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Prof. Dr. Alev Topuzoǧlu ...............................................

DATE OF APPROVAL: 31.05.2012



c©Nurdagül Anbar 2012

All Rights Reserved



ON ALGEBRAIC CURVES IN PRIME CHARACTERISTIC

Nurdagül Anbar

Mathematics, PhD Thesis, 2012

Thesis Supervisor: Prof. Dr. Henning Stichtenoth

Keywords: Artin-Schreier extension, automorphism, curve, degree r point, function

field, Hurwitz genus formula, order sequence.

Abstract

In this thesis we consider two problems related to algebraic curves in prime char-

acteristic.

In the first part, we study curves defined over the finite field Fq. We prove that for

each sufficiently large integer g there exists a curve of genus g with prescribed number

of degree r points for r = 1, . . . ,m. This leads to the existence of a curve whose

L-polynomial has prescribed coefficients up to some degree.

In the second part, we consider curves defined over algebraically closed fields K of

odd characteristic. We show that a plane smooth curve which has a K-automorphism

group of order larger than 3(2g2 + g)(
√

8g + 1 + 3) must be birationally equivalent to

a Hermitian curve.



ASAL KARAKTERİSTİKTEKİ CEBİRSEL EĞRİLER

Nurdagül Anbar

Matematik, Doktora Tezi, 2012

Tez Danışmanı: Prof. Dr. Henning Stichtenoth

Anahtar Kelimeler: Artin-Schreier genişlemesi, otomorfizma, eğri, derecesi r olan

nokta, fonksiyonel cisimler, Hurwitz cins formülü, derece dizisi.

Özet

Bu tezde asal karakteristikte tanımlanmış cebirsel eğriler konusundaki iki problemi

ele aldık.

İlk bölümde sonlu bir cisim olan Fq üzerinde tanımlı eğrileri çalıştık. Yeteri kadar

büyük her tamsayı g için öngörülmüş sayıda r dereceli (r = 1, . . . ,m) noktası olan

cinsi g bir eğrinin varlığını gösterdik. Bu sonuç, belli bir dereceye kadar öngörülmüş

katsayılı L-polinomu olan bir eğrinin varlığnı göstermiştir.

İkinci bölümde tek karakteristikli, cebirsel olarak kapalı K cismi üzerinde tanımlı

eğrileri göz önüne alık. Otomorfizma grubunun sayısı 3(2g2 + g)(
√

8g + 1 + 3)’den

büyük olan düzlemsel düzgün bir eğrinin Hermitian eğrisine birasyonel olarak eşdeğer

olduğunu gösterdik.



To my twin Sultan



Acknowledgments

First and foremost, I would like to thank my advisor Prof. Dr. Henning Stichtenoth

for his motivation, guidance and encouragement throughout my graduate study. His

contributions to my academic experience and my personality have been enormous. I

also would like to thank Dr. Massimo Gulietti who has treated me not only as a student

but also as a colleague. I will always be grateful for his guidance and his hospitality

during my stay in Italy.

I would like to thank all my professors for the knowledge they provided me during
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CHAPTER 1

Introduction

In this thesis we consider two problems related to algebraic curves defined over a field

K of positive characteristic. Throughout this thesis by a curve X we mean a smooth,

projective and absolutely irreducible curve defined over K.

Let K = Fq be the finite field with q elements. For a curve X defined over Fq
we denote by N(X ) and g(X ) the number of rational points and the genus of X ,

respectively. Of particular interest is then the question for which non-negative integers

g, N and a power of a prime number q does there exist a curve X over Fq of genus

g(X ) = g with exactly N rational points. This question represents an attractive

mathematical challenge studied extensively (see [18]). A necessary condition for the

existence of such a curve is given by the Hasse-Weil bound which states that

| N − (q + 1) |≤ 2g
√
q . (1.1)

This bound is improved by the Serre bound for non-square q, namely

| N − (q + 1) |≤ g[2
√
q ] , (1.2)

where [n] is the integer part of the real number n.

A common approach to the problem is to investigate the set N (q, g) defined by

N (q, g) := {N | there exists a curve over Fq of genus g having N rational points}

for a fixed integers q and g. As a consequence of (1.2) the set N (q, g) lies in the finite

interval

N (q, g) ⊆ [ q + 1− g[2
√
q ], q + 1 + g[2

√
q ] ] ;

however it is not known exactly for which integers N ∈ [ q+1−g[2
√
q ], q+1+g[2

√
q ] ]

there exists a curve over Fq of genus g with exactly N rational points.

In chapter two we approach the problem differently. Instead of fixing the parameters

q and g, we fix the parameters q and N . In other words, we deal with the question

for which integer values of g there exists a curve over Fq of genus g with exactly N

rational points, and we investigate the set G(q,N) defined by

G(q,N) := {g | there exists a curve over Fq of genus g having exactly N rational points} .
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Again a necessary condition for a non-negative integer g to be in G(q,N) comes from

the Serre bound; i.e.,

g ≥ | N − (q + 1) |
[2
√
q ]

.

However, (1.2) is not sufficient; for example 2 /∈ G(2, 7) (see Theorem 2.1.1).

A sufficient condition is given by Stichtenoth [39] stated as follows:

Theorem 1.0.1 For any non-negative integer N , there is a constant g0 such that for

all integers g ≥ g0, there exists a curve X over Fq of genus g(X ) = g having exactly N

rational points.

Hence

[g0,∞) ⊆ G(q,N) ⊆
[
| N − (q + 1) |

[2
√
q ]

,∞
)

,

which implies that the set N \G(q,N) is finite for all q and N .

In [39] it is noted that the constant g0 depends on the parameters q and N . Here

our aim is to estimate how small g0 can be and to show that it is possible to give g0

as an explicit function of q and N . More precisely, we show that for given q there are

constants f(q) and h(q) (depending only on q) such that for any non-negative integers

g and N with g ≥ f(q)N + h(q), there exists a curve X over Fq of genus g(X ) = g

having exactly N rational points. In other words, for given q there exist constants α(q)

and β(q) such that the interval [0, α(q)g − β(q)] ⊆ N (q, g).

In chapter three we give a proof of a generalization of Theorem 1.0.1. We show

that for any given non-negative integers b1, . . . , bm there is an integer g0 ≥ 0 such that

for all integers g ≥ g0, there exists a curve X over Fq of genus g(X ) = g having exactly

br points of degree r, for r = 1, . . . ,m. As a consequence of this result, we see the

existence of a curve defined over Fq of sufficiently large genus g whose L-polynomial

has prescribed coefficients up to some degree.

In chapter four we assume thatK is an algebraically closed field of odd characteristic

p. Let Aut(X ) be the K-automorphism group of a curve X of genus g ≥ 2. It is well

known that Aut(X ) is finite and that the classical Hurwitz bound holds if p - |Aut(X )|;
i.e.,

|Aut(X )| ≤ 84(g − 1) .

If p divides |Aut(X )|, then the curve X may have a much larger K-automorphism group

when compared to its genus. This was first pointed out by Roquette [29]. Later on,

Stichtenoth [36,37] proved that if

|Aut(X )| ≥ 16g4 ,

then X is birational equivalent to a Hermitian curve H(n), that is, to a non-singular

plane curve with affine equation Y n + Y − Xn+1 = 0, for some n = ph ≥ 3. Here,
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g = (n2 − n)/2, Aut(H(n)) ∼= PGU3(n), and |Aut(H(n))| = n3(n3 + 1)(n2 − 1). The

curves X with |Aut(X )| ≥ 8g3 were classified by Henn [15] and as a corollary of Henn’s

classification one gets: if

|Aut(X )| > 16g3 + 24g2 + g , (1.3)

then X is birational equivalent to a Hermitian curve. Here the aim is to improve the

bound (1.3) in the case that X is a non-singular plane curve. More precisely we show

that if X has a K-automorphism group of order larger than 3(2g2 + g)(
√

8g + 1 + 3),

then X is birationally equivalent to the Hermitian curve H(n) for some n = ph.

In the appendix we recall some facts and definitions we used throughout this thesis.
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CHAPTER 2

Function Fields with Prescribed Number of Rational Places

As the theory of algebraic curves is essentially the same as the theory of function

fields of one variable, we use the language of functions fields. For detailed information

see [38]. First we fix some notations.

Let F/Fq be a function field with full constant field Fq. Denote by

p = char Fq, the characteristic of the field Fq,

g(F ) the genus of F ,

N(F ) the number of rational places (= places of degree 1) of F over Fq,

PF the set of all places of F/Fq,

OP the valuation ring of the place P ∈ PF ,

OP/P the residue class field of the place P ,

x mod P the residue class of an element x ∈ OP in OP/P ,

(x) the principal divisor of an element 0 6= x ∈ F ,

(x)∞ the divisor of poles of x,

(x)0 the divisor of zeros of x,

L(A) the Riemann-Roch space associated to the divisor A.

Then for the fixed parameters q and N the set G(q,N) is defined in terms of the

language of function fields as follows.

G(q,N) := {g | there exists a function field over Fq of genus g having

exactly N rational places}
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2.1. G(q,N) for Small Values q and N

We have seen that there is an integer g0 (depending on q and N) such that

[g0,∞) ⊆ G(q,N) ⊆
[
| N − (q + 1) |

[2
√
q ]

,∞
)

.

It seems difficult to describe the set G(q,N) explicitly for any given values of q and

N . However for some small values, more precise results are obtained by constructing

function fields with prescribed number of rational places. It is worth noting that in

these cases the difference set N \ G(q,N) is smaller compared to the results obtained

by an estimate for the constant g0 given in the following sections when q is a prime

number.

Theorem 2.1.1 Given small q and N as below we have the following results on G(q,N).

G(2, 0) = [2,∞) G(2, 1) = [1,∞) G(2, 2) = [1,∞)

G(2, 3) = [0,∞) G(2, 4) = [1,∞) G(2, 5) = [1,∞)

G(2, 6) = [2,∞) G(2, 7) = [3,∞) G(2, 8) = [4,∞)a

[5,∞) ⊆ G(2, 9) ⊆ [4,∞) G(3, 0) = [2,∞) G(3, 1) = [1,∞)

G(3, 2) = [1,∞) G(3, 3) = [1,∞) G(3, 4) = [0,∞)

G(3, 5) = [1,∞) G(3, 6) = [1,∞) G(3, 7) = [1,∞)

G(3, 8) = [2,∞) {4, 6} ∪ [8,∞) ⊆ G(3, 9) ⊆ [3,∞) G(4, 0) = [2,∞)

G(4, 5) = [0,∞) G(5, 0) = [2,∞) G(5, 6) = [0,∞)

G(7, 8) = [0,∞)

a3 /∈ G(2, 8) comes from [41].

Furthermore,

[ q−1
2
,∞) ⊆ G(q, q + 1) for odd values of q;

[ q
2
,∞) ⊆ G(q, q + 1) for even values of q;

[q − 1,∞) ⊆ G(q, 2q + 1) for even values of q;

[ q−1
2
,∞) ⊆ G(q, 2q + 1) for odd values of q; and

[ q−1
2
,∞) ⊆ G(q, 1) for odd values of q.

Proof : Here we only give a proof of the more involved cases.

q = 2, N = 7:

0, 1 /∈ G(2, 7) comes from the Serre’s bound (1.2). It is known that a function field F
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of genus g(F ) = 2 is hyperelliptic. So, F contains a rational function field F2(x) ⊆ F

with [F : F2(x)] = 2. Since F2(x) has 3 rational places, the number of rational places

of F cannot be bigger than 6, that is, 2 /∈ G(2, 7).

For g = 3 the existence of a function field over F2 of genus 3 with exactly 7 rational

places is given by Serre in [34, part II p.41] and [33, p. 401].

Now we consider the case g ≥ 4. We need to show that for all integers g ≥ 4 there

exists a function field F/F2 of genus g with exactly 7 rational places. Let E = F2(x, y)

be the function field with y2 + y = x + 1
x
. Then (x = ∞) and (x = 0) are the only

ramified places of F2(x) in E/F2(x) with ramification indexes and different exponents

2 (see Theorem 5.0.23), so by the Hurwitz genus formula (5.2) g(E) = 1. Furthermore,

(x = 1) splits in E/F2(x); i.e. N(E) = 4. Denote by R, S the rational places of E over

(x = 1) and by P,Q the rational places over (x =∞), (x = 0), respectively. From the

defining equation a place of F is a pole y if an only if it is a zero or pole of x. Hence from

the fact that deg(y)∞ = [E : F2(y)] = 2 we conclude that (y)∞ = (y + 1)∞ = P + Q.

Since y and y + 1 can not have a common zero divisor and the zeros of y and y + 1 lie

over the place (x = 1) of F2(x), (y)0 = 2S and (y+1)0 = 2R. As a result, the principal

divisors of x, x+ 1, y and y + 1 in E are given as follows.

(x) = 2Q− 2P (x+ 1) = R + S − 2P

(y) = 2S − P −Q (y + 1) = 2R− P −Q

Now consider the function field F = E(z) defined by the equation

z2 + z = xg−3y(x+ 1) for g > 3.

Since the principal divisor of xg−3y(x+ 1) in E is (2g − 7)Q+ 3S +R− (2g − 3)P , P

is the only ramified place with different exponent 2g − 2, and the places Q,S,R split

in F/E. Hence F is a function field over F2 of genus g with exactly 7 rational places,

which completes the proof of the case q = 2, N = 7 and shows that G(2, 7) = [3,∞).

q = 4, N = 5:

0 ∈ G(4, 5) comes from the fact that a rational function field over F4 has exactly 5

rational places. Now set F4 := F2(α), where α2 + α = 1; i.e., F4 = {0, 1, α, α+ 1}. Let

F = F4(x, y) be a function field with a defining equation

y2 + y =

 x2g(x+ 1) , if g ≡ 0 mod 3

x2g(x+ α) , otherwise

for g > 0. In the case of g ≡ 0 mod 3, the places (x = 0), (x = 1) split, and (x = α),

(x = α + 1) are inert in F/F4(x) as y2 + y = α + 1 and y2 + y = α are irreducible

polynomials over F4. In the other case (x = 0), (x = α) split and (x = 1), (x = α+ 1)

are inert. Furthermore, in both cases (x = ∞) is the only ramified place, which is

6



totally ramified, with a different exponent d = 2g + 2. Therefore F has exactly 5

rational places and as a consequence of the Hurwitz genus formula g(F ) = g, giving

that G(4, 5) = [0,∞).

N = 2q + 1 for even values of q:

For q > 2 and g ≥ q − 1, let h(x) and g(x) be irreducible polynomials over Fq of

degree 3 and 2g − (q + 2), respectively. Set F = Fq(x, y) with the defining equation

y2 + y = xq+x
h(x)

g(x). Then (x =∞) and the zero of h(x) are the only ramified places in

F/Fq(x) with different exponents 2g− 4 and 2, respectively. So, by the Hurwitz genus

formula (5.2)

g(F ) = −1 +
1

2
degDiff(F/Fq(x)) = −1 +

1

2
(2degh(x) + 2g − 4) = g

All rational places other than (x =∞) split by Kummer’s Theorem 5.0.21. So, F has

exactly 2q + 1 rational places.

For q = 2 the equation y2 + y = x2g(x+ 1) defines a function field F = Fq(x, y) over Fq
of genus g(F ) = g and N(F ) = 5. Therefore [q − 1,∞) ⊆ G(q, 2q + 1) for even values

of q.

N = 2q + 1 for odd values of q:

Consider the function field F = Fq(x, y) with y2 = u(x), where u(x) is a separable

polynomial of degree 2g+ 1 such that u(α) = 1 for all α ∈ Fq. By Kummer’s Theorem

5.0.21 all rational places of (x = α) split in F/Fq(x). The ramified places of Fq(x)

are exactly the zeros of u(x) and (x = ∞) with different exponents 1 (see Theorem

5.0.22). Therefore the number of rational places of F is 2q + 1, and by the Hurwitz

genus formula, the genus of F is g. Now we show the existence of such a polynomial

u(x) for all odd integers 2g + 1 ≥ q.

Write 2g + 1 = t(q − 1) + `, where t, ` are integers with 0 < ` < q − 1. Define

u(x) :=

 (x` + x)(xq−1 − 1)t + 1 , if p | ` and p | t

ax`(xq−1 − 1)t + 1 , otherwise
,

where a is a non-zero element in Fq. Then u(x) is a polynomial of degree 2g+1. In the

first case, i.e. p | ` and p | t, it is clear that u(x) is a separable polynomial satisfying

the desired conditions. For the other case, it is sufficient to show that there exists an

element a ∈ Fq \ {0} =: F∗q such that u(x) is separable. Note that the derivative of

u(x) is

u′(x) = ax`−1(xq−1 − 1)t−1((`− t)xq−1 − `) .

If ` − t ≡ 0 mod p, t ≡ 0 mod p or ` ≡ 0 mod p, then u(x) is separable for any

chosen a ∈ F∗q. Hence we can assume that `− t, t and ` are not congruent to 0 modulo

p.

7



We give a proof by contradiction. Assume that for all a ∈ F∗q, u(x) and u′(x) have a

common root in the algebraic closure of Fq, say α(a). This is possible only if α(a) is

a common root of u(x) and (` − t)xq−1 − `. As (` − t)αq−1
(a) − ` = 0 and u(α(a)) = 0,

α`(a) = − 1
a

(
`−t
t

)t
. In other words, α(a) is a common root of the polynomials

xq−1 =
`

`− t
and x` = −1

a

(
`− t
t

)t
.

Denote by α1, . . . , αq−1 all distinct roots of xq−1 = `
`−t .

If F∗q\{α`1, . . . , α`q−1} is non-empty, then to obtain a contradiction it is enough to choose

a ∈ F∗q such that − 1
a

(
`−t
t

)t ∈ F∗q \ {α`1, . . . , α`q−1}.

Assume that F∗q = {α`1, . . . , α`q−1}, then (α1 . . . αq−1)` = −1. Also α1 . . . αq−1 = − `
`−t

since αi’s are roots of xq−1 = `
`−t . As a result,

(
`
`−t

)`
= 1. This shows that ` can not

be relatively prime to q − 1. Let m = gcd(`, q − 1), then q − 1 = rm and ` = sm for

some s, r ∈ Z>0. The equality (αq−1)s = (α`)r gives that a must be a root of xr − d,

where d = (−1)r(`−t)tr+s

`sttr
. Hence it is enough to choose a ∈ F∗q \ {β ∈ Fq | βr = d} to get

a contradiction.

So we conclude that [ q−1
2
,∞) ⊆ G(q, 2q + 1)

2

2.2. Bound for g0 by Riemann-Roch Spaces

In [39] Stichtenoth gave a proof for the existence of the constant g0 by using

Riemann-Roch spaces. In this section with the same construction we give g0 as a

function of the given number of rational places N and the cardinality q of the finite

field. For this, we need some preliminary results which we also make use of in the

following sections.

Lemma 2.2.2 Let F be a function field over Fq of genus g(F ) > 1 and let r be an

integer > 2g(F ). Then there exists a place P of F of degree r.

Proof : See [6], Lemma 2.1. 2

Lemma 2.2.3 Let F be a function field over Fq of genus g(F ) > 1 and α ∈ Fq. For

given integers N , r with

0 ≤ N ≤ N(F ) and r ≥ 2g + 1 +N(F )−N ,

set s := N(F )−N and denote by P1, . . . , PN , Q1, . . . , Qs the distinct rational places of

F . Then there exist a place P of F of degree r and an element x ∈ F with the following

properties:

8



(i) x has simple poles at P, P1, . . . , PN , and has no other poles.

(ii) x mod Qi = α for i = 1, . . . , s.

Proof : By Lemma 2.2.2, there exists a place P of F of degree r. As r−s ≥ 2g+1,

the Riemann-Roch theorem gives that there exist non-zero elements x1, . . . , xN , u of F

with

u ∈ L(P −
s∑
i=1

Qi) and xj ∈ L(P + Pj −
s∑
i=1

Qi) \ L(P −
s∑
i=1

Qi)

for j = 1, . . . , N (see (5.1)). Set

x̃ :=


∑N

j=1 xj , if P is a pole of
∑N

j=1 xj

u+
∑N

j=1 xj , otherwise.

Then x := x̃+ α has the desired properties. 2

Lemma 2.2.4 Let q = pn, where p = charFq, and let r be a positive divisor of n.

Assume that E/Fq is a function field of genus g = g(E) > 1. Then for any non-

negative integers j,N with N ≤ N(E) there exists a function field F/Fq with

N(F ) = N and g(F ) = g(E) + (pr − 1)(3g(E) +N(E)) + j(pr − 1).

Proof : Set s := N(E) − N and denote by P1, . . . , PN , Q1, . . . , Qs the distinct

rational places of E. Choose α ∈ Fq \ Im(ϕ), where ϕ is the map from Fq to Fq given

by β 7→ βp
r − β. By Lemma 2.2.3, there exist x ∈ E and a place P of E of degree

2g(E) + 1 + s + j with pole divisor (x)∞ = P + P1 + . . . + PN and x mod Qi = α.

Then by Theorems 5.0.21 and 5.0.23, the equation yp
r − y = x defines a function field

F := E(y) over Fq such that

(i) F/E is a Galois extension of degree [F : E] = pr,

(ii) P, P1, . . . , PN are totally ramified in F/E with different exponents 2(pr − 1), all

other places of E are unramified in F , and

(iii) Q1, . . . , Qs are inert.

Hence N(F ) = N and by the Hurwitz genus formula (5.2)

2g(F )− 2 = pr(2g(E)− 2) + 2(pr − 1)(2g(E) + 1 + s+ j +N) ;

or equivalently g(F ) = g(E) + (pr − 1)(3g(E) +N(E)) + j(pr − 1). 2

Now we can state the main theorem of this section.
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Theorem 2.2.5 Let q be a power of a prime number. Then there exist constants

c(q) > 0 and 1 < e(q) < 3 (depending only on q) such that for any integers N ,

g with N > 2q and g ≥ c(q)N e(q) there exists a function field F over Fq of genus

g(F ) = g with exactly N rational places. In other words, for sufficiently large integers

N , [c(q)N e(q),∞) ⊆ G(q,N).

Proof : First fix an integer i in the set {1, · · · , q − 1} and consider a function field

E0/Fq of genus g(E0) = (q−1)+ i with exactly 2q+1 rational places, which is possible

by Theorem 2.1.1. Since g(E0) < N(E0), by Lemma 2.2.2, we can choose a place Q0

of E0 of degree g(E0) +N(E0). Denote by P
(0)
1 , · · · , P (0)

2q+1 the distinct rational places

of E0. According to the Riemann-Roch theorem (5.1) there exists a non-zero element

z0 ∈ L(Q0 −
∑2q+1

k=1 P
(0)
k ). Define E1 = E0(y1) by the equation yq1 − y1 = z0. Then by

Theorems 5.0.21 and 5.0.23, Q0 is the only ramified place with a different exponent

2(q − 1) and all rational places split in E1/E0. So, N(E1) = q(2q + 1) and by the

Hurwitz genus formula we have:

g(E1) = qg(E0) + (q − 1)(degQ0 − 1)

= qg(E0) + (q − 1)(g(E0) +N(E0)− 1)

= q(q + i− 1) + (q − 1)(3q + i)

≤ q(2q − 2) + (q − 1)(4q − 1)

< 9q2 .

As N(E1) < g(E1), we can take z1 ∈ L(Q1 −
∑q(2q+1)

k=1 P
(1)
k ) \ {0}, where Q1 is a

degree 2g(E1) + 1 place and for k = 1, · · · , q(2q + 1), P
(1)
k ’s are the distinct rational

places of E1. Set E2 = E1(y2), where y2 satisfies the equation yq2 − y2 = z1. Then

N(E2) = q2(2q + 1) and

g(E2) = qg(E1) + 2(q − 1)g(E1) < 27q3 .

Inductively for each n ≥ 3, we can do the same construction as follows:

Denote by P
(n−1)
0 , . . . , P

(n−1)

q(n−1)(2q+1)
the distinct rational places of En−1 and choose a

place Qn−1 of En−1 of degree 2g(En−1) + 1. Then take a non-zero element

zn−1 ∈ L(Qn−1 −
q(n−1)(2q+1)∑

k=1

Pk(n−1)
) ,

which is possible as g(En−1) > N(En−1) for all n−1 ≥ 2. The equation yqn− yn = zn−1

defines a function field En = En−1(yn) over Fq such that N(En) = qn(2q + 1) and

g(En) < (3q)n+1. Since all extensions are of Artin-Schreier type, g(En) ≡ i mod (q−1)

for all n ≥ 0.
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In the case N > 2q there exists an integer t > 0 such that qt < N
2
≤ qt+1. Set E := Et

and

g
(i)
0 := g(E) + (q − 1)(3g(E) +N(E)) .

By Lemma 2.2.4, for all integers g ≥ g
(i)
0 with g ≡ g

(i)
0 mod (q − 1) there exists a

function field F/Fq of genus g(F ) = g with exactly N rational places. Hence it is

enough to set

g0 := max{g(i)
0 }

q−1
i=1 < 4qg(E) < 4q(3q)t+1.

Since qt < N
2

, g0 < 6q2N3logq
N
2 , which gives the desired result. 2

Remark 2.2.1 In the same way, it can also be shown that [8q2,∞) ⊆ G(q,N) for

0 ≤ N ≤ 2q.

Remark 2.2.2 The result of Theorem 2.2.5 is improved in Theorem 2.4.15, in partic-

ular the constant g0 is given as a linear function of N .

2.3. Improvement of g0 for Square Constant Fields by Garcia-Stichtenoth

Tower

The Hasse-Weil bound (1.1) shows that there exists a constant d(q) > 0 depending

on q such that g0 > d(q)N . In other words, a lower bound for the constant g0 can be

given as a linear function on N . Then the question whether one can improve g0 so that

it becomes a linear function on N naturally arises.

In the previous section the genus of an inductively constructed function field grows

much faster than does the number of its rational places. To have a better estimate

for g0 we need a function field whose number of rational places is sufficiently large

compared to its genus. For this reason we use asymptotically good towers over square

constant fields given by Garcia and Stichtenoth [7]. In addition, instead of q-extensions

we use p-extensions, where p = charFq, so that the constants defined as c(q) and e(q)

can be given in terms of the prime number p.

Theorem 2.3.6 [Garcia-Stichtenoth Tower] Let H := (H0 ⊆ H1 ⊆ H2 ⊆ . . .) be the

tower over Fq2 recursively defined by

H0 := Fq2(x0) and Hi+1 := Hi(zi+1),

where zqi+1 + zi+1 = xq+1
i and xi+1 := zi+1

xi
for all i ≥ 0.

The tower has the following properties, for all i ≥ 0:
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(i) The extensions Hi+1/Hi are Galois of degree [Hi+1 : Hi] = q.

(ii) The zero of x0 − α splits completely in Hi/H0 for all α ∈ Fq2 \ {0}.

(iii) The pole of x0 is totally ramified in Hi/H0 and the remaining ramified places lie

over the zero of x0.

(vi) The genus gi = g(Hi) is given by the following formula

gi =

 qi+1 + qi − q i+2
2 − 2q

i
2 + 1 , if i ≡ 0 mod 2

qi+1 + qi − 1
2
q

i+3
2 − 3

2
q

i+1
2 − q i−1

2 + 1 , if i ≡ 1 mod 2
.

(v) N(Hi) ≥ (q − 1)g(Hi).

For details and the proof of the Theorem, see [7].

From now on we assume that p = charFq2 and q = pn for an integer n > 0.

Lemma 2.3.7 Let H0 and H1 be the function fields over Fq2 as given in Theorem

2.3.6. Then there exists a sequence of function fields F0 := H0 ⊆ F1 ⊆ . . . ⊆ Fn := H1

with the following properties:

(i) The extensions Fi+1/Fi are Galois of degree [Fi+1 : Fi] = p for 0 ≤ i ≤ n− 1.

(ii) g(Fi) = 1
2
q(pi − 1) and N(Fi) = piq2 + 1 for 0 ≤ i ≤ n.

Proof : All rational places of H0 except the pole of x0 split in H1 and the pole of

x0 is the only (totally) ramified place. Denote the Galois group of H1/H0 by G, then

elements of G can be given by

α :=

 x0 7→ x0

z1 7→ z1 + c
, c ∈ Fq2 with cq + c = 0.

Since G is a p-group, it has a normal subseries

G0 := G�G1 � . . .�Gn = {id} with |Gi| = pn−i for i = 0, . . . , n.

Set Fi as the fixed field of Gi, then Fi+1/Fi and Fn/Fi are Galois extensions of degree

[Fi+1 : Fi] = p and [Fn : Fi] = pn−i for i = 0, . . . , n− 1. Denote the pole of x0 in Fi by

Pi, and j-th ramification group at Pn | Pi by G
(j)
i . t = x0

z1
is a local parameter at Pn

and for α ∈ Gi \ {id}

vPn(α(t)− t) = vPn(x0)− 2vPn(z1) = q + 2

since vPn(x0) = −q and zq1 + z1 = xq+1
0 gives that vPn(z1) = −(q + 1). Hence α ∈ G(j)

i

for j = 0, . . . , q+ 1 and by Hilbert’s different formula the different exponent d(Pn | Pi)
can be computed as follows:

d(Pn | Pi) =

q+1∑
j=0

|G(j)
i | − 1 = (q + 2)(|Gi| − 1) = (q + 2)(pn−i − 1) .

12



Then from the facts that

g(H1) =
q(q − 1)

2
and 2g(H1)− 2 = pn−i(2g(Fi)− 2) + d(Pn | Pi)

we obtain g(Fi) = 1
2
q(pi− 1). Since all rational places of H0 but the pole of x0 split in

Fi/H0, N(Fi) = piq2 + 1 for 0 ≤ i ≤ n. 2

We can refine all steps of the Garcia-Stichtenoth tower into degree p-extensions as in

Lemma 2.3.7 to get the following result.

Lemma 2.3.8 There exists an infinite tower of function fields over Fq2

F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk ⊆ . . .

with the following properties: For all i ≥ 0,

(i) F0 = Fq2(x0) is a rational function field, and each extension Fi+1/Fi is Galois of

degree [Fi+1 : Fi] = p;

(ii) g(F1) = q p−1
2

, and g(Fi+1) ≥ pg(Fi);

(iii) pi(q2 − 1) < N(Fi+1) ≤ piq2 + 1; and

(vi) N(Fi) ≥ (q − 1)g(Fi).

Proof : Let H := (H0 ⊆ H1 ⊆ H2 ⊆ . . .) be the Garcia-Stichtenoth tower over Fq2
given in Theorem 2.3.6. For each integer k ≥ 1 divide Hk/Hk−1 into p-extensions

Hk−1 = F(k−1)n ⊆ F(k−1)n+1 ⊆ F(k−1)n+2 ⊆ . . . ⊆ Fkn = Hk

as in Lemma 2.3.7 and set

F := (F0 = H0 ⊆ . . . ⊆ Fn = H1 ⊆ . . . ⊆ F2n = H2 ⊆ . . .) .

Then each extension Fi+1/Fi is Galois of degree [Fi+1 : Fi] = p for all i ≥ 0. By

Theorem 2.3.6, the pole of x0 is totaly ramified in Fi+1/Fi with a different exponent

d ≥ 2(p−1). (In fact it can be easily seen that the different exponent is (q+2)(p−1) by

choosing a local parameter t = xk−1

zk
at the pole of x0 in Hk as in Theorem 2.3.7, where

Hk−1  Fi+1 ⊆ Hk, and applying transitivity of the different.) Hence the Hurwitz

genus formula gives that g(Fi+1) ≥ pg(Fi) for all i ≥ 0. Property (iii) comes from the

fact that the zero of x0 − α splits completely in each step for all α ∈ Fq2 \ {0}.

To show (iv), let i ≥ 0 be an integer, then (k − 1)n < i ≤ kn for some positive integer

k. By (ii) and (iii) together with the inequality N(Hk) ≥ (q − 1)g(Hk) we get the

following inequalities.

pkn−iN(Fi) > N(Fkn) = N(Hk) ≥ (q − 1)g(Hk) = (q − 1)g(Fkn) ≥ (q − 1)pkn−ig(Fi)

Hence N(Fi) ≥ (q − 1)g(Fi) for all i ≥ 0. 2
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Lemma 2.3.9 Fix an integer j ∈ {0, · · · , p−2}. Then there is a tower E = (E0, E1, E2, . . .)

over Fq2 with the following properties: For all i ≥ 0,

(i) Ei+1/Ei is Galois of degree [Ei+1 : Ei] = p;

(ii) g(Ei) ≡ j mod (p− 1); and

(iii) g(Ei) <
3
q−1

N(Ei).

Proof : For p = 2, Lemma 2.3.8 shows the existence of the required tower, that is,

it is enough to take E = F . So from now on we assume that p is an odd prime.

Let F = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn ⊆ . . . be the tower given in Lemma 2.3.8 and let

E0 = F0(y) be the function field defined by y2 = cf(x0), where f(x0) is an irreducible

polynomial over Fq2 of degree 2j + 2 and c ∈ Fq2 \ {0} such that for at least q2−1
2

elements α ∈ Fq2 \ {0} the value cf(α) is square in Fq2 . Set

E = (E0 ⊆ E1 ⊆ E2 ⊆ . . .) , where Ei := E0Fi for all i ≥ 1.

As p is an odd prime, Ei/Fi and Ei/Ei−1 are Galois extensions of degree [Ei : Fi] = 2

and [Ei : Ei−1] = p for all i ≥ 1 (see Theorems 5.0.22 and 5.0.23). By Abhyankar’s

Lemma (see Theorem 5.0.24(i)), the ramified places of Fi in Ei are exactly the places

lying over the zero of f(x0) with different exponents 1. Then the Hurwitz genus formula

gives the following equations.

g(Ei) = 2g(Fi) + 1
2
degDiff(Ei/Fi)− 1

= 2g(Fi) + 1
2
degConFi/F0

(f(x0))− 1

= 2g(Fi) + 1
2
pi(2j + 2)− 1

(2.1)

Since g(Fi) ≡ 0 or p−1
2

mod (p− 1), g(Ei) ≡ j mod (p− 1).

Furthermore by Theorem 5.0.24(ii) there are at least q2−1
2

rational places of F0 that

split completely in both extensions Fi and E0, so we have

pi(q2 − 1) ≤ N(Ei) ≤ 2(piq2 + 1) . (2.2)

By (2.1), (2.2) and Lemma 2.3.8, we obtain the following inequalities.

g(Ei) < 2g(Fi) + pi(j + 1)

≤ 2
q−1

N(Fi) + p−1
q2−1

N(Ei)

=
(

2
q−1
· N(Fi)
N(Ei)

+ p−1
q2−1

)
N(Ei)

Then N(Fi)
N(Ei)

≤ q2+1
(q2−1)

gives that g(Ei) <
3
q−1

N(Ei). 2

Now we can give the main theorem of this section which improves the constant g0 in

the case of square constant fields.
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Theorem 2.3.10 Let p = charFq2. Assume that N is an integer with N > q2−1 (and

N > 6 in case q = 2). Then for every integer g ≥ 4p(p+11)N there is a function field F

over Fq2 of genus g(F ) = g having exactly N rational places. In other words, for given

integer N with N > q2 − 1 (and N > 6 in case q = 2), [4p(p+ 11)N,∞) ⊆ G(q2, N).

Proof : First we consider the case q > 2. For N > q2 − 1 there exists an integer

i ≥ 0 such that

pi(q2 − 1) < N ≤ pi+1(q2 − 1) . (2.3)

For fixed j ∈ {0, . . . , p− 2}, set

E := Ei+1 and g
(j)
0 := g(E) + (p− 1)(3g(E) +N(E)) ,

where Ei+1 is the function field given in Lemma 2.3.9. Then by Lemma 2.2.4, for

all integers g ≥ max{g(j)
0 }

p−2
j=0, there exists a function field F/Fq2 of genus g(F ) = g

having exactly N rational places. For any j ∈ {0, . . . , p − 2}, we have the following

inequalities.

g
(j)
0 = (3p− 2)g(E) + (p− 1)N(E)

<
(

(3p− 2) 3
q−1

+ p− 1
)
N(E) (by Lemma 2.3.9)

<
(

(3p− 2) 3
q−1

+ p− 1
)

2pi+1(q2 + 1)

< 2p q
2+1
q2−1

(
(3p− 2) 3

q−1
+ p− 1

)
N (by Inequality 2.3)

≤ 2p(p+ 11) q
2+1
q2−1

< 4p(p+ 11)N

Note that g(E1) = 1 if q = 2; so we need the condition N > 6 for q = 2. However the

same proof works for i+ 1 ≥ 2. 2

Remark 2.3.3 By Lemma 2.3.8, we have seen that g(E) ≤ N(E)
q−1

for p = 2. The same

computation gives the following results:

(i) [34N,∞) ⊆ G(4, N) if N > 6;

(ii) [11N,∞) ⊆ G(q2, N) if q is even with q > 2 and N > q2 − 1; and

(iii) [4p(p+ 2)N,∞) ⊆ G(q2, N) if q is odd with q > p and N > q2 − 1.

Remark 2.3.4 [2q2(p − 1) + 3p2 − 2,∞) ⊆ G(q2, N) holds for an integer N with

0 ≤ N ≤ q2 − 1.

Proof : For p 6= 2, let E := E0 be the function field over Fq2 with the same defining

equation as in Lemma 2.3.9 for j = 2, . . . , p. Then for any j ∈ {2, . . . , p}, we have

g
(j)
0 := (3p−2)g(E)+(p−1)N(E) ≤ (3p−2)p+2(p−1)(q2 +1) = 2q2(p−1)+3p2−2 .
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For p = 2, the same result can be obtained by choosing a function field E/Fq2 with

g(E) = 2 and N(E) ≥ q2 + 1 and applying Theorem 2.3.10. 2

2.4. Improvement of g0 for Non-square Constant Fields

In this section we give an improvement of the constant g0 for non-square constant

fields by using a sequence of function fields (Fn/Fq)n≥0 with limn→∞N(Fn)/g(Fn) > 0.

First we deal with the case of prime constant fields q = 2 and q = 3, then we consider

q > 3.

2.4.1. The Case q = 2 and q = 3

For these cases we make use of the results in [4] given in Lemmas 2.4.11 and 2.4.13.

Lemma 2.4.11 There exists a sequence of function fields F = (F0, F1, . . .) over F2

such that g(F0) = 0, g(F1) = 2 and for all n ≥ 0

N(Fn) = 3.2n and g(Fn) ≤ d ·N(Fn) with d = 3.1546 . . . .

Proof : See Proposition 5.5 in [4]. 2

For an integer N > 3 there exists an integer i ≥ 0 such that 3.2i < N ≤ 3.2i+1. Set

E := Fi+1 and g0 := 4g(E) +N(E). (Note that g(E) ≥ 2 and N(E) ≥ N .) Then

g0 ≤ (4d+ 1)N(E) = (4d+ 1)32i+1 < 2(4d+ 1)N . (2.4)

Hence from (2.4) and Lemma 2.2.4 we have the following result.

Lemma 2.4.12 Let N be integer > 3, then [28N,∞) ⊆ G(2, N).

Now we consider the case q = 3. For this case we need the following lemma.

Lemma 2.4.13 Let H = F3(x, y) with the defining equation y2 = x3 − x + 1. Then

for all n ≥ 0 there is a function field Fn over F3, which is an extension of H of degree

[Fn : H] = 3n with N(Fn) = 7.3n and g(Fn) ≤ dN(Fn), where d = 2.02890 . . ..
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Proof : See Proposition 5.6 in [4]. 2

Let f(x) be an irreducible monic polynomial over F3 of degree 6 or 7. The place

of F3(x) corresponding the zero f(x) is not ramified in the sequence of function fields

constructed in the proof of Lemma 2.4.13. Then let K = F3(x, z) be the function field

with z2 = cf(x) such that at least 2 rational places F3(x), other than the pole of x,

split in K. Set En := FnK, then by Theorem 5.0.24(ii), N(En) ≥ 8.3n. Furthermore,

Theorem 5.0.24(i) gives that the ramified places of Fn in En are the places lying over

the zero of f(x). As a result of the Hurwitz genus formula we obtain

g(En) = 2g(Fn) + 3n(degf(x))− 1 . (2.5)

Equation 2.5 implies that

g(En) ≡

 0 mod 2 , if degf(x) = 7

1 mod 2 , if degf(x) = 6

and

g(En) < 2g(Fn) + 3n(degf(x)) ≤ 2dN(Fn) + 3n7 = 7(2d+ 1)3n < 5N(En),

where d = 2.02890 . . .. In the last inequality we used the fact that 3n ≤ N(En)/8.

Let N be an integer with 8.3i < N ≤ 8.3i+1 for some integer i ≥ 0. For a fixed

j ∈ {0, 1} set E := Ei+1 and g
(j)
0 := 7g(E) + 2N(E). Then we have:

g
(j)
0 < 37N(E) = 37 · 7 · 3i+1 < 98N

Therefore we have the following result.

Lemma 2.4.14 Let N be integer > 8, then [98N,∞) ⊆ G(3, N).

Remark 2.4.5 Let N be an integer with N ≤ 3 if p = 2 and N ≤ 8 if p = 3. Then

one can show as in Remark 2.3.4 [14,∞) ⊆ G(2, N) and [84,∞) ⊆ G(3, N).

2.4.2. The Case q > 3

For the case q > 3 we use a result of Elkies et al. [6] stated as follows:

(*)For every prime power q there is a positive constant cq (which depends only on q)

with the following property: for every integer g ≥ 0, there is a function field over Fq
with at least cqg rational places.
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Theorem 2.4.15 For given q there are constants f(q) and h(q) (depending only on

q) such that for any non-negative integers g and N with g ≥ f(q)N + h(q) there exists

a function field F over Fq of genus g(F ) = g having exactly N rational places.

Proof : Let cq be the constant given in (*) and N be a non-negative integer. Define

dj :=

⌈
N

cq

⌉
+ j for j = 2, . . . , p ,

where dne is the smallest integer bigger than n; therefore {d2, . . . , dp} forms a complete

set of representatives of the factor group Z/(p− 1)Z. As a consequence of (*), for each

j ∈ {2, . . . , p} there exists a function field Ej/Fq with g(Ej) = dj and

N(Ej) ≥ cqdj = cq

(⌈
N

cq

⌉
+ j

)
> N .

Set

g
(j)
0 = dj + (p− 1)(3dj +N(Ej)) ,

then we have

g
(j)
0 < 3pdj + pN(Ej) ≤ 3pdj + p(q + 1 + 2dj

√
q) = (3p+ 2p

√
q)dj + p(q + 1) .

Note that the second inequality comes from the Hasse-Weil bound (1.1). Moreover,

dj <
N
cq

+ p + 1 gives that g
(j)
0 <

(3p+2p
√
q)

cq
N + p(q + 2p

√
q + 4

√
q + 3p + 7). Then the

result follows from Lemma 2.2.4. 2

A restatement of Theorem 2.4.15 is that for given any prime power q, there are

constants f(q) and h(q) depending only on q such that for any non-negative integer N

[f(q)N + h(q),∞) ⊆ G(q,N) .

18



CHAPTER 3

Function Fields with Prescribed Number of Places of Certain Degrees and

Their L-polynomials

3.1. Function Fields with Prescribed Number of Places of Certain Degrees

In this section we prove a far-reaching generalization of Theorem 1.0.1 stated as

follows.

Theorem 3.1.1 Let q be a power of a prime number and let b1, . . . , bm be non-negative

integers. Then there is an integer g0 ≥ 0 with the following property: for every g ≥ g0

there exists a function field F/Fq of genus g(F ) = g such that F has exactly br places

of degree r for r = 1, . . . ,m.

The proof of Theorem 3.1.1 is divided into several steps and in the proof we repeat-

edly use Riemann-Roch spaces and Artin-Schreier type extensions.

From now on for a non-negative integer r, we denote by Br(F ) the number of degree

r places of a function field F/Fq.

Lemma 3.1.2 For every ` ∈ {0, . . . , q − 2} there exists a function field F/Fq with

g(F ) = ` and B1(F ) > 0.

Proof : In the case of even characteristic, the function field F = Fq(x, y) defined by the

equation y2 + y = x2`+1 has genus ` and B1(F ) > 0 as the zero of x splits in F/Fq(x).

Now assume that q is a power of an odd prime number. Consider the function field

F = Fq(x, y) given by the equation

y2 =

 x2`+1 + x+ 1 , if p | 2`+ 1

x2`+1 + 1 , otherwise.
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In both cases, the genus of F is `, and the zero of x in Fq(x) splits into two rational

places of F .

2

Lemma 3.1.3 For every ` ∈ {0, . . . , q − 2} and every non-negative integer c there

exists a function field F/Fq with g(F ) ≡ ` mod (q − 1) and B1(F ) ≥ c.

Proof : By induction over c. For the case c = 1 the assertion is true by Lemma

3.1.2. Now assume that there exists a function field E/Fq with g(E) ≡ ` mod (q − 1)

and B1(E) ≥ c. Denote c distinct rational places of E by P1, . . . , Pc and choose a place

Q of E of sufficiently large degree so that the Riemann-Roch space L(Q−(P1+. . .+Pc))

is non-trivial. Consider the extension F = E(y) given by the equation yq − y = x,

where x is a non-zero element in L(Q− (P1 + . . .+Pc)). Then by Theorems 5.0.23 and

5.0.22 we have:

(i) F/E is Galois of degree [F : E] = q;

(ii) Q is the only ramified place in F/E with different exponent 2(q − 1); and

(iii) the places P1, . . . , Pc split completely in F/E.

Therefore B1(F ) ≥ qc > c and by the Hurwitz genus formula

2g(F )− 2 = q(2g(E)− 2) + deg Diff(F/E) = q(2g(E)− 2) + 2(q − 1) degQ .

This shows that g(F ) ≡ g(E) ≡ ` mod (q − 1). 2

Now we generalize the result of Lemma 3.1.3 to the number of places of any degree.

Lemma 3.1.4 Let ` ∈ {0, . . . , q − 2} and c1, . . . , cm be non-negative integers. Then

there exists a function field F/Fq with

g(F ) ≡ ` mod (q − 1) and B1(F ) ≥ c1, . . . , Bm(F ) ≥ cm .

Proof : By induction over m. The case m = 1 was established in Lemma 3.1.3.

Now assume that the statement is true for m − 1 ≥ 1. For given c1, . . . , cm, we can

assume that at least one of the ci is strictly positive; otherwise the assertion is trivial.

Set c := max{c1, . . . , cm}. By the induction hypothesis, there exists a function field

E/Fq with g(E) ≡ ` mod (q − 1) and Bi(E) ≥ c for i = 1, . . . ,m− 1. Let

S := {P ∈ PE | degP ≤ m− 1} ,

and Q be a place of E of sufficiently large degree. Consider the extension F/E with

the defining equation

yq
m − y = x ,
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where x is a non-zero element in L(Q−
∑

P∈S P ). Note that Y qm − Y ∈ Fq[Y ] factors

into distinct irreducible polynomials over Fq. By Kummer’s Theorem 5.0.21, for each

P ∈ S there is a one-to-one correspondence between the set of the irreducible factors

of Y qm−Y over Fq and the set of places of F lying over P such that the relative degree

is equal to degree of the corresponding irreducible polynomial. Among them, there are

factors of degree one, so there are places R ∈ PF lying above P with degR = degP .

This shows that Bj(F ) ≥ Bj(E) ≥ c ≥ cj for j = 1, . . . ,m − 1. Also Y qm − Y has

irreducible factors of degree m. So each rational place P has an extension R ∈ PF with

degR = m; therefore Bm(F ) ≥ c ≥ cm. Furthermore g(F ) ≡ ` mod (q − 1) comes

from the Hurwitz genus formula. 2

The next result indicates that inequalities in the statement of Lemma 3.1.4 can be

replaced by equalities.

Lemma 3.1.5 Let ` ∈ {0, . . . , q − 2} and c1, . . . , cm be non-negative integers. Then

there exists a function field F/Fq with

g(F ) ≡ ` mod (q − 1) and B1(F ) = c1, . . . , Bm(F ) = cm .

Proof : Let F0/Fq be a function field with g(F0) ≡ ` mod (q− 1) and Bj(F0) ≥ cj

for j = 1, . . . ,m, whose existence is known by Lemma 3.1.4. Let S1 be a subset of PF0

consisting of c1 places of degree 1, c2 places of degree 2, . . . , cm places of degree m. Set

S2 := {R ∈ PF0 | degR ≤ m and R /∈ S1} .

As the map from OR/R to OR/R given by α 7→ αq − α has a non-trivial kernel, for

each R ∈ S2 we can choose an element aR ∈ OR/R such that the equation

T q − T = aR has no solution in OR/R .

Choose a place Q ∈ PF0 of degree degQ > m such that deg(Q −
∑

R∈S2
R) ≥ 2g(F0),

and choose for all P ∈ S1, a P -prime element tP ∈ F0. Then we define an Fq-linear

map ψ as follows:

ψ :

L(Q+
∑

P∈S1
P ) →

⊕
P∈S1

OP/P ⊕
⊕

R∈S2
OR/R

u 7→
((
tP · u mod P

)
P∈S1

,
(
u mod R

)
R∈S2

)
The kernel of ψ is the space L(Q−

∑
R∈S2

R); hence the rank of ψ is

rankψ = `
(
Q+

∑
P∈S1

P
)
− `
(
Q−

∑
R∈S2

R
)

= deg
(
Q+

∑
P∈S1

P
)
− deg

(
Q−

∑
R∈S2

R
)

=
∑

P∈S1
degP +

∑
R∈S2

degR .

(3.1)
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The second equality comes from the Riemann-Roch theorem and the fact that the

degree of the divisor Q−
∑

R∈S2
R is greater than 2g(F0). Equation (3.1) shows that ψ

is surjective. Let x1 be an inverse image of ((0)P∈S1 , (aR)R∈S2). Then for all P ∈ S1,

x1 has a simple pole at P and for all R ∈ S2, x1 mod R = aR. Set x := x1 if also Q is

a pole of x1; otherwise set x := x1 + z with a non-zero element z ∈ Ker ψ. Then we

have:

(i) x has simple poles at Q and at all places P ∈ S1, and

(ii) x mod R = aR for all R ∈ S2.

Now consider the extension

F1 := E(y) with yq − y = x .

Then by (i) all places P ∈ S1 are totally ramified in F1/F0 giving cj places of degree j

in F1, for j = 1, . . . ,m, and by (ii) for any place R1 ∈ PF1 lying above a place R ∈ S2,

the degree of R1 is strictly larger than is the degree of R (see Theorems 5.0.23 and

5.0.22). Note that all other places of F1 have still degree > m. There may still be

some places of F1 of degree ≤ m, lying above places in S2. However, by repeating this

construction, after finitely many steps we obtain a function field F with Bj(F ) = cj

for j = 1, . . . ,m. As all extensions are of Artin-Schreier type, g(F ) ≡ ` mod (q − 1).

2

Proof of Theorem 3.1.1: Let b1, . . . , bm be given non-negative integers. It is enough

to show that for all ` ∈ {0, . . . , q − 2} there exists a positive integer g` congruent to

` modulo (q − 1) with the following property: for every integer g ≥ g` with g ≡ g`

mod (q − 1), there exists a function field F/Fq of genus g having exactly bj places of

degree j for j = 1, . . . ,m.

We can start with a function field F0 over Fq of genus g(F0) =: g0 ≡ ` mod (q − 1)

with Bj(F0) = bj for j = 1, . . . ,m. Note that this is possible by Lemma 3.1.5. Choose

r0 ≥ 2g0 + 1 such that for all r1 ≥ r0 there is a place Q ∈ PF0 with degQ = r1. Let

S := {P ∈ PF0 | degP ≤ m} and D :=
∑
P∈S

P ,

and set

g` := g0 + (q − 1)(degD + g0 − 1 + r0) .

Note that g` ≡ ` mod (q − 1); then for all r ≥ 0 we need to construct a function field

F/Fq of genus g(F ) = g` + (q − 1)r with Bj(F ) = bj for j = 1, . . . ,m. This can be

done as follows:

We choose a place Q ∈ PF0 of degree r1 := r0 + r. As a result of the Riemann-Roch

theorem for every P ∈ S,

`(Q+ P ) > `(Q) > 1.
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Hence we can choose an element xP ∈ L(Q+ P ) \ L(Q) and z ∈ L(Q) \ {0}. Set

x :=


∑

P∈S xP , if also Q is a pole of
∑

P∈S xP∑
P∈S xP + z , otherwise.

Note that x has simple poles at Q and at all places P ∈ S, and no other poles. Let

F := F0(y) with the defining equation yq − y = x. Then all places in the set S are

totally ramified in F/F0; i.e., Bj(F ) = Bj(F0) = bj for 1 ≤ j ≤ m by Theorem 5.0.23.

Then the Hurwitz genus formula gives that

2g − 2 = q(2g0 − 2) + deg Diff(F/F0) = q(2g0 − 2) + 2(q − 1) deg(D +Q) .

This is what we need as

g = g0 + (q − 1)(degD + g0 − 1 + (r0 + r)) = g1 + (q − 1)r .

2

3.2. Inequalities for the Coefficients of L(t)

In this section we give some inequalities for the coefficients of the L-polynomial

of a function field F over Fq. First we inductively define some polynomials over Z to

formulate the result. We set

σ0 := 0 and σr(T1, . . . , Tr) := rTr −
r−1∑
j=1

σr−j(T1, . . . , Tr−j) · Tj for all r ≥ 1 . (3.2)

Then we define

βr(T1, . . . , Tr) :=
∑
d|r

µ
(r
d

)
σd(T1, . . . , Td) +

∑
d|r

µ(
r

d
)(qd + 1) , (3.3)

where µ(.) denotes the Möbius function. (3.2), (3.3) give that

ϕr(T1, . . . , Tr−1) := rTr − βr(T1, . . . , Tr) (3.4)

is a polynomial in variables T1, . . . , Tr−1. For example, for r ≤ 4 the polynomials ϕr

are given as follows:

ϕ1 = −(q + 1) ,

ϕ2(T1) = T 2
1 + T1 − (q2 − q) ,

ϕ3(T1, T2) = −T 3
1 + T1 + 3T1T2 − (q3 − q) ,

ϕ4(T1, T2, T3) = T 4
1 − T 2

1 − 4T 2
1 T2 + 4T1T3 + 2T 2

2 + 2T2 − (q4 − q2) .

(3.5)
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Now we can state the main theorem of this section which provides necessary in-

equalities for the coefficient of the L-polynomial of a function field.

Theorem 3.2.6 Let F/Fq be a function field of genus g ≥ 1 with its L-polynomial

L(t) = 1+a1t+ . . .+a2gt
2g and let ϕr(T1, . . . , Tr−1) be polynomials defined by Equation

(3.4). Then for r = 1, . . . , g

rar ≥ ϕr(a1, . . . , ar−1).

Proof : Denote by Nr = Nr(F ) the number of rational places of the constant field

extension Fr := FFqr over Fqr , and set Sr = Sr(F ) := Nr−(qr+1). Then the following

formulas are well-known, see [38, Chapter 5].

a1 = N − (q + 1) ,

rar = Sr +
r−1∑
j=1

Sr−jaj for r = 1, . . . , g , (3.6)

rBr =
∑
d|r

µ
(r
d

)
· (qd + 1 + Sd) for all r ≥ 1 . (3.7)

Note that σ1(a1) = a1 = S1, and by induction over r using the definition of σr (3.2)

and Equation (3.6), it is easy to show that

σr(a1, . . . , ar) = Sr for r = 1, . . . , g . (3.8)

Then Equations (3.7), (3.8), (3.3) and (3.4) gives that for 1 ≤ r ≤ g,

rBr =
∑
d|r

µ
(r
d

)
· (qd + 1 + σd(a1, . . . , ad)) = βr(a1, . . . , ar) = rar − ϕr(a1, . . . , ar−1) ;

therefore

rar = ϕr(a1, . . . , ar−1) + rBr for 1 ≤ r ≤ g . (3.9)

As Br being the number of places of degree r is a non-negative integer, Equation (3.9)

gives the desired result.

2

As a consequence of Theorem 3.2.6 using the formulas for ϕr given in (3.5), we

obtain (for all g ≥ 4)

a1 ≥ −(q + 1) ,

2a2 ≥ a2
1 + a1 − (q2 − q) ,

3a3 ≥ −a3
1 + a1 + 3a1a2 − (q3 − q) ,

4a4 ≥ a4
1 − a2

1 − 4a2
1a2 + 4a1a3 + 2a2

2 + 2a2 − (q4 − q2) .
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3.3. Function Fields with Prescribed Coefficients of L(t)

Now we consider the following question: For givenm-tuple of integers (a1, a2, . . . , am)

which satisfy the inequalities of Theorem 3.2.6; i.e., rar ≥ ϕr(a1, . . . , ar−1) for all

r = 1, . . . ,m, and for given integer g ≥ m does there exist a function field F/Fq of

genus g(F ) = g whose L-polynomial has the form

L(t) = 1 + a1t+ . . .+ amt
m + . . . ?

In this section we will show that the above question has an affirmative answer if

g is sufficiently large with respect to m. Let f(t), h(t) be polynomials in Z[t] with

f(t) = h(t) + tm · u(t) for some u(t) ∈ Z[t] and m ∈ Z≥0. Then we use the congruence

notation f(t) ≡ h(t) mod tm. With this convention the main result can be stated as

follows.

Theorem 3.3.7 Let a1, . . . , am be integers which satisfy the inequalities of Theorem

(3.2.6), that is,

rar ≥ ϕr(a1, . . . , ar−1)

for all r = 1, . . . ,m. Then there is an integer g0 ≥ m such that for all g ≥ g0, there

exists a function field F/Fq whose L-polynomial satisfies the congruence

L(t) ≡ 1 + a1t+ . . .+ amt
m mod tm+1 .

We need the following lemma whose proof is given together with the proof of The-

orem 3.3.7.

Lemma 3.3.8 For any given integers a1, . . . , am−1 with m ≥ 1

ϕm(a1, . . . , am−1) ≡ 0 mod m .

Proof of Theorem 3.3.7 and Lemma 3.3.8: By induction over m. For m = 1,

Lemma 3.3.8 trivially holds. Note that, in case m = 1, mam ≥ ϕm(a1, . . . , am−1) means

that a1 ≥ −(q + 1). Set b1 := a1 + (q + 1) ≥ 0, then by Theorem 3.1.1 there is an

integer g0 ≥ 1 such that for all g ≥ g0 there exists a function field F/Fq with

g(F ) = g and B1(F ) = b1 .

Let L(F )(t) = 1 + a
(F )
1 t + a

(F )
2 t2 + . . . be the L-polynomial of F . Then by Equation

(3.9)

a
(F )
1 = ϕ1 +B1(F ) = −(q + 1) + b1 = −(q + 1) + a1 + (q + 1) = a1 ,
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which shows that L(F )(t) ≡ 1 + a1t mod t2. Now assume that Theorem 3.3.7 and

Lemma 3.3.8 hold for m ≥ 1. First we prove Lemma 3.3.8 for m+ 1 as follows.

Let a1, . . . , am be given integers. Choose integers d1, . . . , dm such that

ar ≡ dr mod (m+ 1) and rdr ≥ ϕr(d1, . . . , dr−1) for 1 ≤ r ≤ m .

By the induction hypothesis there exists a function field F ∗/Fq whose L-polynomial

L(F ∗)(t) satisfies

L(F ∗)(t) ≡ 1 + d1t+ . . .+ dmt
m mod tm+1 .

By Equation (3.9) the coefficient dm+1 of tm+1 in L(F ∗)(t) satisfies the following equality.

ϕm+1(d1, . . . , dm) = (m+ 1)dm+1 − (m+ 1)Bm+1(F ∗)

In other words, ϕm+1(d1, . . . , dm) ≡ 0 mod (m+ 1), and we conclude that

ϕm+1(a1, . . . , am) ≡ ϕm+1(d1, . . . , dm) ≡ 0 mod (m+ 1) .

Then it remains to prove the induction step for Theorem 3.3.7. Now suppose that

given m+ 1 integers a1, . . . , am+1 satisfy the inequalities rar ≥ ϕr(a1, . . . , ar−1) for r =

1, . . . ,m+1. We have seen that ϕr(a1, . . . , ar−1) ≡ 0 mod r holds for r = 1, . . . ,m+1;

i.e.,

br := ar − r−1ϕr(a1, . . . , ar−1)

are non-negative integers. By Theorem 3.1.1 there is an integer g0 ≥ m + 1 such that

for all integers g ≥ g0 there exists a function field F/Fq with g(F ) = g and Br(F ) = br

for 1 ≤ r ≤ m + 1. Then Equation (3.9) gives that the L-polynomial L(F )(t) of F

satisfies the congruence

L(F )(t) ≡ 1 + a1t+ . . .+ am+1t
m+1 mod tm+2 .

�
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CHAPTER 4

On Automorphism Groups of Plane Curves

In this chapter our aim is to prove the following result.

Theorem 4.0.1 Let X be a projective, non-singular, algebraic plane curve of genus

g ≥ 2 defined over an algebraically closed field K of positive characteristic p > 2. Let

G be an automorphism group of X . Then either

• X is birationally equivalent to the Hermitian curve H(n) for some n = ph, or

• |G| ≤ 3(2g2 + g)(
√

8g + 1 + 3).

First we recall some facts and definitions and then give some preliminary results

that we make use of in the proof of Theorem 4.0.1.

From now on K is an algebraically closed field of characteristic p > 2. For a

finite subgroup G of Aut(X ) let G∗ denote the associated automorphism group of the

function field K(X ), namely G∗ = {φ∗ | φ ∈ G}, where α∗ : K(X ) → K(X ) denotes

the pull-back of α.

Let K(X )G
∗

be the fixed field of G∗ and Y be a non-singular model of K(X )G
∗
.

Then there exists a covering πG : X → Y of degree |G| such that π∗G(K(Y)) coincides

with K(X )G
∗
; also, two points P,Q ∈ X belong to the same orbit under G if and only

if πG(P ) = πG(Q). Occasionally, Y is called the quotient curve of X by G and denoted

by X/G.

If P is a point of X , then the stabilizer GP of P in G is the subgroup of G consisting

of all elements fixing P . The orbit of P under G

OG(P ) = {Q | Q = Pα, α ∈ G}

is long if |OG(P )| = |G|; otherwise OG(P ) is short.

For a non-negative integer i, the i-th ramification group of X at P is denoted by

G
(i)
P and defined to be

G
(i)
P = {α | ordP (α∗(t)− t) ≥ i+ 1, α ∈ GP},
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where t is a uniformizing element (local parameter) at P . Here G
(0)
P = GP , and G

(1)
P

is the unique Sylow p-subgroup of GP . Moreover, G
(1)
P has a cyclic complement H in

GP , that is,

GP = G
(1)
P oH (4.1)

with a cyclic group H of order coprime with p and not greater than 4g+2 (see Theorem

4.0.2(iv)). Moreover, for sufficiently large i, G
(i)
P is trivial.

For any point P of X , let

eP = |GP | and dP =
∑
i≥0

(|G(i)
P | − 1) .

Then dP ≥ eP − 1 and equality holds if and only if gcd(p, |GP |) = 1. Let g′ be the

genus of the quotient curve X/G. Hurwitz’s genus formula states that

2g − 2 = |G|(2g′ − 2) +
∑
P∈X

dP . (4.2)

Assume that G
(1)
P only ramifies at P . Then (4.2) applied to G

(1)
P gives

2g − 2 = |G(1)
P |(2g̃ − 2) + 2(|G(1)

P | − 1) +
∑
i≥2

(|G(i)
P | − 1), (4.3)

where g̃ denotes the genus of the quotient curve X/G(1)
P .

The following theorem summarizes some of the known upper bounds on the size of

G related to the action of G on the set of points of X .

Theorem 4.0.2 Let r be the number of short orbits of X under the action of G, and

let g′ be the genus of the quotient curve X/G. Let P1, . . . , Pr be representatives from

each short orbit, and let d′i = dPi
/ePi

for i = 1, . . . , r, so that

2g − 2 = |G|(d′1 + . . .+ d′r + 2g′ − 2) ≥ |G|(d′1 + . . .+ d′r − 2). (4.4)

Assume without loss of generality that d′i ≤ d′j for i ≤ j.

(i) If g′ > 0, then |G| ≤ 4(g − 1) [16, Theorem 11.56].

(ii) |G| ≤ 84(g−1), with exceptions occurring only in the following cases [16, Theorem

11.116]:

(iia) r = 1 and the only short orbit is non-tame; here |G| ≤ 8g3;

(iib) r = 2 and both short orbits are non-tame; here |G| ≤ 16g2;

(iic) r = 3 with precisely one non-tame orbit; here |G| ≤ 24g2; or

(iid) r = 2 and one short orbit is tame; one is non-tame.

(iii) If r ≥ 5, then |G| ≤ 4(g − 1) [16, Theorem 11.56].
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(iv) If G = GP and p does not divide |G|, then |G| ≤ 4g+2 [36]; see also [16, Theorem

11.60].

Upper bounds on the size of G
(1)
P are provided by the following result due to

Stichtenoth [36,37].

Theorem 4.0.3 Let X be a non-singular curve of genus g > 1 and let P be a point of

X . Let Xi be the quotient curve X/G(i)
P , and let gi denote the genus of Xi. Then one

of the following holds:

(i) g1 > 0 and |G(1)
P | ≤ g;

(ii) g1 = 0, G
(1)
P has a short orbit other than {P}, and |G(1)

P | ≤
p
p−1

g; or

(iii) g1 = g2 = 0, {P} is the unique short orbit of G
(1)
P , and |G(1)

P | ≤
4|G(2)

P |
(|G(2)

P |−1)2
g2.

4.1. Preliminary Results

From now on, (x0 : x1 : x2) are homogeneous coordinates for PG(2,K), with K
an algebraically closed field with positive characteristic p > 2. We also let x = x1/x0

and y = x2/x0 be the corresponding non-homogeneous coordinates. Also, X denotes a

projective, non-singular, geometrically irreducible, plane algebraic curve defined over

K by the equation F (x0, x1, x2) = 0, where F is an irreducible polynomial of degree

d > 3. Let K(X ) be the function field of X and denote by x̄1 and x̄2 the rational

functions associated to the non-homogeneous coordinates x and y, namely

x̄1 =
x1 + (F )

x0 + (F )
, x̄2 =

x2 + (F )

x0 + (F )
.

Let g = (d − 1)(d − 2)/2 be the genus of X . Here and subsequently, G stands for

an automorphism group of X . By a result due to B. Segre [30] every h ∈ G is the

restriction of a projectivity of PG(2,K) preserving X . Therefore, G can be viewed as a

subgroup of PGL3(K) fixing X . For an element h ∈ G, we denote by h∗ the pull-back

of h, that is, the associated automorphism of the function field K(X ).

For a point P ∈ X , the order sequence of X at P is the strictly increasing sequence

j0(P ) = 0 < j1(P ) = 1 < j2(P )

such that each ji(P ) is the intersection number I(P,X ∩ `i) of X and some line `i at

P , see [40]. For i = 2, such a line `2 is uniquely determined as the tangent line TP (X )

to X at P .
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For all but a finite number of points the order sequence are the same and the set

of points of X for which the order sequence differs from the generic order sequence

(0, ε1, ε2) is denoted by W . Equivalently, W is the support of the ramification divisor

RD when D is the linear series cut out by the lines of PG(2,K). Finally, we denote by

`∞ the line with equation x0 = 0.

Proposition 4.1.4 Let P be a point of X such that I(P,X ∩ TP (X )) = j > 2. Then

the group G
(2)
P consists of elations with axis TP (X ) (for definition see Section 5.0.3).

Furthermore assume that

(i) G is a p-group such that {P} is the only short orbit of G;

(ii) j = d; and

(iii) g(X/G) = 0.

Then

|G(2)
P | = d or |G(2)

P | = d− 1.

Proof : Without loss of generality we assume that P = (0 : 0 : 1) and TP (X ) = `∞.

Let ϕ ∈ G(2)
P . Since ϕ is a p-element fixing P and `∞, by straightforward calculation,

ϕ is of the form

ϕ =


1 0 0

b 1 0

c a 1


for some a, b, c ∈ K. Note that x̄1/x̄2 is a local parameter of X at P . Also,

ϕ(1, x1, x2) =


1 0 0

b 1 0

c a 1




1

x1

x2

 =


1

b+ x1

c+ ax1 + x2


and

ϕ∗
(
x1

x2

)
−x1

x2

=
b+ x1

c+ ax1 + x2

−x1

x2

=
bx2 + x1x2 − cx1 − ax2

1 − x1x2

x2(c+ ax1 + x2)
=

bx2 − cx1 − ax2
1

x2(c+ ax1 + x2)
.

Then vP (x1) = 1− j and vP (x2) = −j implies that

vP

(
ϕ∗
(
x1

x2

)
− x1

x2

)
=


2(1− j)− [−j − j] = 2 , if a 6= 0

−j − [−j − j] = j , if a = 0, b 6= 0

1− j − [−j − j] = j + 1 , if a = 0, b = 0 .

(4.5)

As ϕ ∈ G(2)
P , a = 0; therefore this proves the first assertion. Now assume that G is a

p-group and {P} is an orbit, then

G = GP = G
(1)
P . (4.6)
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Since {P} is the only short orbit, by the Hurwitz genus formula and (4.6) we have the

following equality.

(d− 1)(d− 2) =
∞∑
i=2

(|G(i)
P | − 1) (4.7)

Furthermore from (4.5) we obtain that

G
(2)
P = G

(3)
P = . . . = G

(d−1)
P and G

(i)
P = {id} for every i ≥ d+ 1 .

Now we show that either G
(d)
P = G

(d−1)
P or G

(d)
P = {id}. Suppose that G

(d)
P is a non-

trivial proper subgroup of G
(d−1)
P . Then there exist elements ϕ1 ∈ G

(d−1)
P \ G(d)

P and

ϕ2 ∈ G(d)
P \ {id} and they are of the form

ϕ1 =


1 0 0

b 1 0

c 0 1

 , ϕ2 =


1 0 0

0 1 0

c′ 0 1

 for some b, c, c′ ∈ Fq with b · c′ 6= 0.

Both ϕ1 and ϕ2 are elations with axes `∞. The centers of ϕ1 and ϕ2 are Q = (0 : b : c)

and P , respectively. Since X is non-strange (see Defition 5.0.2), there exist lines `1

through Q and `2 through P such that `1 and `2 intersect X at d distinct points. Since

elations fix every line through the center, for i = 1, 2, ϕi acts on the set X \{P}. Then

for i = 1, 2, ϕi has order p implies that p|d and p|(d − 1), which is impossible. Hence

G
(d)
P = G

(d−1)
P or G

(d)
P = {id}. Then by Equation (4.7) we have

|G(2)
P | =

 d− 1 , if G
(d)
P = G

(d−1)
P

d , if G
(d)
P = {id} .

2

Lemma 4.1.5 Let P be a point of X . If the genus g′ of the quotient curve X/G(1)
P is

positive, then

|GP | ≤ 6g.

Proof : By (4.1), GP = G
(1)
P o H, where H is a cyclic group H of order coprime to

p and not greater than 4g + 2. Then H is isomorphic to the automorphism group of

X/G(1)
P fixing the point lying under P . As g′ ≥ 1, the size of H is at most 4g′ + 2 by

Theorem 4.0.2. Also, by (4.2) for G
(1)
P we have |G(1)

P | ≤ g/g′. Then

|GP | = |G(1)
P ||H| ≤

g

g′
(4g′ + 2) ≤ 4g + 2

g

g′
≤ 6g .

2

Lemma 4.1.6 Let P be a point of W . If |GP | ≤ 6g, then |G| ≤ (12g2 + 6g)d.
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Proof : As X is non-singular ε1 = 1 and ε2 < d. The size of W can be at most degree

of the Ramification divisor, so by Theorem 5.0.26

|W | ≤ (2g − 2)d+ 3d .

Furthermore automorphisms of X act on the set W . Then the orbit stabilizer theorem

implies that

|G| ≤ |GP ||W | ≤ 6g(2g + 1)d .

2

Lemma 4.1.7 Let P be a point of W . Suppose that for some ϕ ∈ G(1)
P \ {id}, there

exists Q ∈ W \ {P} with α(Q) = Q. Let ∆ be an orbit under GP other than {P} and

OGP
(Q).

(i) If ∆ is a long or tame short orbit, then |GP | ≤ (2g − 2) + |∆|.

(ii) If ∆ is a non-tame short orbit, then |GP | ≤ 2g − 2.

Proof : (i) If ∆ is a long orbit, then |GP | = |∆|. Assume then that ∆ is a short

orbit. Then we have at least three short orbits under GP , two of which are non-tame.

Let R be a point of ∆, then by (4.4) for GP , we have

2g − 2 ≥ |GP |
( |GP,R| − 1

|GP,R|

)
.

Also |GP,R| = |GP |/|∆| gives

|GP |
( |GP,R| − 1

|GP,R|

)
= |GP | − |∆| .

Then we obtain the desired result.

(ii) In this case there are three different non-tame orbits under GP . Hence the

assertion then follows from (4.4) for GP . 2

Lemma 4.1.8 Assume that G
(1)
P is non-trivial. If GP has at least three short tame

orbits, then |GP | ≤ 4(g − 1).

Proof : Let g′ be the genus of the quotient curve X/GP and r be the number of short

orbits. Note that with the assumption that G
(1)
P 6= {id}, there exists at least one non-

tame orbit of GP , so r ≥ 4. If g′ > 0 or r ≥ 5, then the assertion easily comes from

(4.4). Assume that g′ = 0 and r = 4, then (4.4) gives

2g − 2 = |GP |(d′1 + d′2 + d′3 + d′4 − 2) ,

where d′4 ≥ 1 and d′1 + d′2 + d′3 ≥ 3/2. This proves the assertion. 2

Lemma 4.1.9 Assume that G
(1)
P is non-trivial, and that GP has precisely 2 short tame

orbits on X , say ∆1 and ∆2, with |∆1| ≥ |∆2|. Then |GP | ≤ max{6(g − 1), 2|∆1|}.
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Proof : As in Theorem 4.1.8 we can assume that the genus of the quotient curve

X/GP is equal to 0. Then by (4.4) for GP , we have

2g − 2 = |GP |(d′1 + d′2 + d′3 − 2) ,

with d′3 ≥ 1 and d′2 ≥ d′1 ≥ 1/2. If d′1 = 1/2, then GP = 2|∆1| as ∆1 is a tame orbit.

If d′1 ≥ 2/3, then d′1 + d′2 + d′3 ≥ 7/3. Hence |GP | ≤ 6(g − 1). 2

In the rest, we consider the following cases:

(C1) W is the only non-tame orbit of G;

(C2) the size of W is greater than 1;

(C3) every p-element of G fixes precisely one point of W ; and

(C4) for each point P in W , the size of G
(2)
P is equal to d− 1.

Lemma 4.1.10 Assume that both conditions (C1) and (C3) hold. Then each Sylow

p-subgroup of G coincides with G
(1)
R for some point R in W . In particular, any two

distinct Sylow p-subgroups of G intersect trivially.

Proof : Let S be a p-Sylow subgroup of G. Since S is a p-group, it has a non-trivial

center. Let h be a central element in S of order p. Then by (C3) there exists R ∈ W
such that h(R) = R. Then for any s ∈ S

s(R) = sh(R) = hs(R) .

The above equation means that h fixes both R and s(R). Hence by (C3), s(R) = R

and therefore s ∈ GR. This proves that S = G
(1)
R . 2

Lemma 4.1.11 Assume that both conditions (C1) and (C3) hold. Then the normalizer

of G
(1)
P in G, NG(G

(1)
P ), is equal to GP .

Proof : As G
(1)
P is a normal subgroup of GP , we only need to show that if s ∈ G

such that sG
(1)
P s−1 ⊆ G

(1)
P then s ∈ GP . sG

(1)
P s−1 ⊆ G

(1)
P implies that sh = h′s for

some h, h′ ∈ G(1)
P . Hence

s(P ) = sh(P ) = h′s(P ) .

Then h′ fixes both P and s(P ). By (C3), s(P ) = P ; therefore s ∈ GP . 2

Lemma 4.1.12 Assume that conditions (C1), (C2), (C3) and (C4) hold. Furthermore

assume that

(i) |W | > d,

(ii) G
(1)
P is not cyclic,
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(iii) I(P,X ∩ TP (X )) = d, and

(vi) the genus of X/G(1)
P is equal to 0.

Then the following hold:

(i) W contains 4 points, no three of which are collinear.

(ii) G satisfies all the assumptions of Theorem 5.0.29 with M = {id}; in particular,

G acts 2-transitively on W .

(iii) Either G
(1)
P is abelian, or C(G

(1)
P ), the center of G

(1)
P , is G

(2)
P .

Proof :

(i) (C2) implies that there exists an element R ∈ W \ {P}. Let ` be the line

passing through P and R. By (C4), i.e. |G(2)
P | = d − 1, in Proposition 4.1.4 (in the

case G = GP ) we have seen that G
(2)
P consists of elations with center P . Therefore,

G
(2)
P acts on X ∩ `, implying that O

G
(2)
P

(R) ⊆ X ∩ `. Then by (C3) and order of G
(2)
P ,

we have

X ∩ ` = (O
G

(2)
P

(R)) ∪ {P} .

As |W | > d, there exists a point R′ of W not on `. Then, by similar arguments, the

line through R′ and P contains d points of W , and this proves the assertion.

(ii) By Lemma 4.1.10, a Sylow p-subgroup S of G coincides with G
(1)
P for some point

P in W . Conditions (C2) and (C3) show that S is a proper subgroup of G. Also by

our assumption S is not a cyclic group. Lemma 4.1.11 implies that the normalizer of S

in G is GP , which is isomorphic to a semidirect product of S = G
(1)
P by a cyclic group

H. Furthermore by Lemma 4.1.10, for each h ∈ G \GP we have that h−1Sh = G
(1)
R for

some R ∈ W \ {P}, and hence the intersection of S and h−1Sh is trivial.

It remains to show that the center of GP is trivial. Let h be a central element in

GP , and let Q ∈ W \{P}. Since W is an orbit under G, there exists an element m ∈ G
be such that m(P ) = Q. By Theorem 5.0.29, C(GP ) is a normal subgroup of G. Then

for some h′ ∈ C(GP ) we have

h(Q) = hm(P ) = mh′(P ) = m(P ) = Q .

Therefore h fixes each point in W , and the claim follows by (i).

(iii) As in the proof of Proposition 4.1.4, without loss of generality, we assume that

P = (0 : 0 : 1) and that TP (X ) = `∞. First we prove that G
(2)
P ⊆ C(G

(1)
P ), that is, for

any A ∈ G(2)
P and for any B ∈ G(1)

P ,

ABA−1B−1 = id (4.8)
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holds. For convenience denote by Ma,b,c the lower triangular matrix
1 0 0

b 1 0

c a 1

 , for a, b, c ∈ K .

It has been noticed in the proof of Proposition 4.1.4 that A = M0,b′,c′ and that B =

Ma,b,c for some a, b, c, b′, c′ ∈ K. Also, (C4) implies that b′ = 0. Then straightforward

calculations shows that (4.8) follows.

Suppose now that there exists C ∈ C(G
(1)
P ) \G(2)

P . Then C = Ma1,b1,c1 with a1 6= 0;

otherwise C lies in G
(2)
P . By straightforward computation

CMa,b,cC
−1M−1

a,b,c = M0,0,a1b−ab1 . (4.9)

Then CMa,b,cC
−1M−1

a,b,c = id implies that ab1 = a1b. Set λ := b1
a1

, and then

G
(1)
P ≤ {Ma,λ·a,c | a, c ∈ K} .

The above explanation proves that G
(1)
P is abelian. 2

4.2. The Proof of Theorem 4.0.1

We keep the notation of previous section. In particular, X denotes a projective,

non-singular, geometrically irreducible, algebraic curve defined over K by the equation

F (x0, x1, x2) = 0, where F is an irreducible polynomial of degree d > 3, and the

genus of X is g = (d − 1)(d − 2)/2 > 2. Here K is an algebraically closed field with

characteristic p > 2.

The proof of Theorem 4.0.1 depends on Hilbert’s ramification theory. A key result

of independent interest valid for any non-singular plane curve X is that the higher

ramification groups of G at any inflection point have a faithful action in the projective

plane as elation groups preserving X . This gives heavy restrictions on the possible

structure of the higher ramification groups, and hence it allows us to obtain useful

information on the p-subgrups of the one-point stabilizer of G. In the proof also

the Stöhr-Voloch theory on Weierstrass points with respect to a base-point-free linear

series [40] and some deeper results on finite groups, such as the Kantor-O’Nan-Seitz

theorem are used.

From now on, we assume that X is not birationally equivalent to a Hermitian curve.

We are going to prove that if G is an automorphism group of X , then

|G| < (12g2 + 6g)d . (4.10)
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As g = (d−1)(d−2)/2, (4.10) implies Theorem 4.0.1. The proof is divided into several

steps according to cases (C1), (C2), (C3), and (C4).

Lemma 4.2.13 If G has more than one non-tame orbit, then (4.10) holds.

Proof : The assertion follows from Theorem 4.0.2. 2

Lemma 4.2.14 If either W is a long orbit, or W contains a short tame orbit under

the action of G, then (4.10) holds.

Proof : The stabilizer GP of a point P ∈ W has size at most 4g + 2. Then the claim

follows from Lemma 4.1.6. 2

By Lemmas 4.2.13 and 4.2.14, from now on we assume that the condition (C1)

holds.

Lemma 4.2.15 If W = {P}, then (4.10) holds.

Proof : By Lemmas 4.1.5 and 4.1.6 we may assume that the genus g′ of the quotient

curve X/G(1)
P is equal to 0. Note that W = {P} implies G = GP .

If j2(P ) < d, then there exists an element R ∈ (TP (X )∩X )\{P}. Since every element

of G fixes P , G acts on (TP (X )∩X ); therefore OG(R) is contained in (TP (X )∩X )\{P}.
As a result, |OG(R)| < d. As R /∈ W , OG(R) is either a long or a short tame orbit,

whence |GR| ≤ 4g + 2. Then by the orbit stabilizer theorem we obtain

|G| = |GR||OG(R)| < (4g + 2)d < 3g2d .

If on the contrary j2(P ) = d, then Proposition 4.1.4 applies to G
(1)
P . Therefore, either

|G(2)
P | = d or |G(2)

P | = d− 1. By Theorem 4.0.3,

|G(1)
P | ≤

4|G(2)
P |

(|G(2)
P | − 1)2

g2

holds. By the fact that g = (d−1)(d−2)
2

, we obtain the following inequalities.

For |G(2)
P | = d

|G(1)
P | ≤

4d

(d− 1)2
g2 = 2

d− 2

d− 1
dg < 2dg ;

and for |G(2)
P | = d− 1

|G(1)
P | ≤

4(d− 1)

(d− 2)2
g2 = 2

d− 1

d− 2
(d− 1)g < 3dg .

Then from (4.1) together with G = GP we have

|G| < 3dg(4g + 2) < 15dg2 .

2
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As a corollary, from now on we assume that the condition (C2) holds as well.

For any points P,Q ∈ W , j2(P ) = j2(Q) as W is an orbit under G. Hence for simplicity

in the rest of the proof for any point P ∈ W the value j2(P ) is denoted by j2.

In Lemmas 4.2.16, 4.2.17 and 4.2.18 we deal with the case where condition (C3)

does not hold. In other words, we assume that there exists a p-element in G fixing at

least two distinct points of W .

Lemma 4.2.16 Let P and Q be two distinct points of W such that G
(1)
P ∩G

(1)
Q is not

trivial. Then j2 < d.

Proof : As in the proof of Proposition 4.1.4, without loss of generality, we assume

that P = (0 : 0 : 1) and that TP (X ) = `∞. Let α := Ma,b,c be a non-trivial element in

G
(1)
P ∩G

(1)
Q . Assume that j2 = d. Therefore, TP (X ) and TQ(X ) are distinct lines both

fixed by α. Then α fixes the the point R := TP (X ) ∩ TQ(X ). Let R = (0 : r1 : r2),

then α(R) = (0 : r1 : ar1 + r2). As a result, a = 0; i.e. α = M0,b,c. On the other

hand, for Q = (q0 : q1 : q2) with q0 6= 0, α(Q) = (q0 : q1 + bq0 : q2 + cq0). This gives

that b = c = 0; whence α must be identity element. However this is impossible as α is

assumed to be non-trivial. 2

By Lemma 4.2.16, (TP (X ) ∩ X ) \ {P} is a non-empty set. In Lemmas 4.2.17 and

4.2.18 we investigate the orbit of an element in this set.

Lemma 4.2.17 Suppose that P and Q are distinct points of W such that G
(1)
P ∩G

(1)
Q

is not trivial. If there exists R ∈ (TP (X ) ∩ X ) \ {P} such that ∆ := OGP
(R) is either

a long or a short tame orbit, then (4.10) holds.

Proof : Since GP fixes TP (X ), we have that ∆ ⊆ (TP (X ) ∩ X ) \ {P}. Therefore,

|∆| ≤ d− j2. By Lemma 4.1.7(i),

|GP | ≤ 2g − 2 + |∆| ≤ 2g − 2 + d− j2 < 2g + d .

Then (4.10) follows from Lemma 4.1.6. 2

Lemma 4.2.18 Suppose that P and Q are distinct points of W such that G
(1)
P ∩G

(1)
Q

is not trivial. If for each R ∈ (TP (X ) ∩X ) \ {P} the orbit ∆ := OGP
(R) is non-tame,

then (4.10) holds.

Proof : By Lemma 4.2.16 we have j2 < d. Also, by (C1); i.e. W is the only non-

tame orbit of G, (TP (X ) ∩ X ) ⊂ W .

If (TP (X ) ∩ X ) \ {P} is not an orbit under GP , then GP has at least 3 non-tame

orbits, and |GP | ≤ 2g − 2 holds by (4.4); then (4.10) follows from Lemma 4.1.6.

Therefore, we may assume that (TP (X ) ∩ X ) \ {P} is an orbit under GP . Write

(TP (X ) ∩ X ) \ {P} = {R1, . . . , Rh}.

First assume that there exists i0 ∈ {1, . . . , h} such that TRi0
(X ) 6= TP (X ). j2 < d

implies that there exists a point S ∈ (TRi0
(X ) ∩ X ) \ {Ri0}. As {R1, . . . , Rh} is an
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orbit under GP , for any i ∈ {1, . . . , h} there exists an element gi ∈ GP such that

gi(Ri0) = Ri. Then gi(S) ∈ TRi
(X )∩X but gi(S) /∈ TP (X ); therefore TRi

(X ) 6= TP (X )

holds for all i = 1, . . . , h. Let ∆′ := OGP
(S). Then ∆′ ⊆ ∪hi=1(TRi

(X ) ∩ X )\{Ri}, and

therefore

|∆′| ≤ (d− j2)2 ≤ (d− 3)2 < 2g .

The second inequality comes from j2 > 3. Without loss of generality we can assume

that ∆′ is a tame orbit under GP ; otherwise GP would have 3 non-tame orbits. Hence,

|GP | < 4g by Lemma 4.1.7(i). Then (4.10) follows from Lemma 4.1.6.

Therefore, we may assume that TRi
(X ) = TP (X ) for all i = 1, . . . , h. We are going

to prove that the size of G
(2)
P is at most d. Since j2 > 2, in the proof of Proposition

4.1.4 we have seen that the group G
(2)
P coincides with the group of elations with axis

TP (X ) fixing X and that

G
(2)
P = · · · = G

(j2−1)
P .

Write Ri = (0 : a : b) with a 6= 0, then bx̄1−ax̄2

x̄1
is a local parameter of X at Ri. The

same calculations as in Proposition 4.1.4 give G
(2)
P ⊆ G

(k)
Ri

for k = 2, . . . , j2 − 1. This

implies that

G
(2)
P = G

(2)
Ri

= · · · = G
(j2−1)
Ri

for all i = 1, . . . , h. Then, by the Hurwitz genus formula for G
(2)
P , we have

2g − 2 ≥ |G(2)
P |(2g

′ − 2) + (h+ 1)

(
j2−1∑
i=0

(|G(2)
P | − 1)

)
,

where g′ is the genus of the quotient curve X/G(2)
P . Therefore,

2g − 2 ≥ |G(2)
P |(2g

′ − 2) +
d

j2

j2(|G(2)
P | − 1) = |G(2)

P |(2g
′ − 2 + d)− d ,

and hence

|G(2)
P | ≤

2g + d− 2

d− 2
= d . (4.11)

Now we distinguish a number of cases according to the generic order sequence

(0, 1, ε2) of X and the order sequence (0, 1, j2) at P .

(i) ε2 = 2. Suppose there exists S ∈ W \ TP (X ). Let ∆′ := OGP
(S). Since X is

classical and ∆′ is contained in W \ (TP (X ) ∩ X ), we have

|∆′| ≤ degRD − |TP (X ) ∩ X | = 6g − 6 + 3d− (h+ 1) ≤ 6g − 8 + 3d .

Then, by Lemma 4.1.7, |GP | ≤ 8g − 10 + 3d holds. Therefore

|G| = |GP ||W | ≤ (8g − 10 + 3d)(6g − 6 + 3d) .

Then (4.10) follows from d ≥ 6, which holds as TP (X ) contains at least two points of

W .
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Now we can assume that W coincides with TP (X )∩X . Then clearly |W | = d
j2

holds.

Note that the stabilizer of R1 in G
(1)
P coincides with G

(2)
P . Then by the orbit-stabilizer

theorem |G(1)
P | ≤ h|G(2)

P | holds. Therefore, taking into account (4.4) and (4.11), we

obtain

|G| = |GP ||W | ≤ hd(4g + 2)
d

j2

< d(4g + 2)

(
d

j2

)2

< d(4g + 2)g < 5dg2 .

(ii) ε2 > 2. Let D0 be the base-point-free linear series cut out on X by the lines

through P . Denote by W0 and RD0 the set of Weierstrass points and the ramification

divisor of D0, respectively. Then the following hold:

(i) The (D0, P )-order sequence is (0, j2 − 1).

(ii) For a point Q 6= P the (D0, Q)-order sequence is (0, I(P,X ∩ `P,Q)), where `P,Q is

the line joining P and Q.

(iii) The D0-order sequence of X is (0, 1) as X is non-strange.

(vi) The degree of the ramification divisor RD0 is

deg(RD0) = 2g − 2 + 2(d− 1) . (4.12)

Note that each point in TP (X ) ∩ X is a point of W0. Assume that there exists

S ∈ W0 \ (TP (X )∩X ), and let ∆′ := OGP
(S). Then ∆′ is an orbit in W0 disjoint from

{P} and OGP
(R1) = (TP (X ) ∩ X ) \ {P}, which are are non-tame orbits under GP .

Hence by Lemma 4.1.7 we obtain

|GP | ≤ 2g − 2 + |∆′| < 2g − 2 + |W0| ≤ 2g − 2 + deg(RD0) < 4g + 2d .

Then (4.10) follows from Lemma 4.1.6. Therefore, we can assume that

W0 = TP (X ) ∩ X . (4.13)

In particular, (4.13) means that any line passing through the point P other than the

line TP (X ) cannot be tangent at any point of X .

(iia) p - (j2 − 1). As X is non-classical, by Theorem 5.0.25 p | (d−1) holds. There-

fore, p - j2; otherwise p | d as d = (h + 1)j2. Then Theorem 5.0.26(ii) implies that

vP (RD0) = j2−2, whereas vRi
(RD0) = j2−1 for each i = 1, . . . , h. Therefore, by (4.13)

we have

deg(RD0) = (j2 − 2) + h(j2 − 1) = d− h− 2 ;

but this contradicts (4.12).
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(iib) p | (j2 − 1). Note that h > 1; otherwise d = 2j2 and p divides both 2j2 − 1

and j2 − 1. We now prove that

GP,R1,R2 ⊆ G
(2)
P . (4.14)

Let α be a non-trivial element in GP,R1,R2 . As α fixes the line TP (X ) pointwise, α is a

central collineation with axis TP (X ). Denote by C the center of α. Suppose that the

center C does not lie on TP (X ). Let `1 = `P,C be the line joining P and C, and let `2

be a line through C such that `2 is not tangent to X at any point and the intersection

point of `2 and TP (X ) does not belong to X . Note that since W0 ⊆ TP (X ), for i = 1, 2,

I(Q,X ∩ `i) = 1 for all Q ∈ X ∩ `i. Furthermore, α cannot fix any point on `1 ∪ `2

other than P and C. If C /∈ X , then α acts semiregularly on both (`1 ∩ X ) \ {P} and

`2 ∩ X . This is impossible as the former set has size d− 1, whereas the latter has size

d. Similarly, if C ∈ X , then α acts semiregularly both on a set of size d − 2, namely

(`1 ∩X ) \ {P,C}, and on a set of size d− 1, that is (`2 ∩X ) \ {C}. This contradiction

shows that α must be an elation with axis TP (X ). By Proposition 4.1.4, α lies in G
(2)
P ,

proving that GP,R1,R2 is contained in G
(2)
P .

By taking into account of (4.14) we obtain

|G| = |W ||GP | ≤ |W ||GP,R1|h ≤ |W ||GP,R1,R2|(h− 1)h < |W ||G(2)
P |h

2 .

Then by (4.11) we have the following inequalities.

|G| < [(1 + ε2)(2g − 2) + 3d]
2g + d− 2

d− 2

(
d

j2

)2

< [(1 + ε2)(2g − 2 + d)]
2g + d− 2

d− 2

(
d

j2

)2

< d(2g + d− 2)2

= 4dg2 + 6dg + 8g2 − 10g − d+ 2 .

In the third inequality we have used both 1+ε2
j2
≤ 1 and d

(d−2)j2
≤ 1. As a result,

|G| < 4dg2 + 6dg + 8g2 ≤ 8dg2 .

2

As a consequence of Lemmas 4.2.17 and 4.2.18, from now on we assume that the

condition (C3) holds. In other words, we assume that every p-element of G fixes

precisely one point of W .

Lemma 4.2.19 If j2 < d, then (4.10) holds.

Proof : Let TP (X ) ∩ X \ {P} = {R1, . . . , Rh}. By condition (C3), G
(1)
P acts semireg-

ularly on TP (X ) ∩ X \ {P}. Then (TP (X ) ∩ X ) \ {P} consists of either long or short

tame orbits under GP , and the order of G
(1)
P divides h. Furthermore, in Proposition
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4.1.4 we have seen that an element of G
(2)
P fixes TP (X ) pointwise; therefore G

(2)
P must

be trivial.

If (TP (X ) ∩ X ) \ {P} contains a long orbit of GP , then |GP | < d and the claim

follows from Lemma 4.1.6. Hence we can assume that (TP (X ) ∩ X ) \ {P} consists of

short tame orbits. Now we distinguish three cases.

(i) (TP(X ) ∩ X ) \ {P} is the only short tame orbit of GP. Let g′ be the genus

of X/GP . Then, by the Hurwitz genus formula

2g − 2 = |GP |(2g′ − 2) + (|GP | − 1) + (|G(1)
P | − 1) + h(|GP,R1| − 1) .

Since h|GP,R1| = |GP |, we have

2g = 2g′|GP |+ |G(1)
P | − h .

From the facts that g > 2 and |G(1)
P | ≤ h, the genus g′ must be a positive integer. Then

2g ≥ 2|GP | − d, implying that |GP | ≤ g + d
2
. Then (4.10) follows from Lemma 4.1.6.

(ii) (TP(X ) ∩ X ) \ {P} is one of the s > 2 short tame orbits of GP. By

Lemma 4.1.6, it is enough to prove that |GP | ≤ 6(g− 1). If s ≥ 3, by Lemma 4.1.8 we

have |GP | ≤ 4(g − 1). Hence we assume that s = 2. Let ∆1 be the short tame orbit

of GP different from (TP (X ) ∩X ) \ {P}. If ∆1 has size less than d, then the assertion

follows from Lemma 4.1.9. Therefore we can assume that |∆1| ≥ d. Arguing as in

Lemma 4.1.9, we have

2g − 2 = |GP |(d′1 + d′2 + d′3 − 2) ,

with d′3 ≥ 1 and d′2 ≥ d′1 ≥ 1/2. If d′1 ≥ 2/3 then d′1 +d′2 +d′3 ≥ 7/3; so |GP | ≤ 6(g−1).

From now on we may assume d′1 = 1/2. Note that d′2 = (|GP,R1|−1)/|GP,R1 |. Therefore

2g − 2 ≥ |GP |
( |GP,R1| − 1

|GP,R1|
− 1

2

)
. (4.15)

If |GP,R1| < 6, then |GP | ≤ 6(d − 1) < 6(g − 1); if |GP,R1| ≥ 6, the same inequality

follows from (4.15).

(iii) GP acts with at least 2 short orbits on (TP(X ) ∩ X ) \ {P}. Clearly, the

size of a short orbit of GP contained in (TP (X )∩X ) \ {P} is less than d− 1. Then by

Lemmas 4.1.8 and 4.1.9 it follows that |GP | ≤ 6(g− 1). By Lemma 4.1.6, (4.10) holds.

2

Lemma 4.2.20 If j2 = d, then (4.10) holds.

Proof : By (4.4), GP = G
(1)
P nH, where H is a cyclic group of order prime to p. We

consider the quotient curve X/G(1)
P . Let g′ be the genus of X/G(1)

P . By Lemmas 4.1.5

and 4.1.6, g′ = 0 can be assumed. Furthermore, by Proposition 4.1.4 either |G(2)
P | = d

or |G(2)
P | = d− 1. A number of cases will be considered.
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(i) G
(1)
P is cyclic. As in the proof of Proposition 4.1.4, without loss of generality,

we assume that P = (0 : 0 : 1) and that TP (X ) = `∞. Then a generator α of G
(1)
P is

equal to Ma,b,c for some a, b, c ∈ K. As p > 2, by straightforward computation we have

αp = Mpa,pb,p p−1
2
ab+pc = id .

Therefore, |G(1)
P | = p holds. Since G

(2)
P is non-trivial, G

(2)
P = G

(1)
P .

Assume that X is non-classical. Then p | (d − 1) by Theorem 5.0.25; therefore

|G(2)
P | = p = d − 1 holds. By Theorem 5.0.26(iv), ε2 = p. Then this contradicts

Theorem 5.0.28 as X is assumed not to be projectively equivalent to a Hermitian

curve.

Then X is classical. By Theorem 5.0.26(iii),

|W | ≤ 6g − 6 + 3d

d− 2
= 3d .

G
(2)
P = G

(1)
P gives that |G(1)

P | ≤ d. Hence by the orbit stabilizer theorem we obtain

|G| = |G(1)
P ||H||W | ≤ d(4g + 2)3d .

If d > 4, then (4.10) holds. If d = 4, then p = d cannot occur; hence, |G(1)
P | = d − 1,

and (4.10) is obtained from |G| = (d− 1)|H||W |.

(ii) G
(1)
P is not cyclic. As |G(1)

P | ≥ |G
(2)
P | ≥ d − 1 and G

(1)
P acts semiregularly on

W \ {P}, we have that |W | ≥ d. If |W | = d, then

|W | − 1 = |G(1)
P | = |G

(2)
P | = d− 1 ;

therefore

|G| = |H||G(1)
P ||W | ≤ (4g + 2)(d− 1)d < (12g2 + 6g)d .

As a result we can assume that |W | > d. In addition, assume that |G(2)
P | = d. Then

p|d and X is classical by Theorem 5.0.25. Then |W | ≤ 6g−6+3d
d−2

= 3d. Since G
(1)
P acts

semiregularly on W \ {P}, d divides |W | − 1. Therefore, |W |≤2d + 1 and |G(1)
P | = d.

Then we have

|G| = |H||G(1)
P ||W | ≤ (4g + 2)d(2d+ 1) ≤ (12g2 + 6g)d .

From now on we assume that |G(2)
P | = d−1. Note that all the hypotheses of Lemma

4.1.12 are satisfied, and we can apply Theorem 5.0.29 with M = {id}. Moreover, by

the proof of Proposition 4.1.4, any non-trivial element of G
(2)
P is an elation with axis

TP (X ) and center P . Therefore, for any point R ∈ W \ {P}, the line `P,R joining

P and R is fixed by G
(2)
P , and as G

(2)
P acts semiregularly on W \ {P}, the d distinct

points of X in `P,R all belong to W . By Lemma 4.1.12, G acts 2-transitively on W ; in

particular the action of G is primitive on W . Let N be a minimal normal subgroup
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of G. Note that for any point Q ∈ W , Q 6= P , the two-point stabilizer GP,Q has size

prime to p and is a subgroup of GP ; therefore it is a cyclic group. Then the Kantor-

O’Nan-Seitz Theorem 5.0.30 applies to G. If N is abelian, then by Lemma 5.0.31 N is

the only minimal normal subgroup of G, which contradicts Theorem 5.0.29. Therefore,

Theorem 5.0.30 together with Theorem 5.0.29 imply that G is one of the following

groups in their natural 2-transitive permutation representations:

1. PSL2(pa) with pa ≥ 4,

2. PGL2(pa) with pa ≥ 4,

3. 2G2(32a+1) with a ≥ 0, and

4. PSU3(pa) or PGU3(pa) with pa > 2.

1. Suppose that G is PSL2(pa) in its natural 2-transitive permutation representation.

Let q = pa. Then the size of W is q + 1, and the size of the Sylow p-subgroup

G
(1)
P in a 1-point stabilizer GP is q. Moreover, a complement H of G

(1)
P in GP is

a cyclic group of order (q− 1)/2 fixing a point R ∈ W \ {P} and acting with two

long orbits on W \ {P,R}. Note that H acts on (`P,R ∩ X ) \ {P,R}. Therefore

(q − 1)/2 = d − 2 holds. Now take a point Q ∈ W \ `P,R. It has already been

noticed that on `Q,R there are d − 1 points of W distinct from P . But then

|W | ≥ 2d− 1 = 2(d− 2) + 3 ≥ q + 2, which contradicts |W | = q + 1.

2. Suppose that G is PGL2(pa) in its natural 2-transitive permutation representation.

Let q = pa. Then the size of W is q + 1, and the size of the Sylow p-subgroup

G
(1)
P in a 1-point stabilizer GP is q. Unlike the previous case, a complement H

of G
(1)
P in GP is a cyclic group of order (q − 1) fixing a point R ∈ W \ {P} and

acting regularly on W \ {P,R}. Then H acts on (`P,R ∩ X ) \ {P,R}. Therefore

q = d− 1 holds. But this contradicts q + 1 = |W | > d.

3. Suppose that G is 2G2(32a+1), p = 3, in its natural 2-transitive permutation repre-

sentation. Therefore the size of W is q3 +1, and the size of the Sylow p-subgroup

G
(1)
P in a 1-point stabilizer GP is q3. Moreover, the commutator subgroup of G

(1)
P

has size q2, whereas the center of G
(1)
P has order q (see [16, Lemma 12.32]). By

Lemma 4.1.12 G
(2)
P is the center of G

(1)
P , whence |G(2)

P | = q. On the other hand,

in the proof of Lemma 4.1.12(iii) it has been shown that the commutator sub-

group of G
(1)
P is contained in G

(2)
P (see (4.9)). Then q2 ≤ |G(2)

P |, which is clearly

a contradiction.

4. Suppose that G is either PSU3(q) or PGU3(q), q = pa > 2, in its natural 2-transitive

permutation representation. Therefore, the size of W is q3 + 1, and the size of

the Sylow p-subgroup G
(1)
P in a 1-point stabilizer GP is q3. Moreover, the center
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of G
(1)
P has order q (see [16, Example A.9]). By Lemma 4.1.12, the center of G

(1)
P

is G
(2)
P ; thus |G(2)

P | = q = d− 1. Then the genus g of X is q(q−1)
2

. As a result,

|G| ≥ (q3 + 1)q3(q2 − 1)

3
> 16g3 + 24g2 + g .

By [16, Theorem 11.127] the unique curve of genus g with more than 16g3 +

24g2 + g automorphisms is the Hermitian curve. As we are assuming that X is

not birationally equivalent to a Hermitian curve, a contradiction is obtained.

2

The proof of Theorem 4.0.1 is now complete.

44



CHAPTER 5

Appendix

5.0.1. Function Fields

In this section we give some facts related to function fields and for details we refer

to [38].

Let F/K be a function field of genus g with full constant field K. For a divisor D

of F denote by `(D) the dimension of L(D), the Riemann-Roch space associated to D,

then Riemann-Roch theorem states that

`(D) = degD + 1− g + `(W −D) , (5.1)

where W is a canonical divisor of F . (Note that here W is not the same as the one

we used in Chapter 4 for the support of the ramification divisor.) Furthermore if

degD ≥ 2g − 1, then `(D) = degD + 1− g; and therefore

L(D + P ) \ L(D) 6= ∅

holds for any place P of F .

Let F ′/F be a finite separable extension. Denote by K ′ and g′ the full constant

field and the genus of F ′, respectively. Then the Hurwitz genus formula relates the

genus of F , the genus of F ′ and the different of F ′/F as follows.

2g′ − 2 =
[F ′ : F ]

[K ′ : K]
(2g − 2) + deg Diff(F ′/F ) (5.2)

Kummer’s Theorem is useful to determine all extensions of a place P ∈ PF in F ′.

For convention denote by F̄ := OP/P the residue class field of P . If ϕ(T ) =
∑
ciT

i is

a polynomial with coefficients ci ∈ OP , we set ϕ̄(T ) =
∑
c̄iT

i ∈ F̄ [T ], where c̄i = ci

mod P .
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Theorem 5.0.21 (Kummer) Suppose that F ′ = F (y), where y is integral over OP
with the minimal polynomial ϕ(T ) ∈ OP [T ] such that ϕ̄(T ) is a separable polynomial

over F̄ . Write

ϕ̄(T ) =
r∏
i=1

ψi(T ) ,

where ψi(T ) is irreducible for all i = 1, . . . , r. Choose ϕi(T ) ∈ OP [T ] with

ϕ̄i(T ) = ψi(T ) and degϕi(T ) = degψi(T ) ,

then there exists a place Pi ∈ PF ′ such that

Pi | P , ϕi(y) ∈ Pi and f(Pi | P ) = degϕi(T ) .

Furthermore, by the Fundamental Equality, there is no other place of F ′ lying over P .

Now we give formulas for ramification index and different exponent in two special

types of Galois extensions, namely Kummer and Artin-Schreier extensions.

Theorem 5.0.22 (Kummer Extension) Let F/K be a function field, where K con-

tains a primitive n-th root of unity and let u ∈ F such that

u 6= xd for all x ∈ F and d | n, d > 1 .

Set F ′ = F (y) with yn = u. Then F ′/F is Galois of degree n. Let P ∈ PF and let

P ′ ∈ PF ′ lying above P , then the ramification index and the different exponent of

P ′ | P are given as follows.

e(P ′ | P ) =
n

rP
and d(P ′ | P ) =

n

rP
− 1 ,

where rP is the greatest common divisor of n and vP (u).

Theorem 5.0.23 (Artin-Schreier Extension) Let F/K be a function field of char-

acteristic p > 0. Suppose that there is an element u ∈ F such that either vP (u) ≥ 0 or

vP (u) is relatively prime to p for any place P of F . Define the integer mP by

mP :=

 m , if vP (u) = −m is relatively prime to p

−1 , if vP (u) ≥ 0 .

In addition suppose that there exists a place Q of F with mQ > 0 and Fpr ⊆ K. Set

F ′ = F (y) with yp
r − y = u. Then F ′/F is a Galois extension of degree pr. A place P

of F is unramified if and only if mP = −1. In the case of mP > 0, P is totally ramified.

Denote the unique place of F ′ lying over P by P ′, then the different exponent d(P ′ | P )

is given by

d(P ′ | P ) = (pr − 1)(mP + 1) .
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It is worth to note that in an extension F ′/F if there exists a total ramification,

then the full constant fields of F and F ′ are the same.

The following theorem gives the ramification and splitting behavior of a place in

the compositum of function fields.

Theorem 5.0.24 Let F ′/F be a finite separable extension of function fields. Suppose

that F ′ = F1 · F2 is the compositum of two intermediate fields F1, F2 ⊇ F .

(i) (Abhyankar’s Lemma) For P ′ ∈ PF ′ lying over P ∈ PF set Pi = P ′ ∩ Fi for

i = 1, 2. Assume that at least one of the extensions P1 | P or P2 | P is tame.

Then the ramification index of P ′ | P is given by

e(P ′ | P ) = lcm{e(P1 | P ), e(P2 | P )},

where lcm denotes the least common multiple.

(ii) Suppose that P ∈ PF such that P splits completely in F1/F . Then every place

Q ∈ PF2 lying over P splits completely in F ′/F2. In particular, if P splits

completely in both F1/F and F2/F , then P slits completely in F ′/F . In this

case if P is rational, then F ′ and F have the same full constant fields.

5.0.2. The Stöhr-Voloch Theory

The idea to investigate the local properties of a non-singular algebraic curve X
using the intersection numbers I(P,X ∩ Π) of X with hyperplanes Π through P ∈ X
was developed for complex curves in the early nineteenth century; see for instance [35,

Section 25]. In [40] the authors extended the classical treatment to curves defined over

a field of positive characteristic. The original motivation was to find an upper bound

for the number of Fq-rational points of an algebraic curve defined over a finite field

of order q. Here we use some of their results on ramification divisors of non-singular

plane algebraic curves.

Assume that X is a non-singular plane curve. For a point P ∈ X , the order sequence

of X at P is the strictly increasing sequence

j0(P ) = 0 < j1(P ) = 1 < j2(P )

such that each ji(P ) is the intersection number I(P,X ∩ `i) of X and some line `i at

P , see [40], and [16, Chapter 7.6]. For i = 2, such a line `2 is uniquely determined

being the tangent line TP (X ) to X at P . A point P for which j2(P ) > 2 is a flex (or

an inflection point) of X . The order sequence is the same for all but a finite number

of points.
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Definition 5.0.1 The curve X is said to be classical if the generic order sequence is

(ε0, ε1, ε2) = (0, 1, 2).

Theorem 5.0.25 (Corollary 2.2 in [28]) Assume that p ≥ 3. If X is a non-classical

curve of degree d, then p|(d− 1).

The concept of order sequence can be given for any linear series. Let D be a

base-point-free linear series with degree d and dimension r. Let π : X → PG(r,K),

π = (x0 : x1 : . . . : xr), be the morphism associated to D. For a point P of X , let γP

be the branch of π(X ) corresponding to P via π. Then the (D, P )-order sequence of

X is the strictly increasing sequence

jD0 (P ) = 0 < jD1 (P ) < . . . < jDr (P )

such that each jDi (P ) is the intersection number I(γP ,X∩Hi) of X and some hyperplane

Hi at the branch γP . The (D, P )-order sequence is the same, say εD0 < . . . < εDr , for all

but finitely many points of X . This constant sequence is the D-order sequence of X .

The curve is D-classical if εDi = i for each i.

The ramification divisor RD of D is

RD = div(det(D
(εDi )

ξ xj)) + (εD0 + . . .+ εDr )div(dξ) + (r + 1)
∑

ePP,

where eP = −min{ordP (x0), . . . , ordP (xr)} and D
(εDi )

ξ is the εDi -th Hasse derivative

with respect to a separating element ξ of K(X ).

The support of RD is the set of points of X whose (D, P )-orders are different from

(εD0 , . . . , ε
D
r ). Some of the properties of order sequences and ramification divisors are

summarized in the following theorem. For a proof, see [16, Chapter 7].

Theorem 5.0.26 Let D be a base-point-free linear series with degree d and dimension

r. Then we have

(i) jDi (P ) ≥ εDi for each P and each i;

(ii) vP (RD) ≥
∑

i(j
D
i (P ) − εDi ), and equality holds if and only if det(

(jDi (P )

εDj

)
) 6≡ 0

mod p;

(iii) deg(RD) = (2g − 2)
∑

i ε
D
i + (r + 1)d; and

(iv) if p ≥ r and εDi = i for each i = 0, 1, . . . , r − 1, then either εDr = r, or εDr is a

power of p.

Definition 5.0.2 A projective irreducible plane curve X is said to be strange if there

exists a point belonging to every tangent line at any non-singular point of X .

Theorem 5.0.27 ( [25]) A non-singular projective irreducible plane curve X is strange

if and only if X is a conic in characteristic 2.
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The following classification result due to Hefez [14] is a key lemma for Theorem

4.0.1.

Theorem 5.0.28 Let X be a non-singular non-strange plane curve of degree d > 3.

If d = ε2 + 1, then X is projectively equivalent to the Hermitian curve.

5.0.3. Central Collineations

In this section we give some notions from Projective Geometry.

A collineation of a projective space PG(r,K) is an isomorphism from PG(r,K) to

itself, that is, a bijection on the point sets mapping any subspace into a subspace. A

collineation is projective if it is induced by a linear map of Kr+1, that is, if it is an

element of PGLr+1(K), viewed as a permutation group acting on PG(r,K).

A collineation φ of PG(r,K), r ≥ 2, is a central collineation if there is a hyperplane

H (the axis of φ) and a point C (the center of φ) such that every point of H is a fixed

point of φ and every line through C is a fixed line of φ.

IfH is a hyperplane of PG(r,K) and C,P, P ′ are distinct collinear points of PG(r,K)

with P, P ′ not in H, then there is precisely one central collineation of PG(r,K) with

axis H and center C mapping P to P ′. In particular, axis and center of a non-identical

central collineation are uniquely determined.

A non-identical central collineation φ is an elation if its center is incident with its

axis, and a homology if center and axis are not incident (the identity is considered both

as homology and elation).

A collineation of PG(r,K), r ≥ 2, is an axial collineation if there is a hyperplane H

such that every point of H is a fixed point of φ. Each axial collineation is central [1,

Lemma 3.1.9]. Each central collineation is a projective collineation [1, Theorem 3.6.1].

5.0.4. Some Results from Group Theory

(i) The projective linear group G = PGL2(pa) has order pa(pa − 1)(pa + 1). It is

the automorphism group of PG(1, pa); equivalently, G acts on the set Ω of size

pa + 1 consisting of all Fpa-rational points of the projective line defined over

Fpa . For every point P ∈ Ω, the stabilizer GP has size pa(pa − 1). The natural

2-transitive representation of PSL2(pa) is obtained when PSL2(pa) is viewed as
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a subgroup of PGL2(pa), see [20, Chapters II.7 and II.8] and [16, Appendix A,

Example A.7]. For p = 2, PGL2(pa) = PSL2(pa). For p > 2, PSL2(pa) has order
1
2
pa(pa − 1)(pa + 1). For pa ≥ 4, PSL2(pa) is a simple group and PGL2(pa) is a

non-solvable group.

(ii) The projective unitary group G = PGU3(pa) has order (p3a + 1)p3a(p2a − 1).

It is the linear collineation group in the projective plane PG(2, p2a) preserving

the classical unital Ω of size p3a + 1 consisting of all absolute points of a non-

degenerate unitary polarity of PG(2, p2a), see [19, Chapter II.8] and [16, Appendix

A, Example A.9]. For every point P ∈ Ω, the stabilizer GP has size p3a(p2a − 1).

Furthermore, G is the automorphism group of the Hermitian curve, regarded as

a non-singular plane curve defined over the finite field with p2a elements Fp2a ,

acting on the set Ω of all its Fp2a-rational points. The special projective unitary

group PSU3(pa) either coincides with PGU3(pa) or is a subgroup of PGU3(pa)

of index 3 according as µ = 1 or µ = 3 with µ = gcd(3, pa + 1). In its action

on Ω, PSU3(pa) is still 2-transitive, see [19, Chapter II.8] and [17]. For pa ≥ 4,

PSU3(pa) is a simple group and PGU3(pa) is a non-solvable group.

(iii) The Suzuki group G = 2B2(n) with n = 2n2
0, n0 = 2a and a ≥ 1 has order

(n2 + 1)n2(n − 1). It is the linear collineation group of PG(3, n) preserving the

Tits ovoid Ω of size n2 +1 , see [21, Chapter XI.3] and [16, Appendix A, Example

A.11]. For every point P ∈ Ω, the stabilizer GP has size n2(n− 1). Furthermore,

G is the automorphism group of the DLS curve, regarded as a non-singular curve

defined over the finite field Fn, acting on the set Ω of all its Fn-rational points,

see [10]. 2B2(n) is a simple group.

(iv) The Ree group G = 2G2(n) with n = 3n2
0, n0 = 3a has order (n3+1)n3(n−1). It is

the linear collineation group of PG(6, n) preserving the Ree ovoid Ω of size n3 +1,

see [21, Chapter XI.13] and [16, Appendix A, Example A.13]. For every point

P ∈ Ω, the stabilizer GP has size n3(n− 1). Furthermore, G is the automorphism

group of the DLR curve, regarded as a non-singular curve defined over the finite

field Fn, acting on the set Ω of all its Fn-rational points, see [13] and [3], For

n > 3, 2G2(n) is simple, while 2G2(3) ∼= PΓL2(8).

For each of the above linear groups, the structure of the 1-point stabilizer and its ac-

tion in the natural 2-transitive permutation representation, as well as its automorphism

group, are explicitly given in the papers quoted.

We now give classification results on finite groups with trivially intersecting Sylow

p-subgroups.

Theorem 5.0.29 (Theorem 3.16 in [11]) Let S be a Sylow p-subgroup of a finite

group G with S  G. Set I := NG(S) and M := C(I). Suppose that p > 2, and
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(i) I = SH, with H cyclic;

(ii) for h ∈ G \ I, S ∩ h−1Sh = {id}.

Then

(i) M is a normal subgroup of G;

(ii) G/M has a unique minimal normal subgroup, which is non-abelian simple and

isomorphic to one of the following groups: PSL2(pa) with a ≥ 2, PSU3(pa) with

pa > 2, and for p = 3 the Ree group 2G2(32a+1)′ with a ≥ 0.

In particular, G acts 2-transitively on the set of Sylow p-subgroups of G.

Theorem 5.0.30 (The Kantor-O’Nan-Seitz Theorem [23]) Let G be a finite 2-

transitive permutation group whose 2-point stabiliser is cyclic. Then either G has an

elementary abelian regular normal subgroup, or G is one of the following groups in their

natural 2-transitive permutation representations: PSL2(pa), pa ≥ 4, PGL2(pa), pa ≥ 4,

PSU3(pa) with pa > 2, PGU3(pa) with pa > 2, the Suzuki group 2B2(n), 2G2(32a+1)

with a ≥ 0.

We end this section with a classical result on primitive permutation groups. For a

proof, see e.g. [24, Corollary 2].

Lemma 5.0.31 If G is a finite primitive permutation group, then G contains at most

2 minimal normal subgroup and if G has an abelian normal subgroup then it has a

unique minimal normal subgroup.
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