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about ten years with great honor and pleasure. My excitement towards scientific work

is only a minor reflection of his constant conveying a spirit of adventure in regard to

research. The intimacy he showed has been the factor that made it all easy. I always

wonder how much more, professionally and personally, I could gain from a person in

my life. I will always feel indebted to him.

I would like to thank my professors Dr. Ali Rana Atılgan, Dr. Canan Atılgan, Dr.
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Abstract

A facile method to produce perfectly hydrophobic surfaces (advancing and receding

water contact angles both 180◦) via electrospraying is demonstrated. When a copolymer

of styrene and a perfluoroalkyl acrylate monomer was electrosprayed in good solvents,

surfaces composed of micron size beads were formed and fairly low threshold sliding

angles could be achieved. Addition of high boiling point poor solvents to the solutions

resulted nanoscale roughness on the beads. However, even the nanoscale roughness

dominated topographies achieved by this method exhibited contact angle hysteresis al-

though deducted to be relatively small. On the other hand, when the electrospraying

process parameters were set such that micron size hills of nanoscopically rough beads

were formed, 0◦ sliding angles, implying zero contact angle hysteresis, were measured.

Videos of droplets recorded and the adhesive forces measured during a contact and

release experiment revealed that these dual scale rough surfaces were indeed perfectly

hydrophobic. Application of the method with other binary good solvent-poor solvent

systems also resulted in perfect hydrophobicity. Overall results showed how the dif-

ferences in surface topology affected the wettability of surfaces within a very narrow

range between perfect and extreme hydrophobicity (advancing and receding water con-

tact angles both close to 180◦).
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In order to interpret the formation of different surface topographies achieved by

electrospraying the corresponding copolymer in good, poor and binary solvent systems,

dissipative particle dynamics simulations and dynamic light scattering analysis were

performed. Simulations of the polymer in good solvent revealed relatively homoge-

nous solutions at all concentrations, whereas phase separation was observed in the poor

solvent even at low concentrations. Light scattering experiments yielded useful informa-

tion about the hydrodynamics of the real chains in the corresponding solvent systems

in the dilute regime. It was found that the polymer forms stable aggregates in the poor

solvent due to weak interaction with the solvent. Overall results indicated that forma-

tion of smooth bead morphologies is due to homogenous drying of the polymer from

the good solvent. On the other hand, polymer aggregates lead to nanoscopic features

in the regions where the solidification occurs mainly in the poor solvent environment.
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İYİ ÇÖZÜCÜ-ZAYIF ÇÖZÜCÜ KARIŞIMI İÇERİSİNDE ÇÖZÜNMÜŞ

POLİMERİN ELEKTROSPREYLENMESİ YOLUYLA ELDE EDİLMİŞ, ÇİFTE

SEVİYE PÜRÜZLÜLÜĞE SAHİP MÜKEMMEL HİDROFOBİKLİKTE YÜZEYLER

Eren Şİmşek

MAT, Doktora Tezi, 2012

Tez Danışmanı: Yuzuf Z. Menceloğlu

Anahtar Kelimeler: Süperhidrofobik, Lotus etkisi, temas açısı histeresisi, faz

ayrımı, dağıtıcı parçacık dinamiği

Özet

Bu çalışmada, mükemmel hidrofobikliğe (ilerleyen ve gerileyen su temas açılarının

her ikisi de 180◦) sahip yüzeylerin elektrospreyleme yoluyla üretilmesine dair kolay bir

yöntem takdim edilmiştir. Bir stiren ve perfloroalkil akrilat kopolimerinin iyi çözücü

içerisinde elektrospreylenmesiyle, mikrometre seviyesinde büyüklüğe sahip polimer bon-

cukların oluşturduğu yüzeyler elde edilmiş, yüzeylerin oldukça küçük eşik su kayma

açılarına sahip olduğu belirlenmiştir. Çözeltilere zayıf çözücü eklenmesi, polimer bon-

cuklar üzerinde nanometre seviyesinde pürüz oluşumu ile sonuçlanmıştır. Ancak, üretilen

çeşitli yüzeylerden, baskın olarak nanometre seviyesinde pürüzlülüğe sahip olanların

dahi, çok küçük olduğu çıkarımı yapılsa da, temas açısı histeresisine sahip oldukları

gözlemlenmiştir. Diğer yandan, elektospreyleme işlem parametrelerinin ayarlanmasıyla,

‘yüzeyleri nanoskopik pürüz ihtiva eden mikron boncuk tepecikleri’ şeklinde elde edilen

yüzeylerde 0◦ eşik kayma açısı ölçülmüştür ki bu sonuç yüzeylerde histeresis değerinin

de sıfır olduğunu ima etmektedir. Su damlaları ve yüzeyler arasında gerçekleştirilen

temas ettirme-ayırma işlemi videoları, ve damla-yüzey arası yapışma kuvveti ölçümleri,

bu çifte seviye pürüze sahip yüzeylerin aslında mükemmel hidrofobiklikte olduklarını

göstermiştir. Bu yöntemin, aynı polimer ile diğer iyi solvent-zayıf solvent sistemlerine

uygulanması yine mükemmel hidrofobiklik ile sonuçlanmıştır. Sonuçlar genel çerçevede,
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topografyadaki değişikliklerin yüzeylerin ıslanabilirliğine mükemmel ve aşırı hidrofobik-

lik (ilerleyen ve gerileyen temas açıları 180◦’ye yakın) gibi dar bir aralıkta nasıl etki

edebildiğine dair önemli bilgiler açığa çıkarmıştır.

Kopolimerin iyi, zayıf ve karışım solvent sistemlerinde elektrospreylenmesi yoluyla

elde edilen yüzey topografyalarındaki farklılıkları açıklamak için, dağıtıcı parçacık di-

namiği simülasyonları ve dinamik ışık saçılımı analizleri gerçekleştirilmiştir. İyi çözücüde

gerçekleştirilen simülasyonlarda solusyonların tüm konsantrasyonlarda görece homo-

jen olduğu, ancak polimerin zayıf çözücü içerisinde düşük konsantrasyonlarda dahi faz

ayrımına gittiği görülmüştür. Işık saçılımı deneyleri, gerçek zincirlerin ilgili solvent

sistemlerinde seyreltik rejimdeki hidrodinamikleri ile ilgili faydalı bilgiler vermiştir.

Polimerin zayıf çözücü içerisinde stabil birikintiler oluşturduğuna dair bulgular elde

edilmiştir. Bütün halinde sonuçlar vurgulamıştır ki düzgün yüzeyli boncukların oluşumu

polimerin iyi çözücüden homojen kuruması sayesinde gerçekleşmektedir. Diğer taraftan,

polimer zayıf çözücü içerisinde faz ayrımına gitmekte, düzensiz kuruma sonucu nanoskopik

yapıların oluşumuna sebebiyet vermektedir.
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Chapter 1

Introduction

1.1 The Origin of Interfacial Tension

An interface is defined as the ‘boundary between immiscible phases’ [1]. The two

immiscible phases forming the interface might be solid-solid, solid-liquid, solid-gas,

liquid-liquid, and liquid-gas. Gas-gas interfaces do not exist since gases mix. The

interface between a gas and a solid or liquid is commonly termed as a ‘surface’. The

main difference between the surface and bulk of a material is that the molecules forming

the surface have unbalanced cohesive forces which pull them towards the bulk (Fig.

1.1) as Thomas Young states in his famous article, An Essay on the Cohesion of Fluids,

which was published in 1805 [2]:

“We may suppose the particles of liquids, and probably those of solids also,

to possess that power of repulsion, which has been demonstratively shown

by NEWTON to exist in aeriform fluids, and which varies in the simple

inverse ratio of the distance of the particles from each other. In airs and

vapours this force appears to act uncontrolled; but in liquids, it is overcome

by cohesive force, while the particles still retain a power of moving freely in

all directions; and in solids the same cohesion is accompanied by a stronger

or weaker resistance to all lateral motion, which is perfectly independent of

the cohesive force, and which must be cautiously distinguished from it. It is

simplest to suppose the force of cohesion nearly or perfectly constant in its

magnitude, throughout the minute distance to which it extends, and owing

1



liquid

air

Figure 1.1: The difference in the net forces acting on molecules at the bulk and surface.

its apparent diversity to the contrary action of the repulsive force, which

varies with the distance. Now in the internal parts of a liquid these forces

hold each other in a perfect equilibrium, the particles being brought so near

that the repulsion becomes precisely equal to the cohesive force that urges

them together; but whenever there is a curved or angular surface, it may be

found by collecting the actions of the different particles, that the cohesion

must necessarily prevail over the repulsion, and must urge the superficial

parts inwards with a force proportionate to the curvature, and thus produce

the effect of a uniform tension of the surface.”

Young, who died at the age of 55 in 1829, obviously did not know about molecules

or bonds, surface free energy or thermodynamics, but he had the wisdom to envisage

molecular structure as particles and forces, and resultant unbalanced, uniform forces

on the surface as surface tension. Surface tension is a net force per unit length. Surface

energy, on the other hand, is a quantity of excess energy that emerge upon creation of

a surface (basically, work must be done to break the intermolecular bonds and create a

surface), and defined in terms of energy per unit area. For homogenous, uniform sur-

faces, surface tension and energy fundamentally become same from a scalar perspective,

although their physical meanings remain different.

2



The strength of intermolecular forces determines the magnitude of surface tension.

In general, materials of polar molecules tend to have high surface tension, whereas

non-polar molecules yield relatively low surface tensions. For instance, water can form

two hydrogen bonds per molecule, which has made the liquid a benchmark high surface

tension material. Accordingly, terms hydrophilic and hydrophobic have been (loosely)

used to refer to materials having relatively high and low surface tension, respectively.

Polytetrafluoroethylene (Teflon as the trademark registered by DuPont Co. in 1945)

has become a benchmark low energy, hydrophobic surface due to the non-polar nature

of the -CF2 molecules forming the polymer backbone.

1.2 Fluorinated Polymers as Hydrophobic Materials

Fluorinated materials have attracted considerable attention due to their low surface

energy, corrosion resistance, thermal stability, low refractive index, and more. Par-

ticularly, fluorocarbons have found numereous applications as hydrophobic coatings

for low humidity and adhesion applications due to the non-polar nature of the -CFx

groups. Homopolymers composed of perfluorinated chains or pendant groups are pre-

ferred under conditions exhibiting high temperatures or rigorous chemicals but their

low or non-solubility in common solvents limit their use in many applications. How-

ever, for surface applications focusing on hydrophobicity, copolymers of fluorinated

and conventional monomers can be effectively employed since it is well understood

that perfluoroalkylated monomers decrease the wettability of surfaces due to the low

surface tension of the fluorinated groups. Particularly for the copolymers of perflu-

orinated monomers, the outermost layer of the polymers differs remarkably from the

bulk composition due to the surface segregation of fluorinated segments, which yields

relatively high advancing water contact angles. In addition, self assembly of fluorinated

block copolymers in various environments have been successfully utilized to fabricate

nano-structures having a wide range of morphologies which have found applications in

emerging technologies such as nano-optics, nano-electronics, nano-biotechnology, and

etc. [3–6].

All surfaces are energetically unfavorable since they have a positive energy of for-
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mation. Liquids tend to reduce the amount of their surface area by forming spherical

shapes in order to decrese the total surface energy (sphere has the lowest surface area

per volume). Solids, on the other hand, usually perform the action of ‘surface energy

minimizing’ by exposing low surface energy segments. Accordingly, the surface and bulk

composition can differ remarkably. For instance, it has been shown in many reports

that homopolymers of fluorinated acrylates and siloxanes, or their copolymers with

conventional monomers can show very low surface energy since the fluorinated groups

segregate on the outermost surface [7–18]. The contribution of fluorinated groups to

surface energy decreases in the order of -CF2H, -CF2-, and -CF3, respectively [19, 20].

Particularly for the copolymers of perfluorinated monomers, the outermost layer of

the polymers differs remarkably from the bulk composition, and is covered with large

concentrations of the fluorinated segment.

Liquid crystalline ordering of perfluoroalkyl side chains in the block and graft copoly-

mers enhances both the density of fluorinated groups at the interface [10–12,18,21] and

resistance to surface reorganizations due to environment change [9, 18, 22]. Except for

several studies [10, 12, 13], random copolymers of perfluorinated acrylates have been

of less interest in the wettability literature. This might be due to the susceptibility

of those surfaces to reorientation of polar groups towards the liquid phase in order to

decrease the interfacial energy when in contact with water.

1.3 Introduction to Wettability

In his famous essay Young continues:

“We may therefore inquire into the conditions of equilibrium of the three

forces acting on the angular particles, one in the direction of the surface of

the fluid only, a second in that of the common surface of the solid and fluid,

and the third in that of, the exposed surface of the solid. Now supposing

the angle of the fluid to be obtuse, the whole superficial cohesion of the fluid

being represented by the radius, the part which acts in the direction of the

surface of the solid will be proportional to the cosine of the inclination; and
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Figure 1.2: Three idealized states of wetting.

this force, added to the force of the solid, will be equal to the force of the

common surface of the solid and fluid, or to the differences of their forces...”

Although never wrote an equation, Young’s statements regarding cohesion of fluids

leads to the formulation of contact angle, θ, of a liquid on a surface as [23]:

cos θ =
FSV − FSL

FLV

(1.1)

where FSV , FSL, and FLV are the forces pertained to the cohesion of superficial particles

at the solid-vapor, solid-liquid, and liquid-vapor interfaces, respectively. This equation

is the result of a simple force balance that must exist on a three phase contact line (the

imaginary line that forms the boundary between the solid, liquid, and vapor phases)

at equilibrium. On a chemically homogeneous, smooth surface, these forces would be

equal to the interfacial tensions (σ) as depicted in Fig. 1.2(a). However, roughness

affects contact angles. Thus, for the wettability of rough solid surfaces, two models

were proposed:

• A Wenzel [24] state characterized by penetration of liquid into the grooves com-

pletely and formation of a continuous solid-liquid interface: A saturated surface

(Fig. 1.2(b))

• A Cassie-Baxter [25] state where the liquid sits on the protrusions and trapped

air between them: A composite surface (Fig. 1.2(c))

Wenzel, while discussing the wettability of saturated rough surfaces, indicates that [24]:
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“We must, then, recognize a distinction between the total or “actual sur-

face” of an interface and what might be called its superficial or “geometric

surface”; the latter is the surface as measured in the plane of the interface.

Where perfect smoothness is an acceptable assumption, as at liquid-liquid or

liquid-gas interfaces, actual surface and geometric surface are identical, but

at the surface of any real solid the actual surface will be greater than the

geometric surface because of surface roughness. This surface ratio will be

here termed the “roughness factor” and designated by r:

r = roughness factor =
actual surface

geometric surface
(1.2)

By definition, surface tensions, like specific energy values, are related to one

unit of actual surface. But when water spreads over the surface of a real

solid, the forces that oppose each other along a given length of the advancing

periphery of the wetted area are proportional in magnitude, not to the surface

tensions of the respective interfaces but to their total energies per unit of

geometric surface. This must be true if surface tensions themselves are

characteristic properties, unaltered by surface roughness. For if a solid, M ,

of surface tensions x and water-solid interfacial tension y presents a surface

so rough that its actual surface per unit geometric surface is doubled, then its

energy content per unit geometric surface must also be doubled. That surface

can then be no different in wetting characteristics from the smooth surface of

a solid, N , of surface tension 2x and water-solid interfacial tension 2y. In

the latter case the surface forces in vector relation with the surface tension

of the liquid at the periphery of the wetted area are equal to 2x and 2y; and

so they must be also for the roughened surface of solid M .”

As it is clear form his statements, Wenzel explicitly proposes that apparent contact

angle on a saturated surface is a function of Young’s angle such that:

cosθrough = r
γSV − γSL

γLV
= rcosθsmooth (1.3)

with a significant difference that replaces ‘force’ in Young’s expressions (Eq. (1.1)) with

‘energy’. Cassie and Baxter established their theories on roughness induced wettability
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on Wenzel’s perception of surface energies. They formulated the apparent contact angle

of a liquid on a rough surface in a composite wetting state such that:

cosθrough = f1cosθsmooth + f2cos(180) (1.4)

where f1 and f2 are the fractions of solid-liquid and solid-vapor interfaces under the

droplet, respectively (the sum of f1 and f2 is unity and 180 refers to the contact angle

of the liquid in air). Transformation from Wenzel to a Cassie-Baxter state occurs at a

critical hydrophobicity of the solid for a given rough surface, or at a critical roughness

for a given hydrophobic polymer [26,27], where the capillary pressure (Eq. (1.5), where

σ, θ, and r are the surface tension of the liquid, wetting angle of the liquid on the surface

of the capillary, and effective radius of the interface, respectively) becomes higher than

the Laplace pressure (∆P in Eq. (1.6), where σ and R are the surface tension and radius

of the droplet, respectively) of the droplets so that the droplet stands on protrusion

tops on the rough surface. For a particular liquid, capillary pressure is basically a

function of the width and (advancing) contact angle of that liquid on the surface of the

capillary . A composite wetting state is associated with the inability of water intrusion

into indentations, when the condition that the Laplace pressure cannot overcome the

negative capillary pressure is satisfied. Therefore, surfaces composed of low surface

energy materials and sufficiently rough micro topology show high (advancing) water

contact angles due to the existence of composite interfacial state. Such surfaces are

defined as superhydrophobic if the measured (advancing) contact angle is larger than

150◦. Using the term superhydrophobic would be convenient only to indicate the sphere-

like shape of water droplets having reduced contact area with the surface; however, a

non-wettable surface must allow easy movement of droplets, which is more complex

than a definition made with a single, static contact angle value (this is also why the

unexplained term advancing appears in brackets in the sentences above).

pc =
2σ cos θ

r
(1.5)

∆P =
2σ

R
(1.6)
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1.4 The Famous Wenzel and Cassie-Baxter Equations are Indeed Wrong

Wenzel and Cassie-Baxter theories (sometimes denoted as laws) have been extensively

referred in the area of roughness induced hydrophobicity (Corresponding references

[24, 25] have been cited 2,737 and 2,582 times, respectively, by July 2012). However,

the two theories were proven to be wrong in 2007 by McCarthy and his coworkers [23,28],

who had also been indicating the failure of these two theories to explain the dynamic

behavior of droplets until then [29–32]. They demonstrated their claim with contact

angle experiments on two-component surfaces which contained a ‘spot’ in a surrounding

field as shown in Fig. 1.3(a) and (b). Advancing contact angle of smooth and rough

regions in this experiment were about 117◦ and 168◦, respectively. The main scope of the

experiment was to investigate whether the area under the droplet affected the contact

angles as indicated by Wenzel and Cassie-Baxter equations. The experiments started by

measuring the contact angles of a droplet so small that its contact perimeter is inside the

inner spot of the corresponding surface. Then, the droplet size was gradually increased

by injecting water, while the contact angles were measured constantly. It is apparent

from the frames of this experiment (Fig. 1.3(a)-III and (b)-III) that the droplets exhibit

contact angles according to the contact region at the three phase contact line (let’s say,

the outermost solid-liquid contact points on the solid surface, or the perimeter of the

solid-liquid contact). For instance, on a Fig. 1.3(a)-I type surface having a 1 mm inner

(rough) spot diameter, two water droplets having 0.5 and 1.1 mm diameter exhibited

(advancing) contact angles 168◦ and 117◦, respectively. On the other hand, Eq. (1.4)

predicts a 152◦ contact angle for the latter case. Similarly, on a Fig. 1.3(b)-I type

surface having a 1 mm inner (smooth) spot diameter, two water droplets having 0.5

and 1.1 mm diameter exhibited (advancing) contact angles 117◦ and 168◦, respectively;

whereas Eq. (1.4) predicts a 123◦ contact angle for the latter case. Accordingly, this

experiment indicated that contact angle behavior is determined by interactions between

the liquid and the solid at the three phase contact line alone and that, the interfacial

area within the contact perimeter is irrelevant [23].
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Figure 1.3: Surfaces that exhibit (a) a rough spot in a smooth field, and (b) a smooth

spot in a rough field. Images labelled as I and II are the depictions of the surfaces and

the wettability experiments, respectively, shown in frames labelled as III.

1.5 Three Phase Contact Lines: All Wetting Phenomena is Indeed a

One Dimensional Issue

When a droplet moves on a surface, it advances on the front side and recedes on the

rear side of the movement with two characteristic contact angles called advancing and

receding angles denoted as θA and θR, respectively, as shown in Fig. 1.4(a). At the front

side of the moving droplet, water molecules at the contact line indeed do not move but

water molecules at the liquid-vapor interface near the contact line fall down onto the

surface to form a new line (Fig. 1.4(c)). Thus, old contact line becomes a part of the

solid-liquid interface [32]. To a what extent the liquid-vapor interface must descend to

make a contact with the solid surface can be measured and quantized as the advancing

contact angle, θA. At the rear side of the motion, however, contact line must come off
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Figure 1.4: Physical events that occur during movement of a droplet. (a) Advancing

and receding contact angles of a droplet moving on a tilted surface. Movement of three

phase contact line during receding (b), and advancing (c).

the solid surface and recede into the liquid, while a new line is formed simultaneously by

the molecules which were previously forming the solid-liquid interface near the contact

line (Fig. 1.4(b)). This event requires an activation energy formed fundamentally by the

adhesive forces that hold the contact line in its metastable state. For a sessile droplet,

this energy barrier is overcomed if the surface is tilted and droplet is distorted due to

gravitational forces until the rear contact angle reaches down the critical, receding angle

θR, at which the component of the liquid surface tension vector parallel to direction

of droplet movement (σLV cos θR), becomes sufficiently large. Topographical structure

and chemical composition of a surface determines a unique advancing and receding

angle for a particular liquid. At a given time, a liquid cannot have a contact angle

larger than θA and smaller than θR since any attempt would bring back the angle in

between these critical values by advancing or receding the contact line. On the other

hand, contact angle can take every value between θA and θR. Various contact angles

may occur through condensation or evaporation of droplets, or might be adjusted by

injecting liquid into or withdrawing liquid from a sessile droplet. If the the contact

angle of a sessile droplet is close to θA, droplet would readily advance by a slight tilting

of the surface but cannot move until it reaches a distorted shape that exhibit θR at the

rear side. Similarly, if the contact angle is closer to θR, the droplet would not move until

the tilt angle of the surface provides a front contact angle equal to θA, although the rear

side would readily recede. These discussions brings out the concept of contact angle
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(a) (b) (c)

Figure 1.5: Pictorial representations of surfaces with three different roughness topolo-

gies. The darker lines describe possible three-phase contact lines for a drop of water in

contact with these surfaces: (a) A screen on which a fairly continuous contact line can

form, (b) separated ridges on which a discontinuous but substantial contact line can

form, and (c) separated posts on which a very discontinuous contact line must form.

hysteresis, the difference between the advancing and receding contact angles, which is

fundamental for wetting phenomena according to the equation [33]:

mg
sinα

w
= γLV (cos θr − cos θa) (1.7)

where α is the threshold angle of inclination for movement of a sessile droplet with a

mass m and a width w. If a hydrophobic smooth surface is transformed into a Cassie-

Baxter state by introducing sufficient roughness, the composite interface structure under

the contact line leads to even higher advancing angles by effective slip on air pockets

due to high capillary pressure of the cavities [34–40]. However, topographical structure

of the surfaces may suggest various shapes and resultant behaviors for contact lines.

Composite surfaces of fractal topographies lead to formation of discontinuous contact

lines that result low hysteresis as shown in (Fig. 1.5(c)) [29]. On the other hand, contact

line follows the topography continuously on composite surfaces formed by structures

such like fibers, straight walls etc. (Fig. 1.5(a)), thus receding of the line requires

high activation energy and droplets are pinned. These discussions indicate that the

geometrical structure of the surface roughness determines the stability of the contact

line, thus, dynamic behavior of droplets. Droplets are unstable on surfaces having zero

contact angle hysteresis and impossible to be immobilized with any effort.
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1.6 Measurement of Dynamic Contact Angles

As mentioned previously, a droplet can take any contact angle value that is between

the advancing and receding contact angles. Thus, wettability of a surface can only be

defined by these two critical angles, or by a function of them. θA and θR are generally

measured with a conventional contact angle goniometer, preferably equipped with a

drop shape analyzer software. For the measurement of θA, usually a small droplet is

deposited on the surface, as shown by step 1 in Fig. 1.6(a), and the contact angle

is increased by continuously injecting water (steps 2, 3, and 4). At a certain droplet

size, additional injection of water do not increase the contact angle but leads to the

movement of three phase contact line (steps 5 and 6). A snapshot of the droplet is

taken while the contact line moves, and the contact angle is measured and regarded

as θA. Measurement of θR is performed by depositing a large droplet on the surface

and decreasing the contact angle by withdrawing water from the droplet as shown by

steps 1, 2, and 3 in Fig. 1.6(b). At a certain droplet size, withdrawal of water do not

decrease the contact angle any more but leads to the retraction of three phase contact

line (steps 4 and 5). A snapshot of the droplet is taken while the contact line moves,

and the contact angle is measured and regarded as θR.

inject

θA

1
2
3

4
5
6

withdraw

θR1

2

3
4
5

advancing contact angle receding contact angle

(a) (b)

Figure 1.6: Pictorial representations of (a) advancing contact angle, and (b) receding

contact angle measurement. Numbers indicate the order of experimental steps.
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1.7 On the Delusion Created by High Static Contact Angles

One can perform a basic search in Web of Science with the keyword superhydrophobic as

the topic to notice that superhydrophobicity has been one of the hot subjects of natural

sciences in the last decade. A search spanning the time between July 2002 and 2012

returns 3,421 results, which correspond to about one paper per day on the average.

One can also make a new search within these results with the keywords advancing,

receding, hysteresis or sliding to realize that only about 11 % of these studies discuss

the dynamic behavior of droplets. It appears that probably a single, static contact angle

value is reported in most of these studies to use the term superhydrophobic (contact

angles > 150◦) and its irrelevancy for the ease of droplet movement is mostly ignored.

The reason why high advancing contact angle values occur on superhydrophobic, rough

surfaces was discussed in Section 1.5. Although a droplet can take any contact angle

value between advancing and receding contact angles, common observation of high static

contact angles on superhydrophobic surfaces has very simple dynamics as depicted in

Fig. 1.7. When a droplet is being deposited on a superhydrophobic surface, it touches

the surface with its contact angle at air: 180◦. The three phase contact line advances

A droplet is brought close to a
surface with θ = 180o (at air)

Contact angle,  θ, decreases due to
the change in the thermodynamical
shape of the droplet

Contact line stops, when θ < θA 

The surface exhibits θA ≤ 180o;
contact line advances

θ θ

θA θA

θ θ

Figure 1.7: Dynamics of static droplet formation.
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Figure 1.8: (a) SEM micrograph of the Nelumbo nuicefera (Lotus) leaf surface, (b) water

droplets on the Lotus leaves, and (c) connection between roughening and self-cleaning.

since 180 would be higher than the θA of the surface, while the contact angle of the

droplet gets smaller due to the change in the thermodynamic shape of the droplet. The

movement of the contact line continues until the contact angle of the droplet becomes

just smaller than θA. Accordingly, a static droplet with a contact angle very close

to the θA of the surface occurs. Scientists generally measure contact angles of static

droplets deposited via a syringe equipped with a needle, by sessile droplet methods

of contact angle goniometers, and report these values to characterize the wettability

of their surfaces. Studies on roughness induced hydrophobicity gained much attention

particularly after the relation between the self cleaned surfaces of the Lotus plant leaves

and the mesoscale roughness on them was established (Fig. 1.8) [41]. On smooth

surfaces, the particles are mainly redistributed by water (Fig. 1.8(c)-I, but on rough

surfaces, they adhere to the droplet surface and are removed when the droplets roll off

(Fig. 1.8(c)-II). This physics is indeed the underlying mechanism responsible for the

ever clean surface of the leaves; however, it was the spherical shape of droplets (i.e.

high static contact angles) on which scientists have mainly focused (Fig. 1.8(b)).

1.8 Dual Length Scales of Topography is the Route to Zero Hysteresis

Both advancing and receding events involve the movement of three phase contact line

but underlying mechanisms are different for the two phenomena [32]. On most super-

hydrophobic surfaces, as mentioned previously, advancing contact angles are relatively

high, even may be very close to 180◦, due to large effective slip of water (contact line)

over air pockets in the cavities which exhibit high capillary pressure; therefore, magni-
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tude of θR is usually more influential on hysteresis. One effective strategy for reducing

or eliminating contact angle hysteresis was described as increasing the receding con-

tact angle of the protrusion tops of a surface on a composite wetting state [42]. This

was accomplished by introducing nanoscopic roughness on the micron scale post tops

in the corresponding reference. The θA/θR values on the rough surface shown in Fig.

1.9(a) was 176◦/156◦. The values were 104◦/103◦ on the smooth surface of the same

material. On this rough surface, the droplet is at θA=176◦, and the smooth tops of the

posts exhibit θA=104◦. Thus, there is obviously no kinetic barrier to advancing and

water must spontaneously advance over the posts. On the other hand, the droplet is at

θR=156◦, and the smooth tops of the posts exhibit θR=103◦. Accordingly, segments of

the contact line cannot move independently on individual post tops, but must disjoin

from entire post tops in concerted events in order to move. This receding contact line

pinning, due to the disjoining pressure, gives rise to the 20◦ hysteresis. However, when

the receding angle of the post tops was increased by introducing nano scale roughness

(Fig. 1.9(b)), θA/θR 176◦/176◦ (zero hysteresis) is measured. The nanoscopic rough-

ness facilitates receding by minimizing the amount of contact on the post tops as shown

in (Fig. 1.9(c)). Authors indicated that water droplets do not come to rest, and roll

effortlessly on this surface containing two length scales of topography.

(a) (b) (c)

Figure 1.9: (a) Scanning electron microscopy (SEM) image of a surface containing

staggered 4 x 8 x 40 µm rhombus posts, (b) SEM image of the surface shown in panel

a after introducing nano scale roughness, and (c) receding event on micron (top) and

dual scale (bottom) surface.
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1.9 New Definitions Related to Wettability

In order to differentiate low hysteresis slippy surfaces, whether having high contact

angle values or not, from the high hysteresis, sticky superhydrophobic surfaces, the

term ultrahydrophobic was suggested [29] upon asking the question “Which surface is

non-wettable?”. In another example presented by the photographs in Fig. 1.10(a), when

a droplet of water is placed on a flat Teflon film, the “benchmark” of hydrophobicity,

the polymer instantaneously wraps the droplet. So, how suitable or adequate it is to

label Teflon as hydrophobic? The term ultrahydrophobic is evidently a better choice

to refer to non-wettable surfaces on which droplets can move easily. The fact that

a droplet on a surface can take every value between θA and θR obviously provokes

avoiding the definitions of the wettability by taking a single contact angle value into

account. In addition, a definition, such as ultrahydrophobic, which fundamentally

depends only on the value of hysteresis, would be inadequate to differentiate between

low hysteresis surfaces of low contact angles and high contact angles. Therefore, new

practical definitons taking both hysteresis and the value of contact angles were made

[43]. For instance, as shown in Fig. 1.10(b), a surface with θA/θR 60◦/60◦ supports

a small droplet of water when held perfectly horizontal but does not if the surface is

slightly tilted. Such surfaces are regarded as shear hydrophobic due to low hysteresis,

and tensile hydrophilic due to low θA value. On the other hand, a droplet needs to

distort from a section of a sphere in order to slide on a surface, for example, with θA/θR

170◦/120◦. Such surfaces are regarded as shear hydrophilic due to being sticky, but

tensile hydrophobic because of their high θA. An additional definition was made for a

particular extreme surface having θA and θR both 180◦ as perfectly hydrophobic [44].

The importance of such surfaces is that they exhibit the maximum water contact angle

values attainable on a solid surface, and work of adhesion between water droplets and

them is zero.
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θA/θR=60o/60o

tensile hydrophilic
θA/θR=170o/120o

tensile hydrophobic

θA/θR=60o/60o

shear hydrophobic

θA/θR=170o/120o

shear hydrophilic

(a) (b)

Figure 1.10: (a) Frames of a videotape of a droplet (8.5 µL) of water being placed onto

a thin film of Teflon (≈3.7 µm thick), and (b) differences between shear and tensile

hydrophobicity.

1.10 Perfectly Hydrophobic Surfaces

It is fundamentally impossible to immobilize a droplet on a non-wettable surface with

zero hysteresis unless the surface is hold perfectly horizontal (which would obviously

extremely challenging in a physical world). The driving forces for the movement of

droplets might be gravity, wind etc. which deform the droplet shape into a geometry

such that advancing and receding angles are reached. However, in the absence of such

driving forces, for instance in space, even zero hysteresis surfaces would exhibit adhesion

towards water and work would be required to separate them from each other unless the

receding angle is 180 ◦, i.e. the surface is perfectly hydrophobic.

Literature data on perfectly hydrophobic surfaces is very rare (only three papers

existed by July 2012). The first study that reported a perfectly hydrophobic surface

was published in 2006 [44]. In this study, silicon wafers were submerged in toluene

solutions of MeSiCl3 at room temperature, rinsed with toluene and extracted with

ethanol at 40-65 % relative humidity. This process yielded a surface composed of a

random nanofiber network as shown in Fig. 1.11(a). Wettability analysis of this surface

revealed contact angles θA and θR both 180◦, thus the surface was regarded as perfectly

hydrophobic. The next reported perfectly hydrophobic surface was from a commercially
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(a) (b)

Figure 1.11: (a) First ever reported perfectly hydrophobic surface, and (b) SEM micro-

graph of the compressed sample of tetrafluoroethylene oligomer.

avaliable, variable diameter submicrometer particles of tetrafluoroethylene oligomers

[45], which was stated to be available in kilogram quantities. The authors prepared

perfectly hydrophobic surfaces by pressing this waxy material between two flat surfaces

to form a monolithic supported compressed sample. The surface is indicated to comprise

at least two levels of topography; these arise from the submicrometer size spherical

particles and the greater length scale roughness of the compressed sample. An SEM

micrograph of the perfectly hydrophobic surface is given in Fig. 1.11(b).

The third and last published study on perfectly hydrophobic surfaces described a

procedure for forming polystyrene nanoneedle arrays by utilizing the trapping of inor-

ganic silica particles at the polystyrene/air interface via capillary wetting of a thermo-

plastic polystyrene polymer and SF6 reactive-ion etching [46]. A monolayer of silica

microspheres was formed and trapped on the smooth PS film, and subsequent wet

etching with HF and reactive-ionetching with SF6 left behind hexagonal arrays of pro-

truding tips with tip diameters around 20 nm as shown in Fig. 1.12. The common

characteristics of the three aforementioned studies is that, although not explicitly ex-

plaining the mechanism of perfect hydrophobicity, they exhibit an implication of (from

SEM images or indirect statements) nanoscopic roughness distribution on micron scale
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Figure 1.12: SEM micrograph of the hexagonal nanoneedle array.

features, which might be the route to perfect hydrophobicity.

1.11 Introduction to Electrospraying

Electrospinning is a widely known, cost efficient and versatile method to prepare poly-

meric nanofibers [47–49]. The process basically involves drawing an electrically charged

jet of polymer solution or melt towards a grounded collector and formation of micro and

nanofibers upon elongation and thinning of this jet prior to solidification, as schemat-

ically shown in Fig. 1.13(a). Several studies report the utilization of the electrospun

fiber morphologies to achieve rough topographies which lead to formation of superhy-

drophobic surfaces [50–62]. When the solution viscosity is low, however, solution jet

may break up into spherical droplets (Fig. 1.13(b)) which generally form micron size

syringe pump

polymer
solution

grounded
collecting
screen

polymer
droplets

High voltage
(DC)

(a) (b)

Figure 1.13: (a) Schematic represantation of electrospraying, and (b) high-speed pho-

tographs of electrospraying process where jet breaks up into separate droplets.
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Figure 1.14: Physical representation of three solution regimes.

beads upon drying and the process is termed as electrospraying. Formation of beads

during electrospraying is commonly attributed to the breaking up of the polymer so-

lution jet due to deficiency of chain entanglements [63, 64] and formation of spherical

droplets induced by surface tension [65]. Electrospraying may occur at a semidilute

unentangled solution regime whose lower and upper limits are defined by two criti-

cal properties, chain overlap concentration (c∗) and chain entanglement concentration

(ce), respectively (Fig. 1.14). In fact, electrohydrodynamics is a complex phenomena

controlled by many other parameters including permittivity, dielectric constant, den-

sity, surface tension, conductivity and the flow rate of the liquid, as well [66]. If the

parameters favor electrospraying, disintegration of droplets from the charged solution

jet is followed by the formation of a semi-flexible skin layer due to fast evaporation of

solvent from the surface of the droplet, leaving a polymer rich phase in the surface and

solvent rich phase in the core. Diffusion of solvent from core to the surface prior to

complete solidification may lead to collapse of the skin layer into wrinkled, dimpled,

dish shaped, cuplike, or hollow structures depending on the process conditions and

polymer type [67–73] (Fig. 1.15).
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Figure 1.15: Various bead shapes that may occur during electrospraying.

1.12 Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) technique has become a common mesoscopic

method to understand the self-assembly behavior of polymers, surfactants and many

other systems since its introduction in the early 1990s as a method to study the rheo-

logical behavior of polymers [74–83]. As a coarse grained simulation technique, DPD

uses beads which represent clusters of atoms and deals with bead-bead interactions

computed from atomistic simulations. This process allows performing simulations with

length and time scales as long as micrometers and microseconds, respectively. In the

DPD of macromolecules, polymers are represented by beads connected with linear har-

monic springs.

The beads in DPD interacts according to Newton’s equations of motion:

d~ri
dt

= ~vi,
d~vi
dt

= ~fi (1.8)

where ~ri, ~vi, and ~fi are the position vector, velocity, and force, acting on the particle i,

respectively. All bead masses are assumed to be equal and set to unity for simplicity.
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The force ~fi is the sum of three pairwise additive components such that:

~fi =
∑
j 6=i

(~FC
ij + ~FD

ij + ~FR
ij ) (1.9)

where the summation is over all other particles j that are within a critical cutoff radius

~rc of bead i. This value is also set to unity for simplicity. ~FC
ij is the conservative force

which is acting as a soft repulsion along the line connecting the center of beads i and

j, and represented by:

~FC
ij =

aij(1− rij)r̂ij, (rij < 1)

0, (rij ≥ 1)

(1.10)

where aij is a maximum repulsion between beads i and j, ~rij = ~ri − ~rj, rij = |~rij|,

and r̂ij = ~rij/ |~rij|. ~FD
ij is the dissipative force, which is proportional to the relative

velocities of the beads i and j with respect to each other, acts so as to reduce their

relative momentum. The random force ~FR
ij maintains the system temperature. The

dissipative and random forces also act along the line of centers and conserve linear and

angular momentum. In DPD, internal degrees of freedom of the clusters are integrated

out as bead representations, and a momentum conserving stochastic thermostat of

the pairwise dissipative and random forces is used. Therefore, the conservative soft

repulsive force is the main factor that drives the system. Accordingly, the parameters

aij are referred as bead-bead repulsion parameters, in other words, DPD interaction

parameters, which fundamentally depend on the underlying atomistic interactions.

1.13 The Scope of the Study

Inspired by the water repellent behavior of the ever-clean Lotus leaves, remarkable ef-

fort has been presented to mimic the mesoscopically rough plant surface to achieve the

similar behavior on artificial surfaces [84–94]. Although the beads in electrospinning

are generally regarded as defects in the nanofiber production, we have reported that

the roughness introduced by the beaded surface morphology leads to water repellency

if the electrosprayed polymer is hydrophobic [95]. The fractal structure of the beaded

topography implied a very discontinuous contact line that allowed droplet movement
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at relatively low tilt angles. However, starting with this study on superhydropho-

bic electrosprayed surfaces, we have performed hundreds of experiments with various

hydrophobic polymers and observed that these beaded topographies always exhibited

contact angle hysteresis (although to a small extent, most of the time). In this study,

it was demonstrated that that nanoscopically smooth nature of the micron size beads

play an important role to obstruct the recession of contact lines.

In this thesis, a facile method to achieve perfect hydrophobicity (θA and θR both

180◦) on electrosprayed superhydrophobic surfaces of a poly(styrene-co-perfluoroalkyl

ethylacrylate) copolymer is described. The overall study consists of:

1. Formation of micron size beads due to fast evaporation of low boiling point good

solvent from the electrosprayed droplets

2. Formation of nanoparticles on the micron size beads via phase separation of the

polymer drying from the high boiling point poor solvent trapped in the core of

the droplets

3. Control of the nanoscale roughness distribution on the individual beads, and

overall coating as well, by tuning the electrospraying process parameters

4. Achieving a dual scale (micron and nanometer) rough surface by partially coating

the substrate

Bead formation is the most recognized outcome of polymer electrospraying. The

bead sizes could be tuned by varying the polymer concentration in good solvents such

as tetrahydrofuran and chloroform, and fairly low threshold sliding angles were mea-

sured on the coated surfaces. On the other hand, nanoscopically rough beads achieved

through addition of high boiling point poor solvents, such as dimethylformamide and

dimethyl sulfoxide, to the solutions were quite interesting. This topography is pre-

dicted to form by phase separation of the polymer during final drying of the beads

from the high boiling point poor solvent. Eventually, electrospraying parameters were

succesfully controlled to achieve dual scale rough topographies, by partially coating

the substrate with nanoscale rough bead hills. Threshold sliding angles, and therefore
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contact angle hysteresis, were zero on these surfaces. Droplet videos recorded during a

contact and release experiment with a conventional contact angle goniometer revealed

that these surfaces have no affinity to water droplets. In addition, the adhesive forces

between the droplets and surfaces were measured using a microbalance, and it was

observed that the force of adhesion also was zero on the dual scale rough surfaces.

This observations indicated that receding angles (advancing angles as well, according

to zero hysteresis condition of Eq. (1.7) were 180◦ on these surfaces. It is claimed

that among the previously described studies regarding superhydrophobic surfaces pro-

duced by electrospraying [96,97], this method is novel, particularly as a one to achieve

perfectly hydrophobic surfaces.

In order to rationale the formation of different morphologies in the correspond-

ing electrosprayings, dissipative particle dynamics (DPD) technique was applied. The

morphological behavior of the copolymer in THF and DMF was investigated via DPD

simulations. In addition to computational work, dynamic light scattering measurements

were performed to have insight about the hydrodynamic behavior of the polymer chains

in the corresponding solvents. Analysis revealed that simulations and experimental re-

sults correlate well since both methods pointed out the self assembly of the copolymer

in the poor solvent.
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Chapter 2

Materials and Methods

2.1 Materials

Styrene (technical) was purified by passing through an alumina column. Perfluoroalkyl

ethylacrylate (PFA, H2CCHCO2(CH2)2(CF2)nCF3, n = mixture of 6, 8, and 10, Clari-

ant Fluowet AC812), trichloro ethylene (TCE, Carlo Erba), tetrahydrofuran (THF,

Merck), N,N -dimethylformamide (DMF, Merck), chloroform (Riedel), dimethyl sul-

foxide (DMSO, Sigma-Aldrich), and ethanol (technical grade) were used as received.

2,2’-azobisisobutylonitrile (AIBN, Fluka) was recrystallized from methanol and stored

at -20 ◦C prior to use.

2.2 Synthesis and Bulk Characterization of Poly(St-co-Perfluoroalkyl

ethylacrylate)

Poly(St-co-PFA) random copolymer was synthesized as 10 mol % PFA. AIBN was used

as the initiator and THF was used as solvent. Reaction was carried out by a free

radical solution copolymerization at 65 ◦C for 5 days. Pure copolymer was achieved

by first precipitating the solution in ethanol, then washing with ethanol several times

and finally drying in a vacuum oven at 55 ◦C for 12 hours. Copolymer compositions

were determined by 1H-NMR (500 MHz Varian Inova) peak integrations. Molecular

weight and molecular weight distribution were determined by an Agilent Model 1100

gel permeation chromatograph. Molecular weights were calibrated using poly(methyl

methacrylate) and polystyrene standards.
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Figure 2.1: Synthesis of Poly(St-co-Perfluoroalkyl ethylacrylate).

2.3 Electrospraying of the Copolymer Solutions

Electrosprayings were performed using a Gamma High Voltage ES30 power supply and

a New Era NE-1000 syringe pump to control the solution feed rates. A schematic rep-

resentation of the setup was given in Fig. 1.13(a). In all experiments, tip to ground

distance was kept constant at 10 cm. Solutions were prepared by dissolving the copoly-

mer in the corresponding solvent system and stirring at room temperature for at least

30 min.

2.4 Characterization of Surface Topographies

Surface morphologies of the smooth films were analyzed with a Multimode-Nanoscope

III atomic force microscope (AFM) in the tapping mode and surface roughness was

evaluated with the help of Nanoscope software. Surface morphology analysis of the

electrosprayed films were performed with a LEO Supra VP35 FE-SEM after sputter

deposition of a thin conductive carbon coating onto samples.

2.5 Wettability Analysis

Contact angle analyses of the samples were performed with a Krüss GmbH DSA 10 Mk

2 goniometer with DSA 1.8 software. In all of the measurements, freshly distilled ultra-

pure Milipore water was used. Threshold sliding angle measurements were performed

by first depositing a 10 µL water droplet on a horizontal surface and then gently tilting
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the surface with the help of a micrometer until the droplet started to move.

Hydrophobicity of the copolymer was determined using contact angle analysis on

smooth copolymer films prepared by dip coating a 6 wt% TCE solution onto freshly

cleaved mica surfaces at a rate of 2 mm/min. The force required to separate a droplet

from a superhydrophobic surface was measured by the microbalance of a KSV Sigma

700 Force Tensiometer having a force resolution of 0.1 µN. The superhydrophobic sur-

face and the droplet were contacted and separated with a rate of 0.5 mm/min. For

each surface, 4 consecutive measurements from 5 different regions of the surface were

averaged.

2.6 Particle Size Measurements

Particle size anaysis of the samples were performed by dynamic light scattering (DLS)

technique with a Malvern Instruments Zetasizer Nano-ZS. DLS measures the dynamic

fluctuations of scattered light intensity from the Brownian motion of the particles in a

liquid media and performs a velocity distribution analysis, which can be correlated to

a hydrodynamic diameter/radius via Stokes-Einstein equation. For the preparation of

samples for each analysis, 3 mg polymer was transferred into a 15 g of corresponding liq-

uid and stirred rigorously with a magnetic stirrer for 30 min. If performed additionally,

an ultrasonicator was used to disperse the particles/chains in the liquid media. 1 mL of

the dispersion is gently transferred into a quartz cuvette and a total of 90 measurements

were averaged from 3 different batches that belong to the same dispersion.

2.7 Atomistic Simulations for DPD Parametrization

Solubility parameters, δ, were calculated by atomistic simulations using the Amorphous

Cell module of MATERIALS STUDIO following a geometry optimization of the beads.

COMPASS 52 force field was used for both optimization and MD processes. A succes-

sive 1 ps equilibration step and 100 ps MD simulations were performed on simulation

boxes containing 10 beads of the same type with a density of 1.0. For all non-bonded in-

teractions, a cut-off radius, rc , of 8.5 Å and periodic boundary conditions were applied
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Figure 2.2: Partitioning of the beads for coarse-grained simulations.

in the canonical ensemble. Initial velocities were assigned from a Maxwell Boltzmann

distribution such that total momentum in all directions equals to zero. Average molar

volume of the beads, Vm, were calculated using the ACDLabs/ChemSketch 5.0 and

the Hildebrand solubility parameters were determined according to Eq. (2.1), where

∆Ev and CED correspond to molar energy of vaporization and cohesive energy density,

respectively.

δ = (
∆Ev

Vm
)1/2 = (CED)1/2 (2.1)

2.8 Parametrization of Interactions for the Coarse-Grained DPD Method-

ology

DPD bead partitioning of the copolymer is shown in Fig. 2.2 as A, B and C stand

for the styrene, ethyl acrylate and perfluoroalkyl segments, respectively. In addition,

solvents THF and DMF are labelled as beads S1 and S2, respectively, without any

segmentation. Flory-Huggins interaction parameters, χij, were calculated according to

Eq. (2.2) using the solubility parameters determined from atomistic simulations. The

DPD interaction parameters, aij were calculated according to the linear relationship

put forward by Groot [77] as aii = 25kBT and aij ≈ aii + 3.27χij for a box density, ρ,

of 3 DPD units.
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χij =
Vm
kBT

(δi − δj)2 (2.2)

2.9 DPD Simulations

For DPD simulations, an oligomer chain architecture of A7(BD)A11(BD)A9(BD)A5(BD)

A15(BD)A8(BD)A13(BD)A15(BD)A4(BD)A3 was constructed according to the beads

shown in Fig. 2.2. Cubic boxes having 10 x 10 x 10r3c volume are constructed with a

density of ρ = 3 DPD units where rc is the cut-off radius. A harmonic spring constant

of 4.0 was chosen between the beads. Temperature and bead masses were taken as

unity for simplicity. Total number of all beads (including the solvents) were set to

3000. Simulations were carried out at a series of concentrations spanning 10-70 % of

oligomer in the corresponding solvent systems. Equilibration of the oligomers and data

collection were performed at 20000 and 100000 DPD steps, respectively.
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Chapter 3

Results and Discussion

3.1 Bulk and Surface Properties of the Copolymer

Number average molecular weight and poly dispersity index of the copolymer were

measured as 105,600 g/mol and 1.8, respectively. PFA concentration in the copolymer

was calculated as 13 % by mole by 1H-NMR. AFM analysis revealed an average rough-

ness of 0.6 nm on the surface of dip coated polymer films. This value is too small to

affect the contact angles [98–100], thus any measurement would be a direct result of

surface chemical groups. θA was measured as 118.5 ± 0.5◦ on this smooth surface. This

relatively high value indicates the surface segregation of perfluoroalkyl groups on the

outermost surface.

The selection of this polymer in this work has several reasons. In order to demon-

strate that contact angle hysteresis on electrosprayed surfaces is governed by topogra-

phy, we used the most hydrophobic polymer we could synthesize so that effect of surface

chemistry would be minimum. It was not possible to electrospray a fully fluorinated

homopolymer due to solubility problems, thus a copolymer of styrene and a perfluo-

roacrylate was a good selection for both considerations. 13 % fluorinated monomer

ratio was the optimum composition because lower contents resulted lower θA values

whereas higher contents did not increase contact angles.
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Table 3.1: Various parameters of the liquids used for electrospraying.

solvent type boiling point (◦C) surface tension (mN/m)

THF good solvent 66 28.0

Chlorofom good solvent 61 27.2

DMF poor solvent 153 35.0

DMSO poor solvent 189 43.7

3.2 A Foreword on the Wettability Measurements

On extremely hydrophobic surfaces, contact angles are close to 180◦ and precise mea-

surement of contact angles is difficult [42, 44, 45]. Superhydrophobic surfaces we pro-

duce by electrospraying often exhibit extreme hydrophobicity but we can only perform

contact angle analyses which are consistent within themselves. For instance, on the

perfectly hydrophobic surfaces which will be described later in this work, θA and θR

values measured with a conventional contact angle goniometer were always between

160◦ and 170◦, being generally close to the latter with zero contact angle hysteresis.

However, it was proved that these surfaces are indeed perfectly hydrophobic. Thus,

contact angle measurements on these surfaces is controversial, and accordingly in this

thesis, reporting θA and θR values was deliberately avoided but threshold sliding angles,

which fundamentally become a function of mainly contact angle hysteresis for a constant

droplet size according to Eq. (1.7), were used instead. This procedure indeed enables

the measurement of shear hydrophobicity, commonly perceived as water repellency, and

would not be sufficient to characterize the wettability of the surfaces completely [43].

Thus, the force required to separate a pendant superhydrophobic surface from a sessile

droplet was also measured in order to compare the receding angles, in other words, the

tensile hydrophobicity of a selection of surfaces.

3.3 Electrospraying the Copolymer in a Good Solvent

Electrospraying experiments started with three solutions of the copolymer in THF with

concentrations 7, 4, and 1 wt%, which were electrosprayed using 8 kV applied voltage
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and 2 µL/min solution feed rate. SEM analysis revealed that all three surfaces were

composed of dimpled beads having sizes at the micron scale, and average bead size

increased with concentration, as shown in Fig. 3.1. Threshold sliding angles were 9.6

± 2.5◦, 5.5 ± 0.7◦ and 2.3 ± 0.4◦ for the surfaces from 7, 4 and 1 wt% concentrations,

respectively. On these surfaces, triple interface occurs only on bead tops, thus continuity

and amount of contact of the contact line decreases with smaller beads, resulting lower

sliding angles. Further decrease of concentration to 0.7 and 0.4 wt% led to diminishing of

roughness by the formation of plate-like beads, and sliding angles increased again. Bead

formation did not occur by electrospraying of 0.1 wt% polymer solution and a slightly

rough polymer film formed. Water droplets were pinned on this surface. Although a

sliding angle value of 2.3 ± 0.4◦ could be regarded as fairly low, these beaded surfaces

would always exhibit some hysteresis due to the relatively smooth topography of the

individual bead tops as stated earlier.

3.4 Electrospraying the Copolymer in a Poor Solvent

DMF has become a conventional solvent for electrospraying various polymers not only

due to its ability to dissolve common polymers, but also because of its high surface

tension and low boiling point which provide the control of the process relatively easy.

For the copolymer in this work, however, the solubility was 0.15 wt% in DMF, and

achieving a decent coating for wettability measurements could take as long as 12 hours.

Electrospraying the copolymer in this poor solvent yielded the surface shown in Fig. 3.2.

This type of surface is not common in electrospraying of polymers and the nanoparticles

do not seem to refer to the classical micron scale electrosprayed beads generally observed

in the process. Possible reasons for the formation of this topography will be discussed in

Section 3.9. Threshold sliding angle on this nanoscopically rough surface was measured

as 2.6 ± 0.5◦.
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(a) 30 μm
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(b) 15 μm
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(c) 10 μm
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Figure 3.1: Typical SEM images of the electrosprayed surfaces from solutions having

(a) 7 wt%, (b) 1 wt%, and (c) 0.4 wt% polymer concentration in THF. Applied voltage

and solution feed rate were 8 kV and 2 µL/min for all samples, respectively. (d) Sliding

angle vs. polymer concentration in THF for a 10 µL water droplet.

3.5 Electrospraying the Copolymer in a Binary Good Solvent-Poor Sol-

vent System

A threshold sliding angle of 2.3◦ might well be considered as relatively small for a 10 µL

droplet, yet it implies a positive contact angle hysteresis even if Eq. (1.7) would predict

a small value. As described in Section 1.8, one method to reduce contact angle hystere-

sis is increasing the receding angle of the local protrusion tops [42] and achieving the

Lotus effect which is commonly described in terms of dual scale roughness. Although

it is difficult to make precise definitions related to roughness for complex topographies,

dual scale roughness has become a common term to simply describe the existence of

nanoscopic roughness on the micron scale rough topography as depicted in Fig. 3.3. The

advantage of such topography is that amount of contact is reduced on the protrusion

tops and the contact line is de-pinned (which is macroscopically observed as high re-
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ceding angles), therefore receding can occur spontaneously. Previously, superhydropho-

bic surfaces were successfully prepared from various polymers via non-solvent induced

phase separation which provided the formation of proper surface roughness [101–104].

These methods were based on casting a polymer solution on a substrate and preventing

homogenous solidification with the help of liquid or vapor phase non-solvents, which

however did not allow sufficient control of the roughness scales and resulted surfaces

with contact angle hysteresis (except the one [101] for which there is no information

about dynamic angles). Two other papers also describe the application of a similar

method to electrospinning which led to formation of highly porous, micron diameter

fibers having considerable amount of porosity [105, 106]. Although these studies were

not related to wettability, one would not expect zero contact angle hysteresis on such

topographies due to the continuous nature of the micron fibers. Inspired by these

studies, we performed experiments with non-solvents such as water and alcohols but

always encountered immediate precipitation of the polymer even by small additions

to the solutions. On the other hand, when poor solvents such as DMF and DMSO

(polymer solubility < 0.15 wt%) were used instead, stable solutions at relatively high

Sliding angle: 2.6 ± 0.5o

1 μm

Figure 3.2: Typical SEM images of the electrosprayed surfaces from solutions having

0.15 wt% polymer in DMF.
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micron scale nano scale dual scale

(a) (b) (c)

Figure 3.3: Depictions of different roughness scales related to wettability. (a) Micron

scale roughness, (b) nano scale roughness, and (c) dual scale roughness.

poor solvent/good solvent ratios could be achieved. Accordingly, a 1 wt% solution of

the copolymer was prepared in 75/25 (wt/wt) THF/DMF mixture and electrosprayed

at the same conditions as those employed for THF solutions (i.e. 8 kV applied volt-

age and 2 µL/min feed rate). This process resulted a surface composed of flower-like

beads having roughly 4 µm diameter as shown in Fig. 3.4(a). Center of the beads

was covered with about 100 nm size particles spread over a 2 µm diameter circular

area, and the remaining outer part was formed of relatively smooth films, resembling

leaves. Formation of the nanoparticles on the center of the beads clearly implies a

phase separation of the polymer in the poor solvent, induced by different evaporation

rates of THF and DMF (Table 3.1). It is evident from the arrangement of these beads

(nearly all the flowers face upwards) that unlike the electrosprayings in THF, collapse

of the skin layer and formation of the flower shape occur after the droplets reach the

collecting screen. Otherwise, aerodynamic flow would force the beads to orient their

edges perpendicular to the screen, so a more random distribution of bead placements,

leaf crossections and even bended leaves would be observed. Therefore, slower removal

of DMF from the surface of droplets definitely leads to a relatively flexible, thin skin

layer which can collapse uniformly when the droplet hits the grounded screen. Outer

regions of this skin readily forms the thin leaf structure while the core is DMF rich

and takes more time to dry completely by the diffusion of the solvent to the surface

of the bead. Thus, the solidification of the core occurs substantially in the poor sol-

vent environment and phase separation of the polymer due to concentration increment

drives the formation of the nanoparticles. This process is depicted in Fig. 3.6(b). A

similar process in fact occurs during electrospraying of the polymer in THF at very low
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(c) 5 μm 

1 μm 

Sliding angle: 0o
PERFECTLY HYDROPHOBIC

(b) 5 μm 

1 μm

Sliding angle: 1.7 ± 0.3o
(a) 5 μm 

2 μm 

Sliding angle: 15.1 ± 3.9o

Figure 3.4: Typical SEM images of the electrosprayed surfaces from 1 wt% polymer

solutions in 75/25 (wt/wt) THF/DMF mixture. (a) 8 kV and 2 µL/min, (b) 15 kV

and 15 µL/min, and (c) 15 kV and 15 µL/min applied voltage and solution feed rate,

respectively. Coating time is shorter (30 seconds) for (c).
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final drying
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Figure 3.5: High magnification images of the flower-like structures shown in (a) Fig.

3.1(c), and (b) Fig. 3.4(a).

semi-flexible skin

flexible skin

very flexible skin DMF rich

electric field collector
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(a) THF

(b) THF+DMF

(c) THF+DMF
high voltage 
high feed rate

dry dry
polymer

dry
polymer

dry
polymer

electrosprayed
(fresh) droplet

Figure 3.6: Schematic demonstration of bead formation during electrospraying of poly-

mer solutions at different conditions. Light and dark regions represent solvent and

polymer rich phases, respectively.

concentrations where the deficiency of polymer in the system leads to formation of a

flexible skin which may collapse to form the leaf structure; however, the core is rich in

the good solvent, therefore nanoscale roughness is not expected to occur. For a better

comparison, high magnification images of the two flower-like structures are shown in

Fig. 3.5. Threshold sliding angle on the surface composed of flower-like beads (Fig.
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3.4(a)) was measured as 15.1 ± 3.9◦. This relatively high value is claimed to originate

from the smooth nature of the leaf-like regions on which segments of the contact line

is predicted to have high amount of contact due to continuity. In addition, two dimen-

sional distribution of the beads (flowers) contributes to the energy barrier to receding

due to the formation of a shorter contact line as a whole. Thus, removal of these leaf

structures would obviously facilitate receding, and a method to achieve this must aim

retarding the skin formation by slowing down the solvent evaporation and inducing a

solidification in a predominantly poor solvent environment. This was accomplished by

applying a higher voltage to speed up the droplets and a higher solution feed rate to

increase the number of droplets generated per unit time so that they spend less time

in the air and form a wet coating once they reach the collector. Electrospraying at 15

kV voltage and 15 µL/min feed rate resulted a macroscopically wet coating which re-

quired additional 5-10 minutes to dry completely on the collector. SEM analysis of this

coating showed that the surface was covered with about 100 nm particles everywhere

as shown in Fig. 3.4(b). Traces of the droplets are visible as flat, interconnected beads.

These morphologies reveal that in the course of spraying, since there is not sufficient

time for drying, a very flexible, immature skin forms on the surface of the droplets, and

upon hitting the screen, droplets collapse by forming a negligible or no leaf structure

at all as depicted in Fig. 3.6(c). When many droplets are collected on the screen, they

interconnect due to their rather wet nature. However, it is evident from the cluster

of nanoparticles that an efficient integration of the droplets cannot realize presumably

due to the existence of a skin although immature. Final evaporation of the poor solvent

occurs as a concerted event among the droplets leaving a nano particle rich surface be-

hind. Some broken loose connections due to the shrinkage of the polymer during drying

are also visible. Sliding angle on this surface was 1.7 ± 0.3◦. Compared to the surfaces

prepared by electrospraying THF solutions, nanoscopic roughness was achieved but the

level of micron scale roughness was low this time due to the flat and interconnected

nature of the beads on which length of the contact line is reduced. Electrospraying at

higher voltages and solution feed rates all resulted similar surfaces having sliding angles

between 1◦ and 2◦.
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3.6 The Route to Zero Hysteresis

The efforts to achieve dual scale roughness succeeded when the coating time was kept

relatively short (30 seconds) so that only local interconnection of the beads occurs be-

cause of the uncoated regions of the aluminum substrate as shown in Fig. 3.4(c). The

sliding angle on this surface was 0◦ where it was impossible to mobilize any droplet of

varying sizes on horizontally leveled surfaces. On this surface a very lengthy, discon-

tinuous contact line having quite scarce amount of contact with the solid is predicted.

Electrospraying at higher voltages and solution feed rates with short coating times also

resulted surfaces having similar topographies and zero sliding angles. This result is

essentially a matter of topographic length scales and was witnessed long ago on pho-

tolithographic superhydrophobic surfaces on which increasing the spacing between the

regular posts resulted remarkable increase in receding angles [31]. Water droplets ben-

efit from the lengthy liquid-vapor interface between the protrusions of micron scale

roughness, where the nanoscopic features contribute to the discontinuity of the contact

on the protrusion tops and promote receding locally. The uncoated regions of the sub-

strate cannot affect the results presented here at atmospheric pressures because any

water intrusion would require a huge laplace pressure to overcome the negative capil-

lary pressure driven by the hydrophobicity of the polymer and the mesoscale roughness.

This is also to indicate that all of the surfaces described in this study are in composite

wetting state.

To verify the claim regarding the effect of phase separation due to inhomogeneous

drying in good solvent-poor solvent environment, other experiments were performed

by changing the good and poor solvents. Replacing THF with another good solvent,

chloroform, did not change the results remarkably. Electrospraying a 1 wt% copolymer

in chloroform at 8 kV applied voltage and 2 µL/min feed rate resulted micron scale

beads as shown in Fig. 3.7(a), similar to those achieved from THF solutions. Sliding

angle on this surface was 3.4± 0.3◦. When 75/25 (wt/wt)chloroform/DMF solution was

employed instead and electrosprayed at 15 kV and 15 µL/min by keeping the coating

time short, a surface having a dual scale roughness as shown in Fig. 3.7(b) is achieved.
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Sliding angle: 3.4 ± 0.3o

Figure 3.7: Typical SEM images of the electrosprayed surfaces from 1 wt% polymer

solutions in (a) Chloroform (8 kV applied voltage and 2 µL/min solution feed rate),

and (b) 75/25 (wt/wt) chloroform/DMF mixture (15 kV applied voltage, 15 µL/min

solution feed rate, 30 seconds coating time).
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PERFECTLY HYDROPHOBIC
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Sliding angle: 2.2 ± 0.5o

Figure 3.8: Typical SEM images of the electrosprayed surfaces from 1 wt% polymer so-

lutions in (a) 75/25, and (b) 50/50 (wt/wt) THF/DMSO mixture. Process parameters

are 8 kV applied voltage, 2 µL/min solution feed rate and 30 seconds coating time for

both samples.

This surface is similar to the one shown in Fig. 3.4(c) and sliding angle on this surface

was also 0◦.

Replacing DMF with another poor solvent, DMSO, and electrospraying at 15 kV and
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15 µL/min by keeping the coating time 30 seconds, resulted a surface resembling the one

shown in Fig. 3.4(c) in the micron scale, but with relatively smooth bead surfaces this

time (Fig. 3.8(a)). Sliding angle on this surface was 2.2 ± 0.5◦. Increasing the DMSO

mass ratio from 0.25 to 0.5 in the binary solvent system and electrospraying at same

conditions resulted a zero hysteresis surface by the formation of nanoscale roughness on

the beads as shown in Fig. 3.8(b). This experiment was in good accordance with the

claim regarding the necessity of nanoscopic roughness on the micron scale features to

achieve a zero hysteresis surface. In terms of the effect of the solvent ratios, a similar

observation was also reported by Qi et al. [105] as the decrease in the poor solvent ratio

of the solvent system gradually reduced the porosity of the electrospun microfibers.

3.7 Contact and Release Experiment: Proof of Perfect Hydrophobicity

Finally, to characterize the tensile hydrophobicity of the surfaces reported so far, droplet

videos recorded during a contact and release experiment were investigated. This pro-

cess allowed the qualitative comparison of receding angles from the degree of distortion

of the droplet shapes (more distortion indicates lower receding angles) [44, 45]. Exper-

iments showed that nanoscopic (Fig. 3.4(b)) and micron scale (Fig. 3.8(a)) roughness

dominated topographies stick to water slightly, as it is clear from the distortion of the

spherical droplet shapes followed by surface tension driven vibration due to the sudden

relaxation of the droplet to its thermodynamic shape at the vicinity of release from

the surface. On the other hand, there was no evidence (no distortion and vibration)

of adhesion when the droplets were released from the surfaces having dual scale rough-

ness. Selected frames from this experiment are given in Figures 3.9-3.12. These results

implied a 180◦ receding angle for the dual scale rough surfaces and thus, they were re-

garded as perfectly hydrophobic. Selected frames of contact and release experiments

with other surfaces are given in Section A.1.
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Figure 3.9: Selected frames of the contact and release experiment performed with the

surface having nanoscale roughness dominated topography shown in Fig. 3.4(b).
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Figure 3.10: Selected frames of the contact and release experiment performed with the

surface having dual scale rough topography shown in Fig. 3.4(c).
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Figure 3.11: Selected frames of the contact and release experiment performed with the

surface having micron scale roughness dominated topography shown in Fig. 3.8(a).
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Figure 3.12: Selected frames of the contact and release experiment performed with the

surface having micron scale roughness dominated topography shown in Fig. 3.8(b).
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In addition, the adhesive forces between the droplets and surfaces were measured

using a microbalance as previously described elsewhere [107,108] with a small difference

in the experimental set-up and procedure where a pendant superhydrophobic surface is

separated from a sessile droplet as depicted in Fig. 3.13. In this experiment, initially a

60 µL sessile droplet was deposited on a polymer film having 107◦/80◦ θA/θR. Contact

angle of this droplet was decreased by withdrawing 20 µL water with a microsyringe so

that the three phase contact line does not advance on the lower film surface easily when

the droplet is pressed. The microbalance was zeroed after the superhydrophobic surface

was attached to its probe. The sessile droplet was raised upwards and the position of

the lower plate was automatically set to zero when the droplet and the surface were in

contact for the first time. The droplet was pressed by raising the lower plate 0.4 mm

(shown as -0.4 mm distance in Fig. 3.14). Then, the force versus displacement was being

recorded while the lower plate was lowered 0.8 mm and brought to 0.4 mm distance.

The analysis performed with a selection of samples showed that the forces acting on

the dual scale rough surfaces while the droplet was being released from the surface were

zero, as shown in Fig. 3.14, indicating a zero work of adhesion. In addition, variations

in the measured force at the vicinity of maximum pressure (i.e. -0.4 mm distance)

revealed that the structure of the roughness may also affect the compressibility of the

droplets on the surfaces. For instance, it is possible that the air-liquid interface under

a droplet is bent more efficiently towards the valleys on a micron scale rough surface

than a predominantly nanoscale rough surface due to the difference in the distances

between the protrusions. However, this claim definitely cannot be proved unless the

advancing angles of these surfaces are measured precisely because differences in the

advancing characteristics of the droplets would also affect the compressibility (i.e. a

higher θA would imply a higher Laplace pressure).
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Figure 3.13: Pictorial presentation of the experiment performed to measure the adhesive

forces during the release of a droplet from a superhydrophobic surface. (a) A previously

pressed droplet is being released, (b) adhesion (if exist) causes deformation of the

droplet from its thermodynamical shape, and (c) droplet and the surface are separated.
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Figure 3.14: Force required to separate a superhydrophobic surface from a droplet for

samples having micro, nano and dual scale roughness during the experiment depicted

in Fig. 3.13. 0 mm distance refers to the position when the droplet and the surface

were in contact for the first time. Negative and positive distances correspond to raising

and lowering the lower plate from this 0 displacement, respectively.
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3.8 Some Remarks on the Described Method

The selection of the particular polymer used in this work had several reasons as stated

earlier. On the other hand, it was possible to produce similar surfaces with the same

type of copolymers having less perfluoroacrylate content or different perfluoroalkyl

group, and copolymers of the perfluoroacrylate with methyl methacrylate and gly-

cidyl methacrylate. Electrospraying of these polymers from the binary solvent systems

indicated in this work always resulted nano scale roughness on the micron size beads.

We could also achieve perfect hydrophobicity with these polymers but the optimum

process and solution conditions varied. For instance, for the copolymers of the flu-

oroacrylate with methyl methacrylate, lower solution feed rates are required during

electrospraying because if the coating gets too wet, a film occurs instead of a rough

surface, probably due to the higher solubility of the polymer in the poor solvent. Also,

for the styrene-perfluoroacrylate copolymers, when N -methyl-2-pyrrolidone was used

as the high boiling point poor solvent for instance, the whole surface of the beads were

always covered with nano scale roughness, but we could not achieve perfectly hydropho-

bic surfaces since we somehow could not succeeded in the formation of clustered beads

(yet). Also, for the copolymers of the fluoroacrylate with acrylonitrile, DMF and DMSO

are the good solvents, THF and chloroform are the poor solvents this time, and the

beads do not exhibit nanoscale roughness when electrosprayed from the good solvent-

poor solvent combinations of these solvents. These examples conclude that nanoscale

roughness occur on the micron scale beads as long as the high boiling point liquid in

the solution is the poor solvent; but finding the optimum electrospraying process and

solution conditions which would result ‘islands of clustered beads separated from each

other by uncoated regions’ is more challenging, and may or may not exist for some

other selections of polymer and solvent systems. The perfluoroacrylate may have an

important effect in determining the solubilities of the copolymers and facilitate the for-

mation of nanoscale roughness. Examples of the surfaces in different systems are shown

in Section A.2.
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3.9 Computational Analysis

As the methodology required, the computational analysis started by calculating the

Hildebrand solubility parameters, δ, which is a good numerical reference for the degree

of interaction between molecules. δ can be used to predict whether a molecule is

miscible with another such that close values of δ imply good miscibility between the

two molecules and vice versa. δ is fundamentally equal to the square root of cohesive

energy density, the expression in brackets in Eq. (2.1), which refers to the the energy

required to remove unit volume of molecules from their nearest neighbors to infinite

separation. Thus, δ is an indicator of the degree of van der Waals forces holding the

molecules together. δ values calculated according to Eq. (2.1) for the DPD beads

depicted in Fig. 3.15 are given in Table 3.2. Close values of δ for the bead pairs A, B

and S1 make them miscible with each other. The solubility value of bead C is distinct

from all other beads, particularly from the bead S2. These data are in good accordance

with the solubility results we achieved experimentally where the copolymer is found to

be rather soluble in THF (>30 wt%) but has very low solubility in DMF (0.15 wt%).

Therefore, although it is apparent that the interaction between segments C and S2 is

too weak, high ratio of the monomer styrene in the copolymer (87 mol% on the average)

determines DMF as a poor solvent instead of a non-solvent.

O
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F3C

B

C
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O

S
1

N

O

S
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Figure 3.15: Partitioning of the beads for coarse-grained simulations. Replication of

Fig. 2.2.
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Table 3.2: Solubility parameters, δ ((cal/cm3)1/2), and molar volume Vm (cm3/mol) of

the beads.

Property A B C S1 S2

δ 7.99 9.33 3.92 9.31 12.29

Vm 115.3 109.6 166.4 79.7 83.0

The Flory-Huggins interaction parameter, χ, is related to thermodynamics of mix-

ing, and calculated from the Hildebrand solubility parameters according to Eq. (2.2).

DPD interaction parameter, a, calculated from χ, is a measure of repulsion between the

clusters of atoms, i.e. beads. Both interaction parameters are listed in Table 3.3. We

found that the interaction between beads A and S1 is nearly neutral, and C and S1 is

repulsive. On the other hand, repulsion is moderate between A and S2 but very strong

between C and S2. These results already indicate a possible phase separation between

the fluorinated segment and DMF, however, whether the overall, concerted behavior

of the chains would yield a segregation or not is too early to comment without DPD

simulations. Electrospraying is fundamentally a type of dry-spinning where the diffu-

Table 3.3: Flory-Huggins interaction parameters, χij, and DPD interaction parame-

teres, aij.

A B C S1 S2

A 0.00 (χij) 0.29 4.10 0.21 3.09

25.00 (aij)

B 0.00 (χij) 7.24 0.00 1.42

25.95 25.00 (aij)

D 0.00 (χij) 3.45 14.75

38.42 48.69 25.00 (aij)

S1 0.00 (χij) 1.22

25.67 25.00 36.27 25.00 (aij)

S2 0.00 (χij)

35.13 29.66 73.25 29.00 25.00 (aij)
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sion of solvent to the atmosphere takes place while the solution travels rapidly from the

spinneret towards the collector. In order to interpret the hydrodynamic changes that

occur during this drying process, we performed simulations comprising various polymer

concentrations from 10 to 70 mol% in THF and DMF. It is important to note that these

simulations cannot represent the drying process that occur during electrospraying ex-

actly since the achieved morphologies are of equilibrium conditions. A selection of the

obtained mesoscopic morphologies is shown in Fig. 3.16. In dilute THF solutions, the

polymer forms a relatively homogenous solution with the solvent THF. This homogene-

ity is maintained at high polymer concentrations (Fig. 3.16(a)). On the other hand,

the polymer undergoes phase separation even at low concentrations in the simulations

performed in DMF (Fig. 3.16(b)). Formation of spherical structures is observed in

dilute solutions and the morphology changes into rod-like and lamellar geometries, re-

spectively, with the increase in polymer concentration. Finally at high concentrations,

the solvent is entrapped by the polymer as a distinct phase. It is important to un-

derstand the mechanism of the electrospraying process to establish a relation between

the experimental and computational results. As mentioned previously, electrospinning

involves drawing an electrically charged jet of polymer solution towards a grounded

collector and formation of nano or microfibers upon elongation and thinning of this

jet prior to solidification. When the solution viscosity is low, however, the deficiency

of chain entanglements drives the solution jet to breaking up into spherical droplets

which generally form micron size beads upon drying as shown in Fig. 1.15. Accord-

ingly, the morphologies shown in Fig. 3.16(a) indicate that while the good solvent THF

evaporates from the electrosprayed droplets, the polymer chains entangle without phase

separation. While the droplets disintegrate from the semidilute solution jet and travel

towards the collecting screen, the entanglement concentration is crossed initially on the

surface of the droplets, due to the fast evaporation of the solvent from this region. This

event leads to the formation of a skin layer, and a concentration gradient from the

center to the surface of the droplets. The skin cannot solidify completely until all the

solvent diffuse from the core to the skin of the droplets. This solidification process occur

in a cooperative environment, where the degree of interaction between the polymer and
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Figure 3.16: Mesoscopic morphologies of the copolymer at various concentrations in (a)

THF, and (b) DMF.

solvent is preserved even at low concentrations of the solvent. This homogenous drying

yields a smooth surface on the droplets, although the semi flexible skin may collapse in

the course of solvent diffusion from the core.

The nanoscopically rough topography shown in Fig. 3.17(c) implies that the droplets

disintegrated from the electrically driven jet cannot dry homogenously. A number of

studies report the formation of micron size beads by electrospraying of various poly-

mers, including polystyrene, from DMF solutions [67,68]. Therefore, formation of a skin

layer on the surface of the droplets is normally possible at the electrospraying process

conditions indicated for the production of the surfaces in Fig. 3.17 although the boiling

point of DMF is relatively high. On the other hand, there is no sign of a skin formation

and the topography consists of mostly non-hierarchical nanoscale features in the Fig.

3.17(c). The 0.15 wt% DMF solution might be in a dilute regime, accompanied by a
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Figure 3.17: Typical SEM images of the electrosprayed copolymer from (a) 1 wt%

solution in THF (the surface shown in Fig. 3.1(b)), (b) 1 wt% solution in 75/25

(wt/wt) THF/DMF mixture (electrosprayed at 8 kV and 2 µL/min, the surface shown

in Fig. 3.4(a)), and (c) 0.15 wt% solution in DMF.

phase separation as implied in Fig. 3.16(b), thus an efficient entanglement that occurs

homogenously all along the droplet surface cannot realize. Accordingly, the polymer

chains start to seggregate when the concentration exceeds the solubility limit upon evap-

oration of the solvent in the vicinity of droplet disintegration from the charged jet. The

effective phase separation of the polymer in DMF at low concentrations demonstrated

by DPD simulations inspired us to perform dynamic light scattering measurements in

order to understand the hydrodynamic behavior of the real chains in the solvents. DLS

measurements must be performed with dilute solutions in order to prevent multiple

scattering from the particles. Accordingly, 0.02 wt% solutions of the polymer were pre-

pared in the corresponding solvent systems. Fig. 3.18 shows the results of the analysis

in THF, 50/50 THF/DMF, DMF and DMF after filtering the sample with a filter having

200 nm pore size. DLS of the polymer from THF and the binary solvent system revealed

single peaks at around 10 nm hydrodynamic radius that refer to the radius of gyration

of the unentangled polymer chains. The peak which belong to the sample in binary

solvent system is slightly smaller than the one of THF solution. These results show

that the combined effect of the binary solution is a lower quality solvent for the polymer

compared to THF. Accordingly, the polymer coils contract and yield a slightly smaller

hydrodynamic radius, as expected. DLS of the polymer in DMF, on the other hand,

resulted particles having 265 nm radius on the average. Absence of a peak which would

refer to radius of gyration of the unentangled chains was surprising. However, knowing
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the fact that scattering intensity has a strong dependence on particle size (proportional

to the sixth power of diameter), an additional DLS measurement was performed with

the polymer in DMF after passing the solution from a filter having 200 nm diameter

pores. This process provided the observation of the peak that belongs to the single

chains at an average radius of 12.18 nm. Interestingly, the peak around 265 nm radius

was still observable although with a considerable amount of decrease in the intensity.

The summary of the overall results reveal that apparently, when the solid polymer is

added into DMF, an efficient dissolution of the entangled chains cannot realize due to

the preference of polymer-polymer self-interactions. The high DPD interaction values

between beads A-S2 and D-S2 support this claim well. However, the question is how the

530 nm sized particles passed through 200 nm pores? One of the explanations of this

observation might be that these particles are soft segregates which are able to squeeze

into a smaller volume under pressure during the filtering process and relax to their ther-

modynamic shape afterwards. DMF is not a non-solvent for the polymer; therefore, a

level of interaction mus exists between the chains and the solvent although very weak.

Accordingly, the poor solvent DMF might be providing a plasticizing effect for chain

movement. Another answer might be that either disentangled or not, these particles

break down under the high shear while passing through the filter pores, and their in-

tegrated shape is restored upon disappearance of the shear forces. In either case, the

final shape, grouping or segragation of the chains are thermodynamically stabilized due

to exposure of much less chains towards the solvent. On the other hand, for instance,

experiments with methanol, a non-solvent for the polymer (δ = 16.73), resulted direct

phase separation and precipitation of the polymer at 0.02 wt% concentration. Forcing

the system to disentanglement by applying ultrasonication and heat (50 ◦C) could not

prevent precipitation which disallowed DLS measurements. However, by filtering the

dispersion with the 200 nm filter, we could perform DLS analysis and achieved the

results shown in Fig. 3.19 where particles having 82 nm average hydrodynamic radius

were observed. This result indicates that the segregated chains are hard particles in the

non-solvent due to the inability of methanol molecules to diffuse into entangled polymer

chains. Accordingly, neither the particles having diameter bigger than 200 nm can pass
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Figure 3.18: DLS analysis 0.02 wt% polymer in THF, DMF, DMF after passing the

solution from a filter having 200 nm diameter pores, and THF/DMF 50/50.

through the pores, nor the individual chains are able to escape from the entangled state

as implied by the absence of a peak that would refer to the radius of gyration of the

chains.

DLS analysis showed that the binary solvent system is efficient to separate the

entangled chains of the solid polymer. The difference in the boiling points of these

solvents leads to fast evaporation of THF from the electrosprayed beads and entrapment

of DMF in the core of the particles. Accordingly, we investigated the hydrodynamics of

this process by allowing THF to evaporate from the solution (at room temperature and

atmospheric pressures) leaving a predominantly DMF environment for the chains. The

starting concentration was halved so that the final concentration after THF removal

would be same with the DMF solution shown in Fig. 3.18 (i.e. 0.02 wt%). It was

observed that the transparent solution adopts opaque character as THF evaporates

with time. DLS analysis of this sample revealed about 553 nm radius particles in the

solvent (Fig. 3.19). Stirring, heating or/and sonicating this dispersion did not change

the results. In addition, no peaks were observed in the DLS analysis of this sample

after filtration. Obviously, the hydrodynamics of mixing the solid polymer directly
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Figure 3.19: DLS analysis 0.02 wt% polymer in DMF after passing the solution from

a filter having 200 nm diameter pores, methanol, DMF after evaporation of THF from

THF/DMF 50/50 (DMF*), and 0.04 wt% in DMF after evaporation of THF from

THF/DMF (DMF**).

with DMF and achieving a DMF dispersion through evaporation of THF from the

binary solvent system are different. In the latter, polymer chains are forced to collapse

from an expanded state which must lead to more complex, bigger segregates.
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Chapter 4

Summary and Conclusions

To summarize, perfect hydrophobicity has been successfully achieved through dual scale

roughness by polymer phase separation during electrospraying in good solvent-poor

solvent mixtures. Surface morphologies were strongly affected by the solution and

process parameters in electrospraying. Understanding of the bead formation mechanism

provided us to control the parameters to achieve desired topographies. Use of good

solvents led to formation of micron scale roughness, whereas incorporation of poor

solvent into the solutions resulted nanoscale features on the micron scale beads due to

phase separation of the polymer drying from the high boiling point poor solvent. High

applied voltages and solution feed rates retarded the formation of skin layer on the

bead surfaces due to insufficient time for drying on the way to the collecting screen,

and surfaces having predominantly nanoscale roughness resulted through diminishing

of bead shapes. Finally, when the coating time was kept short so that nanoscale rough

beads accumulated as micron scale hills and were separated by valleys of uncoated

regions, zero contact angle hysteresis realized. Force measurements between the droplets

and surfaces showed that these dual scale rough surfaces have 180◦ receding angles, thus

they were perfectly hydrophobic.

The method introduced in this thesis might be important from several aspects. As a

whole, it comprises the fundamentals of polymer physics, solution processing (dry spin-

ning) of polymers and wettability together to achieve perfectly hydrophobic polymer

surfaces in a facile and versatile way. The surface topographies introduced by the cor-

responding method are unique in the electrospraying literature. Relationship between
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electrospraying (solution and process) parameters and final bead structures would bring

new perspective to the understanding of various bead morphology and topographies.

In addition, the results are in good accordance with the current understanding of the

wetting phenomena, and particularly support the explanations of the effect of different

roughness scales on contact angle hysteresis and receding angles in terms of three phase

contact line structures.

The conclusion of both DPD and DLS analysis is that there is no effective preference

for the interaction between the solvent and the polymer as a whole in THF, but polymer-

polymer interactions are favored in the poor solvent DMF. This result explains the

structural evolution of the dual scale topographies. Fast evaporation of THF from the

surface of droplets leads to the formation of a skin layer, while the high boiling point

DMF is trapped in the core. This leads to a phase separation of the polymer, which in

turn leads to the formation of nanoscopic roughness from the individual agregates in

the middle of the beads while the trapped solvent diffuses to the surface and evaporate.

A simulation that represents the hydrodynamics of the drying process well must

indeed start from a semidilute unentangled region. In addition, DLS measurements at

a region where chains are in a dilute regime would not give exact information about

the hydrodynamics of the chains in the corresponding solvents during electrospraying

(0.15 and 0.02 wt% concentrations of the polymer in DMF for electrospraying and DLS

analysis, respectively, are in fact comparable). On the other hand, the scope of this

study was not to find a method which would demonstrate the the hydrodynamics of

morphology formation in electrospraying, but to gain fundamental information that

would allow to elucidate the corresponding experimental results from a physical point

of view. In this sense, we believe both DPD simulations and DLS analysis have yielded

very useful data.
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Appendix A

Appendix

A.1 Contact and Release Experiments Performed with Other Surfaces

Selected frames of the contact and release experiments performed with surfaces elec-

trosprayed from 1 and 7 wt% copolymer in THF are shown in Fig. A.1 and Fig. A.2.

Selected frames of the contact and release experiments performed with surfaces electro-

sprayed from the binary 75/25 (wt/wt) THF/DMF solvent using 8 kV applied voltage

and 2 µL/min solution feed rate is shown in Fig. A.3.
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Figure A.1: Selected frames of the contact and release experiment performed with the

surface electrosprayed from 1 wt% copolymer in THF. The SEM micrograph is the

replication of Fig. 3.1(b).
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Figure A.2: Selected frames of the contact and release experiment performed with the

surface electrosprayed from 1 wt% copolymer in THF. The SEM micrograph is the

replication of Fig. 3.1(a).
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Figure A.3: Selected frames of the contact and release experiment performed with

the surface electrosprayed from 1 wt% copolymer in 75/25 (w/w) THF/DMF at 8 kV

applied voltage and 2 µL/min solution feed rate. The SEM micrograph is the replication

of Fig. 3.4(a).
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A.2 Examples of Surfaces from Other Polymers or Systems

This sections comprises SEM micrographs and wettability measurement results of ex-

ample surfaces:

• Fig. A.4: Electrospraying the poly(st-co-PFA) used in this work at higher concen-

tration, applied voltage and solution feed rate than those shown in Fig. 3.4(b) and

(c), and achievement of a perfectly hydrophobic surface by coating the substrate

partially.

• Fig. A.5: A surface similar to the one shown in Fig. 3.4(a), achieved by elec-

trospraying a copolymer of methyl methacryale (MMA) and perfluoroalkyl ethy-

lacrylate (5 mol% in the chain) in 50/50 (wt/wt) THF/DMF solution at 8 kV

applied voltage and 2 µL/min solution feed rate.

• Fig. A.6: A perfectly hydrophobic surface from a partial coating of electrosprayed

2 wt% poly(MMA-co-PFA) 50/50 (wt/wt) THF/DMF solution at 15 kV applied

voltage and 15 µL/min solution feed rate.

• Fig. A.7: A surface achieved by electrospraying the poly(st-co-PFA) from 1.5

wt% solution in 50/50 (wt/wt) THF/N -methyl-2-pyrrolidone binary solvent.
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Figure A.4: Typical SEM image of the electrosprayed surfaces from 2 wt% poly(st-co-

PFA) solutions in 75/25 (wt/wt) THF/DMF mixture (22 kV applied voltage and 25

µL/min solution feed rate).

Sliding angle: 16.4 ± 2.6o

2 μm

Figure A.5: Typical SEM image of the electrosprayed surfaces from 2 wt% poly(MMA-

co-PFA) solutions in 50/50 (wt/wt) THF/DMF mixture (8 kV applied voltage and 2

µL/min solution feed rate).
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Sliding angle: 0o
PERFECTLY HYDROPHOBIC

20 μm

Figure A.6: Typical SEM image of the electrosprayed surfaces from 2 wt% poly(MMA-

co-PFA) solutions in 50/50 (wt/wt) THF/DMF mixture (15 kV applied voltage and 15

µL/min solution feed rate).

Sliding angle: 2.3 ± 0.7o

1 μm

Figure A.7: Typical SEM image of the electrosprayed surfaces from 1.5 wt% poly(st-

co-PFA) solutions in 50/50 (wt/wt) THF/NMP mixture (8 kV applied voltage and 0.5

µL/min solution feed rate).
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