the vectorbx is a feasible solution of (RiskD). Let us introduce the additional

notation

ϑx

v =

[

m
∑

i=1

µv
i

Mi
∑

j=0

aijxij − Cv

]

+

, ϑx

w =

[

m
∑

i=1

µw
i

Mi
∑

j=0

aijxij − Cw

]

+

,

and note that(x, ϑx

v , ϑ
x

w) satisfies all of the constraints (3.17)-(3.22), and has an objective

value ofφ̂(x, ϑx

v , ϑ
x

w) = φU(bx). In addition, constraints (3.17)-(3.20) imply that the in-

equalitiesϑv ≥ ϑx

v andϑw ≥ ϑx

w hold for any other feasible solution(x, ϑv, ϑw), therefore

we haveφ̂(x, ϑv, ϑw) ≤ φ̂(x, ϑx

v , ϑ
x

w).

On the other hand, let us consider an arbitrary solutionb of (RiskD), and definexij =

1bi=j . It is clear thatx satisfies the constraints (3.21)-(3.22), andbx = b holds. Therefore,

taking into account the optimality of(x∗, ϑ∗
v, ϑ

∗
w), we can combine our previous results to

prove our claim as follows:

φU(b) = φU(bx) = φ̂(x, ϑx

v , ϑ
x

w) ≤ φ̂(x∗, ϑ∗
v, ϑ

∗
w) ≤ φ̂(x∗, ϑx

∗

v , ϑx
∗

w ) = φU(bx
∗

).

We note that the proposed formulation (3.16)-(3.22) can be efficiently solved by a

standard mixed integer programming solver such as CPLEX as illustrated in Chapter 4.

3.3 Bid-Price Policies

Bid-price policies make accept/reject decisions for booking requests by comparing their

net revenues to a threshold price. In a cargo context, these thresholds are based on bid-

prices for units of volume and weight capacities, and can be interpreted as marginal values

of the capacity resources. Given such bid-prices, one can obtain a threshold price for a

given type of cargo by adding up the prices of expected volumeand weight requirements
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of a shipment; see (3.23).

Bid-prices can be updated periodically during the booking process, based on the re-

maining available capacity, the time to departure, and expectations about the future de-

mand. This widely used approach (see, e.g., Kunnumkal et al., 2012; Levin et al., 2011)

leads to dynamic booking policies which lie outside of the scope of this thesis. However,

in lieu of updates to the bid-price, it is necessary to introduce additional controls to pre-

vent oversale. In our proposed policies we adopt the following rule: the expected capacity

requirements of accepted shipments are not allowed to exceed available capacities.

Let λv andλw denote bid-prices for unit volume and weight capacities, respectively.

Then, in accordance with the principles outlined above, an arriving type-i booking request

is accepted if and only the following conditions hold:

ρi ≥ µv
iλv + µw

i λw, µv
i ≤ Cv − zv, andµw

i ≤ Cw − zw, (3.23)

wherezv andzw denote the total expected volume and weight capacity requirements of al-

ready accepted shipments. Notice that the net revenueρi is being compared to the thresh-

old priceµv
iλv + µw

i λw, which expresses the price of the expected capacity requirements

of a type-i shipment.

In this section we first consider an approach based on a widelyused method in the

passenger literature (Simpson, 1992; Williamson, 1992), which computes bid prices as the

optimal values of dual variables associated with the capacity constraints in a deterministic

capacity assignment LP. Amaruchkul et al. (2007) propose the use of such an LP-based

heuristic (not incorporating off-loading costs) in a single-leg cargo context. We extend

their model by using a randomized method originally proposed by Talluri and van Ryzin

(1999) for controlling passenger bookings over networks.

All of the models discussed so far either ignore off-loadingcosts, or make the common

simplifying assumption that these costs can be separated inan additive fashion, as in

(3.1). In contrast, Levin et al. (2011) propose an optimization problem which determines

which shipments are to be off-loaded; a similar approach hasalso been suggested in the

passenger literature by Bertsimas and Popescu (2003), and Kunnumkal et al. (2012). The

latter study provides a two-stage framework for network revenue management, extending

the RLP methods proposed by Talluri and van Ryzin (1999). In the second half of this

section we describe a way to compute bid-prices using a similar RLP model, which allows

us to consider off-loading costs as a more accurate functionof the capacity requirements

of accepted reservations.
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We mention here two other relevant studies: Han et al. (2010)model the single-leg

booking process by a discrete-time Markov chain and computebid-prices that maximize

expected revenue, while Pak and Dekker (2004) consider a two-dimensional on-line knap-

sack formulation for networks, and use the greedy algorithmproposed in Rinnooy Kan

et al. (1993) to solve this problem and compute bid-prices. Both studies assume that no

penalty is incurred when a booking request is rejected, and that capacity requirements

are known with certainty when a booking request arrives. Dueto their practicality, we

consider the methods proposed in Amaruchkul et al. (2007) and Pak and Dekker (2004)

as benchmarks in our computational study.

3.3.1 A Traditional Randomized Linear Programming Method

Deterministic LP formulations, based on the expected values of the random demands,

have been widely used to compute bid-prices for passenger booking in a network context

(Simpson, 1992; Williamson, 1992). Amaruchkul et al. (2007) consider a similar deter-

ministic LP model for a single-leg cargo capacity control problem; their formulation is

essentially equivalent to the problem (RKS Alloc). This approach analyzes a scenario

when various random variables take on their expected values, which might not be suffi-

cient to capture the randomness inherent in the booking process. As an alternative to de-

terministic LPs, Talluri and van Ryzin (1999) propose the use of RLPs to obtain bid-prices

for controlling passenger bookings in the absence of no-shows, i.e., under the assumption

that all the passengers with a reservation show up at the departure time. We adapt this

approach to a cargo context, and introduce an RLP-based method to compute bid-prices

for volume and weight capacities. The underlying idea is to use a Monte Carlo simulation

to estimate the total demands, instead of relying on expected values.

Suppose thatdk, k ∈ [K], areK independent samples of the random total demand

vectorD = {Di, i ∈ [m]}. To obtain the RLP under thekth sample, we replace the

expected total demandE[Di] by dki for all i ∈ [m] in the allocation problem (RKS Alloc):

max{

m
∑

i=1

ρixi : 0 ≤ xi ≤ dki , i ∈ [m],

m
∑

i=1

µv
ixi ≤ Cv,

m
∑

i=1

µw
i xi ≤ Cw}

(Random RKS)

We solve the above RLP to find the optimal dual variablesλvk andλwk associated with the
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capacity constraints. Then, bid-prices can be calculated by averaging over all samples:

λv =
1

K

K
∑

k=1

λvk, λw =
1

K

K
∑

k=1

λwk.

Remark 3 Consider a discrete-time framework, where the booking horizon is divided in

T time periods andT is sufficiently large so that there is at most one booking request

arrives in each time period. Suppose that we are given the probabilities of observing a

particular type of cargo at each time period:P (Dit = 1) = pit for all i ∈ [m], t ∈ [T ].

Then, alternatively, we can generate independent samples of D = {Dit, i ∈ [m], t ∈ [T ]}

instead ofD = {Di, i ∈ [m]}. In this case, denoting the demands underkth sample bydkit
we replaceE[Di] by

∑

t∈T dkit for all i ∈ [m]. In our computational study, we assume that

we are givenpit parameters. However, by using the FFT method, we can exactlycompute

the distributions ofDi, i ∈ [m] and still generate samples ofD = {Di, i ∈ [m]}.

While the above model incorporates the randomness in the number of booking re-

quests, it does not account for the uncertainty in the capacity requirements of individual

shipments. In the next section we present a two-stage approach that addresses this issue.

3.3.2 A Two-Stage Randomized Linear Programming Method

In this section we develop a two-stage RLP model following the template laid out by

Kunnumkal et al. (2012): booking decisions are made in the first stage, and off-loading

decisions are made in the second stage. Using a Monte Carlo approach, we first gener-

ateK samples of the demand distribution, then solve a two-stage LP for each sample.

Similarly to our previous RLP method, we compute bid-pricesby averaging over allK

samples the optimal dual variables associated with capacity constraints.

In order to arrive at a tractable formulation, we need to makeadditional assumptions

about the demand structure. In accordance with common practice in the literature, we

divide the booking horizon intoT time periods, where departure occurs at the end of

theT th period. We make the standard assumption thatT is sufficiently large so that no

two booking requests arrive in the same time period. We denote the probability that a

booking request for type-i cargo arrives in periodt by pit, for i ∈ [m], t ∈ [T ]. The

random demand for type-i cargo in periodt, denoted byDit, then follows a Bernoulli

distribution with success probabilitypit. We note that the demandsD1t, . . . , Dmt for a

given time periodt, together with the indicator of the event that no requests arrive in the
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period, follow a multinomial joint distribution. We next describe a two-stage model under

a given sample realization
(

dkit
)

i∈[m],t∈[T ]
of these demands.

Booking decisions for shipments are made without knowledgeof their exact future

capacity requirements. At the departure time, when these requirements are realized, we

determine which accepted shipments should be off-loaded. Let xk
it represent the number

of type-i shipments accepted in time periodt, and letykit represent the number of these

shipments that are off-loaded. If the random volume and weight requirements are given

by the pair of random vectors(Vk,Wk), we have the following first-stage problem:

max

m
∑

i=1

T
∑

t=1

ρix
k
it − E[Q(xk,Vk,Wk)] (3.24)

s. t. 0 ≤ xk
it ≤ dkit i ∈ [m], t ∈ [T ], (3.25)

whereE[Q(xk,V,W)] denotes the expected second-stage off-loading costs. For given

booking decisionsxk and a given realization(vks,wks) of the random capacity require-

ments(Vk,Wk), the off-loading decisions and costs are given by the optimal solution of

the following second-stage LP:

Q(xk,vks,wks) = min
m
∑

i=1

T
∑

t=1

cksit y
k
it (3.26)

s.t.
m
∑

i=1

T
∑

t=1

vksit (x
k
it − ykit) ≤ Cv (3.27)

m
∑

i=1

T
∑

t=1

wks
it (x

k
it − ykit) ≤ Cw (3.28)

0 ≤ ykit ≤ xk
it i ∈ [m], t ∈ [T ], (3.29)

wherecksit denotes the penalty cost paid for off-loading a shipment of volumevksit and

weightwks
it . We point out that constraints (3.27)-(3.28) ensure that the total volume and

weight requirements of boarded shipments do not exceed the respective available capaci-

ties of the flight.

Remark 4 It is possible to approximate the standard off-loading costfunction given in

(3.1) by settingcksit = θvv
ks
it + θww

ks
it . On the other hand, Levin et al. (2011) consider

penalty costs for type-i cargo to be proportional to the shipping rateri, and computed as

cksit = ri(0.15v
ks
it + 1.5wks

it ). We also consider the penalty costcksit to be a deterministic

function of the capacity requirementsvsit and ws
it, hence the omission ofcks from the
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arguments of the functionQ. However, this is not a necessary assumption; our approach

can accommodate arbitrary choices ofcksit . Similarly, we can incorporate uncertainty in

available volume and weight capacities into our model by replacingCw andCv byCks
w

andCks
v , respectively. However, it is potentially very challenging to generate scenarios

that accurately represent the joint distributions of all random parameters .

It is possible to obtain a point estimation of the expected off-loading costsE[Q(xk,Vk,Wk)]

via Monte Carlo simulation as follows. Let us generateL samples(vks,wks), s ∈

[L], of the random capacity requirements, then obtain corresponding off-loading costs

Q(xk,vks,wks) by solving the second-stage LP, and finally take the average of these costs

across allL samples. Accordingly, we can combine our first-stage problem (3.24)-(3.25)

and our second-stage problem (3.26)-(3.29) into a single large-scale LP:

max
m
∑

i=1

T
∑

t=1

ρix
k
it −

1

L

L
∑

s=1

m
∑

i=1

T
∑

t=1

csity
ks
it (3.30)

s. t. 0 ≤ xk
it ≤ dkit i ∈ [m], t ∈ [T ], (3.31)

m
∑

i=1

T
∑

t=1

vksit (x
k
it − yksit ) ≤ Cv s ∈ [L], (3.32)

m
∑

i=1

T
∑

t=1

wks
it (x

k
it − yksit ) ≤ Cw s ∈ [L], (3.33)

0 ≤ yksit ≤ xk
it i ∈ [m], t ∈ [T ], s ∈ [L]. (3.34)

Let us solve the above two-stage model for each of theK demand realizations, and let

λ̂ks
v andλ̂ks

w denote the optimal values of the dual variables corresponding to the capacity

constraints (3.32) and (3.33), respectively. Then, similarly to the traditional RLP method,

we can set the bid-prices for unit volume and weight capacities as

λv =
1

K

K
∑

j=1

L
∑

s=1

λ̂ks
v , λw =

1

K

K
∑

j=1

L
∑

s=1

λ̂ks
w .

3.3.2.1 Solving the Two-Stage Model

For a given demand sample, the proposed large-scale LP formulation given by (3.30)-

(3.34) involvesmLT decision variables andO(mLT ) constraints. Depending on the size

of the problem instances, it can be computationally challenging to solve this problem.

In our computational study, we use the Monte Carlo approach with K = 25 samples
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when drawing first-stage parameters, andL = 200 samples for each set of second-stage

parameters. For instances withm = 240, we could easily solve the resulting problems

using CPLEX. However, if solving the large-scale LP formulation eventually becomes a

computational bottleneck, one can use the well-known L-shaped method (Van Slyke and

Wets, 1969), a widely applied Benders-decomposition approach (Benders, 1962) to solve

two-stage stochastic programming problems with the expected recourse functions for the

case of a finite probability space. For a detailed discussionon the L-shaped method, we

refer the reader to Van Slyke and Wets (1969), Birge and Louveaux (1997) and Prékopa

(1995). In our setup, this decomposition based approach requires to solve the second-

stage problem for each sample of volume and weight requirements in order to obtain

the subgradient inequalities for the total off-loading cost function. Observe that using a

change of variables (ỹit = xit − yit) we can formulate the second-stage problem under

each realization as a continuous relaxation of the multipleknapsack problem (MKP) with

two constraints:

Q(x,vs,ws) = csitxit

−max{
m
∑

i=1

T
∑

t=1

csitỹit :
m
∑

i=1

T
∑

t=1

vsitỹit ≤ Cv,
m
∑

i=1

T
∑

t=1

ws
itỹit ≤ Cw, 0 ≤ ỹ ≤ x}.

The relaxed MKP problem can be solved using a off-the-shelf software such as CPLEX.

One can also solve it using an alternative approach. For thisspecial class of MKP, we

can use the Lagrangian method penalizing the violation of one of the capacity constraints,

which leads to the well-known continuous knapsack problem.Thus, for a given La-

grangian multiplier associated with a capacity constraint, we have an analytical expression

for the optimal solution of a Lagrangian relaxation of the second-stage problem. Then,

we can optimize over the single Lagrange multiplier to obtain an optimal solution of the

second-stage problem. Such an approach has been proposed byMartello and Toth (2003)

to solve the continuous relaxation of the MKP with two constraints.
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Chapter 4

Implementation Details and Computational Study

In this chapter, we first discuss in detail how different booking policies are implemented.

Then, we describe our simulation setup and explain how we setthe values of the input

parameters used in the presented models. We also briefly describe the policies used as

benchmarks and provide insights about the performance of different policies.

4.1 Implementing Cargo Booking Policies

In this section we outline various ways to implement open loop cargo booking policies for

use in practice, or for the purpose of evaluation by simulations. We also describe methods

to convert between different types of booking controls.

4.1.1 General Implementation Notes

In Section 3.3 we introduce the rule that, when we employing abid-price policy, we do

not accept booking requests for shipments that would bring the total expected capacity

requirements (either volume or weight) for the flight over the available capacity. In our

implementations we adopt this rule for all booking policies. This practice has been sug-

gested by Pak and Dekker (2004) and Amaruchkul et al. (2007);the latter study states

that adopting it leads to improved performance. We have alsoobserved that this practice,

which considers the capacity constraints given in (3.23), has significantly improved the

performance of our booking policies.

As we briefly touched upon in Section 3.3, open loop methods are often used with a

rolling horizon scheme, where booking controls (i.e., booking limits, or bid-prices) are
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periodically updated to take into account changes in available capacity and/or changes in

predicted demands. Such approaches, which occupy a position between static and fully

dynamic booking policies, are outside the scope of our thesis.

In practice, partitioned booking limits are rarely implemented directly; instead, they

are usually converted to a nested policy. This conversion can be performed naturally in

the passenger case, since net revenues define a unique ranking between the fare classes.

In Section 4.1.3 we discuss how to perform similar conversions for cargo booking limits.

In our computational results we only report the performanceof nested implementations

of partitioned booking limits; the reason for this decisionis that nested implementations

consistently outperform partitioned ones to a significant degree.

4.1.2 Implementing Booking Limit Policies

We consider booking requests that arrive in sequence. When arequest arrives, we make an

accept/reject decision based on our current booking limits, and if the request is accepted,

we update the booking limits to reflect the decrease in available capacity.

Partitioned booking limits

Let b1(t), . . . , bm(t) denote the booking limits for various cargo types after accepting t

booking requests. A new request for type-i cargo is accepted if and only if we have

bi(t) ≥ 1. If the request is accepted, we decrease type-i limit, and leave the other limits

unchanged. That is, we setbi(t + 1) = bi(t)− 1, andbj(t + 1) = bj(t) for j 6= i.

Nested booking limits

We note that there are two ways of implementing nested booking policies: standard nest-

ing and theft nesting. Talluri and van Ryzin (2005) state that “standard nesting is the norm

in revenue management practice”. Accordingly, in our study, we only consider this more

natural approach, and refer the reader to Haerian et al. (2006) for a detailed description of

theft nesting. The nested booking limitb̄i denotes the maximum total number of booking

requests that we intend to accept for cargo typesi, . . . , m.

Let b̄1(t) ≥ · · · ≥ b̄m(t) denote the nested booking limits after acceptingt booking

requests. A new request for type-i cargo is accepted if and only if we haveb̄i(t) ≥ 1 .

If the request is accepted, we decrease the booking limits for cargo types1, . . . , i, and

update other limits to preserve the nested structure. That is, we set̄bj(t + 1) = b̄j(t) − 1

for j ≤ i, andb̄j(t + 1) = min(b̄j(t), b̄i(t+ 1)) for j > i.
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Capacity-based booking limits

Instead of considering limits on the number of accepted booking requests, it is natural to

consider limits on the expected capacity requirements. Such limits represent volume and

weight capacities that are made available to cargo of various types. Accordingly, upon

accepting a booking request for a shipment, the appropriatelimits are decreased by the

expected volume and weight of this shipment.

Partitioned capacity limits LetBv
1(t), . . . , B

v
m(t) andBw

1 (t), . . . , B
w
m(t) denote the

volume and weight limits, respectively, for various cargo types after acceptingt booking

requests. A new request for type-i cargo is accepted if and only if we haveBv
i (t) ≥ µv

i

andBw
i (t) ≥ µw

i . If the request is accepted, we decrease type-i limits, and leave the other

limits unchanged. That is, we set

Bv
i (t+ 1) = Bv

i (t)− µv
i

Bw
i (t+ 1) = Bw

i (t)− µw
i

Bv
j (t+ 1) = Bv

j (t) j 6= i

Bw
j (t+ 1) = Bw

j (t) j 6= i.

Nested capacity limits Let B̄v
1(t) ≥ · · · ≥ B̄v

m(t) andB̄w
1 (t) ≥ · · · ≥ B̄w

m(t) the

nested capacity limits after acceptingt booking requests. A new request for type-i cargo

is accepted if and only if we havēBv
i (t) ≥ µv

i andB̄w
i (t) ≥ µw

i . If the request is accepted,

we decrease the limits for shipments of type1, . . . , i, and update other limits to preserve

the nested structure. That is, we set

B̄v
j (t+ 1) = B̄v

j (t)− µv
i j ≤ i

B̄w
j (t+ 1) = B̄w

j (t)− µw
i j ≤ i

B̄v
j (t+ 1) = min

(

B̄v
j (t), B̄

v
i (t+ 1)

)

j > i

B̄w
j (t+ 1) = min

(

B̄w
j (t), B̄

w
i (t + 1)

)

j > i.

4.1.3 Conversions Between Booking Controls

We have discussed several classes of booking controls, including partitioned and nested

booking limits, expressed both in terms of the number of booking requests and in terms of

capacity. We now describe some ways in which a cargo booking policy based on controls
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of a certain class can be converted to a related (but not necessarily equivalent) policy

based on controls of a different class.

Conversion between nested booking limits and protection levels

In the EMSR literature, and accordingly in our related Section 3.2.1.2, nested booking

policies are described in terms of protection levelsy1 ≤ . . . ym. Here the levelyi denotes

the maximal number of booking requests that can be accepted for cargo types1, . . . , i.

Protection levels can be interpreted as “protecting” available capacity for requests with

high profitability. In contrast, nested booking limits express the amounts of capacity made

available for requests of lower profitability. These two conventions provide equivalent

descriptions of nested booking policies, and we can convertprotection levels to nested

booking limits via the following simple formulas:

b̄1 = ym, b̄i = yi − yi−1 for i = 2, . . . , m.

Conversion to capacity limits

Instead of considering limits on the number of accepted booking requests, it is natural to

consider limits on the expected capacity requirements of accepted requests. Ifb1, . . . , bm
are partitioned booking limits, we can define correspondingbooking limits in terms of

volume asBv
i = biµ

v
i , and in terms of weight asBw

i = biµ
w
i , for i ∈ [m]. Similarly, given

nested booking limits̄b1 ≥ · · · ≥ b̄m, we can define corresponding nested capacity limits

as

B̄v
i = b̄mµ

v
m +

m−1
∑

j=i

(b̄j+1 − b̄j)µ
v
j , i ∈ [m],

B̄w
i = b̄mµ

w
m +

m−1
∑

j=i

(b̄j+1 − b̄j)µ
w
j , i ∈ [m].

Nested implementations of partitioned booking limits

If the various types of cargo are ranked in such a fashion thatlower-indexed types are

considered to be more preferable, then partitioned bookinglimits naturally give rise to

nested booking limits. More precisely, given partitioned booking limits bi, i ∈ [m], we

can definēbi =
∑m

j=i bj . Analogously, for partitioned capacity limitsBv
i andBw

i , i ∈ [m],

we defineB̄v
i =

∑m

j=iB
v
j andB̄w

i =
∑m

j=iB
w
j . In our numerical experiments we consider

nested implementations of partitioned booking limits based on the rankings of cargo types

implied by the profitability coefficients introduced in Section 3.2.1.2.
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4.2 Simulation Setup and Parameters

Following the setup presented in Amaruchkul et al. (2007) wehave set the following

parameters: cargo types, volume and weight requirements, volume and weight capacities,

revenue function, off-loading costs, number of decision periods and the demand arrival

probabilities.

In all of our computational study we assume that each cargo shipment has determin-

istic weight and random volume requirements at the time of booking. This is because it

is relatively easier for the shipper to measure the weight, however it requires more so-

phisticated tools to measure the volume. Therefore, volumeis represented by a random

variable which follows a log-normal distribution.

As in Amaruchkul et al. (2007), a shipment type is defined by two components: class

and category. Class of the shipment is characterized by its content, e.g. flowers, clothes,

electronics or fresh products. Therefore, class is the primary component that determines

the rate which company will charge per chargeable unitŵ (See Table 4.2). On the other

hand, category of the shipment is defined by its expected volume and weight (See Table

4.1). There are 24 categories and 10 classes. Consequently,the number of different cargo

types becomesm = 24× 10 = 240.

Table 4.1: Weight (kg) and Expected Volume (×104 cm3) for Category
Category 1 2 3 4 5 6 7 8 9 10 11 12
Weight 50 50 50 50 100 100 100 100 200 200 200 250
Mean vol. 30 29 27 25 59 58 55 52 125 119 100 147

13 14 15 16 17 18 19 20 21 22 23 24
Weight 250 300 400 500 1000 1500 2500 3500 70 70 210 210
Mean vol. 138 179 235 277 598 898 1488 2083 233 17 700 52

Table 4.2: Revenue Function for Classes
Class 1 2 3 4 5 6 7 8 9 10
0 < ŵ ≤ 90 1.12 1.04 0.92 0.82 0.8 0.87 0.99 0.72 0.7 0.55
90 < ŵ ≤ 990 1.11 1.03 0.91 0.81 0.79 0.86 0.98 0.71 0.69 0.54
990 < ŵ ≤ 1990 1.09 1.01 0.89 0.79 0.77 0.84 0.96 0.69 0.67 0.52
1990 < ŵ 1.08 1.00 0.88 0.78 0.76 0.83 0.95 0.68 0.66 0.51

In our numerical experiments, the revenue functionri(.) appearing in (3.2) is taken to

be a piecewise linear function as described in Table 4.2 and the inverse density constant

γ is equal to 6 m3/ton. Our models require the revenue obtained when a single booking
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request is accepted. However, because volume is taken to be arandom variable, we esti-

mated this immediate contribution by usingE[ri(max{w, V/γ})] instead. Please refer to

Appendix D for related calculations.

There are60 decision periods in which at most one arrival occurs. Booking horizon

starts att = 60 and plane leaves att = 0. We use the time dependent arrival probabilities

presented in Amaruchkul et al. (2007) (for details, see Tables 4.3 and 4.4); each value is

associated with the probability that an arriving booking request belongs to a certain class

and category at a particular time period. The probability ofobserving a booking request

arrival for type-i cargo at timet, denoted bypit, is obtained by multiplying the arrival

probabilities associated with the category and the class ofcargo type-i.

Table 4.3: Arrival Probabilities for Classes
Periods 1-10 11-20 21-30 31-40 41-50 51-60
Class 1 0.02 0.03 0.04 0.04 0.05 0.05
Class 2 0.006 0.007 0.01 0.01 0.015 0.02
Class 3 0.005 0.005 0.05 0.07 0.065 0.08
Class 4 0.02 0.02 0.02 0.045 0.045 0.07
Class 5 0.025 0.025 0.025 0.025 0.025 0.03
Class 6 0.03 0.02 0.03 0.02 0.03 0.04
Class 7 0.05 0.05 0.05 0.05 0.05 0.06
Class 8 0.078 0.06 0.07 0.06 0.07 0.09
Class 9 0.03 0.035 0.04 0.045 0.05 0.055
Class 10 0.001 0.045 0.002 0.002 0.05 0.05

Table 4.4: Arrival Probabilities for Categories
Categories 1-10 11-16 17-20 21-24
Probability 0.072 0.04 0.009 0.001

Volume and weight capacities(Cv, Cw) are determined as fractions of the expected

total demandsdv =
∑T

t=1

∑m

i=1 pitµ
v
i anddw =

∑T

t=1

∑m

i=1 pitµ
w
i . Basically, given the

capacity demand ratios (Cv/dv, Cw/dw), we determine the volume and weight capacities.

As mentioned in Chapter 3 we consider two ways of modelling the off-loading costs.

In the first approach, we assume that off-loading cost functionshv andhw are defined as in

(3.1). On the other hand, the second approach calculates theoff-loading cost by solving a

net revenue maximization problem which identifies the individual shipments that are to be

denied loading. In both approaches we assume that partial loadings are allowed. For the

first approach, we need to specify the off-loading cost coefficientsθv andθw per unit of
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off-loaded volume and weight, respectively. To do this, we first calculate the benchmark

penalty costs(ηv, ηw) using the following equations:

T
∑

t=1

m
∑

i=1

pitρi = ηvdv

T
∑

t=1

m
∑

i=1

pitρi = ηwdw.

Then, given the penalty cost rate ratios(θv/ηv, θw/ηw), we set the values ofθv andθw. In

our second approach, the cost of off-loading a type-i shipment at periodt under scenario

s is taken asθvvsit + θww
s
it. Remark 4 explains the motivation behind our selection.

We utilized a Monte Carlo simulation for all our models whileestimating hard-to-

compute expressions. First, we used this approach to estimate the complicated expectation

terms for finding the optimal solution of (Risk TB) (see Appendix C) and we selected

the sample size as10, 000 which gave quite stable results among different samplings.

Secondly, for our traditional randomized linear programming model we sampled1000

demand realizations in order to estimate the dual variables. Finally, for our two stage

stochastic linear programming model, we sampledK = 25 realizations of demand and

L = 200 realizations of volume and weight.

Recall that the problem (Risk TB) requires the probabilitypi, i ∈ [m], that a booking

request is for type-i cargo. These probabilities are calculated by

pi =
E[Di]

∑m

i=1E[Di]
=

∑T

t=1 pit
∑m

i=1

∑T
t=1 pit

.

Using these multinomial probabilities, we generate the mixture random variables̄Vi and

W̄i in the corresponding Monte Carlo simulation.

In order to obtain the bid-prices by solving the traditionalRLP, we generate samples

of total demand for each cargo type. Thus, we need the joint distribution ofD1, . . . , Dm.

Obtaining this probability distribution is not very straightforward becauseDi is the sum of

T independent Bernoulli random variables each having a different probability of success.

Under the assumption of independent total demands, we obtain the marginal distributions

of Di, i ∈ [m] by using the Fast Fourier Transform (FFT), see Appendix E fordetails. We

utilize the FFT also for the EMSRb heuristic, since it requires the distribution of
∑j

i=1Di

for all j ∈ [m]. Similarly,
∑j

i=1Di is the sum ofjT independent Bernoulli random

variables. Therefore, calculations are quite similar to those for the distribution ofDi.
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A single problem instance is defined by the combination of three sets of parameters.

The first is the capacity demand ratios for volume and weight (Cv/dv, Cw/dw). Second

is the coefficient of variation denoted bycv. The final parameter is the penalty cost rate

ratios (θv/ηv, θw/ηw). From this point on, we will represent a single instance using the

notation: (Cv/dv, Cw/dw, cv, θv/ηv, θw/ηw). We generated 154 different instances for

our computational experiments and we next present the details. Let us denote the set of

values we used as capacity demand ratio, coefficient of variation and penalty cost rate pa-

rameters byC1, C2, andC3 respectively. The generated instances can be divided into two

groups. The first group involves tighter capacities on at least one dimension, whereas the

second group involves more moderate capacities. There are 24 instances within the first

group and the associated parameter values are as follows:C1 = {(0.1, 1.0),(0.2, 1.0),

(0.3, 0.3),(0.3, 1.0),(0.4, 0.4), (0.4, 1)}, C2 = {0.2, 0.8}, C3 = {(1.5, 1.5), (2.0, 2.0)}.

The parameter values of the second group are:C1 = {(0.5, 0.5),(0.5, 1.0),(1.0, 0.5),

(0.75, 0.75),(0.75, 1.0), (1.0, 0.75),(0.9, 0.9), (0.9, 1.0),(1.0, 0.9), (1.0, 1.0), (1.1, 1.1),

(1.1, 1.0), (1.0, 1.1)}, C2 = {0.2, 0.8}, C3 = {(0.8, 0.8), (1.0, 1.0), (1.2, 1.2), (1.5, 1.5),

(2.0, 2.0)}. In order to estimate the expected revenue under each setting, we conducted

simulation and for each instance we ran1000 replications. Solving RM2P takes less than

10 seconds, RMD and EMSR based heuristics take less than 1 second, RLP-1 takes less

than 1 minute on average. Solving 25 large scale linear programming models in order

to obtain bid-prices for RLP-2, took around 15 minutes on average. Please note that

given times are in terms of wall clock time all and the computational experiments were

conducted on an IntelR© CoreTM2 Quad, 2.33 GHz processor, 8 GB RAM (Windows 7,

64-bit) computer.

4.3 Benchmark Policies

We implemented three of the heuristics proposed by Amaruchkul et al. (2007), the al-

gorithm proposed by Pak and Dekker (2004) and the first come first serve policy as

benchmark policies. Amaruchkul et al. (2007)’s first heuristic develops a policy based

on two approximate DP formulations whereas the other two heuristics propose bid-price

and booking-limit policies. Pak and Dekker (2004)’s algorithm also provides bid-prices

and utilizes these bid-prices during the decision process.First come first serve policy

accepts all booking requests unless it results in exceedingthe capacity.

The DP formulation of the cargo capacity control problem is presented in Amaruchkul

et al. (2007). The state space of this DP formulation is a vector (x) of sizem denoting the
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number of accepted type-i cargoes. As a result, this problem becomes computationally

intractable. Letx = (x1, . . . , xm) ∈ Z
m
+ be the state vector withxi representing the

number of accepted requests for cargo type-i so far. The initial state, at the beginning of

the booking horizon is the zerom-vector, denoted bye0, andgT (e0) gives the optimal

function value wheregt(x) denotes the recursive equations of the DP formulation.

gt(x) =

m
∑

i=1

pit max{ρi + gt−1(x+ ei), gt−1(x)}+ p0tgt−1(x), t = 1, . . . , T, (4.1)

g0(x) = −E



θv

[

m
∑

i=1

xi
∑

j=1

Vij − Cv

]

+

+ θw

[

m
∑

i=1

xi
∑

j=1

Wij − Cw

]

+



 , (4.2)

whereVij andWij are the volume and weight requirements ofjth accepted type-i cargo

booking andei denotes them-dimensional unit vector with a1 in the ith position and 0

anywhere else. Because it is computationally challenging to solve this high-dimensional

DP problem, Amaruchkul et al. (2007) propose different approximations to the formula-

tion above. We next briefly describe one of their heuristics that we used for benchmarking.

HD Heuristic

This heuristic is based on an approximation approach which formulates two separate DP

problems (uv
t , u

w
t ) based on volume and weight dimensions. The state space for the DP

based on volume is taken as the expected total volume accepted and for DP based on

weight, it is expected total weight accepted so far. Immediate revenue foruv
t is f v

i =

E
[

[ri(Vi/γ)− ri(wi)]1{Vi≥γwi}

]

and foruw
t , it is fw

i = E[ri(wi)]. Boundary equations

for both dimensions are equal to the related dimension’s expected off-loading costs. This

approximation is used for both providing an upper bound on the expected net revenue

value (uv
T (0) + uw

T (0)) and determining the decision policy of HD heuristic.

In HD heuristic, a type-i booking request arrival at timet is accepted when the states

arex =
∑m

i=1 xiµ
v
i andy =

∑m
i=1 xiµ

w
i if

ρi ≥ [uv
t−1(x) + uw

t−1(y)]− [uv
t−1(x+ µv

i ) + uw
t−1(y + µw

i )].
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Partitioned Allocations (PA) Policy

Booking limits for PA heuristic are derived by solving the problem:

ξ(E[D]) = max{φ(x) : x ≤ E[D]},

where

φ(x) =
m
∑

i=1

ρixi − θv[
m
∑

i=1

µv
ixi − Cv]+ − θw[

m
∑

i=1

µw
i xi − Cw]+.

Let z∗ be the optimal solution of the above optimization problem. Then, PA accepts a

type-i booking request if and only if

x+ µv
i ≤ Cv, y + µw

i ≤ Cw, and xi < ⌈zi⌉.

Bid-Price (BP) Policy

Dual variables (λv and λw) associated with the volume and weight constraints of the

problem (KS Alloc) are used as bid-prices for the BP heuristic. Then a type-i booking

request is accepted if and only if

x+ µv
i ≤ Cv, y + µw

i ≤ Cw, and ρi ≥ µv
iλv + µw

i λw. (4.3)

Pak and Dekker’s Bid-Price (PD) Policy

Pak and Dekker (2004) model the booking process as a two-dimensional on-line knapsack

problem and obtain the bid-prices using the greedy algorithm proposed by Rinnooy Kan

et al. (1993) (See Appendix F). A booking request is acceptedor rejected according to the

rule given (4.3), but the dual variables (λv andλw) are replaced by the bid-prices obtained

by Rinnooy Kan et al. (1993)’s algorithm. In order to make a more fair comparison with

our two stage stochastic linear programming model, we ran this algorithm for1000 times

and took the average of the bid-prices.

First Come First Serve (FCFS) Policy

The FCFS policy accepts all the booking requests as long as the expected total volume

and weight of the already accepted bookings do not exceed therespective capacities. In
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other words, a type-i booking request is accepted if and only if

x+ µv
i ≤ Cv and y + µw

i ≤ Cw.

Note that FCFS policy can also be considered as a bid-price policy where the bid-prices

are equal to zero.

4.4 An Overview of Implemented Methods

In the computational study, we implemented the policies obtained by solving our models

(presented in Chapter 3) and the benchmark policies (described in the previous section)

according to the details explained in Section 4.1.2. In particular, we consider four types

of booking limit polices and three types of bid-price policies.

As discussed in Chapter 3, the proposed two-phase method sets the available capac-

ity to be equal to the total booking limit obtained by solvingthe problem (Risk TB) or

(Service TB). Then, it uses a particular type of profitability coefficients to obtain the

nested booking limits as summarized in Algorithm 1. We referto this approach as RM2P.

Our modelRiskD and the PA approach provide us with the partitioned booking limits.

Then, we use the proposed nested structures to convert them to the nested ones. Thus,

the nested booking limits are obtained for three models: RM2P, RiskD and PA. For each

model, we use three types of profitability coefficients to obtain the nested booking limits.

With the randomized version of the third type of profitability coefficients, we consider six

types of nested structures. For convenience, we introduce the abbreviations summarized

in Tables 4.5 and 4.6.

Obtaining Bid-Price Policies
RLP-1 Traditional Randomized Linear Programming Model
RLP-2 Two Stage Stochastic Linear Programming Model
PD Pak and Dekker (2004)’s Bid-Price Policy
FCFS First Come First Serve Policy

Obtaining Booking Limit Policies
RM2P Two-Phase Risk-Based Model
RMD Risk-Based Model for Partitioned Booking Limits
PA Partitioned-Allocations Heuristic of Amaruchkul et al.(2007)

Table 4.5: Implemented Models

42



Profitability coefficients
∗-1 Type 1: (3.10)
∗-2 Type 2: (3.11)

Type 3: LP used to estimateλw andλv

∗w-3 (3.12) (KS Alloc)
∗v-3 (3.13) (KS Alloc)
∗w-R3 (3.12) (Random RKS)
∗v-R3 (3.13) (Random RKS)

“ ∗ ”: Stands for the model RM2P, RMD or PA

Table 4.6: Implemented Nested Structures

4.5 Numerical Results and Insights

According to the numerical results presented in Amaruchkulet al. (2007), HD heuristic

outperforms their all other heuristics. Therefore, we tookHD as a benchmark while eval-

uating the performance of different heuristics that we consider in our computational study.

We quantify the solution quality of different heuristics byrelative percent difference with

respect to HD heuristic and it is calculated as:

100×
Z̄HD − Z̄π

Z̄HD

, (4.4)

whereπ represents one of the heuristics, andZ̄HD and Z̄π represent the net revenues

(averaged over all replications) of the policies obtained by HD andπ, respectively.

Abbreviations in Tables (4.12) and (4.16) stand for:

Rel. Dif. Equation (4.4)

Utilization
(

100× Avg
(

Total Volume Accepted
Volume Capacity

)

, 100× Avg
(

Total Weight Accepted
Weight Capacity

))

Offloaded
(

100× Avg
(

Offloaded Volume
Total Volume Accepted

)

, 100× Avg
(

Offloaded Weight
Total Weight Accepted

))

Acc. 100× Avg
(

Number of Requests Accepted
Total Number of Requests

)

OC 100× Avg
(Offloading Cost

Total Revenue

)

.

4.5.1 Booking Limit Policies

Relative percent differences from HD heuristic of all the booking limit policies are pre-

sented in Tables (4.7)-(4.12) and Figures (4.2)-(4.3).
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Like PA heuristic of (Amaruchkul et al., 2007), RMD initially provides partitioned

booking limits. When these partitioned booking limits are directly utilized in the decision

process, mean net revenue obtained is 4% worse than the nested versions of RMD on

average. In almost all instances, using booking limits in a nested structure performed

better than using partitioned booking limits. Therefore wedid not represent the results of

policies where partitioned booking limits were used. Figure (4.1) represents the average

revenue over all instances for each booking limit model and it reveals that, out of six

different nesting methods,∗v-3 and∗w-3 performed the worst. Therefore, results given

by these nesting methods are not presented either.

In figure (4.2), we present how total booking limit responds to the penalty cost rate

ratios under different capacity demand ratio values (i.e. each line corresponds to a differ-

ent capacity demand ratio). Selected instances in this figure, have coefficient of variation

0.2 and equal volume and weight capacity demand ratios. It is clear from the figure that

RM2P is quite sensitive to the changes in penalty cost rate ratio as total booking limit

decreases strictly with increasing penalty coefficients. This behaviour leads RM2P to per-

form more conservatively resulting in small volume and weight capacity utilizations (See

Table (4.12)). Because of unused capacity, the opportunitycost increases and the overall

performance of RM2P decreases.

Figures (4.3(a))-(4.3(n)) show that it is not possible to make strict comparisons be-

tween different models and different nesting structures. Each model and each nesting

structure have proven useful under different setups. However, in all figures, there are a

number of instances, where for a single model, different nesting structures give the same

result. This event does not necessarily imply that the orderings given by different nesting

methods are the same. This can also be due to large booking limits. So, if the non-zero

booking limits are relatively larger, those booking requests which have a non-zero book-

ing request are always accepted and remaining requests are rejected. Since the set of cargo

types which have zero booking limit were almost the same for different nesting structures,

their performances were quite close to each other. So, equalresults of different nesting

methods do not imply that the ordering of cargo types are alsoequal.

Figures (4.3(a)) and (4.3(b)) represent the performance ofall models implemented us-

ing all nesting methods when all parameters are fixed except for the capacity demand ra-

tios which are equal to each other for volume and weight. Figure (4.3(a)) show the results

under low coefficient of variation, whereas Figure (4.3(b))represent a setting with high

coefficient of variation. These figures illustrate how variability effects the performance

of all the models. Under both settings RM2P performs poorly. PA and RMD models per-
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formed quite similarly. The differences in solutions were resulted because of different

nesting strategies. Under low coefficient of variation whenthe capacity demand ratio is

low, ∗v-R3 and∗w-R3 performed the best. However, when the capacity demand ratio is

higher,∗-1 gave the best results. High coefficient of variation on theother hand, favoured

∗-2 and∗w-R3 methods.

Remaining figures in this section are organized in the following way: For each pa-

rameter set, we present two figures, each comparing two different models. For instance

Figure (4.3(c)) and (4.3(d)) are plotted using the same instances, however in the first fig-

ure, we compare RM2P and RMD and in the second figure, we compare RMD and PA. This

was done to emphasize the settings where each model performsbetter. Because PA was

mostly outperformed by other models, we decided to make comparisons of PA separately.

This way, it became easier to identify each model’s behaviour under different settings.

We fixed all instance parameters and observed results under changing weight capacity

demand ratio in Figures (4.3(c))-(4.3(f)). Coefficient of variation of the instances were

0.2 in Figures (4.3(c)) and (4.3(d)),0.8 in Figures (4.3(e)) and (4.3(f)). Although RMD
mostly gives the best results, RM2P performed the best among all models when the weight

capacity demand ratio is equal to 0.5 and it performed betterthan PA when it is equal to

0.75. First type (∗-1) of nesting gave the most satisfactory results under these instances.

Similarly in Figures (4.3(g))-(4.3(j)), we fix all parameters except for volume capacity

demand ratio. RM2P performed the best when the capacity demand ratio is lower. Under

these instances PA also performed close to RM2P and for all models type 2 (∗-2) nesting

method gave the best results.

Figures (4.3(k))-(4.3(n)) capture the effect of changing penalty cost rate ratios. Fig-

ures (4.3(k)) and (4.3(m)) directly illustrate the effect of penalty cost rate ratio on the per-

formance of RM2P. Increasing penalty rate causes RM2P to perform too conservatively.

However, when the penalty costs are decreased RM2P’s results were quite competitive to

RMD. Among different, nesting methods∗w-R3 and∗-1 respond to the changes in penalty

cost rate ratio the best.
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Figure 4.1: Net Revenues Averaged Over All Instances
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Table 4.7: Relative Difference (%) of Booking Limit Policies
Instance RM2P-1 RM2P-2 RMv

2P-R3 RMw
2P-R3 RMD-1 RMD-2 RMv

D-R3 RMw
D-R3 PA-1 PA-2 PAv-R3 PAw-R3 PA∗

(0.10 , 1.00 , 0.20 , 1.50 , 1.50) -4.55 -5.91 21.48 -4.55 24.22 -2.20 24.22 24.22 30.05 -2.56 25.31 30.05 32.01
(0.10 , 1.00 , 0.20 , 2.00 , 2.00) 2.24 -2.68 25.59 2.24 21.36 -4.79 21.36 21.36 27.14 -5.18 22.42 27.14 28.99
(0.10 , 1.00 , 0.80 , 1.50 , 1.50) -11.15 -9.37 17.46 -11.15 17.56 0.59 13.87 17.56 22.12 -7.93 22.05 22.12 23.87
(0.10 , 1.00 , 0.80 , 2.00 , 2.00) -11.13 -14.40 17.38 -11.13 9.74 -4.23 5.66 9.74 15.12 -13.29 14.90 15.12 16.63
(0.20 , 1.00 , 0.20 , 1.50 , 1.50) -5.76 -5.78 21.98 -5.76 3.44 -5.56 4.14 3.44 15.01 -3.95 15.02 15.01 18.01
(0.20 , 1.00 , 0.20 , 2.00 , 2.00) -1.66 -4.08 25.10 -1.66 1.39 -5.64 2.22 1.39 12.90 -5.53 12.91 12.90 15.62
(0.20 , 1.00 , 0.80 , 1.50 , 1.50) -11.83 -11.62 9.86 -11.83 7.24 -11.58 3.56 7.24 7.34 -4.00 4.29 7.34 10.43
(0.20 , 1.00 , 0.80 , 2.00 , 2.00) -5.72 -4.52 19.34 -5.72 1.71 -6.08 -2.08 1.71 1.82 -6.29 -1.17 1.82 4.68
(0.30 , 0.30 , 0.20 , 1.50 , 1.50) 23.80 23.29 27.66 31.62 6.70 7.89 4.51 3.30 6.71 7.92 4.71 3.76 28.46
(0.30 , 0.30 , 0.20 , 2.00 , 2.00) 29.57 34.28 36.15 35.42 6.29 6.93 4.00 3.19 6.30 6.94 4.23 3.64 27.45
(0.30 , 0.30 , 0.80 , 1.50 , 1.50) 26.55 27.87 30.97 33.36 6.72 5.12 3.57 2.99 6.69 5.17 3.75 3.04 23.47
(0.30 , 0.30 , 0.80 , 2.00 , 2.00) 33.74 33.92 34.85 33.91 6.71 3.44 2.11 2.51 6.71 3.30 1.87 2.26 18.44
(0.30 , 1.00 , 0.20 , 1.50 , 1.50) 0.99 1.70 19.49 0.99 18.56 -3.79 18.40 18.56 18.54 -1.94 18.40 18.54 21.79
(0.30 , 1.00 , 0.20 , 2.00 , 2.00) 3.57 1.71 23.36 3.57 17.25 -5.33 17.08 17.25 17.21 -3.68 17.08 17.21 20.69
(0.30 , 1.00 , 0.80 , 1.50 , 1.50) -3.64 -3.82 13.05 -3.64 2.38 -2.88 0.03 2.38 12.29 -3.34 12.18 12.29 15.65
(0.30 , 1.00 , 0.80 , 2.00 , 2.00) -5.98 -6.54 12.65 -5.98 -6.52 -5.32 -1.13 -6.52 6.84 -6.38 6.72 6.84 10.48
(0.40 , 0.40 , 0.20 , 1.50 , 1.50) 23.16 22.44 23.94 27.40 6.77 4.38 4.34 6.79 6.51 7.70 5.92 8.32 26.78
(0.40 , 0.40 , 0.20 , 2.00 , 2.00) 34.90 33.37 37.82 41.46 6.40 4.31 4.13 6.32 6.05 6.92 5.36 7.56 25.62
(0.40 , 0.40 , 0.80 , 1.50 , 1.50) 19.19 18.60 20.63 22.87 6.47 2.90 3.57 4.92 4.88 3.51 3.58 5.40 22.40
(0.40 , 0.40 , 0.80 , 2.00 , 2.00) 29.69 28.91 31.43 35.74 8.66 4.62 4.60 8.71 4.72 2.72 2.22 4.94 20.03
(0.40 , 1.00 , 0.20 , 1.50 , 1.50) 1.74 1.19 15.60 1.74 15.57 3.17 15.39 15.57 15.59-0.58 15.42 15.59 18.96
(0.40 , 1.00 , 0.20 , 2.00 , 2.00) 7.70 6.97 22.47 7.70 13.98 -3.06 13.92 13.98 14.28 -1.83 14.17 14.28 17.58
(0.40 , 1.00 , 0.80 , 1.50 , 1.50) -0.26 -2.23 12.10 -0.26 10.36 -3.75 10.35 10.36 10.36 -3.65 10.35 10.36 13.42
(0.40 , 1.00 , 0.80 , 2.00 , 2.00) -0.83 -1.26 12.79 -0.83 -2.42 -4.42 -2.72 -2.42 6.83 -4.77 6.89 6.83 9.93
(0.50 , 0.50 , 0.20 , 0.80 , 0.80) 6.67 6.69 8.63 9.67 4.68 4.71 4.64 4.91 3.30 13.81 13.25 14.9223.06
(0.50 , 0.50 , 0.20 , 1.00 , 1.00) 11.40 11.70 12.92 13.67 4.43 3.29 3.27 3.55 3.08 15.07 14.35 16.07 23.81
(0.50 , 0.50 , 0.20 , 1.20 , 1.20) 14.12 13.51 14.45 17.88 4.16 4.37 4.11 4.54 2.77 14.61 13.76 15.52 22.88
(0.50 , 0.50 , 0.20 , 1.50 , 1.50) 20.72 21.04 24.00 26.30 2.66 13.32 13.01 14.43 2.65 13.91 13.16 14.85 22.49
(0.50 , 0.50 , 0.20 , 2.00 , 2.00) 31.88 30.27 32.00 36.10 4.18 3.57 3.46 3.72 2.46 13.63 13.01 14.45 22.45
(0.50 , 0.50 , 0.80 , 0.80 , 0.80) 6.21 6.30 7.77 8.58 5.16 4.21 5.71 7.34 4.30 6.38 9.29 9.30 21.46
(0.50 , 0.50 , 0.80 , 1.00 , 1.00) 9.35 9.85 10.93 11.05 4.36 3.46 5.12 6.42 3.51 5.56 9.07 9.08 20.91
∗: The policy based on the partitioned booking limits is implemented.
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Table 4.8: Relative Difference (%) of Booking Limit Policies (Continued)
Instance RM2P-1 RM2P-2 RMv

2P-R3 RMw
2P-R3 RMD-1 RMD-2 RMv

D-R3 RMw
D-R3 PA-1 PA-2 PAv-R3 PAw-R3 PA∗

(0.50 , 0.50 , 0.80 , 1.20 , 1.20) 13.12 13.38 16.00 16.58 4.04 2.87 4.61 5.63 3.13 4.41 8.03 8.03 19.17
(0.50 , 0.50 , 0.80 , 1.50 , 1.50) 16.30 16.84 19.07 21.56 3.37 2.64 7.35 7.35 3.36 3.77 7.35 7.36 18.00
(0.50 , 0.50 , 0.80 , 2.00 , 2.00) 26.18 25.74 27.57 30.15 4.36 2.75 6.11 6.11 4.33 3.71 6.11 6.11 16.95
(0.50 , 1.00 , 0.20 , 0.80 , 0.80) 13.05 13.07 17.96 13.04 12.97 12.98 12.97 12.97 12.98 12.98 12.97 12.98 14.13
(0.50 , 1.00 , 0.20 , 1.00 , 1.00) 7.40 7.29 15.33 7.42 19.69 6.29 20.19 19.69 22.01 9.07 21.94 22.01 25.52
(0.50 , 1.00 , 0.20 , 1.20 , 1.20) 6.10 5.84 15.60 6.11 15.84 2.03 16.43 15.84 18.44 4.80 18.44 18.44 22.17
(0.50 , 1.00 , 0.20 , 1.50 , 1.50) 8.54 8.60 19.69 8.58 16.82 0.40 16.80 16.82 17.24 2.11 17.22 17.24 20.75
(0.50 , 1.00 , 0.20 , 2.00 , 2.00) 14.09 11.70 25.32 14.14 14.90 -2.51 14.84 14.90 15.28 0.44 15.22 15.28 18.60
(0.50 , 1.00 , 0.80 , 0.80 , 0.80) 16.84 16.95 20.69 16.84 16.77 16.81 18.22 16.77 16.77 16.81 17.95 16.77 17.81
(0.50 , 1.00 , 0.80 , 1.00 , 1.00) 9.44 9.16 15.26 9.44 18.71 8.92 21.99 18.71 21.79 10.04 21.3721.79 25.00
(0.50 , 1.00 , 0.80 , 1.20 , 1.20) 4.59 4.63 12.60 4.68 12.29 2.25 15.89 12.29 15.60 3.34 15.10 15.60 19.15
(0.50 , 1.00 , 0.80 , 1.50 , 1.50) 3.75 4.21 13.67 3.78 6.88 3.11 11.59 6.88 11.51-2.10 10.80 11.51 14.90
(0.50 , 1.00 , 0.80 , 2.00 , 2.00) 4.55 2.02 13.91 4.63 -4.89 -6.36 -3.23 -4.89 6.08 -6.14 5.47 6.08 8.97
(1.00 , 0.50 , 0.20 , 0.80 , 0.80) 14.18 14.14 14.17 19.97 13.98 13.98 13.98 14.03 13.98 13.98 13.98 14.03 15.03
(1.00 , 0.50 , 0.20 , 1.00 , 1.00) 9.86 10.08 10.05 17.70 24.05 19.45 24.05 24.05 24.08 19.66 24.08 24.08 27.49
(1.00 , 0.50 , 0.20 , 1.20 , 1.20) 9.22 9.33 9.40 19.81 13.41 16.90 13.41 15.36 21.72 17.10 21.72 21.72 25.11
(1.00 , 0.50 , 0.20 , 1.50 , 1.50) 11.39 12.63 11.92 25.52 12.98 16.85 12.98 15.22 21.57 17.00 21.57 21.57 24.65
(1.00 , 0.50 , 0.20 , 2.00 , 2.00) 17.64 17.40 18.40 29.35 12.64 16.23 12.64 14.81 20.66 16.38 20.66 20.67 23.80
(1.00 , 0.50 , 0.80 , 0.80 , 0.80) 10.42 10.39 10.41 16.05 10.37 10.21 10.37 10.37 10.37 10.21 10.37 10.37 11.34
(1.00 , 0.50 , 0.80 , 1.00 , 1.00) 6.17 5.99 6.27 13.43 16.25 16.29 16.25 17.44 20.39 16.89 20.39 19.36 23.89
(1.00 , 0.50 , 0.80 , 1.20 , 1.20) 5.86 6.07 5.88 14.46 14.43 14.22 14.43 15.64 18.63 14.75 18.63 17.66 22.17
(1.00 , 0.50 , 0.80 , 1.50 , 1.50) 10.73 11.35 10.78 22.37 15.59 15.43 15.59 16.67 19.84 15.88 19.84 18.84 22.95
(1.00 , 0.50 , 0.80 , 2.00 , 2.00) 20.60 21.64 20.35 30.36 14.95 14.67 14.95 15.73 17.99 14.99 17.99 16.93 21.23
(0.75 , 0.75 , 0.20 , 0.80 , 0.80) 3.69 3.77 4.00 4.01 2.94 7.30 7.47 5.42 2.94 8.38 8.54 7.39 12.02
(0.75 , 0.75 , 0.20 , 1.00 , 1.00) 6.58 6.42 9.21 9.34 2.73 7.87 7.33 8.21 2.81 8.76 8.83 7.90 12.42
(0.75 , 0.75 , 0.20 , 1.20 , 1.20) 8.77 9.68 10.68 12.30 2.17 8.58 8.31 7.70 2.27 8.31 8.35 7.47 12.08
(0.75 , 0.75 , 0.20 , 1.50 , 1.50) 17.13 18.62 19.24 19.57 1.48 7.94 7.71 6.81 1.54 7.71 7.82 6.62 11.86
(0.75 , 0.75 , 0.20 , 2.00 , 2.00) 23.83 23.20 24.10 25.09 1.58 8.08 7.59 6.88 1.68 7.59 7.66 6.42 11.47
(0.75 , 0.75 , 0.80 , 0.80 , 0.80) 3.22 3.34 3.52 3.46 2.88 4.13 3.66 2.96 2.84 7.65 5.52 3.22 11.20
(0.75 , 0.75 , 0.80 , 1.00 , 1.00) 3.65 3.50 4.30 4.68 2.27 5.89 3.33 2.26 2.27 7.12 4.82 2.51 10.61
(0.75 , 0.75 , 0.80 , 1.20 , 1.20) 6.50 7.95 8.64 9.07 1.61 6.08 4.11 1.83 1.65 6.83 4.36 2.33 10.40
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Table 4.9: Relative Difference (%) of Booking Limit Policies (Continued)
Instance RM2P-1 RM2P-2 RMv

2P-R3 RMw
2P-R3 RMD-1 RMD-2 RMv

D-R3 RMw
D-R3 PA-1 PA-2 PAv-R3 PAw-R3 PA∗

(0.75 , 0.75 , 0.80 , 1.50 , 1.50) 14.00 15.59 16.38 16.89 1.65 2.55 1.71 1.08 1.66 5.39 3.53 1.63 9.11
(0.75 , 0.75 , 0.80 , 2.00 , 2.00) 21.02 20.14 21.21 21.39 2.09 1.19 1.08 1.08 2.11 4.69 2.53 1.54 8.19
(0.75 , 1.00 , 0.20 , 0.80 , 0.80) 6.76 6.79 7.50 6.76 7.46 7.36 7.39 7.46 7.50 7.36 7.39 7.50 10.76
(0.75 , 1.00 , 0.20 , 1.00 , 1.00) 5.66 5.46 6.58 5.64 5.72 4.99 8.01 10.18 6.18 5.00 8.10 10.17 13.69
(0.75 , 1.00 , 0.20 , 1.20 , 1.20) 5.63 5.51 10.51 5.63 4.90 4.11 7.08 8.10 5.35 4.12 7.60 9.51 12.82
(0.75 , 1.00 , 0.20 , 1.50 , 1.50) 9.68 9.94 15.24 9.69 3.78 2.94 6.22 7.37 4.27 2.95 6.68 8.74 12.29
(0.75 , 1.00 , 0.20 , 2.00 , 2.00) 17.36 18.34 19.92 17.33 2.29 1.56 4.45 5.62 2.79 1.54 4.92 6.93 10.83
(0.75 , 1.00 , 0.80 , 0.80 , 0.80) 7.74 7.76 8.12 7.74 7.91 7.96 7.93 8.05 7.93 7.96 7.93 8.05 11.08
(0.75 , 1.00 , 0.80 , 1.00 , 1.00) 5.49 5.36 5.98 5.52 4.99 4.96 7.09 8.37 5.45 4.96 7.13 9.17 12.53
(0.75 , 1.00 , 0.80 , 1.20 , 1.20) 4.42 4.27 8.36 4.45 2.98 3.04 5.47 4.47 3.41 3.04 5.55 7.43 10.60
(0.75 , 1.00 , 0.80 , 1.50 , 1.50) 6.37 6.42 11.48 6.40 2.38 0.78 3.37 2.38 1.57 1.00 3.56 5.43 8.82
(0.75 , 1.00 , 0.80 , 2.00 , 2.00) 11.71 12.49 14.57 11.77 -1.55 -1.36 -0.53 -0.46 -1.08 -1.38 -0.45 1.01 4.56
(1.00 , 0.75 , 0.20 , 0.80 , 0.80) 5.56 5.50 5.55 6.34 6.20 6.19 6.53 6.19 6.20 6.19 6.53 6.19 9.81
(1.00 , 0.75 , 0.20 , 1.00 , 1.00) 5.14 5.44 5.27 7.82 5.11 7.20 11.54 8.15 6.74 7.69 12.04 8.85 15.56
(1.00 , 0.75 , 0.20 , 1.20 , 1.20) 6.07 6.07 6.24 10.98 4.49 7.40 11.20 8.36 6.07 7.31 11.06 8.2814.49
(1.00 , 0.75 , 0.20 , 1.50 , 1.50) 8.80 10.75 9.23 16.26 3.62 6.08 9.02 6.66 5.20 6.30 9.74 7.17 13.41
(1.00 , 0.75 , 0.20 , 2.00 , 2.00) 15.96 19.72 17.07 21.31 2.75 5.58 8.91 6.27 4.32 6.02 9.91 7.04 13.70
(1.00 , 0.75 , 0.80 , 0.80 , 0.80) 3.16 3.12 3.17 3.81 3.46 3.64 4.20 3.65 3.48 3.64 4.24 3.65 7.75
(1.00 , 0.75 , 0.80 , 1.00 , 1.00) 2.64 2.55 2.75 4.07 2.28 4.99 9.22 5.17 4.35 5.00 9.22 5.18 12.72
(1.00 , 0.75 , 0.80 , 1.20 , 1.20) 3.43 3.27 3.52 8.00 1.74 4.37 8.37 4.54 3.63 4.37 8.36 4.55 11.94
(1.00 , 0.75 , 0.80 , 1.50 , 1.50) 5.95 7.60 6.20 12.58 1.21 3.77 7.50 3.95 2.91 3.78 7.50 3.96 11.43
(1.00 , 0.75 , 0.80 , 2.00 , 2.00) 16.14 18.03 16.09 20.44 0.81 3.37 8.40 3.52 2.66 3.40 8.40 3.55 12.31
(0.90 , 0.90 , 0.20 , 0.80 , 0.80) 2.64 2.58 2.71 2.63 2.37 3.60 3.60 3.60 2.47 3.58 3.58 3.60 7.23
(0.90 , 0.90 , 0.20 , 1.00 , 1.00) 3.92 3.91 4.51 4.44 2.46 3.69 3.69 3.69 2.54 3.92 3.92 3.69 7.31
(0.90 , 0.90 , 0.20 , 1.20 , 1.20) 4.37 4.40 4.94 4.75 2.16 3.31 3.31 3.31 2.22 3.72 3.72 3.31 7.11
(0.90 , 0.90 , 0.20 , 1.50 , 1.50) 10.39 11.38 12.91 12.73 1.70 2.99 2.99 2.99 1.71 3.19 3.19 2.99 6.97
(0.90 , 0.90 , 0.20 , 2.00 , 2.00) 15.53 17.77 18.97 18.91 1.11 2.42 2.42 2.42 1.13 2.49 2.49 2.42 6.26
(0.90 , 0.90 , 0.80 , 0.80 , 0.80) 2.56 2.49 2.61 2.47 2.39 3.30 3.26 3.07 2.42 3.37 3.32 3.07 6.73
(0.90 , 0.90 , 0.80 , 1.00 , 1.00) 2.77 2.79 3.50 3.42 1.68 2.65 2.59 2.33 1.71 2.71 2.60 2.34 6.21
(0.90 , 0.90 , 0.80 , 1.20 , 1.20) 3.19 3.26 3.63 3.59 1.66 2.16 2.13 1.97 1.70 2.31 2.15 2.01 5.60
(0.90 , 0.90 , 0.80 , 1.50 , 1.50) 6.99 8.28 9.12 9.18 0.41 1.26 1.24 1.04 0.43 1.26 1.14 1.09 4.88
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Table 4.10: Relative Difference (%) of Booking Limit Policies (Continued)
Instance RM2P-1 RM2P-2 RMv

2P-R3 RMw
2P-R3 RMD-1 RMD-2 RMv

D-R3 RMw
D-R3 PA-1 PA-2 PAv-R3 PAw-R3 PA∗

(0.90 , 0.90 , 0.80 , 2.00 , 2.00) 14.45 16.26 16.09 16.41 0.11 1.26 1.21 0.93 0.10-0.29 0.15 0.93 3.36
(0.90 , 1.00 , 0.20 , 0.80 , 0.80) 3.98 3.98 4.05 3.98 4.80 5.36 5.36 5.49 4.80 5.36 5.36 5.54 8.83
(0.90 , 1.00 , 0.20 , 1.00 , 1.00) 3.84 3.78 4.67 3.82 4.26 4.63 4.63 4.60 4.27 4.63 4.63 4.81 8.31
(0.90 , 1.00 , 0.20 , 1.20 , 1.20) 5.18 4.96 6.61 5.18 3.58 4.25 4.25 3.87 3.64 4.25 4.25 4.32 7.75
(0.90 , 1.00 , 0.20 , 1.50 , 1.50) 7.92 8.15 11.96 8.31 3.44 4.12 4.12 3.69 3.50 4.12 4.12 4.09 7.69
(0.90 , 1.00 , 0.20 , 2.00 , 2.00) 14.63 13.65 18.61 15.30 2.71 3.19 3.19 3.11 2.72 3.19 3.19 3.20 6.85
(0.90 , 1.00 , 0.80 , 0.80 , 0.80) 4.02 4.02 4.11 4.02 3.98 4.99 4.99 5.13 4.10 4.99 4.99 5.14 8.43
(0.90 , 1.00 , 0.80 , 1.00 , 1.00) 3.02 2.90 3.45 2.98 2.46 3.31 3.33 3.52 2.66 3.31 3.33 3.69 7.24
(0.90 , 1.00 , 0.80 , 1.20 , 1.20) 2.77 2.66 3.73 2.89 1.60 2.54 2.56 2.62 1.74 2.54 2.56 2.74 6.17
(0.90 , 1.00 , 0.80 , 1.50 , 1.50) 3.81 3.65 5.92 3.80 1.36 1.87 1.88 1.86 1.43 1.87 1.88 2.13 5.31
(0.90 , 1.00 , 0.80 , 2.00 , 2.00) 13.79 12.26 16.87 14.13 -0.25 0.51 0.46 -0.21 -0.26 0.51 0.46 -0.17 3.46
(1.00 , 0.90 , 0.20 , 0.80 , 0.80) 3.07 3.04 3.09 3.09 3.82 4.26 4.65 4.25 3.89 4.26 4.63 4.25 7.86
(1.00 , 0.90 , 0.20 , 1.00 , 1.00) 3.44 3.39 3.48 4.59 3.68 4.20 4.56 4.20 3.73 4.20 4.86 4.20 8.45
(1.00 , 0.90 , 0.20 , 1.20 , 1.20) 4.19 4.33 4.32 5.34 3.23 4.00 4.24 3.99 3.39 4.00 4.52 3.99 8.09
(1.00 , 0.90 , 0.20 , 1.50 , 1.50) 7.76 8.02 8.23 12.68 3.34 3.87 3.98 3.87 3.43 3.87 4.24 3.87 7.97
(1.00 , 0.90 , 0.20 , 2.00 , 2.00) 11.64 14.18 12.71 19.01 2.43 3.15 3.46 3.15 2.58 3.15 3.71 3.15 7.32
(1.00 , 0.90 , 0.80 , 0.80 , 0.80) 2.48 2.44 2.48 2.48 2.40 3.50 4.10 3.50 2.49 3.50 4.15 3.50 7.37
(1.00 , 0.90 , 0.80 , 1.00 , 1.00) 2.05 1.98 2.09 2.84 1.48 2.70 3.79 2.70 1.55 2.70 3.97 2.70 7.66
(1.00 , 0.90 , 0.80 , 1.20 , 1.20) 2.45 2.39 2.66 3.41 1.02 2.31 3.35 2.31 1.08 2.31 3.50 2.31 7.16
(1.00 , 0.90 , 0.80 , 1.50 , 1.50) 3.78 3.48 3.77 6.45 0.69 1.61 2.64 1.61 0.76 1.61 2.82 1.61 6.37
(1.00 , 0.90 , 0.80 , 2.00 , 2.00) 12.90 13.72 12.42 17.81 -0.29 0.45 0.91 0.45 -0.30 0.45 1.79 0.45 5.57
(1.00 , 1.00 , 0.20 , 0.80 , 0.80) 2.36 2.36 2.37 2.36 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 5.85
(1.00 , 1.00 , 0.20 , 1.00 , 1.00) 2.34 2.29 2.40 2.33 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 5.69
(1.00 , 1.00 , 0.20 , 1.20 , 1.20) 3.63 3.82 4.40 4.21 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 5.08
(1.00 , 1.00 , 0.20 , 1.50 , 1.50) 5.66 5.57 6.40 6.04 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 4.97
(1.00 , 1.00 , 0.20 , 2.00 , 2.00) 10.94 11.91 12.30 13.51 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 4.87
(1.00 , 1.00 , 0.80 , 0.80 , 0.80) 2.24 2.24 2.25 2.23 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 5.61
(1.00 , 1.00 , 0.80 , 1.00 , 1.00) 1.73 1.63 1.84 1.66 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 4.97
(1.00 , 1.00 , 0.80 , 1.20 , 1.20) 2.32 2.35 3.06 3.00 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 4.22
(1.00 , 1.00 , 0.80 , 1.50 , 1.50) 2.91 2.94 3.31 3.22 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 4.22
(1.00 , 1.00 , 0.80 , 2.00 , 2.00) 7.30 9.20 10.07 9.85 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3.37
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Table 4.11: Relative Difference (%) of Booking Limit Policies (Continued)
Instance RM2P-1 RM2P-2 RMv

2P-R3 RMw
2P-R3 RMD-1 RMD-2 RMv

D-R3 RMw
D-R3 PA-1 PA-2 PAv-R3 PAw-R3 PA∗

(1.10 , 1.10 , 0.20 , 0.80 , 0.80) 2.62 2.61 2.63 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 5.94
(1.10 , 1.10 , 0.20 , 1.00 , 1.00) 2.15 2.11 2.15 2.12 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 5.52
(1.10 , 1.10 , 0.20 , 1.20 , 1.20) 2.23 2.19 2.28 2.20 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 5.49
(1.10 , 1.10 , 0.20 , 1.50 , 1.50) 3.61 3.94 4.33 3.84 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 4.86
(1.10 , 1.10 , 0.20 , 2.00 , 2.00) 5.61 5.48 6.73 5.92 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 4.56
(1.10 , 1.10 , 0.80 , 0.80 , 0.80) 2.21 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 5.60
(1.10 , 1.10 , 0.80 , 1.00 , 1.00) 1.78 1.76 1.87 1.77 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 5.17
(1.10 , 1.10 , 0.80 , 1.20 , 1.20) 1.45 1.39 1.52 1.37 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 4.80
(1.10 , 1.10 , 0.80 , 1.50 , 1.50) 1.64 1.77 2.40 1.92 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 3.69
(1.10 , 1.10 , 0.80 , 2.00 , 2.00) 2.99 3.03 4.12 3.55 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.183.21
(1.10 , 1.00 , 0.20 , 0.80 , 0.80) 3.37 3.36 3.37 3.37 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 6.79
(1.10 , 1.00 , 0.20 , 1.00 , 1.00) 3.00 2.95 3.02 3.06 2.81 2.81 2.81 2.81 2.81 2.81 2.81 2.81 6.17
(1.10 , 1.00 , 0.20 , 1.20 , 1.20) 3.01 2.97 3.07 4.35 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 5.94
(1.10 , 1.00 , 0.20 , 1.50 , 1.50) 5.21 5.14 5.31 5.95 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 5.64
(1.10 , 1.00 , 0.20 , 2.00 , 2.00) 7.99 8.03 8.69 12.84 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 5.63
(1.10 , 1.00 , 0.80 , 0.80 , 0.80) 2.36 2.35 2.36 2.36 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 5.79
(1.10 , 1.00 , 0.80 , 1.00 , 1.00) 2.07 2.02 2.10 2.06 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 5.27
(1.10 , 1.00 , 0.80 , 1.20 , 1.20) 1.55 1.47 1.63 2.66 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 4.47
(1.10 , 1.00 , 0.80 , 1.50 , 1.50) 3.28 3.07 3.27 3.75 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 4.28
(1.10 , 1.00 , 0.80 , 2.00 , 2.00) 6.04 5.70 6.29 10.40 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 3.80
(1.00 , 1.10 , 0.20 , 0.80 , 0.80) 4.24 4.24 4.26 4.25 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 7.57
(1.00 , 1.10 , 0.20 , 1.00 , 1.00) 3.43 3.46 3.57 3.45 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 6.63
(1.00 , 1.10 , 0.20 , 1.20 , 1.20) 3.13 3.03 4.22 3.13 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 6.06
(1.00 , 1.10 , 0.20 , 1.50 , 1.50) 4.97 4.75 5.90 5.01 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 5.53
(1.00 , 1.10 , 0.20 , 2.00 , 2.00) 7.74 7.56 12.47 8.21 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 5.22
(1.00 , 1.10 , 0.80 , 0.80 , 0.80) 4.15 4.15 4.17 4.15 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 7.47
(1.00 , 1.10 , 0.80 , 1.00 , 1.00) 3.18 3.19 3.34 3.17 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06 6.26
(1.00 , 1.10 , 0.80 , 1.20 , 1.20) 2.35 2.18 3.22 2.33 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 5.19
(1.00 , 1.10 , 0.80 , 1.50 , 1.50) 2.45 2.25 3.20 2.51 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 4.14
(1.00 , 1.10 , 0.80 , 2.00 , 2.00) 5.09 4.85 9.42 5.44 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 3.56
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Table 4.12: Some Performance Measures of Booking Limit Policies
RM2P-2 RMD-2 PA-2

Instance Rel. Diff. Utilization Offloaded Acc OC Rel. Diff. Utilization Offloaded Acc OC Rel. Diff. Utilization Offloaded Acc OC
(0.50 , 0.50 , 0.20 , 1.00 , 1.00) 11.70 (79.72 , 80.30) (0.65 , 0.00) 59.16 5.65 3.29 (93.29 , 94.53) (1.03 , 0.00) 70.52 1.04 17.75 (74.74 , 75.20) (0.59 , 0.00) 54.05 4.45
(0.50 , 0.50 , 0.20 , 1.50 , 1.50) 21.04 (68.4 , 68.64) (0.36 , 0.00) 48.83 2.60 13.32 (75.72 , 75.97) (0.54 , 0.00) 55.35 0.77 16.15 (75.07 , 75.32) (0.53 , 0.00) 54.30 4.60
(0.50 , 0.50 , 0.20 , 2.00 , 2.00) 30.27 (58.17 , 58.51) (0.18 , 0.00) 40.07 1.40 3.57 (90.82 , 92.10) (0.78 , 0.00) 68.03 1.59 15.79 (74.35 , 74.98) (0.37 , 0.00) 54.34 3.70
(0.50 , 0.50 , 0.80 , 1.00 , 1.00) 9.85 (80.33 , 80.31) (3.66 , 0.00) 59.14 10.35 3.46 (91.48 , 92.46) (5.10 , 0.00) 68.15 5.59 5.89 (86.00 , 86.02) (4.43 , 0.00) 63.15 12.70
(0.50 , 0.50 , 0.80 , 1.50 , 1.50) 16.84 (69.26 , 68.58) (2.22 , 0.00) 48.75 6.75 2.64 (88.18 , 88.04) (4.64 , 0.00) 65.79 7.32 3.91 (85.61 , 85.54) (4.23 , 0.00) 63.33 13.35
(0.50 , 0.50 , 0.80 , 2.00 , 2.00) 25.74 (56.49 , 57.50) (1.14 , 0.00) 40.26 3.55 2.75 (86.73 , 87.79) (4.16 , 0.00) 65.66 8.76 3.85 (84.03 , 85.29) (3.76 , 0.00) 62.92 11.95
(1.00 , 0.50 , 0.20 , 1.00 , 1.00) 10.08 (45.88 , 92.21) (0.00 , 0.00) 68.02 0.00 19.45 (38.29 , 76.70) (0.00 , 0.00) 51.97 0.00 24.48 (38.16 , 76.43) (0.00 , 0.00) 51.88 0.00
(1.00 , 0.50 , 0.20 , 1.50 , 1.50) 12.63 (40.36 , 81.07) (0.00 , 0.00) 58.81 0.00 16.85 (37.33 , 74.86) (0.00 , 0.00) 52.61 0.00 20.47 (37.22 , 74.64) (0.00 , 0.00) 52.57 0.00
(1.00 , 0.50 , 0.20 , 2.00 , 2.00) 17.4 (37.51 , 74.95) (0.00 , 0.00) 52.47 0.00 16.23 (37.58 , 74.92) (0.00 , 0.00) 52.68 0.00 19.58 (37.50 , 74.71) (0.00 , 0.00) 52.63 0.00
(1.00 , 0.50 , 0.80 , 1.00 , 1.00) 5.99 (46.43 , 92.62) (0.05 , 0.00) 67.41 0.20 16.29 (38.40 , 76.63) (0.13 , 0.00) 51.93 0.15 20.32 (38.08 , 75.98) (0.13 , 0.00) 51.41 0.35
(1.00 , 0.50 , 0.80 , 1.50 , 1.50) 11.35 (40.53 , 80.74) (0.14 , 0.00) 58.90 0.35 15.43 (37.60 , 74.84) (0.13 , 0.00) 52.65 0.23 18.88 (37.37 , 74.24) (0.13 , 0.00) 52.03 0.35
(1.00 , 0.50 , 0.80 , 2.00 , 2.00) 21.64 (35.02 , 69.02) (0.19 , 0.00) 48.57 0.45 14.67 (38.08 , 75.07) (0.19 , 0.00) 52.92 0.44 17.64 (37.97 , 74.54) (0.19 , 0.00) 52.36 0.45
(0.75 , 0.75 , 0.20 , 1.00 , 1.00) 6.42 (82.50 , 83.00) (0.83 , 0.00) 78.63 7.45 7.87 (79.27 , 79.87) (0.84 , 0.00) 77.73 0.84 9.60 (78.15 , 78.66) (0.79 , 0.00) 75.14 6.55
(0.75 , 0.75 , 0.20 , 1.50 , 1.50) 18.62 (65.94 , 66.20) (0.50 , 0.00) 64.72 3.60 7.94 (77.00 , 77.32) (0.72 , 0.00) 74.98 1.06 8.36 (77.37 , 77.63) (0.74 , 0.00) 74.86 5.95
(0.75 , 0.75 , 0.20 , 2.00 , 2.00) 23.20 (61.37 , 61.22) (0.67 , 0.00) 56.90 3.20 8.08 (76.62 , 76.93) (0.82 , 0.00) 75.06 1.62 8.22 (77.22 , 77.47) (0.83 , 0.00) 75.05 5.35
(0.75 , 0.75 , 0.80 , 1.00 , 1.00) 3.50 (84.79 , 85.09) (4.09 , 0.00) 80.33 12.10 5.89 (80.16 , 80.31) (3.57 , 0.00) 78.34 3.88 7.67 (78.28 , 78.62) (3.36 , 0.00) 74.85 10.05
(0.75 , 0.75 , 0.80 , 1.50 , 1.50) 15.59 (66.03 , 66.08) (2.15 , 0.00) 64.86 5.75 2.55 (83.36 , 83.36) (3.87 , 0.00) 79.28 6.65 5.69 (77.31 , 77.22) (3.09 , 0.00) 74.91 9.10
(0.75 , 0.75 , 0.80 , 2.00 , 2.00) 20.14 (62.49 , 61.22) (2.44 , 0.00) 57.00 5.10 1.19 (85.82 , 85.22) (4.21 , 0.00) 82.39 9.61 4.92 (77.49 , 76.83) (3.25 , 0.00) 74.99 8.15
(1.00 , 1.00 , 0.20 , 1.00 , 1.00) 2.29 (78.05 , 78.63) (1.03 , 0.00) 91.47 6.20 2.04 (78.24 , 78.81) (1.03 , 0.00) 91.75 1.13 2.08 (78.24 , 78.81) (1.03 , 0.00) 91.75 6.20
(1.00 , 1.00 , 0.20 , 1.50 , 1.50) 5.57 (74.49 , 74.75) (0.86 , 0.00) 83.52 5.70 1.54 (79.77 , 80.15) (0.95 , 0.00) 91.68 1.54 1.57 (79.77 , 80.15) (0.95 , 0.00) 91.68 6.65
(1.00 , 1.00 , 0.20 , 2.00 , 2.00) 11.91 (67.08 , 67.07) (0.75 , 0.00) 78.62 4.65 1.29 (79.20 , 79.40) (0.97 , 0.00) 92.09 2.06 1.31 (79.20 , 79.40) (0.97 , 0.00) 92.09 6.90
(1.00 , 1.00 , 0.80 , 1.00 , 1.00) 1.63 (77.84 , 78.64) (3.41 , 0.00) 91.46 8.15 1.43 (77.99 , 78.81) (3.43 , 0.00) 91.75 4.16 1.45 (77.99 , 78.81) (3.43 , 0.00) 91.75 8.25
(1.00 , 1.00 , 0.80 , 1.50 , 1.50) 2.94 (75.86 , 75.40) (3.37 , 0.00) 85.73 8.95 1.02 (80.53 , 80.01) (3.84 , 0.00) 91.63 6.89 1.03 (80.53 , 80.01) (3.84 , 0.00) 91.63 10.05
(1.00 , 1.00 , 0.80 , 2.00 , 2.00) 9.20 (67.63 , 66.67) (2.60 , 0.00) 78.86 6.00 0.01 (79.52 , 79.40) (3.64 , 0.00) 92.09 8.53 0.01 (79.52 , 79.40) (3.64 , 0.00) 92.09 9.90
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4.5.2 Bid-Price Policies

Relative percent difference of the bid-price policies fromHD heuristic are presented in

Tables (4.13)-(4.16). Figure (4.4) present the relative percent differences of each bid-price

policy from HD heuristic under selected instances. For eachinstance we generated 1000

realizations of our random parameters and evaluated net revenue of each policy under

these individual realizations. In Figure (4.5), under fourselected instances, we plot the

histogram of realized differences in net revenues given by RLP-1 and BP. Similarly, in

Figure (4.6), we plot the differences between RLP-2 and PD under the same instances.

Table (4.15) reveals that when the capacity demand ratio gets larger than 1 on either

dimensions, all bid-price policies except for PD perform the same as FCFS (Also see

figure (4.5(d))). This is because capacity constraints of RLP-1, RLP-2 and BP models

gets looser leading to smaller bid-prices. Consequently, all incoming booking requests

are accepted unless they violate the capacity constraints.PD on the other hand, gives

larger bid-prices and therefore rejects some of the incoming requests.

In all instances with capacity demand ratio smaller than 1 onat least one of the di-

mensions, BP was outperformed by all other bid-price policies (See Figures (4.4)).

Although accepting more requests causes higher off-loading costs on average, because

bid-price policies accept booking requests with marginal return larger than a threshold

value, they mostly compensate the off-loading costs in our computational studies. The re-

sults showed that accepting requests so that a certain amount of offloading is allowed gave

better net revenue values. This might be because the offloading costs are not high enough.

Utilization, relative difference and offloading cost percentage columns of Table (4.16)

also reveal that prioritizing the utilization of volume andweight capacities increases the

overall performance under our parameters.

PD’s bid-prices are more robust among different instances whereas bid-prices given

by RLP-1 and RLP-2 are more responsive to the capacity-demand ratio. Unlike RLP-2,

RLP-1 and PD do not incorporate the off-loading cost to theirmodels, therefore bid-prices

given by RLP-2 are also affected by the penalty cost rate ratios. Under some instances,

this might result in conservative bid-prices causing RLP-2policy to accept less. Average

net revenue over all instances with penalty cost rate ratio greater than or equal to 1.5

was largest for RLP-2. Under instances with higher coefficient of variation, the best

average net revenue is given by RLP-2. So, when there exists high penalty costs and high

variability, RLP-2 performs satisfactorily.

RLP-2 mostly outperforms other policies however under someinstances it’s solution
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Figure 4.2: Total Booking Limits Obtained by RM2P

0.3 0.4 0.5 0.75 0.8 0.9 1 1.1
0

5

10

15

20

25

30

35

(k
v
/d

v
 , k

w
/d

w
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(a) (∗, ∗, 0.2, 1.5, 1.5)

0.3 0.4 0.5 0.75 0.8 0.9 1 1.1
0

5

10

15

20

25

30

35

(k
v
/d

v
 , k

w
/d

w
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(b) (∗, ∗, 0.8, 1.5, 1.5)

54



0.4 0.5 0.75 0.8 0.9 1 1.1
0

5

10

15

20

25

k
w
/d

w

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(c) (1.0, ∗, 0.2, 1.5, 1.5)

0.4 0.5 0.75 0.8 0.9 1 1.1
0

5

10

15

20

k
w
/d

w

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(d) (1.0, ∗, 0.2, 1.5, 1.5)

0.4 0.5 0.75 0.8 0.9 1 1.1
0

5

10

15

20

25

k
w
/d

w

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(e) (1.0, ∗, 0.8, 1.5, 1.5)

0.4 0.5 0.75 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

k
w
/d

w

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(f) (1.0, ∗, 0.8, 1.5, 1.5)

0.1 0.2 0.3 0.4 0.5 0.75 0.9 1 1.1

−5

0

5

10

15

20

25

k
v
/d

v

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(g) (∗, 1.0, 0.2, 1.5, 1.5)

0.1 0.2 0.3 0.4 0.5 0.75 0.9 1 1.1

−5

0

5

10

15

20

25

30

k
v
/d

v

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(h) (∗, 1.0, 0.2, 1.5, 1.5)

55



0.1 0.2 0.3 0.4 0.5 0.75 0.9 1 1.1
−20

−15

−10

−5

0

5

10

15

20

k
v
/d

v

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(i) (∗, 1.0, 0.8, 1.5, 1.5)

0.1 0.2 0.3 0.4 0.5 0.75 0.9 1 1.1
−15

−10

−5

0

5

10

15

20

25

k
v
/d

v

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(j) (∗, 1.0, 0.8, 1.5, 1.5)

0.8 1 1.2 1.5 2
0

5

10

15

20

25

(θ
v
/η

v
 , θ

w
/η

v
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(k) (0.75, 0.75, 0.2, ∗, ∗)

0.8 1 1.2 1.5 2
0

1

2

3

4

5

6

7

8

9

10

(θ
v
/η

v
 , θ

w
/η

v
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(l) (0.75, 0.75, 0.2, ∗, ∗)

0.8 1 1.2 1.5 2
0

5

10

15

20

(θ
v
/η

v
 , θ

w
/η

v
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

RM
2P
v −R3

RM
2P
w −R3

RM
2P

−1

RM
2P

−2

(m) (0.75, 0.75, 0.8, ∗, ∗)

0.8 1 1.2 1.5 2
0

1

2

3

4

5

6

7

8

9

(θ
v
/η

v
 , θ

w
/η

v
)

R
el

at
iv

e 
D

iff
er

en
ce

 (
%

)

 

 

RM
D
v −R3

RM
D
w−R3

RM
D
−1

RM
D
−2

PAv−R3

PAw−R3
PA−1
PA−2

(n) (0.75, 0.75, 0.8, ∗, ∗)

Figure 4.3: Relative Difference of Booking Limit Policies
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quality decreases. When the capacity demand ratio is equal to 1 for volume and 0.5 or

0.75 for weight, RLP-1 mostly performs better than RLP-2. Our experimental results

revealed that under those instances, bid-prices given by RLP-1 were smaller. PD on the

other hand, outperforms all other bid-price policies when the capacity demand ratio is

smaller than or equal to 0.3 on at least one of the dimensions (See Figure (4.4(a)) for an

example). Although in terms of average net revenue RLP-2 is outperformed under these

instances, Figure (4.5(d)) shows that out of 1000 replications, there are a large number of

realizations where RLP-2 performs better than PD.

Bid-price policies performed better than the booking limitpolicies. This is caused by

the fact that booking limit policies set a number limit on howmany booking requests to

accept from a certain class. However, arriving booking requests have different volume and

weight values. Therefore, it is less logical to ignore the volume and weight requirements

and accept booking requests solely based on a booking limit.Bid-price policies on the

other hand, propose a more logical way to allocate capacity among different booking

requests.
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Table 4.13: Relative Difference (%) of Bid-Price Policies
Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(0.10 , 1.00 , 0.20 , 1.50 , 1.50) 9.76 -9.49 30.05 -6.35 3.30 (0.50 , 0.50 , 0.80 , 0.80 , 0.80) 9.31 8.38 17.90 5.96 5.35
(0.10 , 1.00 , 0.20 , 2.00 , 2.00) 7.22 -12.78 27.14 -9.24 0.86 (0.50 , 0.50 , 0.80 , 1.00 , 1.00) 9.08 2.64 17.68 5.33 4.46
(0.10 , 1.00 , 0.80 , 1.50 , 1.50) 8.32 -13.52 21.80 -10.29 4.88 (0.50 , 0.50 , 0.80 , 1.20 , 1.20) 8.03 2.54 16.17 4.27 4.15
(0.10 , 1.00 , 0.80 , 2.00 , 2.00) -0.19 -17.41 14.73 -18.24 1.40 (0.50 , 0.50 , 0.80 , 1.50 , 1.50) 7.36 2.36 14.90 3.72 4.31
(0.20 , 1.00 , 0.20 , 1.50 , 1.50) 2.40 -7.04 15.00 -8.89 1.40 (0.50 , 0.50 , 0.80 , 2.00 , 2.00) 6.12 2.82 13.54 3.22 6.00
(0.20 , 1.00 , 0.20 , 2.00 , 2.00) -0.22 -9.69 12.89 -11.07 0.10 (0.50 , 1.00 , 0.20 , 0.80 , 0.80) 15.72 12.77 26.71 13.09 14.12
(0.20 , 1.00 , 0.80 , 1.50 , 1.50) -6.14 -13.82 7.24 -13.55 1.49 (0.50 , 1.00 , 0.20 , 1.00 , 1.00) 9.53 11.22 21.99 6.49 7.35
(0.20 , 1.00 , 0.80 , 2.00 , 2.00) -10.79 -15.30 1.71 -17.17 -1.51 (0.50 , 1.00 , 0.20 , 1.20 , 1.20) 5.30 5.07 18.41 2.47 3.47
(0.30 , 0.30 , 0.20 , 1.50 , 1.50) 12.72 7.39 25.49 4.96 9.60 (0.50 , 1.00 , 0.20 , 1.50 , 1.50) 3.18 -0.99 17.23 -0.47 0.53
(0.30 , 0.30 , 0.20 , 2.00 , 2.00) 11.64 10.09 24.36 4.47 9.12 (0.50 , 1.00 , 0.20 , 2.00 , 2.00) 1.27 -2.55 15.27 -2.14 -0.84
(0.30 , 0.30 , 0.80 , 1.50 , 1.50) 10.11 2.37 20.32 3.47 10.25 (0.50 , 1.00 , 0.80 , 0.80 , 0.80) 18.64 17.98 28.08 16.86 18.26
(0.30 , 0.30 , 0.80 , 2.00 , 2.00) 6.79 2.28 15.43 1.50 10.57 (0.50 , 1.00 , 0.80 , 1.00 , 1.00) 10.82 8.47 21.77 8.90 10.25
(0.30 , 1.00 , 0.20 , 1.50 , 1.50) 3.01 -3.49 20.42 -5.23 1.09 (0.50 , 1.00 , 0.80 , 1.20 , 1.20) 3.97 2.08 15.59 2.69 4.01
(0.30 , 1.00 , 0.20 , 2.00 , 2.00) 0.54 -5.69 19.29 -7.42 -0.25 (0.50 , 1.00 , 0.80 , 1.50 , 1.50) -1.25 -3.10 11.50 -2.65 -0.89
(0.30 , 1.00 , 0.80 , 1.50 , 1.50) -0.92 -7.76 13.82 -8.66 0.62 (0.50 , 1.00 , 0.80 , 2.00 , 2.00) -6.32 -6.25 6.08 -7.44 -4.32
(0.30 , 1.00 , 0.80 , 2.00 , 2.00) -7.29 -9.71 8.80 -13.45 -1.15 (1.00 , 0.50 , 0.20 , 0.80 , 0.80) 19.73 17.03 27.30 18.56 15.22
(0.40 , 0.40 , 0.20 , 1.50 , 1.50) 9.86 4.55 23.29 5.55 6.79 (1.00 , 0.50 , 0.20 , 1.00 , 1.00) 15.46 9.04 24.05 14.02 10.05
(0.40 , 0.40 , 0.20 , 2.00 , 2.00) 8.97 3.55 22.37 5.17 6.42 (1.00 , 0.50 , 0.20 , 1.20 , 1.20) 12.51 6.80 21.69 11.11 7.32
(0.40 , 0.40 , 0.80 , 1.50 , 1.50) 8.07 2.30 18.75 3.60 8.41 (1.00 , 0.50 , 0.20 , 1.50 , 1.50) 12.11 17.85 21.56 10.52 5.24
(0.40 , 0.40 , 0.80 , 2.00 , 2.00) 6.82 2.52 16.84 2.31 8.69 (1.00 , 0.50 , 0.20 , 2.00 , 2.00) 11.77 18.89 20.71 10.13 4.74
(0.40 , 1.00 , 0.20 , 1.50 , 1.50) 3.10 -1.85 15.51 -0.49 0.62 (1.00 , 0.50 , 0.80 , 0.80 , 0.80) 15.05 17.58 23.19 14.50 11.37
(0.40 , 1.00 , 0.20 , 2.00 , 2.00) 1.72 -3.14 14.22 -1.85 -0.29 (1.00 , 0.50 , 0.80 , 1.00 , 1.00) 10.77 11.02 20.38 9.82 6.26
(0.40 , 1.00 , 0.80 , 1.50 , 1.50) -3.35 -4.23 10.36 -4.28 -1.17 (1.00 , 0.50 , 0.80 , 1.20 , 1.20) 8.22 2.60 18.63 7.31 4.08
(0.40 , 1.00 , 0.80 , 2.00 , 2.00) -6.57 -4.36 6.83 -6.73 -1.31 (1.00 , 0.50 , 0.80 , 1.50 , 1.50) 9.20 9.20 19.81 8.24 4.08
(0.50 , 0.50 , 0.20 , 0.80 , 0.80) 10.04 3.62 19.42 6.96 4.72 (1.00 , 0.50 , 0.80 , 2.00 , 2.00) 8.78 5.96 17.92 7.86 4.20
(0.50 , 0.50 , 0.20 , 1.00 , 1.00) 11.01 2.87 20.51 7.43 4.43 (0.75 , 0.75 , 0.20 , 0.80 , 0.80) 2.94 2.94 8.37 3.44 2.94
(0.50 , 0.50 , 0.20 , 1.20 , 1.20) 10.87 8.87 19.72 7.06 4.18 (0.75 , 0.75 , 0.20 , 1.00 , 1.00) 2.73 2.73 8.76 3.25 2.73
(0.50 , 0.50 , 0.20 , 1.50 , 1.50) 10.34 3.10 19.40 6.78 4.17 (0.75 , 0.75 , 0.20 , 1.20 , 1.20) 2.17 1.97 8.31 2.80 2.17
(0.50 , 0.50 , 0.20 , 2.00 , 2.00) 9.81 8.62 19.01 6.36 4.19 (0.75 , 0.75 , 0.20 , 1.50 , 1.50) 1.48 1.41 7.71 2.22 1.48
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Table 4.14: Relative Difference (%) of Bid-Price Policies (Continued)
Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(0.75 , 0.75 , 0.20 , 2.00 , 2.00) 1.58 1.78 7.59 2.27 1.58 (0.90 , 0.90 , 0.20 , 1.50 , 1.50) 1.70 1.70 3.65 2.99 1.70
(0.75 , 0.75 , 0.80 , 0.80 , 0.80) 2.88 2.88 7.62 2.95 2.88 (0.90 , 0.90 , 0.20 , 2.00 , 2.00) 1.11 1.11 2.98 2.42 1.11
(0.75 , 0.75 , 0.80 , 1.00 , 1.00) 2.25 2.25 7.06 2.22 2.25 (0.90 , 0.90 , 0.80 , 0.80 , 0.80) 2.39 2.39 3.84 3.31 2.39
(0.75 , 0.75 , 0.80 , 1.20 , 1.20) 1.61 1.59 6.77 1.83 1.61 (0.90 , 0.90 , 0.80 , 1.00 , 1.00) 1.68 1.68 2.92 2.65 1.68
(0.75 , 0.75 , 0.80 , 1.50 , 1.50) 1.65 1.66 5.30 1.09 1.65 (0.90 , 0.90 , 0.80 , 1.20 , 1.20) 1.66 1.66 2.58 2.17 1.66
(0.75 , 0.75 , 0.80 , 2.00 , 2.00) 2.09 2.10 4.62 1.09 2.09 (0.90 , 0.90 , 0.80 , 1.50 , 1.50) 0.41 0.41 1.75 1.26 0.41
(0.75 , 1.00 , 0.20 , 0.80 , 0.80) 6.68 6.68 12.90 7.38 6.68 (0.90 , 0.90 , 0.80 , 2.00 , 2.00) 0.11 0.11 0.05 1.26 0.11
(0.75 , 1.00 , 0.20 , 1.00 , 1.00) 4.62 4.62 10.04 5.11 4.62 (0.90 , 1.00 , 0.20 , 0.80 , 0.80) 3.95 3.95 5.49 5.18 3.95
(0.75 , 1.00 , 0.20 , 1.20 , 1.20) 3.47 3.47 9.41 3.97 3.47 (0.90 , 1.00 , 0.20 , 1.00 , 1.00) 3.31 3.31 4.75 4.52 3.31
(0.75 , 1.00 , 0.20 , 1.50 , 1.50) 2.24 2.24 8.58 2.93 2.24 (0.90 , 1.00 , 0.20 , 1.20 , 1.20) 2.70 2.70 4.28 3.85 2.70
(0.75 , 1.00 , 0.20 , 2.00 , 2.00) 0.94 0.94 6.77 1.56 0.94 (0.90 , 1.00 , 0.20 , 1.50 , 1.50) 2.49 2.49 4.04 3.73 2.49
(0.75 , 1.00 , 0.80 , 0.80 , 0.80) 7.68 7.68 12.83 7.97 7.66 (0.90 , 1.00 , 0.20 , 2.00 , 2.00) 1.69 1.69 3.15 3.14 1.69
(0.75 , 1.00 , 0.80 , 1.00 , 1.00) 5.08 5.08 9.05 4.96 5.06 (0.90 , 1.00 , 0.80 , 0.80 , 0.80) 3.99 3.99 5.13 4.99 3.99
(0.75 , 1.00 , 0.80 , 1.20 , 1.20) 3.15 2.73 7.33 3.04 3.14 (0.90 , 1.00 , 0.80 , 1.00 , 1.00) 2.44 2.44 3.63 3.31 2.44
(0.75 , 1.00 , 0.80 , 1.50 , 1.50) 0.75 0.75 5.30 1.00 0.79 (0.90 , 1.00 , 0.80 , 1.20 , 1.20) 1.58 1.58 2.70 2.55 1.58
(0.75 , 1.00 , 0.80 , 2.00 , 2.00) -0.16 -0.16 0.87 -1.36 -0.18 (0.90 , 1.00 , 0.80 , 1.50 , 1.50) 1.35 1.35 2.09 1.88 1.35
(1.00 , 0.75 , 0.20 , 0.80 , 0.80) 5.40 6.19 13.31 6.23 5.39 (0.90 , 1.00 , 0.80 , 2.00 , 2.00) -0.21 -0.21 -0.21 0.51 -0.21
(1.00 , 0.75 , 0.20 , 1.00 , 1.00) 4.45 4.52 12.18 5.08 4.46 (1.00 , 0.90 , 0.20 , 0.80 , 0.80) 3.00 3.00 5.41 4.25 3.00
(1.00 , 0.75 , 0.20 , 1.20 , 1.20) 3.84 3.84 11.24 4.41 3.84 (1.00 , 0.90 , 0.20 , 1.00 , 1.00) 2.87 2.87 5.62 4.24 2.87
(1.00 , 0.75 , 0.20 , 1.50 , 1.50) 2.78 2.78 10.03 3.59 2.78 (1.00 , 0.90 , 0.20 , 1.20 , 1.20) 2.60 2.60 5.09 3.99 2.60
(1.00 , 0.75 , 0.20 , 2.00 , 2.00) 1.71 2.72 10.09 2.72 1.71 (1.00 , 0.90 , 0.20 , 1.50 , 1.50) 2.45 2.45 4.67 3.72 2.45
(1.00 , 0.75 , 0.80 , 0.80 , 0.80) 2.96 2.96 10.66 3.64 2.95 (1.00 , 0.90 , 0.20 , 2.00 , 2.00) 1.56 1.56 4.10 3.12 1.56
(1.00 , 0.75 , 0.80 , 1.00 , 1.00) 1.96 1.97 9.18 2.37 1.97 (1.00 , 0.90 , 0.80 , 0.80 , 0.80) 2.40 2.40 4.77 3.50 2.40
(1.00 , 0.75 , 0.80 , 1.20 , 1.20) 1.58 1.58 8.33 1.81 1.58 (1.00 , 0.90 , 0.80 , 1.00 , 1.00) 1.49 1.49 3.97 2.70 1.49
(1.00 , 0.75 , 0.80 , 1.50 , 1.50) 0.68 0.68 7.45 1.22 0.68 (1.00 , 0.90 , 0.80 , 1.20 , 1.20) 1.01 1.01 3.50 2.31 1.01
(1.00 , 0.75 , 0.80 , 2.00 , 2.00) 0.59 0.58 8.31 0.90 0.58 (1.00 , 0.90 , 0.80 , 1.50 , 1.50) 0.68 0.68 2.82 1.61 0.68
(0.90 , 0.90 , 0.20 , 0.80 , 0.80) 2.37 2.37 4.36 3.60 2.37 (1.00 , 0.90 , 0.80 , 2.00 , 2.00) -0.29 -0.29 1.79 0.45 -0.29
(0.90 , 0.90 , 0.20 , 1.00 , 1.00) 2.46 2.46 4.55 3.69 2.46 (1.00 , 1.00 , 0.20 , 0.80 , 0.80) 4.22 4.22 4.22 5.82 4.22
(0.90 , 0.90 , 0.20 , 1.20 , 1.20) 2.16 2.16 4.25 3.31 2.16 (1.00 , 1.00 , 0.20 , 1.00 , 1.00) 3.32 3.32 3.32 5.01 3.32
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Table 4.15: Relative Difference (%) of Bid-Price Policies (Continued)
Instance RLP-1 RLP-2 BP PD FCFS Instance RLP-1 RLP-2 BP PD FCFS
(1.00 , 1.00 , 0.20 , 1.20 , 1.20) 2.51 2.51 2.51 4.31 2.51 (1.10 , 1.00 , 0.20 , 1.00 , 1.00) 2.05 2.05 2.05 3.82 2.05
(1.00 , 1.00 , 0.20 , 1.50 , 1.50) 1.98 1.98 1.98 3.58 1.98 (1.10 , 1.00 , 0.20 , 1.20 , 1.20) 1.89 1.89 1.89 3.66 1.89
(1.00 , 1.00 , 0.20 , 2.00 , 2.00) 1.59 1.59 1.59 3.05 1.59 (1.10 , 1.00 , 0.20 , 1.50 , 1.50) 1.37 1.37 1.37 3.21 1.37
(1.00 , 1.00 , 0.80 , 0.80 , 0.80) 4.12 4.12 4.12 5.40 4.12 (1.10 , 1.00 , 0.20 , 2.00 , 2.00) 0.90 0.90 0.90 2.72 0.90
(1.00 , 1.00 , 0.80 , 1.00 , 1.00) 3.06 3.06 3.06 4.46 3.06 (1.10 , 1.00 , 0.80 , 0.80 , 0.80) 2.20 2.20 2.20 4.08 2.20
(1.00 , 1.00 , 0.80 , 1.20 , 1.20) 1.70 1.70 1.70 3.18 1.70 (1.10 , 1.00 , 0.80 , 1.00 , 1.00) 1.71 1.71 1.71 3.39 1.71
(1.00 , 1.00 , 0.80 , 1.50 , 1.50) 0.79 0.79 0.79 2.07 0.79 (1.10 , 1.00 , 0.80 , 1.20 , 1.20) 1.12 1.12 1.12 2.74 1.12
(1.00 , 1.00 , 0.80 , 2.00 , 2.00) 0.25 0.25 0.25 1.33 0.25 (1.10 , 1.00 , 0.80 , 1.50 , 1.50) 0.17 0.17 0.17 1.38 0.17
(1.10 , 1.10 , 0.20 , 0.80 , 0.80) 2.31 2.31 2.31 3.99 2.31 (1.10 , 1.00 , 0.80 , 2.00 , 2.00) -0.18 -0.18 -0.18 0.91 -0.18
(1.10 , 1.10 , 0.20 , 1.00 , 1.00) 2.04 2.04 2.04 3.92 2.04 (1.00 , 1.10 , 0.20 , 0.80 , 0.80) 3.33 3.33 3.33 4.94 3.33
(1.10 , 1.10 , 0.20 , 1.20 , 1.20) 1.54 1.54 1.54 3.39 1.54 (1.00 , 1.10 , 0.20 , 1.00 , 1.00) 2.81 2.81 2.81 4.53 2.81
(1.10 , 1.10 , 0.20 , 1.50 , 1.50) 1.54 1.54 1.54 2.99 1.54 (1.00 , 1.10 , 0.20 , 1.20 , 1.20) 2.36 2.36 2.36 4.33 2.36
(1.10 , 1.10 , 0.20 , 2.00 , 2.00) 1.29 1.29 1.29 2.78 1.29 (1.00 , 1.10 , 0.20 , 1.50 , 1.50) 1.94 1.94 1.94 3.80 1.94
(1.10 , 1.10 , 0.80 , 0.80 , 0.80) 2.19 2.19 2.19 3.53 2.19 (1.00 , 1.10 , 0.20 , 2.00 , 2.00) 1.89 1.89 1.89 3.50 1.89
(1.10 , 1.10 , 0.80 , 1.00 , 1.00) 1.43 1.43 1.43 3.12 1.43 (1.00 , 1.10 , 0.80 , 0.80 , 0.80) 2.33 2.33 2.33 3.92 2.33
(1.10 , 1.10 , 0.80 , 1.20 , 1.20) 0.76 0.76 0.76 2.18 0.76 (1.00 , 1.10 , 0.80 , 1.00 , 1.00) 1.89 1.89 1.89 3.54 1.89
(1.10 , 1.10 , 0.80 , 1.50 , 1.50) 1.02 1.02 1.02 1.77 1.02 (1.00 , 1.10 , 0.80 , 1.20 , 1.20) 0.91 0.91 0.91 2.70 0.91
(1.10 , 1.10 , 0.80 , 2.00 , 2.00) 0.01 0.01 0.01 1.39 0.01 (1.00 , 1.10 , 0.80 , 1.50 , 1.50) 0.83 0.83 0.83 1.92 0.83
(1.10 , 1.00 , 0.20 , 0.80 , 0.80) 2.61 2.61 2.61 4.71 2.61 (1.00 , 1.10 , 0.80 , 2.00 , 2.00) 0.31 0.31 0.31 1.62 0.31
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Table 4.16: Some Performance Measures of Bid-Price Policies
RLP-2 PD

Instance Rel. Diff. Utilization Offloaded Acc OC Rel. Diff. Utilization Offloaded Acc OC
(0.50 , 0.50 , 0.20 , 1.00 , 1.00) 2.87 (93.12 , 94.40) (1.01 , 0.00) 71.49 1.02 7.43 (84.32 , 85.07) (0.79 , 0.00) 65.57 0.76
(0.50 , 0.50 , 0.20 , 1.50 , 1.50) 3.10 (89.97 , 91.46) (0.76 , 0.00) 69.92 1.14 6.78 (84.02 , 84.54) (0.64 , 0.00) 65.65 0.93
(0.50 , 0.50 , 0.20 , 2.00 , 2.00) 8.62 (80.02 , 81.88) (0.43 , 0.00) 60.39 0.81 6.36 (83.56 , 84.49) (0.51 , 0.00) 65.39 0.97
(0.50 , 0.50 , 0.80 , 1.00 , 1.00) 2.64 (93.89 , 94.84) (5.47 , 0.00) 71.36 6.04 5.33 (86.24 , 85.92) (4.46 , 0.00) 63.40 4.72
(0.50 , 0.50 , 0.80 , 1.50 , 1.50) 2.36 (93.75 , 94.37) (5.62 , 0.00) 71.60 9.27 3.72 (86.08 , 85.52) (4.35 , 0.00) 63.57 6.86
(0.50 , 0.50 , 0.80 , 2.00 , 2.00) 2.82 (92.35 , 94.72) (5.10 , 0.00) 71.08 11.28 3.22 (83.89 , 85.25) (3.67 , 0.00) 63.4 7.65
(1.00 , 0.50 , 0.20 , 1.00 , 1.00) 9.04 (46.98 , 94.29) (0.00 , 0.00) 67.95 0.00 14.02 (41.83 , 83.76) (0.00 , 0.00) 59.15 0.00
(1.00 , 0.50 , 0.20 , 1.50 , 1.50) 17.85 (36.93 , 73.60) (0.00 , 0.00) 50.82 0.00 10.52 (41.21 , 82.75) (0.00 , 0.00) 60.03 0.00
(1.00 , 0.50 , 0.20 , 2.00 , 2.00) 18.89 (36.22 , 71.68) (0.00 , 0.00) 49.43 0.00 10.13 (41.32 , 82.42) (0.00 , 0.00) 59.84 0.00
(1.00 , 0.50 , 0.80 , 1.00 , 1.00) 11.02 (41.78 , 82.98) (0.17 , 0.00) 56.72 0.20 9.82 (42.65 , 84.48) (0.17 , 0.00) 60.11 0.20
(1.00 , 0.50 , 0.80 , 1.50 , 1.50) 9.20 (41.38 , 82.29) (0.15 , 0.00) 58.73 0.26 8.24 (41.96 , 83.52) (0.15 , 0.00) 61.00 0.26
(1.00 , 0.50 , 0.80 , 2.00 , 2.00) 5.96 (43.56 , 85.56) (0.21 , 0.00) 62.12 0.49 7.86 (42.26 , 83.09) (0.20 , 0.00) 61.10 0.47
(0.75 , 0.75 , 0.20 , 1.00 , 1.00) 2.73 (88.44 , 89.18) (1.07 , 0.00) 86.34 1.15 3.25 (85.58 , 86.26) (0.94 , 0.00) 82.38 0.98
(0.75 , 0.75 , 0.20 , 1.50 , 1.50) 1.41 (88.24 , 88.64) (1.22 , 0.00) 86.45 1.96 2.22 (85.25 , 85.59) (1.09 , 0.00) 82.57 1.70
(0.75 , 0.75 , 0.20 , 2.00 , 2.00) 1.78 (86.03 , 86.62) (1.13 , 0.00) 85.09 2.35 2.27 (84.99 , 85.40) (1.12 , 0.00) 82.61 2.33
(0.75 , 0.75 , 0.80 , 1.00 , 1.00) 2.25 (89.24 , 89.44) (4.78 , 0.00) 85.88 5.56 2.22 (86.16 , 86.47) (4.32 , 0.00) 82.09 4.86
(0.75 , 0.75 , 0.80 , 1.50 , 1.50) 1.66 (89.12 , 88.67) (4.77 , 0.00) 86.30 8.50 1.09 (85.55 , 85.58) (4.15 , 0.00) 82.56 7.12
(0.75 , 0.75 , 0.80 , 2.00 , 2.00) 2.10 (89.61 , 88.50) (4.79 , 0.00) 86.33 11.33 1.09 (85.94 , 85.39) (4.22 , 0.00) 82.6 9.62
(1.00 , 1.00 , 0.20 , 1.00 , 1.00) 2.04 (78.24 , 78.81) (1.03 , 0.00) 91.75 1.13 3.92 (74.75 , 75.23) (0.95 , 0.00) 87.05 1.02
(1.00 , 1.00 , 0.20 , 1.50 , 1.50) 1.54 (79.77 , 80.15) (0.95 , 0.00) 91.68 1.54 2.99 (76.53 , 76.78) (0.90 , 0.00) 86.45 1.42
(1.00 , 1.00 , 0.20 , 2.00 , 2.00) 1.29 (79.20 , 79.40) (0.97 , 0.00) 92.09 2.06 2.78 (76.29 , 76.28) (0.99 , 0.00) 86.83 2.04
(1.00 , 1.00 , 0.80 , 1.00 , 1.00) 1.43 (77.99 , 78.81) (3.43 , 0.00) 91.75 4.16 3.12 (74.64 , 75.22) (3.17 , 0.00) 87.04 3.78
(1.00 , 1.00 , 0.80 , 1.50 , 1.50) 1.02 (80.53 , 80.01) (3.84 , 0.00) 91.63 6.89 1.77 (76.81 , 76.43) (3.46 , 0.00) 86.61 5.98
(1.00 , 1.00 , 0.80 , 2.00 , 2.00) 0.01 (79.52 , 79.40) (3.64 , 0.00) 92.09 8.53 1.39 (76.98 , 76.28) (3.55 , 0.00) 86.83 8.17
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Figure 4.4: Relative Difference of Bid-Price Policies
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Figure 4.5: Difference between RLP-1 and BP
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Figure 4.6: Difference between RLP-2 and PD
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Chapter 5

Conclusions and Future Research

We have introduced new optimization models to develop open-loop booking limit and

bid-price policies for air-cargo capacity control on a single-leg flight. While our expo-

sition is presented in a setting which does not explicitly consider no-shows, they can be

naturally incorporated into our models by allowing shipments to have zero capacity re-

quirements. Our methods can therefore be useful in developing overbooking policies. We

have conducted a comprehensive computational study to evaluate the effectiveness of our

proposed models, and have illustrated that they are computationally tractable, and yield

policies that perform well compared to the benchmarks established by various methods in

the literature.

One of our main aims was to adapt existing methods from the extensive passenger

literature to the relatively little-studied cargo case. Passenger booking methods often rely

on a complete ranking of fare classes, which can be used to establish a nested structure.

We therefore developed various novel methods to rank different types of cargo. To the

best of our knowledge, these are the first rankings of this type in the cargo revenue man-

agement literature. However, in certain cases (in particular when volume and weight play

a symmetrical role), any complete ranking of cargo types is necessarily arbitrary, and can

therefore lead to suboptimal decisions. Consequently, in our future research we aim to

develop booking policies with nested structures based on partial orderings of cargo types.

We note that our two-stage RLP model can accommodate randomness in the available

volume and weight capacities. Since there is often significant uncertainty in the capacity

utilized by allotment contracts, as well as in the capacity requirements of passenger bags,

extending our other methods to similarly allow random capacities is also an important

research goal. Finally, we mention that, as discussed in Section 4.1.3, our booking limits
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can be converted to limits on the expected volume and weight requirements of shipments.

Since such capacity limits appear to be more natural in a cargo context than limits on

the number of accepted requests, we plan to evaluate implementations of our booking

limits based on this approach. Furthermore, if the results from the evaluation justify this

capacity-based interpretation, we propose to directly develop separate booking limits in

terms of volume and weight.
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Prékopa, A. (1995).Stochastic Programming. Kluwer Academic, Dordrecht, Boston.

70

doi: 10.1287/trsc.1120.0420


Rinnooy Kan, A., Stougie, L., and Vercellis, C. (1993). A class of generalized greedy

algorithms for the multi-knapsack problem.Discrete Applied Mathematics, 42:279–

290.

Sandhu, R. and Klabjan, D. (2006). Fleeting with passenger and cargo origin-destination

booking control.Transportation Science, 40(4):517–528.

Simpson, R. W. (1992). Using network flow techniques to find shadow prices for market

and seat inventory control. MIT flight transportation laboratory memorandum M89-1,

MIT, Cambridge, MA.

Slager, B. and Kapteijns, L. (2004). Implementation of cargo revenue management at

klm. Journal of Revenue and Pricing Management, 3(1):80–90.

Talluri, K. T. and van Ryzin, G. J. (1999). A randomized linear programming method for

computing network bid prices.Transportation Science, 33(2):207–216.

Talluri, K. T. and van Ryzin, G. J. (2005).The Theory and Practice of Revenue Manage-

ment. Springer, New York, NY.

Tijms, H. C. (2003).A first course in stochastic models. Wiley.

Topaloglu, H. (2009). Using lagrangian relaxation to compute capacity-dependent bid

prices in network revenue management.Operations Research, 57(3):637–649.

Van Slyke, R. and Young, Y. (2000). Finite horizon stochastic knapsacks with applications

to yield management.Transportation Science, 48(1):155–172.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications to

optimal control and stochastic programming.SIAM Journal on Applied Mathematics,

17(4):638–663.

Williamson, E. L. (1992). Airline network seat control. PhDthesis, MIT, Cambridge,

MA.

Winkler, R. L., Roodman, G. M., and Britney, R. R. (1972). Thedetermination of partial

moments.Management Science, 19(3):290–296.

Xiao, B. and Yang, W. (2010). A revenue management model for products with two

capacity dimensions.European Journal of Operational Research, 205:412–421.

71



Zhuang, W., Gumus, M., and Zhang, D. (2011). A single resource revenue management

problem with random resource consumption.Journal of the Operational Research

Society, pages 1–15.

72



Appendices

73



Appendix A

Mixture distributions

Here we provide an alternative analytical proof for Formula(3.3). A corresponding proof

for Formula (3.4) can be obtained analogously.

Lemma 6 Suppose that the random variableV has the following mixture cumulative

distribution function (CDF)

P(V ≤ v) =

m
∑

i=1

piP(Vi ≤ v).

Then it follows for everyn ∈ N that

m
∑

i=1

B(pi,n)
∑

j=1

Vij
d
=

n
∑

j=1

V j , (A.1)

where the random variablesV j are independent copies of the random variableV .

Proof. We prove the assertion by showing that the Laplace-Stieltjes transform of both

sides of the equation (A.1) are equal to each other. LetB = (B(p1, n), B(p2, n), ..., B(pm, n))

be a multinomially distributed random vector independent of the random variablesVij , i ∈

[m], j ∈ N. By the total law of expectation, the Laplace-Stieltjes transform of
∑m

i=1

∑B(pi,n)
j=1 Vij
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is obtained as follows:

E



exp(−s

m
∑

i=1

B(pi,n)
∑

j=1

Vij)





=
∑

k∈K

E

[

exp(−s
m
∑

i=1

ki
∑

j=1

Vij)|B = (k1, k2, ..., km)

]

P (B = (k1, k2, ..., km))

=
∑

k∈K

n!
∏m

i=1 ki!

m
∏

i=1

pkii E

[

exp(−s
m
∑

i=1

ki
∑

j=1

Vij)

]

=
∑

k∈K

n!
∏m

i=1 ki!

m
∏

i=1

(piE[exp(−sVi)])
ki

=

(

m
∑

i=1

piE[exp(−sVi)]

)n

, (A.2)

whereK := {k ∈ N
m : k1 + · · ·+ km = n}.

Similarly, we also derive the Laplace-Stieltjes transformof
∑n

j=1 V j:

E

[

exp(−s

n
∑

j=1

V j)

]

=
(

E[exp(−sV )]
)n

=

(
∫ ∞

0

exp(−sv)fV (v)dv

)n

=

(

∫ ∞

0

exp(−sv)

m
∑

i=0

pifVi
(v)dv

)n

=

(

m
∑

i=0

pi

∫ ∞

0

exp(−sv)fVi
(v)dv

)n

=

(

m
∑

i=1

piE[exp(−sVi)]

)n

. (A.3)

The assertion immediately follows from (A.2) and (A.3).
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Appendix B

Partial expectations

Partial expectation of the random variableX having probability density functionf(.) is

defined as

E[X ]ba :=

∫ b

a

xf(x)dx.

Closed form of partial expectations is needed while calculating termsE[(X − y)+] or

similarlyE[max(X, y)]. Therefore we will be using the equations below very frequently.

For some of the most popular choices for the volume distribution, we will illustrate these

calculations. (For more detailed study see Winkler et al. (1972))

Normal Distribution

Winkler et al. (1972) shows that, forX normally distributed with meanµ and variance

σ2, we have

E[X ]∞y = µ−

[

−σφ(
y − µ

σ
) + µΦ(

y − µ

σ
)

]

(B.1)

Log-normal Distribution

ForX Log-normally distributed with parametersµ andσ2,

E[X ]∞y = exp

(

µ+
1

2
σ2

)

Φ

(

µ+ σ2 − ln y

σ

)

(B.2)

Mixtures
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For X having a mixture distribution, i.e.P(X ≤ x) =
∑m

i=1 piP(Xi ≤ x) whereXi

follows any of the distributions above, we have:

E[X ]∞y =

∫ ∞

y

xfX(x)dx =

m
∑

i=1

pi

∫ ∞

y

xfXi
(x)dx =

m
∑

i=1

piE[Xi]
∞
y (B.3)
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Appendix C

Calculations required for the risk based model

As in most of the existing studies, we assume that off-loading cost functionshv andhw are

defined as in (3.1). In order to investigate whether it is possible to obtain a critical ratio

rule as in newsvendor models, we derive the expression forf(b+ 1)− f(b). Such a rule

has been developed for the passenger case in Aydin et al. (2010). For ease of exposition

let us introduceSv
b :=

∑b

j=1 V j andSw
b :=

∑b

j=1W j. Then, the following chain of

equalities holds:

f(b+ 1)− f(b) =

m
∑

i=1

ρipi − E

[

θvV b+11{Sv
b
≥Cv} + θv(S

v
b+1 − Cv)1{Sv

b+1
≥Cv andSv

b
≤Cv}

]

−E

[

θwW b+11{Sw
b
≥Cw} + θw(S

w
b+1 − Cw)1{Sw

b+1
≥Cw andSw

b
≤Cw}

]

=

m
∑

i=1

ρipi − θvE
[

V b+1

]

P(Sv
b ≥ Cv)− θvE

[

(Sv
b+1 − Cv)1{Sv

b+1
≥Cv andSv

b
≤Cv}

]

−θwE
[

W b+1

]

P(Sw
b ≥ Cw)− θwE

[

(Sw
b+1 − Cw)1{Sw

b+1
≥Cw andSw

b
≤Cw}

]

. (C.1)

The above difference function involves complicated expectations and convolution distri-

butions, it is really hard to obtain an analytical form for it. Thus, unlike the passenger case

this analysis does not lead to a critical ratio rule. Insteadof calculating this difference, we

can calculate the functionf(b) and search for the optimal total booking limit. However, it

is still computationally challenging to calculate the expected off-loading costs. One can

estimate these costs using approximation methods. For example, under the condition that

b would be large enough,Sv
b andSw

b may be assumed to be normally distributed by the

Central Limit Theorem.
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ForSv
b :=

∑b
j=1 V j we have

E[Sv
b ] =E[

b
∑

j=1

V j ] = bE[V ]

E[V ] =

∫ ∞

0

vfV (v)dv =

∫ ∞

0

v
m
∑

i=1

pifVi
(v)dv

=

m
∑

i=1

pi

∫ ∞

0

vfVi
(v)dv

=
m
∑

i=1

piµ
v
i

∴ E[Sv
b ] = b

∑m
i=1 piµ

v
i

σ2(Sv
b ) =σ2(

b
∑

j=1

V j) = bσ2(V )

σ2(V ) =

∫ ∞

0

(v − E[V ])2fV (v)dv

=

∫ ∞

0

v2fV (v)dv − 2E[V ]

∫ ∞

0

vfV (v)dv + E[V ]2

=

m
∑

i=1

piE[(Vi)
2]− E[V ]2

∴ σ2(Sv
b ) = b(

∑m

i=1 piE[(Vi)
2] − (

∑m

i=1 piµ
v
i )

2) Thus, under the normality assumption,

we haveSv
b ∼ Norm(E[Sv

b ], σ
2(Sv

b )). This impliesSv
b
−E[Sv

b
]

σ(Sv
b
)

= Y ∼ N(0, 1). Next, by

using (B.1) we calculateE[max{Sv
b − Cv, 0}].

E[max{Sv
b − Cv, 0}] =E [max (Y σ(Sv

b ) + E[Sv
b ]− Cv, 0)]

=σ(Sv
b )E

[

max

(

Y,
Cv − E[Sv

b ]

σ(Sv
b )

)]

+ E[Sv
b ]− Cv

=σ(Sv
b )
[

α(b)P (Y < α(b)) + E[Y ]∞α(b)
]

+ E[Sv
b ]− Cv

=σ(Sv
b ) [α(b)Φ (α(b)) + φ (α(b))] + E[Sv

b ]− Cv,

whereα(b) = Cv−E[Sv
b
]

σ(Sv
b
)

,Φ(.) andφ(.) are the cumulative and probability density functions
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of the standard normal distribution. Then we have:

f(b) =
m
∑

i=1

ρipib− θv (σ(S
v
b ) [α(b)Φ (α(b)) + φ (α(b))] + E[Sv

b ]− Cv)

−θw (σ(Sw
b ) [β(b)Φ (β(b)) + φ (β(b))] + E[Sw

b ]− Cw) ,

whereβ(b) = Cw−E[Sw
b
]

σ(Sw
b
)

.
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Appendix D

Expected revenue calculations

In this section, we show how to calculateE[ri(max{wi, Vi/γ})] whenri(.) is a piece-

wise linear function in chargeable weight (Ŵi) with three kinks. LetIn be the range of

changeable weight where the slope of revenue function (αn) is equal tocn. Lower and

upper limits of rangeIn are equal tobn−1 andbn respectively. (See Figure (D.1) for an

illustration.) We calculate the expected revenue in the following way:

Chargeable Weight

R
ev

en
ue

b
0

b
1

b
2

b
3

α
1
 = c

1

α
2
 = c

2

α
3
 = c

3

α
4
 = c

4

I
4

I
2

I
1

I
3

Figure D.1: An Illustrative Figure of Revenue Function
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ρi = E[ri(Ŵi)] = E[E[ri(Ŵi)|Ŵi ∈ In]] =

4
∑

n=1

P(Ŵi ∈ In)E[ri(Ŵi)|Ŵi ∈ In]

=

4
∑

n=1

P(Ŵi ∈ In)E[(Ŵi − bn−1)cn +

n−1
∑

k=1

(bk − bk−1)ck]

=

4
∑

n=1

P(Ŵi ∈ In)

[

cn

(

E[Ŵi]− bn−1

)

+

n−1
∑

k=1

ck(bk − bk−1)

]

where

E[Ŵi] = E[max{Vi/γ, wi}] =
1

γ
E[max{Vi, wiγ}]

=
1

γ

(
∫ wiγ

0

wiγf(x)dx+

∫ ∞

wiγ

xf(x)dx

)

=
1

γ

(

wiγFVi
(wiγ) + E[Vi]

∞
wiγ

)

and

P(Ŵi ≤ x) = P(max(γwi, Vi) ≤ γx) = 1{x≥wi}P(max(γwi, Vi) ≤ γx)

= 1{x≥wi}[P(max(γwi, Vi) ≤ γx|Vi ≤ γwi ≤ γx)P(Vi ≤ γwi ≤ γx)

+P(max(γwi, Vi) ≤ γx|γwi ≤ Vi ≤ γx)P(γwi ≤ Vi ≤ γx)

+P(max(γwi, Vi) ≤ γx|γwi ≤ γx ≤ Vi)P(γwi ≤ γx ≤ Vi)]

= 1{x≥wi}[P(Vi ≤ γwi) + P(γwi ≤ Vi ≤ γx)] = 1{x≥wi}P(Vi ≤ γx).
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Appendix E

Fast Fourier Transform

The discrete Fourier transform (DFT) is defined by:

Xk =

N−1
∑

n=0

xne
−i2πk n

N

Fast Fourier Transform is an algorithm to compute DFT or its inverse. In our case, we will

use it to obtain the inverse of DFT. In other words, we will compute the value ofXk and

obtainxn, n = 0, . . . , N − 1. We utilized FFT for calculating the probability distribution

of random variablesDj and
∑n

j=1Dk.

Recall that we consider a discrete-time framework, where the booking horizon is di-

vided inT time periods andT is sufficiently large so that there is at most one booking

request in each time period. The random demand for type-j cargo at time periodt ∈ T ,

denoted byDjt, is a Bernoulli random variable with success probability ofpjt. Then,

the total demand for type-j cargo is the sum ofT independent Bernoulli random variables

with different success probabilities and it can take valuesof 0, 1, . . . , T . The characteristic

function ofDj is given by

ϕDj
(z) = E[eizDj ] =

T
∑

n=0

eiznP (Dj = n). (E.1)

We can easily calculate this function using the characteristic functions of independent
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Bernoulli random variables:

ϕDj
(z) = E[eizDj ] =

T
∏

t=1

E[eizDjt ] =
T
∏

t=1

(eizpjt + 1− pjt). (E.2)

Basically, FFT method evaluates the characteristic function (E.2) atz = −2πk
T+1

for all

k = 0, 1, . . . , T and retrieves the probabilitiesP (Dj = n) using (E.1) and (E.2). In other

words, it solves the following set of equations to provide the probabilitiesP (Dj = n) as

output:

ϕDj
(
−2πk

T + 1
) =

T
∏

t=1

E[ei
−2πk
T+1

Djt ] =

T
∑

n=0

P (Dj = n) exp(
−i2πkn

T + 1
), k = 0, . . . , T.

(E.3)
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Appendix F

Greedy Algorithm of Rinnooy Kan et al. (1993)

Let n denote the number of booking request arrivals,wj andvj be the observed volume

and weight ofjth booking request arrival. Thenxj andyj are defined aswj/Cw andvj/Cv

respectively, for allj ∈ [n].

Algorithm 2 Algorithm for Obtaining Bid-Prices
1: Order the requests by increasing value ofxj .
2: for j = 1 to n− 1 do
3: for l = j + 1 to n andyj ≥ yl do
4: Let γ :=

yl−yj
xl−xj

.
5: for h = 1 to n do
6: Let ηh := yh − γxh.
7: Order the requests by increasing value ofηh.
8: Start accepting requests in this order until no more requests can be accepted.
9: Let π be the profit obtained andη be the order value for the last request that is ac-

cepted.
10: end for
11: end for
12: end for
13: Find the maximum profitπ∗ over all orderings.
14: Let γ∗ andη∗ be the corresponding slope and order value.
15: return λw = −γ∗/η∗ andλv = 1/η∗.
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