
SOFTWARE FRAMEWORK FOR HIGH PRECISION MOTION CONTROL
APPLICATIONS

by

Ahmet Teoman Naskali

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

Sabancı University

August 2012

c© Ahmet Teoman Naskali 2012

All Rights Reserved

Abstract

Developing a motion control system requires much effort in different domains.

Namely control, electronics and software engineering. In addition to these, there

are the system requirements which may be completely different to these spanning

from biomedical engineering to psychology. Collaboration between these fields is

vital, however these fields should be involved only as much as they are needed to

be in the fields of expertise of the others.

Several software frameworks exist for the creation of robotics applications. But

currently there is no standard for the creation of mechatronics systems nor is there

a complete software package that can deal with all aspects in the programming of

such systems. Existing frameworks each have their advantages and disadvantages,

however they generally have limited or no dedicated structure for the development

of the motion control aspect of the problem and deal extensively with the robot-

environment interactions and inter mechanism communications. Dealing with the

higher levels of the problem, they are usually not well suited for hard realtime;

since the interactions can run on soft realtime constraints. The software framework

proposed in this study aims to achieve a level of abstraction between the different

domains utilized within a system. The aim in using the framework is to achieve

a sustainable software structure for the system. Sustainability is an important

part of systems, as it permits a system to evolve with changing requirements and

variable hardware, with the ultimate goal of having robust software that can be

utilized on different platforms and with other systems using an abstraction layer

between the hardware and the software. This ensures that the system can be

migrated from a processing platform to any other platform and also from one set

of hardware to another.

iv

The framework was tested on several systems that have precision motion control

requirements such as a 10 degree of freedom micro assembly workstation, a modular

micro factory and a haptic system with time delay. Each of the systems works

in different processing platforms and have different motion control requirements.

The achieved results from the implementations show that the software framework

is an important tool for the development of motion control software.

v

Özet

Bir hareket kontrol sistemi geliştirmek, denetim, elektronik ve yazılım gibi bir çok

farklı alanda çalışma ve uğraşmayı gerektirir. Bunlara ek olarak, farklı sistemlerin,

biyomedikal mühendisliğinden psikolojiye kadar birçok farklı sistem gereksinimleri

mevcuttur. Her ne kadar, bu alanlar diğerlerinin uzmanlık alanlarının ihtiyacı

doğrultusunda kullanılacak olsa da, aralarındaki işbirliği elzemdir. Robot teknolo-

jisi uygulamaları yaratabilen birçok yazılım altyapısı bulunmaktadır. Ancak, halen

mekatronik sistemler yaratmada belli standartlar ve bu tip sistemlerin program-

lanmasında tüm bu durumların üstesinden gelebilecek eksiksiz bir yazılım paketi

yoktur. Var olan altyapılar bazı avantajlarının yanında birçok da dezavantaja

sahiptir. Bu altyapılar problemin hareket kontrol sürecinin gelişiminde genellikle

sınırlı kalmakta veya mevcut probleme özelleşmiş olarak çalışmamaktadır, bunun

yanında, büyük ölçüde robot-çevre etkileşimleri ve mekanizmanın iç iletişimi ile

uğraşmaktadır. Bu altyapılar problemin üst seviyeleriyle uğraşmaktadır ancak üst

seviyeler gerçek zamanlı kısıtlara ihtiyaç duymayabilir. Bu noktadan hareketle, bu

altyapılar gerçek zamanlı uygulamalar için tasarlanmamıştır.

Bu çalışmada ise, önerilen yazılım altyapısı, bir sistem içinde kullanılan farklı

uzmanlık alanlarının birbirinden soyutlanarak bağımsız bir şekilde tasarlanmasını

hedeflemektedir. Bu altyapının kullanılmasındaki amaç herhangi bir sistem için

özelleşmiş, sürdürülebilir bir yazılım altyapısı oluşturmaktır. Sürdürülebilirlik

bir sisteme, farklı platformlarda ve donanım ve yazılım arasında soyutlama kat-

manı kullanan diğer sistemlerle birlikte kullanılabilen güçlü bir yazılım elde et-

mek amacıyla değişen gereksinimler ve farklı donanımlar durumunda gelişebilme

olanağı tanır. Bu nedenle, sistemler için elzem bir unsurdur. Bu sayede, sis-

tem işlemekte olduğu platformdan başka bir platforma ve buna ek olarak bir do-

vi

nanım setinden diğerine taşınabilir. Altyapı, 10 serbestlik derecesine sahip mikro

montaj iş istasyonu, modüler mikro fabrika ve gecikmeli dokunma duyusu ak-

taran sistem gibi hassas hareket kontrol gerektiren sistemler üzerinde denenmiştir.

Bahsedilen her bir sistem farklı platformlarda ve farklı hareket kontrol gereksin-

imleriyle çalışmaktadır. Uygulamalardan elde edilen sonuçlar, önerilen yazılım

altyapısının, hareket kontrol yazılımları içinde önemli bir araç olduğunu göstermektedir.

vii

Acknowledgements

I offer my sincere gratitudes to my advisor, Asif Sabanovic, for trusting me from

the beginning and for giving his support and guidance all along this thesis.

I wish to thank the members of my PhD committee; Ayhan Bozkurt, Kemalet-

tin Erbatur , Bernard Levrat and Gönen Eren for their interest in my work.

I would like to thank Emrah Deniz Kunt for being a great colleague with whom

I have bounced many ideas back and forth. You have been a great collaborator and

a friend and I can never repay you. I would also like to thank Kazim Çakir who is

one of the best engineers and most methodical people I know, for his constructive

critiques during the different paths this work has taken.

I would like to thank Yeşim Kop for giving me full support and tolerating long

sleepless nights in front of the computer.

I would like to thank all my colleagues from Microsystems Laboratory and

Mechatronics department, especially; Anas Abidi, Merve Acer, Utku Seven, Ahmet

Can Erdoğan, İlker Sevgen, Mehmet Guler, Zeynep Temel, Kaan Can Fidan, Edin

Goluboviç and Eray Baran.

Finally I would like to thank my parents Emine and Esko and my brother

Osman Naskali for supporting me during my work.

This thesis was partially supported by:

• Yousef Jameel Foundation

• SAN-TEZ Project Number 00183.STZ.2007-2

• T.R. Prime Ministry SPO Grant Number 2003k120530

viii

TABLE OF CONTENTS

Abstract iv

Özet vi

Acknowledgements viii

List of Tables x

List of Figures x

List of Figures xi

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Thesis Structure . 3

2 Literature Survey 5

2.1 Motion Control Systems . 5

2.2 Frameworks . 11

2.2.1 Robotics Frameworks . 12

2.3 Conclusion . 16

3 Background 17

3.1 Introduction . 17

3.2 Base Platforms for Realtime Systems 18

3.2.1 Windows XP . 19

3.2.2 Windows XP Embedded . 19

ix

3.2.3 Windows XP With Intime Extension 21

3.2.4 Lean Linux . 22

3.2.5 Windows CE . 23

3.2.6 Micro Controller Based Solutions 24

3.2.7 FPGA Based Systems . 24

3.2.8 RTAI Patch for Linux . 26

3.2.9 Conclusion . 28

3.3 Framework Design . 29

4 A Framework for Motion Control Systems 31

4.0.1 System Design Methodology Overview 36

4.0.1.1 Hardware and Platform 36

4.0.1.2 Software . 38

4.1 Components of the Framework . 42

4.1.1 Hardware Interface . 46

4.1.2 Motion . 48

4.1.2.1 Drivers . 48

4.1.2.2 Sensor/Measurement 49

4.1.2.3 Actuators . 56

4.1.2.4 Filters . 62

4.1.2.5 Estimators and Observers 65

4.1.2.6 Observers . 66

4.1.2.7 Controller . 66

4.1.2.8 Axis . 67

x

4.1.2.9 Mechanism . 69

4.1.2.10 Trajectory . 72

4.1.2.11 Kinematics . 72

4.1.2.12 Protection . 74

4.1.3 Process . 74

4.1.3.1 Interpretation . 74

4.1.3.2 Parameter Setting 75

4.1.4 Communication . 75

4.2 Man Machine Interface . 78

4.2.1 Graphics Display and GUI 78

4.2.2 MMI Device Driver . 79

4.2.3 Image Acquisition and Processing 79

4.2.4 Communication . 80

4.2.5 Scripting . 80

4.2.6 Devices . 83

4.2.7 Data Analysis . 83

4.3 Putting it all together . 84

5 Implementations and Experimental Results 86

5.1 Validation of the Framework . 86

5.1.1 Micro Assembly Workstation (SUMAW) 86

5.1.1.1 Design Overview 87

5.1.1.2 Hardware . 89

5.1.1.2.1 Electronics 92

xi

5.1.1.3 Software Overview 94

5.1.1.3.1 RT Computer 95

5.1.1.3.2 Threads 98

5.1.1.3.3 Hardware Interface 101

5.1.1.3.4 Motion Control System Configuration . . 101

5.1.1.4 MMI . 106

5.1.1.4.1 Modes of Operation 109

5.1.1.4.2 Scripting 111

5.1.1.5 Vision . 112

5.1.1.5.1 Calibration 112

5.1.1.5.2 Depth Estimation 113

5.1.1.6 Communication . 114

5.1.1.6.1 RT Variable Object 115

5.1.1.7 Experiments . 115

5.1.1.7.1 Validation of the System 117

5.1.1.7.2 Biological Specimen Manipulation 118

5.1.1.8 Conclusion . 118

5.1.2 Microfactory . 119

5.1.2.1 Conveyor . 126

5.1.2.2 Pantograph . 128

5.1.2.3 Delta Robot . 129

5.1.2.4 The Micro Factory System 133

5.1.3 Haptic System with Time Delay 135

5.1.3.1 Experimental Setup 137

6 Conclusion 142

Biography 160

A APPENDIX A 161

xii

List of Tables

0.1 Common Symbols . xii

3.1 Comparison of Motion Control Software Platforms 28

4.1 Sensor Application Areas . 50

xiii

List of Figures

2.1 Structure of conventional minor control loop 6

2.2 MobileRobots Robotic Platform . 13

2.3 Skilligent Robotics Architecture . 13

4.1 Software developed with the framework can be mapped and used
on different platforms . 32

4.2 Software block examples . 32

4.3 Using modules to create higher level modules 33

4.4 Using modules to create higher level modules 33

4.5 System conception . 35

4.6 Layers of Design . 40

4.7 Modules of the Framework . 42

4.8 Platform independance . 44

4.9 Module structure . 46

4.10 Single Sensor Control . 51

4.11 Sensor Integration to Framework 53

4.12 Sensor Functions and Structures . 54

4.13 Actuator Integration to Framework 60

4.14 Actuator Functions and Structures 61

4.15 Software Implementation of Generalized Filter 65

xiv

4.16 General Filter in Mechatronics . 66

4.17 Controller Structure . 67

4.18 Axis Structure . 68

4.19 Mechanism Structure . 71

4.20 Trajectory Module . 73

4.21 Kinematics Module . 73

4.22 Communication Interface . 77

4.23 Vision Sensor . 80

5.1 General System Layout. 88

5.2 SUMAW Components. 89

5.3 Manipulator Assembly. 90

5.4 System Structure. 93

5.5 Thread Structure. 99

5.6 XYZ motion control stages modular implementation 102

5.7 The MMI Screen. 106

5.8 MMI Structure. 107

5.9 Semi-Automated Particle Pushing Algorithm. 109

5.10 Semi Automated Manipulation . 111

5.11 Communication With RT. 116

5.12 100 Nanometer Step Response. 117

xv

5.13 Zebra Fish Embryo in contact with microgripper from left and force
sensing probe from right. 118

5.14 Microfactory Setup . 120

5.15 RT/NonRT Software Layout of Micro Factory 122

5.16 Components of Microfactory . 122

5.17 System Layout of Microfactory Module 125

5.18 Conveyor Submodule . 127

5.19 Conveyor Module Software Structure 128

5.20 Pantograph Submodule . 129

5.21 100 micrometer circle reference and actual trajectory (configuration
space (a) and task space (b) measurements) 130

5.22 Delta Robot Submodule . 131

5.23 Pantograph Realtime Software . 131

5.24 Delta Robot Realtime Software . 132

5.25 0.5mm Radius f=1Hz Circle, Ref. vs Sensor (a) and Encoder (b) . . 133

5.26 0.1mm Radius f=1Hz Circle, Ref. vs Sensor (a) and Encoder (b) . . 134

5.27 Micro Factory Motion Control Software 135

5.28 8 Steps Pick Place Experiment (50% Speed with FPGA) 136

5.29 X and Y Positions of the robots during the 8 Step Pick Place Op-
eration (Vel Max = 60mm/sec and Acc Max = 20 mm/sec2) 137

5.30 X, Y and Z positions of the Delta robots for the 8 Step Pick Place
Experiment (Vel Max = 100mm/sec and Acc Max = 30 mm/sec2 . 138

xvi

5.31 Haptic system with two linear actuators 139

5.32 Haptic system software structure 141

xvii

Table 0.1: Common Symbols
Symbol Explanation
mm millimeter
µm microns
nm nanometers
Ts sampling time
V volt
mV millivolt
lbs pounds
W watt
Hz hertz
kHz kilohertz

xviii

Abbreviation Explanation

RT Realtime
DOF Degree Of Freedom
PC Personal Computer
IO Input/Output
GUI Graphical User Interface
DSP Digital Signal Processor
FPGA Field Programmable Gate Arrays
MEMS Micro-Electro-Mechanical Systems
DC Direct Current
AC Alternating Current
MIT Massachussetts Institute of Technology
ERSP Evolution Robotics Platform
MSRDS Microsoft Robotics Developer Studio
.NET Network
CCR Concurrency and Coordination Runtime
OROCOS Open Robot Control Software
TCP Transmission Control Protocol
ROS Robot Operating System
OS Operating System
PID Proportional-Integral-Derivate
CPU Central Processing Unit
ATM Automatic Teller Machine
VoIP Voice over Internet Protocol
API Application Programming Interface
MB Megabyte
RAM Random Access Memory
NAS Network Attached Storage
EWF Enhanced Write Filter
FBWF File Based Write Filter
USB Universal Serial Bus
CD-ROM Compact Disk-Read Only Memory
MIPS Microprocessor without Interlocked Pipeline

Stages
ARM Advanced RISC Machine
HDL Hardware Description Language
ASIC Application Specific Integrated Circuit
CLB Configurable Logic Block

xix

LUT Look-Up Table
RT Real Time
RTAI Real Time Application Interface
UP Uniprocessor
SMP Symmetric Multi Processor
MUP Multi Uniprocessor
RTOS Real Time Operating System
GPGPU General Purpose computing on Graphical Process-

ing Units
FIFO First In First Out
RMS Rate Monotonic Scheduling
RR Round Robin
EDF Early Deadline First
MMI Man-Machine Interface
RTT Real-Time Toolkit
NSF National Science Foundation
JTECH Japanese Technology
PZT Piezoelectric
MRI Magnetic Resonance Imaging
EGR Exhaust Gas Recirculation
VVT Variable Valve Timing
CAM Computer Aided Manufacturing
ID Identification
SUMAW Sabanci University Micro Assembly Workstation
LED Light Emitting Diode
AFM Atomic Force Microscope
ADC Analog to Digital Converter
DAC Digital to Analog Converter
RGB Red Green Blue
SMC System Mode Controller
PMMA Polymethylmetacrilate
MEX Matlab Executable

xx

1 INTRODUCTION

As electro mechanical systems become more and more significant parts of our

lives, their development also gains importance. A major part of the development

of electro mechanical systems that includes moving parts is the development of

motion control systems. For the fast development of motion control systems,

frameworks are needed for components to be standardized and the system to be

rapidly built.

Motion control is becoming increasingly complex with attempts to control

system-to-environment, system-to-system and system-to-human interactions. In

motion control, interactions are reflected as real or virtual forces and behavior of

motion control systems must be changed due to the interaction forces. In general

unstructured environments are treated in such a way that when and how interac-

tion will appear is not known in advance, therefore motion control systems must

be equipped with reflex changes due to interaction. That requires the reconfigura-

bility of the control structure; dynamic - due to change of coordinates or static -

done by designer during the design process, or on flight - by operator while system

is in operation or in an emergency - due to failure of one or more components and

loss of system capability because of failure.

There are several means of implementing motion control, like analog systems,

however they are not very configurable and have difficulties accepting complicated

references. More conveniently, motion control systems are implemented on micro

controllers with external hardware attached to read positions and send analog sig-

1

nals. Digital signal processors (DSP’s) are also widely used as their instruction

set and configuration enables them to process information and do matrix multi-

plications needed for motion control much faster. These devices can implement

interfaces for networks or have various communications protocols on them, or they

may implement their own interface on them for simpler tasks. Another alterna-

tive for motion control is to use Industrial PCs equipped with IO cards capable

of interfacing to the hardware that is to be controlled. These systems are easy

to develop as they have an operating system that is easier to develop applications

due to the availability of the software and ability to interface and design Graphical

User Interfaces (GUIs) or networks. Operating systems used for motion control

can achieve real-time performance. However with these systems unless there is a

micro controller or a DSP for each degree of freedom, there occurs performance

loss because each degree of freedom is processed in a synchronous manner inside

the controller, therefore more degrees of freedom take up more time.

1.1 Motivation

Handling of hazardous materials, micro technology, space robotics, telesurgery; all

necessitate precise motion control. The conception of these systems currently is a

major challenge and the software to govern these systems poses an equally large

problem. Currently there is no standardization for the creation of motion control

software and usually projects are rewritten from scratch all the time. There is

also no module structure for the creation of the software that inhibits the reuse

of the software, making it cumbersome to sustain. These problems with motion

control systems lead to the necessity of a motion control framework that ensures

the generation of structured and reusable software.

2

1.2 Contribution

In this thesis we propose a new framework, that will enable the rapid development

of motion control systems on multiple platforms. The proposed framework is

platform and hardware independent. A modular structure forcing the creation

of reusable modules brings on high sustainability as adopted by the framework.

Current frameworks that were built with similar efforts focus on the robots or

mechanisms interaction and communication problems and rely on somewhat off

the shelf hardware to control the robots in realtime. The proposed framework is

also complementary to those in the sense that it handles the actual creation of the

motion control of the robot and then provides a motion control platform to the

behavioral frameworks.

1.3 Thesis Structure

The thesis is organized as follows:

Chapter 2 gives a literature survey on the state of the art in motion control

and delayed systems, finally motion control frameworks are discussed.

Chapter 3 first presents the theoretical background on realtime systems, then

application of delayed control is discussed on bilateral systems and finally motion

control system design is discussed.

Chapter 4 describes the Framework for motion control; the different compo-

nents of the system are introduced and the usage of the framework is described.

Chapter 5 Validates the framework with implementations on a micro assembly

workstation, a micro factory and a haptic system.

Chapter 6 Concludes the thesis, presents the contributions and describes future

3

work.

4

2 LITERATURE SURVEY

This chapter presents a literature survey on methods that have been proposed to

design motion control systems. In the following paragraphs, we first briefly recall

some key techniques in construction of motion control systems and the control

algorithms and methods that are used. Then a definition of frameworks is given

and their advantages are indicated and different frameworks are examined.

2.1 Motion Control Systems

Precision engineering has been developing over the last decades in terms of re-

search and application to meet requirements as higher performance, higher reli-

ability, miniaturization, longer life and lower cost [1, 2]. All precision systems

are built in nanometer scale by means of miniaturization and integration of elec-

trical and mechanical components [2]. Development of motion control improved

micro-electro-mechanical systems (MEMS) and provided more modern applica-

tions. New technological requirements as high speed and high-precision motion

control are provided by the use of Direct Current (DC) permanent magnet lin-

ear motors (PMLMs) whose main advantages are high force density, low thermal

losses, high accuracy and simplicity in mechanical structure [2, 3].

Regarding to its historical evolution, motion of mechanical systems used to be

obtained from electric drives until 20th century. They have been widely used in

industry up to relatively recent advances in computer technology [4]. More expert

5

and precise motions have been performing through mechatronic applications and

robotics. Ohnishi et al. refers to advances in parameter estimation, flux identi-

fication, speed estimation and design of the motion controller. They affirm that

highly robust motion systems provide adjustable stiffness hence versatile applica-

tions. Alternating Current (AC) motors produced according to modern control

techniques require the identification of motor parameters [4]. On the other side, in

order to acquire more skillful and versatile motion, the mechanical system has to

be equipped with high-performance controller thereby it should be robust against

the load change and parameter variation. The structure of conventional minor

control loop effective in one degree of freedom is shown in the Figure 2.1.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!

"!"! "!

+! Position!
controller!

+! P!or!Pl!
control!

Speed!
controller!

+!
Ki! Power!

converter!
Electric!
motor!

+! ! !

Torque!
reference!

Current!
reference! current!

!

! !
! "!

Current!minor!loop!

Speed!minor!loop!

Position!loop!

"!"! "!

Figure 2.1: Structure of conventional minor control loop

As mentioned in [5, 6, 7, 8, 9], the identification of disturbance torque is crucial

for motion control robustness. The kinematics and the dynamics or in other words

the physical world is directly affected by the control.

On the other hand, Whitney affirms that the robot force control requires the

combination of task goals, trajectory generation, force and position feedback and

modification of the trajectories. The first robot force control appeared in 1950s and

1960s with remote manipulator and artificial arm control, so it was accomplished

6

by natural ways. The first computer controls of robot force were realized only in

late 1960s and 1970s [10].

In 1960s, when Mann invented the force feedback powered artificial elbow, the

motor was driven by signals from muscle electrodes and a strain gauge in the joint

[10, 11]. Soon after, it is realized that the use of force-feedback manipulators in

space is inefficient and non-effective because of delays caused by coding, decoding,

error checking, channel sharing, etc.

In early 1970s, in order to eliminate these delays, scientists began to work

on the replacement of the human operator with a computer [10]. To structure

multi-axis arm systems and to relate the requirements of a task to the motions

required, Ernst [12], Barber [13], Hill [14] and Paul [15] worked on logic branching

which is a scalar method consisting of strings of statements. Later, Nevins [16],

Whitney [17] and Groome [18] worked on continuous force control provided by

6 axis sensors collecting multi-axis force-torque information. In pursuit of these

advances, many scientists have worked on many other methods: Damping methods

[15, 17], Position Methods [19, 20, 21, 22], Impedance or Energy Methods [23, 24],

Explicit Force Control [16], Implicit Force Control [25], Hybrid Force-Position

Control [26, 27].

In the last few decades, ultra precision manufacturing is developing. In this

context, the use of PMLMs in different semiconductor processes satisfies the new

technological requirements of miniature system assemblies and precision metrology.

In todays technology, linear motors reduce the effects of contact-type nonlinearities

and disturbances like backlash. Yet, it is also important to reduce or eliminate the

model uncertainties and external disturbances for providing high speed and high

precision. For instance, todays laser interferometers have measurement resolution

7

down to one nanometer [2]. According to Heydemann, to increase the measurement

resolution in sub-micrometers scales, an interpolator can be used [2, 28].

On the other hand, the control algorithms must be efficient to be executed

within each time sample and they must have the sufficient capacity to provide

precision motion tracking and rapid disturbance suppression. Furthermore, for

cases requiring accurate positioning, mechanical system geometrical imperfections

must be decently determined [2, 29]. Tan et al. tried to develop an integrated

precision motion control system on an open architecture and rapid prototyping

platform [2].

From et al. [30] created a new approach to motion planning and control of

manipulators on ships. Robots on ships are exposed to large inertial forces due

to non-inertial motions of the ship, which affects both the motion planning and

control of the manipulator. Their study aims to develop an approach reducing the

wear and the tear on the robot arising from these movements. They concluded

that the amount of torque required for reaching the desired configuration could

be reduced by including the predicted base motion in the motion planner. They

also showed that in this way, the strain and tension on the robot are reduced.

Hurmuzlu et al. [31] examined the problem of modeling and control of a class

of non-smooth nonlinear mechanical systems also known as bipedal robots. They

hereby leaded the way to clarify which stability tools one may use to characterize

the stability of a bipedal robot. Indeed, a man-made walking robot is simply a

robotic manipulator with a detachable and moving base. However, the complexity

of the system depends on the number of degrees of freedom, the existence of feet

structures, upper limbs and so on. For many years, many scientists have been

studying in the field of modeling and control of bipeds [32, 33, 34, 35].

8

On the other hand, it is obvious that the robot walking ground characteristics

constitute an important variable for the control strategy and the walking pattern.

It is certainly another important research topic [31, 36, 37, 38, 39, 40, 41, 42, 43].

The control action in biped robot assures that the multi-linked kinematic chain

composing the typical biped could walk suitably [31]. To completely specify the

control torques, some researchers used kinematics of human gait as desired profiles

[33, 44, 45]. Others specified only certain aspects of locomotion as walking speed,

step length, upright torso and such [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59]. Subsequently, a control scheme to specify the control torques will be chosen

according to diverse approaches encountered as follows:

1. Linear Control: This approach assumes no deviation for the posture of biped

and linearizes the equations of motion about the vertical stance [31, 44, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70].

2. Computed Torque Control: It combines the computed torque with a time

scaling of the optimal trajectories, which allows the finite time convergence

of the systems state towards the desired motion [31, 37, 42, 57, 59, 60, 71,

72, 73, 74, 75, 76, 77, 78, 79].

3. Variable Structure Control: This approach based on feedback law ensures

tracking despite system parameters uncertainties. It ensures convergence in

finite-time. The stability of the motion is provided by the controller that

eliminates the errors [31, 37, 58].

4. Optimal Control: Two different approaches have been developed to regulate

the smooth dynamic phase of bipedal locomotion systems. First approach

deals with minimizing energy-based cost functions of selected parameters in

9

the objective function [31, 32, 43, 52, 54, 80, 81, 82]. Second approach is the

direct application of classical optimal control methods to bipedal locomotion

in order to obtain controllers that minimize cost functions [31, 83, 84, 85,

86, 87, 88, 89]. The motion of the biped is regulated over a support phase

with a quadratic cost function in the study of Channon et al. [88].

5. Adaptive Control: Although this approach does not have a real advantage

in controlling bipedal locomotion, Yang [59] applied it to a three link planar

robot. Furthermore, some experiments on adaptive control have been made

in Massachusetts Institute of Technology (MIT) Leg Lab [90].

6. Shaping Discrete Event Dynamics: It is crucial to directly control the impact

effects on the system state and even an approximation of an input requires

actuators with high bandwidth. Some authors derived the expression for

the system state immediately before the impact instant [57, 58]. Another

objective can also be to remove the effect of the impact as in the study

of Dunn and Howe [91]. They minimized or eliminated the velocity jumps

due to the ground impact and limb switching. Some other scientists used

a feedforward input that modifies the motion at the end of each step from

measurements information [92, 93, 94, 95].

7. Stability and Periodic Motions: In his study, Hurmuzlu [57] analyzed the

nonlinear dynamics of planar, five-element biped and revealed a rich set

of stable, periodic motions that did not conform to the classical period on

locomotion. Stable gait patterns may deviate from the objective functions

results because of the tracking errors in the control actions. Chang and

Hurmuzlu [57, 58] overcame this difficulty by partitioning the parameter

10

space to choose specific values that lead to a desired gait pattern.

Lately, to handle the complexity of more sophisticated and elaborate motions,

scientists have been using integrated motion control systems. Wu et al. proposed

an adaptive robust motion control method to control X-Y table driven by high

precision linear motors [96]. The results showed excellent tracking performance of

the system.

Recently, Lin et al. proposed an interval type-2 fuzzy neural network control

system to control the position of X-Y-Theta motion control stage using linear

ultrasonic motors to track various contours [97]. This method is used to handle the

uncertainties of the motion control system. The method is proved to be performing

and robustly skillful.

2.2 Frameworks

By definition a framework is a set of common and prefabricated software building

blocks that programmers can use, extend or customize for specific computing so-

lutions. With frameworks, developers do not have to start from scratch each time

they write an application. Frameworks are built from collection of objects so both

the design and code of the framework may be reused [98].

A framework improves quality, consistency, and usability by forcing the creation

of different modules in the framework that can be verified by themselves. There are

a number of key advantages to be gained from using application frameworks. The

primary technical advantage is that they provide design and code reuse. The larger

and better an application framework, the more design and code reuse becomes

possible. Also, systems based on frameworks are easier to maintain, because most

11

key design and implementation decisions are localized in one place which is the

framework [99].

2.2.1 Robotics Frameworks

Several frameworks for the construction of mechatronics or robotics systems have

started to emerge in the market and have been adopted by many developers.

Using a framework for programming robotics and mechatronics applications

can have many advantages. A unified programming environment provides easy

programming and simulation, a service execution environment provides a base for

the software to execute its various modules and functions. Reusable components

of a framework will provide transfer of previous work to new projects. Robotics

frameworks usually have drivers for the popular robotics hardwares and they pro-

vide software abilities such as computer vision, navigation and obstacle avoidance.

There are many frameworks currently on the market. From an initial point we

can classify these frameworks as commercial and non commercial. Currently the

development of motion control applications is growing rapidly but it is not close

to the level of general computer programming or web development frameworks.

One disadvantage of using a framework is that once it is in use and the time has

been invested on it, it is difficult time wise and financially to migrate to another

platform.

There are several commercial frameworks that deal with robotics applications

such as Evolution[100], Skilligent[101], URBI[102] and Webots[103]. Microsoft has

also released a robotics studio but that is free of charge.

Solutions presented by MobileRobots 2.2 and Skilligent can be considered as

complete controllers for a robots interaction. After the motion control of the

12

Figure 2.2: MobileRobots Robotic Platform

robot is solved, these frameworks handle the interactions of the robot with its en-

vironment. Skilligent provides a complete solution for a mobile robot Figure 2.3,

enabling it to be trained by the end user to perform tasks by visual learning. Mo-

bileRobots on the other hand provides indoor navigation for robots. MobileRobots

software is oriented towards the needs of its own hardware platforms. Skilligent

has a robust architecture that features redundant controllers, actuators and sensors

making it more fault tolerant than other frameworks.

Figure 2.3: Skilligent Robotics Architecture

Gostai Urbi is a commercial robotics framework that has its own runtime envi-

ronment and development tools. Urbi has tools for the creation of the user panel

and some tools to record and replay the actions of the robots like dances and other

movements. Urbi also provides tools for the development of the robots actions in

13

a visual manner. Cyberbotics Webots is utilized as a simulation environment for

the framework.

Evolution Robotics Platform (ERSP) is another commercial platform for robots.

ERSP specializes in visual object recognition and vision based localization and

mapping.

Microsoft Robotics Developer Studio (MSRDS)[104] is a robotics framework

developed by Microsoft. Unlike the other commercial solutions it is free of charge

which has made it somewhat popular. MSRDS has a graphical drag and drop

style program creation environment. The software architecture is built on a run-

time environment that is based on the .NET platform and a set of libraries called

Concurrency and Coordination Runtime (CCR) to manage the communication

between the different services operating the robot. MSRDS has a simulation en-

vironment but relies on third parties to supply navigation, image processing and

other tasks. MSRDS supports a lot of off the shelf robots however adding a custom

robot to the framework is among the framework’s strong points due to the lack of

lower level control algorithms.

Open Robot Control Software OROCOS[105] is a an open source set of libraries

for motion control and robot control. OROCOS is free and seems to have an estab-

lished community. OROCOS does not have graphical development environments

and simulation environments as with some commercial solutions. However it does

offer realtime abilities and kinematics and dynamics libraries. OROCOS is not

intended for a distributed architecture.

Player/Stage/Gazebo[106] is a combination of robotics softwares. Player is

a robotics network server that provides an interface for communication between

various components of a robot such as sensors actuators and configuration scripts.

14

The robot structure is built upon TCP sockets where all the modules of the robot

communicate with each other.

Stage is a simulation environment to simulate robots sensors and objects in a

two dimensional bitmapped environment. Gazebo is a 3d simulation environment

that operates a 3d environment model that simulates sensors and robots. The

simulator is capable of providing sensor feedback to robot softwares.

ROS[107] or robot operating system is an open source robotics framework that

provides functions and a platform for the creation of robotics applications. ROS

provides device drivers, libraries, visualizers and means for different components

to communicate with each other. ROS operates as a server that permits the row

nodes to communicate with each other.

The open source frameworks seem to have a component based software engi-

neering approach. Where every element of the system is modeled as an indepen-

dent node which communicates with the other nodes. Some systems have adopted

to make the nodes communicate directly with each other whereas on some sys-

tems a central master controller exists to orchestrate the operation of the nodes.

While this node based approach permits the expansion of the systems, the passing

of messages may cause the system to exit the deterministic domain and become

somewhat problematic in achieving sustainable realtime systems. It is the authors

belief that currently an open source and non commercial framework that is widely

used is the best solution for the development of a motion control system. However

if the implementation of the system requires some specific expertise for a specific

application then a specified commercial solution may be more beneficial.

To sum up, several software frameworks exist for the creation of robotics ap-

plications. But currently there is no standard for the creation of mechatronics

15

systems nor is there a complete software package that can deal with all aspects

in the programming of such systems. Existing frameworks each have their advan-

tages and disadvantages, however it is noticed that they generally have limited or

no dedicated structure for the development of the motion control aspect of the

problem and deal extensively with the robot-environment interactions and inter

mechanism communications. Dealing with the higher levels of the problem, they

are usually not well suited for hard realtime; since the interactions can run on soft

realtime constraints, the relaxation of these constraints enables the base platform

for deployment and development to be chosen from a broader spectrum.

2.3 Conclusion

We have presented in this section key definitions to motion control and frameworks.

The complexity of the motion control problem and the lack of standardization for

motion control software could be facilitated by the many advantages brought on

by the use of frameworks.

In this thesis, we propose a new framework for motion control systems that will

help the design of motion control systems by separating the hardware management

problem from the motion control and system requirement tasks. The framework

functions in a modular structure and promotes the creation of reusable modules.

The proposed framework can also be intended as a complementary framework for

other robotics frameworks.

16

3 BACKGROUND

3.1 Introduction

This section investigates different platforms on which a complete motion control

system can run. In choosing a platform there are several criteria to consider. The

first criterion is obviously the ability to perform realtime operations which are

needed in most motion control systems. But along with suitability for a specific

motion control application, there are other criteria that relate to the development

using a platform. Where installation time can be comes in to play. Usually instal-

lation time is an indicator of problems to come with the platform and the general

ease of use of the platform. Another equally important criterion is the availabil-

ity of a support or community when difficulties do occur. Besides being realtime

capable a platform must also be able to interact with devices. It is not desirable

to design all the interactions of the system with the outside world and it can be

advantageous to utilize off the shelf hardware. The availability of drivers is an

indicator of the compatibility of a platform and some commercial platforms fail

rather badly in this regard. Finally, price is always an important criterion, while

some platforms may be cheap to begin with, the commercialization may require

that mass production of the system has cheaper royalties for the software.

17

3.2 Base Platforms for Realtime Systems

Motion control requires acquiring position information, force information and var-

ious other sensor informations to be able to extract data from the surrounding.

Motion control also requires outputs to be generated and sent out from the system.

Motion control above all requires fast processing times which have to work under

a realtime structure as any imperfections in the timing can hinder performance,

stability and accuracy of the system. To be able to satisfy these functions the

framework needs to be built on a fast and flexible basis that has realtime abilities

so desired performance can be achieved. Motion control systems need to work in

various form factors and sometimes be mobile. Mobility requires a small form fac-

tor and low power consumption, this usually means that the hardware supporting

the control logic has to be efficient and lower performance not to have to deal

with the excess heat issues associated with high performance. Also some motion

control projects may be budget dependent and may need non-high end hardware.

To satisfy both of these conditions the basis for the framework must be chosen

such that it can be scaleable. Scaleability is the ability to add functions and addi-

tional features to the system as they are needed or the ability to strip the system

of all unnecessary abilities so that they do not consume any processing power or

memory. Also for expandability and ease of use, the framework must be easy to

modify and preferably have a community that can support it. Several different

platforms were examined in the quest to find a suitable platform on which to build

the motion control framework.

18

3.2.1 Windows XP

Windows XP, is an operating system developed by Microsoft. Even though win-

dows XP is not a realtime operating system some experiments were done with

its abilities at control, and it was noted that operation of the services of the OS

itself and other applications can retard the performance of the system almost at

the seconds level. The operating system was tested using an IO card and a C#

program using an off the shelf I/O card. A simple program was written to perform

motion control for a motor using a PID controller. It was noted that sometimes

the program could not operate for seconds at a time, while other applications were

utilizing the CPU or while the OS was performing some services.

3.2.2 Windows XP Embedded

Windows XP Embedded is a version of Windows XP targeted towards develop-

ers of embedded devices, for use in specific consumer electronics, set-top boxes,

kiosks/ATMs, medical devices, arcade video games, point-of-sale terminals, and

Voice over Internet Protocol (VoIP) components.

Windows XP Embedded, commonly abbreviated ”XPe”, is a componentized

version of the Professional edition of Windows XP. A developer is free to choose

only the components needed thereby reducing operating system footprint and also

reducing attack area as compared with XP Professional. As an advantage to

developers, XP Embedded provides the full Windows API, and support for the

full range of applications and device drivers written for Microsoft Windows. The

system requirements state that XPe can run on devices with at least 32MB Com-

pact Flash, 32MB RAM and a P-200 microprocessor. The devices targeted for

XPe have included automatic teller machines, arcade games, slot machines, cash

19

registers, industrial robotics, thin clients, set-top boxes, network attached storage

(NAS), time clocks, navigation devices, railroad locomotives, etc. Custom versions

of the OS can be deployed onto anything but a full-fledged PC; even though XPe

supports the same hardware that XP Professional supports (x86 architecture),

licensing restrictions prevent it from being deployed on to standard PCs.

Componentized OS Write Filters XPe includes feature components known as

write filters, which can be used to filter out disk writes. The volumes can be

marked as read-only using these filters and all writes to it can be redirected.

Applications in user mode are unaware of this write filtering. XPe ships with two

write filters: Enhanced Write Filter (EWF) protects a system at volume level. It

redirects all disk writes to a protected drive, to RAM or a separate disk. EWF

is extremely useful when used in Thin Clients that have flash memory as their

primary boot source. File Based Write Filter (FBWF) allows the configuration of

individual files as read/write on a protected volume. USB Boot XPe adds a USB

boot option to Windows. An XPe embedded device can be configured to boot

from a USB drive. This feature is use full for systems that have to be mobile,

i.e. where the system is subject to high G forces or where the system vibrates

where any mechanical data storage equipment such as a hard disk can become

damaged. CD Boot An XPe device can be configured to boot from a CD-ROM.

This allows the device to boot without the requirement of having a physical hard

disk drive as well as provides a ”fresh boot” every time the image is booted (a

property inherited by the fact that the operating system is being booted from read-

only media). One drawback to this technology is updating or servicing the image

requires the complete process of setting up the runtime image to be completed

once again from start to end. Network Boot An XPe device can be configured to

20

boot from a properly configured network. Synonymous to CD Boot, Network Boot

removes the requirement of having the physical hard drive as well as providing the

”fresh boot” behavior. One bonus to Network Boot though is the ability to service

the already setup image. Once the image is updated the image is simply posted to

the RIS Server and once clients are rebooted they will receive the updated image.

While testing this platform as a basis it was noted that it is extremely easy

to acquire the specifics of the deployment platform. It is easy to build the OS

by means of selecting the components, and easy to launch the OS on the chosen

hardware.

Windows XP Embedded in general has a lot of good features that can be used

directly in motion control and robotics applications, however it does not support

realtime therefore any precise motion control tasks can be preempted which will

cause the motion control system to have unacceptable performance.

3.2.3 Windows XP With Intime Extension

TenAys and various other companies are developing extensions for windows that

enable realtime tasks to be run on these machines. Windows XP with INtime

Extension or Windows XP Embedded with INtime extension is an architecture

that installs 2 virtual machines, and has standard Windows running on one virtual

machine while all time critical realtime tasks run on the other virtual machine that

has an INtime RTOS on it. This enables the usage of all the Windows features for

creating programs.

This has proven to be easy to install and work with, however drivers for the

input and output devices have to be re-written for the real-time part of the system

to be able to access them. Data transfer between the Realtime side and the non

21

real-time Windows side is done by shared objects. While this system was tested,

it was discovered to be easy to transfer data between the realtime side and the

Windows side, and the INtime RTOS tasks performed nicely. However this solution

proved to have one major and a few minor setbacks for the work involved. Since

there is a different operating system that handles the realtime tasks, for it to

be able to handle the realtime IO operations needed for motion control it has to

recognize the IO cards. The drivers for the available IO cards were not available

from the distributor and it was discovered that drivers were very very limited for

this operating system. An attempt to write a driver was semi successful, but when

the trial license for the software ran out, progress on this platform stopped as the

cost was not justifiable considering the extra work involved.

It was noted however that having the ability to write windows programs that

can act as the man machine interface for realtime systems, increases the potential

and productivity of the work dramatically. It was also noted that there is no

community behind this platform therefore problems have to be solved without

consulting others which is a major setback.

3.2.4 Lean Linux

We can call an operating system that has been stripped down of all its non essential

components a lean operating system. Removing unnecessary components of a

linux system can be considered as the linux equivalent of creating a Windows

Embedded operating system. A lean linux operating system without any support

for realtime was also tested. It was noted that although the operating system can

go to higher frequencies and generally has a lot lower jitter that the windows XP

system, randomly the jitter increases to 150ms levels while the OS is performing

22

other tasks.

3.2.5 Windows CE

Windows CE is Microsoft’s operating system, designed for devices. Unlike windows

embedded it is not a stripped down version of the operating system for desktop

computers but a different OS altogether. Windows CE is optimized for devices

that have minimal storage, a Windows CE kernel may run in under a megabyte of

memory. Devices are often configured without disk storage, and may be configured

as a closed system that does not allow for end-user extension (for instance, it can

be burned into ROM). Windows CE conforms to the definition of a real-time

operating system, with a deterministic interrupt latency. The OS supports 256

priority levels and uses priority inheritance for dealing with priority inversion. The

fundamental unit of execution is the thread. This helps to simplify the interface

and improve execution time. Another feature of Windows CE is that it can operate

with different processors such as Intel x86 and compatibles, MIPS, ARM, and

Hitachi SuperH processors. Making it a candidate for mobile robotics or motion

control on small devices.

During the trial of this platform, it was noted that the development environ-

ment was very easy to use. It was easy to create a the windows CE operating

system using the platform builder software. Writing programs was also easy using

the Visual Studio application. However, it was discovered that this platform too

had the problem of supporting only a few IO cards. An attempt at writing a

driver for the available IO card did not yield useable results, probably due to lack

of experience. Also drivers for most ethernet cards do not exist. In future when

this platform has wider driver support it may be adopted as the basis of a motion

23

controller. It was also noted that unlike the INtime platform this platform has a

community behind it who are willing to help answer questions and solve problems.

3.2.6 Micro Controller Based Solutions

Implementing a solution on a micro controller or a DSP can be considered a good

option for motion control applications. As the micro controllers develop rapidly

the have started to have more and more power and some can have operating sys-

tems on them. There are many microcontroller fast prototyping boards. Without

an operating system they can be programmed to work on timer interrupts and

other interrupts, and this makes them realtime if the code written in to them

can finish the work in the desired time slot. However they are not suitable for

fast prototyping, and are relatively time consuming to develop the other hardware

components that are needed on a motion controller, also they are not expandable

easily. Micro controllers can be considered as a solution after all aspects of the

task have been fully considered and all the system specs have solidified, they are

a solution that is more product oriented rather than development oriented.

3.2.7 FPGA Based Systems

FPGA’s or Field-Programmable Gate Arrays are integrated circuits designed to

be configured by the designer after it has been manufactured. The FPGA configu-

ration is generally specified using a hardware description language (HDL), similar

to that used for an application specific integrated circuit (ASIC). FPGA’s are in-

creasingly used to implement any logical function that an ASIC could perform.

The ability to update the functionality after the chip has been produced and not

having to fabricate a new ASIC are among the benefits of these devices.

24

FPGA’s contain programmable logic components called logic blocks and a hier-

archy for reconfigurable interconnects that allow the blocks to be wired together.

Logic blocks can be configured to perform complex combinational functions, or

merely simple logic gates like AND and XOR. In most FPGAs, the logic blocks

also include memory elements, which may be simple flip-flops or more complete

blocks of memory.

The most common FPGA architecture consists of an array of configurable logic

blocks (CLBs), I/O pads, and routing channels. Generally, all the routing channels

have the same width (number of wires). Multiple I/O pads may fit into the height

of one row or the width of one column in the array. An application circuit must

be mapped into an FPGA with adequate resources. While the number of CLBs

and I/Os required is easily determined from the design, the number of routing

tracks needed may vary considerably even among designs with the same amount

of logic. (For example, a crossbar switch requires much more routing than a systolic

array with the same gate count.) Since unused routing tracks increase the cost

(and decrease the performance) of the part without providing any benefit, FPGA

manufacturers try to provide just enough tracks so that most designs that will fit

in terms of LUTs and IOs can be routed. This is determined by estimates such as

those derived from Rent’s rule or by experiments with existing designs.

FPGAs can have very many advantages for motion control. By their nature,

the logic inside an FPGA can operate in parallel. This makes motion control

systems expandable in terms of degrees of freedom until the FPGA runs out of

gates. FPGA’s have a major disadvantage of having slow development times.

They do not support coding using higher level languages yet, and the availability

of gates is not sufficient for easy development of applications. FPGA’s are one

25

of the platforms that have the ability to do very fast control and they are worth

investigation in motion control applications.

3.2.8 RTAI Patch for Linux

Linux Real Time Application Interface is a patch for a Linux kernel that installs

itself on top of the kernel. It is a very slight modification of the kernel, consisting

of a few hundred lines of code. This change, routes all the interrupts to the RTAI

code, and also makes the Linux kernel completely preemptable. What this means is

that, any code running in the RTAI side, can stop the kernel and start working, also

this applies to all interrupts, they are sent to the user defined realtime functions.

However unlike the other realtime patches like for windows, if these interrupts are

not caught by the RT code, then they are passed on to the Linux kernel where

they are handled as they normally would be. RTAI has the ability to work with

multiple processors, with the following schedulers.

RTAI makes available three schedulers: Uniprocessor (UP), optimized for unipro-

cessor machines; Symmetric Multi Processors (SMP) and Multi UniProcessor

(MUP) for symmetric multiprocessors applications. The SMP scheduler affords

the best compromise between flexibility and efficiency in kernel space applications

using RTAI proper kernel tasks, as it can schedule any ready task on any CPU,

while allowing to selectively impose selected tasks to run on a specific CPU or

CPUs cluster. The MUP scheduler instead imposes that any task is assigned to a

specific CPU from its very creation and can achieve better performances because

it can exploit memory caching more efficiently. RTAI specific kernel tasks can in

any case be moved to different CPUs dynamically at execution time. Instead inter

CPU migration of Linux tasks and kernel threads cannot be done in true hard real

26

time. There is no restriction in the use of any scheduler, real time tasks can interact

without any constraint, irrespective of what CPU they are running on. SMP and

MUP schedulers can be used also with uniprocessors. Another important feature

of all the schedulers is the possibility of choosing between either a base periodic

timing, with a fixed assigned time resolution tick, the approach mostly used in

RTOSes, and an arbitrary timing, allowing scheduling a task at the resolution of

the available clock by firing a one-shot timer at the time instant imposed by the

highest priority task waiting on the timed list. The one-shot mode avoids any com-

promise on the least scheduling resolution, thus giving an almost continuous time

resolution, while the periodic mode requires to have any task timed at an integer

multiple of the basic timer period. However we must recall what pointed out in

the introduction and avoid any illusion that on GPGPUs a task can be scheduled

with a nanosecond precision. It is also important to note that the MUP scheduler

uses independent per CPU timers and each of them can run independently from

any other, so that timers mode of operation can be freely assigned, e.g. there can

be periodic and one-shot timers and periodic timers need not to run at the same

period. RTAI schedulers make available the following scheduling policies:

Fully preemptable First In First Out (FIFO), for voluntary co-operative schedul-

ing. A task owns the CPU till it does not release it or a higher priority task pre-

empts its execution. Under FIFO scheduling there is a support function to help

meeting periodic tasks deadlines with statically assigned priorities according to

the Rate Monotonic Scheduling (RMS) concept.

Round Robin (RR), like FIFO but only up to a certain allowed per task time

slot, after which the CPU is tentatively handed over to any equal priority task

waiting on the ready list.

27

Early Deadline First (EDF), to dynamically assign priorities in order to meet

periodic tasks end of execution deadlines. It requires that the user assigns a

relatively good estimate of the execution time required by each periodic task.

It must be noted that under symmetric multiprocessing it is also possible to

handle external interrupts either in a symmetric way or to force them to a specific

CPU, or CPU cluster.

3.2.9 Conclusion

All the above platforms were examined and were compared according to their

ease of use, setup time, price, support, realtime abilities and driver support as

illustrated in table 3.1.

Table 3.1: Comparison of Motion Control Software Platforms

Platform Setup
Time

Real Time Support Price Drivers

Windows 0 No 10 100 Good
Windows XPe 1 No 9 20-100 Good
Windows CE 1.5 Yes 7 5-30 Limited
Windows RT Ex-
tension

1.5 Yes 1 3500 Limited

Linux 0 No 9 0 Delayed
Linux + RTAI 1.5 Yes 8 0 Delayed
Microcontroller 5 Yes 7 0 -
FPGA 5 Yes 2 0 -

Examining these platforms it is noted that it is most worthwhile to develop

applications on a real time enabled Linux platform due to its flexibility and good

realtime characteristics. An FPGA platform due to its potential to achieve higher

speeds and parallel processing is also worth investigating. It should be noted that

the windows platform is by far the easiest to develop non-realtime applications.

28

3.3 Framework Design

This section discusses some of the design choices made during the creation of the

framework.

Design of a framework has many challenges from language selection to module

design to implementation. As the complexity of a framework increases the usability

of the framework decreases. More time has to be invested in learning the framework

than its actual use. The coding of the framework should be as simple as possible

with well defined design patterns. Creation of elegant code is a form of art using all

the possible features of the programming language. However, every solution should

be catered to its users, in this case, the users have a background in programming

as engineers but it is not extensive.

Motion control systems are developing rapidly and the algorithms and different

implementations are also increasing at a rapid rate. Utilization of a framework

requires dedication to the framework. In the case that a framework ceases to pro-

vide necessary infrastructure for the task then the framework needs to be changed

or extended, migration from one framework to another one is a costly process.

Although this framework covers most of the aspects needed to conceive a mo-

tion control system there will inevitably be exceptions. The proposed framework

provides transparency in its implementation and it is fully extensible being open

source and written in a simplistic manner. During the design of the framework an

object oriented approach to modeling the motion control was pursued. The most

popular programming language to date is C with Java coming close and C++

coming after that [108]. These languages are mostly syntax compatible. C based

languages are still widely thought in universities and most realtime systems and

micro controllers are programmed using assembly or C. Therefore the framework

29

should be programmed in C because of its simplicity, existence in curriculums and

the abundance of programmers familiar with it.

Utilization of a framework in software engineering usually causes the compiled

code to take up more space which is also called code bloating. In order to minimize

this phenomenon the framework is provided in source code form that is compiled.

The compiler’s abilities for optimization are utilized to remove any unused sections

which may take up unnecessary memory in the created program. This is also a

necessity for the generated software to work on multiple platforms as executable

files cannot be transferred from one platform to another.

The complexity of the problems in designing a motion control framework ne-

cessitates a separation of concerns approach [109] because complexity is high and

needs to be reduced. Reduction of complexity and overall clarity of code is achieved

by breaking up the framework up into composable pieces. Each of the pieces can

then be analyzed, designed, and understood individually.

30

4 A FRAMEWORK FOR MOTION
CONTROL SYSTEMS

Developing a motion control system requires much effort in different domains.

Namely control, electronics and software engineering. In addition to these, there

are the system requirements which may be completely different to these spanning

from biomedical engineering to psychology. Collaboration between these fields is

vital, however these fields should be involved only as much as they are needed to

be in the fields of expertise of the others. The software framework proposed in this

study aims to achieve a level of abstraction between the different domains utilized

within a system.

The aim in using the framework is to achieve a sustainable software structure

for the system. Sustainability is an important part of systems, as it permits a

system to evolve with changing requirements and variable hardware, with the

ultimate goal of having robust software that can be utilized on different platforms

and with other systems using an abstraction layer between the hardware and the

software. This ensures that the system can be migrated from a processing platform

to any other platform and also from one set of hardware to another Fig 4.1.

The sustainability of the system is obtained by creating layered and modular

architecture for the system which inherently brings reusability to the software

that is generated. This is achieved by creating software blocks that provide an

interface for them to connect to other software blocks. The standardized interfaces

of these blocks enable their reuse in other projects. Modules of the system such

31

!

Hardware'
Platform'1'

Hardware'
Platform'2'

Hardware'
Platform'3'

Motion'Control'
Software'System'

Figure 4.1: Software developed with the framework can be mapped and used on
different platforms

as actuators, sensors and controllers can either be reused or generated writing

structured software or by using the frameworks functions. Fig 4.2.

Sensor'

Actuator'

Controller'

#include'…'
…'
'
'

code'

Sensor'

Control'Lib'

Reuse'of'previous'sensor'

Code'generated'
using'the'Control'
Library'

Figure 4.2: Software block examples

Layering the software has several advantages during development and deploy-

ment. Every layer of the system can be built with standard interfaces within the

framework. This is achieved again by the creation of higher level software modules

that utilize the lower level software modules. As a module has standard interfaces

32

the system can be designed around even a module that does not exist. This permits

both a top down and a bottom up development to be simultaneously pursued.

Sensor'Actuator' Controller'

Axis'

Observer'Filter'

Figure 4.3: Using modules to create higher level modules

Axis% Axis% Axis%

Mechanism%

Kinema.cs% States%

Figure 4.4: Using modules to create higher level modules

The framework models the basic components of a motion control system such

as actuators, sensors, controllers and provides standard interfaces to these com-

ponents. Libraries for control and other functions are provided for the connection

of the modules to form higher level modules Figure 4.3. The interactions of these

components are also modeled using a layered manner providing the ability to com-

bine the modules in to higher modules like mechanisms Figure 4.4.

33

Initially the hardware components of the system that interact with the non

software part of the system by means of IO channels are defined and integrated

to the framework. This forms a complete abstraction between the hardware and

software as the software interfaces with a fixed set of functions for the hardware.

After this step, the workings of the physical actuators and sensors are modeled

passing from an electronics domain communicating in volts and amperes to the

motion control domain which deals with positions and forces. Then the frame-

work focuses on the addition of control components such as controllers and filters.

Later the interaction between the hardware components is linked using the control

components, creating a higher layer of components such as degrees of freedom, i.e.

modules that are capable of performing basic motion control functions such as fol-

lowing position or velocity references. Then these modules are further developed

by grouping them together and addition of structures such as kinematics com-

ponents forming mechanisms which is another layer of the system. This process

continues until all the components of the system are modeled and the components

are grouped together forming the motion control system. Before the task of get-

ting the system start using its motion control abilities to perform actual tasks of

use the system software is integrated with a communication module which enables

the interaction with other systems or the reception of tasks by a graphical user

interface Figure 4.5.

This framework is not intended to be utilized in lieu of other frameworks,

rather it is intended to complement them. The current frameworks deal with

the behavioral aspects, obstacle avoidance and other interactions of the systems.

These frameworks do not take in to account the lower levels of the motion control

creation task. And usually assume that the hardware has its motion controller

34

attached. It can be considered that these frameworks deal with modeling the

whattodoandwhentodo of the motion control tasks where as the proposed frame-

work focuses on the howtodo aspect of the motion control problem. The motion

control framework proposed in this study provides development of a system until

it can be connected to an existing framework. As the framework utilizes C/C++,

the systems created can either be coded into the host platform if it is realtime

capable or the framework can be utilized with a realtime base platform and the

resulting system can communicate over communication protocols. This makes the

framework capable of complementing other frameworks or coexisting with them.

Mechanism* Sensor* Actuator*Mechanism*

System*

Communica3on* GUI*

System*Processes*

Figure 4.5: System conception

The motion control problem consists of two separate tasks, one part for the

construction of the realtime control modules used in precise motion control and

one non-realtime part for the construction of the offline processable tasks and the

man machine interface.

35

4.0.1 System Design Methodology Overview

This section describes the phases necessary to identify the needs of the framework.

For this aim we have conceived the following design methodology. The proposed

design methodology combines initially a top down and bottom up methodology

which are applied simultaneously in a methodological manner, where the top down

approach is used to well define the necessities of the systems and the bottom up

approach is used to model the different hardware and information components of

the system in a semi object oriented manner. Then the two approaches meet in

the middle in where an iteration is performed until the completion of the task.

The approach relies heavily on a well structured form of layering to facilitate the

separation of the different problems relating to the different engineering fields of

the global task. In this methodology each layer possesses its own difficulties and

necessitates its own dedicated functions. Common modules forming a framework

greatly improve the development time and development ease of mechatronics sys-

tems. These functions range from ones containing control functions for the motion

control layer to database connections and data-mining functions.

4.0.1.1 Hardware and Platform

Selection of items for the system is composed of the following phases. The def-

inition of the hardware and OS prepares the system for the development of the

software.

1. Definition of System Requirements

Motion Control Requirements

Man Machine Interface Requirements

36

2. Hardware Selection

Resolution

Frequency and Response Time

Platform Compatibility

3. Platform/OS Selection

Realtime Constraints

Hardware Compatibility

An important and sometimes overlooked or rushed aspect of system conception

is the well definition of the system requirements. For the system generation process

to flow smoothly it is vital for this step to be completed successfully. The system

definition step can be separated in to two components, initially there are the Man-

Machine Interface (MMI) requirements. These define how the system will take

data as inputs. MMI’s can range from a single button to start and stop a system

that does a very specific task to a multi computer, graphical interface and haptic

device system. Defining these parameters will define the data connections and

modes of operation for the system. This step also handles the addition of other

devices to the system such as mice, joysticks or haptic devices. On the other side of

the design aspects are the motion control needs of the system. These tasks define

the lower levels of the system. The task or tasks necessitate certain tolerances and

certain precision which leads directly to the choice of sensors and actuators to be

utilized in the construction of the system. After the selection of the sensors and

actuators these must be interfaced to the platform that runs the motion control

software for the system. This requires the selection of IO cards that must meet

the previously defined motion control criteria. Final stage for completing the

37

hardware and platform design is the base platform and OS selection. The base

platform and OS should be capable of supporting the selected IO electronics. The

selected platform should also be capable of running in either hard or soft realtime

depending on the task requirements.

4.0.1.2 Software

Sustainable software can be achieved by separation of concerns. In this framework,

the conceptual aspects of:

• interfacing with hardware

• modeling of actuators and sensors

• creation of degrees of freedom

• creation of complex mechanisms

• control theory

controller

filtering

estimation

• trajectory generation

• kinematics

• communication

have been separated organizationally at the implementation level.

38

To define lines between the separation, the concept of layers is utilized. Layer-

ing an application has particular importance in the development of large projects.

In a layered project each aspect of the project can be defined, isolated and then

resolved in their respective problem domains. In this text the words ”levels” and

”layers” are used in an interchangeable manner. Layers is a word that is used

to segment a project into logical parts whereas the word level is used more as a

segmentation from a software perspective.

Levels of an application are the degrees of complexity and detail that the

application possesses. As a rule of thumb a new layer is created with every new

technique or technology is introduced. A new layer is also introduced when several

components of a layer are combined to form a different object in the real world

like the combination of 3 linear stages forming a cartesian robot.

Typically lower levels of an application are close to the hardware and core

components such as drivers and motors whereas higher levels of an application are

much closer to the specifications of project tasks, but from another perspective we

may also say that the lower levels are closer to software functions and mechanics

calculations whereas upper layers are closer to the user level or MMI. Higher

levels of the project have abstraction from the hardware and electronics of the

system. In a way this hides the details of the system making it user friendly as

it includes concepts from the problem domain instead of those of the mechanical

and electronic domain. Separating an application into several levels eases the

project development phase in that it enables the challenges in the different levels

to be tackled separately. This enables a level of abstraction concerning a problem,

enabling one layer not to interfere with another layer which also enables the people

working on different layers of a project to work semi independently with their

39

individual work being joined on the interface level of the different levels of the

project.

Building the project up in layers is most convenient where the project will

have slightly varying specifications during its lifetime and the full abilities of the

machine/system are not known. Building the layers up enables the people involved

in the problem domain to view the algorithms and methods, understand them and

contribute to them.

Figure 4.6: Layers of Design

The lowest level of layers in a project is the interface to various hardware

elements of the system and the higher levels are closer to the man machine interface

and the tasks issued by it.

40

Figure 4.6 depicts the different layering of a typical project. The dedicated

hardware level is part of the project that interacts with the physical elements of

the system which are the electronics and the databases or data storage. These

functions are wrapped up in common functions and introduced to the upper layers

in a common syntax. Once the functions have entered the common mechatronics

language layer, then it is possible to start using these functions to model each of the

components in an object oriented manner. After every simple component has been

modeled and brought as an object into the mechatronics language domain, then

these basic objects can be used to build the next higher layer which handles more

complicated components such as the cartesian robots. For the efficient creation of

the higher level objects auxiliary function libraries that permit motion control are

utilized to define the interactions between the lower level components forming the

upper layer. At a certain point in the development of the objects, there will be

the need to access certain data about the objects. After all components have been

layered, then the layers pass on to the simple task level. With the passage into this

level, the components start becoming system specific. With the development of

the simple tasks and the complex tasks, the system reaches the problem domain.

When the system is coded up to this level, cooperating with people from the

problem domain becomes easier. As the components that are in discussion are

now, robots, mechanisms, conveyors and various other structures that are much

easier to relate to than controllers, actuators, sensors, volts.... This level is easily

discussed verbally as for every component of the system there is a software module,

and focus can be put on feeding these modules with the necessary references to

achieve the tasks required of the motion control system.

41

4.1 Components of the Framework

Figure 4.7: Modules of the Framework

This section describes the different modules or components of the framework.

Modern frameworks use the term nodes of independent algorithms or functional

control blocks that communicate with each other to form a functioning system.

Observing from a programming perspective, these are different threads or processes

with different communication methods. Every independent process/thread needs

at least the following sections to operate:

1. initialize

42

2. setup

3. loop

4. delete

Initialization phase is the activation of the hardware components such as IO

cards and the creation of the components of the system. Setup phase consists of

defining the connections between the components and assigning their parameters.

The deletion phase consists removing the resources allocated to the components

and shutting of the IO cards.

Each of the components generated within the framework have affinity to these

modes of function in order for them to be summoned during the respective opera-

tion phase of the system. This approach permits created components to be injected

into any already functioning system such as a system running Orocos/RTT [105]

or a dSPACE[110] platform. All systems that have been observed have three pri-

mary states from a system runtime perspective. These are the initialization phase,

the working phase which consists of a loop and a finalization or deletion phase.

The modules constructed using the framework are developed into functions and

structures that finally are finally combined in three functions initialize, loop and

delete corresponding to the three primary states of the motion control system.

This separation permits the system to be injected into any hardware platform

with minor modifications to the software Figure 4.8.

A motion control application can be separated in to several layers which require

their own expertise. The different layers of a typical motion control application

are depicted in Figure 4.7. From a programming perspective these layers can be

separated in to two categories. Real time and non real time parts. This sepa-

43

Dedicated(
Controller(

RT0Linux(

dSPACE(
loop()(

Init()(

delete()(

System(Template(

Hardware(
Wrapper(

Hardware(
Wrapper(

Hardware(
Wrapper(

Figure 4.8: Platform independance

ration is important in the design of motion control software because of timing

constraints. The layers of the system requiring realtime features are generally the

ones that interact with the hardware. The computer control algorithms for motion

control need to run at specific frequencies in order to perform and this can only be

guaranteed if the software platform on which the software is running is realtime.

Therefore interaction with hardware by the use of sensors and actuators and the

associated control algorithms such as controllers observers estimators and filters

are implemented as part of the realtime layers of the system. To describe more

complex systems layers such as kinematics and trajectories are needed. Because

these interact directly with the hardware they must also be implemented in the

realtime part of the system. The non realtime part of the system are the layers

that do not require such timing constraints. These layers can be considered closer

user or the man machine interface. Layer such as graphics display, monitoring of

44

variables, input of data or commands and MMI devices often require inputs from

the user or display some information to the user. Image acquisition and processing

have slow changing outputs relative to the faster motion control algorithms there-

fore they can also be considered as non realtime layers. Other non realtime layers

of the system include Scripting to provide automation mimicking the inputs of a

user, data analysis to evaluate the performance of the system, motion planning

that is processed before the actual motions start. These layers and the components

created for them are described in their respective sections.

The framework implements a modular structure from a software perspective.

The requirements of the software modules of the system have been identified and

the module structure in Figure 4.9 has been devised.

The module contains some data structures those are described below:

inputs structure of the module is a structure for receiving information such as

position references from other modules. During the runtime of the system,

interaction with the module is achieved by writing data to its inputs struc-

ture.

outputs structure of the module is a structure for sending information such as

control outputs to other modules. During the runtime of the system, in-

teraction with the module is achieved by reading the data contained in its

outputs structure.

states structure of the module is used for storing the internal data of the module,

for example a module requiring its previous outputs would store this data in

the states structure.

parameters structure of the module is used for configuring the module. For

45

example the control coefficients of a controller would be stored in the pa-

rameters structure.

When a module is being designed the elements of the states, inputs, outputs and

parameters structures are defined. During the initialization phase of the system,

the parameters of the module are configured. The inputs and outputs of the

module are updated during the runtime of the system.
!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

Algorithm!

States!

Parameters!

define!
define!

define!

input! output!

configure!

Figure 4.9: Module structure

4.1.1 Hardware Interface

Motion and process control applications have the need to control specific hardware

in order to provide the desired movements. The hardware interface of the frame-

work consists of means of providing digital and analog inputs and outputs. This

module of the framework provides a standardized interface for the programmer

to fill in order to obtain the functionality of the electronic cards to be used from

the software that is generated by the developer. A motion control system may

use many different electronic cards among virtually limitless options available in

46

todays market. It is desired to be able to use any card that is accepted by the

platform which the motion control software runs on. The standardization of this

interface is achieved using a technique called wrapping. The framework provides

a wrapper template for the electronic IO cards that are used by the motion con-

trol system. Once the wrapper template is filled, the remainder of the modules

utilize these functions. In common mechatronics systems 6 major types of elec-

tronic interfaces between the software and the electronic components have been

identified:

• Inputs

Analog Input

Digital Input

Encoder Input

• Outputs

Analog Output

Digital Output

Pulse Width Modulation Output

Each of these interfaces has several functions associated to them. The inputs

need to be read and the outputs need to be set. These functions have been re-

spectively prefixed with the words get and set. Furthermore on some types of IO

cards the hardware needs to be initialized or the user may desire to write their

own initialization for these cards. Therefore an initialize function exists for each of

these interfaces.These functions have been prefixed with the word init. There may

also be a need to delete these interfaces when the system is shut down. Therefore

47

a delete function has been created which is respectively prefixed with the word

delete.

4.1.2 Motion

In this section modules for the creation of the motion are presented. The motion

layer of the framework presents multiple functions in different areas to enable the

software to guide the degrees of freedom of the system to the desired references.

4.1.2.1 Drivers

Drivers are pieces of software that are installed on to platforms that enable the

usage of devices that are attached to the platform of choice. These drivers are

installed and provide utilization of the hardware. Integration of these drivers into

the framework is provided by the usage of templates. Devices that expose the

standard inputs and outputs are wrapped by the HardwareInterface template.

For stand alone motion control hardware or hardware that controls specific devices

are also wrapped with a wrapper to ensure their seamless integration to the frame-

work. It is assumed that the motion control hardware has four different functions.

Similar to the input and output hardware provided, there are the initialize and

delete functions. The initialize function, initializes the communication with the

IO card, sends initialization commands to the device and allocates memory if nec-

essary. The delete function closes the communication to the device and frees all

the resources allocated to the device. In addition to these there are two functions

one to set the reference and another to acquire the position.

48

4.1.2.2 Sensor/Measurement

Sensors, also called detectors, are devices that measure a physical quantity and

convert it into a signal, which can be read by an observer or by an instrument

[111]. These measurement instruments monitor and control processes and oper-

ations. They are also largely used in experimental engineering analysis. Certain

applications of these instruments may be characterized as having essentially a mon-

itoring function as thermometers, barometers and water, gas, and electric meters.

On the other hand, a measuring instrument can serve as a component of a control

system since it is first necessary to measure any variable in a feedback control sys-

tem. It is essential to consider that a single control system as industrial machine

and process controllers or aircraft control systems, may require information from

many measuring instruments [112].

Development of sensors relies on an evaluating program carried out in 1988,

by the National Science Foundation (NSF), together with The Defense Advanced

Research Projects Agency, whose goal is evaluating Japanese technology with a

program called JTECH. The main motivation of the project was to track the

advanced japanese manufacturing processes since they invented the mechatronic

concept and implemented successfully in manufacturing. Sensors played a critical

role in the monitoring and control of these processes [113].

Today, we are using sensors in a wide variety of areas as indicated in the Ta-

ble 4.1, to interact with the environment and to obtain information. Luo[113]

affirms that sensor technologies are as important in the mechatronic system as

senses are to a human being. A mechatronic product requires essentially intel-

ligence and flexibility. Sensors are used in everyday objects as tactile sensors in

elevator buttons or lamps. Innumerable application areas include cars, machines,

49

aerospace, medicine, manufacturing and robotics. It has been revealed that 80%

of the industrial measurements are of displacement nature when the scientific and

technological measurements are substantially of proximity distance nature. The

dynamic, unstructured and indeterminate nature of the environment increases the

demand for the use of multiple diverse sensors in mechatronic products. The im-

mediate feedback for a reliable and flexible operation in a washing machine requires

for example 10 or more sensors to detect the type of materials to be washed, the

degree of dirt, the concentration of detergent etc. Providing a continuous mea-

surement of mechanical processes in diverse conditions has become crucial in the

automated industrial processes to enhance the productivity and the sustainability

[113].

Application Area Use Percentage

Information Processing & Communications 8.0
Scientific Instrumentation 11.7
Electric Power & Energy 5.3
Manufacturing Facilities 18.1
Home Appliance 13.9
Automobiles 7.3
Transportation 1.6
Space Development 2.7
Environment, Security & Meteorology 10.0
Resources & Ocean Development 1.4
Health & Medicine 11.0
Agriculture, Forestry & Fishery 0.7
Civil Engineering & Construction 0.7
Distribution, Commerce & Finance 0.2
Others 7.3

Table 4.1: Sensor Application Areas

The transducer in the sensor senses the absolute value or a change of a physical

quantity and converts it into an electrical signal that might be inconveniently

50

Figure 4.10: Single Sensor Control

small. To handle this inconvenience, an amplifier and signal-conditioning circuit

is used Figure 4.10 It is vital to consider that a mechatronic product must provide

a functional and spatial interaction between mechanical, electronic, control and

information technologies in a synergistic way, besides it requires intelligence and

flexibility [114].

Some of the categories of sensors used in mechatronic systems are listed here-

inafter:

• Inductive Proximity Sensors

• Capacitive Proximity Sensors

• Photoelectric Proximity Sensors

• Ultrasonic Proximity Sensors

• Linear Variable Differential Transformer Displacement Sensors

51

• Solid-State Sensors

• Fiber-Optic Sensors

• Force-Torque Sensors and Load Cells

There are two basic types of pressure/force sensing device: capacitive sensors

and piezoresistive sensors. The pressure applied on the capacitive sensor, made

up of a flexible diaphragm creates a change in the capacitance and induces a

frequency shift in the circuit. On the other hand, a piezoresistive material is one

whose electrical resistance changes with a change in pressure on the material. This

is the working principle of a strain gauge [113].

A load cell converts a force into electrical signal in two stages. In the first stage,

the force sensed deforms mechanically a strain gauge. The strain gauge measures

the deformation as an electrical signal by changing the effective electrical resistance

of the wire. A load cell may consist of four strain gauges in Wheatstone bridge or

of one or two strain gauges [115, 116].

From the perspective of the framework, sensors are means of obtaining real

world data to the digital domain. After this data has been digitized by the nec-

essary means, there is a need for it to be translated into meaningful data. The

objective on implementing a sensor for the mechatronics system is to create a stan-

dalone object or set of functions that will enable the sensor to be utilized by the

framework Figure 4.11. For this operation a few pieces of information are needed.

The function block for sensor measurement are a set of functions that translate

data obtained from IO devices to the framework. Once the integration to the

framework is complete, the remaining layers of the system do not need to know

the details or workings of the sensor. All that is need is the data measured upon

52

request by the sensor and the units of the sensor. The sensor interface utilizes

the inputs to read the information and perform calculations to provide data to

the system. Each sensor function utilizes a sensor structure where some data is

kept indicating critical information such as input channel number and output data

units. An objective while creating a sensor object is to enable the same sensor

functions and structure to be utilized on multiple samples of the same sensor, and

to be able to transfer the sensor data and parameters easily to apply filters or

other operations.

I/O$Card$ Sensor$
Interface$

Framework$

Figure 4.11: Sensor Integration to Framework

The sensors are handled by a sensor structure that contains the sensor name

and two other structures. These structures are the Parameter and State structures.

The parameter structure contains the units, the IO number and the conversion

coefficient for the sensor. The states structure contains an array of the values of

that sensor. The sensor structure can be utilized by functions. The setSensor

function provides means to set the value of a sensor. The resetSensor function

enables the resetting of a sensor such as an encoder. The readSensor function

reads the necessary input and converts it to the necessary unit and places the

value in the states structure Figure 4.12.

A SensorData structure housing the parameters and the states of the sensor

53

Name	

Parameters	

states	

Sensor	

unit	

inputIO	

outputIO	

offset	

coefficient	

resetSensor	

readSensor	

setSensor	

SensorData	

logCount	

value	

SensorParameters	

SensorState	

…	

…	

…	

…	

…	

…	

…	

…	

…	

…	

…	

Values:	

initSensor	

calcSensor	

Func?ons:	

Figure 4.12: Sensor Functions and Structures

54

is created. This structure represents the sensor and its states. All the other

functions work on this structure. The functions that initialize this structure, set

its parameters according to the sensors specifications. Data contained within is

separated in two parts. One part for the sensor parameters and the other part for

the states of the sensor including previous values.

Storing the sensor parameters in a structure also enables the serialization of its

data which renders it serializable i.e. ready for any transmission over a network

or storage in a file.

The SensorState structure contains the current value and the past values of the

sensor. Values are kept in an array to be able to perform filtration if required. The

logCount value in this structure indicates the number of values that are stored in

the sensor.

The SensorParameters structure contains information on the sensor and the

necessary information to calculate the output value of the sensor using the elec-

tronic interface that is utilized. The parameters are the units of the sensor, the

channel numbers for the input and output IO cards, the coefficient which the ana-

log or digital IO card value to be transformed into the value and the offset of the

sensor before this transformation.

The calcSensor function is the function responsible for converting the input

from the IO card to the sensor value using the parameters in the parameters

structure.

The setSensor function is utilized when the value of the sensor output is known

by other means. This is utilized for calibrating the sensor or resetting the sensor

to some value if the sensor is of incremental type.

The resetSensor function is utilized for resetting a sensor. This procedure

55

unlike the setSensor function, re-initiates the communication with the sensor.

The initSensor function is utilized for initializing the sensor and initiating the

communication. In this function the IO cards are initialized and the communica-

tion with the sensor is started.

4.1.2.3 Actuators

Recent developments in mechatronics provide the realization of smart adaptive

systems. The operating conditions are ensured by sensors when the mechanical

subfunctions are controlled by actuators [117]. A mechatronic system needs the

organic combination of the following elements: Processors to control the system,

sensors to intellectualize it and to detect the environmental situation, actuators to

employ the motion of the system [118].

An actuator is a type of motor operated by a source of energy. The working

principle of an actuator is converting that energy into some kind of motion. Actu-

ators can be classified according to the type of control energy: electric motors and

drives, hydraulic drives, pneumatic drives, internal combustion hybrids and piezo

actuators [119].

Electric Actuators: They transform electrical energy to mechanical energy.

Different types of electric actuators are [119]:

• DC Motors

• AC Motors

• Linear Motors

• Stepper Motors

56

Electric actuators are widely used because they are easily integrated into elec-

tric control systems. Besides, electricity is more available than fluid power which

requires pumps and compressors.

Hydraulic Drives: They use fluids to transmit power. A hydraulic drive is

composed of three parts: the pump, the inverse pump or cylinder and the valve.

Pumps are power generators and inverse pumps or cylinders are power drains.

Valves are used for control. Hydraulic drives are preferred traditionally in high

power applications as steel press, large-scale precision motion tables, steering,

brakes, propulsion, transmission in mobile systems, aerolon actuation in aircraft

and fin actuation in missiles/rockets [119].

Pneumatic Drives: They have the same fundamental working principles with

the hydraulic drives except that the working fluid is replaced by compressed air

[119]. Pneumatic drives are further explained in this section.

Piezo actuators: Electrically controlled actuators that can be integrated into

electronic control systems are of extraordinary technical importance as they com-

pose the core module of mechatronic systems. Piezoactuators are essentially clas-

sified within this major group. On the other hand, piezoelectric ceramics (PZT)

provide a higher potential than the electromagnetic actuators, hence they consti-

tute the fourth class of actuators [117]. Piezo actuators are further explained in

this section.

Some of the experiments realized using the framework include DC motors,

linear actuators, pneumatic actuators and piezo actuators.

DC Motors: DC motors are rotary actuators that are powered by electric cur-

rent. [119]. There are many kind of DC motors like DC Servo motors, Permanent

Magnet DC motors, Brushless motors etc. DC motors are used in cases requir-

57

ing accurate position and velocity control. Low noise and high efficiency are two

important advantages of them [119].

Linear Actuators: The slider (rotor), the stationary part (stator) and the gap

are extended in a straight line. These kind of motors are relatively expensive and

large for power output. They have a miniature and simple structure.

Pneumatic Actuators: They have the same fundamental working principles

with the hydraulic drives except that the working fluid is replaced by compressed

air. The major disadvantage is compressibility of air, leading to low power den-

sities and poor control properties. The advantage of these actuators is that the

compressed air is widely available and environmentally friendly. It is easy to install

and maintain pneumatic systems. They are used in robot grippers, assembly oper-

ations, drills/cutting tools, suction and clamping, animatronics, grippers, subsea

robotics [119].

Piezo Actuators: The high specific force and displacement need is the major

cause of the quick development of compact actuators with a large displacement

and high force. This kind of actuators are created to be used in control surfaces

of small aircraft and helicopter blades or for active vibration control of aerospace

and submarine structures [120]. They are used in medical devices as surgical

robots/biopsy robots, treatment tables for MRI (Magnetic Resonance Imaging),

fluid management in fusion/insulin pumps, mammography; in automotive applica-

tions as camshaft adjustment, exhaust gas recirculation (EGR), adaptive spoiler,

weight compensated trunk deck, seat adjustment/window lifters, variable valve

timing (VVT); in automation devices as precision valves, positioning drives, pick

and place automation, microdosing systems, rotary modules for robots, micro pro-

duction and assembly, extreme condition remote handling; in robotics application

58

as personal assistants for handicapped people, high precision welding robots, hu-

man machine interface with force feedback; in aviation/military applications as

servo valve/electro-hydraulic actuator, flight control surface actuation, position-

ing/adjustment of surveillance of reconnaissance systems, antenna adjustment; in

optics applications as beam steering, adaptive optics [121].

The usage of piezo actuators provides fast response, high stiffness and prevents

backlash and friction [122]. These actuators consist of diverse layers of ceramic

material, diverse layers of conductive material scattered between diverse layers of

ceramic material and a plate attached to an end of the actuator. A piezo actuator

includes an overhang portion [123].

Actuators in a motion control system are means of providing motion in the

physical world. The desired outputs of the actuator such as torque, velocity or

position are generated in the software and are transmitted to the electronics do-

main by IO cards. These IO cards usually have electronic drivers connected to

them, to amplify these signals to create signals with enough power to drive the

actuators. From a software perspective, an actuator is intended to provide the

necessary physical action based on the input provided to it. From a logical per-

spective as far as the software is concerned the actuator function should receive

a reference for the desired output and respectively, passing through the IO cards

and the electronics and the motors and reaching the physical world as the output

of the motion control system.

Output of the actuator, or the reference which the actuator can obey, depends

also on its driver, more precisely the availability of a controller inside its driver.

Such drivers are capable of providing references that usually require the control

layers of the framework. However intelligent devices, or devices that have their own

59

micro controllers can be directly controlled with the actuator interface. Actuators

that only have a power stage receive their input by the actuator interface but they

necessitate a sensor and the control layers to obey references such as position or

velocity references.

Actuator(Interface(

Driver(IO(Card(Wrapper(

Framework(

Actuator(

Torque'
Velocity'

Accelera0on'
Posi0on'

Controller(

Figure 4.13: Actuator Integration to Framework

Each actuator function utilizes an actuator structure where the parameters of

the actuator are stored. The actuator parameters consists of the output channel

number and the input units of the desired output and the conversion factor. The

conversion factor of sensor is the value that is necessary to convert the digitized

data to the real world desired output. This factor includes the drivers coefficients

along with the motors parameters and also the mechanical parameters associated to

that particular actuator. An actuator usually has a single type of output depending

on its type and availability of the driver. In general for dc motors this is torque,

60

for step motors this is position for linear stages with drivers it can be velocity or

force. The actuator architecture here works with a single type of output. When

the actuator is coupled with means of measurement and control does it become an

axis which can be commanded to obey different references such as acceleration,

position or velocity.

name%
units%
conversion%
offset%
outputval%
outputIO%

Actuator%

ActuatorData%

resetActuator%

initActuator%

writeActuator%

setActuatorOffset%

Func7ons:%

deleteActuator%

Figure 4.14: Actuator Functions and Structures

The information to operate an actuator can be grouped inside a structure

that takes the following form. The ActuatorData structure, contains information

relating to an actuator. This information is as follows: name is the name of the

sensor and this data is used for generating text based report messages of the sensor.

The units data field is also utilized for reporting of the actuators status indicating

the units that the actuator outputs. conversion factor is the coefficient which

transforms the input indicated in the units field to the necessary voltage value or

other value sent to the actuator to achieve the desired output. The offset value

indicates the offset that is to be sent to the driver for the actuator. This value is

61

utilized for resetting the stage or for compensating fixed loads or imperfections in

the electronics for the actuator. The outputval field contains the output value for

the actuator; this value is to be utilized to check what value is being sent to the

actuator by other functions and structures. The inputIO field contains the output

data channel number for the actuator.

Other functions utilize the data contained within the actuator structure. The

initActuator function takes an ActuatorData structure and performs initialization

of the structure and the necessary IO channels.

There exists a deleteActuator function, that frees up all the resources allocated

to the Actuator function, and stops communication with the IO cards if necessary.

The writeActuator function is responsible for providing the necessary output

to an actuator. As input it takes value in the units defined in the ActuatorData

data structure. This value is then offset by the offset value and transformed by

the coefficient to make it compatible with the output units and then output from

the output channel defined in the ActuatorData structure.

Actuators sometimes need to be reset in case of errors or various other needs,

for this the resetActuator function resets communications with the actuator if

necessary and deletes the offset value.

The output electronics or mechanics may poses an offset, this is handled by

the offset value in the actuator data structure. This offset value is set using the

setActuatorOffset function.

4.1.2.4 Filters

Series of data, also know as signals in the control domain, may not always exhibit

desired behavior and can be distorted due to noise, discretization or other opera-

62

tions performed on the data. Therefore these data need to be filtered in order for

them not to cause perturbations in the system.

Filters are necessary when certain data to be obtained has noise associated

with it or in the case that derivation and discretization is involved.

When implementing a filter for software many aspects concerning the filter

characteristics are important.

• Frequency Response

• Phase Shift or Group Delay

• Impulse Response

• Causality

• Stability

• Localization

• Complexity

When implementing a filter structure from a structured software perspective,

other features come in to play.

• Modularity

• Reusability

• Data Structures

• Data Storage

63

The study of many filters shows that a filter needs the input value and previous

values of the input i.e logged input, some filters also require a logged output. The

algorithm of a filter and the parameters of the filter also come in to play.

Upon investigation of the filters, it was discovered that filters require tuning

and often the utilization of different filters. Therefore the design requirements for

the filters was the modularity of filters and the necessity to create the filters as an

exchangeable component that can be exchanged easily. In addition, filters needed

to be coded in a standardized method and structure so that different filters can be

called by the same function. To standardize a filter function set and data struc-

tures, the following structure for filters has been devised. The filter parameters

are stored in a structure and this structure is initialize by an initF ilter function.

This function does not necessarily need to comply to strict standards, as it will

be called once during the initialization of the filter and automated calling is not

necessary.

The filter structure consists of a name for a filter that is useful for generating

automatic status messages from the filter and an array of parameters. The number

of parameters is defined as PARAMCOUNT . The parameters are coefficients and

constants utilized in the filtration algorithm. These are fulfilled by the initF ilter

function.

The initF ilter function takes as parameters the filter structure, and the pa-

rameters that are to be filled in to the filter structure. These are copied one by

one in to the filter structure.

The deleteFilter function is utilized once the filter is no longer necessary. This

function releases all resources allocated to the filter.

The FilterAlg function is the actual algorithm of the filter. This function uti-

64

lizes the filter structure to receive its parameters. In addition it receives an array

of input values, the values to be filtered and the output of the filtration operation,

i.e. the filter output. The algorithm is implemented within this function. Keep-

ing the function declaration in such a standard, the filter can be automatically

referenced as a function pointer.

Filter'

Signal'Log' Filtered'Log'

U1'
U2'
U3'
U4'
U6'
…'

fU1'
fU2'
fU3'
fU4'
fU6'
…'

Algorithm'

initFilter()'

Parameters:'
P1'
P2'
P3'
P4'

Filter'

Figure 4.15: Software Implementation of Generalized Filter

4.1.2.5 Estimators and Observers

In motion control systems it is not always possible to have sensors that measure

every aspect of the desired motion and the desired interaction with the world.

65

Filter'
Signal' Filtered'Signal'

Figure 4.16: General Filter in Mechatronics

However using observers it is possible to estimate desired information. For example

the first derivative of position is velocity. In a system where the only means of

measurement is the encoder of a motor which provides position information, an

estimator is utilized to obtain the velocity information. The algorithms used to

obtain this information are called estimators. Several types of estimators have

been included in the framework.

4.1.2.6 Observers

Observers are algorithms that combine sensor outputs with knowledge of the sys-

tem to provide results superior to traditional structures, which rely wholly on

sensors. Observer control based algorithms require an observer. A state observer

typically combines system input/output with a mathematical model to predict the

behavior of that system. Real state of the system is compared with the estimated

state of the system and resulting error is utilized to compensate in the following

cycles to bring the system to desired states.

4.1.2.7 Controller

Controllers are algorithms that receive a state and a reference and generate outputs

to drive the state to the desired reference. In the literature there are several control

algorithms that have specific applications.

66

The controller module of the system takes the states that are to be controlled,

applies its control algorithm and outputs the control outputs. The inputs to the

controller module may be states of the system that are observed, estimated or mea-

sured by the sensor module 4.17. The controller module implements the standard

module structure.
!

CONTROLLER!

States!

Parameters!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

Algorithm!
states!

control!
outputs!

Figure 4.17: Controller Structure

4.1.2.8 Axis

In the context of the framework the control of a degree of freedom is is named an

axis. The control of such a degree of freedom consists of acquiring the inputs from

the sensors, utilizing the necessary estimators and observers to obtain unmeasur-

able states of the system then utilizing control functions to control the degree of

freedom. And finally the control outputs are sent to the actuators utilizing the

actuators functions 4.18.

The axis module abides by the module structure and interactions. And it has

parameters and states structures to store its data and input and output structures

to receive data during the runtime of the system. In order to control the actuator

using the sensor information and the references from its inputs the axis needs

67

!

AXIS!

States! Parameters! Sensors! Actuators!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

Algorithm!

Controllers! Filters! Observers!

Sensor! Actuator!

Controller!1! Controller!2! …! Filter!1! Filter!2! …! Observer!1!

Estimators!

Estimator!1! Estimator!2! …! …!

Figure 4.18: Axis Structure

access to several of the other components. The main components of the axis are

the sensor and the actuator as the primary function of the axis module is to govern

the relation between these two structures. To be able to govern this interaction in

its Algorithm the axis also has access to:

Filters Used to filter inputs from the sensor or its references.

Estimators & Observers Used to obtain data that may not be provided directly

from a sensor.

Controllers Used to implement the control algorithms

An axis structure has access to several of the submodules of the system as it

may require may different filters of observers to obtain different informations. If

the axis has a complex control structure then many controllers may be needed to

be implemented to control it as described in section 5.1.3.

68

During the runtime of the system, another module using an axis module may

also switch the controllers or other structures within the axis module. The system

may require the axis to function in position controller mode during a certain period

yet later may need to switch the axis in to velocity control mode as described in

section 5.1.1

Initialization or creation of the modules used by the axis is done in the system

initialization phase and the deletion of these components is also handled by the

systems deletion phase where the resources such as IO cards are released.

4.1.2.9 Mechanism

The mechanism module is the combination of several axes, sensors and actuators to

form a motion control device such as a robot. The mechanism module has the roles

of insuring the coordination between the different axes and providing and interface

for the mechanism. The mechanism module also abides to the standard modes of

interaction by having an input and output structure and storing its parameters

and states within. The objective of grouping the axes inside a mechanism is to

expose an interface that only provides functions relating to a mechanism to the

higher levels. For example a system using a delta robot would only be interested

in giving position references to guide the robot and position information to check

on the robot. The other parameters or functions of the mechanism may not be

relevant to the higher levels of the system.

The multi degree of freedom mechanism has special needs expected such as for-

ward kinematics and reverse kinematics and trajectory generation expected from

it. The mechanism structure must provide access to the functionalities as well.

This is achieved by providing arrays of these modules in the mechanism module

69

Figure 4.19.

Actuators array provides access to multiple actuators to the mechanism. Simpler

actuators may be added directly to the mechanism in case they are not linked

together by an axis module. Such as solenoid valves or stoppers.

Sensors array provides access to multiple sensors if they are not part of an axis

structure. An example to a sensor used directly by a mechanism module

would be a tray sensor that reports the presence of a tray at a certain position

as described in section 5.1.2.

Axes array provides access to multiple axes. It is the mechanism primary task to

perform the synchronization of these submodules.

Kinematics array provides access to kinematics modules. Kinematics modules

are used by the mechanism module to convert the task space references in

its inputs to joint space references in the axis inputs. Such as for the control

of the parallel robots described in section 5.1.2

Trajectories array provides access to trajectory modules. Trajectory is used to

move the mechanism smoothly and in a linear fashion from its actual position

to its reference.

At the heart of the mechanism is a state machine that governs the operation

of the mechanism, the states of the mechanism are exposed to the system level.

Generally a mechanism is expected to perform in several different modes of op-

eration such applying a certain force or going to a specified position. The state

machine of the mechanism module governs the operation mode of the mechanism.

70

!

MECHANISM!

States! Parameters! Sensors! Actuators!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

State!Machine!
• Modes!of!Operation!

Axes! Kinematics! Trajectories!

Sensor! Actuator!

Axis!1! Axis!2! …! Kinematics!1! Kinematics!1! …! Trajectory!

Figure 4.19: Mechanism Structure

The state machine is operated by the system to change the modes of operation of

the mechanism.

From an interaction perspective, the system can call upon an mechanism to

run in the following modes of operation.

• Initialization

• Homing

• Setup

• Move

More modes of operation can be added to the state machine depending on the

task requirements of the system and the mechanism.

71

4.1.2.10 Trajectory

Trajectory module has the task of providing a smooth movement from one point

to another. Generating a trajectory has two major contributions. First it can

smooth out any jerks in the movement of the mechanism by providing a slow ac-

celeration and deceleration phases, secondly it can assure that the desired position

is reached in a linear manner. The trajectory module has to receive its inputs from

several degrees of freedom. The data it needs are the maximum acceleration and

velocities of the different degrees of freedom as well as their positions and their

references Figure 4.20. Then the trajectory algorithm is performed and the algo-

rithm outputs references for each of the degrees of freedom. The trajectory module

is used by the mechanism module and it is up to the mechanism module to gather

and provide the necessary inputs to the trajectory module and use its outputs.

Several different modes of trajectory may be implemented in a system. A jerk

free and smooth trajectory is obtained using trigonometric jerk model [124] was

is implemented. A three part S-curve was formed consisting of the acceleration,

constant velocity and deceleration phases where the acceleration limits determines

the sinus characteristics during the acceleration and deceleration phases and the

velocity limit determines the speed at the constant velocity phase in 5.1.1

4.1.2.11 Kinematics

The kinematics module has the task providing a transformation between differ-

ent coordinate spaces. It receives inputs in one coordinate space and outputs in

another coordinate space. To function it needs parameters of the mechanism or

robot for which it will perform the transformation along with the algorithm to

perform the transformation. Kinematics involves the mathematical equations that

72

!

TRAJECTORY!

States!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

Trajectory!
Algorithm!

• Number!of!DOF!
• Initial!positions!
• References!
• Maximum!acceleration!
• Maximum!velocity! Position!references!

Phase!of!Trajectory!Algorithm!

Figure 4.20: Trajectory Module

provides the transformation in between the joint coordinates and the task coordi-

nates. In complex mechanisms, the desired motion references are generally given

as task coordinates, but the software controls the actuators which are controlled

in the joint space. Kinematics provides a translation between where the relevant

part of a mechanism needs to go and where motors controlling that mechanism

need to go .

!

KINEMATICS!

States!

Parameters!

i!
n!
p!
u!
t!
s!

o!
u!
t!
p!
u!
t!
s!

Kinematics!
Algorithm!

Joint!Space!Coordinates!
q1,q2,q3,...() !

Task!Space!Coordinates!
x1, x2, x3,...() !

Robot!Configuration!
Parameters!

Figure 4.21: Kinematics Module

Inverse kinematics provide a translation between the joint space and the task

73

space. Inverse kinematics are utilized to calculate the position of a mechanical

structure based on the positions of its actuators.

4.1.2.12 Protection

In some cases it is desired to put certain limitations on some aspects of a system

to protect it. For example an actuator may be only capable of accepting a maxi-

mum input. Protection may be added in all the modules of the application from

actuators to mechanisms. In the example of

4.1.3 Process

In the context of this framework, a process is described as an operation that is

to be performed by the designed system. These processes include heating, curing,

cutting etc. Processes have several parameters. In the implementation a process

is very much like a mechanism. In the sense that it utilizes many actuators and

sensors. The process also utilizes a state machine to govern the process. The

states of the process are time based or sensor based and switching between them

is automatic.

4.1.3.1 Interpretation

Motion control systems may sometimes have the need to execute certain predefined

motions. For milling, cutting or any type of application. For these applications

a reference trajectory is needed. This reference trajectory is usually complex and

cannot be defined using simple mathematics. The reference generated is derived

from a certain object or a certain procedure. A language that describes a certain

motion called g-code has become an industry standard. There exist many appli-

74

cations such as SolidCAM, Unigraphics among others that generate g-code from

solid objects to other processes. This may be achieved using a g-code interpreter.

4.1.3.2 Parameter Setting

Certain devices require functions to initialize them and set their parameters. Tem-

plates for external devices exist to set their parameters and initialize them. The

common parameters included are, power, speed, temperature, wavelength. Pa-

rameter setting task has a close affinity to the communication module. Parameter

setting in the framework is implemented in two different manners. Either the de-

vice whose parameters are to be set is implemented as a sensor or actuator and

it is initialized in the corresponding initialization procedure. In the case that the

external device has communication over a serial port or such, integration in to a

realtime loops of the framework is not possible. In that case it is added to the

communication module. Parameters for these devices are received through the

communication structures.

4.1.4 Communication

Usage of different platforms or multiple platforms in a motion control system

brings forth means of communication among them. Communication requires that

the communicating platforms share an area of communicative commonality.

Communicating the system with other systems or man machine interfaces is

an important part of the process for the functioning of the system. There are very

many communication mediums and protocols available. Therefore the communi-

cations must be separated in to two tasks, data collection and data reception and

transmission. The data collection procedure for the system is setup as follows.

75

The data to be communicated has to be separated in two parts, incoming data

and outgoing data. Outgoing data is collected at the end of every loop whereas

incoming data is input at the beginning of every loop. The initial phase of de-

signing the communication is the creation of two structures, one for the incoming

data and another for the outgoing data. Outgoing data is usually the position

information and the states of the actuators and sensors but any part of general

system can be added to this structure whereas incoming data are the references

and the states for the state machines of the system.

Creation and population of these structures enables the separation of the com-

munication problem from its data. And the communication problem can be as-

signed to the person or team dealing with the communications.

The philosophy of separating the implementation of the system from its spe-

cific hardware also applies for communication and the communication procedures

are also wrapped with two functions. These functions are the send and receive

functions.

Communication can be diversified and the framework permits this diversifica-

tion by including a message ID for the messages to be sent. This message ID has

to be interpreted by the communications designer to solve what is the intent of the

message. It can be sent to different users or it can be of a specific type of shorter

message that contains only one part of the output data structure.

Communicating with a motion control system does require large amounts of

data to be transmitted and in the setups created using the framework direct mem-

ory mirroring was utilized. Copies of the input data structure and output data

structure were created on both the recipient side and the sender side i.e. the mo-

tion control side and the MMI side Figure 4.22. The entire data structures were

76

exchanged in regular intervals between the two components of the system. This

method enabled the non realtime man machine interface to access the permitted

parts of the motion control software as if the two were linked by a non-realtime

shared memory providing transparency.

Outgoing(Data(Structure(

Incoming(Data(Structure(

Outgoing(Data(Structure(

Incoming(Data(Structure(
Main(Control(Loop(

Communica6on(

Remote(System(Mo6on(Control(System(

Figure 4.22: Communication Interface

The communication does not necessarily need to go over a network. The send

and receive commands can synchronize the data to be exchanged to the same

systems memory where no network is involved.

Many systems will require different communication needs such as synchronous

or asynchronous communications. Some communications may require higher band-

width and transfer of large structures may not be feasible. The communication

method can be extended to send different commands of different types and receive

different commands, each time sending or updating only a small portion of the

exchange data structures.

This approach is compatible with the other frameworks such as ROS[107]. The

communication needs to be initialized as a compatible structure or protocol, in

77

this case a ROS node and the send command can be wrapped with the ROS’s

publish command to transfer data any recipients that might be listening for the

message.

4.2 Man Machine Interface

The man machine interface of a system is the component of the system that inter-

acts with the user of the system. The design of a man machine interface involves

the definition of the interactions of the user with the system. The MMI is also a

loosely defined aspect of the system that is most difficult to model as it can range

from a full blown graphical user interface with a joystick to a simple start and stop

button.

4.2.1 Graphics Display and GUI

The GUI is the visual software that enables the interaction between the operator

and the system. It consists of main functional blocks that allow the operator to

observe and intervene the features of the system using the graphical or numeric

features and command input blocks that are presented on the GUI. In the frame-

work the MMI structure is also loosely defined and mostly up to the designer to

create and configure. An MMI may include mice, joysticks, haptic devices key-

boards and screens. Man machine interface is a research topic all in itself. In the

context of this framework, non realtime components of the motion control task

are also lumped to the MMI side of the system. This is mainly due to the fact

that the MMI being a non realtime system has looser constraints and therefore is

simpler to program.

78

4.2.2 MMI Device Driver

A motion control system may necessitate the use of many external devices. These

devices may be realtime motion control devices such as motion controllers or non

realtime devices such as illumination systems. If these devices do not require

the realtime communication, i.e. they are not in a broader realtime loop then

they may also be controller by the MMI software. There already exists many

tools for the creation of man machine interfaces in applications. The most widely

used application, and more importantly the one with the largest user community

is Microsoft’s Visual Studio. Visual Studio has means of adding buttons, sliders

and displays among other components to the MMI application. Another reason for

this choice is the wide adaptation of the .NET framework by device manufacturers.

Most devices have a device driver for Windows OS and some even have an API

for the utilization of their devices. These factors greatly improve the ease of MMI

creation.

4.2.3 Image Acquisition and Processing

Vision systems and image processing systems are also considered soft realtime

systems and they are also handled by the MMI software. Vision systems are also a

complete field of research by themselves. The vision system of the motion control

systems can be considered as a vision sensor figure 4.23. In other words they are

sensors that produce position, velocity, stiffness or other data. There are several

frameworks that handle image processing such as OpenCV[125] or Halcon[126].

The framework can be and has been utilized with either computer vision library

to integrate cameras as vision sensors to it.

79

!

MOTION!CONTROL!
SYSTEM!

Vision!Sensor!

Computer!
Vision!
Library!

Camera!
Soft!

Real=time!

Figure 4.23: Vision Sensor

4.2.4 Communication

There are some aspects of an MMI that can be considered indispensable to most

motion control systems applications that are also lacking in the MMI development

tool previously mentioned. In the case of this framework the MMI must have

means of communicating with the motion control system. This is achieved in a

symmetrical manner to the real time motion control software. Two structures,

one for receiving data and one for sending data are passed over a medium to

the motion control software. This enables the MMI to partially have access to a

certain portion of the realtime systems memory albeit in a non realtime manner.

The positions and states of the state machines of the motion control software can

be observed and manipulated by the MMI hence the user of the system.

4.2.5 Scripting

Another almost indispensable component of a motion control system is the ability

for the user to create programs to automate the motion control system. This

feature of software applications is called the ability to process scripts. For this

purpose scripting was added to the man machine interfaces by means of reading

script files. The scripting of the system was performed using regular expressions

to parse each line of the script file. The script parser function would take lists of

80

parameters which were the lists of commands in the script separated in to groups

depending on their number of parameters. This implementation although tedious

worked exceptionally well. However an alternative and more versatile method

later became adopted. The css compiler of the .Net framework was utilized to

compile C# code that would act as the script on the fly. This approach enabled

the functions already available in the MMI to be scripted on the fly by the MMI

application giving the users of the system ability to automate the motion control

system through scripts on the MMI. The .Net Framework ships with a C# code

compiler that lets you generate in-memory assemblies. This gives the ability to

dynamically modify code during runtime. Most scripting languages give you a

function that allows you directly to evaluate a block or raw string of code as soon as

its encountered. As C# is a compiled language the C# code needs to be compiled

into an assembly before it can be used. And then classes from the compiled code

can be instantiated directly from the assembly. C# code can be compiled on

the fly with an instance of the CSharpCodeProvider class. Additionally, C# can

create an instance of the CompilerParameters class, which contains a collection of

parameters that will be used when compiling the code. In the example below, it is

demonstrated how to create a new C# compiler and a set of parameters that will

compile the new assembly in memory. It also commands the compiler to include

System.dll as a reference assembly:

// Create a new i n s t a n c e o f the C# compi ler
var compi le r = new CSharpCodeProvider () ;

// Create some parameters f o r the compi ler
var parms = new System . CodeDom . Compiler . CompilerParameters
{

GenerateExecutable = f a l s e ,
GenerateInMemory = true

81

} ;
parms . ReferencedAssembl ies . Add(”System . d l l ”) ;

Once a C# compiler has been created, it can be used to compile raw source

into an assembly. CSharpCodeProvider allows code compilation from a variety of

sources. In the example below, using the CompileAssemblyFromSource method to

compile a code directly from an array of strings is demonstrated. This string is

typically CompileAssemblyFromSource will look at the code provided and return

an instance of the CompilerResults class.

// Try to compi le the s t r i n g i n t o an assembly
var r e s u l t s = compi le r . CompileAssemblyFromSource (parms ,
new s t r i n g []
{@” us ing System ;

c l a s s Manipu la t ionScr iptClas s {
pub l i c void ASSEMBLE PART(i n t x)
{
// Code to perform assembly
}
}” }) ;

One thing to note is that the compilation method will complete regardless of

whether or not the code has compiled successfully. To make sure the code has

compiled, a check is needed for the Errors collection that is part of the Com-

pilerResults instance returned by CompileAssemblyFromSource. If there were no

errors, the code was compiled successfully and the assembly can be used.

Once the code is compiled into an assembly, it can be used as an assembly

to create instances of classes from the source code written and using reflection

to invoke methods and get/set properties of those classes. In the example below,

creating an instance of ManipulationScriptClass and storing it as an object is

shown. Reflection is then used to invoke the ASSEMBLE PART method on the

82

class.

// I f t h e r e weren ’ t any e r r o r s g e t an i n s t a n c e o f
//” M a n i p u l a t i o n S c r i p t C l a s s ” and invoke
// the ”ASSEMBLE PART” method on i t
i f (r e s u l t s . Error s . Count == 0)
{
var s c r i p t = r e s u l t s . CompiledAssembly .

Create Ins tance (” Manipu la t ionScr iptClas s ”) ;
s c r i p t . GetType () . GetMethod (”ASSEMBLE PART”) .

Invoke (s c r i p t , 3) ;
}

Scripting languages make it much easier to accomplish automation of systems and

enhance the versatility in the generation of dynamic motion control applications.

4.2.6 Devices

Devices can be added to the general motion control system in several ways. If the

devices are standard components and have soft realtime constraints then they can

be added to the MMI through its OS using its drivers. However if the device does

have hard realtime constraints or it is a custom made device that does not have

drivers and therefore cannot be integrated to the OS of the MMI then it can be

decomposed in to its sensors and actuators and integrated in to the motion control

system as if it were a mechanism of the framework. The integration of a position

and velocity sensor used as a man machine interface is described in 5.1.3.

4.2.7 Data Analysis

In a production unit or system, for the optimization of the process there are

measures showing the efficiency of the system. The production rate, quality are

some of the factors representing the efficiency. The data extraction from the

83

system can be maintained by necessary sensors or devices and this layer provides

functions that transform the raw data to meaningful measures or graphs showing

the performance of the system.

4.3 Putting it all together

To create a system, initially all the modules of the system must be described.

This is done by using the corresponding files of the framework and performing the

necessary configurations. For the definition of a new component initially the type

of the component must be chosen. This can be an actuator, a sensor, a controller, a

mechanism etc... The data structure for these is fixed providing a standardization

between all the same types of components. The configuration of the standard data

structure to meet the specialized needs occurs by defining the contents of some of

the data fields and the creation of functions that modify them. There are some

functions that have to be created such as initialize, loop and delete as these are

expected by other components of the system interacting with it. In addition to

the required functions, functions that enable the parameter configuration of the

system or other aiding functions are also defined in to the customized function list.

This can only be achieved after the system modules have been defined. After

this stage, all the modules that will be accessed from the top level are added to

the system. The modules of the lower levels do not need to be define as they are

already defined. In other words, if the system has access to a single actuator it

must be defined in the system level. If the actuator is part of a mechanism or an

axis, it does not need to be created as it already exists in one of the higher levels

that must in turn be defined.

Creation of the different modules and submodules is done on the system level,

84

also the configuration of the modules is done on the system level.

85

5 IMPLEMENTATIONS AND
EXPERIMENTAL RESULTS

5.1 Validation of the Framework

In this section test results of the framework are given on a micro assembly worksta-

tion, a micro factory and delayed haptic system. The framework is implemented

on several different systems namely an industrial x86 PC running realtime linux, a

dSPACE platform and an FPGA. In the case of the latter two, software is ported

from one platform to another to test the platform independence of the system.

Different types of modules are created for the systems and reused when the same

components are utilized in other systems by reconfiguring them as necessary. The

modules are linked together and the motion control systems are brought to life.

Then the communication is established between the systems and their respective

MMI’s where several different means of communication are used such as TCP/IP,

CLIB and RS232. The implementations demonstrate that the framework is capable

of modeling and implementing motion control systems independent of hardware.

5.1.1 Micro Assembly Workstation (SUMAW)

In this section a Micro Assembly Workstation that was built using the framework

is presented. Initial work on the motion control library began with a three year

project to build a micro assembly work station. The project evolved over sev-

eral different platforms for computing and the hardware and requirements were

86

changed several times. The aim of the project is to create an open-architecture,

reconfigurable micro assembly workstation for efficient and reliable assembly of

micromachined parts. The software architecture and system supervision are pre-

sented. The motion control and system peripheral requirements are discussed and

the software and programming of the workstation is described. The system is

designed to be a versatile tool to study the problems in micro assembly and micro-

manipulation which are still not fully investigated. The computer configurations

used for real-time and man machine interface are presented. The communication

between these two parts is investigated and the methods for creating the real-time

and non real-time software is explained.

5.1.1.1 Design Overview

The workstation is designed to be used as a research tool for investigation of the

problems in micro assembly with reconfigurability and adaptability to perform

diverse tasks. The development of the workstation includes the design of a manip-

ulation system consisting of motion stages providing necessary travel range and

precision for the realization of assembly tasks. The motion stages consist of 2

manipulators with 3 degrees of freedom (X, Y , Z) and a sampling stage with

3 degrees of freedom (X, Y and Rotation). The manipulator holders have been

designed so that the manipulators angle of approach can be adjusted. The ma-

nipulation tools can also be changed with ease enabling the system to perform

predefined tasks and adapt to new ones. For tasks that require very precise opera-

tion, piezo actuators can be inserted between the tool holder and the end effector.

A vision system has been created to visualize the microworld and to determine the

position and orientation of micro components to be assembled.The vision system

87

consists of a microscope, with a focus and zooming system equipped with Fire-wire

cameras for coarse and fine image capture and illumination systems to illuminate

the parts from top and bottom. The overall control and supervision structure

has therefore the task of controlling motion stages in real time and synchronizing

their movement, presenting to the user their individual positions, adjusting the

microscope and capturing the images from the cameras and presenting them to

the user. The overall control and supervision structure also has the task of reading

the commands from the user in forms of mouse clicks on the screen, or joystick

movements or scripts written and then process these commands and execute the

desired motions or automated tasks. This structure is implemented as a robust

real-time control system in the form of an industrial PC and a graphical user

interface that permits the control of all the stages in the form of a PC Fig.5.1.

The system is able to perform robust motion control of its manipulators with sub

micron accuracy which translates to maximum one encoder pulse control of the

stages.

Figure 5.1: General System Layout.

88

The MMI computer performs data presentation, image capture, image process-

ing whereas the RT computer operates to carry out trajectory calculations and

motion control. These tasks are discussed in detail in their respective sections.

5.1.1.2 Hardware

Figure 5.2: SUMAW Components.

The hardware that interacts with the assembly consists of end effectors which

can be in the form of probes or grippers, tool holders, which are used to hold and

do the non-actuated positioning of the probes and grippers and stages to actuate

the manipulators. Each manipulator has 1 end effector 1 tool holder and 3 micro

stages configured in a Cartesian (X, Y, Z) configuration to provide movement.

The system has 2 manipulators and a sample stage. The sample stage has 2 micro

89

stages that provide X and Y movements and a rotational platform that provides

rotation Fig.5.2.

The supporting hardware for the system are for illumination and optics. The

illumination hardware consists of LED based backlight illumination halogen based

upper illumination that is transported by fiberoptic cables. These modules permit

the change of intensity in case of the halogen light and color in the case of the

LED light. There is also a microscope that is used to magnify the objects and

cameras that capture the images from the microscope. The microscope assembly

is actuated in the Z axis with a belt driven linear mechanism to adjust the safe

working distance and give flexibility on the size of the sample used.

Figure 5.3: Manipulator Assembly.

The interacting elements of the system, end effectors such as micro grip-

pers (Zyvex, FemtoTools), Atomic Force Microscope (AFM) probes (Veeco), mi-

cropipettes, tungsten probes (Zyvex) etc. are connected to the tool holder. These

end effectors have amplifiers if the tool is actuated or drivers if the tool performs

measurement. The drivers and amplifiers either amplify the micro volts that are

generated by the end effectors, or convert the reference voltages to micro volts

90

or micro amps for the actuators. These are interfaced to the analog and digital

inputs and outputs of the IO cards. The tool holder Fig.5.3 is manufactured in

a fast prototyping machine. It is designed with the ability of manually adjusting

the interaction angle according to the task. These also have a base that permits

the manual rotation of the tool holder.

The tool holders are coupled up with motion control stages (PI M-111.1 DG)

which are configured in a Cartesian configuration of X, Y and Z axes of the ma-

nipulator. These stages contain 12V, 2W DC motors inside and are driven by a

current driver that has been manufactured for this project and that is connected

to the analog output of the IO card which has +- 10V output. The motion con-

trol stages have an encoder resolution of 7nm and a working distance of 20mm.

The encoders of the stages are directly connected to the encoder inputs of the IO

cards which generate 2048 encoder pulses per revolution. The limit switches of

the stages are connected to the digital inputs of the IO cards. Piezo based precise

motion control stages can be added on these (P-611.3 NanoCube) providing a

travel range of 120 x 120 x 120 µm and a precision of 1 nanometers. These are

driven with a piezo controller used in amplifier mode (PI E-664). The piezo stages

interface to the system over the ADC and DAC of the IO cards.

The sample stage has two micro stages with the same specifications as above,

and for the rotation a dc motor driven custom design rotation platform, that

permits light passage from under the stage with a gap opening of 20mm. This DC

motor is also controlled by an analog output of the IO card that is connected to

the current driver.

91

5.1.1.2.1 Electronics The electronics requirements for the system has been

identified as follows:

10 DOF’s require 10 encoder inputs, 20 digital inputs for limit switches and

10 analog outputs. For the manipulators it is desirable to do experiments with a

wide range of end effectors, to achieve this, each end effector has an analog input

channel, an analog output channel, a digital input channel and a digital output

channel. For piezo stages one analog input is needed for measurement and one

piezo stage is needed for actuation.

To be able to control the hardware with the desired accuracy, the following

electronics have been selected:

The IO cards for this project are Humusoft MF624 cards that reside on the

PCI bus. Each card has 4 32 bit encoder inputs, 8 digital inputs and outputs and

8 analog inputs and outputs, making each one capable of controlling 4 degrees of

freedom, a total of 3 cards have been used to control the 10 degrees of freedom.

The current driver that converts the voltage signals from the IO card is de-

scribed in [127]. This driver is used for all the degrees of freedom for manipulation

and for the movement of the microscope.

The optics and illumination which do not require realtime control, have been

controlled by their dedicated drivers. The Thales microscope’s focus and magni-

fication is actuated with step motors that are controlled with a Thales controller

which have 12000 steps in their full range. Although the device was able to be

used in the desired manner, it was necessary from time to time to home the mi-

croscope and then reposition it, as small step counts sometimes did not produce

any movement. For further designs, a microscope system that has closed loop

control for the optics is envisaged. The upper illumination device is a DCR III

92

and provides illumination from the top by means of a fiber optic bundle, the LED

illumination device is a RGB LED illuminator and is placed under the sample

stage. The driver of the LED illumination device enables the switching of the 3

color LED’s inside, the LED’s shine directly through a filter under the specimen

or manipulated object.

Figure 5.4: System Structure.

93

5.1.1.3 Software Overview

The aim of the software for the SUMAW is to enable the users to perform pre-

cise micro assembly tasks intuitively and also perform automated tasks using the

system. The system has many tasks that need to be performed such as present-

ing data to the user, controlling actuators, acquiring images and running scripts.

These tasks can be separated in two parts according to their timing constraints.

For operations requiring strict timing constraints i.e. trajectory generation and

motion control, a real-time platform is required. For operations such as interact-

ing with the user, controlling non-real-time peripherals such as illumination and

microscope functions a non-real-time yet easily usable and graphical user inter-

face friendly platform is required. To ‘ this, all the interactions of the system

were examined and classified according to their realtime requirements. Then the

devices with dedicated controllers were examined if they required realtime com-

munications or they were able to function as real-time systems that required non

real-time references.

To achieve these requirements a computer capable of real-time operations was

chosen to perform the motion control and time sensitive tasks. For the control of

the MMI and non real-time tasks a windows based computer was selected because

of the ease of programming and the availability of drivers for devices. Although

the realtime computer has the sole task of performing the time critical operations,

additional features are necessary to enable the reception of references and the

transfer of status information. For these additional features the realtime systems

was programmed with 3 threads, one for receiving information one for sending

information and one for the realtime operations. These threads need fast commu-

nication with each other which was solved with a shared memory. These additional

94

tasks can cause load on the system and interfere with the operations of the sys-

tem. To assure that the real-time task is not interrupted, one core of the intel core

2 duo processor was dedicated to realtime operations leaving the other core for

communications and the operating system. During the development phases the

hardware platform was migrated several times and different IO cards were used,

to facilitate this process and to harmonize the functions that access different IO

cards, wrapper functions were developed.

To enable the usage of all aspects of the system the MMI has been developed.

To provide intuitive operation point and click and joystick based manipulation

was coded. In order to make the system more flexible and to be able to perform

automation, scripting abilities have been developed Fig.5.4 . The system was

calibrated and means of measuring the positions in the vertical axis was devised

using the focus ability of the microscope. Tedious positioning tasks requiring

manual labor were automated using image processing.

An ascii based communication protocol that is easy to debug was developed

and the two computers were linked together with Ethernet to provide a fast yet

flexible link that is platform independent. Ethernet can also be used to intercon-

nect multiple systems over a wide area enabling the addition of different real-time

computers for motion control or MMI computers for monitoring should expansion

of the system be necessary.

5.1.1.3.1 RT Computer The purpose of the real-time system is to control

the 10 degrees of freedom existing on the SUMAW and control the manipulators,

individually as well as grouped motion movement. The real-time system is also

capable of expanding its abilities and degrees of freedom with the framework. The

95

realtime computer for motion control is an industrial PC with a dual core processor

and IO cards as previously described. This computer has Slackware Linux on it.

The kernel has been patched using the RTAI extension [128]. RTAI extension

provides realtime abilities to the operating system by taking over interrupts and

making RT threads non preemptible. The usefulness of this patch is demonstrated

on a realtime system in [129]. Furthermore, the dual processor architecture of the

processor has been utilized and one of the processors has been dedicated to the

realtime operations. There are 3 main threads in the RT system, one for motion

control, one for sending messages to the MMI and one for receiving messages from

the MMI. These threads communicate over shared memory.

Inter-Thread Communication The communication of the 3 threads is

achieved by the creation of a shared memory block that is mapped on all of the

threads. This shared memory is also an effective means of transferring information

from the non realtime threads to the realtime threads and vice versa. The shared

memory is mapped as a C struct where every element is an array with size in ac-

cordance with the number of DOF’s of the system. The shared memory is mapped

on all processes. The shared memory does not distinguish between the direction

of the information flow, however it is simple to separate this data in the direction

of flow for ease of understanding. For example the motor position variables can be

used in both directions, for informing the MMI of the positions of the motors, or

resetting the position of the motor according to calibration or homing procedures.

The following is the data transferred from the MMI to the RT computer:

From MMI to RT

• Motor Position References are position references that are generated by the

96

user, position references are manually entered or they are interpreted from

calibrated mouse clicks on the GUI of the MMI

• Motor Velocity References are also transferred from the MMI to the system,

they are obtained from the joystick attached to the system.

• Motor Gains are used to adjust the output gain of the motors, these are used

when testing new driver configurations.

• Analog Outputs and Digital Outputs are used for parts of the system that

have not been fully integrated to the MMI, they are an easy way of testing

new additions to the system. This information is usefull for debugging the

system and also adds flexibility in the case a new tool is to be added to the

system, the connection is already setup.

• Tuning Parameters are variables that have been added to the system purely

for the ease of development of the system. They propagate from the MMI

over the network to the real-time computer and then to the motion control

thread. This pre-established channel enables the rapid injection of any pa-

rameter to the system without the need for re-coding and re-compilation of

the whole system.

• Start/Stop Commands of the system are used to start the different degrees

of freedom and other items attached to the system, this signal is sent once

all the reference positions have been sent to the system.

• Control Parameters are parameters for the controllers such as the PID con-

troller gains and SMC controller gains.

• Enable Signal for Stages are used to enable or disable the degrees of freedom.

97

• Message Frequency is used by the sending thread on the RT server, as the

message sending frequency.

The following is the information that is sent from the real-time computer to the

MMI:

From RT to MMI

• Motor Positions are the positions of the motors, that are read from the

encoders and then converted to the appropriate values such as microns, mms,

degrees with the necessary gains for the gearbox, pitch etc.

• Analog Inputs to the system are not always used by the MMI, but for utilizing

new hardware, or hardware that does not need any RT processing they can

be directly relayed to the MMI, this is also useful in debugging and fast

addition of experimental hardware.

• Digital Inputs of the system can be read by the MMI. These are also useful

when debugging the limit switches of the motors for example.

• Scopes are variables with a similar function to tuning parameters that can

be inserted anywhere in the realtime code, and their values propagate to the

MMI enabling them to be monitored.

.

5.1.1.3.2 Threads There are mainly 3 threads running on the system, besides

the OS functions. All the motion control code is executed on a single dedicated

processor which runs all the realtime deterministic tasks Fig.5.5. The other pro-

cessor is used by the OS and the 2 other threads that are used for communication.

98

The realtime thread has highest priority in the system, and it is not affected by

the hardware or software interrupts of the system, therefore realtime performance

is assured.

Figure 5.5: Thread Structure.

RT Receiver Thread The RT Receiver thread is in charge of listening to

the network for new references from the MMI. The RT Receiver Thread resides in

the non real-time, Linux OS part of the system, and therefore shares the processor

with the RT Sender thread and the OS. The RT Receiver tread is started along

with the RT Sender thread inside the RT Server Process. The RT process maps the

99

shared memory and both threads can access the memory. The RT Receiver thread,

which is the main thread of the RT Server process, first opens a TCP socket, then

the shared memory is allocated. Then the process waits until there is a connection

to the socket. After connection has been established, the RT Sender Thread is

launched. Then the thread enters an infinite loop that is only interrupted by an

Exit command from the MMI. In this loop the thread waits for a message over

the network, when the message is received, it is parsed and the necessary data is

written to the shared memory or executed in case of the Exit command.

RT Sender Thread The RT Sender Thread has the function of sending

variables to the MMI. The RT Sender Thread starts up, and goes into an infinite

loop. At the beginning of every loop, it generates a string containing all the

elements {or just the selected ones} of the shared memory, with indicator tags

in the beginning. This is later described in the communication protocol. Then

the generated string is sent over the network and the thread sleeps until the next

period for sending.

RT Motion Control Thread The RT Motion Control Thread implements

the motion control framework. The motion control process starts up, creates the

communication structures, initializes the actuators, sensors, mechanisms etc.After

the initialization of the modules is complete, shared memory is created. Because

of this sequence, the RT Motion Control Process has to be started before the RT

Server Process. Then the IO cards are initialized. Then the RT Motion Control

thread is launched and the thread works in a timed loop.

100

5.1.1.3.3 Hardware Interface The Hardware Wrapper template of the frame-

work is utilized to map the functions of the Humusoft IO cards in order to provide

the standardized means to the motion control actuators and sensors.

5.1.1.3.4 Motion Control System Configuration The major part of the

operation of the system is performed with the formation of micro manipulation

stages that are the combination of 3 liner stages. For each of the linear stages,

two sensor modules were configured to receive the limit switch informations, one

sensor module was configured to get the encoder input and transform it to position

input and an actuator module to output to the motors of the linear stages.

For the XYZ stages two modes of operation were defined which were position

control mode and velocity mode for use with a joystick. With this in regard a SMC

controller module was added to the system. For velocity control a PD controller

was utilized, however for this controller to function it required the velocity infor-

mation which was obtained by a velocity controller. The actuators, sensors, two

controllers and the estimator were grouped in the axis structure. Finally the XYZ

micro manipulator was developed in to a working mechanism by integrating it in

to a mechanism module where trajectory module was integrated to the mechanism

to assure that a smooth trajectory was followed Figure 5.6. The mods of operation

of the were set by programming the state machine of the mechanism to be able

to home itself and to function in position references following mode and velocity

reference following mode.

The main loop of the motion control system software is coded as follows.

In the main loop of the system, the references and modes of operation are

received using the communication interface. This information is received in to

101

!

HW!
WRAPPER!

!
Digital!Input!

Digital!Input!

Encoder!

Analog!Output!

Digital!Input!

Digital!Input!

Encoder!

Analog!Output!

Digital!Input!

Digital!Input!

Encoder!

Analog!Output!

Limit!sw!+!

Limit!sw!=!

Encoder!

Motor!

Limit!sw!+!

Limit!sw!=!

Encoder!

Motor!

Limit!sw!+!

Limit!sw!=!

Encoder!

Motor!

X!Axis!

Y!Axis!

Z!Axis!

SMC! PD!Vel!

SMC! PD!Vel!

SMC! PD!Vel!

Velocity!Estimator!

Velocity!Estimator!

Velocity!Estimator!

MICRO!
MANIPULATOR!

!
State!!

Machine!
!
!
!
!
!

Disabled!

!
!
!
!

Home!

!
!
!
!

Pos!mode!

!
!
!
!

Vel!mode!

!
!
!
!

!
!
!
!
!

X,!Y,!Z!pos!

X,!Y,!Z!vel!

States!

Position!

Velocity!

State!

sensor! actuator! controller! mechanism!estimator!axis!

Figure 5.6: XYZ motion control stages modular implementation

102

a communication structure called comInput whenever the InputCommunication

function is called.

The references and modes of operation are moved to the input array of the

mechanism module. The mechanism module is made to execute its loop with the

loopMechanism function. Finally the positions are copied from the mechanism

module’s output array to the comOut structure which is in turn transmitted over

the network to the MMI using the OutputCommunication function.

Behind the scenes the loopMechanism function uses its state machine to de-

termine the mode of operation calls its actuator and sensor modules and then

calls the necessary control module depending on the mode of operation. This pro-

cess reads the sensor data, performs trajectory generation if necessary, applies the

control law and generates the control output which is transmitted to the IO card.

InputCommunication () ; // p o p u l a t e s the comInput s t r u c t u r e

// Set the S t a t e machine o f the L e f t XYZ Manipulator
//mechanism ’ s s t a t e f o r mode o f opera t ion
XYZLeft . StateMachine = comInput . XYZLeft OperationMode ;

// Assign the i n p u t s to the L e f t XYZ Manipulator
XYZLeft . input [X Pos i t ionRef] = comInput . XYZLeft X Posit ionRef ;
XYZLeft . input [Y Pos i t ionRef] = comInput . XYZLeft Y Posit ionRef ;
XYZLeft . input [Z Pos i t i onRe f] = comInput . XYZLeft Z Posit ionRef ;

XYZLeft . input [X Veloc i tyRef] = comInput . XYZLeft X VelocityRef ;
XYZLeft . input [Y Veloc i tyRef] = comInput . XYZLeft Y VelocityRef ;
XYZLeft . input [Z Ve loc i tyRef] = comInput . XYZLeft Z VelocityRef ;

. . .

// Execute the loop f o r the mechanism
XYZLeft . loopMechanism(&XYZLeft) ;

103

. . .

// p o p u l a t e the output comOut s t r u c t u r e
comOut . XYZLeft X Position = XYZLeft . output [XPosit ion] ;
comOut . XYZLeft Y Position = XYZLeft . output [YPosit ion] ;
comOut . XYZLeft Z Posit ion = XYZLeft . output [ZPos i t ion] ;

// Transmit the communication s t r u c t u r e
OutputCommunication () ;

The above code segment describes the runtime interaction of the Left XYZ

stage (a mechanism module) with the system. The module receives its inputs

performs its algorithm and then the outputs of the module are used by the system

and transmitted using the communication interface.

For position control, the axis modules use an SMC controller module. The

SMC controller module for the position control was implemented as follows:

uk = uk−1 + (GBTs)
−1((DTs + 1)σk − σk−1) (5.1)

where uk is discrete control input, G = {λ 1} with λ being a positive constant,

B is the input matrix, Ts is sampling time, D is a positive constant and σk is the

sliding mode manifold. The control structure (5.1) is suitable for implementation

since it requires measurement of the sliding mode function and the value of the

control applied in the preceding step. Thus (5.1) is used as control structure as

discrete sliding mode for each DOF.

The loop function of this controller module is implemented as follows:

void loopSMCController (C o n t r o l l e r ∗ c){

double r e f e r e n c e ;

104

double p o s i t i o n ;
double e r r o r o l d = c−>s t a t e [SMC error old] ;
double s igma old = c−>s t a t e [SMC sigma old] ;
double u o ld = c−>s t a t e [SMC u old] ;

double dt = c−>parameter [SMC DT] ;

double u ;

// I f the i n p u t s are not passed on by p o i n t e r s , e x a c t
p o s i t i o n and r e f e r e n c e from the p o i n t e r s

i f (c−>l i nk ed){
r e f e r e n c e = ∗(c−>input p [SMC reference]) ;
p o s i t i o n = ∗(c−>input p [SMC position]) ;

}
// I f the i n p u t s are d i r e c t l y in the input array use them
else {

r e f e r e n c e = c−>input [SMC reference] ;
p o s i t i o n = c−>input [SMC position] ;

}

// C a l c u l a t e error and d e r i v a t i v e o f e r ror
double e r r o r = r e f e r e n c e − p o s i t i o n ;
double e r r o r d = (e r r o r − e r r o r o l d)/ dt ;

// C a l c u l a t e sigma and d e r i v a t i v e o f sigma
double sigma = c−>parameter [SMC C] ∗ e r r o r + e r r o r d ;
double sigma d = (sigma − s igma old)/ dt ;

// C a l c u l a t e c o n t r o l output
u = u o ld + c−>parameter [SMC Ku] ∗

(c−>parameter [SMC D] ∗ sigma + sigma d) ;

/// Store s t a t e s o f the c o n t r o l l e r f o r the next loop
c−>s t a t e [SMC error old] = e r r o r ;
c−>s t a t e [SMC u old] = u ;
c−>s t a t e [SMC sigma old] = sigma ;

105

// Store the c o n t r o l output u in the output array
c−>output [SMC u] = u ;

}

5.1.1.4 MMI

The man machine interface (MMI) of the system is the graphical user interface,

which is in the form of a windows program that is used with a mouse, a key-

board and a joystick Fig.5.7. The man machine interface software resides on a PC

computer with Windows XP and it is written in C#. It communicates with the

RT Motion Control computer over Ethernet, with the fine view and coarse view

cameras connected by Fire Wire and with the illumination and microscope focus

and zoom controllers by RS232 and with the Joystick by USB.

Figure 5.7: The MMI Screen.

The MMI has two basic purposes. The first is the acquisition of the images and

controlling the vision system. The second is to interface with the RT computer and

to send references to the real-time computer. The system also has some supporting

features, such as automatic focussing abilities and calibration abilities Fig.5.8.

106

Figure 5.8: MMI Structure.

107

The core inputs of the MMI are the visual controls. For illumination of the

samples, the lower side LED illumination module is attached by a serial port that

is handled by the operating systems’s serial port driver. A C# library has been

generated to interface with this device, and the visual controls can send red green

and blue light references to the system. Likewise the halogen light source that

illuminates from the superior side is connected to a serial port and a library has

been written permitting the transmission of intensity references to the illuminator.

A driver for the microscope controller that communicates over a serial port has also

been developed, and focusing and magnification references are sent form the visual

controls to this device. The visual controls receive their inputs by means of the

mouse, keyboard or joystick. All of these devices are connected over USB. They

are first handled by the OS’s USB drivers, then Joystick ActiveX library handles

the joystick inputs. The cameras are attached to the system over the Fire Wire

port. These are first handled by the camera drivers, then they pass from an image

acquisition layer. The images are passed over to the image display and image

processing functions for them to be displayed on the MMI. The image processing

functions take the camera parameters and the results of the image processing can

also be displayed on the image. Scripts that are generated on the MMI can be

directly executed using the MMI. The visual controls can directly send messages

over to the RT computer by using the communication message generation and

message parsing interface that sends messages over the ethernet or they can use

control algorithms to perform camera based automated functions.

The system is able to perform some tasks either manually by clicking and

moving the objects or by mouse, alternatively, automated particle moving com-

mands can be given to the system that perform a series of actions until the particle

108

reaches the desired destination. The system is also capable of generating scripts

and compiling them in runtime and executing them.

Figure 5.9: Semi-Automated Particle Pushing Algorithm.

5.1.1.4.1 Modes of Operation The system is designed to manipulate 3 +

3 + 3 degrees of freedom for manipulators and the sample stage. The MMI has

2 modes of position control Fig.5.7. The first mode of position control is done

by entering the position values in to numerical up down boxes in the GUI. Once

all reference positions are entered to the system then the Move button is used to

send the reference positions over the network to the RT Motion Control computer,

followed by a Start command so that the motion control computer can move the

stages to the desired positions. The second mode of position control is using the

mouse and the image captured from the camera. This mode does not permit

109

moving all degrees of freedom at the same time but rather focuses on moving a

single manipulator or the sample stage at a time. Therefore it only moves 2 degrees

of freedom, the ones in the X and Y axes. With this mode first the manipulator

to be used is selected using the button with the icon for that stage on it. After

this all the position references are transferred to the microstages of this stage.

Then a position in the video image is clicked, the first click is registered as the

starting position, and the second click is registered as the destination position.

The MMI, that has been calibrated beforehand, calculates the difference in the X

and Y coordinates and sends the position references to the RT Motion controller

and at any point a right click cancels the operation. This has proven to be a

very intuitive way of moving manipulators, as it is not only moving the tip of the

manipulator or any other part, but rather any part of manipulator assembly that

is in view can be clicked on and moved. There can be 2 grippers or other devices

that can be operated with an analog voltage input by the system. The controls

exist to send references to these types of end effectors. These are either indicated

in percentages and the RT side handles the scaling, or a fixed scaling is applied

and the references generated on the MMI are sent directly.

The manipulators can also be controlled using the joystick. The joystick infor-

mation is captured from the joystick and it is sent to the RT Motion Controller as

a velocity reference. Similar to position control, the manipulator to be controlled

has to be selected first. One of the levers of the joystick is used to control the

analog voltage reference to the selected end effector attached to the manipulator

and one of the joystick’s buttons has been assigned for switching between the ma-

nipulators and the sample stage. For precise operations using the joystick, the

speed of the joystick can be adjusted using the adjusting numeric box in the GUI.

110

The system is also capable of performing some positioning tasks semi-automatically.

The tool tip is shown to the system by means of a mouse click, then a particle

and a destination position is selected. It has been noted that with the use of some

probes the particles can stick to the probes. To avoid stiction an algorithm with

repetitive small pushes has been developed Fig.5.9Fig.5.10.

(a) (b)

(c) (d)

Figure 5.10: Semi Automated Manipulation

A fully automated pushing technique has also been implemented using an AFM

probe. In this approach the system finds the particle and the probe automatically

instead of getting any reference from the user. Details of this technique can be

found in [130].

5.1.1.4.2 Scripting To create a versatile system scripting ability was added

to the system. Some of the C# functions used in the system are also exposed

111

to the scripting side of the system. The scripting language has the same syntax

as C# and it has the ability to use standard Microsoft .NET framework as well

as the functions developed specifically for the workstation. This enables writing

scripts of different complexity levels by different levels of users. With scripting

the user can write C# code using all of the functions developed for the system

including all the functions for the peripherals and move commands. At design

time new composite functions can be written for the system that can later be used

in scripting. The system combines the script code with the available libraries for

the peripherals and the system, the code is compiled and finally it is executed to

run the script during runtime.

5.1.1.5 Vision

5.1.1.5.1 Calibration Visual feedback requires the images to be calibrated

according to the system. To calibrate the system the startup procedure of the MMI

software reads a calibration text file and parses the camera coordinate calibration

parameters. These parameters exist for every magnification level of the fine view

camera, and for the coarse view camera. This text file is generated using a program

written in MATLAB, to which the images of a calibration grid taken using the

system at a certain magnification level are supplied. This procedure enables the

system to derive the relative positions in the image in every magnification.

Implementation of camera calibration for the micro assembly workstation is as

follows:

• Images of a checkerboard style micro calibration grid are captured for every

magnification level.

• Edge detection is applied to each image.

112

• The feature points are extracted from the image first using Hough Line Trans-

form to extract the lines, and then calculate their intersections to obtain the

corner points.

• Since the results are not satisfactory, edge points having a certain amount

of distance from each line found by Hough transform are determined and by

point-to-line fitting, new line equations are determined.

• These points with the corresponding world coordinates are then used for the

determination of the reduced camera calibration matrix.

5.1.1.5.2 Depth Estimation Focusing on objects to be able to view them can

be a tedious task in microsystems where depth information is not known apriori.

The focus function of the microscope involves the movement of the focus lens in

the vertical axis, what this means from a practical point of view is that with the

change of focus, the microscope parameters stay the same, only the zone which

is viewed moves in the vertical axis. Therefore, if it is know that a given object

is in focus, then the focus parameter (position of focusing motor) can be used to

determine its position in the Z axis. In SUMAW, as the manual focusing to find

various objects and planes in the working zone can be tedious, the system can be

set to detect the different layers of interest in the working zone. The algorithm for

this is as follows:

• Move microscope focus to home position

• Move motor with X micron intervals downwards, and record sharpness of

entire image, where X is a parameter that can be set to according to the

task.

113

• After this process the peaks in the sharpness are assumed to be the Z posi-

tions of the objects and planes.

The different peak sharpness positions are recorded and the user can revisit these

positions from a drop-down menu. The positions found using this technique are

usually, probe body, planes of manipulated object, top side of lamelle, and bottom

side of lamelle (which can be invisible and can cause the destruction of probes if

it is tried to be reached). Acquiring the position of the probes or end effectors is

not usually successful if they are not placed completely parallel to the X and Y

axes and therefore there is no maximal sharpness plane. To resolve this problem

a different function called microfocus is developed. The user manually defines a

rectangle in the image, and the focus operation is performed on a much smaller

Z scope, using the sharpness information within this rectangle. Depending on the

angle of the probe, the focused region of the probe changes, and it seems as if the

probe has moved. It is necessary to repeat this procedure several times until the

tip or the desired part of the probe is reached. Once at the tip, the size of the

rectangles can be selected small enough to get a precise focus on the tip, and then

extract the Z position.

5.1.1.6 Communication

The communication between the RT Motion Control computer and the MMI com-

puter is done over TCP/IP. For this application it was desired that the communi-

cation was performed on a more granular basis instead of transmitting the entire

communication structure. A simple text based communication protocol has been

developed for this purpose which is easy to debug and also enables the system to

be used with a text based system such as the windows hyper terminal application.

114

Every piece of information to be transferred has a two or the letter long identifier.

5.1.1.6.1 RT Variable Object Each variable in the realtime system is pre-

sented as an RT Variable Object in the MMI side. An RTVariable Object is a

class that keeps the information of one variable. Each instance keeps the name,

identifier, DOF number , parsing regular expression, unit and update time values.

In addition, functions to parse a string using the identifier and regular expression

to extract the value and also generate a string to be transmitted have been de-

veloped. The update time is value is used to check that the data is not old. The

RTVariables are kept in two lists, Updated Variable list for receiving variables and

Outgoing variable list for sending variables to the RT computer.

When a message is received from the RT computer, it is first segmented and the

parts of information are sent to the variable matching function. The information

arriving from the RT computer is generated in a string that is formatted, the

segmenting function starts from the beginning of the string. As the variables are

kept in an orderly fashion in the Updated Variables list, they can be matched with

the same order. The matching function initially starts from the first RTVariable in

the list and it keeps track of the last variable received. This assures that hunting

for the variable in the list is kept to a minimum Fig.5.11.

5.1.1.7 Experiments

The following paragraphs present the results obtained from the micro assembly

workstation. In order to validate the efficiency and to determine the accuracy of

the system we first verify the position control abilities. Then we perform higher

level automated pick an place tasks to move objects. Finally to demonstrate the

115

Figure 5.11: Communication With RT.

116

possibilities of applications, we examine a real world problem: ”extraction of the

mechanical properties of a zebrafish embryo”.

5.1.1.7.1 Validation of the System The motion control system was config-

ured to run with at a control frequency of 10kHz. It was observed that when all

10 degrees of freedom are following trajectories grouped in 3’s, the control fre-

quency maintained its realtime characteristics. Position control for the motion

stages was achieved to the resolution of one encoder pulse (7 nm) and piezo stages

were operated at a precision of 1 nanometer.

	

Figure 5.12: 100 Nanometer Step Response.

Manual manipulation tasks, semi-automated manipulation and automated ma-

nipulation tasks were performed using the workstation. The system was configured

with tungsten probes for automatically pushing polymethylmetacrilate (PMMA)

particles using the mouse interface. The system was equipped with a micro gripper

to perform pick an place tasks using the joystick. Then the particles were posi-

117

tioned in a pattern according to predefined assembly procedure. The operators

reported that the the MMI is user friendly and intuitive to use.

5.1.1.7.2 Biological Specimen Manipulation The a team at the SU Mi-

crosystems lab equipped the workstation with a force sensing probe and a micro

gripper 5.13. The core realtime algorithms and components of the system were uti-

lized in a previous version of the workstation and a task specific image processing

and vision MMI was developed to extract and estimate the membrane properties

of zebrafish embryos [131].

(a) (b)

Figure 5.13: Zebra Fish Embryo in contact with microgripper from left and force
sensing probe from right.

5.1.1.8 Conclusion

In this case study a novel micro assembly workstation is presented. The worksta-

tion uses standard hardware (Intel x64 based CPU and motherboard) and runs

on a Linux operating system. A dedicated processor approach is used to obtain

real-time performance whereas most of the previously developed systems do not

support real time or depend on specific hardware. The software structure created

for the workstation is designed to be modular and expandable. Wrapper interfaces

are used to read and write data from/to IO cards. This enhances the portability

118

of the system. Communication between the realtime components and the MMI

is established over TCP/IP. Additionally multiple graphical user interfaces or re-

altime systems can be used over several computers which communicate between

each other. This may achieve better performance compared to systems which are

designed to run on a single machine due to the expandability of the processing

power. Image processing functions were implemented to detect objects and to

perform tasks on the system. The workstation includes basic image processing

and blob detection functions and automated assembly functions. Experimental

results show that the workstation is capable of performing precise motion control.

Furthermore the system can be adopted to perform a variety of different tasks

including micro parts placement operations and biological manipulations.

5.1.2 Microfactory

In this section the creation of a micro factory module[132] is presented, this module

is the result work done at the Sabanci University Microsystems Laboratory as a

PhD. [133]. The concept behind micro factories is the notion that the production

of miniaturized parts should also be done with small machines that provide savings

on space, resource utilization and energy. The minimization of the distance and

the traveling masses enables high speed production. The advantages of using micro

factories are numerous, space reduction, cost reduction, customization of products,

flexibility, inventory cost reduction, energy savings are a few of the advantages.

The micro factory concept is implemented with a bilevel modular robotic as-

sembly cell which provides two layers of modularity is developed for advancing the

microfactory concept. The module itself is used as a brick to establish a micro-

factory layout acting as a process module realizing one complete process within

119

itself. The robotic assembly module consists of all the mechanical components

necessary for the assembly process, motion control hardware/software, vision sys-

tem and main system supervision software. The assembly module also has parallel

kinematic miniaturized robots (delta robot, pantograph), serial kinematic manip-

ulators, carrier units, sensors, stoppers, cameras for the realization of an assembly

process. The performance of the system is tested with pick place experiments real-

ized with miniaturized delta robots (3 dof parallel kinematic robot) with the visual

guidance supported by microscopic vision sensor located on the carrier unit. A

graphical user interface (GUI) is designed for the operator to easily realize the de-

sired assembly tasks and control the system. The results that we obtained through

the experiments are promising in the sense of the realization of such a modular

microfactory concept and the initiative to use for real life applications Figure 5.14.

Figure 5.14: Microfactory Setup

Modularity is an important consideration in the design as one of the most

120

important features of the microfactory concept and the units of the microfactory

should be realized in order to obtain the advantages that modularity feature pro-

vides. When the modularity is achieved, flexibility appears in the production

process which enables producing different products by simply reconfiguring the

production units or the layouts of the system which is cheaper and faster when

compared to the conventional production systems. The modularity concept can

be achieved by dividing the whole system into subunits which can be called the

modules. The decision of splitting up the whole system in order to configure the

modules is an important step for the microfactory concept to be generated. The

modules should be developed in such a way that easy configuration of a complete

production system can easily be generated by cascading the modules and forming

an efficient layout for the production system. For the micro factory to be truly

modular the modularity also has to be reflected in the software.

For the microfactory according to the design methodology, the system require-

ments were specified and then the components of the system were separated ac-

cording to their realtime and non realtime needs 5.15.

The components required of the micro factory module are listed as in Figure

5.16

Supervision is the main structure of the software interconnecting and control-

ling every module according to the flow diagram of the system. This module

should have a modular structure in order to allow modularity and reconfig-

urability of the microfactory modules.

Graphical User Interface provides the interaction of the software and hard-

ware units of the microfactory via human operators. The operator controls

121

Figure 5.15: RT/NonRT Software Layout of Micro Factory

Figure 5.16: Components of Microfactory

122

and observes all the states of the system using the GUI which is composed

of system inputs and outputs as visual indicators. The GUI may run on a

computer or a handheld device according to the needs.

Communication software enables the interaction between all hardware and soft-

ware units of the microfactory. The data between the units can be transferred

between different units of the system using different communication proto-

cols. Communication software is the unit that handles the data transfer

according to the type of the protocol.

Motion Control is the one of the most important components of the microfac-

tory since the precision and accuracy of the actuators mostly depend on the

control performance. In order to achieve high precision and accuracy which is

a must for the motion, the suitable algorithms are selected and implemented

in the motion control software unit.

Image Processing is necessary for the inspection of the processes, detection

of the position and orientation of the parts, object recognition and for any

other purpose where visual feedback is necessary. Since there are fixturing

limitations as a result of the size of the parts, for the detection of the position

and orientation of the parts a vision system is inevitable in a microfactory

setup. Image processing software includes the algorithms and methods that

are necessary to extract the necessary features and data for the system from

the visual feedback supplied by the vision sensors.

And the hardware components of the microfactory module are listed below:

Manufacturing components of a microfactory involves any type of miniaturized

manufacturing system necessary for the production of the desired part. Micro

123

lathe, micro drill, micro laser cutting, etc. can be given as examples of the

manufacturing components.

Electronics components can be examined as main control unit, interfaces and

drive electronics. Main control unit is the processor board on which the

whole software is running. Interfaces provide the connection between the

peripheral electronics equipment and the main control unit, drive electronics

is the interpreter between the control unit, actuators, peripheral equipments

etc.

Manipulators are robotic arms in several configurations with any number of

degrees of freedom realizing the operations like transfer and assembly in the

system. Serial or parallel kinematic structures can be selected according to

the process necessities.

Inspection units supply the necessary feedback data for the system. Vision

systems for parts detection, product quality control, etc. and different kinds

of sensors providing such data can be included into this category.

Interfaces are the units providing the transaction of energy, air, vacuum and

any necessary material for the flow of the production.

Man-Machine Interface is the interaction device between the operator and

the system. The operator can interfere and control the defined part of the

system using the man machine interface. Haptic devices and joysticks are

mainly used as man-machine interface units.

The micro factory was implemented on a dSPACE platform because of its hard

realtime motion control constraints with a loop frequency of 10kHz. The man ma-

124

chine interface was implemented on an x86 based PC running MS Windows XP

Figure 5.17. Another implementation of the microfactory was done using an FPGA

instead of the dSAPCE setup. The two setups are almost identical from a software

perspective but the electronics implementation are different. The software of the

microfactory interfaces with the hardware wrapper interface of the framework as

does the FPGA. The hardware wrapper interfaces of the two implementations dif-

fer; one maps the input and output functions to dSPACE’s IO functions whereas

the FPGA implementations hardware wrapper maps the functions to custom mem-

ory spaces on the FPGA that in turn provide references to the various modules

coded to the gates of the FPGA. For communication, the communication struc-

tures again were identical in both systems but the communication functions were

setup to exchange data over CLIB in the dSPACE implementation and over RS232

in the FPGA implementation.

Figure 5.17: System Layout of Microfactory Module

The motion control of the micro factory is composed of the following sub mod-

125

ules:

• 2 Delta Robots

• Pantograph Robot

• Conveyor

The sensors and actuators for these submodules were selected to meet the nec-

essary properties. The motors, encoders and other sensors were coded as actuator

and actuator modules to interface with the necessary IO’s to provide the neces-

sary functionality. After this step they were joined together in axis structures and

controllers were added to them to ensure reference following. After this phase

the axes of the pantograph, delta robot and conveyor were grouped in the mech-

anism where they are further joined with kinematics functions. At this stage the

task requirements of these mechanism modules were examined and the different

modes of operation were extracted. The state machines of the mechanisms were

configured to provide the different modes of operation. Finally the mechanisms

were assembled under the system structure and the communication module was

configured to communicate with the graphical user interface.

Each of these modules were developed until they formed mechanisms in the

software framework and then finally they were integrated in to the system compo-

nent of the framework to form the motion control software of the microfactory.

5.1.2.1 Conveyor

The conveyor of the system consists of a moving belt, 3 stoppers to stop the moving

sample trays at the stations and 3 sensors to sense the presence of trays in their

stations Figure 5.18. The conveyor mechanism is a very simplistic mechanism

126

in the sense that although it has several actuators and several sensors, these are

not linked together with a controller making the conveyor a mechanism that uses

only its actuators and sensors without using controllers, filters, observers or use of

kinematics.

Figure 5.18: Conveyor Submodule

There are several actions required from the conveyor, these were defined as:

move conveyor and move tray to station also as a parameter the speed of the

conveyor could be set. The conveyor submodule has therefore 3 sensors that are

hall effect sensors to sense the presence of trays, the sensors are linked to digital

inputs of the IO cards. There are 4 actuators in the conveyor submodule, 3 of

these are the solenoids that stop the trays and one is the motor that drives the

conveyor. The stoppers are connected to the digital outputs of the IO cards and

the conveyors motor is connected to an analog output of the IO card. The IO

numbers are assigned to the sensor and actuator modules and they are added to

the mechanism module. This permits the mechanism module to open close the

stoppers, move the conveyor and sense the presence a tray on a station on the

127

conveyor. The next step is the creation of the algorithms to move the conveyor

and the trays to the desired positions. This is achieved by the configuration of

the state machine in the mechanism module. The mechanism module exposes an

interface for the system module to be able to control the conveyor by manipulation

the states of the state machine and setting the speed of the conveyor Figure 5.19.

!

HW!WRAPPER!

Digital!Input!

Digital!Input!

Digital!Input!

Digital!Output!

Digital!Output!

Digital!Output!

Analog!Output!

Station!Sensor!1!

Station!Sensor!2!

Station!Sensor!3!

Stopper!1!

Stopper!2!

Stopper!3!

Conveyor!Motor!

CONVEYOR!
SUBMODULE!

!
!

State!!
Machine!

Disabled!
!

Initialize!
!

Move!
!

Station!1!
!

Station!2!
!

Station!3!

!!States!

sensors! actuators! mechanism!

!!Speed!

Figure 5.19: Conveyor Module Software Structure

5.1.2.2 Pantograph

A pantograph is a five link parallel mechanism with two degrees of freedom moving

in x and y cartesian coordinates. The miniaturized version of the mechanism is

developed to be used as a micro manipulator for the concept of the microfactory.

128

The mechanism is enhanced with additional degrees of freedom with a rotational

axis at the tip for handling purposes and a z axis. The developed mechanism is

shown in Figure 5.20. The actuators used in the mechanism are DC motors with

integrated incremental encoders.

The software for the pantograph was modeled as in 5.23.

Figure 5.20: Pantograph Submodule

In order to test the performance of the pantograph an experimental setup is

established where a XY position sensor is used to get task space measurement.

Figure 5.21 show the result of the experiments for a circular reference trajectory

with 100 µm diameter for the joint and task space measurements respectively.

5.1.2.3 Delta Robot

Delta robot is one of the most famous parallel robots which consists of a traveling

plate connected to the base with three identical parallel kinematic chains each

of which is actuated by a revolute motor mounted on the fixed base plate. The

mechanism is shown in figure 5.22. The mechanism has three degrees of freedom

moving in x, y and z coordinates. The parallelogram structure of the lower arms

129

Figure 5.21: 100 micrometer circle reference and actual trajectory (configuration
space (a) and task space (b) measurements)

provides parallelism of the traveling plate to the fixed base plate.

The mechanism designed is the miniaturized version of the robots that are

widely used in the industry. The workspace of the robot is determined to be 40

mm cube and the kinematic parameters of the robot are determined according to

that prescribed work space with an optimization algorithm.

In the final prototype of the robot, high speed brushless DC motors are used

as actuators. Motors are equipped with integrated encoders and planetary gear

heads achieving resolution of 0.0026 ◦ and speed of 16.4 rps.

The software for the components of the delta robot were modeled as in Figure

5.24.

Sinusoidal input references to X-Y axes of the Delta Robot are given with

different amplitude and frequencies in order to achieve a circular reference. Figures

5.25 5.26 show the reference vs. encoder output and the reference vs. sensor output

for a different radii circle input at different frequencies. The sensor outputs show

130

Figure 5.22: Delta Robot Submodule

!

HW!
WRAPPER!

!
Encoder!

Analog!Output!

Encoder!

Motor!
Arm!1!

PANTOGRAPH!
!

State!
Machine!

!
!
!
!

Disabled!
!
!
!
!
!

!
Home!
!
!
!
!
!
!

Position!
Control!

PID!

Encoder!

Analog!Output!

Encoder!

Motor!
Arm!2!

PID!

Forward!
Pantograph!Kinematics!

Reverse!
Pantograph!Kinematics!

!!!Position!

!!!State!

!!!Position!

sensor! actuator! controller! axis! mechanism!kinematic!

Figure 5.23: Pantograph Realtime Software

131

!
HW!

WRAPPER!
!

Encoder!

Analog!Output!

Encoder!

Motor!
Arm!1!

DELTA!
ROBOT!

!
State!

Machine!
!

!
!
!

Disabled!
!
!
!
!
!

!
Home!
!
!
!
!
!
!

Position!
Control!

PID!

Encoder!

Analog!Output!

Encoder!

Motor!
Arm!2!

PID!

Forward!
Delta!Kinematics!

Reverse!
Delta!Kinematics!

!!!Position!

!!!State!

!!!Position!

sensor! actuator! controller! axis! mechanism!kinematic!

Encoder!

Analog!Output!

Encoder!

Motor!
Arm!3!

PID!

Digital!Output! Vacuum!

Figure 5.24: Delta Robot Realtime Software

132

slightly elliptic structures as a result of the horizontal alignment of the sensor and

the Delta robot endeffector. This is due to the mounting of the sensor since it

can not be perfectly aligned. Encoder outputs give the motor angles and using

the forward kinematics equations the endeffector position is calculated and shown

in the figures. However this does not representing the exact position of the end

effector since the manufacturing and mounting imperfections of the robot can not

be taken into account in such a calculation.

Figure 5.25: 0.5mm Radius f=1Hz Circle, Ref. vs Sensor (a) and Encoder (b)

5.1.2.4 The Micro Factory System

After the primary components of the motion control of the micro factory have been

created as mechanisms. These are added to the system structure and the commu-

nication is developed. In this case data transmission over CLIB is implemented.

CLIB is dSPACE’s communication library. It works by gathering the addresses

of the selected variables in the system. Later the host computer for the dSPACE

133

Figure 5.26: 0.1mm Radius f=1Hz Circle, Ref. vs Sensor (a) and Encoder (b)

system inquires the variables address location and retrieves its data.

The micro factory module is tested with two delta robots realizing pick place

experiments simultaneously. Experiments are realized using 3 mm steel spheres

located on a tray which are moving on a conveyor. The desired assembly procedure

is generated by the operator using GUI according to the visual feedback gained

using an optical microscope integrated to the system. After the generation of the

task, the command is given to the system and the robots perform the pick place

operations.

Figure 5.28 shows the experimental results for 8 steps pick place experiment

using one delta robot as the manipulator. These experiments are realized on the

assembly module with the FPGA control hardware.

The system is then easily migrated to the dSPACE platform. The modularity

of the software framework is also tested with adding an additional delta robot

to the system. 8 step pick place experiments are realized using two delta robots

134

!
!

!
!
!

!
!
!
!
!

!
!
!
!
!

!

!
!
!
!

!
!
! !
!

!
!

MMI!
!
!
!
!

MICRO!FACTORY!

Conveyor!

Delta!Robot!1!

Delta!Robot!2!

Pantograph!

Real<time!
Loop!

Communication!

Communication!

!
!
!
!

!!!!!!!dSPACE!
!
!

Communication!
!
!

Interface!
!
!

(CLIB)!

Figure 5.27: Micro Factory Motion Control Software

working simultaneously. The results of the experiments are given in Figure 5.29.

The XY motion of the Delta robots are given in Figure 5.30.

Experiments done on the micro factory demonstrate that the modular structure

of the framework provides ease of developing systems. Assembling the modules

in to higher level modules provides easy comprehension of the system. Also the

delta robot module is reused further demonstrating the effectiveness of the modular

architecture. The migration from a dSPACE platform to an FPGA platform shows

that the software developed is platform independent.

5.1.3 Haptic System with Time Delay

The framework was implemented on a tele-robotic system to achieve remote con-

trol for teleoperation research. The haptic system is composed of a master system

to accept the inputs from a human operator and a slave system that is desired to

135

(a) (b)

(c) (d)

(e) (f)

Figure 5.28: 8 Steps Pick Place Experiment (50% Speed with FPGA)

136

Figure 5.29: X and Y Positions of the robots during the 8 Step Pick Place
Operation (Vel Max = 60mm/sec and Acc Max = 20 mm/sec2)

mimic the master motion under the existence of time delay between data trans-

mission of two systems. This project was constructed as a part of a masters thesis

at the microsystems laboratory[134].

5.1.3.1 Experimental Setup

The system is composed of two Hitachi-ADA series linear AC motors and drivers

with Renishaw RGH41incremental encoders with 1µm resolution as depicted in

Figure 5.31. The setup runs on a D-Space DS1103 card and the loop time of the

system is configured at 1kHz.

For conception of the system, the linear motors were modeled as actuators

receiving their inputs over analog to digital converters. The torque constant was

also added to the actuator structure interfacing them as force generators to the

motion control software. The encoders were modeled in the system as sensors

interacting over the encoder inputs of the hardware wrapper. The specifics and

137

Figure 5.30: X, Y and Z positions of the Delta robots for the 8 Step Pick Place
Experiment (Vel Max = 100mm/sec and Acc Max = 30 mm/sec2

138

Figure 5.31: Haptic system with two linear actuators

the derivation of the control algorithm are described in detail in [135]. The master

and slave systems are modeled as axes. The information the master sends a force

reference to the slave and the slave sends back its velocity. Both of these are

delayed. From the framework perspective the control algorithm is decided in to

the following modules:

Velocity Estimator For the control of the slave, both the slaves and the mas-

ters velocities must be known. The velocity estimator module is applied to

estimate the velocity from the encoder sensor information. The estimator

structure used for this implementation was described in [136]

PD Controller The master system utilizes two PD controllers one to generate

the references for the slave system and another to enhance convergence of

the observer-controller coupled system. The slave system also utilizes a PD

139

controller module to enhance convergence of observer-controller so that the

systems are assured to carry out stable tracking.

Communication Disturbance Observer As the master system receives the ve-

locity measurement of the slave with a delay it requires a communication dis-

turbance observer to observe the effect of the delay on velocity measurement

of the slave. Once the velocity of the slave side is estimated, the convergence

terms take into action to make the two system outputs give the same results

[135].

Disturbance Observer The slave side motion control may have disturbance on

it and a disturbance observer is used to observe this disturbance and compen-

sate for it. The measured disturbance is fed back to the system to compensate

further the undesired effects and come up with a robust system.

The two Axes are linked to a mechanism structure which delays the signals and

passes them from the master to the slave and vice versa as depicted in figure 5.32.

For this setup functions to create fixed and random delay were added to the

system. These can be found in the appendix.

The experiments done by implementing the framework have proven that a

methodical way of generating motion control systems is achieved. The results

obtained from two different experiments indicate the difference clearly. The al-

gorithm for the haptic system, when generated by Simulink blocks can run at a

maximum of 11 Khz frequency while using the proposed structural formalism, we

could achieve a maximum of 73 Khz loop frequency.

140

!
!

!
!
!
!
!
!

!
!
!
!
!
!
!
! !

Velocity!Estimator!

Encoder!

Master!

PD!
Controller!

PD!Controller!
Used!for!

convergence!

Communication!
Disturbance!
Observer!

Slave!

PD!Controller!
Used!for!

convergence!

Disturbance!
Observer!

Velocity!Estimator!

Encoder!

Linear!Motor!

BILATERAL!
MECHANISM!

!
State!

Machine!

!
Disabled!

!
!
!
!

Initialize!
!
!
!
!

Haptic!
Control!

sensor! actuator! controller! mechanism!estimator!axis! observer!

Figure 5.32: Haptic system software structure

141

6 CONCLUSION

A framework for precise motion control is presented in this thesis work. The pri-

mary aim of the framework is to create sustainable software that is easy to main-

tain. The framework models the various components of a complex multi degree

of freedom motion control system. The framework was created with a modular

approach where every modules interfaces are defined. A layered approach sepa-

rates the different engineering challenges such as control algorithms, estimation

algorithms, trajectory generation, kinematics etc.. of the motion control problem.

The modules are used by other modules to create higher levels of modules leading

to structures such as mechanisms and robots with different modes of control where

the tasks of the problem domain can be tackled. The modular approach brings the

advantage of reusability to the motion control software where simple components

such as controllers can be ported to different applications or complex modules such

as mechanisms can be reconfigured and used in the same project. The created mo-

tion control structure is interfaced to other systems or man machine interfaces

using a communication module that can be programmed to receive and transmit

data over different types of mediums.

The defined features of the software framework are tested by implementing the

software on different platforms with different motion control necessities. Experi-

ments performed on a micro assembly workstation demonstrated that the software

is scaleable and can be implemented on multiple degrees of freedom. It is also

shown that the framework is platform independent as migration from dSPACE

142

environment to Linux can be performed with ease. Experiments done on the mi-

cro factory demonstrate that the modular structure of the framework provides

ease of developing systems. Assembling the modules in to higher level modules

provides easy comprehension of the system. Also the framework is capable of han-

dling motion control needs such as kinematics as with the delta robot module.

The components of the framework can be reused further demonstrating the effec-

tiveness of the modular architecture. The migration from a dSPACE platform to

an FPGA platform reaffirms that the software developed is platform independent.

Experiments performed on the haptic system with delay show that the framework

is capable of handling complex motion control logarithms. Also the software im-

plementation is capable of achieving higher loop frequencies in real time compared

to some popular automatic software generation tools such as Simulink.

The framework is demonstrated to be a useful tool for the modeling of motion

control systems. To increase the usage of the framework, it will be included in

the communities of the current popular open source frameworks such as ROS

and OROCOS to increase its availability and also to obtain new controllers and

modules.

A commercial implementation on mobile service robots is also in the negotiation

phases.

143

Bibliography
[1] C. J. Evans, Precision engineering: An Evolutionary View. Cranfield, UK:

Cranfield Press, 1989.

[2] K. K. Tan, K. Z. Tang, H. F. Dou, and S. N. Huang, “Development of

integrated and open-architecture precision motion control system,” Control

Engineering Practice, vol. 10, pp. 757–772, 2002.

[3] A. Basak, Permanent-magnet DC linear motors. Monographs in electrical

and electronic engineering. Oxford: Clarendon Press, 1996.

[4] K. Ohnishi, N. Matsui, and Y. Hori, “Estimation, identification, and sensor-

less control in motion control system,” in Proceedings of the IEEE, vol. 82,

no. 8, 1994.

[5] K. Ohishi, K. Ohnishi, and K. Miyashi, “Torque-speed regulation of dc motor

based on load torque estimation,” in Int. Power Electronics Conf. IPEC,

vol. 2, Tokyo, 1983, pp. 1209–1218.

[6] T. Umeno and Y. Hori, “Two degrees of freedom controllers for robust ser-

vomechanism, their application to robot manipulators without speed sen-

sors,” in IEEE 1st Int. Workshop on Advanced Motion Control, Yokohama,

Japan, 1990, pp. 179–188.

[7] Y. Hori, “Disturbance suppression on acceleration control type dc servo sys-

tem,” in Proc ZEEE PESC’SS, vol. 1, 1988, pp. 222–229.

[8] M. Nakao, K. Ohnishi, and K. Miyachi, “A robust decentralized joint control

based on interference estimation,” in Proceedings of IEEE Int. Conf. on

Robotics and Automation, vol. 1, 1987, pp. 326–331.

144

[9] K. Ohnishi, M. Shibata, and T. Murakami, “Recent advances in motion

control,” IEEE/ASME Transactions on mechatronics, vol. 1, no. 1, pp. 56–

67, 1996.

[10] D. E. Whitney, “Historical perspective and state of the art in robot force

control,” in Proceedings of IEEE International Conference on Robotics and

Automation, vol. 2, 1985, pp. 262–268.

[11] R. A. Rothchild and R. W. Mann, “An emg-controlled force sensing pro-

portional rate elbow prosthesis,” in Proc. 1966 Symposium on Biomedical

Engineering, Milwaukee, 1966.

[12] H. A. Ernst, “Mh1-a computer operated mechanical hand,” Sc. D., MIT,

1961.

[13] J. D. Barber, “Mantran: A symbolic language for supervisory control of an

intelligent remote manipulator,” S.M., MIT, 1967.

[14] J. W. Hill and A. J. Sword, “Manipulation based on sensor-directed control,”

in 17th Annual Human Factors Convention, Washington, 1973.

[15] R. P. Paul and B. Shimano, “Compliance and control,” in Proc. JACC, 1976,

pp. 694–699.

[16] J. L. Nevins and D. E. Whitney, “The force vector assembler concept,” in

Proceedings of First CISM-IFTOMM Symposium on Theory and Practice Of

Robots and Manipulators, Udine, Italy, 1973.

[17] D. E. Whitney, “Force feedback control of manipulator fine motions,” ASME

Journal of Dyn. Sys. Meas. and Control, pp. 91–97, 1977.

145

[18] R. C. Groome, “Force feedback steering of a teleoperator system,” S.M.,

MIT, 1972.

[19] J. K. Salisbury, “Active stiffness control of a manipulator in cartesian coor-

dinates,” in Proceedings of 19th IEEE Conference on Decision and Control,

1980.

[20] S. J. K. and J. J. Craig, “Articulated hands: Force control and kinematic

issues,” International Journal of Robotics Research, vol. 1, no. 1, pp. 4–17,

1982.

[21] P. C. Watson, “A multidimensional system analysis of the assembly process

as performed by a manipulator,” in 1st N. Am. Robot Conference, Chicago,

1976.

[22] S. K. Drake and S. N. Simunovic, “The use of compliance in a robot assembly

system,” in IFAC symposium on Info. and Control Problems in Manufactur-

ing Technologies, Tokyo, 1977.

[23] N. Hogan, “Control of mechanical impedance of prosthetic arms,” in Pro-

ceedings of JACC, San Francisco, 1980.

[24] H. Hanafusa and H. Asada, “A robot hand with elastic fingers and its ap-

plication to assembly process,” in IFAC Symposium on Info. and Control

Problems in Manufacturing Technologies, Tokyo, 1977.

[25] P. Borrel, “Modele de comportements des manipulateurs, applications a

l’analyse de leurs performances et a leur commande automatique,” Ph.D.

dissertation, Universite des Sciences et Techniques du Languedoc, Montpel-

lier, France, 1979.

146

[26] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipu-

lators,” Trans. ASME Journal Dyn. Sys. Meas. and Control, vol. 102, pp.

126–133, 1981.

[27] M. T. Mason, “Compliance and force control for computer controlled ma-

nipulators,” Trans. IEEE Systems, Man and Cybernetics, vol. 11, no. 6, pp.

418–432, 1981.

[28] P. L. M. Heydemann, “Determination and correction of quadrature fringe

measurement errors in interferometers,” Applied Optics, vol. 20, pp. 3382–

3384, 1981.

[29] K. K. Tan, S. N. Huang, and H. L. Seet, “Geometrical error compensation of

precision motion systems using radial basis functions,” IEEE Transactions

on Instrumentation and Measurement, vol. 49, no. 5, pp. 984–991, 2000.

[30] P. J. From, J. T. Gravdahl, T. Lillehagen, and P. Abbeel, “Motion plan-

ning and control of robotic manipulators on seaborne platforms,” Control

Engineering Practice, vol. 19, pp. 809–819, 2011.

[31] Y. Hurmuzlu, F. Génot, and B. Brogliato, “Modeling, stability and control

of biped robots-a general framework,” Automatica, vol. 40, pp. 1647–1664,

2004.

[32] M. Vucobratovic, Walking robots and anthropomorphic mechanics. Moskow:

MIR Press, 1976.

[33] M. Vucobratovic, B. Borovac, D. Surla, and D. Stokic, Scientific fundamen-

tals of robotics 7: Biped locomotion. New York: Springer, 1990.

147

[34] M. H. Raibert, Legged robots that balance. Cambridge, MA: MIT Press,

1986.

[35] D. J. Todd, Walking machines: an introduction to legged robots. London:

Kogan Page, 1985.

[36] F. El Hafi and P. Gorce, “Behavioral approach for a bipedal robot stepping

motion gait,” Robotica, vol. 17, pp. 491–501, 1999.

[37] H. K. Lum, M. Zribi, and Y. C. Soh, “Planning and control of biped robot,”

International Journal of Engineering Science, vol. 37, pp. 1319–1349, 1999.

[38] M. Yagi and V. Lumelsky, “Local on-line planning in biped robot locomotion

amongst unknown obstacles,” Robotica, vol. 18, pp. 389–402, 2000.

[39] M. Rostami and G. Bessonnet, “Sagittal gait of a biped robot during the

single support phase. part 2: Optimal motion,” Robotica, vol. 19, pp. 241–

253, 2001.

[40] C. L. Shih, “Ascending and descending stairs for a biped robot,” IEEE

Transactions on Systems, Man and Cybernetics-Part A: Systems and Hu-

mans, vol. 29, pp. 255–268, 1999.

[41] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and

K. Tanie, “Planning walking patterns for a biped robot,” IEEE Transac-

tions on Robotics and Automation, vol. 17, pp. 557–569, 2001.

[42] C. Chevallereau and Y. Aoustin, “Optimal reference trajectories for walking

and running of a biped robot,” Robotica, vol. 19, pp. 557–569, 2001.

148

[43] T. Saidouni and G. Bessonnet, “Generating globally optimized sagittal gait

cycles of a biped robot,” Robotica, vol. 21, pp. 199–210, 2003.

[44] H. Hemami and R. L. Farnsworth, “Postural and gait stability of a planar

five link biped by simulation,” IEEE Transaction on Automatic Control,

vol. 22, pp. 452–458, 1977.

[45] B. Khosravi, S. Yurkovich, and H. Hemami, “Control of a five link biped

in a back somersault maneuver,” IEEE Transactions on Systems, Man and

Cybernetics, vol. 17, no. 2, pp. 303–325, 1987.

[46] P. S. Chudinov, “One problem of angular stabilization of bipedal locomo-

tion,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 15, no. 6, pp. 49–54,

1980.

[47] P. S. Chudinov, “Problem of angular stabilization of bipedal locomotion,”

Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 19, no. 1, pp. 166–169,

1984.

[48] E. K. Lavrovskii, “Impact phenomena in problems of control of bipedal lo-

comotion,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 14, no. 5, pp.

41–47, 1979.

[49] E. K. Lavrovskii, “Dynamics of bipedal locomotion at high velocity,”

Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 15, no. 4, pp. 50–58,

1980.

[50] V. V. Beletskii, “Dynamics of two legged walking,” II Izvestiya AN SSSR

Mekhanika Tverdogo Tela, vol. 10, no. 4, pp. 3–13, 1975.

149

[51] V. V. Beletskii and T. S. Kirsanova, “Plane linear models of biped loco-

motion,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 11, no. 4, pp.

51–62, 1976.

[52] V. V. Beletskii and P. S. Chudinov, “The linear stabilization problem for two

legged ambulation,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 12,

no. 6, pp. 65–74, 1977.

[53] V. V. Beletskii and P. S. Chudinov, “Control of motion of a bipedal walking

robot,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 15, no. 3, pp.

30–38, 1980.

[54] V. V. Beletskii, V. E. Berbyuk, and V. A. Samsonov, “Parametric optimiza-

tion of motions of a bipedal walking robot,” Izvestiya AN SSSR Mekhanika

Tverdogo Tela, vol. 17, no. 1, pp. 28–40, 1982.

[55] A. A. Grishin and A. M. Formal’sky, “Control of bipedal walking robot

by means of impulses of finite amplitude,” Izvestiya AN SSSR Mekhanika

Tverdogo Tela, vol. 25, no. 2, pp. 67–74, 1990.

[56] I. V. Novozhilov, “Control of three-dimensional motion of a bipedal walking

robot,” Izvestiya AN SSSR Mekhanika Tverdogo Tela, vol. 19, no. 4, pp.

47–53, 1984.

[57] Y. Hurmuzlu, “Dynamics of bipedal gait; part i-objective functions and the

contact event of a planar five link biped,part ii-stability analysis of a planar

five link biped,” ASME Journal of Applied Mechanics, vol. 60, no. 2, pp.

331–344, 1993.

150

[58] T. H. Chang and Y. Hurmuzlu, “Sliding control without reaching phase and

its application to bipedal locomotion,” ASME Journal of Dynamic Systems,

Measurement and Control, vol. 105, pp. 447–455, 1994.

[59] J. S. Yang, “A control study of a knee less biped locomotion system,” Journal

of the Franklin Institute, vol. 331b, no. 2, pp. 125–143, 1994.

[60] L. Jalics, H. Hemami, and B. Clymer, “A control strategy for terrain adaptive

bipedal locomotion,” Autonomous Robots, vol. 4, pp. 243–257, 1997.

[61] S. Kajita and K. Tani, “Experimental study of biped dynamic walking,”

IEEE Control Systems, vol. 16, pp. 13–19, 1996.

[62] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic walking control of a

biped robot along a potential energy conserving orbit,” IEEE Transactions

on Robotics and Automation, vol. 8, no. 4, pp. 431–438, 1992.

[63] A. A. Grishin, A. M. Formal’sky, A. V. Lensky, and S. V. Zhitomirsky,

“Dynamic of a vehicle with two telescopic legs controlled by two drives,”

The International Journal of Robotics Research, vol. 13, no. 2, pp. 137–147,

1994.

[64] Y. F. Zheng and H. Hemami, “Impacts effects of biped contact with the

environment,” IEEE Transactions on Systems, Man and Cybernetics, vol.

SMC-14, no. 3, pp. 437–443, 1984.

[65] H. Hemami, Y. F. Zheng, and M. J. Hines, “Initiation of walk and tiptoe of

a planar nine link biped,” Mathematical Biosciences, vol. 61, pp. 163–189,

1982.

151

[66] C. L. Golliday and H. Hemami, “An approach to analyzing biped locomotion

dynamics and designing robot locomotion control,” IEEE Transactions on

Automatic Control, vol. 22, no. 6, pp. 963–972, 1977.

[67] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of

biped locomotion,” IEEE Transactions on Biomedical Engineering, vol. 21,

no. 2, pp. 102–108, 1974.

[68] K. Mitobe, G. Capi, and Y. Nasu, “Control of walking robots based on

manipulation of the zero moment point,” Robotica, vol. 18, pp. 651–657,

2000.

[69] Y. J. Seo and Y. S. Yoon, “Design of a robust dynamic gait of the biped

using the concept of dynamic stability margin,” Robotica, vol. 13, pp. 461–

468, 1995.

[70] E. Garcia, J. Estremera, and P. Gonzales de Santos, “A comparative study

of stability margins for walking machines,” Robotica, vol. 20, pp. 595–606,

2002.

[71] H. Hemami and A. Katbab, “Constrained inverted pendulum model for eval-

uating upright postural stability,” ASME Journal of Dynamic Systems, Mea-

surement and Control, vol. 104, pp. 343–349, 1982.

[72] T. T. Lee and J. H. Liao, “Trajectory planning and control of a 3-linked biped

robot,” in Proceedings of IEEE Conference on robotics and automation, New

York, 1988, pp. 820–823.

[73] J. Song, K. H. Low, and W. Guo, “A simplified hybrid force/position con-

troller method for the walking robots,” Robotica, vol. 17, pp. 583–589, 1999.

152

[74] J. H. Park, “Impedance control for biped robot locomotion,” IEEE Trans-

actions on Robotics and Automation, vol. 17, pp. 870–883, 2001.

[75] G. Taga, “A model of the neuro-musculo-skeletal system for human loco-

motion. i. emergence of basic gait. ii. real-time adaptability under various

constraints,” Biological Cybernetics, vol. 73, pp. 97–121, 1995.

[76] C. Chevallereau, “Time-scaling control of an underactuated biped robot,”

IEEE Transactions on Robotics and Automation, vol. 19, no. 2, pp. 362–368,

2003.

[77] J. M. Bourgeot and B. Brogliato, “Tracking control of complementarity la-

grangian systems,” International Journal of Bifurcations and Chaos, special

issue non-smooth dynamical systems: Recent trends and perspectives, 2005.

[78] B. Brogliato, S. I. Niculescu, and P. Orhant, “On the control of finite dimen-

sional mechanical systems with unilateral constraints,” IEEE Transactions

on Automatic Control, vol. 42, no. 2, pp. 200–215, 1997.

[79] B. Brogliato, S. I. Niculescu, and M. Monteiro-Marques, “On the tracking

control of a class of complementarity-slackness hybrid mechanical systems,”

Systems and Control Letters, vol. 39, pp. 255–266, 2000.

[80] A. Frank, “An approach to the dynamic analysis synthesis of biped loco-

motion machines,” Medical and Biological Engineering, vol. 8, pp. 465–476,

1970.

[81] S. V. Rutkovskii, “Walking, skipping and running of a bipedal robot with

allowance for impact,” Mechanics of Solids, vol. 20, no. 5, pp. 44–49, 1985.

153

[82] P. H. Channon, S. H. Hopkins, and D. T. Pham, “Derivation of optimal

walking motions for a bipedal walking robot,” Robotica, vol. 10, pp. 165–

172, 1992.

[83] V. V. Beletskii and Y. V. Bolotin, “Model estimation of the energetics of

bipedal walking and running,” Mechanics of Solids, vol. 18, no. 4, pp. 87–92,

1983.

[84] Y. V. Bolotin, “Energetically optimal gaits of a bipedal walking robot,”

Mechanics of Solids, vol. 19, no. 6, pp. 44–51, 1984.

[85] J. Furusho and A. Sano, “Sensor based control of a nine linked biped,”

International Journal of Robotics Research, vol. 9, no. 2, pp. 83–98, 1990.

[86] P. H. Channon, S. H. Hopkins, and D. T. Pham, “A gravity compensation

technique for an n-legged robot,” in Proceedings of INSTN MECH ENGRS,

ImechE, vol. 210, 1996, pp. 1–14.

[87] P. H. Channon, S. H. Hopkins, and D. T. Pham, “Optimal control of an

n-legged robot,” Journal of Systems and Control Engineering, vol. 210, pp.

51–63, 1996.

[88] P. H. Channon, S. H. Hopkins, and D. T. Pham, “A variational approach

to the optimization of gait for a bipedal robot,” in Proceedings of INSTN

MECH ENGRS, ImechE, vol. 210, 1996, pp. 177–186.

[89] H. van der Kooij, R. Jacobs, B. Koopman, and F. van der Halm, “An alter-

native approach to synthesizing bipedal walking,” in Biological Cybernetics,

vol. 88, no. 1, 2003, pp. 46–59.

154

[90] G. A. Pratt, “Legged robots at mit: What’s new since raibert,” IEEE

Robotics and Automation Magazine, vol. 7, no. 3, pp. 15–19, 2000.

[91] E. Dunn and R. D. Howe, “Toward smooth bipedal walking,” in IEEE In-

ternational Conferences on Robotics and Automation, vol. 3, San Diego, CA,

1994, pp. 2489–2494.

[92] H. Miura and I. Shimoyama, “Dynamic walking of a biped,” International

Journal of Robotics Research, vol. 3, no. 2, pp. 60–74, 1984.

[93] J. W. Grizzle, G. Abba, and F. Plestan, “Proving asymptotic stability of

a walking cycle for a five dof biped robot model,” in Second International

Conference on Climbing and Walking Robots, Portsmouth, UK, 1999, pp.

69–81.

[94] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for

biped robots: Analysis via systems with impulse effects,” IEEE Transactions

on Automatic Control, vol. 46, no. 1, pp. 51–64, 2001.

[95] E. R. Werstelvelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dy-

namics of planar biped walkers,” IEEE Transactions on Automatic Control,

vol. 48, no. 1, pp. 42–56, 2003.

[96] J. Wu, D. Pu, and H. Ding, “Adaptive robust motion control of siso nonlinear

systems with implementation on linear motors,” Mechatronics, vol. 17, pp.

263–270, 2007.

[97] F. J. Lin, S. Y. Chen, P. H. Chou, and P. H. Shieh, “Interval type-2 fuzzy

neural network control for x-y-theta motion control stage using linear ultra-

sonic motors,” Neurocomputing, vol. 72, pp. 1138–1151, 2009.

155

[98] [Online]. Available: www.jfwk.com/what is.html

[99] D. Riehle, “Framework design: A role modeling approach,” Ph.D. disserta-

tion, Swiss Federal Institute of Technology, ZURICH, 2000.

[100] [Online]. Available: http://www.evolution.com

[101] [Online]. Available: http://www.skilligent.com/

[102] [Online]. Available: http://www.gostai.com

[103] [Online]. Available: http://www.cyberbotics.com

[104] [Online]. Available: http://www.microsoft.com/robotics/

[105] [Online]. Available: http://www.orocos.org

[106] [Online]. Available: http://playerstage.sourceforge.net/

[107] [Online]. Available: http://www.ros.org

[108] Tiobe programming community index for june 2012. [Online]. Available:

http://www.tiobe.com/

[109] W. L. Hürsch and C. V. Lopes, “Separation of concerns,” Tech. Rep., 1995.

[110] [Online]. Available: http://www.dspace.org/

[111] O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical

Chemistry, vol. 72, no. 12, pp. 81–89, 2000.

[112] [Online]. Available: http://ac.cqupt.edu.cn/asp/course/sensor/upfile/en

ch/Intro%20to%20sensors.pdf

156

www.jfwk.com/what_is.html
http://www.evolution.com
http://www.skilligent.com/
http://www.gostai.com
http://www.cyberbotics.com
http://www.microsoft.com/robotics/
http://www.orocos.org
http://playerstage.sourceforge.net/
http://www.ros.org
http://www.tiobe.com/
http://www.dspace.org/
http://ac.cqupt.edu.cn/asp/course/sensor/upfile/en_ch/Intro%20to%20sensors.pdf
http://ac.cqupt.edu.cn/asp/course/sensor/upfile/en_ch/Intro%20to%20sensors.pdf

[113] R. Luo, “Sensor technologies and microsensor issues for mechatronics sys-

tems,” IEEE/ASME Transactions on Mechatronics, vol. 1, pp. 39–49, 1996.

[114] WorldDispZacement/Proximity/PositionSensors, Mountain View, CA, 1990.

[115] (2010, december). [Online]. Available: http://www.maritimejournal.

com/features101/onboard-systems/monitoring-and-control/

load-cell-testing-gets-straight-to-the-point

[116] (2010, September). [Online]. Available: http://www.straightpoint.com/

news/24-test-machine-launched.html

[117] P. Jänker, M. Christmann, F. Hermle, T. Lorkowski, and S. Storm, “Mecha-

tronics using piezoelectric actuators,” Journal of the European Ceramic So-

ciety, vol. 19, pp. 1127–1131, 1999.

[118] H. Ishihara, F. Arai, and T. Fukuda, “Micro mechatronics and micro actua-

tors,” IEEE/ASME Transactions on Mechatronics, vol. 1, no. 1, pp. 68–79,

March 1996.

[119] J. Puranen, “Induction motor versus permanent magnet synchronous motor

in motion control applications: A comparative study,” Doctor of Science,

Lappeenranta University of Technology, Lappeenranta, Finland, December

2006.

[120] K. Y. Kim, K. H. Park, H. C. Park, N. S. Goo, and K. J. Yoon, “Performance

evaluation of lightweight piezo-composite actuators,” Sensors and Actuators,

vol. A 120, pp. 123–129, 2005.

[121] Noliac. (2012) Piezo actuator drive. [Online]. Available: www.noliac.com

157

http://www.maritimejournal.com/features101/onboard-systems/monitoring-and-control/load-cell-testing-gets-straight-to-the-point
http://www.maritimejournal.com/features101/onboard-systems/monitoring-and-control/load-cell-testing-gets-straight-to-the-point
http://www.maritimejournal.com/features101/onboard-systems/monitoring-and-control/load-cell-testing-gets-straight-to-the-point
http://www.straightpoint.com/news/24-test-machine-launched.html
http://www.straightpoint.com/news/24-test-machine-launched.html
www.noliac.com

[122] D. Song and J. Li, “Modeling of piezo actuator’s nonlinear and frequency

dependent dynamics,” Mechatronics, vol. 9, pp. 391–410, 1999.

[123] C. A. Palanduz, I. Sauciuc, and R. Paydar, “Piezo actuator for cooling,”

patent no. 7,638,928 B2, December 2009.

[124] K. D. Nguyen and I. Chen, T. Ng, “On algorithms for planning s-curve

motion profiles,” International Journal of Advanced Robot Systems, vol. 5,

no. 1, pp. 99–106, 2008.

[125] [Online]. Available: http://opencv.org/

[126] [Online]. Available: http://www.mvtec.com/halcon/

[127] E. D. Kunt, K. Cakir, and A. Sabanovic, “A workstation for micro assembly,”

Mediterranean Conference on Control and Automation, July 2007.

[128] L. Dozio and P. Mantegazza, “Linux real time application interface (rtai) in

low cost high performance motion control,” Motion Control, 2007.

[129] A. Neto, F. Sartori, F. Piccolo, A. Barbalace, R. Vitelli, and H. Fernandes,

“Linux real-time framework for fusion devices,” Fusion Engineering and De-

sign, vol. 84, pp. 1408–1411, February 2009.

[130] H. Bilen and M. Unel, “Micromanipulation using a micro assembly worksta-

tion with vision and force sensing,” International Conference on Intelligent

Computing, 2008.

[131] H. Bilen, M. A. Hocaoglu, E. A. Baran, M. Unel, and D. Gozuacik, “Novel

parameter estimation schemes in microsystems,” International Conference

on Robotics and Automation, pp. 2394–2399, 2009.

158

http://opencv.org/
http://www.mvtec.com/halcon/

[132] A. Naskali, E. Kunt, and A. Sabanovic, “Bilevel modularity concept within

a robotic assembly module of a microfactory setting,” International Journal

of Advanced Manufacturing Technologies, 2012.

[133] E. D. Kunt, “Microfactory concept with bilevel modularity,” Ph.D. disser-

tation, Sabanci University, 2012.

[134] A. E. Baran, “Disturbance observer based bilateral control systems,” Mas-

ter’s thesis, Sabanci University, 2010.

[135] A. Şabanoviç, K. Ohnishi, D. Yashiro, N. Şabanoviç, and E. A. Baran, “Mo-

tion control systems with network delay,” Automatika, vol. 51, no. 2, pp.

119–126, 2010.

[136] E. A. Baran, E. Goluboviç, and A. Şabanoviç, “A new functional observer to

estimate velocity, acceleration and disturbance for motion control systems,”

in IEEE International Symposium on Industrial Electronics, Bari Italy, 2010,

pp. 384–389.

159

Biography

Ahmet Teoman Naskali received his B.S. degree in computer engineering from

Galatasaray University in 2003 and Ms degree in Mechatronics from Sabanci Uni-

versity in 2005, he is currently a PhD candidate in Sabanci University Mechatron-

ics. His interests include networked control systems and real-time systems.

160

A APPENDIX A

Documentation of software is almost as vital as the implementation of the software.

As without the information to use the functions and modules within, the work put

in to it can not be beneficial to other.

The software for the framework was documented with doxygen.

161

SU Framework

Generated by Doxygen 1.8.1.2

Thu Aug 2 2012 11:58:55

Contents

1 Class Index 1

1.1 Class List . 1

2 File Index 3

2.1 File List . 3

3 Class Documentation 5

3.1 Actuator_ Struct Reference . 5

3.1.1 Detailed Description . 6

3.1.2 Member Data Documentation . 6

3.1.2.1 inADC . 6

3.1.2.2 inDIO . 6

3.1.2.3 inENC . 6

3.1.2.4 init . 6

3.1.2.5 input . 6

3.1.2.6 name . 6

3.1.2.7 outDAC . 7

3.1.2.8 outDIO . 7

3.1.2.9 output . 7

3.1.2.10 parameter . 7

3.1.2.11 remove . 7

3.1.2.12 reset . 7

3.1.2.13 setParameter . 8

3.1.2.14 state . 8

3.1.2.15 units . 8

3.1.2.16 write . 8

3.2 Axis_ Struct Reference . 8

3.2.1 Detailed Description . 9

3.2.2 Member Data Documentation . 9

3.2.2.1 Actuators . 9

3.2.2.2 Controllers . 9

3.2.2.3 enable . 9

ii CONTENTS

3.2.2.4 Filters . 9

3.2.2.5 init . 9

3.2.2.6 input . 9

3.2.2.7 name . 10

3.2.2.8 output . 10

3.2.2.9 parameter . 10

3.2.2.10 remove . 10

3.2.2.11 reset . 10

3.2.2.12 Sensors . 10

3.2.2.13 state . 10

3.2.2.14 step . 10

3.3 Controller_ Struct Reference . 10

3.3.1 Detailed Description . 11

3.3.2 Member Data Documentation . 11

3.3.2.1 input . 11

3.3.2.2 input_p . 11

3.3.2.3 linked . 11

3.3.2.4 loopController . 11

3.3.2.5 output . 12

3.3.2.6 parameter . 12

3.3.2.7 state . 12

3.4 Filter Struct Reference . 12

3.4.1 Detailed Description . 12

3.4.2 Member Data Documentation . 12

3.4.2.1 name . 12

3.4.2.2 P . 13

3.5 Filter_ Struct Reference . 13

3.5.1 Detailed Description . 13

3.5.2 Member Data Documentation . 13

3.5.2.1 name . 13

3.5.2.2 P . 13

3.6 inputCommunication Struct Reference . 13

3.6.1 Detailed Description . 13

3.6.2 Member Data Documentation . 14

3.6.2.1 ConveyorSpeed . 14

3.6.2.2 ConveyorStation . 14

3.7 Kinematcis_ Struct Reference . 14

3.7.1 Detailed Description . 14

3.7.2 Member Data Documentation . 15

3.7.2.1 input . 15

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

CONTENTS iii

3.7.2.2 input_p . 15

3.7.2.3 linked . 15

3.7.2.4 loopFWKinematics . 15

3.7.2.5 output . 15

3.7.2.6 parameter . 15

3.7.2.7 state . 15

3.8 Mechanism_ Struct Reference . 16

3.8.1 Detailed Description . 16

3.8.2 Member Data Documentation . 16

3.8.2.1 Actuators . 16

3.8.2.2 Axes . 16

3.8.2.3 input . 16

3.8.2.4 loopMechanism . 16

3.8.2.5 name . 17

3.8.2.6 output . 17

3.8.2.7 parameter . 17

3.8.2.8 Sensors . 17

3.8.2.9 state . 17

3.8.2.10 StateMachine . 17

3.9 outputCommunication Struct Reference . 17

3.9.1 Detailed Description . 17

3.9.2 Member Data Documentation . 17

3.9.2.1 x . 17

3.10 Sensor_ Struct Reference . 18

3.10.1 Detailed Description . 18

3.10.2 Member Data Documentation . 19

3.10.2.1 inADC . 19

3.10.2.2 inDIO . 19

3.10.2.3 inENC . 19

3.10.2.4 name . 19

3.10.2.5 outDAC . 19

3.10.2.6 outDIO . 19

3.10.2.7 parameter . 19

3.10.2.8 read . 19

3.10.2.9 remove . 19

3.10.2.10 reset . 20

3.10.2.11 setParameter . 20

3.10.2.12 state . 20

3.10.2.13 unit . 20

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

iv CONTENTS

4 File Documentation 21

4.1 Framework/Actuator/Actuator.h File Reference . 21

4.1.1 Detailed Description . 22

4.1.2 Macro Definition Documentation . 22

4.1.2.1 ACTMAXIN . 22

4.1.2.2 ACTMAXIO . 22

4.1.2.3 ACTMAXOUT . 22

4.1.2.4 ACTMAXPARAMETERS . 22

4.1.2.5 ACTMAXSTATES . 22

4.1.3 Typedef Documentation . 22

4.1.3.1 Actuator . 22

4.1.4 Function Documentation . 22

4.1.4.1 setupActuator . 22

4.2 Framework/Actuator/ActuatorTemplate.h File Reference . 23

4.2.1 Function Documentation . 23

4.2.1.1 initActuator . 23

4.2.1.2 removeActuator . 23

4.2.1.3 resetActuator . 24

4.2.1.4 setActuatorParameter . 24

4.2.1.5 writeActuator . 24

4.3 Framework/Actuator/Examples/ConveyorStopper.h File Reference 24

4.3.1 Detailed Description . 25

4.3.2 Function Documentation . 25

4.3.2.1 initConveyorStopper . 25

4.3.2.2 removeConveyorStopper . 25

4.3.2.3 resetConveyorStopper . 25

4.3.2.4 setConveyorStopperParameter . 25

4.3.2.5 writeConveyorStopper . 26

4.4 Framework/Axis/Axis.h File Reference . 26

4.4.1 Macro Definition Documentation . 27

4.4.1.1 AXISACTUATORNUM . 27

4.4.1.2 AXISCONTROLLERNUM . 27

4.4.1.3 AXISFILTERNUM . 27

4.4.1.4 AXISINPUTNUM . 27

4.4.1.5 AXISOBSERVERNUM . 27

4.4.1.6 AXISOUTPUTNUM . 27

4.4.1.7 AXISPARAMTERNUM . 27

4.4.1.8 AXISSENSORNUM . 27

4.4.1.9 AXISSTATENUM . 27

4.4.2 Typedef Documentation . 27

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

CONTENTS v

4.4.2.1 Axis . 27

4.4.3 Function Documentation . 27

4.4.3.1 setupAxis . 27

4.5 Framework/Axis/AxisTemplate.c File Reference . 28

4.5.1 Function Documentation . 28

4.5.1.1 initAxis . 28

4.5.1.2 removeAxis . 28

4.5.1.3 resetAxis . 28

4.5.1.4 stepAxis . 28

4.6 Framework/Axis/Examples/AxisFaulhaberLinear.c File Reference 28

4.6.1 Function Documentation . 28

4.6.1.1 initAxis . 28

4.6.1.2 removeAxis . 29

4.6.1.3 resetAxis . 29

4.6.1.4 stepAxis . 29

4.7 Framework/Communication/Communication.h File Reference . 29

4.7.1 Detailed Description . 29

4.7.2 Function Documentation . 29

4.7.2.1 InputCommunication . 29

4.7.2.2 OutputCommunication . 29

4.7.2.3 receive . 29

4.7.2.4 send . 29

4.8 Framework/Communication/CommunicationTemplate.h File Reference 30

4.8.1 Function Documentation . 30

4.8.1.1 InputCommunication . 30

4.8.1.2 OutputCommunication . 30

4.8.1.3 receive . 30

4.8.1.4 send . 30

4.8.2 Variable Documentation . 30

4.8.2.1 inCommunication . 30

4.8.2.2 outCommunication . 30

4.9 Framework/Controller/Controller.h File Reference . 30

4.9.1 Detailed Description . 31

4.9.2 Macro Definition Documentation . 31

4.9.2.1 CONTROLLERMAXIN . 31

4.9.2.2 CONTROLLERMAXOUT . 31

4.9.2.3 CONTROLLERMAXPARAMETERS . 31

4.9.2.4 CONTROLLERMAXSTATES . 31

4.9.3 Typedef Documentation . 31

4.9.3.1 Controller . 31

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

vi CONTENTS

4.10 Framework/Controller/ControllerTemplate.h File Reference . 32

4.10.1 Detailed Description . 32

4.10.2 Enumeration Type Documentation . 32

4.10.2.1 ControllerInput . 32

4.10.2.2 ControllerOutput . 32

4.10.2.3 ControllerParameters . 33

4.10.2.4 ControllerStates . 33

4.10.3 Function Documentation . 33

4.10.3.1 loopController . 33

4.10.3.2 setControllerParameters . 33

4.11 Framework/Controller/Examples/CengizController.h File Reference 33

4.11.1 Macro Definition Documentation . 34

4.11.1.1 ORDER . 34

4.11.1.2 PARAMCOUNT . 34

4.11.2 Enumeration Type Documentation . 34

4.11.2.1 ProportionalControllerParameters . 34

4.11.3 Function Documentation . 34

4.11.3.1 initProportionalController . 34

4.11.3.2 loopProportional . 34

4.12 Framework/Controller/Examples/PControl.c File Reference . 34

4.13 Framework/Controller/Examples/SMCController.h File Reference 35

4.13.1 Detailed Description . 35

4.13.2 Enumeration Type Documentation . 35

4.13.2.1 SMC_Input . 35

4.13.2.2 SMC_Output . 35

4.13.2.3 SMC_Parameters . 36

4.13.2.4 SMC_States . 36

4.13.3 Function Documentation . 36

4.13.3.1 loopSMCController . 36

4.13.3.2 setSMCParameters . 36

4.14 Framework/Filter/Filter.h File Reference . 36

4.14.1 Macro Definition Documentation . 37

4.14.1.1 ORDER . 37

4.14.1.2 PARAMCOUNT . 37

4.14.2 Typedef Documentation . 37

4.14.2.1 Filter . 37

4.14.3 Function Documentation . 37

4.14.3.1 deleteFilter . 37

4.14.3.2 FilterAlg . 37

4.14.3.3 initFilter . 37

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

CONTENTS vii

4.15 Framework/Filter/FilterTemplate.c File Reference . 38

4.15.1 Macro Definition Documentation . 38

4.15.1.1 ORDER . 38

4.15.1.2 PARAMCOUNT . 38

4.15.2 Function Documentation . 38

4.15.2.1 deleteFilter . 38

4.15.2.2 FilterAlg . 38

4.15.2.3 initFilter . 38

4.15.3 Variable Documentation . 38

4.15.3.1 name . 38

4.15.3.2 P . 39

4.16 Framework/Kinematics/Examples/DeltaFWKinematics.h File Reference 39

4.16.1 Detailed Description . 39

4.16.2 Enumeration Type Documentation . 39

4.16.2.1 DeltaFWKinematicsInput . 39

4.16.2.2 DeltaFWKinematicsOutput . 40

4.16.2.3 DeltaFWKinematicsParameters . 40

4.16.3 Function Documentation . 40

4.16.3.1 loopDeltaFWKinematics . 40

4.16.4 Variable Documentation . 40

4.16.4.1 initFilter . 40

4.17 Framework/Kinematics/Kinematics.h File Reference . 41

4.17.1 Detailed Description . 41

4.17.2 Macro Definition Documentation . 41

4.17.2.1 KINEMATICSMAXIN . 41

4.17.2.2 KINEMATICSMAXOUT . 41

4.17.2.3 KINEMATICSMAXPARAMETERS . 41

4.17.2.4 KINEMATICSMAXSTATES . 41

4.17.3 Typedef Documentation . 42

4.17.3.1 Kinematics . 42

4.18 Framework/Kinematics/KinematicsTemplate.h File Reference . 42

4.18.1 Detailed Description . 42

4.18.2 Enumeration Type Documentation . 42

4.18.2.1 KinematicsInput . 42

4.18.2.2 KinematicsOutput . 43

4.18.2.3 KinematicsParameters . 43

4.18.2.4 KinematicsStates . 43

4.18.3 Function Documentation . 43

4.18.3.1 loopKinematics . 43

4.18.3.2 setKinematicsParameters . 43

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

viii CONTENTS

4.19 Framework/Mechanism/Examples/ConveyorMechanism.h File Reference 44

4.19.1 Detailed Description . 44

4.19.2 Enumeration Type Documentation . 44

4.19.2.1 ConveyorMechanismActuators . 44

4.19.2.2 ConveyorMechanismInputs . 45

4.19.2.3 ConveyorMechanismSensors . 45

4.19.2.4 ConveyorMechanismStates . 45

4.19.2.5 ConveyorStateMachineStates . 45

4.19.3 Function Documentation . 46

4.19.3.1 loopConveyorMechanism . 46

4.19.3.2 setConveyorMoveTo . 46

4.19.3.3 setupConveyor . 46

4.20 Framework/Mechanism/Mechanism.h File Reference . 46

4.20.1 Detailed Description . 47

4.20.2 Macro Definition Documentation . 47

4.20.2.1 MECHACTUATORS . 47

4.20.2.2 MECHAXES . 47

4.20.2.3 MECHINPUT . 47

4.20.2.4 MECHKINEMATICS . 47

4.20.2.5 MECHOUTPUT . 47

4.20.2.6 MECHPARAMETERS . 47

4.20.2.7 MECHSENSORS . 48

4.20.2.8 MECHSTATES . 48

4.20.3 Typedef Documentation . 48

4.20.3.1 Mechanism . 48

4.21 Framework/Mechanism/MechanismTemplate.h File Reference . 48

4.21.1 Detailed Description . 49

4.21.2 Enumeration Type Documentation . 49

4.21.2.1 MechanismParameters . 49

4.21.2.2 MechanismStateMachineStates . 49

4.21.2.3 MechanismStates . 49

4.21.3 Function Documentation . 49

4.21.3.1 loopMechanism . 49

4.21.4 Variable Documentation . 49

4.21.4.1 inactive . 49

4.21.4.2 initialize . 49

4.21.4.3 loop . 50

4.22 Framework/Sensor/Examples/ConveyorStation.h File Reference 50

4.22.1 Function Documentation . 50

4.22.1.1 readConveyorStation . 50

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

CONTENTS ix

4.22.1.2 removeConveyorStationSensor . 50

4.22.1.3 resetConveyorStationSensor . 50

4.22.1.4 setConveyorStationParameter . 50

4.23 Framework/Sensor/Sensor.h File Reference . 50

4.23.1 Detailed Description . 51

4.23.2 Macro Definition Documentation . 51

4.23.2.1 SENSMAXIN . 51

4.23.2.2 SENSMAXIO . 51

4.23.2.3 SENSMAXOUT . 51

4.23.2.4 SENSMAXPARAMETERS . 52

4.23.2.5 SENSMAXSTATES . 52

4.23.3 Typedef Documentation . 52

4.23.3.1 Sensor . 52

4.23.4 Function Documentation . 52

4.23.4.1 setupSensor . 52

4.23.5 Variable Documentation . 52

4.23.5.1 loopMechanism . 52

4.24 Framework/Sensor/SensorTemplate.h File Reference . 52

4.24.1 Function Documentation . 53

4.24.1.1 readSensor . 53

4.24.1.2 removeSensor . 53

4.24.1.3 resetSensor . 53

4.24.1.4 setSensorParameter . 53

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference . 53

4.25.1 Detailed Description . 54

4.25.2 Function Documentation . 54

4.25.2.1 deleteHardware . 54

4.25.2.2 getAnalogInput . 55

4.25.2.3 getDigitalInput . 55

4.25.2.4 getEncoder . 55

4.25.2.5 getEncoderInMetric . 55

4.25.2.6 getVelocity . 56

4.25.2.7 initAnalogInput . 56

4.25.2.8 initAnalogOutput . 56

4.25.2.9 initDigitalInput . 56

4.25.2.10 initDigitalOutput . 57

4.25.2.11 initEncoderMetricReader . 57

4.25.2.12 initEnocder . 57

4.25.2.13 initHardware . 58

4.25.2.14 initPWM . 58

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

x CONTENTS

4.25.2.15 initVelocityReader . 58

4.25.2.16 setAnalogOutput . 58

4.25.2.17 setDigitalOutput . 59

4.25.2.18 setEncoder . 59

4.25.2.19 setEncoderMetricReader . 59

4.25.2.20 setPWM . 60

4.26 Framework/Wrapper/HWWrapperTemplate.h File Reference . 60

4.26.1 Function Documentation . 61

4.26.1.1 deleteHardware . 61

4.26.1.2 getAnalogInput . 61

4.26.1.3 getDigitalInput . 61

4.26.1.4 getEncoder . 62

4.26.1.5 getEncoderInMetric . 62

4.26.1.6 getVelocity . 62

4.26.1.7 initAnalogInput . 63

4.26.1.8 initAnalogOutput . 63

4.26.1.9 initDigitalInput . 63

4.26.1.10 initDigitalOutput . 63

4.26.1.11 initEncoderMetricReader . 64

4.26.1.12 initEnocder . 64

4.26.1.13 initHardware . 64

4.26.1.14 initPWM . 64

4.26.1.15 initVelocityReader . 65

4.26.1.16 setAnalogOutput . 65

4.26.1.17 setDigitalOutput . 65

4.26.1.18 setEncoder . 66

4.26.1.19 setEncoderMetricReader . 66

4.26.1.20 setPWM . 66

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Actuator_
Actuator structure contains all the parameters states IO channels and function pointers to an
actuator structure . 5

Axis_ . 8
Controller_

Controller Structure contains the necessary data to run a controller. It is composed of four main
parts. Input and Output arrays are utilized to exchange data to and from the controller structure
during runtime. States of a controller contain the internal varying data and parameters of the
controller contain the values are used to tune the controller 10

Filter . 12
Filter_ . 13
inputCommunication . 13
Kinematcis_

Kinematics Structure contains the necessary data to run Kinematics. It is composed of four
main parts. Input and Output arrays are utilized to exchange data to and from the Kinematics
structure during runtime. States of Kinematics contain the internal varying data and parameters
of Kinematics contain the values that are used to configure the Kinematics structure 14

Mechanism_
Structure containing the data for an mechanism, including inputs, outputs, state machine state,
links to the actuators, sensors, axes, controllers plus, parameters and states for internal storage
of data . 16

outputCommunication . 17
Sensor_

Sensor structure contains all the parameters and states of the sesor. The sensor sturcutre
also contains the input and output channel numbers for a sensor along with function pointers to
functions of the sensor to initialize, read, reset and delete the sensor 18

2 Class Index

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

Framework/Actuator/Actuator.h
General definition of an actuator containing the data structures. An actuator structure Contains
the staes and parameters of an actuator along with the channel numbers for the IO’s. The
actuator structure also has function pointers to attach initialization, writing, removal, resetting
and parameter setting functions . 21

Framework/Actuator/ActuatorTemplate.h . 23
Framework/Actuator/Examples/ConveyorStopper.h . 24
Framework/Axis/Axis.h . 26
Framework/Axis/AxisTemplate.c . 28
Framework/Axis/Examples/AxisFaulhaberLinear.c . 28
Framework/Communication/Communication.h

This file defines the communication for the system . 29
Framework/Communication/CommunicationTemplate.h . 30
Framework/Controller/Controller.h

General definition of a controller containing the data structures 30
Framework/Controller/ControllerTemplate.h

This is a template file to generate a controller . 32
Framework/Controller/Examples/CengizController.h . 33
Framework/Controller/Examples/PControl.c . 34
Framework/Controller/Examples/SMCController.h

Implementation of the Sliding Mode Controller . 35
Framework/Filter/Filter.h . 36
Framework/Filter/FilterTemplate.c . 38
Framework/Kinematics/Kinematics.h

General definition of forward or reverse kinematics, containing the data structures 41
Framework/Kinematics/KinematicsTemplate.h

This is a template file to generate Kinematics structure . 42
Framework/Kinematics/Examples/DeltaFWKinematics.h

Implementation of the Delta Robot Kinematics . 39
Framework/Mechanism/Mechanism.h

General definition of an mechanism containing the data structures. This file contains the data
structure needed to create a mechanism. The data of a mechanism includes its states, its
parameters and other modules it utilizes, such as Actuators, Sensors, Axes. The mechanism
structure also has access to Kinematics, Controllers, Estimators and Observers 46

Framework/Mechanism/MechanismTemplate.h
This file is a template for the creation of a mechanism. The functions within must be fulfilled and
the state machine configured in order to provide functionnality to the mechanism 48

4 File Index

Framework/Mechanism/Examples/ConveyorMechanism.h
This file creates the conveyor mechanism that is utilized in a Micro Factory. The conveyor has 1
motor, 3 stoppers and 3 sensors to sense trays at the stopper locations 44

Framework/Sensor/Sensor.h
General definition of an sensor containing the data structures 50

Framework/Sensor/SensorTemplate.h . 52
Framework/Sensor/Examples/ConveyorStation.h . 50
Framework/Wrapper/HWWrapperTemplate.h . 60
Framework/Wrapper/Examples/HWWrapper.h

THis file is a dummy for test purposes and only printsout Header File For the Hardware Wrappers
of motion control projects This file is to be used as a template for the development of various
projects that involve hardware Objective is to create a standardized hardware functions that have
the same name in all projects . 53

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

Chapter 3

Class Documentation

3.1 Actuator Struct Reference

Actuator structure contains all the parameters states IO channels and function pointers to an actuator structure.

#include <Actuator.h>

Public Attributes

• char ∗ name

Name of the actuator.

• char ∗ units

String containing units of actuator to be used for reporting.

• double input [ACTMAXIN]

List of inputs to the actuator.

• double output [ACTMAXOUT]

List of outputs of the actuator.

• double state [ACTMAXSTATES]

States of the actuator, internal data that the actuator may need.

• double parameter [ACTMAXPARAMETERS]

Parameters of the actuator, may include coefficients of offsets.

• int outDIO [ACTMAXIO]

List of the digital output channels that the actuator may have.

• int inDIO [ACTMAXIO]

List of the digital input channels that the actuator may have.

• int inADC [ACTMAXIO]

List of the analog input channels that the actuator may have.

• int outDAC [ACTMAXIO]

List of the analog output channels that the actuator may have.

• int inENC [ACTMAXIO]

List of the encoder channels that the actuator may have.

• int(∗ init)(struct Actuator_ ∗d)

initialize the actuator

• int(∗ write)(struct Actuator_ ∗d, double value)

write to the actuator

• int(∗ remove)(struct Actuator_ ∗d)

remove actuator

• int(∗ reset)(struct Actuator_ ∗d)

6 Class Documentation

reset actuator

• int(∗ setParameter)(struct Actuator_ ∗d, int parameter, double value)

set a parameter of the actuator

3.1.1 Detailed Description

Actuator structure contains all the parameters states IO channels and function pointers to an actuator structure.

Definition at line 19 of file Actuator.h.

3.1.2 Member Data Documentation

3.1.2.1 int Actuator ::inADC[ACTMAXIO]

List of the analog input channels that the actuator may have.

Definition at line 32 of file Actuator.h.

3.1.2.2 int Actuator ::inDIO[ACTMAXIO]

List of the digital input channels that the actuator may have.

Definition at line 31 of file Actuator.h.

3.1.2.3 int Actuator ::inENC[ACTMAXIO]

List of the encoder channels that the actuator may have.

Definition at line 34 of file Actuator.h.

3.1.2.4 int(∗ Actuator ::init)(struct Actuator_ ∗d)

initialize the actuator

Function pointer to initialize the actuator Initialize the necessary inputs and outputs to be utilized for this actuators

Parameters
d pointer to the actuator structure

Returns

0 for success, -1 for error

Definition at line 43 of file Actuator.h.

3.1.2.5 double Actuator ::input[ACTMAXIN]

List of inputs to the actuator.

Definition at line 24 of file Actuator.h.

3.1.2.6 char∗ Actuator ::name

Name of the actuator.

Definition at line 21 of file Actuator.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.1 Actuator_ Struct Reference 7

3.1.2.7 int Actuator ::outDAC[ACTMAXIO]

List of the analog output channels that the actuator may have.

Definition at line 33 of file Actuator.h.

3.1.2.8 int Actuator ::outDIO[ACTMAXIO]

List of the digital output channels that the actuator may have.

Definition at line 30 of file Actuator.h.

3.1.2.9 double Actuator ::output[ACTMAXOUT]

List of outputs of the actuator.

Definition at line 25 of file Actuator.h.

3.1.2.10 double Actuator ::parameter[ACTMAXPARAMETERS]

Parameters of the actuator, may include coefficients of offsets.

Definition at line 28 of file Actuator.h.

3.1.2.11 int(∗ Actuator ::remove)(struct Actuator_ ∗d)

remove actuator

Function pointer to remove function of the actuator This function performs the necessary cleanup operations of the
actuator such as releasing any resources that have been taken up by the actuator, this function is called before the
end of the application or when the actuator is removed from the application

Parameters
d pointer to the actuator structure

Returns

0 for success, -1 for error

Definition at line 59 of file Actuator.h.

3.1.2.12 int(∗ Actuator ::reset)(struct Actuator_ ∗d)

reset actuator

Function pointer to reset the actuator This function performs the necessary operations to reset the actuator should
it be needed to reset

Parameters
d pointer to the actuator structure

Returns

0 for success, -1 for error

Definition at line 66 of file Actuator.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

8 Class Documentation

3.1.2.13 int(∗ Actuator ::setParameter)(struct Actuator_ ∗d, int parameter, double value)

set a parameter of the actuator

Function pointer to set parameters of the actuator This function is used to set the parameters of the actuator

Parameters
d pointer to the actuator structure

parame-
ter,number

of the parameter ID to be written to the actuator

value to be written to the parameter, parameters may be offsets or coefficients to be utilized in the
actuator

Returns

0 for success, -1 for error

Definition at line 75 of file Actuator.h.

3.1.2.14 double Actuator ::state[ACTMAXSTATES]

States of the actuator, internal data that the actuator may need.

Definition at line 27 of file Actuator.h.

3.1.2.15 char∗ Actuator ::units

String containing units of actuator to be used for reporting.

Definition at line 22 of file Actuator.h.

3.1.2.16 int(∗ Actuator ::write)(struct Actuator_ ∗d, double value)

write to the actuator

Function pointer to write to the actuator This function performs the necessary conversions and outputs to the IO
cards to fulfill the actuators function

Parameters
d pointer to the actuator structure

value to be written to the actuator, the units of the value are stored in the unit field of the actuator
structure

Returns

0 for success, -1 for error

Definition at line 52 of file Actuator.h.

The documentation for this struct was generated from the following file:

• Framework/Actuator/Actuator.h

3.2 Axis Struct Reference

#include <Axis.h>

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.2 Axis_ Struct Reference 9

Public Attributes

• char ∗ name
• Sensor Sensors [AXISSENSORNUM]

• Actuator Actuators [AXISACTUATORNUM]

• Filter Filters [AXISFILTERNUM]

• Controller Controllers [AXISCONTROLLERNUM]

• double input [AXISINPUTNUM]

• double output [AXISOUTPUTNUM]

• double parameter [AXISPARAMTERNUM]

Parameters of the Mechanism, used to configure the Mechanism.

• double state [AXISSTATENUM]

States of the Mechanism, used to store internal data of the Mechanism.

• int enable
• int(∗ init)(struct Axis_ ∗a)

• int(∗ step)(struct Axis_ ∗a, double reference)

• int(∗ remove)(struct Axis_ ∗a)

• int(∗ reset)(struct Axis_ ∗a)

3.2.1 Detailed Description

Definition at line 23 of file Axis.h.

3.2.2 Member Data Documentation

3.2.2.1 Actuator Axis ::Actuators[AXISACTUATORNUM]

Definition at line 28 of file Axis.h.

3.2.2.2 Controller Axis ::Controllers[AXISCONTROLLERNUM]

Definition at line 31 of file Axis.h.

3.2.2.3 int Axis ::enable

Definition at line 41 of file Axis.h.

3.2.2.4 Filter Axis ::Filters[AXISFILTERNUM]

Definition at line 29 of file Axis.h.

3.2.2.5 int(∗ Axis ::init)(struct Axis_ ∗a)

Definition at line 43 of file Axis.h.

3.2.2.6 double Axis ::input[AXISINPUTNUM]

Definition at line 34 of file Axis.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

10 Class Documentation

3.2.2.7 char∗ Axis ::name

Definition at line 25 of file Axis.h.

3.2.2.8 double Axis ::output[AXISOUTPUTNUM]

Definition at line 35 of file Axis.h.

3.2.2.9 double Axis ::parameter[AXISPARAMTERNUM]

Parameters of the Mechanism, used to configure the Mechanism.

Definition at line 37 of file Axis.h.

3.2.2.10 int(∗ Axis ::remove)(struct Axis_ ∗a)

Definition at line 45 of file Axis.h.

3.2.2.11 int(∗ Axis ::reset)(struct Axis_ ∗a)

Definition at line 46 of file Axis.h.

3.2.2.12 Sensor Axis ::Sensors[AXISSENSORNUM]

Definition at line 27 of file Axis.h.

3.2.2.13 double Axis ::state[AXISSTATENUM]

States of the Mechanism, used to store internal data of the Mechanism.

Definition at line 38 of file Axis.h.

3.2.2.14 int(∗ Axis ::step)(struct Axis_ ∗a, double reference)

Definition at line 44 of file Axis.h.

The documentation for this struct was generated from the following file:

• Framework/Axis/Axis.h

3.3 Controller Struct Reference

Controller Structure contains the necessary data to run a controller. It is composed of four main parts. Input and
Output arrays are utilized to exchange data to and from the controller structure during runtime. States of a controller
contain the internal varying data and parameters of the controller contain the values are used to tune the controller.

#include <Controller.h>

Public Attributes

• int linked

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.3 Controller_ Struct Reference 11

parameter to define if a controller works under linked mode or normal mode, in normal mode, the control algorithm
receives its inputs directly from its input array whereas in linked mode, the input array’s pointers are directed to other
parameters in a system and the controller can gather its data from outside.

• double input [CONTROLLERMAXIN]

List of inputs to the controller.

• double ∗ input_p [CONTROLLERMAXIN]

List of inputs in pointer format to directly add references.

• double output [CONTROLLERMAXOUT]

List of outputs of the controller.

• double state [CONTROLLERMAXSTATES]

States of the controller, internal data that the actuator may need.

• double parameter [CONTROLLERMAXPARAMETERS]

Parameters of the controller, may include coefficients or offsets.

• void(∗ loopController)(struct Controller_ ∗c)

This function is the algorithm of the controller, it is set by hihger level structures to run once per loop. Every different
algorithm using the Controller structure must provide a loop function.

3.3.1 Detailed Description

Controller Structure contains the necessary data to run a controller. It is composed of four main parts. Input and
Output arrays are utilized to exchange data to and from the controller structure during runtime. States of a controller
contain the internal varying data and parameters of the controller contain the values are used to tune the controller.

Definition at line 18 of file Controller.h.

3.3.2 Member Data Documentation

3.3.2.1 double Controller ::input[CONTROLLERMAXIN]

List of inputs to the controller.

Definition at line 22 of file Controller.h.

3.3.2.2 double∗ Controller ::input p[CONTROLLERMAXIN]

List of inputs in pointer format to directly add references.

Definition at line 24 of file Controller.h.

3.3.2.3 int Controller ::linked

parameter to define if a controller works under linked mode or normal mode, in normal mode, the control algorithm
receives its inputs directly from its input array whereas in linked mode, the input array’s pointers are directed to other
parameters in a system and the controller can gather its data from outside.

Definition at line 20 of file Controller.h.

3.3.2.4 void(∗ Controller ::loopController)(struct Controller_ ∗c)

This function is the algorithm of the controller, it is set by hihger level structures to run once per loop. Every different
algorithm using the Controller structure must provide a loop function.

this is the function pointer to the algorithm of the controller

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

12 Class Documentation

Parameters
c is a pointer to the Controller structure that contains the inputs, outputs, states and parameters

of the controller

Returns

Function does not have a return value, the controller outputs are stored int the output array.

Definition at line 38 of file Controller.h.

3.3.2.5 double Controller ::output[CONTROLLERMAXOUT]

List of outputs of the controller.

Definition at line 26 of file Controller.h.

3.3.2.6 double Controller ::parameter[CONTROLLERMAXPARAMETERS]

Parameters of the controller, may include coefficients or offsets.

Definition at line 29 of file Controller.h.

3.3.2.7 double Controller ::state[CONTROLLERMAXSTATES]

States of the controller, internal data that the actuator may need.

Definition at line 28 of file Controller.h.

The documentation for this struct was generated from the following file:

• Framework/Controller/Controller.h

3.4 Filter Struct Reference

Public Attributes

• string name

• double P [PARAMCOUNT]

3.4.1 Detailed Description

Definition at line 13 of file FilterTemplate.c.

3.4.2 Member Data Documentation

3.4.2.1 string Filter::name

Definition at line 14 of file FilterTemplate.c.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.5 Filter_ Struct Reference 13

3.4.2.2 double Filter::P[PARAMCOUNT]

Definition at line 15 of file FilterTemplate.c.

The documentation for this struct was generated from the following file:

• Framework/Filter/FilterTemplate.c

3.5 Filter Struct Reference

#include <Filter.h>

Public Attributes

• char ∗ name

• double P [PARAMCOUNT]

3.5.1 Detailed Description

Definition at line 16 of file Filter.h.

3.5.2 Member Data Documentation

3.5.2.1 char∗ Filter ::name

Definition at line 17 of file Filter.h.

3.5.2.2 double Filter ::P[PARAMCOUNT]

Definition at line 18 of file Filter.h.

The documentation for this struct was generated from the following file:

• Framework/Filter/Filter.h

3.6 inputCommunication Struct Reference

#include <CommunicationTemplate.h>

Public Attributes

• double ConveyorSpeed

• int ConveyorStation

3.6.1 Detailed Description

Definition at line 4 of file CommunicationTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

14 Class Documentation

3.6.2 Member Data Documentation

3.6.2.1 double inputCommunication::ConveyorSpeed

Definition at line 5 of file CommunicationTemplate.h.

3.6.2.2 int inputCommunication::ConveyorStation

Definition at line 6 of file CommunicationTemplate.h.

The documentation for this struct was generated from the following file:

• Framework/Communication/CommunicationTemplate.h

3.7 Kinematcis Struct Reference

Kinematics Structure contains the necessary data to run Kinematics. It is composed of four main parts. Input
and Output arrays are utilized to exchange data to and from the Kinematics structure during runtime. States of
Kinematics contain the internal varying data and parameters of Kinematics contain the values that are used to
configure the Kinematics structure.

#include <Kinematics.h>

Public Attributes

• int linked

parameter to define if kinematics works under linked mode or normal mode, in normal mode, the control algorithm
receives its inputs directly from its input array whereas in linked mode, the input array’s pointers are directed to other
parameters in a system and the Kinematics can gather its data from outside.

• double input [KINEMATICSMAXIN]

List of inputs to the Kinematics function.

• double ∗ input_p [KINEMATICSMAXIN]

List of inputs in pointer format to directly add references.

• double output [KINEMATICSMAXOUT]

List of outputs of the Kinematics function.

• double state [KINEMATICSMAXSTATES]

States of the Kinematics funtion, internal data that the kinematics function may need.

• double parameter [KINEMATICSMAXPARAMETERS]

Parameters of the Kinematics, may include coefficients or offsets.

• void(∗ loopFWKinematics)(struct Kinematics_ ∗k)

This function is the algorithm of the forward Kinematics, it is set by hihger level structures to run once per loop. Every
different algorithm using the Kinematics structure must provide a loop function.

3.7.1 Detailed Description

Kinematics Structure contains the necessary data to run Kinematics. It is composed of four main parts. Input
and Output arrays are utilized to exchange data to and from the Kinematics structure during runtime. States of
Kinematics contain the internal varying data and parameters of Kinematics contain the values that are used to
configure the Kinematics structure.

Definition at line 18 of file Kinematics.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.7 Kinematcis_ Struct Reference 15

3.7.2 Member Data Documentation

3.7.2.1 double Kinematcis ::input[KINEMATICSMAXIN]

List of inputs to the Kinematics function.

Definition at line 22 of file Kinematics.h.

3.7.2.2 double∗ Kinematcis ::input p[KINEMATICSMAXIN]

List of inputs in pointer format to directly add references.

Definition at line 24 of file Kinematics.h.

3.7.2.3 int Kinematcis ::linked

parameter to define if kinematics works under linked mode or normal mode, in normal mode, the control algorithm
receives its inputs directly from its input array whereas in linked mode, the input array’s pointers are directed to other
parameters in a system and the Kinematics can gather its data from outside.

Definition at line 20 of file Kinematics.h.

3.7.2.4 void(∗ Kinematcis ::loopFWKinematics)(struct Kinematics ∗k)

This function is the algorithm of the forward Kinematics, it is set by hihger level structures to run once per loop.
Every different algorithm using the Kinematics structure must provide a loop function.

this is the function pointer to the algorithm of the Kinematics

Parameters
c is a pointer to the Kinematics structure that contains the inputs, outputs, states and parameters

of the Kinematics function

Returns

Function does not have a return value, the Kinematics outputs are stored int the output array.

Definition at line 38 of file Kinematics.h.

3.7.2.5 double Kinematcis ::output[KINEMATICSMAXOUT]

List of outputs of the Kinematics function.

Definition at line 26 of file Kinematics.h.

3.7.2.6 double Kinematcis ::parameter[KINEMATICSMAXPARAMETERS]

Parameters of the Kinematics, may include coefficients or offsets.

Definition at line 29 of file Kinematics.h.

3.7.2.7 double Kinematcis ::state[KINEMATICSMAXSTATES]

States of the Kinematics funtion, internal data that the kinematics function may need.

Definition at line 28 of file Kinematics.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

16 Class Documentation

The documentation for this struct was generated from the following file:

• Framework/Kinematics/Kinematics.h

3.8 Mechanism Struct Reference

Structure containing the data for an mechanism, including inputs, outputs, state machine state, links to the actuators,
sensors, axes, controllers plus, parameters and states for internal storage of data.

#include <Mechanism.h>

Public Attributes

• char ∗ name

name of the actuator
• int StateMachine

state machine status of the mechanism
• double input [MECHINPUT]
• double output [MECHOUTPUT]
• double parameter [MECHPARAMETERS]

Parameters of the Mechanism, used to configure the Mechanism.
• double state [MECHSTATES]

States of the Mechanism, used to store internal data of the Mechanism.
• Actuator Actuators [MECHACTUATORS]
• Sensor Sensors [MECHSENSORS]
• Axis Axes [MECHAXES]
• int(∗ loopMechanism)(struct Mechanism_ ∗M)

3.8.1 Detailed Description

Structure containing the data for an mechanism, including inputs, outputs, state machine state, links to the actuators,
sensors, axes, controllers plus, parameters and states for internal storage of data.

Definition at line 26 of file Mechanism.h.

3.8.2 Member Data Documentation

3.8.2.1 Actuator Mechanism ::Actuators[MECHACTUATORS]

Definition at line 40 of file Mechanism.h.

3.8.2.2 Axis Mechanism ::Axes[MECHAXES]

Definition at line 43 of file Mechanism.h.

3.8.2.3 double Mechanism ::input[MECHINPUT]

Definition at line 32 of file Mechanism.h.

3.8.2.4 int(∗ Mechanism ::loopMechanism)(struct Mechanism_ ∗M)

Definition at line 49 of file Mechanism.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.9 outputCommunication Struct Reference 17

3.8.2.5 char∗ Mechanism ::name

name of the actuator

Definition at line 28 of file Mechanism.h.

3.8.2.6 double Mechanism ::output[MECHOUTPUT]

Definition at line 33 of file Mechanism.h.

3.8.2.7 double Mechanism ::parameter[MECHPARAMETERS]

Parameters of the Mechanism, used to configure the Mechanism.

Definition at line 35 of file Mechanism.h.

3.8.2.8 Sensor Mechanism ::Sensors[MECHSENSORS]

Definition at line 41 of file Mechanism.h.

3.8.2.9 double Mechanism ::state[MECHSTATES]

States of the Mechanism, used to store internal data of the Mechanism.

Definition at line 36 of file Mechanism.h.

3.8.2.10 int Mechanism ::StateMachine

state machine status of the mechanism

Definition at line 30 of file Mechanism.h.

The documentation for this struct was generated from the following file:

• Framework/Mechanism/Mechanism.h

3.9 outputCommunication Struct Reference

#include <CommunicationTemplate.h>

Public Attributes

• int x

3.9.1 Detailed Description

Definition at line 12 of file CommunicationTemplate.h.

3.9.2 Member Data Documentation

3.9.2.1 int outputCommunication::x

Definition at line 13 of file CommunicationTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

18 Class Documentation

The documentation for this struct was generated from the following file:

• Framework/Communication/CommunicationTemplate.h

3.10 Sensor Struct Reference

Sensor structure contains all the parameters and states of the sesor. The sensor sturcutre also contains the input
and output channel numbers for a sensor along with function pointers to functions of the sensor to initialize, read,
reset and delete the sensor.

#include <Sensor.h>

Public Attributes

• char ∗ name

String representing the name of the sensor.

• char ∗ unit

String containing the units of the sensor.

• int outDIO [SENSMAXIO]

List of the digital output channels that the sensor may have.

• int inDIO [SENSMAXIO]

List of the digital input channels that the sensor may have.

• int inADC [SENSMAXIO]

List of the analog input channels that the sensor may have.

• int outDAC [SENSMAXIO]

List of the analog output channels that the sensor may have.

• int inENC [SENSMAXIO]

List of the encoder channels that the sensor may have.

• double inputs double state [SENSMAXSTATES]

States of the sensor, internal data to keep log of values or other necessary information on a sensor.

• double parameter [SENSMAXPARAMETERS]

Parameters of the sensor, may include coefficients of offsets.

• double(∗ read)(struct Sensor_ ∗s)

Function pointer to the function that will perform reading a sensor.

• int(∗ setParameter)(struct Sensor_ ∗s, int parameter, double value)

Function pointer to the function that will set a parameter of the sensor. This function is used to set the different
parameters of a sensor.

• int(∗ reset)(struct Sensor_ ∗s)

Function pointer to the function that will reset a sensor. May be used in case of sensor errors.

• int(∗ remove)(struct Sensor_ ∗s)

Function pointer to the function that removes a sensor. This function is called when the application is shutting down
or when the sensor is no longer needed and is removed.

3.10.1 Detailed Description

Sensor structure contains all the parameters and states of the sesor. The sensor sturcutre also contains the input
and output channel numbers for a sensor along with function pointers to functions of the sensor to initialize, read,
reset and delete the sensor.

Definition at line 22 of file Sensor.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

3.10 Sensor_ Struct Reference 19

3.10.2 Member Data Documentation

3.10.2.1 int Sensor ::inADC[SENSMAXIO]

List of the analog input channels that the sensor may have.

Definition at line 29 of file Sensor.h.

3.10.2.2 int Sensor ::inDIO[SENSMAXIO]

List of the digital input channels that the sensor may have.

Definition at line 28 of file Sensor.h.

3.10.2.3 int Sensor ::inENC[SENSMAXIO]

List of the encoder channels that the sensor may have.

Definition at line 31 of file Sensor.h.

3.10.2.4 char∗ Sensor ::name

String representing the name of the sensor.

Definition at line 24 of file Sensor.h.

3.10.2.5 int Sensor ::outDAC[SENSMAXIO]

List of the analog output channels that the sensor may have.

Definition at line 30 of file Sensor.h.

3.10.2.6 int Sensor ::outDIO[SENSMAXIO]

List of the digital output channels that the sensor may have.

Definition at line 27 of file Sensor.h.

3.10.2.7 double Sensor ::parameter[SENSMAXPARAMETERS]

Parameters of the sensor, may include coefficients of offsets.

Definition at line 36 of file Sensor.h.

3.10.2.8 double(∗ Sensor ::read)(struct Sensor_ ∗s)

Function pointer to the function that will perform reading a sensor.

Definition at line 38 of file Sensor.h.

3.10.2.9 int(∗ Sensor ::remove)(struct Sensor_ ∗s)

Function pointer to the function that removes a sensor. This function is called when the application is shutting down
or when the sensor is no longer needed and is removed.

Definition at line 42 of file Sensor.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

20 Class Documentation

3.10.2.10 int(∗ Sensor ::reset)(struct Sensor_ ∗s)

Function pointer to the function that will reset a sensor. May be used in case of sensor errors.

Definition at line 41 of file Sensor.h.

3.10.2.11 int(∗ Sensor ::setParameter)(struct Sensor_ ∗s, int parameter, double value)

Function pointer to the function that will set a parameter of the sensor. This function is used to set the different
parameters of a sensor.

Definition at line 39 of file Sensor.h.

3.10.2.12 double inputs double Sensor ::state[SENSMAXSTATES]

States of the sensor, internal data to keep log of values or other necessary information on a sensor.

Definition at line 35 of file Sensor.h.

3.10.2.13 char∗ Sensor ::unit

String containing the units of the sensor.

Definition at line 25 of file Sensor.h.

The documentation for this struct was generated from the following file:

• Framework/Sensor/Sensor.h

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

Chapter 4

File Documentation

4.1 Framework/Actuator/Actuator.h File Reference

General definition of an actuator containing the data structures. An actuator structure Contains the staes and
parameters of an actuator along with the channel numbers for the IO’s. The actuator structure also has function
pointers to attach initialization, writing, removal, resetting and parameter setting functions.

Classes

• struct Actuator_

Actuator structure contains all the parameters states IO channels and function pointers to an actuator structure.

Macros

• #define ACTMAXIO 3

Defines the number of maximum different types input or output IO channel access by a single actuator.

• #define ACTMAXIN 3

Defines the maximum number of inputs all actuators may have.

• #define ACTMAXOUT 3

Defines the maximum number of outputs all actuators may have.

• #define ACTMAXSTATES 5

Define the maximum number of states that all actuator may have.

• #define ACTMAXPARAMETERS 4

Define the maximum number of parameters that all actuators may have.

Typedefs

• typedef struct Actuator_ Actuator

Functions

• int setupActuator (Actuator ∗d, char ∗name, char ∗units, int(∗init)(Actuator ∗d), int(∗write)(Actuator ∗d,
double value), int(∗remove)(Actuator ∗d), int(∗reset)(Actuator ∗d), int(∗setParameter)(Actuator ∗d, int pa-
rameter, double value))

setup actuator

22 File Documentation

4.1.1 Detailed Description

General definition of an actuator containing the data structures. An actuator structure Contains the staes and
parameters of an actuator along with the channel numbers for the IO’s. The actuator structure also has function
pointers to attach initialization, writing, removal, resetting and parameter setting functions.

Definition in file Actuator.h.

4.1.2 Macro Definition Documentation

4.1.2.1 #define ACTMAXIN 3

Defines the maximum number of inputs all actuators may have.

Definition at line 11 of file Actuator.h.

4.1.2.2 #define ACTMAXIO 3

Defines the number of maximum different types input or output IO channel access by a single actuator.

Definition at line 10 of file Actuator.h.

4.1.2.3 #define ACTMAXOUT 3

Defines the maximum number of outputs all actuators may have.

Definition at line 12 of file Actuator.h.

4.1.2.4 #define ACTMAXPARAMETERS 4

Define the maximum number of parameters that all actuators may have.

Definition at line 14 of file Actuator.h.

4.1.2.5 #define ACTMAXSTATES 5

Define the maximum number of states that all actuator may have.

Definition at line 13 of file Actuator.h.

4.1.3 Typedef Documentation

4.1.3.1 typedef struct Actuator_ Actuator

Definition at line 79 of file Actuator.h.

4.1.4 Function Documentation

4.1.4.1 int setupActuator (Actuator ∗ d, char ∗ name, char ∗ units, int(∗)(Actuator ∗d) init, int(∗)(Actuator ∗d, double
value) write, int(∗)(Actuator ∗d) remove, int(∗)(Actuator ∗d) reset, int(∗)(Actuator ∗d, int parameter, double value)
setParameter)

setup actuator

Function to setup the actuator This function is used to setup the fields of the actuator structure

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.2 Framework/Actuator/ActuatorTemplate.h File Reference 23

Parameters
d pointer to the actuator structure

name contains name of the actuator as a string
units contains the units of the actuator as a string

init funtion pointer to the function to initialize the actuator
write function pointer to the function to write to the actuator

remove function pointer to the function to remove or delete the actuator
reset function pointer to the function to reset the actuator

setParameter function pointer to the function to set the parameters of the actuator

Returns

0 for success, -1 for error

Definition at line 94 of file Actuator.h.

4.2 Framework/Actuator/ActuatorTemplate.h File Reference

#include "Actuator.h"
#include "HWWrapper.h"

Functions

• int initActuator (Actuator ∗d)

Add access to the IO cards of the system.

• int writeActuator (Actuator ∗d, double value)
• int removeActuator (Actuator ∗d)
• int resetActuator (Actuator ∗d)
• int setActuatorParameter (Actuator ∗d, int parameter, double value)

4.2.1 Function Documentation

4.2.1.1 int initActuator (Actuator ∗ d)

Add access to the IO cards of the system.

To Enable the functions of an actuator these parts should be filled Initializes the actuator.

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Write initialization code for the actuator

Definition at line 18 of file ActuatorTemplate.h.

4.2.1.2 int removeActuator (Actuator ∗ d)

Removes resources allocated to the acutator if they exist.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

24 File Documentation

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Remove resources here

Definition at line 43 of file ActuatorTemplate.h.

4.2.1.3 int resetActuator (Actuator ∗ d)

Reset the actuator

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Reset the actuator, utilized in case of an error. Offsets may be initialized here

Definition at line 52 of file ActuatorTemplate.h.

4.2.1.4 int setActuatorParameter (Actuator ∗ d, int parameter, double value)

Sets the offset for the actuator.

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Definition at line 62 of file ActuatorTemplate.h.

4.2.1.5 int writeActuator (Actuator ∗ d, double value)

Makes the Actuator write its output to its output medium. This funciton outputs to the IO cards, the wrapper template
must be included in the project beforehand

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

value value to be output to the io card

Scale the input value and output it to the IO card

Perform necessary conversions

Definition at line 32 of file ActuatorTemplate.h.

4.3 Framework/Actuator/Examples/ConveyorStopper.h File Reference

#include "Actuator.h"
#include "HWWrapper.h"

Functions

• int initConveyorStopper (Actuator ∗d)
• int writeConveyorStopper (Actuator ∗d, double value)
• int removeConveyorStopper (Actuator ∗d)

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.3 Framework/Actuator/Examples/ConveyorStopper.h File Reference 25

• int resetConveyorStopper (Actuator ∗d)
• int setConveyorStopperParameter (Actuator ∗d, int parameter, double value)

4.3.1 Detailed Description

This file is the implementation of the solenoid actuator to stop trays at the positions of a conveyor. Any solenoids
may be implemented as actuators using this file

Definition in file ConveyorStopper.h.

4.3.2 Function Documentation

4.3.2.1 int initConveyorStopper (Actuator ∗ d)

Addition of the actuator header file Add access to the IO cards of the system Initializes the Stopper.

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Write initialization code for the actuator

Definition at line 17 of file ConveyorStopper.h.

4.3.2.2 int removeConveyorStopper (Actuator ∗ d)

Removes resources allocated to the acutator if they exist.

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

No resources to be remvoed

Definition at line 45 of file ConveyorStopper.h.

4.3.2.3 int resetConveyorStopper (Actuator ∗ d)

Reset the actuator

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

Conveyor stoppers do not have a reset so simply the output is set to low

Definition at line 54 of file ConveyorStopper.h.

4.3.2.4 int setConveyorStopperParameter (Actuator ∗ d, int parameter, double value)

Sets a parameter of the conveyor stopper.

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

The conveyor stopper does not have a value

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

26 File Documentation

Definition at line 64 of file ConveyorStopper.h.

4.3.2.5 int writeConveyorStopper (Actuator ∗ d, double value)

Makes the Actuator write its output to its output medium. This funciton outputs to the IO cards, the wrapper template
must be included in the project beforehand

Parameters
d pointer to an actuator structure as defined in Actuator.h (p. 21)

value value to be output to the io card

Scale the input value and output it to the IO card

Perform necessary conversions

Definition at line 29 of file ConveyorStopper.h.

4.4 Framework/Axis/Axis.h File Reference

#include "Actuator.h"
#include "Sensor.h"
#include "Filter.h"
#include "Controller.h"

Classes

• struct Axis_

Macros

• #define AXISSENSORNUM 1

• #define AXISACTUATORNUM 1

• #define AXISFILTERNUM 1

• #define AXISOBSERVERNUM 1

• #define AXISCONTROLLERNUM 1

• #define AXISPARAMTERNUM 10

• #define AXISSTATENUM 5

• #define AXISINPUTNUM 6

• #define AXISOUTPUTNUM 6

Typedefs

• typedef struct Axis_ Axis

Functions

• int setupAxis (Axis ∗a, char ∗name, int(∗init)(struct Axis_ ∗a), int(∗step)(struct Axis_ ∗a, double reference),
int(∗remove)(struct Axis_ ∗a), int(∗reset)(struct Axis_ ∗a))

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.4 Framework/Axis/Axis.h File Reference 27

4.4.1 Macro Definition Documentation

4.4.1.1 #define AXISACTUATORNUM 1

Definition at line 13 of file Axis.h.

4.4.1.2 #define AXISCONTROLLERNUM 1

Definition at line 16 of file Axis.h.

4.4.1.3 #define AXISFILTERNUM 1

Definition at line 14 of file Axis.h.

4.4.1.4 #define AXISINPUTNUM 6

Definition at line 19 of file Axis.h.

4.4.1.5 #define AXISOBSERVERNUM 1

Definition at line 15 of file Axis.h.

4.4.1.6 #define AXISOUTPUTNUM 6

Definition at line 20 of file Axis.h.

4.4.1.7 #define AXISPARAMTERNUM 10

Definition at line 17 of file Axis.h.

4.4.1.8 #define AXISSENSORNUM 1

Definition at line 12 of file Axis.h.

4.4.1.9 #define AXISSTATENUM 5

Definition at line 18 of file Axis.h.

4.4.2 Typedef Documentation

4.4.2.1 typedef struct Axis_ Axis

Definition at line 51 of file Axis.h.

4.4.3 Function Documentation

4.4.3.1 int setupAxis (Axis ∗ a, char ∗ name, int(∗)(struct Axis_ ∗a) init, int(∗)(struct Axis_ ∗a, double reference) step,
int(∗)(struct Axis_ ∗a) remove, int(∗)(struct Axis_ ∗a) reset)

Definition at line 53 of file Axis.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

28 File Documentation

4.5 Framework/Axis/AxisTemplate.c File Reference

#include "Axis.h"

Functions

• int removeAxis (struct Axis_ ∗a)

• int resetAxis (struct Axis_ ∗a)

• int initAxis (Axis ∗A)

• int stepAxis (Axis ∗A, double ref)

4.5.1 Function Documentation

4.5.1.1 int initAxis (Axis ∗ A)

Definition at line 12 of file AxisTemplate.c.

4.5.1.2 int removeAxis (struct Axis_ ∗ a)

Definition at line 7 of file AxisTemplate.c.

4.5.1.3 int resetAxis (struct Axis_ ∗ a)

Definition at line 9 of file AxisTemplate.c.

4.5.1.4 int stepAxis (Axis ∗ A, double ref)

Definition at line 18 of file AxisTemplate.c.

4.6 Framework/Axis/Examples/AxisFaulhaberLinear.c File Reference

#include "Axis.h"

Functions

• int removeAxis (Axis ∗a)

• int resetAxis (Axis ∗a)

• int initAxis (Axis ∗A)

• int stepAxis (Axis ∗A, double ref)

4.6.1 Function Documentation

4.6.1.1 int initAxis (Axis ∗ A)

Definition at line 12 of file AxisFaulhaberLinear.c.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.7 Framework/Communication/Communication.h File Reference 29

4.6.1.2 int removeAxis (Axis ∗ a)

Definition at line 7 of file AxisFaulhaberLinear.c.

4.6.1.3 int resetAxis (Axis ∗ a)

Definition at line 9 of file AxisFaulhaberLinear.c.

4.6.1.4 int stepAxis (Axis ∗ A, double ref)

Definition at line 18 of file AxisFaulhaberLinear.c.

4.7 Framework/Communication/Communication.h File Reference

This file defines the communication for the system.

Functions

• int InputCommunication ()

• int OutputCommunication ()

• int send (int ID, void ∗data, int size)

• int receive (int ID, void ∗data, int size)

4.7.1 Detailed Description

This file defines the communication for the system.

Definition in file Communication.h.

4.7.2 Function Documentation

4.7.2.1 int InputCommunication ()

Definition at line 20 of file CommunicationTemplate.h.

4.7.2.2 int OutputCommunication ()

Definition at line 35 of file CommunicationTemplate.h.

4.7.2.3 int receive (int ID, void ∗ data, int size)

Definition at line 47 of file CommunicationTemplate.h.

4.7.2.4 int send (int ID, void ∗ data, int size)

Definition at line 43 of file CommunicationTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

30 File Documentation

4.8 Framework/Communication/CommunicationTemplate.h File Reference

Classes

• struct inputCommunication

• struct outputCommunication

Functions

• int InputCommunication ()

• int OutputCommunication ()

• int send (int ID, void ∗data, int size)

• int receive (int ID, void ∗data, int size)

Variables

• struct inputCommunication inCommunication

• struct outputCommunication outCommunication

4.8.1 Function Documentation

4.8.1.1 int InputCommunication ()

Definition at line 20 of file CommunicationTemplate.h.

4.8.1.2 int OutputCommunication ()

Definition at line 35 of file CommunicationTemplate.h.

4.8.1.3 int receive (int ID, void ∗ data, int size)

Definition at line 47 of file CommunicationTemplate.h.

4.8.1.4 int send (int ID, void ∗ data, int size)

Definition at line 43 of file CommunicationTemplate.h.

4.8.2 Variable Documentation

4.8.2.1 struct inputCommunication inCommunication

4.8.2.2 struct outputCommunication outCommunication

4.9 Framework/Controller/Controller.h File Reference

General definition of a controller containing the data structures.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.9 Framework/Controller/Controller.h File Reference 31

Classes

• struct Controller_

Controller Structure contains the necessary data to run a controller. It is composed of four main parts. Input and
Output arrays are utilized to exchange data to and from the controller structure during runtime. States of a controller
contain the internal varying data and parameters of the controller contain the values are used to tune the controller.

Macros

• #define CONTROLLERMAXPARAMETERS 10

• #define CONTROLLERMAXSTATES 10

• #define CONTROLLERMAXIN 10

• #define CONTROLLERMAXOUT 10

Typedefs

• typedef struct Controller_ Controller

4.9.1 Detailed Description

General definition of a controller containing the data structures. A controller structure contains the states and
parameters a controller. The controller structure also has a function pointer to attach an algorithm loop function that
is executed in every loop.

Definition in file Controller.h.

4.9.2 Macro Definition Documentation

4.9.2.1 #define CONTROLLERMAXIN 10

Definition at line 14 of file Controller.h.

4.9.2.2 #define CONTROLLERMAXOUT 10

Definition at line 15 of file Controller.h.

4.9.2.3 #define CONTROLLERMAXPARAMETERS 10

Definition at line 11 of file Controller.h.

4.9.2.4 #define CONTROLLERMAXSTATES 10

Definition at line 12 of file Controller.h.

4.9.3 Typedef Documentation

4.9.3.1 typedef struct Controller_ Controller

Definition at line 41 of file Controller.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

32 File Documentation

4.10 Framework/Controller/ControllerTemplate.h File Reference

This is a template file to generate a controller.

#include "Controller.h"

Enumerations

• enum ControllerParameters { parameter1, parameter2 }

Prefix Use a 3 letter prefix for the customizations.

• enum ControllerStates { SMC_error_old, SMC_sigma_old, SMC_u_old }

Controller states, used to store data between iterations of the loop to obtain derivative values.

• enum ControllerInput { reference, position }

Inputs to the control function.

• enum ControllerOutput { u }

Outputs of the control algorithm.

Functions

• void loopController (Controller ∗c)
• void setControllerParameters (Controller ∗c)

Set controllers parameters and time constant. Parameters may be configured with a separate function.

4.10.1 Detailed Description

This is a template file to generate a controller. A controller is implemented in this file. The Controller is based around
the Controller structure, int receives its inputs from the input array and it writes its outputs to the output array. The
states of the controller c∗
Definition in file ControllerTemplate.h.

4.10.2 Enumeration Type Documentation

4.10.2.1 enum ControllerInput

Inputs to the control function.

Enumerator:

reference

position

Definition at line 26 of file ControllerTemplate.h.

4.10.2.2 enum ControllerOutput

Outputs of the control algorithm.

Enumerator:

u Control output of control function.

Definition at line 33 of file ControllerTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.11 Framework/Controller/Examples/CengizController.h File Reference 33

4.10.2.3 enum ControllerParameters

Prefix Use a 3 letter prefix for the customizations.

Controller parameters, used to configure the controller

Enumerator:

parameter1

parameter2

Definition at line 13 of file ControllerTemplate.h.

4.10.2.4 enum ControllerStates

Controller states, used to store data between iterations of the loop to obtain derivative values.

Enumerator:

SMC_error_old

SMC_sigma_old

SMC_u_old

Definition at line 19 of file ControllerTemplate.h.

4.10.3 Function Documentation

4.10.3.1 void loopController (Controller ∗ c)

Control algorithm

Parameters
c pointer to a controller structure

Returns

return values are contained in the Controller structures output array

Definition at line 45 of file ControllerTemplate.h.

4.10.3.2 void setControllerParameters (Controller ∗ c)

Set controllers parameters and time constant. Parameters may be configured with a separate function.

Definition at line 52 of file ControllerTemplate.h.

4.11 Framework/Controller/Examples/CengizController.h File Reference

#include "Controller.h"

Macros

• #define PARAMCOUNT 20

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

34 File Documentation

• #define ORDER 5

Enumerations

• enum ProportionalControllerParameters { Kp }

Functions

• void loopProportional (Controller ∗c, double ∗current, double ∗ref, double ∗output)

• void initProportionalController (Controller ∗c, double KpVal)

4.11.1 Macro Definition Documentation

4.11.1.1 #define ORDER 5

Definition at line 6 of file CengizController.h.

4.11.1.2 #define PARAMCOUNT 20

Definition at line 5 of file CengizController.h.

4.11.2 Enumeration Type Documentation

4.11.2.1 enum ProportionalControllerParameters

Enumerator:

Kp

Definition at line 8 of file CengizController.h.

4.11.3 Function Documentation

4.11.3.1 void initProportionalController (Controller ∗ c, double KpVal)

Definition at line 25 of file CengizController.h.

4.11.3.2 void loopProportional (Controller ∗ c, double ∗ current, double ∗ ref, double ∗ output)

Definition at line 10 of file CengizController.h.

4.12 Framework/Controller/Examples/PControl.c File Reference

#include "Controller.h"
#include <stdio.h>

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.13 Framework/Controller/Examples/SMCController.h File Reference 35

4.13 Framework/Controller/Examples/SMCController.h File Reference

Implementation of the Sliding Mode Controller.

#include "Controller.h"

Enumerations

• enum SMC_Parameters { SMC_C, SMC_D, SMC_Ku, SMC_DT }

< Included to obtain the Controller struct.
• enum SMC_States { SMC_error_old, SMC_sigma_old, SMC_u_old }

Sliding mode States, used to store data between iterations of the loop to obtain derivative values.
• enum SMC_Input { SMC_reference, SMC_position }

Inputs to the sliding mode function.
• enum SMC_Output { SMC_u }

Outputs of the sliding mode control algorithm.

Functions

• void loopSMCController (Controller ∗c)
• void setSMCParameters (Controller ∗c, double C, double D, double Ku, double dt)

Set sliding mode controllers parameters and time constant.

4.13.1 Detailed Description

Implementation of the Sliding Mode Controller. A sliding mode control function is implemented in this file. The
sliding mode function has one algorithm attached to it and it utilizes the inputs and outputs to exchange data. The
function can be utilized in two different modes, normal mode and linked mode. If normal mode is used, the inputs
to the data structures must be made using the input array. If linked mode is to be used, the input_p array must be
filled with pointers to the values that the SMC controller will use.

Definition in file SMCController.h.

4.13.2 Enumeration Type Documentation

4.13.2.1 enum SMC_Input

Inputs to the sliding mode function.

Enumerator:

SMC_reference
SMC_position

Definition at line 29 of file SMCController.h.

4.13.2.2 enum SMC_Output

Outputs of the sliding mode control algorithm.

Enumerator:

SMC_u Control output of sliding mode control function.

Definition at line 36 of file SMCController.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

36 File Documentation

4.13.2.3 enum SMC_Parameters

< Included to obtain the Controller struct.

Prefix SMC Sliding mode control parameters, used to configure the controller

Enumerator:

SMC_C

SMC_D

SMC_Ku

SMC_DT

Definition at line 14 of file SMCController.h.

4.13.2.4 enum SMC_States

Sliding mode States, used to store data between iterations of the loop to obtain derivative values.

Enumerator:

SMC_error_old

SMC_sigma_old

SMC_u_old

Definition at line 22 of file SMCController.h.

4.13.3 Function Documentation

4.13.3.1 void loopSMCController (Controller ∗ c)

Sliding mode control algorithm

Parameters
c pointer to a controller structure

Returns

return values are contained in the controller structures output array

Store states of the controller for the next loop

Definition at line 48 of file SMCController.h.

4.13.3.2 void setSMCParameters (Controller ∗ c, double C, double D, double Ku, double dt)

Set sliding mode controllers parameters and time constant.

Definition at line 96 of file SMCController.h.

4.14 Framework/Filter/Filter.h File Reference

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.14 Framework/Filter/Filter.h File Reference 37

Classes

• struct Filter_

Macros

• #define PARAMCOUNT 20
• #define ORDER 5

Typedefs

• typedef struct Filter_ Filter

Functions

• void initFilter (Filter ∗F, double P1, double P2, double P3)
• void FilterAlg (Filter F, double in[], double out[])
• void deleteFilter (Filter ∗F)

4.14.1 Macro Definition Documentation

4.14.1.1 #define ORDER 5

Definition at line 14 of file Filter.h.

4.14.1.2 #define PARAMCOUNT 20

Definition at line 13 of file Filter.h.

4.14.2 Typedef Documentation

4.14.2.1 typedef struct Filter_ Filter

Definition at line 22 of file Filter.h.

4.14.3 Function Documentation

4.14.3.1 void deleteFilter (Filter ∗ F)

Definition at line 33 of file Filter.h.

4.14.3.2 void FilterAlg (Filter F, double in[], double out[])

Definition at line 28 of file Filter.h.

4.14.3.3 void initFilter (Filter ∗ F, double P1, double P2, double P3)

Definition at line 24 of file Filter.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

38 File Documentation

4.15 Framework/Filter/FilterTemplate.c File Reference

Classes

• struct Filter

Macros

• #define PARAMCOUNT 20
• #define ORDER 5

Functions

• struct Filter initFilter (struct Filter ∗F, double P1, double P2, double P3)
• void FilterAlg (double in[], double out[], struct Filter F)
• void deleteFilter (struct Filter ∗F)

Variables

• string name
• double P [PARAMCOUNT]

4.15.1 Macro Definition Documentation

4.15.1.1 #define ORDER 5

Definition at line 11 of file FilterTemplate.c.

4.15.1.2 #define PARAMCOUNT 20

Definition at line 10 of file FilterTemplate.c.

4.15.2 Function Documentation

4.15.2.1 void deleteFilter (struct Filter ∗ F)

Definition at line 28 of file FilterTemplate.c.

4.15.2.2 void FilterAlg (double in[], double out[], struct Filter F)

Definition at line 23 of file FilterTemplate.c.

4.15.2.3 struct Filter initFilter (struct Filter ∗ F, double P1, double P2, double P3)

Definition at line 19 of file FilterTemplate.c.

4.15.3 Variable Documentation

4.15.3.1 string name

Definition at line 20 of file FilterTemplate.c.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.16 Framework/Kinematics/Examples/DeltaFWKinematics.h File Reference 39

4.15.3.2 double P[PARAMCOUNT]

Definition at line 21 of file FilterTemplate.c.

4.16 Framework/Kinematics/Examples/DeltaFWKinematics.h File Reference

Implementation of the Delta Robot Kinematics.

#include "Kinematics.h"
#include <math.h>

Enumerations

• enum DeltaFWKinematicsParameters {
DeltaLA, DeltaLB, DeltaRA, DeltaRB,
DeltaTheta1, DeltaTheta2, DeltaTheta3, DeltaZofset }

< Included to obtain the Kinematics struct.

• enum DeltaFWKinematicsInput { DeltaFWAlpha1, DeltaFWAlpha2, DeltaFWAlpha3 }

Inputs to the Delta robot forward kinematics array.

• enum DeltaFWKinematicsOutput { DeltaFWX, DeltaFWY, DeltaFWZ }

Outputs of the delta robot forward kinematics.

Functions

• void loopDeltaFWKinematics (Kinematics ∗k)

Variables

• enum DeltaFWKinematicsParameters initFilter

4.16.1 Detailed Description

Implementation of the Delta Robot Kinematics. Forward kinematics of a delta robot are implemented in this file ∗
Definition in file DeltaFWKinematics.h.

4.16.2 Enumeration Type Documentation

4.16.2.1 enum DeltaFWKinematicsInput

Inputs to the Delta robot forward kinematics array.

Enumerator:

DeltaFWAlpha1 alpha1 coordinate in joint space, input

DeltaFWAlpha2 alpha2 cooridnate in joint space, input

DeltaFWAlpha3 alpha3 coordinate in joint space, input

Definition at line 33 of file DeltaFWKinematics.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

40 File Documentation

4.16.2.2 enum DeltaFWKinematicsOutput

Outputs of the delta robot forward kinematics.

Enumerator:

DeltaFWX X coordinate in task space.

DeltaFWY Y coordinate in task space.

DeltaFWZ Z coordinate in task space.

Definition at line 41 of file DeltaFWKinematics.h.

4.16.2.3 enum DeltaFWKinematicsParameters

< Included to obtain the Kinematics struct.

Prefix DeltaFWKinematics Robot paramters, used to configure the Kinematics DeltaKInematicsParameters, this
enum defines the pramters array, which contains the arm lengths, base redius, ancelle raidus, arm orientations and
zoffset.

Enumerator:

DeltaLA Upper Arm Lenght.

DeltaLB Lower Arm Length.

DeltaRA Base Radius.

DeltaRB Nacelle Radius.

DeltaTheta1 Arm orientation angle 1.

DeltaTheta2 Arm orientation angle 2.

DeltaTheta3 Arm orientation angle 3.

DeltaZofset Offset for the nozzle int he vertical axis.

Definition at line 16 of file DeltaFWKinematics.h.

4.16.3 Function Documentation

4.16.3.1 void loopDeltaFWKinematics (Kinematics ∗ k)

Delta Robot Forward Kinematics

Parameters
c pointer to a Kinematics structure

Returns

return values are contained in the Kinematics structures output array

Definition at line 54 of file DeltaFWKinematics.h.

4.16.4 Variable Documentation

4.16.4.1 enum DeltaFWKinematicsParameters initFilter

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.17 Framework/Kinematics/Kinematics.h File Reference 41

4.17 Framework/Kinematics/Kinematics.h File Reference

General definition of forward or reverse kinematics, containing the data structures.

Classes

• struct Kinematcis_

Kinematics Structure contains the necessary data to run Kinematics. It is composed of four main parts. Input and
Output arrays are utilized to exchange data to and from the Kinematics structure during runtime. States of Kinematics
contain the internal varying data and parameters of Kinematics contain the values that are used to configure the
Kinematics structure.

Macros

• #define KINEMATICSMAXPARAMETERS 10

• #define KINEMATICSMAXSTATES 10

• #define KINEMATICSMAXIN 10

• #define KINEMATICSMAXOUT 10

Typedefs

• typedef struct Kinematics_ Kinematics

4.17.1 Detailed Description

General definition of forward or reverse kinematics, containing the data structures. A Kinematics structure contains
the states and parameters of funtions needed to perform Kinematics operations. The Kinematics structure also has
a function pointer to attach an algorithm loop function that is executed in every loop.

Definition in file Kinematics.h.

4.17.2 Macro Definition Documentation

4.17.2.1 #define KINEMATICSMAXIN 10

Definition at line 14 of file Kinematics.h.

4.17.2.2 #define KINEMATICSMAXOUT 10

Definition at line 15 of file Kinematics.h.

4.17.2.3 #define KINEMATICSMAXPARAMETERS 10

Definition at line 11 of file Kinematics.h.

4.17.2.4 #define KINEMATICSMAXSTATES 10

Definition at line 12 of file Kinematics.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

42 File Documentation

4.17.3 Typedef Documentation

4.17.3.1 typedef struct Kinematics Kinematics

Definition at line 42 of file Kinematics.h.

4.18 Framework/Kinematics/KinematicsTemplate.h File Reference

This is a template file to generate Kinematics structure.

#include "Kinematics.h"

Enumerations

• enum KinematicsParameters { parameter1, parameter2 }

Prefix Use a 3 letter prefix for the customizations.

• enum KinematicsStates { state1, state2 }

Kinematics states, used to store data between iterations of the loop to obtain derivative values.

• enum KinematicsInput { reference, position }

Inputs to the control function.

• enum KinematicsOutput { Kinematics_x, Kinematics_y, Kinematics_z }

Outputs of the control algorithm.

Functions

• void loopKinematics (Kinematics ∗c)

• void setKinematicsParameters (Kinematics ∗c)

Set Kinematicss parameters. Parameters may be configured with a separate function. Optional function.

4.18.1 Detailed Description

This is a template file to generate Kinematics structure. A Kinematics function is implemented in this file. The
Kinematics function is based around the Kinematics structure, int receives its inputs from the input array and it
writes its outputs to the output array. The states and parameters of the Kinematics funciton are also stored

Definition in file KinematicsTemplate.h.

4.18.2 Enumeration Type Documentation

4.18.2.1 enum KinematicsInput

Inputs to the control function.

Enumerator:

reference

position

Definition at line 26 of file KinematicsTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.18 Framework/Kinematics/KinematicsTemplate.h File Reference 43

4.18.2.2 enum KinematicsOutput

Outputs of the control algorithm.

Enumerator:

Kinematics_x

Kinematics_y

Kinematics_z Control output of control function.

Definition at line 33 of file KinematicsTemplate.h.

4.18.2.3 enum KinematicsParameters

Prefix Use a 3 letter prefix for the customizations.

Kinematics parameters, used to configure the Kinematics

Enumerator:

parameter1

parameter2

Definition at line 13 of file KinematicsTemplate.h.

4.18.2.4 enum KinematicsStates

Kinematics states, used to store data between iterations of the loop to obtain derivative values.

Enumerator:

state1

state2

Definition at line 19 of file KinematicsTemplate.h.

4.18.3 Function Documentation

4.18.3.1 void loopKinematics (Kinematics ∗ c)

Kinematics algorithm

Parameters
c pointer to a Kinematics structure

Returns

return values are contained in the Kinematics structures output array

Definition at line 47 of file KinematicsTemplate.h.

4.18.3.2 void setKinematicsParameters (Kinematics ∗ c)

Set Kinematicss parameters. Parameters may be configured with a separate function. Optional function.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

44 File Documentation

Definition at line 54 of file KinematicsTemplate.h.

4.19 Framework/Mechanism/Examples/ConveyorMechanism.h File Reference

This file creates the conveyor mechanism that is utilized in a Micro Factory. The conveyor has 1 motor, 3 stoppers
and 3 sensors to sense trays at the stopper locations.

#include "Mechanism.h"
#include "ConveyorStopper.h"
#include "ConveyorMotor.h"
#include "ConveyorStation.h"

Enumerations

• enum ConveyorMechanismActuators { CM_Stopper1, CM_Stopper2, CM_Stopper3, CM_Motor }

Enumeration of the conveyors actuators.

• enum ConveyorMechanismSensors { CM_Station1, CM_Station2, CM_Station3 }

Enumeration of the conveyors sensors.

• enum ConveyorMechanismInputs { ConveyorSpeed, ConveyorStation }

MechanismParameters define what the parameters of this mechanism.

• enum ConveyorMechanismStates { Station }

MechanismStates define what the states of this mechanims are.

• enum ConveyorStateMachineStates { CM_Inactive, CM_Initialize, CM_MoveTo, CM_Move }

MechanismStateMachineStates are the states of the State Machine within the mechanism. The state machine of the
mechanims is utilized to command the mechanism from one state to the other. The default states of the state machine
are inactive and initialize. Depending on the needs of the mechanism the states should also include following position
references and following speed references.

Functions

• int loopConveyorMechanism (Mechanism ∗M)
• int setupConveyor (Mechanism ∗m)

Setup Converor function is used to assign values and fill the actuators within the mechanism structure.

• int setConveyorMoveTo (Mechanism ∗M, int station, double speed)

4.19.1 Detailed Description

This file creates the conveyor mechanism that is utilized in a Micro Factory. The conveyor has 1 motor, 3 stoppers
and 3 sensors to sense trays at the stopper locations.

Definition in file ConveyorMechanism.h.

4.19.2 Enumeration Type Documentation

4.19.2.1 enum ConveyorMechanismActuators

Enumeration of the conveyors actuators.

Enumerator:

CM_Stopper1

CM_Stopper2

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.19 Framework/Mechanism/Examples/ConveyorMechanism.h File Reference 45

CM_Stopper3

CM_Motor

Definition at line 18 of file ConveyorMechanism.h.

4.19.2.2 enum ConveyorMechanismInputs

MechanismParameters define what the parameters of this mechanism.

Enumerator:

ConveyorSpeed

ConveyorStation

Definition at line 36 of file ConveyorMechanism.h.

4.19.2.3 enum ConveyorMechanismSensors

Enumeration of the conveyors sensors.

Enumerator:

CM_Station1

CM_Station2

CM_Station3

Definition at line 26 of file ConveyorMechanism.h.

4.19.2.4 enum ConveyorMechanismStates

MechanismStates define what the states of this mechanims are.

Enumerator:

Station

Definition at line 42 of file ConveyorMechanism.h.

4.19.2.5 enum ConveyorStateMachineStates

MechanismStateMachineStates are the states of the State Machine within the mechanism. The state machine
of the mechanims is utilized to command the mechanism from one state to the other. The default states of the
state machine are inactive and initialize. Depending on the needs of the mechanism the states should also include
following position references and following speed references.

Enumerator:

CM_Inactive

CM_Initialize

CM_MoveTo

CM_Move fill in the other states

Definition at line 48 of file ConveyorMechanism.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

46 File Documentation

4.19.3 Function Documentation

4.19.3.1 int loopConveyorMechanism (Mechanism ∗ M)

Perform initialization of actuators sensors axes etc...

get reference for the manipulator

Transform the coordinate references to axis references

Command axees

Definition at line 56 of file ConveyorMechanism.h.

4.19.3.2 int setConveyorMoveTo (Mechanism ∗ M, int station, double speed)

Definition at line 122 of file ConveyorMechanism.h.

4.19.3.3 int setupConveyor (Mechanism ∗ m)

Setup Converor function is used to assign values and fill the actuators within the mechanism structure.

Definition at line 103 of file ConveyorMechanism.h.

4.20 Framework/Mechanism/Mechanism.h File Reference

General definition of an mechanism containing the data structures. This file contains the data structure needed to
create a mechanism. The data of a mechanism includes its states, its parameters and other modules it utilizes, such
as Actuators, Sensors, Axes. The mechanism structure also has access to Kinematics, Controllers, Estimators and
Observers.

#include "Actuator.h"
#include "Sensor.h"
#include "Axis.h"

Classes

• struct Mechanism_

Structure containing the data for an mechanism, including inputs, outputs, state machine state, links to the actuators,
sensors, axes, controllers plus, parameters and states for internal storage of data.

Macros

• #define MECHAXES 5

Maximum Number of Axes a mechanism may have.

• #define MECHKINEMATICS 2

Maximum Number of Kinematics functions a Mechanism may have.

• #define MECHACTUATORS 7

Maximum Number of Actuators a Mechansim may have.

• #define MECHSENSORS 3

Maximum Number of Sensors a Mechanism may have.

• #define MECHINPUT 6

Maximum Number of References a Mechanism may have.

• #define MECHOUTPUT 6

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.20 Framework/Mechanism/Mechanism.h File Reference 47

• #define MECHSTATES 10

Maximum Number of States a Mechansim may have.

• #define MECHPARAMETERS 10

Maximum Number of Parameters a Mechanism may have.

Typedefs

• typedef struct Mechanism_ Mechanism

4.20.1 Detailed Description

General definition of an mechanism containing the data structures. This file contains the data structure needed to
create a mechanism. The data of a mechanism includes its states, its parameters and other modules it utilizes, such
as Actuators, Sensors, Axes. The mechanism structure also has access to Kinematics, Controllers, Estimators and
Observers.

Definition in file Mechanism.h.

4.20.2 Macro Definition Documentation

4.20.2.1 #define MECHACTUATORS 7

Maximum Number of Actuators a Mechansim may have.

Definition at line 15 of file Mechanism.h.

4.20.2.2 #define MECHAXES 5

Maximum Number of Axes a mechanism may have.

Definition at line 13 of file Mechanism.h.

4.20.2.3 #define MECHINPUT 6

Maximum Number of References a Mechanism may have.

Definition at line 18 of file Mechanism.h.

4.20.2.4 #define MECHKINEMATICS 2

Maximum Number of Kinematics functions a Mechanism may have.

Definition at line 14 of file Mechanism.h.

4.20.2.5 #define MECHOUTPUT 6

Definition at line 19 of file Mechanism.h.

4.20.2.6 #define MECHPARAMETERS 10

Maximum Number of Parameters a Mechanism may have.

Definition at line 22 of file Mechanism.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

48 File Documentation

4.20.2.7 #define MECHSENSORS 3

Maximum Number of Sensors a Mechanism may have.

Definition at line 16 of file Mechanism.h.

4.20.2.8 #define MECHSTATES 10

Maximum Number of States a Mechansim may have.

Definition at line 21 of file Mechanism.h.

4.20.3 Typedef Documentation

4.20.3.1 typedef struct Mechanism_ Mechanism

Definition at line 53 of file Mechanism.h.

4.21 Framework/Mechanism/MechanismTemplate.h File Reference

This file is a template for the creation of a mechanism. The functions within must be fulfilled and the state machine
configured in order to provide functionnality to the mechanism.

#include "Mechanism.h"

Enumerations

• enum MechanismParameters

MechanismParameters define what the parameters of this mechanism.

• enum MechanismStates { StateMachine }

MechanismStates define what the states of this mechanims are.

• enum MechanismStateMachineStates

MechanismStateMachineStates are the states of the State Machine within the mechanism. The state machine of the
mechanims is utilized to command the mechanism from one state to the other. The default states of the state machine
are inactive and initialize. Depending on the needs of the mechanism the states should also include following position
references and following speed references.

Functions

• enum MechanismStateMachineStates loopMechanism (Mechanism ∗M, double ref[MANIPULATORRE-
F])

Variables

• initialize

• inactive

• loop

fill in the other states

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.21 Framework/Mechanism/MechanismTemplate.h File Reference 49

4.21.1 Detailed Description

This file is a template for the creation of a mechanism. The functions within must be fulfilled and the state machine
configured in order to provide functionnality to the mechanism.

Definition in file MechanismTemplate.h.

4.21.2 Enumeration Type Documentation

4.21.2.1 enum MechanismParameters

MechanismParameters define what the parameters of this mechanism.

Definition at line 11 of file MechanismTemplate.h.

4.21.2.2 enum MechanismStateMachineStates

MechanismStateMachineStates are the states of the State Machine within the mechanism. The state machine
of the mechanims is utilized to command the mechanism from one state to the other. The default states of the
state machine are inactive and initialize. Depending on the needs of the mechanism the states should also include
following position references and following speed references.

Definition at line 21 of file MechanismTemplate.h.

4.21.2.3 enum MechanismStates

MechanismStates define what the states of this mechanims are.

Enumerator:

StateMachine

Definition at line 16 of file MechanismTemplate.h.

4.21.3 Function Documentation

4.21.3.1 enum MechanismStateMachineStates loopMechanism (Mechanism ∗ M, double ref[MANIPULATORREF])

Perform initialization of actuators sensors axes etc...

get reference for the manipulator

Transform the coordinate references to axis references

Command axees

Definition at line 28 of file MechanismTemplate.h.

4.21.4 Variable Documentation

4.21.4.1 inactive

Definition at line 29 of file MechanismTemplate.h.

4.21.4.2 initialize

Definition at line 29 of file MechanismTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

50 File Documentation

4.21.4.3 loop

fill in the other states

Definition at line 29 of file MechanismTemplate.h.

4.22 Framework/Sensor/Examples/ConveyorStation.h File Reference

#include "Sensor.h"

Functions

• double readConveyorStation (Sensor ∗s)

• int setConveyorStationParameter (Sensor ∗s, int parameter, double v)

• int resetConveyorStationSensor (Sensor ∗s)

• int removeConveyorStationSensor (Sensor ∗s)

4.22.1 Function Documentation

4.22.1.1 double readConveyorStation (Sensor ∗ s)

Definition at line 12 of file ConveyorStation.h.

4.22.1.2 int removeConveyorStationSensor (Sensor ∗ s)

Definition at line 29 of file ConveyorStation.h.

4.22.1.3 int resetConveyorStationSensor (Sensor ∗ s)

Definition at line 24 of file ConveyorStation.h.

4.22.1.4 int setConveyorStationParameter (Sensor ∗ s, int parameter, double v)

Definition at line 17 of file ConveyorStation.h.

4.23 Framework/Sensor/Sensor.h File Reference

General definition of an sensor containing the data structures.

Classes

• struct Sensor_

Sensor structure contains all the parameters and states of the sesor. The sensor sturcutre also contains the input and
output channel numbers for a sensor along with function pointers to functions of the sensor to initialize, read, reset
and delete the sensor.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.23 Framework/Sensor/Sensor.h File Reference 51

Macros

• #define SENSMAXIO 3

Defines the number of maximum different types input or output IO channel access by a single sensor.

• #define SENSMAXIN 3

Defines the maximum number of inputs all sensors may have.

• #define SENSMAXOUT 3

Defines the maximum number of outputs all sensors may have.

• #define SENSMAXSTATES 5

Define the maximum number of states that all sensors may have.

• #define SENSMAXPARAMETERS 4

Define the maximum number of parameters that all sensors may have.

Typedefs

• typedef struct Sensor_ Sensor

Functions

• int setupSensor (Sensor ∗s, char ∗name, char ∗unit, double(∗read)(struct Sensor_ ∗s), int(∗set-
Parameter)(struct Sensor_ ∗s, int parameter, double v), int(∗reset)(struct Sensor_ ∗s), int(∗remove)(struct
Sensor_ ∗s))

setup sensor

Variables

• struct Sensor_ loopMechanism

4.23.1 Detailed Description

General definition of an sensor containing the data structures.

Definition in file Sensor.h.

4.23.2 Macro Definition Documentation

4.23.2.1 #define SENSMAXIN 3

Defines the maximum number of inputs all sensors may have.

Definition at line 12 of file Sensor.h.

4.23.2.2 #define SENSMAXIO 3

Defines the number of maximum different types input or output IO channel access by a single sensor.

Definition at line 11 of file Sensor.h.

4.23.2.3 #define SENSMAXOUT 3

Defines the maximum number of outputs all sensors may have.

Definition at line 13 of file Sensor.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

52 File Documentation

4.23.2.4 #define SENSMAXPARAMETERS 4

Define the maximum number of parameters that all sensors may have.

Definition at line 15 of file Sensor.h.

4.23.2.5 #define SENSMAXSTATES 5

Define the maximum number of states that all sensors may have.

Definition at line 14 of file Sensor.h.

4.23.3 Typedef Documentation

4.23.3.1 typedef struct Sensor_ Sensor

Definition at line 45 of file Sensor.h.

4.23.4 Function Documentation

4.23.4.1 int setupSensor (Sensor ∗ s, char ∗ name, char ∗ unit, double(∗)(struct Sensor_ ∗s) read, int(∗)(struct Sensor_
∗s, int parameter, double v) setParameter, int(∗)(struct Sensor_ ∗s) reset, int(∗)(struct Sensor_ ∗s) remove)

setup sensor

Function to setup the sensor This function is used to setup the fields of the sensor structure, such as assigning the
functions to it.

Parameters
s pointer to the sensor structure

name contains name of the sensor as a string
units contains the units of the sensor as a string
read function pointer to the function to read the values of the sensor

setParameter function pointer to the function to set the parameters of the sensor
reset function pointer to the function to reset the sensor

remove function pointer to the function to remove or delete the sensor

Returns

0 for success, -1 for error

Definition at line 59 of file Sensor.h.

4.23.5 Variable Documentation

4.23.5.1 struct Sensor_ loopMechanism

4.24 Framework/Sensor/SensorTemplate.h File Reference

#include "Sensor.h"

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference 53

Functions

• double readSensor (Sensor ∗s)
• int setSensorParameter (Sensor ∗s, int parameter, double v)
• int resetSensor (Sensor ∗s)
• int removeSensor (Sensor ∗s)

4.24.1 Function Documentation

4.24.1.1 double readSensor (Sensor ∗ s)

Definition at line 12 of file SensorTemplate.h.

4.24.1.2 int removeSensor (Sensor ∗ s)

Definition at line 25 of file SensorTemplate.h.

4.24.1.3 int resetSensor (Sensor ∗ s)

Definition at line 21 of file SensorTemplate.h.

4.24.1.4 int setSensorParameter (Sensor ∗ s, int parameter, double v)

Definition at line 17 of file SensorTemplate.h.

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference

THis file is a dummy for test purposes and only printsout Header File For the Hardware Wrappers of motion control
projects This file is to be used as a template for the development of various projects that involve hardware Objective
is to create a standardized hardware functions that have the same name in all projects.

#include <stdio.h>

Functions

• int initHardware ()

Initialize the hardware that will interface for the wrapper.

• int deleteHardware ()

Celanup and free the resoruces allocated for the hardware.

• int initEnocder (int channel)

Initializes the specified encoder channel.

• int setEncoder (int channel, int encvalue)

Sets a value to the specified encoder channel. Used for homing the encoder channel.

• int getEncoder (int channel)

Gets the pulse number in the encoder hardware.

• int initEncoderMetricReader (int channel)

Initializes the Encoder Metric Reader. Encoder Metric Reader reads the encoder and returns a value that is converted
to the desired metric, such as angles, radians, millimeters or micrometers etc.

• int setEncoderMetricReader (int channel, float enc2metric)

Sets the conversion factor for the Encoder Metric Reader.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

54 File Documentation

• float getEncoderInMetric (int channel)

Gets the metric that has been converted from the encoder.

• int initVelocityReader (int channel)

Initializes the Velocity Reading fucntion. Calculates or estimates the velocity using hardware.

• float getVelocity (int channel)

Gets the Velocity that has been calculate by the hardware.

• int initAnalogOutput (int channel)

Initializes the Analog output circuit.

• int setAnalogOutput (int channel, float Volts)

Sets the value for analog output.

• int initAnalogInput (int channel)

Initializes the Analog Input circuits.

• float getAnalogInput (int channel)

Gets the Analog input.

• int initDigitalInput (int channel)

Initializes the Digital Input Circuits.

• int getDigitalInput (int channel)

Gets the Digitial input.

• int initDigitalOutput (int channel)

Initializes the Digital Output circuit.

• int setDigitalOutput (int channel, int value)

Sets the Digital Output.

• int initPWM (int channel)

Initializes the PWM circuit.

• int setPWM (int channel, int value)

Sets the PWM output value.

4.25.1 Detailed Description

THis file is a dummy for test purposes and only printsout Header File For the Hardware Wrappers of motion control
projects This file is to be used as a template for the development of various projects that involve hardware Objective
is to create a standardized hardware functions that have the same name in all projects. Created by Teoman Naskali
on 14/10/10. Copyright Sabanci University 2010. All rights reserved.

Definition in file HWWrapper.h.

4.25.2 Function Documentation

4.25.2.1 int deleteHardware ()

Celanup and free the resoruces allocated for the hardware.

Delete Hardware

Returns

0 for success, -1 for error.

Definition at line 28 of file HWWrapper.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference 55

4.25.2.2 float getAnalogInput (int channel)

Gets the Analog input.

Get Analog Input

Parameters
channel channel number

Returns

Analog input in volts

Definition at line 125 of file HWWrapper.h.

4.25.2.3 int getDigitalInput (int channel)

Gets the Digitial input.

Get Digital Input

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 137 of file HWWrapper.h.

4.25.2.4 int getEncoder (int channel)

Gets the pulse number in the encoder hardware.

Get Encoder Value

Parameters
channel is the channel number to be read

Returns

encoder pulses

Definition at line 62 of file HWWrapper.h.

4.25.2.5 float getEncoderInMetric (int channel)

Gets the metric that has been converted from the encoder.

Get Encoder in Metric

Parameters
channel number

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

56 File Documentation

Returns

metric derived from pulses

Definition at line 85 of file HWWrapper.h.

4.25.2.6 float getVelocity (int channel)

Gets the Velocity that has been calculate by the hardware.

Get Velocity

Parameters
channel channel number

Returns

velocity

Definition at line 98 of file HWWrapper.h.

4.25.2.7 int initAnalogInput (int channel)

Initializes the Analog Input circuits.

Initialize Analog Inputs

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 119 of file HWWrapper.h.

4.25.2.8 int initAnalogOutput (int channel)

Initializes the Analog output circuit.

Initialize Analog Output

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 104 of file HWWrapper.h.

4.25.2.9 int initDigitalInput (int channel)

Initializes the Digital Input Circuits.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference 57

Initialize Digital Input

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 131 of file HWWrapper.h.

4.25.2.10 int initDigitalOutput (int channel)

Initializes the Digital Output circuit.

Initialize Digital Output

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 143 of file HWWrapper.h.

4.25.2.11 int initEncoderMetricReader (int channel)

Initializes the Encoder Metric Reader. Encoder Metric Reader reads the encoder and returns a value that is con-
verted to the desired metric, such as angles, radians, millimeters or micrometers etc.

Initialize Encoder Metric Reader

Parameters
channel is the encoder channel number

Returns

encoder pulses

Definition at line 72 of file HWWrapper.h.

4.25.2.12 int initEnocder (int channel)

Initializes the specified encoder channel.

Initialize Encoder

Parameters
channel the encoder channel number

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

58 File Documentation

Returns

0 for success, -1 for error

Definition at line 39 of file HWWrapper.h.

4.25.2.13 int initHardware ()

Initialize the hardware that will interface for the wrapper.

Initialize Hardware

Returns

0 for success, -1 for error.

Definition at line 20 of file HWWrapper.h.

4.25.2.14 int initPWM (int channel)

Initializes the PWM circuit.

Initialize PWM

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 164 of file HWWrapper.h.

4.25.2.15 int initVelocityReader (int channel)

Initializes the Velocity Reading fucntion. Calculates or estimates the velocity using hardware.

Initialize Velocity Reader

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 92 of file HWWrapper.h.

4.25.2.16 int setAnalogOutput (int channel, float Volts)

Sets the value for analog output.

Set Analog Output

Parameters
Volts output value in volts

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.25 Framework/Wrapper/Examples/HWWrapper.h File Reference 59

Returns

0 for success, -1 for error

Definition at line 110 of file HWWrapper.h.

4.25.2.17 int setDigitalOutput (int channel, int value)

Sets the Digital Output.

Set Digital Output

Parameters
channel channel number

value output value in boolean

Returns

0 for success, -1 for error

Definition at line 150 of file HWWrapper.h.

4.25.2.18 int setEncoder (int channel, int encvalue)

Sets a value to the specified encoder channel. Used for homing the encoder channel.

Set the Encoder value

Parameters
channel the encoder channel number

encvalue the encoder value to be set to the encoder

Returns

0 for success, -1 for error

Definition at line 51 of file HWWrapper.h.

4.25.2.19 int setEncoderMetricReader (int channel, float enc2metric)

Sets the conversion factor for the Encoder Metric Reader.

Set Enocder Metric Reader

Parameters
channel channel number

enc2metric the conversion factor from encoder pulses to the metric

Returns

0 for success, -1 for error

Definition at line 79 of file HWWrapper.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

60 File Documentation

4.25.2.20 int setPWM (int channel, int value)

Sets the PWM output value.

Set PWM

Parameters
value,specify value

Returns

0 for success, -1 for error

Definition at line 170 of file HWWrapper.h.

4.26 Framework/Wrapper/HWWrapperTemplate.h File Reference

Functions

• int initHardware ()

Initialize the hardware that will interface for the wrapper.

• int deleteHardware ()

Celanup and free the resoruces allocated for the hardware.

• int initEnocder (int channel)

Initializes the specified encoder channel.

• int setEncoder (int channel, int encvalue)

Sets a value to the specified encoder channel. Used for homing the encoder channel.

• int getEncoder (int channel)

Gets the pulse number in the encoder hardware.

• int initEncoderMetricReader (int channel)

Initializes the Encoder Metric Reader. Encoder Metric Reader reads the encoder and returns a value that is converted
to the desired metric, such as angles, radians, millimeters or micrometers etc.

• int setEncoderMetricReader (int channel, float enc2metric)

Sets the conversion factor for the Encoder Metric Reader.

• float getEncoderInMetric (int channel)

Gets the metric that has been converted from the encoder.

• int initVelocityReader (int channel)

Initializes the Velocity Reading fucntion. Calculates or estimates the velocity using hardware.

• float getVelocity (int channel)

Gets the Velocity that has been calculate by the hardware.

• int initAnalogOutput (int channel)

Initializes the Analog output circuit.

• int setAnalogOutput (int channel, float Volts)

Sets the value for analog output.

• int initAnalogInput (int channel)

Initializes the Analog Input circuits.

• float getAnalogInput (int channel)

Gets the Analog input.

• int initDigitalInput (int channel)

Initializes the Digital Input Circuits.

• int getDigitalInput (int channel)

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.26 Framework/Wrapper/HWWrapperTemplate.h File Reference 61

Gets the Digitial input.

• int initDigitalOutput (int channel)

Initializes the Digital Output circuit.

• int setDigitalOutput (int channel, bool value)

Sets the Digital Output.

• int initPWM (int channel)

Initializes the PWM circuit.

• int setPWM (int channel, int value)

Sets the PWM output value.

4.26.1 Function Documentation

4.26.1.1 int deleteHardware ()

Celanup and free the resoruces allocated for the hardware.

Delete Hardware

Returns

0 for success, -1 for error.

Definition at line 28 of file HWWrapper.h.

4.26.1.2 float getAnalogInput (int channel)

Gets the Analog input.

Get Analog Input

Parameters
channel channel number

Returns

Analog input in volts

Definition at line 125 of file HWWrapper.h.

4.26.1.3 int getDigitalInput (int channel)

Gets the Digitial input.

Get Digital Input

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 137 of file HWWrapper.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

62 File Documentation

4.26.1.4 int getEncoder (int channel)

Gets the pulse number in the encoder hardware.

Get Encoder Value

Parameters
channel is the channel number to be read

Returns

0 for success, -1 for error

Get Encoder Value

Parameters
channel is the channel number to be read

Returns

encoder pulses

Definition at line 62 of file HWWrapper.h.

4.26.1.5 float getEncoderInMetric (int channel)

Gets the metric that has been converted from the encoder.

Get Encoder in Metric

Parameters
channel number

Returns

metric derived from pulses

Definition at line 85 of file HWWrapper.h.

4.26.1.6 float getVelocity (int channel)

Gets the Velocity that has been calculate by the hardware.

Get Velocity

Parameters
channel channel number

Returns

velocity

Definition at line 98 of file HWWrapper.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.26 Framework/Wrapper/HWWrapperTemplate.h File Reference 63

4.26.1.7 int initAnalogInput (int channel)

Initializes the Analog Input circuits.

Initialize Analog Inputs

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 119 of file HWWrapper.h.

4.26.1.8 int initAnalogOutput (int channel)

Initializes the Analog output circuit.

Initialize Analog Output

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 104 of file HWWrapper.h.

4.26.1.9 int initDigitalInput (int channel)

Initializes the Digital Input Circuits.

Initialize Digital Input

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 131 of file HWWrapper.h.

4.26.1.10 int initDigitalOutput (int channel)

Initializes the Digital Output circuit.

Initialize Digital Output

Parameters
channel channel number

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

64 File Documentation

Returns

0 for success, -1 for error

Definition at line 143 of file HWWrapper.h.

4.26.1.11 int initEncoderMetricReader (int channel)

Initializes the Encoder Metric Reader. Encoder Metric Reader reads the encoder and returns a value that is con-
verted to the desired metric, such as angles, radians, millimeters or micrometers etc.

Initialize Encoder Metric Reader

Parameters
channel is the encoder channel number

Returns

encoder pulses

Definition at line 72 of file HWWrapper.h.

4.26.1.12 int initEnocder (int channel)

Initializes the specified encoder channel.

Initialize Encoder

Parameters
channel the encoder channel number

Returns

0 for success, -1 for error

Definition at line 39 of file HWWrapper.h.

4.26.1.13 int initHardware ()

Initialize the hardware that will interface for the wrapper.

Initialize Hardware

Returns

0 for success, -1 for error.

Definition at line 20 of file HWWrapper.h.

4.26.1.14 int initPWM (int channel)

Initializes the PWM circuit.

Initialize PWM

Parameters

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

4.26 Framework/Wrapper/HWWrapperTemplate.h File Reference 65

channel channel number

Returns

0 for success, -1 for error

Definition at line 164 of file HWWrapper.h.

4.26.1.15 int initVelocityReader (int channel)

Initializes the Velocity Reading fucntion. Calculates or estimates the velocity using hardware.

Initialize Velocity Reader

Parameters
channel channel number

Returns

0 for success, -1 for error

Definition at line 92 of file HWWrapper.h.

4.26.1.16 int setAnalogOutput (int channel, float Volts)

Sets the value for analog output.

Set Analog Output

Parameters
Volts output value in volts

Returns

0 for success, -1 for error

Definition at line 110 of file HWWrapper.h.

4.26.1.17 int setDigitalOutput (int channel, bool value)

Sets the Digital Output.

Set Digital Output

Parameters
channel channel number

value output value in boolean

Returns

0 for success, -1 for error

Definition at line 122 of file HWWrapperTemplate.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

66 File Documentation

4.26.1.18 int setEncoder (int channel, int encvalue)

Sets a value to the specified encoder channel. Used for homing the encoder channel.

Set the Encoder value

Parameters
channel the encoder channel number

encvalue the encoder value to be set to the encoder

Returns

0 for success, -1 for error

Definition at line 51 of file HWWrapper.h.

4.26.1.19 int setEncoderMetricReader (int channel, float enc2metric)

Sets the conversion factor for the Encoder Metric Reader.

Set Enocder Metric Reader

Parameters
channel channel number

enc2metric the conversion factor from encoder pulses to the metric

Returns

0 for success, -1 for error

Definition at line 79 of file HWWrapper.h.

4.26.1.20 int setPWM (int channel, int value)

Sets the PWM output value.

Set PWM

Parameters
value,specify value

Returns

0 for success, -1 for error

Definition at line 170 of file HWWrapper.h.

Generated on Thu Aug 2 2012 11:58:54 for SU Framework by Doxygen

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Structure

	2 Literature Survey
	2.1 Motion Control Systems
	2.2 Frameworks
	2.2.1 Robotics Frameworks

	2.3 Conclusion

	3 Background
	3.1 Introduction
	3.2 Base Platforms for Realtime Systems
	3.2.1 Windows XP
	3.2.2 Windows XP Embedded
	3.2.3 Windows XP With Intime Extension
	3.2.4 Lean Linux
	3.2.5 Windows CE
	3.2.6 Micro Controller Based Solutions
	3.2.7 FPGA Based Systems
	3.2.8 RTAI Patch for Linux
	3.2.9 Conclusion

	3.3 Framework Design

	4 A Framework for Motion Control Systems
	4.0.1 System Design Methodology Overview
	4.0.1.1 Hardware and Platform
	4.0.1.2 Software

	4.1 Components of the Framework
	4.1.1 Hardware Interface
	4.1.2 Motion
	4.1.2.1 Drivers
	4.1.2.2 Sensor/Measurement
	4.1.2.3 Actuators
	4.1.2.4 Filters
	4.1.2.5 Estimators and Observers
	4.1.2.6 Observers
	4.1.2.7 Controller
	4.1.2.8 Axis
	4.1.2.9 Mechanism
	4.1.2.10 Trajectory
	4.1.2.11 Kinematics
	4.1.2.12 Protection

	4.1.3 Process
	4.1.3.1 Interpretation
	4.1.3.2 Parameter Setting

	4.1.4 Communication

	4.2 Man Machine Interface
	4.2.1 Graphics Display and GUI
	4.2.2 MMI Device Driver
	4.2.3 Image Acquisition and Processing
	4.2.4 Communication
	4.2.5 Scripting
	4.2.6 Devices
	4.2.7 Data Analysis

	4.3 Putting it all together

	5 Implementations and Experimental Results
	5.1 Validation of the Framework
	5.1.1 Micro Assembly Workstation (SUMAW)
	5.1.1.1 Design Overview
	5.1.1.2 Hardware
	5.1.1.2.1 Electronics

	5.1.1.3 Software Overview
	5.1.1.3.1 RT Computer
	5.1.1.3.2 Threads
	5.1.1.3.3 Hardware Interface
	5.1.1.3.4 Motion Control System Configuration

	5.1.1.4 MMI
	5.1.1.4.1 Modes of Operation
	5.1.1.4.2 Scripting

	5.1.1.5 Vision
	5.1.1.5.1 Calibration
	5.1.1.5.2 Depth Estimation

	5.1.1.6 Communication
	5.1.1.6.1 RT Variable Object

	5.1.1.7 Experiments
	5.1.1.7.1 Validation of the System
	5.1.1.7.2 Biological Specimen Manipulation

	5.1.1.8 Conclusion

	5.1.2 Microfactory
	5.1.2.1 Conveyor
	5.1.2.2 Pantograph
	5.1.2.3 Delta Robot
	5.1.2.4 The Micro Factory System

	5.1.3 Haptic System with Time Delay
	5.1.3.1 Experimental Setup

	6 Conclusion
	Biography
	A APPENDIX A

