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ABSTRACT 

 Heterotrimeric G-Proteins are vital effectors in signal transduction pathways in both 

animal and plants by transmitting the signal received by membrane bound receptors to 

downstream factors (Simon M. I., 1991). The protein complex consists of three subunits: α, β 

and γ. The alpha subunit has GTP hydrolysis activity and acts as a molecular switch for signal 

continuity or inhibition. Beta and gamma subunits act as a dimer for downstream signal 

transduction (Oldham, 2006). Odor, taste and phototransduction pathways are closely 

integrated to G-Protein transduction mechanism in mammalian organisms (Arshavsky V. Y., 

2002). Plant cells utilize G-Protein signaling in germination, cell division, stress responses 

and morphological changes (Perfus-Barbeoch L., 2004).  

 This study is the first report in the literature for biophysical characterization of the A. 

thaliana G-Protein γ subunit, AGG2, independent of beta subunit. The gene was expressed in 

E. coli TOP10 cells using pETM-41 and pMCSG-7 vectors. Expression profiles of the 

proteins and growth curves of TOP10 cells with or without protein overexpression were 

optimized. The proteins were purified with affinity, ion exchange and size exclusion 

chromatography and were characterized with Dynamic Light Scattering (DLS), Circular 

Dichroism (CD) and Small Angle X-Ray Scattering (SAXS) methods. Furthermore alignment 

of AGG2 to mammalian G-Protein, transducin, gamma subunit was carried out and this was 

utilized for homology modeling. The monomer model was self-docked and the structural 

features of the dimer were further investigated.  
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 Protein expression levels were such that the pETM-41 clone yielded insufficient 

protein for purification but pMCSG-7 clone (AGG2) and a previously prepared pQE80-L 

clone (AGG2*) could be utilized in biophysical characterization studies. Proteins AGG2 and 

AGG2* were obtained from the SEC column at different elution volumes indicating different 

properties for the same protein under the different conditions of SEC. This effect was traced 

back to presence/absence of DTT in elution buffers. Presence of DTT in the buffer resulted in 

a change in the size of the protein. DLS, SAXS, CD measurements as a function of DTT 

concentration (from 0 to 5 mM) showed that the protein changed its oligomeric state from 

tetramer to dimer as DTT concentration is increased and it has been possible to reduce this 

form to monomeric state. This effect was found to be independent of protein concentration. 

Homology modeling resulted in structures that were in agreement with those found from ab 

initio modeling based on SAXS data as well as that obtained from crystal structure of 

mammalian beta-gamma dimer. Theoretical SAXS curves obtained from the homology model 

of the dimer overlap well with the experimental SAXS curves. Significance of the dimer for 

function of the gamma subunit is discussed within the perspective of available literature on 

the plant G-protein heterotrimer. Modeling and biophysical characterization studies led to the 

conclusion that the dimeric form results from interaction of Cys108 of two monomers which 

are located in an intertwined ball like structure formed by C-termini loops of two monomers. 
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ÖZET 

  Hetertrimerik G Proteinleri bitki ve hayvan hucrelerınde sinyal devamlılık yolakları 

üstünde önemli yere sahiptirler. Hücre içine sinyali membrana bağlı bulunan reseptörlerden 

alıp aşağı yönde bulunan diğer faktörlere iletirler (Simon M. I., 1991). Protein kompleksi α β 

ve γ şeklinde üç altbirimden oluşmaktadır. Alfa altbirimi GTP hidroliz aktivitesini 

üstlenmekle beraber sinyal devamlılığı ya da durdurulmasını kontrol eden moleküler bir 

anahtar görevi görmektedir. Beta ve gama altbirimleri ise aşağı sinyal iletimini dimer olarak 

beraber yapmaktadırlar (Oldham, 2006). Memeli organizmalarında G-Proteinkeri koku, tat ve 

ışık algılama yolaklarına güçlü bir şekilde entegre olmuşlardır. Bitki hücreleri ise G-

Proteinlerini filizlenme, hücre bölünmesi, stres tepkileri ve morfolojik değişim anlarında 

kullanmaktadır (Perfus-Barbeoch L., 2004).  

 Bu çalışma A. Thaliana G-proteini gama altbirimi olan AGG2‟nin biyofiziksel 

karakterizasyonu üstüne literatürde bulunan ilk çalışmadır. Gen, E.coli TOP10 hücrelerinde 

pETM-41 ve PMCSG-7 plazmidlerinin yardımları ile sentezlenmiştir. Sentezlenen proteinin 

ekspresyon profili ve protein sentezleyen ve sentezlemeyen TOP10 hücrelerinin büyüme 

eğrileri optimize edilmiştir. Proteinler afinite, ion değişim ve boyut çıkarım (size exclusion) 

kromatografileri ile saflaştırılmış ve “Dynamic Light Scattering”, “Circular Dichroism” ve 

“Small Angle X-Ray Scattering” metodları ile karakterize edilmiştir. AGG2 protein 

sekansının memeli G-protein‟lerinden olan “transducin” proteininin gama altbirimi ile 
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hizalanma sonucunun programa girilmesi ile homoloji modelleme yapılmış, modelleme 

sonucu kendi üstüne yerleştirilerek bir dimer elde edilmiş ve yapısı incelenmiştir. 

 Protein ekspresyon seviyelerinin karşılaştırılması sonucu görüldü ki pETM-41 

klonlaması ile elde edilen plazmid proteininin saflaştırmasında yeterli protein miktarına 

ulaşılamamıştır, fakat pMCSG-7 (AGG2) ile daha önceden elde edilmiş pQE80-L (AGG2*) 

plazmidlerinde AGG2 sentezi biyofiziksel çalışmalar için yeterli miktarda elde edilmiştir. 

AGG2 ve AGG2* SEC kolonu sonucunda farklı boyutlarda ayrıştırılmış ve farklı boyutlarda 

iki protein görülmüştür. Bu farklılık proteinlerin saflaştırıldığı tampon solüsyonda 

bulunan/bulunmayan DTT indirgeme kimyasalına dayandırılmıştır. Tampon içinde bulunan 

DTT‟nin protein boyutlarını küçülttüğü gözlemlenmiştir. Artan DTT konsantrasyonları ile 

yapılan (0 mM‟den 5 mM‟e kadar) DLS, CD ve SAXS deneylerinde artan DTT miktarı ile 

protein oligomer durumunun tetramerden dimere geçtiği görülmüştür. Oligomer durum 

değişiminin protein konsantrasyonuna bağlı olmadığı da kanıtlanmıştır. Homoloji modelleme 

sonuçları SAXS deneylerinden elde edilen verilerle yapılan ab initio modellerle ve memeli 

hücresinde bulunan homologlari ile uyumluluk göstermektedir. Modelleme sonuçlarından 

elde edilen yapılardan elde edilen teorik SAXS eğrileri ile deneysel eğriler karşılaştırılmış ve 

uyumluluk gösterilmiştir. Dimer oluşumunun gama altbiriminin fonksiyonunu etkilemesi hali 

hazırda bulunan literatür bilgisi ile tartışılmıştır. Modelleme ve biyofiziksel karakterizasyon 

çalışmalarıö dimer formunun oluşumunun, homoloji modellemelerinde de gözlenen iki 

monomerin iç içe geçen C-terminus uçlarındaki loop‟ yapılarının oluşturduğu yapının içinde 

gizlenen Cys108 amino asidi olduğu sonucuna varılmıştır.  
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1. INTRODUCTION 

 

1.1. What are Heterotrimeric G Proteins? 

Heterotrimeric guanine-nucleotide binding (G) Proteins are vital effector proteins in the 

signal transduction pathways of both animals and plants by transmitting the signal received by 

membrane bound receptors to the downstream factors (Simon M.I., 1991). G-Proteins consist 

of three different subunits: α, β and γ. Proteins upstream of G-Protein are all classified under a 

common name: G-Protein Coupled Receptors (GPCR).  Signals received by GPCRs forces a 

conformational change in heterotrimeric complex and the protein dissociates into two 

components: α subunit and βγ dimer.  

 

Figure 1.1 Heterotrimeric G Protein interacting with a GPCR (Oldham, 2006). 

1.2. G-Protein Signaling 

α subunit of G – Proteins contains a Ras-like domain which has a GDP/GTP binding 

domain and a GTP hydrolysis activity. When interacting with βγ dimer, the binding site of α 

subunit contains a single GDP.  The interaction of activated GPCR by an external signal 

causes a conformational change in the structure of α subunit and causes the release of the 

GDP and binding of a single GTP to the empty cleft (Morris AJ., 1999). When the activity of 

alpha subunit is diminished, the GTP bound is hydrolyzed to GDP and the heterotrimer forms 

in its basal form. The initial studies assumed that only α subunit is responsible of the protein 
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activity, but more and more work showed that the βγ dimer also involves in signal 

transduction activity (M. E. Ma H., 1990).  

The signaling of the G-Protein is tightly connected to the state of the guanine in the 

cleft of alpha subunit. Thus regulation of the state of guanine becomes the main switch of the 

signal transduction related to G-Proteins. The activity upon guanidine is initiated by the 

GPCR interacted. The conformational change of GPCR causes the GDP to be exchanged by a 

GTP, so the GPCR in this situation acts as a guanidine exchange factor (GEF). Additional to 

the initiation of the signal, there are Regulator of G-Protein Signaling (RGS) proteins that 

specifically accelerate the GTPase activity of α subunit (Blundell TL., 2000). The RGS 

proteins bind the alpha subunit form the site that effector proteins bind, so they inhibit the 

GEF activity of other proteins additional to their GTPase – accelerating protein (GAP) 

activities (Siderovski D.P., 1996). The signaling of G-Proteins is summarized in the figure 1.2  

below: 

 

Figure 1.2 The G-Protein complex interacting with a GPCR. The interaction of GPCR 

forces the bound GDP inside the cleft of alpha subunit to exchange with a GTP, thus 

activating the heterotrimeric complex. The RGS proteins enhances the GTPase activity of 

alpha subunit, thus inhibits the signal transduction downstream of G-Protein (Temple B., 

2007) 

1.3. Mammalian vs Plant G-Protein 

1.3.1. Genome  Based 

There are 16 α subunit genes in human genome which encode 23 different alpha 

subunits that are divided in four distinct groups both according to the expressing cell and 

function (Simon M. I., 1991). 5 different β subunits are expressed in human cells (Fletcher J. 
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E., 1998) and 12 different human γ subunits are reported that are crucial for the localization & 

formation of the heterotrimer and direct function of the βγ dimer itself (Clapham D. E., 1997). 

In comparison to the mammalian homologs, only one α subunit is reported for plant 

model organisms Arabidopsis thaliana and rice observed in every cell (the expressed protein 

is named as GPA1) (Fujisawa Y., 2001). Likewise, plants are observed to contain only one β 

subunit homolog (protein expressed named as AGB1) (Weiss CA., 1994). Until recently, it 

was thought that the plants happened to have 2 γ subunits in their genomes (Kato C., 2004) 

but a very recent study showed that a third gamma subunit is located in the A. thaliana 

genome. The function of the third homolog is unclear but new studies are imminent for its 

function (Thung L., 2012) (the names of the gamma subunits are denoted as AGG# where the 

hash tag is either 1, 2 or 3). 

1.3.2. Structure Based 

The α subunit of G – Proteins consist of an N-terminus helical tail that has a helical 

groove to bind βγ dimer, a Ras-like GTPase domain and a large α-helical domain. The 

guanine bound to the subunit acts as a coordination point between the last two domains; 

changing the conformation of the protein in active and inactive form (Perfus-Barbeoch L., 

2004). Amino acid sequence of the plant variant of α subunit is highly similar to the 

mammalian homolog; especially regarding the residues important for the functioning.  

Beta subunit acts as a scaffold protein and interacts with other proteins, γ and α 

subunits; thus being the most crucial subunit in the signal transduction process. The subunit 

was first found to be a major signaling element in yeast (Chen JG., 2004). The seven WD-40 

repeats, a tryptophan – aspartic acid sequence that repeats every 40 amino acids, is also 

involved in beta subunit sequence which helps to form a beta-propeller structure by seven 

antiparallel beta-sheets, that is also seen in mammalian homologs (Neer E. J., 1994). 

Gamma subunits in plants were initially discovered by genomic studies. The 

expression level was confirmed by yeast-two hybrid studies that used β subunit as bait 

(Mason MG., 2001). The mammalian homologs have a mass of 8 to 10 kDa; the subunits tend 

to be small in all mammalian organisms (Ray K., 1995). The A. thaliana subunits AGG1 and 

AGG2 have a mass of around 11 kDa (Mason MG., 2000).. The C-terminus of the subunit has 

a CAAX box for isoprenyl modification and an N-terminal α helical coiled-coil domain for 
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beta subunit interactions. Also, the N terminus of gamma subunits of almost all organisms 

tend to be very similar up to first 20 amino acids (Cook L., 2001). 

Heterotrimeric complex of G-protein has been well established in literature through 

many studies. The first and well-known structure of G-Protein was modeled from bovine 

tissue and nomenclatured as „1TBG‟ in Protein Data Bank (PDB) (Sondek J., 1996). The 

structural difference of the bovine heterotrimer with the plant homolog is detailed in figure 

1.3 below: 

 

Figure 1.3 Comparison of bovine G-protein complex (PDB:1TBG) with plant 

homolog (a. the bovine G-protein complex, b. The resemblance of the plant homolog) 

(Temple B., 2007)  

The bovine homologs of the subunits were used for the modeling of the plant 

heterotrimer complex. The comparison showed that the protein interaction sites are conserved 

in the plant homolog. α subunit residues show conservation that are class-specific; the four 

alpha classes in mammalians. This was found to be a clue that the G-Protein in the plants 

diverted from the mammalian homologs by the earliest ancestors of the protein. The latter is 

the same for both gamma and beta subunits. These subunits show approximately 80% 

resemblance to their mammalian homologs. The conserved residues of the gamma subunits lie 

at the N and C termini of the protein, except the interaction sites with β. Interesting part is that 

the beta subunit interaction sites are conserved among plant species. The rest of the residues 

that don‟t show resemblance to the mammalian homologs of gamma subunit are species 

specific (Temple B., 2007). In the figure 1.3.b, the blurry regions show the conserved regions 

of the protein in plant homologs.  
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1.4. Functions of G-Proteins in Mammals and in Plants  

1.4.1. In Mammalian Cells 

Besides the structure of the protein, the functions of heterotrimeric G-proteins have 

been a hot topic. Especially, the ever increasing numbers of studies about the G-Protein 

Coupled Receptors (GPCR) incremented the importance on the G-Proteins back again. It is 

stated that there are at least 800 GPCRs in mammalian cells that share 25% or more sequence 

identity in a particular subfamily but show a slight or simply no similarity among families 

(Pierce KL., 2002).  

α subunit and βγ dimer both contribute to certain signal transduction pathways. The 

very first alpha subunit function in mammalian cells found was interaction with adenylyl 

cyclase (AC). αi was found to inhibit the action of AC and the αs was found to stimulate the 

functionality of AC; two homologs in mammalian cells. Studies around the globe showed that 

the expression pattern of AC is tissue-specific and responds positively or negatively to 

different sets of alpha subunits (Sunahara R. K., 2002). Regulation of cyclic GMP-gated 

Na
+
/Ca

2+
 in sensory pathways is also achieved by alpha subunit (Arshavsky V. Y., 2002). 

Phosphoinositide-specific phospholopases like „PI-PLC‟ are also influenced by direct 

intervention of G-Proteins (Rhee G., 2001). The most crucial pathway that G-Proteins involve 

can be accounted as the sensory transduction through GPCRs.; the odorant, tastant and 

phototransduction pathways. The cDNA library of the olfactory pathway included a special 

G-Protein, Golf, which activated the adenylyl cyclase to initiate the odour reception (Ronnett 

G., 2002): 
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Figure 1.4 The initiation of olfactory pathway in humans. The GPCR (OR) is 

activated by odorant molecules. The conformational change activates the Gorf, then AC is 

activated, so on and so forth (Ronnett G., 2002) 

The taste stimulus is dependent to the G-protein presence. GPCRs specific to the 

tastant pathway (TRs) activate a special G-protein, Ggust, and the complex further activates 

PLCβ2: 

 

Figure 1.5 Activation of tastant pathway by G-Protein. The activated GPCR (T2R of 

T1R) activates Ggust and the complex further activates PLCβ2 (Kinnamon S., 2012) 

Phototransduction is, with no surprise, governed by G-proteins. Again, a special G-

protein, transducin, is responsible for the initiation of molecular basis of sight. Rhodopsin is 

the GPCR that is activated by light and initiates the phototransduction process. The protein is 

embedded in a lipid bilayer surrounded by phospholipids within the disk membranes of rod 

cells in the eyeball (Avediano MI., 1995).  By the reception of light, the localization of 

rhodopsin gets in close proximity to transducin and initiates the phototransduction pathway: 



7 

 

 

Figure 1.6 The localization shift of rhodopsin due to light reception (Jastrzebska B., 

2011).  

1.4.2. In Plant Cells 

The functionality of the G-Protein in plants is not well established, just like the 

structure compared to mammalian homologs. The studies all depend on the overexpression or 

deletion of G-protein subunit genes and recording the changes occurring further. A simple but 

general scheme for the function of G-protein subunits in plant cells (here, A. thaliana as the 

model organism) is shown in figure 1.7: 
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Figure 1.7 A general scheme for the function of G-protein regarding the tissue and the 

interval of a plant‟s life span (Perfus-Barbeoch L., 2004) 

 

 Direct involvement of G-protein in different lapses and tissues of the A. thaliana have 

been reported by many researchers. When the GPA1 gene is silenced, the seeds turn into a 

more dormant state. Absisic acid (ABA) is known to inhibit the seed germination, and the 

addition of ABA to the mutated A. thaliana, the germination inhibition is more stable (Lapik 

YR., 2003). The silencing of AGB1 shows a very similar effect as GPA1. The overexpression 

of GPA1 and AGB1 also show an approximately million fold increase in sensitivity of 

germination signals like gibberellins (GA) (Ma H., 2001). 
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 Primary root growth in A. thaliana is hindered when GPA1 gene is silenced and cell 

proliferation is imminent when the protein is overexpressed (Chen J.G., 2003). Like the 

situation in seeds, silencing of AGB1 gene slows the cell proliferation process. Interestingly, 

the case for lateral roots is different, the silencing of AGB1 gene inhibits the lateral root 

growth and the silencing of GPA1 gene greatly enhances the lateral root growth. This 

contradiction simply shows that the GPA1 subunit of A. thaliana G-protein enhances the root 

growth and AGB1 subunit enhances it; a fine example of different roles for two functioning 

units of G-proteins (Ullah H., 2003).  

Stress induction to A. thaliana causes certain mechanisms to overwhelm the mortal 

effects to the plant. Without surprise, G – Protein is involved in such responses. The O3 

exposure to the plant reduces stomatal apertures (Mansfield T.A., 1998). The response is also 

revoked by absisic acid. The silencing of GPA1 exhibits reduced response to O3 in plant at 

whole leaf level. Within the single guard-cell level, GPA1 silenced plants shows implications 

of ABA insensitivity. The K
+
 channel and phosphatidylinositol-phospholipase C (PLC) 

mechanism is found to be hindered for the lack of response in absence of GPA1. This is a 

direct evidence to the relation of stomatal opening to G-proteins (Ng C.K., 2001) (Jacob T., 

1999).  

The molecular basis of all the functions detailed show high levels of similarity to well-

defined mammalian G-Protein complexes. The Ca
2+

 channels are directly linked to the G-

Protein in neuroendocrine and cardiac tissues. The opening of the channel is initiated by G-

protein signaling (Catterall W.A., 2000). Pathogen sensitivity response invoked by Ca
+2

 

channels is greatly enhanced by overexpression of alpha subunit of plant cells and silencing 

causes the diminish of the response; a direct correlation of the function similarity between 

plant and mammalian G-proteins (Gelli A., 1997). In mammalian cells, a direct interaction 

between K
+
 channels and G-proteins has been detected via an important class of 

heterotetrameric ion channel called “G-protein-activated inwardly rectifying potassium” 

(GIRK) (Mark M.D., 2000). Cardiac GIRK was found to be interacting with a phospholipid 

metabolite named sphingosine-1-phopshate (S1P) which interacts with a distinct set of 

GPCRs (Himmel H.M., 2000). Stomatal opening inhibition mediated by ABA happens 

through the activity of K
+
 channels. The silencing of GPA1 gene creates insensitivity to the 

ABAeffect by inward K
+
 current. Thus, the leaves of these plants lose water through these 

stomatal openings (Wang X-Q., 2001).  
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1.5. Regulation of G-Protein Signalling 

Earlier studies claimed that the only regulation in G-protein signaling was achieved 

via the intrinsic hydrolysis rate of GTP in the cleft of α subunit and acceleration of the rate by 

certain alpha subunit effectors such as PLC proteins (Berstein G., 1992). A study in 1996 

showed that there is a class of proteins that function as GTPase accelerating factors (GAPs) 

that are later named as “regulators of G-protein signaling” (RGS) proteins (Druey K.M., 

1996). The proteins contain a 120 amino acid long RGS domain, which contains a nine alpha-

helix bundle which interacts with the switch region of alpha subunit that stabilizes the 

transition state for GTP hydrolysis (Tesmer J.J., 1997). Initially the protein was thought only 

to negatively regulate the function of alpha subunit, but more and more studies showed new 

homologs of RGS proteins and varying regulatory function that are cell-specific (Doupnik 

C.A., 1997).  

For a long time, no homologs of RGS proteins were to be found in plant cells. In 2003, 

a hybrid protein that contained an RGS box and a 7 transmembrane (7TM) was discovered 

and named as AtRGS1 (Chen J.G., 2003). The protein possess both GEF (from 7TM) and 

GAP (from RGS-box) properties. The GAP activity of the protein is confirmed by 

biochemical studies, but GEF function is yet to be discovered. The figure 1.8 shows certain 

scenarios for the probable functions of the AtRGS1 protein: 

 

 

Figure 1.8 Probable functions of AtRGS1. A – Protein may recruit activated GPA1 

proteins to specific membrane microdomains. B – AtRGS1 may be a ligand activated GPCR 

that can regulate the catalysis of both guanine nucleotide exchange in heterotrimeric G-
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Protein complex and GTP hydrolysis by the activated alpha subunit. C – AtRGS1 may act 

directly as a GAP protein that deactivates the GPA1 protein (McCudden C.R., 2005). 

1.6. Gamma Subunits of G-Proteins in Plants  

The main focus of this study is based on the AGG2, one of the three γ subunit 

homologs in A. thaliana.  The protein was first cloned, expressed and interacted with AGB1 

by yeast two hybrid in a study in 2001, confirming the protein to be a subunit of plant G-

protein complex (Mason MG., 2001). The specific regions that are well-defined in 

mammalian homologs of γ subunits are also found in AGG2: A CAAX box on its C terminus 

for prenyl binding and a coiled coil alpha helical structure for β subunit interaction (Bohm A., 

1997).  

  

Figure 1.9 The alignment of human gamma subunits with AGG1 and AGG2. Denoted 

„1‟ in the figure shows the β – γ interactions sites. „2‟ and „3‟ denotes the CAAX box for 

prenylation (Kaplan, 2009).  

Functional studies for AGG1 & AGG2 proteins involve either silenced version of the 

plants or the overexpression of protein in certain tissues. D-Glc and osmotic sensing during 

germination has been shown to be dependent on AGG expression (Trusov Y., 2007b). The 

seedling development of A. thaliana is hindered when the AGG homologs are absent: 
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Figure 1.10 The effect of silencing of AGG2 genes in seed development of A. 

thaliana. The names in the X-axis denote the silenced genes in the plant (Trusov Y., 2008). 

Different expression patterns were observed for AGG1 and AGG2 in a tissue-specific 

manner. The patterns generally show that where there is AGG2, AGG1 expression is hindered 

and vice versa (Trusov Y., 2007a). The changes in the localization bring in change in the 

functionality of the proteins. The examples are varying: 

 

Figure 1.11 A brief summary of functional difference of AGG1 & AGG2 (Trusov Y., 

2007a)  

 

1.7. Biophysical Methods used for Structural investigation of AGG2 

1.7.1. Circular Dichroism Spectropolarimetry 

 Circular dichroism (CD), arising from differential absorption of left and right handed 

circularly polarized light by proteins and nucleic acids in a solution, is a commonly used 

technique for spectroscopic characterization of proteins due to the techniques unique to get a 

grasp of secondary structures of proteins because the secondary structure of proteins show a 

very specific spectra pattern. CD differentially absorbs circularly polarized light by proteins 

and nucleic acids in solution: both right and left handed. Even though CD provides only low 
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resolution structural information, its extreme sensitivity to changes in oligomerization state of 

a protein makes it a powerful tool for phenomena such as dimer-tetramer oligomeric state 

changes of proteins. Additionally, CD measurements can be done with small sample volumes 

in a wide range of buffer systems.  

 The reasons to apply CD for protein characterization can be summarized as; 

1) Protein secondary structure estimation by using additional softwares, 

2) Detection of conformational changes of proteins and nucleic acids caused by changes 

in pH, salt concentration, solvents 

3) Unfolding conditions and states for proteins and nucleic acids, 

4) Ligand interactions of proteins and/or nucleic acids, 

5) Kinetics of macromolecule interactions. (Martin & Schilstra, 2008) 

 Figure 1.12 shows CD spectra of secondary structure elements such as α-helix, β-sheet 

and random coils in the near UV-range (180 to 260 nm) (Brahms & Brahms, 1980). 

  

Figure 1.12: CD spectra of α-helix (dots), β-sheet (short dashes) and random coil (solid line) 

shown and used as references. (Brahms & Brahms, 1980) 
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1.7.1.1. Determination of Secondary Structure with CD 

 Deduction of secondary structure information from CD spectra starts by converting 

ellipticity values to molar ellipticity (Δε), eliminating the changes arising from concentration 

differences among the used samples. Following formula is used for the operation described:  

(1.1)        
     

       
 

Where θ is ellipticity in milidegrees, C is concentration in molar, l is pathlength in centimeters 

and ∆ε is molar ellipticity in deg cm
2
 dmol

-1
 and kDa referring the weight of a protein 

calculated by its amino acid sequence.  

 Spectra of secondary structures of proteins are unique and very easily observed during 

the measurements. Specific natures of secondary structures help to maintain such stability and 

specificity. The consequence of this property helped scientists to develop methods and 

algorithms to deconvolute CD spectra into secondary structure information present in a single 

protein molecule in a solution; providing invaluable information about the overall secondary 

structure of a protein (Whitmore L., 2007). Libraries obtained from the spectral measurements 

of various proteins with varying secondary structures help build the main frame of CD 

deconvolution. Early methods of deconvolution included simple linear and non-linear least 

squares analyses based on representative reference spectra of secondary structures previously 

exemplified (Chang C., 1978). The problem of having exact solutions was further 

compensated by requiring calculated fractions of all the secondary structure components to be 

non-negative and by normalizing the solution obtained to a total amount of one so that the 

sum of the values obtained would not require having a precise knowledge of protein 

concentration, Also this way, the addition of components would not cancel each other for the 

components of the secondary structure of a protein can‟t hinder each other. Additional to all 

the information provided, it is also important to state that the alpha helices in a protein are 

easier to detect because a) the alpha helices are well defined and generally more regular and 

b) the CD signals of alpha helices are very intense and highly specific. Beta sheets in return 

are more variable having both parallel and antiparallel natures and different twists and turns 

(Whitmore L., 2007) 

 DichroWeb is a valuable tool that is used by many users that are trying to evaluate 

their CD spectra regarding the secondary structures of proteins (Whitmore L., 2011). After 
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creating an account, the data that has been altered using the molar ellipticity formula 

explained above is loaded to the system. The wavelength range and the step range of the file 

input is given as an input to the system. As the next and final step, algorithm for the data set is 

chosen according to the needs of the user. Many algorithms are listed for users to choose 

especially regarding the difference of the quality and the data range of the measurements.  

1.7.2. Dynamic Light Scattering 

Dynamic light scattering (DLS), also known as Photon Correlation Spectroscopy, is 

one of the most popular methods to define the size of the particles in a solution. The method 

simply measures the light that is scattered from dissolved macromolecules or suspended 

particles. The method depends on the time dependent fluctuations in the scattering intensity 

arising from the Brownian motion of the particles in the solution. The hit of the laser causes a 

Dopler Shift and changes the wavelength of the moving particle (Arzensek D., 2010).  

 

Figure 1.13 The scheme of laser hitting a particle in a solution and the detection done by the 

detector in DLS machine (Arzensek D., 2010) 

The fluctuations of the particles are collected by the detector. If the data collected is  

identical, then there would be no cancellation and the intensity of the beam increases. All 

these data are stored in an intensity function and further converted by a correlation function 

(this is also applicable to the volume and the number of particles in the solution): 
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With the help of the formula given above, the diffusion coefficient, DT, can be 

calculated (Lomakin A., 2005). The diffusion coefficient further helps to find the 

hydrodynamic radius of the particles in the solution. Stokes – Einstein equation leads to the 

finding of hydrodynamic radius: 

   
   

     
 

where Rh is the hydrodynamic radius, kb is the Boltzmann constant, T is temperature in 

Kelvin and η is the viscosity of the solvent. The Laplace transformation of the size 

distribution gives the last intensity graph of the molecules in the solution (Wen J. H., 2010):  

 

Figure 1.14 An intensity vs size graph of a typical DLS measurement.  

 Proteins do not always found in a solution in a single conformation or in a singular 

oligomeric state. The polydispersity of the proteins can also be measured in a DLS 

measurement with the help of the intensity graph obtained: 

 

Figure 1.15 Monodisperse and Polydisperse particles in a solution (Instruments, 2009) 

 The width of the graph gives a strong clue about the disparity level of the protein 

solution and the percentage of polydispersity can be found by Gaussian distribution: 
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where σ is the standard deviation and ZD is the average size of the particles (Arzensek D., 

2010). A general outline of the DLS system and the measurement evaluation is given in the 

figure below: 

 

 

Figure 1.16 The overall summary of Dynamic Light Scattering (Yao B., 2004) 

1.7.3. Small angle X-Ray scattering 

 Small angle X-Ray scattering (SAXS) is used for low concentration homogeneous 

particles in solution to determine their structures. Easy sample preparation brings data 

obtained to be in low quality (D. I. Svergun & Koch, 2003) and extraction of three-

dimensional structure information from one dimensional causes many problems and 

difficulties. Reliable SAXS data can only be collected using synchrotron radiation because of 

the short half life of measured molecules and their weak scattering patterns (Michel H. J. 

Koch, Vachette, & Svergun, 2003) 

1.7.3.1. SAXS Data Processing 

 I(s), SAXS curve, is obtained after subtracting the different scattering pattern of buffer 

from of the sample. The obtained data and the curve are radially symmetrical from all 

possible orientations of the particle. The scattering is caused by the electron distribution in the 

particle. The pair distribution function, P(r), shows the probability distribution of all distances 

between pairs of atoms in the particle. Calculation of the pair function can be done through a 
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Fourier transform of the scattering curve. P(r) gives clues about the overall molecular shape of 

the protein and its maximum dimension, dmax. Direct information about the outer shape of the 

protein can be deduced by the shape of the P(r): Bell-shaped symmetric P(r) is a clue for 

spherical shape and asymmetric P(r) for elongated rod-like particles.  

  

Figure 1.17: Distance distribution function from examples for simple structures (Dmitri & 

Michel, 2003). 

Scattering intensity I(s) can be calculated from the formula below: 

(1.2)          
   

     
 
     

  
  

     

  
  

Where e
µt

 represents the absorbance of a solution of thickness t, Ix(s) and IB(s) scattering 

intensities of sample and buffer respectively, c concentration and D(s) detector response. 

 Also taking inverse Fourier transform of I(s) as shown in the formula can give out the 

P(r): 

(1.3)                   
         

    
   

 

 
 

 Lowest resolution portion of a SAXS curve (Guinier region) is directly related to the 

radius of gyration (Rg) of the particle, which is the square root of the average squared distance 

of each scattered point from the particle center (Putnam, Hammel, Hura, & Tainer, 2007). 

Intensity measured at zero angle, I(0), is directly proportional to the molecular mass of the 

scattering protein. Determination of I(0) is available only by extrapolation because 
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experimental set-up declares this point as the spot where beam hits the detector. A plot of 

log(I(s)) against q
2
 in the region 0.6<Rgs<1.3 (Guinier plot) should be a straight line and can 

be used to extract Rg and I(0). Any nonlinearity indicates polydispersity or inhomogeneties in 

the sample (Guinier, 1955). Rg is independent of protein concentration for the fact that any 

deviation in the measurement should suggest a specific state of oligomerization or 

aggregation of the sample.  

1.7.3.2. Model Generation from SAXS Data 

 Reconstruction of three-dimensional model from one-dimensional scattering data is a 

very fundamental problem for SAXS experiments: many three dimensional structures can be 

deduced from one dimensional data (Dmitri & Michel, 2003). The first attempts were based 

on modeling in a trial and error fashion, until the innovative envelope function for ab initio 

modeling; allowing generation of unique models by the help of spherical harmonics 

(Stuhrmann, 1970a, 1970b) . Inevitably, use of envelope function was limited to simple 

shapes, especially for the molecules that do not have structures that contain hole structures 

within.  

1.7.3.2.1. DAMMIN 

 Modeling based on fitting rigid beads – that have very small r0 radius – in the pre-

defined shape envelope densely created the first basis for SAXS data modelling. According to 

this, the bead predicted can either belong to the sample or the solvent, and the DAMMIN 

algorithm distributes random beads in the defined data‟s volume, calculated according to Rg, 

and then refines the interior features of the volume in a Monte Carlo-like search (D. I. 

Svergun, 1999). 

1.7.3.2.2. GASBOR 

 The hindered algorithm of DAMMIN forced for better defined algorithm to predict 

more complex structures. With the GASBOR algorithm(D. I. Svergun, Petoukhov, & Koch, 

2001), the protein is represented as a complete block of dummy residues (DR), where residues 

correspond to the building blocks of the biological molecule; here, amino acids of a protein. 

Modeling is done by fitting the scattering from DRs to the experimental data. The algorithm 

starts by placing all available DRs into a spherical volume determined by dmax obtained from 

the experimental data. The algorithm proceeds with simulated annealing method and replaces 
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DRs constrained by dmax. Avoiding residue clashes and/or discontinued DRs, being ≈0.38 nm 

apart from each other, constitutes the second error excluding factor of GASBOR. With this 

constraint, every DR is forced to have two neighbors at about 0.38 nm. 

1.7.3.2.3. DAMAVER 

 Multiple models generated with DAMMIN and GASBOR arise because of initiating 

the modeling from presumptions and a single linear plot. All the individual models that are 

obtained by the algorithms can be superimposed and analyzed for stability by the DAMAVER 

algorithm (Volkov & Svergun, 2003). Among every individual model aligned, the most stable 

model – the most probable one – is taken as a reference. All others – excluding the extreme 

outliers – are aligned to the reference model and a density map of beads or residues are 

calculated, each of them being in the envelope.  

1.7.3.2.4. CRYSOL 

Experimental results of SAXS yield ab inito models of proteins. The models obtained 

should be cross-checked with known crystal structures if available. The CRYSOL software 

evaluates the solution scattering of macromolecules with known atomic structures and fits 

them to experimental scattering curves from SAXS data. The input file can be a PDB with an 

X-Ray or NMR structure of a protein. The program uses multipole expansion of the scattering 

amplitudes to calculate the spherically averaged scattering pattern of a given structure and 

takes the hydration shell into account. The fitting is done by minimizing the discrepancy. 

Three variables are considered for the fitting action: average displaced solvent volume per 

atomic group; contrast of the hydration shell and relative background arising from the buffer 

used (Svergun D.I., 1995). 

1.7.4. X33 Beamline, EMBL Hamburg 

 Recently the X33 SAXS beamline at European Molecular Biology Labs (EMBL) 

Hamburg was upgraded (figure 1.18 (a) before and (b) after). Optics, electronics, detector, 

sample stage and data acquisition system was upgraded for shorter measurement times and 

increased turnover (Round, et al., 2008). 
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Figure 1.18: EMBL Hamburg X33 beamline sketch (Round, et al., 2008). 

 

 

1.8. Objective of the Study 

Aims of the work presented in this thesis are cloning and expression of the A. thaliana 

heterotrimeric protein gamma subunit gene, optimization of purification of the recombinant 

protein and investigation of its biophysical properties by several complementary techniques 

including DLS, CD, SAXS, SEC, SDS - and native - PAGE. 

This work is part of a project where overall objective is obtaining the A. thaliana G-

protein as a complete heterotrimer.  The plant subunits have been expressed and purified by 

many researchers, but the formation of the heterotrimer hasn‟t been reported yet. The α 

subunit of the protein has been crystallized and the structure has been solved as a dimer, but 

the monomeric structures of β and γ subunits has not been managed yet. The protein of focus 

in this study is AGG2, gamma subunit of G-protein and up to now, no literature exists to 

show any biophysical study that has been done solely for AGG2. Thus, the scope of the 

project is claimed to understand the nature and biophysical character of AGG2.  
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2. MATERIALS AND METHODS 

 

2.1.Materials 

2.1.1. Chemicals 

All chemicals were supplied by Stratagene, QIAGEN, Merck (Germany), Bioron, 

Fermentas, Riedel, Amresco, AppliChem, and SIGMA (USA). 

2.1.2. Primers  

Primers for the cloning of AGG2 for both pMCSG-7 and pETM-41 vectors were 

designed according to literature (Swarbreck, 2000).  

 

  

Sequence 

Cloning 

Site 

Primers for pETM-41 

Cloning 

Forward 
5’ – GCGCCATGGACGAAGCGGGTAGC – 3’ NcoI 

Reverse 
5’ – GCCGGATCCAAATCAAAGAATGGAGCAG – 3’ BamHI 

Primers for pMCSG-7 

Cloning 

Forward 
5’ – TACTTCCAATCCAATGAAATGGAAGCGGGTA – 3’ LIC 

Reverse 
5’ – TTATCCACTTCCAATGAATCAAAGAATGGAG – 3’ LIC 

 

Table 2.1: Primers used to insert AGG2 gene into pMCSG-7 and pETM-41 vectors 

 The red nucleotides denote the cloning site used for the insertion of the gene into the 

region of interest on the plasmid; the yellow sequences denote the nucleotides added not to 

change the open reading frame; the green nucleotides shown in pMCSG-7 primers denote the 

stop signals for LIC (described below) and blue nucleotides denote the sequence of the gene 

either from the five or three primes.  
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2.1.3. Enzymes 

Restriction enzymes NcoI, BamHI and SspI; ligation enzyme T4 DNA polymerase; 

LIC  specific enzyme T4 DNA polymerase; and PCR reaction enzyme Taq polymerase 

enzymes were purchased from Fermentas.  

2.1.4. Protein Purification Columns 

HisTrap 5 ml Column (GE Healthcare) for affinity chromatography, QTrap 5 ml 

Column (GE Healthcare) for ion exchange chromatography and HiLoad 16/60 Superdex 75pg 

column (GE Healthcare) were used for size exclusion chromatography.  

2.1.5. Vectors 

Maps of pETM-41 (EMBL) and pMCSG-7 (Harvard) vectors can be found in 

Appendix C. pETM-41 vector contains maltose binding protein (MBP) as a fusion protein and 

6 histidine (His) amino acids as a tag for chromatography (6-His is upstream of MBP). The 

amino acids “Glu-Asn-Leu-Tyr-Phe-Gln-Gly”, all of which constitute TEV Protease cleavage 

site, follow MBP. When needed, TEV protease protein can cleave the fused proteins from 

cloned protein.  

pMCSG-7 vector contains only 6 His as a tag for affinity chromatography. Just like 

pETM-41 plamid, there is a TEV cleavage site downstream of 6 His and upstream of gene of 

interest.  

2.1.6. Cell Lines 

E. coli strains BL21 (DE3), DH5α, BL21+* and TOP10 (provided by EMBL, 

Hamburg) were used. 

2.1.7. Buffers and Solutions 

Lysis buffer contains: 50 mM NaPO4, pH7.4, 150 mM NaCl, 2 mM MgCl2 1X EDTA 

Free Protease Inhibitor, 5% glycerol and 2 mM PMSF. 

Binding buffer for HisTrap Chromatography contains: 50 mM NaPO4, pH7.4, 150 

mM NaCl, 2 mM MgCl2 

Wash buffer for HisTrap Chromatography contains: 50 mM NaPO4, pH7.4, 150 mM 

NaCl, 2 mM MgCl2 and 10 mM Imidazole 
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Elution buffer for HisTrap chromatography contains: 50 mM NaPO4, pH7.4, 150 mM 

NaCl, 2 mM MgCl2 and 1 M Imidazole 

Dialysis buffer before QTrap chromatography contains: 50 mM Tris –HCl pH: 8.0 

Binding buffer for QTrap Chromatography contains: 50 mM Tris –HCl pH: 8.0 

Elution buffer for QTrap Chromatography contains: 50 mM Tris –HCl pH: 8.0 + 700 

mM NaCl 

Dialysis and Running buffer for Size Exclusion Chromatography (Hepes Buffer) 

contains: 20 mM Hepes, 50 mM NaCl, 1 mM PMSF 

All buffers and solutions, except those provided by commercial kits were prepared 

according to (Sambrook, 2000). Other buffers used in electrophoresis, etc. and their 

compositions are given in Appendix D.  All protein buffers were degassed before applying to 

columns.  

2.1.8. Commercial Kits 

Qiaquick PCR Purification, Qiaquick Gel Extraction and Qiaprep Spin Miniprep Kits 

(QIAGEN) were used in recombinant DNA manipulations and molecular screenings.  

2.1.9. Culture Media 

LB (Luria-Bertani) Broth was prepared manually with following ingredients; 10 g 

Tryptone, 5 g Yeast extract, and 5 g NaCl for 1 liter. 

LB Broth Agar was prepared by adding 15g agar-agar for 1 liter of LB Broth medium. 

Terrific Broth (TB) contained 12 g Tryptone, 24 g yeast extract, 4 ml glycerol, 2.31 g 

KH2PO4 and 12.54 g K2HPO4 per 1 liter.  

2.1.10. Equipment 

The equipments used in this study is further listed in the Appendix E. 
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2.2.Methods 

2.2.1. Cloning AGG2 Gene into Vectors 

2.2.1.1. pETM – 41 Vector (Restriction Digestion Method)  

2.2.1.1.1. PCR 

The PCR reaction tube contained the chemicals listed in Table 2.2. 

Chemical Amount (μl) 

Master Mix (5X) 5 

Primers (20mM) 1 each 

Template 1 

Taq Poly 1 

dH2O 16 

Total 25 

Table 2.2 PCR Reaction Chemicals 

The template for the reaction is a construct of pQE80-L plasmid that contains AGG2 

gene. The primers were designated in Table 2.1.  

Reaction was carried out in a thermal cycler with the conditions detailed in Table 2.3: 

95
 o
C, 5 minutes  

95
 o
C, 1 minute  

62
 o
C, 45 sec Total of 35 cycles 

72
 o
C, 45 sec  

72
 o
C, 5 minutes  

4
 o
C Until further use 

 

Table 2.3 PCR conditions used for addition of cloning sites to AGG2 gene 

PCR products were analyzed by 1% agarose gel electrophoresis with TAE buffer. 

Samples were mixed with 6X loading buffer and gels were run at 100 mV for 30 minutes. 

Size of DNA fragments were estimated by using MassRuler DNA ladder mix (Fermentas) and 

visualized by ethidium bromide staining. 
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2.2.1.1.2.  Restriction Digestion with NcoI and BamHI 

 The restriction digestion of both vector pETM-41 and AGG2 were managed by the 

methods suggested by Fermentas Company as in Table 2.3. 

 
AGG2 pETM-41 

Tango Buffer (10X) 3 μl 3 μl 

NcoI 2unit(u) 2u 

BamHI 2u 2u 

Template 1.5 μg 1.5 μg 

dH2O Needed Amount 

 
30 μl 

Table 2.3 The Restriction Digestion reaction of AGG2 gene and pETM-41 plasmid 

 The digestion took place at 37
o
C and for 4 hours. The digested vector was loaded onto 

1% agarose gel and further purified with Gel Purification Kit. A portion of the digested gene 

was loaded to 1% agarose gel for confirmation of digestion and then incubated on ice for 

ligation reaction.  

2.2.1.1.3. Ligation of AGG2 into pETM-41 vector 

The content of the ligation reaction was adjusted as suggested in the manual of the 

enzyme as described in Table 2.4  

 
Molar Ligation Ratio 

 
1/3 1/6 1/10 

Vector 160 ng 160 ng 160 ng 

Insert 13 ng 26 ng 40 ng 

T4 Ligase 2 unit (u) 2 (u) 2 (u) 

Buffer  1,5 μl 1,5 μl 1,5 μl 

dH2O Needed Amount 

Total (ul) 15 

Table 2.4 Ligation reaction of AGG2 into pETM-41 vector 

 The concentrations of insert and vector to put into the reaction mix were determined 

by molar ligation ratio calculation: 

 
                               

                   
                                              



27 

 

The reaction tube was incubated o/n at 16
o
C.  

2.2.1.1.4. Transformation of Bacteria 

TOP10 cells were transformed with the ligated samples. Previously prepared 

competent cells were taken from -80 fridge, thawed on ice and the 10 μl ligation results were 

added onto the competent cell tubes. After 30 min incubation on ice, the cells were heated to 

42
o
C for 90 sec, placed on ice for 2 min. 800 μl LB were added to the tubes and the cells were 

incubated at 37
o
C for 1.5 hours. The grown cells were centrifuged at 9.800 rpm for 5 min, 

resuspended in 200 μl medium and spread on Kan
+
 LB agar plates.  

2.2.1.1.5. Colony Selection 

Observable and well-grown colonies were picked and incubated in liquid LB-

Kanamycin (50 µg/ml) to prepare glycerol stocks and for plasmid isolation. 

2.2.1.1.6. Plasmid Isolation 

Colonies were grown in 10 ml of LB-Kanamycin (50 µg/ml) medium overnight at 37
 

o
C at 270 rpm. Plasmid isolation was done with Qiaprep Spin Miniprep Kit (QIAGEN). The 

final concentration of plasmid DNA was calculated by measuring the absorbance at 260 nm in 

Nanodrop spectrophotometer (Thermo) and using 0.020 (µg/ml)
-1

 cm
-1

 for the extinction of 

DNA.  

2.2.1.1.7. Restriction Digestion and Replication (PCR) Screening 

of Samples 

The purified plasmids were tested for the validation of insertion of AGG2 gene. 

Digestion of the samples and the amplification of the gene from the plasmid were done 

accordingly as detailed in Table 2.2 and Table 2.3. The content of the reaction tubes were run 

on 1% agarose gel. The gels were then observed under UV light with the help of ethidium 

bromide dying.  

2.2.1.1.8. Sequence Verification 

Plasmids were purified with QIAGEN Plasmid Mini Kit (QIAGEN) and were 

sequenced by Refgen company (Ankara).  
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2.2.1.2. pMCSG – 7 Vector (Ligand Independent Cloning (LIC) Method) 

2.2.1.2.1. PCR 

The PCR reaction tube contained the chemicals listed in Table 2.5 

Chemical Amount (μl) 

Master Mix (5X) 5 

Primers (20mM) 1 each 

Template 1 

Taq Poly 1 

dH2O 16 

Total 25 

Table 2.5 PCR Reaction Chemicals 

The template for the reaction is a construct of pQE80-L plasmid that contains AGG2 

gene. The primers were designated in Table 2.1.  

Reaction was carried out in a thermal cycler with the conditions detailed in Table 2.6: 

95
 o
C, 5 minutes  

95
 o
C, 1 minute  

48
 o
C, 45 sec Total of 35 cycles 

72
 o
C, 45 sec  

72
 o
C, 5 minutes  

4
 o
C Until further use 

 

Table 2.6 PCR conditions used for addition of cloning sites to AGG2 gene 

PCR products were analyzed by 1% agarose gel electrophoresis with TAE buffer. 

Samples were mixed with 6X loading buffer and gels were run at 100 mV for 30 minutes. 

Size of DNA fragments were estimated by using MassRuler DNA ladder mix (Fermentas) and 

visualized by ethidium bromide staining. 

Validated PCR product was further purified with isopropanol precipitation: the 

amplicons were pooled down to a single Eppendorf tube and 10 μl 3M NaOAc, pH 5.2 + 5 μl 

Linear Polyacrylamide (LPA) + 250 μl isopropanol (100%) are added to the tubes. The tubes 

were incubated at -80
o
C o/n, centrifuged for 15 min at max speed and resuspended in 250 μl 
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70% EtOH. The resuspended amplicons were again centrifuged for 5 min at max speed and 

dried in laminar flow. The samples then were resuspended in 25 μl ddH2O.  

2.2.1.2.2. SspI Digestion of Plasmids 

Cells containing pMCSG-7 plasmids were incubated in LB medium and were purified 

by Qiaspin Miniprep Kit. The purified samples were digested by SspI enzyme. This enzyme 

cuts the AATATT pallindromic sequence bluntly. This enables the enzyme to be exposed to 

the activity of T4 DNA Polymerase enzyme. The reaction is installed as in Table 2.7: 

 
pMCSG - 7 

Ssp1 1 (5unit) 

Template 10 μg 

dH20 Needed Amount 

Buffer 3 μl 

Total 30 μl 

Table 2.7 SspI reaction Content 

Digested plasmids were run on 1% agarose gel and then further purified with the help 

of Qiaquick Gel Extraction Kit.  

2.2.1.2.3. T4 DNA Polymerase Reaction 

T4 DNA Polymerase has two functions: formation of a phosphodiester bond from 5‟ 

to 3‟ and exonuclease activity from 3‟ to 5‟; both cutting and pasting nucleotides. When the 

enzyme recognizes a nucleotide, the polymerase function gets activated, if not, the enzyme 

simply acts as an exonuclease. The strategy can be summarized like this: only one type of 

dNTP is added to the reaction tube so the enzyme simply creates single strand DNA‟s out of 

any blunt-ending oligonucleotide it encounters that does not possesses that specific dNTP. 

When T4 Polymerase reaches the nucleotide complementary to the dNTP, the enzyme both 

adds and cuts the same nucleotide over and over again so a flanking single strand DNA of 

interest can be obtained (Stols L, 2002). To manage this strategy, there are specifically 

designed sites in the plasmid: downstream of a number of A - T nucleotides, LIC site of 

vector carries a single G and the LIC site of insert (which the designed primers provide) 

contains single C nucleotides. The reaction conditions are stated in Table 2.8: 
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Insert Reaction   Vector Reaction 

ddH2O As needed   ddH2O As needed 

5X Buffer 14 µl   5X Buffer 14 µl 

dCTP 35 nmol   dGTP 35 nmol 

Insert *   Vector ** 

T4 DNA Pol. 10 unit   T4 DNA 

Pol. 

10 unit 

Vf 70 µl   Vf 70 l 

 

*All available sample from the isopropanol precipitation in 2.2.1.2.1                                                                      

*All available sample retrieved after the gel extraction in 2.2.1.2.2 

Table 2.8: The Reaction Content of T4 DNA Polymerase 

 Reaction takes place at 20 
o
C for 50 min and the activity of the enzyme is suspended 

by heat inactivation at 70
o
C for 30 min. The inactivated reaction complex then precipitated 

with ethanol same as the method described in the section 2.2.1.2.1.  

 The concentrations of the precipitated samples were determined by running them on a 

1% agarose gel. Incrementing amounts (1μl and 2μl) of samples and DNA marker were 

loaded consecutively on a gel to compare the concentration of bands of samples with the 

corresponding bands of the marker; an additional NanoDrop concentration reading  

2.2.1.2.4. Annealing of Insert & Vector 

The concentrations determined in the previous step are used to calculate the insert to 

vector ratio for the annealing reaction. Both vector and insert possess single strand flanking 

regions that are complementary so when two are placed in a tube, the flanking regions will be 

complementarily ligate and form a complete plasmid without the aid of any other enzyme. 

Thus, the insert and vector were placed in a tube according to the molar ratio defined (1/3) 

and were incubated at room temperature o/n.  

2.2.1.2.5. Transformation of Samples 

The transformation of the constructs into TOP10 cells were performed the same way 

as described in the section 2.2.1.1.4. The only difference is the usage of Amp
+
 LB Agar plates 

instead of Kan
+
 because of the resistance gene on pMCSG-7.  
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2.2.1.2.6. Plasmid Isolation 

Several colonies on the plate were chosen and grown in LB medium containing 50 μM 

Ampicillin. Plasmids were isolated by Qiaquick Miniprep kit. The concentrations of the 

plasmids were calculated spectrophotometrically by NanoDrop machine.  

2.2.1.2.7. Restriction Digestion and PCR Screening of Samples 

The cloning site of pMCSG-7 contains restriction sites of BamHI and KpnI enzymes 

for screening purposes. PCR reaction for the screening was done according to the scheme 

detailed in the section 2.2.1.2.1 and the restriction digestion was done as detailed in Table 2.9: 

 
Construct pQE80 + AGG2 

Buffer BamHI (10X) 3 µl 3 µl 

KpnI 4 unit (u) 4 u 

BamHI 2 u 2 u 

Template 1.5 µg 1.5 µg 

dH2O As needed As needed 

Total 30 µl 30 µl 

 

Table 2.9: Digestion Screening of Construct  

pQE80 + AGG2 construct was also digested as a positive control for the existence of 

the AGG2 gene in the new construct.  

2.2.1.2.8. Sequence Verification of the Construct 

Isolated plasmids were sent to Refgen Company (Ankara) for sequencing. The results 

were evaluated with the CLC Main Workbench program.  

2.2.2. Gene Expression 

All the experiments explained in this section are conducted in a highly specific manner 

for both of the pMCSG-7 and pETM-41 constructs. Additionally, the expression of the gene 

was also experimented with a previous construct: pQE80-L + AGG2 plasmid (Kaplan, 2009). 

The only difference among the expression of the constructs is the antibiotics selected 

(ampicillin for pQE80-L and pMCSG-7 constructs and kanamycin for pETM-41 construct).  
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2.2.2.1.Monitoring the Expression of the AGG2 Protein 

The monitoring of protein expression and the growth of the cells were initiated by 

preparing the glycerol stock of cells for o/n growth (37
o
C and 270 rpm) in 10 ml LB medium 

+ 50 μg/ml antibiotics. Next day, the 600 nm optical density (OD600) of the samples were 

measured and the cells were placed on fresh 50 ml LB + 50 μg/ml antibiotics to have a final 

OD600 of 0.15.The cells were incubated at 37
o
C and 270 rpm until the OD600 reaches an 

interval of 0.8 – 1. When reached, the protein expression is induced by addition of 1 mM 

IPTG. During the overexpression of a particular gene, the high levels of protein can harm the 

growth of cells and the cells either start to die or quickly initiate the degradation of the 

protein. In order to tackle the problem, the metabolisms of the induced cells are slowed down. 

Eventually, the cells are incubated at 27
o
C and 250 rpm. Starting from the zero point (t=o), 

samples were collected every 40 min for 200 min total (4.5 hours). After measuring the OD600 

of the samples, the cells were pelleted by centrifugation at 10.000 rpm for 20 min with SLA-

3000 rotor. Pellets were lysed with a buffer consisting of 25 mM Tris, 10 mM EDTA, 50 mM 

Glucose and 1 mg/ml lysozyme. The lysed samples were boiled at 95
o
C for 5 min and dyed 

with 6X SDS loading dye. Expression of the gene was monitored by 12% SDS 

polyacrylamide gels. Gels were first run at 100 V and voltage was increased to 120V once the 

samples reached separating gel. Samples were run until the dyes of the samples were at the 

lower border of the gel. Protein bands were visualized by coomassie blue staining. Protein 

molecular weight markers and protein ladders (Fermentas) were used to identify the 

molecular weights of expressed proteins.  

2.2.2.2. Culture Growth for Protein Purification 

Cells were cultivated in 2L media for large scale expression of AGG2 gene (the 

medium for pQE80 – L containing cells is LB and medium for pETM-41 and pMCSG-7 is 

Terrific Broth). Cell culture of 50 ml medium + 50 µg/ml antibitotics was grown o/n at 37
 o

C 

shaking at 270 rpm as a starter culture. Following day, OD600 of o/n grown cultures were 

measured and transferred to 2L media (4*500 ml in 2L flasks) to have an OD600 value of 0.15. 

When the cells reach OD600 between 0.8 to 1, 1mM IPTG was added to the cultures to induce 

the expression of the gene. Because of the reasons explained in the section 2.2.2.1, cells were 

grown at 27 
o
C and 250 rpm for 4.5 hours and pelleted by centrifugation at 9500 rpm for 20 
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minutes using a Sorvall centrifuge with SLA 3000 rotor. Pelleted cells were stored at -80
o
C 

fridge for further usage.   

2.2.3. Protein Purification 

2.2.3.1. Affinity Chromatography by HisTrap Column 

Pellets of cells were resuspended in lysis buffer detailed in the section 2.1.6. Cells 

were further lysed by 15 minutes of sonication at 4
 o

C (8 second of pulse and 9 second rest 

period). TritonX-100 was added to the cell mixture to have a final concentration of 1% and 

then the mixture was incubated in cold room for 45 min with a constant gentle shake. Treated 

cells were centrifuged at 14000 rpm, 4
 o

C for 1 hour with SS34 column. During this 

preparation procedure, the nickel affinity chromatography column HisTrap (GE Lifesciences) 

was prepared with AKTA Prime chromatography system: first the column was washed with 

water, then the column is cleansed with Elution buffer (section 2.1.6) and equilibrated with 

Binding buffer. The cell lysate (app. 50 ml) was applied to the AKTA system and injected to 

the column. The flow through (FT) from the column was collected and the column was 

further washed with 40 ml of wash buffer (section 2.1.6) and collected. Proteins were eluted 

with a gradient between wash buffer and elution buffer that last for 30 ml and finishes in 

100% Elution buffer. The eluant was collected in 1ml fractions.  

Lysate, FT, wash and fractions from the elution were all loaded to a 12% SDS-PAGE 

to see the quality, concentration and dispersity of the protein. The gel was incubated in 

coomassie stain, then the content of the loaded samples were observed. The fractions that 

contained the protein were dialysed against 20 mM Tris pH8.0 + 1 mM PMSF. Dialysis 

buffer was refreshed after 3-4 hours of incubation in the cold room.  

2.2.3.2.Anion Exchange Chromatography by QTrap Column 

The dialysed samples were centrifuged at 13.000 rpm for 25 min with a table-top 

centrifuge to precipitate the aggregated protein samples. The absorbance of the samples at 

280nm (A280) were measured by NanoDrop and the concentration of the samples were 

determined by the extinction coefficient (1.17 M
-1

cm
-1

 for AGG2). The ion exchange column 

QTrap (GE Lifesciences) was equilibrated in the same fashion of the HisTrap column: washed 

with water, cleansed with QTrap Elution buffer and equilibrated with QTrap Binding buffer. 

The centrifuged samples were then loaded to the AKTA system, flow through was collected, 

column was washed with QTrap Binding buffer and the protein was eluted with a gradient 
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between binding buffer and elution buffer lasting for 25 ml and ending at 100% Elution 

buffer. 

Sample before dialysis, sample after dialysis, sample of flow through & wash and 

fractions of interest were all loaded to a 12% SDS-PAGE. The gel was dyed with coomassie 

stain and the samples were observed. The fractions that contained protein were dialysed 

against Hepes Dialysis buffer (section 2.1.6).  

2.2.3.3. Size Exclusion Chromatography 

The dialysed samples were centrifuged at 13.200 rpm for 25 min with a table-top 

centrifuge to get rid of the precipitated and aggregated protein samples. The concentration of 

the sample was calculated as told in section 2.2.3.2. The column HiLoad 16/60 Superdex 

75pg (GE Healthcare) is used for size exclusion chromatography, which was calibrated 

previously (Aydin, 2011). The column was washed with 2 column volume of water and Hepes 

buffer (section 2.1.6). After calibration, the protein is loaded to the AKTA FPLC system (GE 

Lifesciences). The flow speed of the system is adjusted to 1ml/min and 1ml fractions were 

collected when protein peaks were observed. With the help of the calibration curve, the 

molecular weight of the protein is calculated. 

2.2.4. Analyses of Purified Protein 

2.2.4.1.Absorbance Spectroscopy 

Nanodrop Spectrophotometer (Thermo) was used for all absorbance measurements. 

The machine is used according to the instructions in the manual. The program (Protein A280) 

was used for concentration determinations. The concentration of the protein was calculated by 

the normalization formula shown below: 

(2.2)                     
 

   
      

Where A is absorbance, c is concentration in molar, l is pathlength in centimeters and ε 

is the extinction coefficient.  

2.2.4.2.Circular Dichroism (CD) Spectropolarimetry 

CD is observed by the differential absorption of left and right handed circularly 

polarized light by proteins, and has high sensitivity for nonchiral environments. 
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200 μl protein samples were prepared for CD spectropolarimetry analyses by diluting 

them 1/5 because of the hindering effects of high salt concentration of Hepes buffer. A Jasco 

J-815 CD Spectropolarimeter connected to a computer with Spectra Manager™II installed 

was used for CD measurements.  

 1mm pathlength quartz cuvettes were used for measurement Spectra Manager™II 

software was used for data manipulation. The concentration values of the proteins were all 

varied, so the values were all normalized according to their concentration. The methodology 

is detailed in section 1.7.1.  

2.2.4.3.Dynamic Light Scattering (DLS) 

Zetasizer Nano ZS (Malvern Instruments) machine was used for DLS measurements. 

The machine determines the size of the particles in a solution by the measurement of 

Brownian motion of the particles via dynamic light scattering. Brownian motion of particles 

changes scattering pattern of the light. Correlation of this deviation with the diffusion speed 

yields the information to calculate the size. 

Small particles move quicker than large particles. The relationship between the size of 

a particle and its speed with Brownian motion is defined by Stokes & Einstein equation. The 

velocity of Brownian motion is determined by translational diffusion coefficient. The 

fluctuation in the intensity of speckle pattern will change slowly for large particles compared 

to small ones.  

The calculations described below yields a size distribution among the particles in the 

solution and the type of the distribution is intensity related. Then the software converts the 

data to have both volume and number related distributions. Rayleigh approximation states that 

the sixth power of a particles diameter is proportional to this particular intensity of scattering. 

So instead of evaluating the data regarding the volume and number distribution, the intensity 

distribution yields more reliable and consistent results.  

2.2.4.4. SDS and Native Polyacrylamide Gel Electrophoresis (PAGE) & 

Coommassie Staining and Western Blotting 

 The recipe of the SDS-PAGE preparation is given in Appendix … (Laemmli, 1970). 

20 µl protein samples were mixed with 4 µl 6X SDS gel loading buffer (125mM Tris-HCl pH 

6.8, 2% SDS, 20% glycerol, 0.2% bromophenol blue, 10% (v/v) β-mercaptoethanol) and 
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boiled at 95
 o

C for 4 minutes. 10 µl was loaded into 12 % SDS polyacrylamide gels having 

5% of stacking gel. Gels were run in 1X SDS running buffer (25 mM Tris, 192 mM glycine, 

0.1 % (w/v) SDS). For the stacking part, samples were run at constant 100V and for 

separating, voltage was increased to 120V.  

The recipe for the native gels is also given in Appendix …. 10 µl protein samples were 

mixed with 2 µl 6X Native-PAGE sample buffer (200 mM Tris-HCl pH 7.5, 20 % glycerol, 

10 %, 0.2 % bromophenol blue) and loaded into 10 % non-denaturing PAGEs. Gels were run 

in 1X Native running buffer (25 mM Tris, 192 mM glycine). For the stacking part, samples 

were run at constant 100V and for separating, voltage was increased to 120V. 

For visualization, SDS- and Native- polyacrylamide gels were incubated in coomassie 

blue solution for staining and de-stained in 35% EtOH. The recipe of coomassie blue solution 

is given in Appendix D. 

 The initiation of western blotting is the running of SDS-PAGE gels the same way as 

told above except the markers were used PreStained instead of unstained. Then, the blotting 

continues by transferring the protein samples on PVDF membrane (Thermo). The transfer 

occurred in Transfer buffer (14.41 g. Tris base, 3.028 g. Glycine and 200 ml methanol in 1 L) 

for 75 min by 225 mA. The PVDF membrane then was blocked with Non-Fat Dried Bovine 

Milk (Sigma) in TBS solution (50mM Tris Base, 0.9% NaCl, pH 8.4). The blocked paper was 

later subjected to antibody (RGS-6His antibody (Invitrogen) for PQE-80L construct and 6His 

(Roche) for pMCSG-7 and pETM-41 constructs). After antibody binding, the samples were 

washed with TBS + Tween20 3 times for 10 min. The washed transfer paper is treated with 

Pierce ECL Western Blotting Substrates (Thermo) and the signals were blotted on Kodak 

Exposure Films (Kodak) in the dark room. The exposure of the transfer paper to the films 

varied and was noted.  

2.2.5. The Effect of DTT and Protein Concentration on the Oligomeric State of 

the Protein 

The effect of DTT and Protein concentration on the oligomeric state of the protein was 

always tested after dialyzing the proteins in Hepes Buffer (section 2.1.6). After the dialysis, 

the protein was either directly treated with DTT or the protein was loaded in Superdex 16/60 

column for size exclusion chromatography and later on treated with DTT.   
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2.2.5.1.Preparation of the Samples for DTT Treatment 

After retrieving the samples from the dialysis environment, the protein was 

centrifuged and its concentration was measured (as told in section 2.2.3.3). DTT 

concentration series always had the same fashion: 0 mM DTT, 0.1 mM, 0.3 mM, 0.5 mM, 1 

mM and 5 mM DTT. 1 mM DTT concentration is the most frequent concentration used in 

protein purification so the series was intended to increment until reaching the universal 

concentration. The last 5mM DTT concentration had the intention of checking the effects of 

excess amount of DTT on the protein. The protein concentration in the DTT series was 

always adjusted to 1 mg / ml (app. 70 μM) and the dilutions were done by Hepes buffer. The 

tubes containing the mixtures were gently shaken in cold room for at least 30 min.  

Protein concentration series depended on the quality and the concentration level of the 

protein after dialysis against Hepes buffer. Eventually, the concentration series decreased in a 

½ dilution manner.   

2.2.5.2.Biophysical Analysis on both DTT and Protein Concentration 

Series 

After incubating the series samples in cold room, the experiments discussed in section 

2.2.4 were all conducted on the samples. All these experiments were done from the same 

sample within the same interval of two days.   

2.2.5.3.SAXS and Ab Initio Low Resolution Molecular Envelope Modelling 

Small angle X-ray scattering (SAXS) measurements were conducted on the EMBL X-

33 beamline (M. H. J. Koch & Bordas, 1983) at the DORIS storage ring, DESY, Hamburg. 

The beamline, which is specifically optimised for low background data collection from 

macromolecular solutions (Roessle, et al., 2007), is equipped with a photon counting Pilatus 

1M pixel detector (67 x 420 mm
2
) with a sample-detector distance of 2.7 m. The samples to 

be exposed are kept in a vacuum cell with polycarbonate windows at 18 °C and data 

collection is done in 3 consecutive one minute frames. The radiation damage to be observed 

during measurements is guessed from comparison of scattering patterns from different frames. 

The Data collected from DTT series were all observed in 1 mg/ml concentration, but the 

concentration series varied from a range of 0.5 to 3.8 mg/ml in 20 mM HEPES pH 8.0, 100 

mM NaCl buffer.  

Presentation of the data is obtained as logarithm of the scattered intensity (I(s)) against 

momentum transfer s (s = 4πsinθ/λ, where 2θ is the scattering angle and λ is the wavelength: 
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0.15 nm). All the preliminary data analysis involving correction for beam intensity, 

background correction, buffer subtraction and concentration normalization were carried out 

using the PRIMUS (Konarev, Volkov, Sokolova, Koch, & Svergun, 2003) software in the 

ATSAS suit of programs (Petoukhov, Konarev, Kikhney, & Svergun, 2007) at EMBL 

Hamburg. The data is thus reduced and the correction and manipulation of the data is 

continued to determine the forward scattering I(0) and the radius of gyration Rg of the 

proteins. Additionally, Porod plot is drawn to obtain information about the structural 

flexibility of the macromolecule (Porod, 1982). 

Rg and molecular mass of the protein in solution can be calculated by Guinier 

approximation (Guinier, 1955). Guinier approximation states that for a monodisperse solution 

the scattered intensity at small angles, I(s) is a linear function of s
2
 and the scattered intensity 

extrapolated to s= 0, I(0), is proportional to the molecular mass of the protein in solution. The 

slope of the linear regression yields the radius of gyration and for globular particles at s values 

where sRg <1.3; 

                   
 

 
  

     

For molecular mass (MM) determinations the scattering obtained from a reference 

protein (e.g. BSA) can be used and the unknown molecular mass calculated as:  

        
     

  
 

          

       
 

where MMS, I(0)S, cS, MMBSA, I(0)BSA, cBSA stand for molecular mass of the sample, 

scattering intensity at zero degrees, concentration of the sample, molecular mass of BSA, 

scattering intensity at zero degrees for BSA and concentration of BSA, respectively. For the 

measurements, the reference protein is chosen to be BSA and was dissolved in 20 mM 

HEPES, pH 8.0, 150 mM NaCl and 1 mM DTT and a concentration of app. 5 mg/ml.  

The pair distribution function is proportional to the probability of observing a given 

distance inside the particle and can be simply calculated using the indirect transform package 

GNOM (D. Svergun, 1992). The output of GNOM analysis is further usurped in molecular  

modeling calculations. Ab initio calculations were carried out using the algorithms DAMMIN 

(D. I. Svergun, 1999). The models are calculated using dummy residues or beads by a 

simulated annealing procedure and the difference between the scattering from the model and 
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the experimental scattering intensity are minimized. Twenty different models were calculated 

and convergence of the models formed a similar shape. The final average model was obtained 

using DAMAVER software. 

2.2.6. Homology Modeling of AGG2 Protein 

2.2.6.1. Alignment of AGG2 Sequence With 1TBG 

The initiation of homology modeling requires an alignment with a protein which has 

been crystallized and modeled. For this purpose, the protein sequence of Gamma chain of 

bovine transducin (PDB ID: 1TBG) is aligned with the sequence of AGG2 with the help of 

the online software Biology WorkBench (SDSC). The sequences are aligned by Blossum 60 

algorithm.  

2.2.6.2.Modeling of AGG2 

The alignment obtained and the single PDB file of the gamma chain of transducin 

were loaded to the Modeller program (Eswar, 2006). The program retrieves the secondary 

structure of the input PDB file and models the aligned sequence (AGG2) accordingly.  

2.2.6.3.Docking of Monomers 

The dimer of the protein is modeled by the protein-protein docking server GRAMM-X 

(Tovchigrecho A., 2006). Both receptor and ligand options were chosen for AGG2 model and 

sent to the server. 10 dimer structures were modeled. 

2.2.6.4.Comparison of Dimer Models with CRYSOL 

All of the dimer models were run on CRYSOL software (Svergun D.I., 1995). The 

program evaluates the scattering curves of macromolecules of known atomic structures and 

fits them to experimental scattering curves from obtained SAXS measurements. A single PDB 

file is enough for the evaluation of the program. Multipole expansion of the scattering 

amplitudes is used to calculate the spherically averaged scattering patterns and takes the 

hydration shell into account. CRYSOL software fits this theoretical scattering onto the 

experimental data. If the two curves are matching, the model can be said to be fitting the 

experimental data or vice versa.  
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3. RESULTS 

 

3.1. pETM-41 Cloning 

3.1.1. AGG2 gene amplification 

The agg2 gene to be cloned into the pETM-41 vector was amplified from pQE80-L + 

AGG2 construct (Kaplan, 2009) using primers containing BamHI (5‟) and NcoI (3‟) 

restriction sites for ligation to pETM-41 vector (section 2.1.2.). It is expected that this 

amplification will yield a fragment which is about 330 bp long. Preliminary confirmation of 

the amplicon was achieved by determining the fragment length on 1% agarose gel as shown in 

figure 3.1. 

 

Figure 3.1 Amplified AGG2 gene for cloning with pETM-41. AGG2 fragment was analysed 

on a 1% agarose gel is visiualized by EtBr staining. 

3.1.2. Production of the pETM-41 + AGG2 Construct 

During the amplification procedure, restriction sites BamHI (5‟) and NcoI (3‟) were 

introduced to the AGG2 gene to facilitate ligation with the expression vector. Figure 3.2 

shows electrophoretic analysis of both the pETM-41 plasmid and the gene digested with these 

enzymes prior to ligation. 
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Figure 3.2 Verification of double digestion of pETM-41 & amplified AGG2 by 

electrophoresis on 1% agarose gel. Lane 1 – AGG2 amplicon, 2 – AGG2 double digested) 

 After digestion, the plasmid and the AGG2 gene were purified from the enzymes and 

digestion products using a gel extraction kit (Qiagen). Estimation of DNA concentration for 

ligation was conducted by comparing intensity of sample bands at different loadings (1 and 

2μl) with those of the marker bands at known concentration as shown in Figure 3.3. 

 

Figure 3.3 Comparison of thickness of pETM-41 and AGG2 with those from the marker for 

concentration determination of digested & purified samples 

The linearized plasmid and the digested amplicon were following standard procedures. 
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3.1.3. Transformation of Bacteria 

TOP10 Cells were transformed with the construct and were spread on LB-agarose + 

50μg/ml kanamaycin plates. Cells were grown o/n at 37 
o
C and on the surface of plates, 

transformed cells formed colonies were stored at +4
o
C for further use. 

3.1.4. Verification of Cloning 

Single large colonies selected from plates were grown in LB cultures for plasmid 

isolation in order to validate the insert. Results of screening were analyzed on 1% agarose gel 

as shown in figure 3.4. 

 

Figure 3.4 Results of digestion and PCR screening of constructs analyzed on 1% agarose gel. 

Lane 1 – Isolated construct 2 – Result of digestion of the construct by the enzymes NcoI and 

BamHI, 3 – PCR product obtained from the construct using AGG2 primers, 4 –PCR product 

obtained directly from AGG2 gene 

 Bands corresponding to 330 bps were observed and thus the presence of the inserted 

gene into the constructs was verified. The verified constructs were then sent to the Refgen 

Company (Ankara) for sequence verification. Results were analyzed by the CLC Main 

Workbench software. Alignment of the known sequence of AGG2 from literature and the data 

obtained by the sequencing gave high scores and verified that AGG2 gene was inserted into 

the plasmid without sequence modifications (Appendix XX).  
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3.2. pMCSG-7 Cloning  

3.2.1. Gene amplification for pMCSG-7 Cloning 

 The gene to be cloned into the pMCSG-7 vector was amplified from the same vector 

used for pETM-41 cloning. The primers specifically designed for LIC with pMCSG-7 

insertion were used in the PCR amplification process (the sequences of the primers are shown 

in section 2.1.1.) The size of the amplified fragment was verified by analysis on 1% agarose 

gel as shown in figure 3.5. 

 

Figure 3.5 Verification of amplification of AGG2 with LIC Site 

Amplification of the gene with the specific primers added the LIC sites to both 5‟ and 

3‟ ends of the AGG2. The amplified gene was precipitated with isopropanol as detailed in the 

section 2.2.1.2.1 and visualized on an agarose gel. The length of the fragment observed was 

around 330 bps and this was used in the ligation independent cloning step. 

3.2.2. Blunt end Digestion of pMCSG-7 vector for ligation of AGG2 gene 

The plasmid pMCSG-7 was digested with SspI to get a blunt-end digested plasmid. 

The blunt ends of the plasmid reveal the LIC sites of the plasmid for T4 DNA Polymerase 

digestion. The digestion of the gene was verified by analysing on 1% agarose gel as shown in 

figure 3.6.  
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Figure 3.6 SspI Digestion of pMCSG-7 Plasmid 

 A clear shift was observed on the lane for the cut pMCSG-7 plasmid. The shift is due 

to the linearization of the plasmid by the SspI enzyme. This step was followed bythe T4 

reaction. 

3.2.3. Digestion of LIC sites for ligation with T4 DNA Polymerase  

 The digested plasmid and the amplified & purified gene were digested by T4 DNA 

polymerase. The digested samples were precipitated with ethanol and resuspended in 10 μl 

ddH2O each to increase the level of concentration of samples. Concentrations of the samples 

were determined as explained in section 3.1.2 by analysis on 1% agarose gel and comparison 

of the band intensities with those of the marker as shown in figure 3.7.  

 

Figure 3.7 Concentration Determination before Annealing of AGG2 into pMCSG-7 vector 
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 The width of the bands may be different, but the lengths of the bands are different. 

When the molarities of the oligomers are considered, the concentrations of digested plasmid 

and insert are approximately equal.  

3.2.4. Transformation of Bacteria 

Transformed TOP10 Cells were spread on LB plate + 50 μg/ml Ampicillin and grown 

o/n and where checked for growth the day after. Plates were stored at 4
o
C for further usage.  

3.2.5. Verification of Ligation of AGG2 Gene 

Colonies were screened for the presence of the AGG2 gene by plasmid isolation and 

carrying out restriction digestion and PCR reactions. BamHI and KpnI sites that are located in 

the LIC cloning region of the plasmid were used for restriction analysis and the PCR was 

conducted using the isolated plasmids as templates and the cloning primers. The pQE80-L + 

AGG2 construct was used as positive control for both restriction and PCR screening. The 

results of verification experiments are shown in figure 3.8.  

 

Figure 3.8 Digestion and PCR Screening of Construct (left, construct, right pQE80-L for both 

digestion and PCR reaction results) 

 Bands of about 300 bp length corresponding to the cloned gene were observed in the 

gels for both PCR and digestion reactions. The positive clones were sequenced and results 

were aligned with CLC software with the AGG2 gene sequence in literature. The score of 

alignment is high enough to verify that the gene has been inserted to the pMCSG-7 plasmid. 

Sequencing result is given in Appendix XX. 
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3.3. Gene Expression & Growth Curve 

Gene expression and synthesis of AGG2 protein were investigated by obtaining growth 

curves and total protein extracts from both untransformed and transformed TOP10. Samples 

were taken every 40 min, starting by addition of 1 mM IPTG for induction at t=0, and the 

OD600 values were measured for induced and non-induced cells. A typical growth curve can 

be seen in figure 3.9.  
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Figure 3.9 Growth Curve of native and transformed TOP 10 cells with PMCSG-7 Construct 

 The difference between the induced and non-induced samples can be readily seen and 

it is clear that expression of AGG2 hinders the growth of cells. Part of the cells taken for 

OD600 measurements were pelleted and analysed by SDS-PAGE on 12% polyacrylamide 

gels. The expression profiles of AGG2 can be seen in figure 3.10.  
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Figure 3.10 SDS-PAGE analysis of samples from 250 minute of AGG2 induction.  A sample 

from non-induced cells is also shown as control. 

 A band slightly above the 18.4 kDa band of the ladder is visible for the induced 

samples, corresponding to recombinant AGG2. The band appears to be weak due to small 

amount of lysed cells and because no extra effort was made to purify the protein at this point. 

3.4. AGG2 Protein Purification 

A general scheme for purification of AGG2, detailed in figure 3.11, was applied for  

constructs of pQE80-L, pETM-41 and pMCSG-7.  
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Figure 3.11 The scheme for AGG2 purification. Two alternative paths were followed: 

biophysical studies were conducted either after ion exchange chromatography or size 

exclusion chromatography. 

Growth of cells used for overexpression of AGG2 was tried both in Terrific broth (TB) 

and Lucius Broth (LB). As expected, use of TB yields much higher biomass than LB, and it 

was used for cell growth for AGG2 purification.  

Purification of the proteins was achieved as summarized in figure 3.11. We conducted 

biophysical characterization of the protein that was purified by both procedures. The results 

presented in this thesis are obtained using AGG2 purified following the second path.  
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3.4.1. Nickel Affinity Chromatography of AGG2 

Initial crude purification of AGG2 was achieved by making use of the His-tag 

introduced to the protein by the cloning vectors. The lysate was directly applied to the 5 ml 

HisTrap affinity chromatography column (GE Lifesciences) and using the AKTA PRIME 

system (Amersham) 50 ml cleared lysate could be loaded on the column in one step with the 

help of 50 ml superloop. Elution profiles of the AGG2 proteins (from different constructs) 

from the column with imidazole gradients are shown in figure 3.12.  
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Figure 3.12 Nickel affinity column fractionation of recombinant AGG2 proteins. A) from 

pETM-41; B) from pQE80-L; C) from pMCSG-7 constructs. The numbers correspond to the 

pools that are loaded to the SDS-PAGE. 

 Before proceeding, fractions were pooled yielding on the average a total of about 7 ml 

of crude AGG2 preparation. Protein concentration could not be determined because of the 

imidazole in the elution buffer, which absorbs light at 280 nm and interferes with the protein 
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measurements. AGG2 concentrations were estimated by the thickness of bands seen by SDS-

PAGE analyses as shown in figure 3.13.  

 

Figure 3.13 Results of SDS-PAGE analysis of HisTrap AGG2 Pools. The gels were 

Coomassie Stained. 1- from pQE-80 construct;  2- from pMCSG -7 construct; 3- from pETM-

41 construct 

 The purification procedure was identical for all three constructs but as can be seen 

from the chromatogram and the SDS-PAGE results, AGG2 from the pETM-41 appears to be 

more contaminated. The only peak comes at a level of gradient that does not correspond to 

AGG2 elution position in the other chromatograms. As can be seen from figure 3.13, there are 

more contaminating bands on the gel compared to protein obtained from the other two 

constructs. There appears to be a band which can correspond to AGG2, but if we consider that 

the samples loaded in lanes 1 and 2 are 1/5 times diluted, the low level of protein synthesis 

with pETM-41 construct becomes more obvious. Based on these results it was decided not use 

AGG2 expressed from the pETM-41 construct for further analyses. 

From now on, the recombinant protein expressed with the pMCSG-7 vector will be 

denoted as AGG2 and the protein expressed with pQE80-L plasmid will be denoted as 

AGG2*.  

3.4.2. Ion Exchange Chromatography of AGG2 

Imidazole was eliminated from the AGG2 pools by dialysis and concentration of 

protein solutions were calculated for loading on ion exchange chromatography columns. It 

was found that the optimum load was about 20 mg total for both proteins. A 5 ml QTrap Ion 

exchange chromatography column (GE Lifesciences) was used and proteins were eluted with 
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a NaCl gradient as described in the section 2.2.3.2. The elution profiles for both recombinant 

proteins are shown in the figure 3.14.  
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Figure 3.14 Ion Exchange Chromatography Elution Profiles of AGG2.  Left – AGG2, right – 

AGG2*. 

Initially the two peaks observed in each of the ion exchange chromatograms were 

pooled individually, however, observations on numerous purifications showed that the 

fractions in these peaks display very similar biophysical properties (data not shown). It was 

subsequently decided to pool all fractions together to obtain a total of about 7 ml protein. 

 The pooled samples were analyzed by SDS-PAGE and the quality and dispersity 

levels of the proteins are checked in figure 3.14.  

 

Figure 3.15 SDS-PAGE Results of Ion Exchange purified AGG2 Pools (Coomassie Stained) 

(1 – AGG2, 2 – AGG2*) 
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 The pooled samples were dialysed against Hepes buffer (section 2.1.6.) and final 

concentration of AGG2 in in the pools were in the range 3 to 5 mg/ml. Proteins were loaded 

on gels after 5-fold dilution to have better visualization of bands. Overloading created crown 

like smears on gels and prevented the visualization of any other band within the samples. 

Dialysed protein was directly transferred to the Size Exclusion Chromatography step.  

3.4.3. Size Exclusion Chromatography 

Proteins were eluted from the ion exchange column in app 400 mM NaCl. In order to 

transfer AGG2 pool into size exclusion chromatography (SEC) buffer, an o/n dialysis was 

performed and concentrations of collected samples were calculated. The HiLoad 16/60 

Superdex 75pg size exclusion chromatography column (GE Lifesciences) yielded better 

separation when the total load was kept at around 10 mg AGG2 and the elution profiles of 

SEC are shown in the figure 3.16. As can be seen from these elution patterns, AGG2 peaks 

were obtained at 48 ml and 58 ml and AGG2* peak was observed at 59 ml. Corresponding 

molecular weights for the proteins are calculated from calibration curves using the equation 

detailed in 2.2.3.3. (Aydin, 2011).  
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Figure 3.16 Elution profile of Size Exclusion Chromatography (Left: AGG2*, MW: 43 kDa) 

(Right: AGG2, left peak MW: 87 kDa, right peak MW: 46 kDa) Homogeneity in terms of 

contaminating proteins and polydispersity of oligomeric state were checked by analysing the 

samples by 12 % SDS-PAGE, by Western Blotting with RGS-6His antibody (Invitrogen) and 

by 8% Native – PAGE analysis as shown in figure 3.17. 
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Figure 3.17 A: SDS-PAGE analysis results of Size Exclusion Chromatography peaks. 1- 

AGG2, 2 AGG2*, 3 Western blot of AGG2* B: Native Gel analysis for Size Exclusion 

Chromatography peaks; 1 AGG2*, 2 AGG2 left peak, 3 AGG2 right peak 

After SEC AGG2 pool had a concentration around 1.2 mg/ml and that for AGG2* was 

around 2 mg/ml. The sample visualized in western blotting and the samples loaded on Native 

–PAGE were adjusted to have a concentration of 1mg/ml (10 μl were loaded on the wells). 

The buffer of AGG2* purification contained 1 mM DTT; whereas DTT was omitted from the 

buffer of AGG2. The elution volume of AGG2* is close to that of the second peak of the 

AGG2. This indicated that DTT influenced the oligomeric state of the protein and this effect 

was further investigated.  

3.4.4. Comparative Analysis of AGG2 and AGG2* 

Comparative studies were conducted to investigate biophysical characteristics of the 

purified proteins after size exclusion chromatography using Dynamic Light Scattering (DLS), 

Small Angle X-Ray Scattering (SAXS) and Circular Dichroism (CD).  

A comparison of results, given in figure 3.18, shows that the secondary structure 

distribution of two proteins is highly similar. However, DLS results indicate a clear difference 

in the hydrodynamic radii for AGG2 and AGG2, consistent with the findings from SEC.   

A B 
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Figure 3.18 Results of DLS and CD measurements on AGG2* (top) and AGG2 

(bottom) 

Results of these measurements are summarized in table 3.1. This table does not 

include SAXS measurements for AGG2 samples because we did not get beamtime after we 

produced this recombinant protein. Furthermore, all results for AGG2 are obtained from the 

first peak of the size exclusion elution; the results of the second peak are quite close to the 

results of AGG2* and they are not shown.  Results of CD measurements show that there is a 

small difference between AGG2 and AGG2* in the α-helical content. This may be significant 

since AGG2 structure consists of two α-helical domains. DLS results, on the other hand, show 

that there is a clear size difference between the two proteins.   
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SAXS 

(AGG2* only) 

Rg (nm) 3,53 

 I(0) 29,89 

 DMAX (nm) 12,4 

 Mass (kDa) 34 

DLS 

AGG2 

RH (nm) 5,78 

Std. Dev. 1,41 

Polydispersity 28% 

AGG2* 

RH (nm) 4,73 

Std. Dev. 1,35 

Polydispersity 28% 

CD 

AGG2 

Alpha Helix (%) 37,5 

Beta Sheet (%) 13 

Other (%) 48,3 

AGG2* 

Alpha Helix (%) 40,6 

Beta Sheet (%) 13,7 

Other (%) 44,2 

 

Table 3.1 AGG2 Structural Characterization after Size Exclusion Chromatography 

 Having established that presence of DTT influences the oligomeric state of the protein 

in solution a systematic study of this effect was conducted.  

3.5. DTT Effect on the Oligomeric State of the Protein  

DTT effect is investigated with SAXS, CD, DLS and PAGE methods. The protein 

concentration is adjusted to be 1mg/ml for all the measurements and the concentration of the 

DTT is adjusted to be 0, 0.1, 0.3, 0.5, 1 or 5 mM in the protein solution. No other chemicals 

are added.  

3.5.1. SAXS Measurements 

The effect of DTT on the purified protein was first investigated by SAXS measurements 

at the X33 SAXS beamline of EMBL Outstation in DESY, Hamburg. AGG2* was purified at 

Sabanci University and samples were taken to the synchrotron for measurements.  Figure 3.19 
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displays the scattering patterns taken at different DTT concentrations. The gradual change in 

I(0) values, which are correlated with the scattering mass, indicates a change in the mass of 

protein as a function of DTT concentration. Similarly, as can be seen from figure 3.19 B, the 

radii of gyration get smaller as DTT concentration increases. 

 

Figure 3.19 Dependence of the X-ray scattering from 1.2 mg/ml AGG2 on the DTT 

concentration in the buffers. (A) SAXS curves. 1: no DTT, 2: 0.1 mM, 3: 0.3 mM, 4: 0.5 mM, 

5: 1 mM, 6: 3 mM, 7: 5 mM, 8: 10 mM, 9: 30 mM); (B) Dependence of the radius of gyration 

Rg and the forward scattering intensity I(0) on the DTT concentration. 

 The change in oligomaric state of AGG2 has been also shown by comparative Rg and 

Molecular Mass (derived from I(0)) values of SAXS data. The transition is shown as in 

tetramer – dimer percentage shift in solution in table 3.2: 

 

Table 3.2 Oligomeric state transition shown as tetramer – dimer percentages  

A B 



57 

 

The ratio of tetramer is observed to be 100% when there is no DTT in the solution, and 

the dimer is 100% in solution when DTT concentration is highly excess (30mM DTT).  

SAXS curves were used to develop ab initio shape models for the various states of the 

protein in solution. Using modeling algorithms DAMMIN and GASBOR the likely shapes 

which would give rise to the observed scattering were calculated and the convergence of these 

models were established using the averaging algorithm DAMAVER. DAMMIN and 

GASBOR calculations gave converging models and those obtained with DAMAVER are 

-subunit 

of transducin of mammalian cells (PDB: 1TBG), the green protein is the AGG2 with 1 mM 

DTT and the blue protein is AGG2 with no DTT in the buffer: 

 

Figure 3.20. Averaged ab initio models of the no DTT 

containing (green) and 1 mM DTT containing (blue) AGG2 

compared with the monomeric structure (red) extracted 

from the crystal structure of a G-protein beta gamma dimer 

(PDB code: 1TBG) 

 Model structures appear to be consistent with one 

another: the model structure shown in green corresponds to 

a protein which is twice as large as that shown in red and the structure shown in blue seems to 

contain two of the models shown in green attached from their ends. The model shown in red 

is simply a monomer. It is possible to conclude that the model shown in green is a dimer and 

the model in blue is a tetramer of the AGG2 protein. This finding is further investigated with 

DLS and CD methods.  

3.5.2. CD Measurements 

CD measurements provide information on the type and amount of secondary structure 

elements for biological macromolecules. Results can be quantified through comparison with 

known structures in databanks. CD profiles of AGG2 containing varying amounts of DTT are 

given in figure 3.21.  
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Figure 3.21 CD Spectra of DTT Concentration Series of AGG2 (left AGG2*, right AGG2) 

 Features of these spectra i.e. the minimum band at about 210(-) nm and the hump 

between 210(-) and 220(-) nm are typical features for -helical structures and confirm that our 

recombinant AGG2 protein posses the native fold. There is an upwards shift in the plots with 

increasing amount of DTT in the protein solution. The effect of this upward shift is related to 

the secondary structure of the protein, especially the alpha helix content which is further 

analyzed in table 3.2.  

 

3.5.3. DLS Measurements 

DLS measurements yield information about size and polydispersity of particles in a 

solution. In particular, size distribution as a function of scattered intensity is sensitive to the 

larger particles in solution. As can be seen from figure 3.22, change in the protein size as a 

function of DTT concentration is clear.  
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 Figure 3.22 DLS measurements of change in size of AGG as a function of DTT 

concentration. Left AGG2*, Right AGG2 

Hydrodynamic radii change as a function of DTT but RH is not halved between 0 mM 

DTT and 5 mM DTT. This is partly due to the polydispersity in the solution and co-existence 

of multiple levels of oligomerization in solution. Another factor contributing to this 

observation is the assumption of scattering from spherical particles for calculation of RH. The 

structure of AGG2 is known to be elongated (Clapham D. E., 1997).  

3.5.4. PAGE Analysis of DTT Treated AGG2 

The proteins were run on both SDS and Native Page. Protein oligomeric state is 

clearly visible in Native PAGE. SDS was run to see the protein when denatured and also to 

observe and prove the protein existence with Western blotting. All the samples were loaded 

1mg/ml into the wells.  
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Figure 3.23 Coomasie Stained Native – PAGE for DTT Concentration Series of AGG2 (left: AGG2*, 

right: AGG2) 

 In the figure 3.23, the effect of DTT on AGG2 is clearly visible; with increasing amount of DTT, 

the protein goes through a transition of tetramer to dimer. The exact oligomeric state of the protein with 

these gel photos is not clear because sizes of proteins run on native gels can‟t be determined, but the size 

transition of AGG2 is visible, assuming migration of the protein on native gel is dependent on its size. 

The pixel calculation for AGG2* by the Discovery software shows that the percentage of the tetrameric 

form in 0.1 mM DTT is app. 30% and, in 0.3 mM DTT around 15% and for the higher DTT 

concentrations, the bigger protein fraction is almost gone at all. For AGG2, the tetramer is app 20 % in 

0.1 mM DTT and 8 % for 0.3 mM DTT containing samples. The conversion of tetramer to dimer is 

faster for AGG2 samples than AGG2*.  

 The figure below belongs to a Western blotting film. The antibody used is RGS-6His antibody 

(Invitrogen) and the blotted protein is AGG2*. The transition here is also visible with SDS because in 

this particular gel, the protein samples were not denatured. When the samples were loaded to the gel 

after a denaturing process with DTT, β- Mercaptoethanol and heating, no oligomeric state difference 

between the DTT series samples were observed. The western blotting of AGG2 could not be retrieved, 

which will be discussed later.  

 

Figure 3.24 Western Blot Results of DTT Concentration Series of AGG2  
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 A summary of all the results obtained from all the methods is listed in the table 3.2: 

 

 

Table 3.2 Effect of DTT on the oligomeric state of AGG2 

 SAXS measurements clearly state that the protein is shifting its oligomeric form from 

tetramer to dimer. This conclusion is based on the fact that the MM and the radii of gyration 

change accordingly. DLS measurements also show the state of change via values of the 

hydrodynamic radius. Both AGG2 and AGG2* show a decrease in hydrodynamic radius of 

the protein. The standard deviation also shows that proteins are not in a highly polydisperse 

oligomeric state. Hydrodynamic radius change for AGG2 is not a drastic as AGG2* and the 

standard deviation values are a bit higher. CD spectropolarimetry results show a less dramatic 

    

0mM 

DTT 0.1 mM 0.3 mM 0.5 mM 1 mM 5 mM 

 

SAXS 

(AGG2*) 

Rg (nm) 4,18 3,87 3,74 3,41 3,32 3,25 

 I(0) 55,09 39,84 35,76 27,37 26,27 24,37 

 DMAX (nm) 14,6 13,6 13,1 11,9 10,9 10,9 

 Mass (kDa) 62 45 40 31 30 27 

DLS 

AGG2* 

RH (nm) 5,26 5,85 4,84 4,53 4,11 Noisy 

Std. Dev. 0,947 0,874 1,15 0,834 0,546 Noisy 

Polydispersity(%) 18,0 14,9 23,8 18,4 13,3 Noisy 

AGG2 

RH (nm) 5,82 5,32 4,92 4,4 4,41 4,37 

Std. Dev. 1,45 1,4 1,26 1,2 1,23 0,954 

Polydispersity (%) 24,9 26,3 25,6 27,3 27,9 21,8 

CD 

AGG2* 

Alpha Helix (%) 41,5 42,3 45 36,7 38 32,2 

Beta Sheet (%) 13,4 13,1 12,1 15,1 14,8 17,5 

Other (%) 43,6 43 41,1 46,9 46,2 51 

AGG2 

Alpha Helix (%) 47,2 46,8 42,9 44,7 41,9 40,7 

Beta Sheet (%) 11,7 12,4 12,2 11,9 13,1 12,8 

Other (%) 39,8 38,6 41,9 41,6 45,7 45,2 
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change in the secondary structure of the protein. The alpha helical content of AGG2* shows a 

10% varience and AGG2 shows an approximate 7% change. There is no major change in beta 

sheet content which is expected because these proteins do not contain any beta sheet structure.  

3.6. Effect of Protein Concentration of AGG2 

It is a known experimental fact that when the protein is highly concentrated, there is a 

tendency for aggregation. Thus, the effect of concentration on the oligomeric state of the protein 

was inspected for AGG2.  

3.6.1. SAXS Measurements 

The protein was concentrated with Protein Concentrators (Millipore) up to 5mg/ml 

and the measurements were done for varying concentrations with both no DTT and 1 mM 

DTT environment shown in figure 3.25.  

 

Figure 3.25 Dependence of radius of gyration (Rg) on the AGG2 concentration in different 

buffers with 1mM DTT (filled dot) and without DTT (empty dot). 

 The radius of gyration of the protein increases with increasing concentration of the 

protein. The change is even better visualized with no DTT containing environment. The effect 

can be caused by both the increasing concentration of the protein or the process of 

concentrating the protein (like concentration by centrifugation, etc). Either way, the effect is 

more readily observed when there is no DTT in solution.  

 Protein buffers contained no DTT for all the following biophysical experiments on the 

concentration series of AGG2 and AGG2*.  



63 

 

3.6.2. CD Measurements 

For CD measurements, just like SAXS, the protein is concentrated and measurements 

were done by the diluted samples to have a concentration series. The concentrations of the 

samples are given in the legend of the figure 3.26 below:  
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Figure 3.26 CD Spectra of DTT Concentration Series of AGG2 (left AGG2*, right AGG2) 

 The change in the spectra of the protein is directly caused by the concentration 

difference of the protein because when the spectra are normalized with respect to 

concentration no major difference between the curves is observed (data not shown). The 

shape of the plots and the percentages of the secondary structure of samples show a high 

correlation to the 0 mM DTT containing sample readings in DTT concentration series 

experiments.  

3.6.3. DLS Measurements 

The procedure is the same for the DLS measurements also. The intensity graphs of 

varying protein concentration samples are plotted together in figure 3.27.  
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Figure 3.27 DLS Intensity Graph for Protein concentration series of AGG2 

 DLS measurements show that at 4.76 mg/ml, RH is slightly larger than the other readings, 

this is likely to be due to the aggregation occurring within the sample. AGG2* readings show no 

difference (data not shown). Hydrodynamic radius of the samples show a very high correlation to 

the 0 mM DTT readings on DTT concentration series experiments detailed in above sections, which 

is approximately 5.2 nm.  

3.6.4. Native – PAGE Results 

Concentrated samples were loaded to 8% native gels directly to see the effect of the 

concentration of the protein. The figure 3.28 below shows that there is no difference among the 

samples except for the thickness of the bands which is basically caused by the concentration 

difference of the loaded samples.  

 

Figure 3.28 Coomasie stained Native –PAGE Results of Protein Concentration Series (left: 

AGG2*, right: AGG2) 
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The thicknesses of the bands are correlated with the concentrations of the loaded samples. The 

pixel calculation by the Discovery software verifies the fact. Additionally, two bands are observed 

just very similar to the results obtained in DTT series experiments. The percentages of the bands are 

also correlated.  

3.7. Homology Modelling of AGG2 

Homology modeling was pursued to obtain the structure AGG2 based on information on the  

structure of the mammalian g-subunit and also to investigate if the results of the ab initio models 

based on SAXS measurements were consistent with the known structure. Alignment of amino acid 

sequence of AGG2 with the γ subunit of transducin (1TBG) is the first step for homology modeling: 

Figure 3.29 Alignment of AGG2 amino acid sequence with that of gamma subunit of transducin 

(PDB: 1TBG)  

 The alpha helical region of transducin gamma subunit and AGG2 are aligned successfully. 

The overall protein conformation and secondary structure localization is very close to transducin 

subunit.  

 The alignment was loaded to Modeller program (Eswar, 2006) and a structure that has a long 

loop in the N-terminus and in C-terminus was obtained. The long loop in N-terminus is a result of 

the tag region of the protein introduced in the construct for purification reasons and the C-terminus 

loop is caused by the non-aligned region of AGG2 with transducin counterpart. The protein 

sequence was also uploaded to I-TASSER server to get a second ab initio model, but this model 

tried to compact the structure into a more condense state by adding additional alpha helices and beta 

sheets:  
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Figure 3.30 Homology Modelling of AGG2 by MODELLER program (left) and Ab Initio modeling 

of AGG2 of by the I-TASSER Server (right) 

 The biophysical characterization had shown that the protein is in dimer form. This was also 

applied to the model calculations and the protein was docked to itself by the GrammX and I-Tasser 

servers. Both docking processes were done as a self-alignment: 

 

 

Figure 3.31 Protein Docking Server Results for the dimerization of AGG2 (Left: with Grammx 

server, Right: with I-Tasser server) 

 The docking obtained by the servers and the ab initio modeling by SAXS (with 1 mM DTT) 

were overlapped to see if any similarity occurs. The Grammx server result fit quite well with the 

SAXS results: 
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Figure 3.32 Overlap of GrammX docking result with ab initio modeling of SAXS measurement 

(1mM DTT) 

 A complete overlap is not observed most probably because of the loop regions in N and C 

termini, but the level of similarity is satisfactory. Verification of the structure similarity was done 

with CRYSOL software which fits the experimental curve to the theoretical scattering plot of the 

docking model of AGG2. The overlap between the curves can be seen in figure 3.33. 
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Figure 3.33 Overlapping the result obtained from the CRYSOL software and the data obtained 

from SAXS Measurement. 
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3.8. Crystallization of AGG2 

Sample from the purified AGG2 protein was sent to EMBL Hamburg crystallization facility to 

screen a wide range of conditions for crystallization. The robotic system prepared the samples with 

various crystallization kits and with conditions that contained 0.3 M Na2SO2 + 20% PEG 3350, as 

can be seen in figure 3.34, some crystals formed. Whether they are salt crystals or actual crystals of 

AGG2 are going to be tested. 

 

Figure 3.34 Picture taken by the robotic system at EMBL Hamburg PETRA crystallization facility, 

showing the crystals from an AGG2 solution.  
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4. DISCUSSION 

 

4.1. AGG2 Cloning, expression and purification 

In our lab AGG2 gene, purchased from TAIR, had already been cloned to the pQE80-L 

(Kaplan, 2009) and expressed for purification of the synthesized protein. Preliminary 

biophysical characterization studies had been conducted on this protein. However, sequencing 

had shown that the gene contained coding for additional 11 amino acids attached to the N-

terminus. Although this did not hinder expression and purification and the protein was 

observable with the western blotting, the influence of additional amino acids on the three 

dimensional structure of the protein was unknown. Moreover pQE80-L plasmid did not 

contain a cleavage site for removal of the His tag from the recombinant protein. It was, 

therefore, decided to investigate utilization of new systems for heterologous expression of the 

AGG2 gene and biophysical characterization of the recombinant protein. It is also interesting 

to note that although the first report of the A. thaliana α-subunit appeared in 2001 (Mason et 

al., 2001), there has been no detailed biochemical or biophysical characterization studies on 

this protein. This lack of information led us to suspect unstability of the protein under 

heterologous synthesis conditions. We explored more than one expression system for AGG2 

in case instability problem occurred when AGG2 is expressed on its own without the beta 

subunit which is its native partner. 

The two new plasmids we utilized were pMCSG-7 and pETM-41. The former contained 

a 6 histidine (6His)-tag and a cleavage site for Tobacco Etch Virus (TEV) protease enzyme 

(Kapust RB., 2002) allowing the removal of the tag after purification to yield the native 

protein. Cloning of the gene using pETM-41 plasmid, which contains Maltose Binding 

Protein (MBP) as a tag as well as the 6His tag, allows the recombinant protein to be purified 

using amylose resin for affinity chromatography.  

The three constructs: pMCSG-7, pQE80-L and pETM-41 were all used in studies of 

AGG2 gene expression in E. coli TOP10 cells and growth curves and gene expressions were 

obtained under identical conditions. Cultures were initially grown in LB medium, but 50% 
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better protein yield was obtained from 2 L cultures in TB. In TB, biomass was 2 times higher 

compared to LB.  Protein yield was around 9 mg from LB grown and about 27 mg from TB 

cultures. It appears that TB affected not only biomass but also the level of expression in 

TOP10 cells. 

As explained in chapter 3 purification of AGG2 was pursued using the pMCSG-7 

(AGG2) and pQE80-L (AGG2*) constructs, which yielded very similar elution patterns from 

Ni-affinity column. At the first step of purification the inefficiency of the pETM-41 construct 

was observed Expression of the fusion protein MBP-AGG2 appeared to be very low. The only 

peak in the chromatogram, which is observed in all constructs, contained E. coli Ef-Tu protein 

which is involved in translation. Recombinant AGG2 synthesis was so low that it could not be 

detected even by western blotting after collecting the elution fractions of affinity 

chromatogram (data not shown). One band in the SDS-PAGE analysis may have 

corresponded to but even this was questionable. Since DNA sequencing showed the presence 

of AGG2 in the construct, reasons for not being able to detect the recombinant protein may lie 

either at the level of expression or at the level of synthesis and stability of the recombinant 

protein. It appears that the problem lies at the latter phase and possible reasons for problems 

with this construct may be the presence of MBP, which may hinder folding and rapid 

proteolysis may occur due to improper folding. There may also be targeting of the 

recombinant protein into inclusion bodies. This possibility was not checked since expression 

with the other constructs was satisfactory. It is also interesting that even the MBP on its own 

is not observed on the gel or with the western blotting. Here the protein was labeled with anti-

his antibodies and the his-tag is located upstream of MBP and should not be affected by the 

condition of AGG2. As a conclusion, AGG2 could not be detected from the pETM-41 

construct and although we made some attempts to see if we could improve expression 

eventually we decided that focusing on the other two constructs will be more efficient use of 

time.    

SDS-PAGE analysis results of the protein from pMCSG-7 and pQE80-L constructs 

are very similar and show that proteins are homogeneous. The protein expression level is very 

satisfactory l: the samples loaded to the gel are diluted 5 times (Figure 3.13). As can be seen 

from figure 3.13, affinity chromatography still left behind some contaminating factors and 

attempts were made to further purify proteins by ion exchange and size exclusion 

chromatography. The buffer of samples from affinity chromatography was exchanged with 
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Tris buffer pH 8.0 facilitate negative charging for anion exchange chromatography.. The 

reason behind is the fact that the AGG2 construct contained 6His tag which is highly positive 

which can bind to negatively charged resin. A comparison of the elution profiles shows that 

AGG2* from the pQE80-L construct is eluted at a lower NaCl concentration compared to 

AGG2. The existence of additional arginine, glycine and serine residues upstream of 6His tag 

may be involved in this behavior resulting in weaker binding of the protein to the negatively 

charged resin. It is seen, however, from SDS – PAGE results of the eluates that the two 

proteins are not different.  

SEC was used to assess molecular mass of purified proteins independently from SDS-

PAGE analyses, to monitor polydispersity in protein solutions and to analyze co-existing 

oligomeric forms.Protein concentrations of the samples were always measured before loading 

to the Superdex 16/60 column (GE Lifesciences). When overloaded with high concentration 

of proteins, the column loses its ability to clearly resolve proteins that differ in size. The 

system was run at 1ml/min speed to enhance the column‟s ability to separate proteins.  

DTT was omitted from AGG2 protein solutions and from the buffers used for running 

the column. Under this condition the elution profile displayed two peaks (figure 3.16 right). 

The elution profile of AGG2*, on the other hand, contained only one peak(figure 3.16 leftt). 

The second peak of AGG2 is eluted in the same elution volume range as AGG2*, indicating 

that the proteins have similar masses, but in this chromatogram an additional bigger protein 

was also observed. The only difference between the two purifications is DTT in the buffer. 

DTT is known for its strong reducing capability of cysteine residues, breaking disulfide 

bonds. DTT is used to inhibit aggregation of proteins, because when exposed to outer surface, 

cysteine residues tend to form disulfide bridges establishing aggregates, and DTT reduces this 

phenomenon (Cleland W.W., 1964). SDS-PAGE analyses reveal AGG2* as a single band 

indicating a direct effect of DTT on the oligomeric state of the protein. Analyses showed that, 

the first peak in the AGG2 elution profile corresponds to a mass of 87 kDa and the second 

peak to 46 kDa. The molecular masses calculated from the elution volumes are not exactly 

two-fold, but a crude approximation can be made to confirm that the first protein is two times 

larger than the second one.  The situation observed in SEC is also validated by Native-PAGE. 

In figure 3.17b, the comparison of AGG2 first and second peaks show a difference in the 

electrophoretic behavior size of the protein.  
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We came across another unusual observation with AGG2: no visible bands were 

observed in the western blots. This phenomenon occurred regardless of the step of 

purification: nickel affinity, ion exchange and size exclusion. RGS-6His antibody (Invitrogen) 

is used for AGG2* blotting and as seen in figure 3.17, the band is thick and visible. For 

AGG2 blots the 6His antibody (Roche) is used and no bands can be visualized.  In control 

experiments, the same antibody was used for labeling the β subunit of G protein, AGB1, 

which was obtained from a pMCSG-7+AGB1 construct and the result was positive. It was 

thus clear that there was no problem with the antibody. Additionally, when AGG2* obtained 

from pQE80-L construct is blotted with 6His antibody, the bands are visible (data not shown). 

It appears that this anomaly may be due to interaction of His amino acids with the residues of 

AGG2 and not being available for antibody binding. However, it is still puzzling that 6 His 

residues are available to interact with the affinity column but not with the antibody. On the 

other hand, it is observed that no other difference occurs between AGG2 & AGG2*, so the 

problem should not arise from the different tag regions ligated to the proteins.   

4.1.1. Biophysical characterization of the gamma subunit and its oligomeric 

forms  

Results from SAXS measurements with AGG2* in 1mM DTT containing buffer 

yielded a molecular mass that is 3 times that of the monomer, indicating a mixture of 

tetramers and dimers in solution. 

DLS results, obtained for the first peak of AGG2 and AGG2* indicated that the former 

appears as a much larger protein than the latter. For both measurements, the hydrodynamic 

radii of the proteins are larger than expected; a mass of app. 80 kDa is obtained for AGG2*, 

which is unexpected comparing to the other results obtained by other characterization 

methods. The reason behind this is the assumption of spherical shape, used by the software, 

for all proteins. This software determines the largest dimension of the particle in solution, and 

even if the particle is rod-shaped, it calculates a molecular mass assuming that the particle is 

spherical thus adding mass to a volume which does not belong to the particle. This yields a 

mass value which is much larger what is expected.  

Differences in the features of CD spectra for the two proteins are not drastic, but still 

obvious. Presence of DTT results in 2.5 % increase in alpha helical content and 4% decrease 

in unstructured regions. The software tries to fit the data into a structure that contains all 
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structural elements. CD Deconvolution softwares compare spectra of proteins with known 

structures with that of experimental data. For AGG2, inevitably, the software inserts a certain 

ratio of beta-sheet to the overall percentage. The spectropolarimetry measurements are 

deviated by the unstructured regions of the proteins, so this may be the reason for the software 

to add a certain ratio of beta-sheet structure to the overall percentage.  

4.2. DTT Effect on the Oligomeric State of AGG2 

Differences in biophysical characteristics of samples with and withoutDTT led to 

investigation of effects of varying concentrations of DTT on the protein structure. Proteins 

were purified either with 1 mM (AGG2*) or 0 mM DTT (AGG2). When effects of DTT were 

investigated in detail, a range of buffers also containing 0.1, 0.3, and 0,5 mM DTT were 

prepared and proteins were incubated in these conditions. 

Increasing DTT in the solution decreases the radius of gyration and the mass of the 

protein calculated from the extrapolated I(0) values. A dramatic change is observed by 

comparison of results of 0 mM with 0.1 mM DTT and 0.3 mM with 0.5 mM DTT (figure 

3.19). The initial addition of DTT initiates breakdown of the oligomeric state of AGG2 

proteins, and the second high level of change, between 0.3 – 0.5 mM DTT, shows a saturation 

point of the protein with DTT. The change level is lower between 0.5 – 1 and approximately 

no change is observed between 1 – 3 mM DTT. The saturation point among the concentration 

values of DTT seems to be 1mM DTT.  

Ab initio shape models of the protein based on SAXS data show good agreement with 

the structure of gamma subunit of transducin obtained from crystal structure analyses. Both 

ab initio models from SAXS yield structures that are bigger than the results from crystal 

structure; this is expected since SAXS models define an outer envelope of the protein and fills 

inside with decoy residues. On the other hand, the crystal results define precise amino acid 

residues and exact 3-D structure of a protein is formed. Thus, the thickness and low resolution 

of SAXS measurement modelings are in the scope of the technique.  

Studies of structural changes and oligomeric state of AGG2 as a function of increasing 

DTT concentration using CD indicates that the decrease in the alpha helical content and 

increase in unstructured regions may be a sign of the protein becoming more disordered as the 

oligomeric state changes from tetrameric to dimeric form. It appears that the tetrameric form  

is  more condensed. In the oligomeric state, the monomers are expected to interact either from 
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the N-terminus or C-terminus. In AGG2 both ends have unstructured loops, so the interaction 

of dimers can hide the loops to have a more stable state. New alpha helical content may not 

occur, but the hiding of unstructured region may hinder detection of the unstructured regions 

and the oligomers may be more compact.  

Measurements with blanks showed that the differences observed in CD spectra were 

not due to the presence of DTT in the buffers, but differences exist in the secondary structure 

content structures of AGG2 and AGG2. The alpha helical content of the AGG2 is higher than 

that of AGG2* and the opposite trend is observed for the unstructured regions. The higher 

percentage of unstructured region for AGG2* is likely to be due to the additional 11 amino 

acids in the C-terminus of the protein (G T P G R P A A K L N) added to the protein from the 

pQE80-L plasmid. 11 amino acids constitute around 11% of AGG2*, which is equal to the 

percentage variance between AGG2 and AGG2*.   

Changes in protein structure with increasing DTT concentration were also detected in 

the DLS measurements. Here too increasing concentrations of DTT resulted in reduction in 

the size of the protein which is measured in terms of hydrodynamic radii. AGG2 is an 

elongated protein, so the decrease in size detected by DLS measurements is another sign that 

the protein is forming the tetramer by interaction of N or C termini. If the protein would 

interact from the middle regions, then the radius would not be affected in a drastic way. If the 

radius is decreasing, this should simply mean that dimers are detaching from the N or C 

termini when the tetramer decomposes. Changes in radii of protein molecules monitored by 

SAXS and DLS are consistent with each other; both measurements show 23 % radius change 

from 0 mM DTT to 5 mM  DTT containing solutions.  

Differences between the DLS measurements carried out with AGG2 and AGG2* are 

observable just like CD results. Although the number of residues is less, AGG2 seems to be 

larger than AGG2* for all the DTT concentration measurements.  The reason behind this size 

difference opposite to what is expected, is not very clear, but based on CD results, one 

explanation may be  that the additional 11 amino acids residues in the C-terminus of AGG2* 

makes the protein more compact and ordered. The additional residues, like the 6 His tag, 

introduce excess positive charge. The positive charges of two termini may force the protein 

into a more compact structure. So the size of AGG2* can be smaller than AGG2. One other 

http://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.32165,1,1
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aspect may be the high polydispersity level of AGG2 DLS readings. The results may in fact 

be very similar after all.  

Native-PAGE analysis allows direct monitoring of the oligomeric state change of 

AGG2 and AGG2* albeit due to lack of a reliable method for MM determination from native-

PAGE, exact oligomeric state cannot be determined from the gels. This method also shows 

that the changes are more drastic in the transitions 0 – 0.1 mM and 0.3 – 0.5 mM DTT. The 

results correlate with those from SAXS measurements discussed above. There seems to be no 

variance between AGG2 and AGG2* bands in gels. The shift is clearly observed between the 

two proteins.  

The bands observed in the western blotting are similar to the results obtained in Native-

PAGE analyses. Although the western blot samples were not denatured for loading, the 

change observed is not as clear as in Native PAGE because of the SDS in the gel matrix and 

in the running buffer. No bands were observed for AGG2, as discussed above. Since 

oligomerization may be a consequence of protein concentration this factor was investigated 

for both AGG2 and AGG2*.  

The protein concentration effect is more obvious in SAXS measurements when there is 

no DTT in the environment. This is likely to be due to the tendency of proteins to be in a 

higher oligomeric/aggregated state at high concentration. Radius of gyration change for 1 mM 

DTT containing sample is not large because the oligomeric state of the protein is determined 

to be a dimer and change in protein size should not be observed as drastic as 0 mM DTT 

containing samples.   

CD plots of protein concentration series show large differences. Positions of the peaks 

are identical but the heights are different, and the height is directly proportional to the 

concentration of the protein measured. When the measurements are plotted in units of molar 

ellipticity spectra are normalized with respect to concentration and spectra become identical 

showing that the secondary structure content is independent of protein concentration. There is 

only a slight change in most concentrated protein sample, which is expected because the 

proteins tend to get aggregated when highly concentrated and this may deviate the actual 

measurement results.. 

DLS intensity graphs of the concentration series point to the same conclusions as the 

CD results. Only the highest concentration protein solution gives a somewhat larger 
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hydrodynamic radius which can be caused by protein aggregation. The Native-PAGE results 

of the concentration series also show no major differences among the samples. Taken together 

results show that the concentration has very little effect on the oligomeric state of the protein.  

4.3. Structural Modelling of AGG2 

Two approaches were used to obtain theoretical models for the structure of native 

AGG2. In one approach homology modeling based on transducin structure was pursued. 

Transducin (1TBG) crystal structure has been known for a long time (Sondek J., 1996). So, 

AGG2 protein was aligned to gamma subunit of transducin and the alignment score was good 

enough to continue to modeling except for 2 loops, one in the middle and one near the C-

terminus of the protein. The plant homologs of γ subunits are longer than mammalian 

homologs, so the difference in length should not be a problem for the alignment.  Modeller 

program was used for homology modeling of AGG2 and a structure with only two alpha 

helices and one loop in N terminus and one other in the C terminus was obtained.  

In the alternative approach, AGG2 sequence was uploaded to I-TASSER server to 

obtain an ab initio model.  The model obtained showed four alpha helices and one small beta 

sheet. The structure is highly compact which is unusual for the intrinsic nature of the protein. 

I-TASSER server seems to condense the primary structure of a protein into a very compact 

one. Thus, the I-TASSER model was not further studied.   

All experiments done for AGG2 characterization showed that the protein is in dimeric 

form and it has not been possible to obtain the monomeric form. To understand this situation 

the protein was self-docked and the structure of the dimer was explored. Although several 

structures were obtained only one appeared to be in agreement with the ab initio model 

obtained from SAXS measurements. The agreement of the docked structure with 

experimental data was validated by calculating the scattering pattern from the model. 

The G-protein Gamma subunits are always found as dimers in both plant and 

mammalian cells (Clapham D. E., 1997). The βγ dimer is formed in Golgi Apparatus and then 

placed in the plasma membrane (Kato C., 2004). These facts point out that the gamma subunit 

is never observed as a monomer in the cell membrane. Thus, the protein is not observed as a 

monomer after purification from E.coli as well. No trace of the monomer can be retrieved in 

any stage of the study. Even highly denaturing conditions like 20 min boiling at 100 
o
C, 

addition of 100 mM DTT + 10 μM Betamercaptoethanol could not change the dimeric nature 
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of the protein into monomeric. The absence of any trace of monomer structure after all these 

denaturing conditions shows that the dimer is highly stable. This stability is in agreement with 

studies reported in literature because βγ dimer is found to be localized and replaced from the 

plasma membrane as a dimer (Mason MG., 2001). Gamma subunits are not stable as a 

monomer in any condition in a cell so the presence of the protein ligated to another protein is 

essential for the stability of the protein. This can be the main reason for the high stability of 

the AGG2 as a dimer through all the processes.  

AGG2 contains a CAAX (x: any amino acid) box for isoprenyl modification for 

localization on the plasma membrane (Cook L., 2001). When overexpressed heterologously in 

E coli, the protein cannot undergo post-translational modification and hence does not acquire 

an isoprenyl group. Furthermore it cannot interact with any other proteins to stabilize the 

structure because simply there is no G-protein homolog in prokaryotes (McCudden C.R., 

2005). Thus, in recombinant AGG2 the CAAX box does not interact with isoprenyl for 

membrane localization, leaving the Cys residue available for interactions. The obvious 

candidate may be a similar residue within another AGG2 protein and a disulfide bridge may 

be formed. A disulphide bridge prediction server, DiANNA, predicts that the Cys67 and 

Cys106 have a high probability to form a disulphide bridge but the Cys 108 appears to have 

low probability for disulfide formation. Cys108 is located in the CAAX box. Dimer structure 

obtained from homology modeling shows that the C termini loops of the two monomers form 

an intertwined ball like structure. The CAAX box is located in this structure and it is highly 

likely that Cys108 residues are involved in forming a disulfide bridge which stabilizes this 

structure. This disulfide bridge may be located deep in the intertwined region and may not be 

reachable by reducing agents. This prediction is also supported by finding no traces of 

monomer AGG2 in PAGE, SEC, DLS or SAXS analysis. It is also proposed two dimers may 

interact from their Cys67 residues to form a tetramer as observed when there is no reducing 

agent in the solution. This prediction is based on the tetramer-dimer conversion by reducing 

agents or by denaturation. The interaction of Cys67 does not occur in an end-to-end fashion, 

because DLS and SAXS results do not show a twofold change in radius of AGG2 when DTT 

is added. 
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5. CONCLUSION and Future Works 

 

In this study, AGG2 gene was inserted in to two different plasmids, pMCSG-7 and pETM-

41, successfully for expression, purification and biophysical characterization of the 

recombinant protein. Protein from a previous construct of AGG2 with pQE80-L plasmid was 

also used in characterization studies. High yields, in excess of 9 mg protein/2 L E. coli TOP10 

culture were obtained. Proteins obtained from pMCSG-7 and pQE80-L were named AGG2* 

& AGG2 respectively. AGG2 and AGG2* proteins showed no variance when purified with 

the same conditions. 

It was observed by SEC that presence of DTT in buffers of proteins affected their elution 

profiles. Investigations demonstrated that the change in protein size was directly related to the 

oligomeric state: AGG2 purified in tetrameric form is converted to dimeric state with the 

addition of DTT. Dynamic Light Scattering (DLS) and Circular Dichroism (CD) 

measurements supported the findings of SEC.  

Dependence of the oligomeric state of AGG2 on DTT concentration, investigated in detail 

by SAXS and DLS, showed that the purified protein is in tetrameric form between 0 to 0.1 

mM DTT; goes through a transition between 0.3 to 1 mM DTT where dimers and tetramers 

co-exist in solution and finally dimeric form is obtained above 1 mM DTT. It has not been 

possible to obtain AGG2 in monomeric form by further increasing the DTT concentration. 

Oligomeric state of the protein was observed to be independent of the protein concentration. 

Our results indicate that the dimeric form of AGG2 is highly stable in solution. This may 

be a consequence of the general tendency of the γ-and -subunits to form a complex in vivo. 

The molecular shape models obtained from the SAXS data showed a high level of 

similarity to the crystal structure of mammalian G-protein, transducin, γ-subunit. The 3-D 

structure of the protein was further investigated with homology modeling. Alignment of 

AGG2 with gamma subunit of transducin was satisfactory for homology modeling. The model 

of the monomer was self-docked to obtain the dimeric structure. The structure of the dimer 
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was validated by overlapping the ab initio SAXS model with the self-docked dimer and also 

by comparing the SAXS results with the theoretical scattering curve from the modeled dimer.  

The dimer model of AGG2 shows that C-termini loops of monomers are intertwined. 

Within that region, the CAAX box domain of AGG2, an isoprenylation site, is located. It is 

proposed that the Cys108 of the two CAAX boxes of monomers may form a disulfide bridge. 

This prediction may constitute the core of the dimer stability in solution.   

 

Future Works 

Purified AGG2 samples are sent to the user facility at PETRA Synchotron in Hamburg, 

Germany for crystallization trials. First trials did yield some crystals; however, it is unclear if 

these are protein or salt crystals. If these crystals originated from protein, electron density 

maps obtained from X-Ray measurements can be used to model the exact 3-D structure of the 

protein. This result would also show the validity of models from ab initio calculations and 

from homology modeling.  

Tag polypeptide originated from the pMCSG-7 plasmid can be cleaved with Tobacco Etch 

Virus (TEV) protease. The characterization of the protein without the 6His tag should be 

analyzed and the results should be compared with the proteins characterized in this study.  

The western blotting of AGG2 expressed with pMCSG-7 vector could not be obtained. 

The validation with western blotting is invaluable, so the reason behind not seeing any bands 

in western blotting film should be investigated in detail.  

The starting point of this study was to form the heterotrimeric A. thaliana G-Protein 

complex. The other two subunits, α and β monomers, were purified separately, but neither the 

heterotrimer nor the beta-gamma dimer could be obtained in vitro. Purification processes of 

these proteins and the dimer-trimer forming conditions need to be optimized for further trials.  
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APPENDIX A 

 

CHEMICALS 

 

Acetic acid (glacial)    Riedel-de Haen, Germany  27225 

30 % Acrylamide-0.8 % Bisacrylamide Sigma, Germany   A3699 

BamHI      Fermentas, Germany   ER0051 

Bromophenol blue    Applichem, Germany   A3640 

Coomassie Brillant Blue R-250  Fluka, Switzerland   27816 

EDTA- Free Complete Protease Inhibitor Roche    11873580001 

Cocktail Tablets 

dNTP mix     Fermentas, Germany            R0241 

1,4-Dithiothreitol    Fluka, Switzerland   43815 

EcoRI      Fermentas, Germany   ER0271 

Ethanol     Riedel-de Haen, Germany  32221 

Ethylenediaminetetraaceticacid  Riedel-de Haen, Germany  27248 

Glycerol (87 %)    Riedel-de Haen, Germany  15523 

Glycine     Amresco, USA   0167 

HEPES     Fluka, Switzerland   54461 

Hydrochloric acid (37 %)   Merck, Germany   100314 

Imidazole     Sigma, USA    I5513 

IPTG      Fermentas, Germany   R0392 

KH2PO4     Amresco, USA   0781 

K2HPO4     Amresco, USA   0782 

Lysozyme     Sigma, USA    L7651 
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MassRuler DNA Ladder Mix   Fermentas, Germany   SM0403 

2-Mercaptoethanol    Aldrich, Germany          M370-1 

Methanol     Riedel-de Haen, Germany            24229 

Na2HPO4     Duchefa, Germany   S0522 

NaH2PO4     Duchefa, Germany   S0521 

NcoI      Fermentas, Germany   ER0571 

Non-Fat Bovine Milk Powder  Sigma, USA    C3400 

PageRuler protein ladder   Fermentas, Germany          SM0661 

Phenylmethylsulphonylfluoride  Amresco, USA            0754 

2-Propanol     Merck, Germany           100996 

Protein Molecular Weight Marker  Fermentas, Germany          SM0431 

PVDF Membrane    Sigma, USA    P2938 

Qiaprep Miniprep Kit    Qiagen, USA    19064 

Qiaquick PCR Purification Kit  Qiagen, USA    28104 

Qiaquick Gel Extraction Kit   Qiagen, USA    28704 

Sodium Chloride    Riedel-de Haen, Germany            13423 

Sodium dodecyl sulphate   Sigma, Germany            L-4390 

SspI      Fermentas, Germany   ER0771 

T4 DNA Ligase    Fermentas, Germany   EL0011 

T4 DNA Polymerase    Fermentas, Germany   EP0061 

Taq polymerase    Fermentas, Germany           EP0401 

Tris      Fluka, Switzerland              93349 

Triton X-100     Applichem, Germany             A1388 

Tryptone     Sigma, Germany   61044 

Tween-20     Sigma, USA    P1379 

Yeast Extract     Sigma, Germany   Y1625 
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APPENDIX B 

 

MOLECULAR WEIGHT MARKERS 

 

Fermentas Unstained Protein Molecular Weight Marker 

 
 

 

 

BioLabs ColorPlus Prestained Protein Ladder, Broad Range 
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Fermentas MassRuler DNA Ladder Mix 

 

 

 

Fermentas FastRuler Low Range DNA Ladder 
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APPENDIX C 

 

pMCSG-7 vector map and LIC site with available restriction enzyme sites 

 

 

pMCSG-7 + AGG2 Construct Sequencing Result 
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pETM-41 vector map and multiple cloning site 

 

 

pETM-41 + AGG2 Construct Sequencing Result 
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APPENDIX D 

 

BUFFERS AND SOLUTIONS 

 

Tris Acetate EDTA Buffer (TAE) (50X): 121.1 g Tris Base, 28.55 ml Glacial Acetic acid, 

7.3 g EDTA, completed to 500 ml. 

Native-PAGE: 

8% Separating Gel:  

 for 2 gels for 1 gel [final]  

dH2O 6 ml 3 ml  

3 M Tris, pH 8.9 1.25 ml 625 l 3.75 mM 

30 % Acryl-0.8 % Bisacryl 2.67 ml 1.335 ml 8 % 

10 % APS 75 l 37.5 l 0.075 % 

TEMED 5  l 2.5 l 0.05 % 

 

3 % Stacking Gel: 

 for 2 gels for 1 gel [final] 

dH2O 4.2 ml 2.1 ml  

1 M Tris, pH 6.8 250 l 125 l 50 mM 

30 % Acryl-0.8 % Bisacryl 510 l 255 l 3 % 

10 % APS 37.5 l 18.75 l 0.075 % 

TEMED 2.5 l 1.25 l 0.05 % 

 

2X Native Sample Buffer: 200 mM Tris-HCl pH 7.5, 20 % (v/v) Glycerol, 0.05 % (w/v) 

Bromophenol Blue in ddH2O. 

Native-PAGE Running Buffer: 25 mM Tris, 192 mM Glycine in ddH2O 
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SDS-PAGE: 

12 % Separating Gel: 

 for 2 gels for 1 gel [final] 

dH2O 4.62 ml 2.31 ml  

3 M Tris, pH 8.9 1.25 ml 625l 3.75 mM 

30 % Acryl-0.8 % Bisacryl 4 ml 2 ml 12 % 

20 % SDS 50 l 25 l 0.1 % 

10 % APS 75 l 37.5l 0.075 % 

TEMED 5 l 2.5 l 0.05 % 

 

5 % Stacking Gel: 

 for 2 gels for 1 gel [final] 

dH2O 3.850 ml 1.925 ml  

3 M Tris, pH 8.9 250 l 125 l 50 mM 

30 % Acryl-0.8 % Bisacryl 850 l 425l 5 % 

20 % SDS 10 l 5 l 0.1 % 

10 % APS 37.5 l 18.75 l 0.075 % 

TEMED 2.5 l 1.25l 0.05 % 

 

2X SDS Sample Buffer: 4 % (w/v) SDS, 20 % (v/v) Glycerol, 0.004 % (w/v) Bromophenol 

blue, 10 % (v/v) 2-mercaptoethanol, 0.125 M Tris-HCl, pH 6.8 in ddH2O. 

SDS-PAGE Running Buffer: 25 mM Tris, 192 mM Glycine, 0.1 % (w/v) SDS in ddH2O. 

Coomassie Staining Solution: 0.1 % (w/v) Coomassie Brillant Blue R-250, 40 % (v/v) 

Methanol, 10 % (v/v) Glacial Acetic acid in ddH2O. 

Destaining Solution: 4 % (v/v) Methanol, 7.5 % (v/v) Glacial Acetic acid, completed to 1 L. 



93 

 

10X Transfer Buffer: 1,92 M Glycine, 250 mM Tris Base in 1 L. 200 ml Methanol is added 

to the solution containing 1X Transfer Buffer 

10X TBS Solution:  500 mM Tris Base, 45% NaCl, pH: 8.4. 500μl Tween-20 is added to 1X 

TBS buffer 
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APPENDIX E 

 

EQUIPMENTS 

 

AKTA Prime:   GE-Healthcare, SWEDEN 

Autoclave:   Hirayama, Hiclave HV-110, JAPAN 

    Certoclav, Table Top Autoclave CV-EL-12L, AUSTRIA 

Cenrifuge:       Eppendorf, 5415C, GERMANY 

    Eppendorf, 5415D, GERMANY   

Eppendorf, 5415R, GERMANY 

Hitachi, Sorvall RC5C Plus, USA 

Hitachi, Sorvall Discovery 100 SE, USA 

Dynamic Light Scattering: Malvern, Zetasizer Nano-ZS, UK 

Deepfreeze:   -80
 o
C, Kendro Lab. Prod., Heraeus Hfu486, GERMANY 

    -20
 o
C, Bosch, TURKEY 

Distilled water:  Millipore, Elix-S, FRANCE 

    Millipore, MilliQ Academic, FRANCE 

Electrophoresis:  Biogen Inc., USA 

    Biorad Inc., USA 

Ice Machine:   Scotsman Inc., AF20, USA 

Incubator:   Memmert, Modell 300, GERMANY 
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    Memmert, Modell 600, GERMANY 

Laminar Flow:  Kendro Lab. Prod., Heraeus, HeraSafe HS12, GERMANY 

Magnetic Stirrer:  VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

    VELP Scientifica, Microstirrer, ITALY 

Microliter Pipette:  Gilson, Pipetman, FRANCE 

Microwave Oven:  Bosch, TURKEY 

pH Meter:   WTW, pH540 GLP MultiCal, GERMANY 

Power Supply:   Biorad, PowerPac 300, USA 

    Wealtec, Elite 300, USA 

Refrigerator:   +4
 o
C, Bosch, TURKEY 

Semi-Dry Western 

Transfer Machine  Novex, USA 

Shaker:   Forma Scientific, Orbital Shaker 4520, USA 

    GFL, Shaker 3011, USA 

    New Brunswick Sci., Innova 4330, USA 

Sonicator:   BioBlock Scientific, Vibracell 7504, FRANCE 

Spectrophotometer:  Nanodrop, ND-1000, USA 

Speed Vacuum:  Savant, Speed Vac Plus Sc100A, USA 

    Savant, Refrigerated Vapor Trap RVT 400, USA 

Thermocycler:   Eppendorf, Mastercycler Gradient 


