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Abstract

The procedure of domain insertion is proven to be very effective in the
process of creating modified proteins that can be used for different protein
engineering applications. Domain insertion alters the functionality of the
protein by inserting gene or genes into certain domains. Proteins usually
tolerate insertions in specific sites only, therefore identifying those permissive
insertion sites is crucial for any successful insertion attempt. Normally,
determining permissive insertion sites is performed experimentally by a genetic
approach. However an educated guess can assist in predicting the potential
permissive insertion sites.

In this work, we introduced a method for predicting permissive insertion
sites through the utilization of machine learning and data mining techniques.
We have adopted an educated guess approach to predict permissive sites by
extracting distinctive features from the amino acids surrounding the insertion
site included within any captured amino acid window. The window size
was made adjustable and can capture any odd number of amino acids. We
used a number of features related to amino acids obtained from this window
and then used a machine learning based approach to construct a trained
SVM model using 135 permissive and non-permissive sites obtained from 10
different proteins.

Our trained model was used to predict permissive insertion sites in Outer
membrane usher protein FasD, Lactose operon repressor LacI, Type II secre-
tion system protein XpsD, and Maltose periplasmic protein MalE and 70.59%,
61.11%, 61.90% and 90.00% accuracies were achieved respectively.
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PROTEİNLERDE İZİN VERİLEN GEN YERLEŞTİRME
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Tez Danismani: Prof. Dr. Osman Uğur Sezerman

Anahtar Kelimeler: Gen Yerleştirmeye Elverişli Protein Alanları, Dipeptit

Kompoziyon, SVM, Özellik Seçimi

Özet

Proteinlere farklı proteinlerin eklenmesi yönteminin, birbirinden farklı pro-
tein mühendisliği uygulamalarında kullanılan farklılaştırılmış protein üretimi
sürecindeki etkinliği kanıtlanmıştır. Protein ekleme, proteini ifade eden gen
üstünde belli başlı bölgelere gen yerleştirerek farklı bir protein elde edilir ve
proteinin işlevselliğinde değişikliğe yol açar. Proteinler, sadece üzerlerinde
belli başlı alanlara yapılan yerleştirmeleri tolere edebilirler. Bu yüzden bu
tolere edilen yerleştirme alanlarının tanımlanması, başarılı bir yerleştirme
yapabilmek için büyük önem taşır. Bu yerleştirime alanları, deneme yanılma
yöntemiyle tanımlanabilir. Fakat, bu alanlara yönelik doğruluk oranı yük-
sek bir tahmin yöteminin geliştirilmesi, bu alanların ortaya çıkarılmasını
kolaylaştıracaktır.

Bu çalışmada, makina öğrenmesi ve veri madenciliği yöntemlerini kulla-
narak, proteinlerin tolere edilebilen gen yerleştirme alanlarını tahmin etmek-
teyiz. Bu tahminler eğitilmiş tahminler olarak adlandırmaktayız. Eğitilmiş
tahminlere, gen yerleştirme alanını çevreleyen amino asitlerin belirgin özellik-
lerini seçerek ulaşmaktayız. Bu tek sayıdaki yerleştirme bölgesini çevreleyen
amino asitleri, boyu ayarlanabilen bir pencere yardımıyla belirlemekteyiz.
Yerleştirme bölgesi, bu pencerenin ya merkez noktasına ya da orta değer
noktasına düşmektedir. Bu pencere içerisinden, amino asitlerle alakalı bir
grup özellik elde edilmiştir. Sonrasında, SVM makine öğrenme yöntemini
kullanılarak, 10 farklı proteinden elde edilen gen yerleştirmeye elverişli ve
elverişsiz 135 bölge ile eğitilerek bir model oluşturulmuştur.

Eğitilmiş modelimiz, Dış zar yer gösterici proteini FasD, Laktoz kalıt
baskılayıcı LacI, Tip II sekresyon sistemi proteini XpsD ve de Maltoz periplazmik
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proteini MalE için sırasıyla %70.59, %61.11, %61.90 ve %90.00 doğruluk oran-
larına erişmiştir.
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Chapter 1

1 INTRODUCTION

1.1 Motivation

As a result of the Human Genome Project and related efforts, DNA (dioxyri-

bonucleic acid), RNA (ribonucleic acid), and protein data accumulate at an

accelerating rate. Mining these biological data to extract useful knowledge is

essential in genome processing. This subject has recently gained significant

attention in the bioinformatics community [1, 4].

Proteins play a very essential role in the cell which controls and affects

all functions. Their role is mainly determined by their structure. Likewise, it

is the amino acid sequence that determines the protein’s structure. Therefore,

there is a strong relationship among the sequence, structure and function of

the proteins [32]. Protein modification and engineering hold great significance

for the future of medicine and biotechnology. Modification of genes at the

nucleotide level continues to provide relevant insights into the structural

elements critical to gene and protein function [16]. The procedure of domain

insertion is proven to be very effective in the process of creating modified pro-

teins that can be used for different protein engineering applications. Domain

insertion alters the functionality of the protein by inserting gene or genes

into certain domains. Proteins usually allow insertions in specific sites only,

therefore identifying those permissive sites is crucial for any successful domain



insertion attempt. Usually, the procedure for determining the permissive

insertion sites in a protein is performed in biological laboratories by a method

proven to be neither cost nor labor effective. The rapid advancements in the

field of molecular biology has consequently increased the demand for more

robust computational solutions. Moreover, the availability of various state

of the art machine learning algorithms and techniques has encouraged more

and more scientists to try and solve problems addressed by the biotechnology

industry. Those were the main reasons that motivated us to conduct the

experiment discussed in this thesis.

1.2 Organisation of Thesis

The organization of the thesis as follows: Chapter 2 presents a brief biological

background and an overview of the related works. In Chapter 3, we explain

our approach in detail. Chapter 4 discusses the experiments and the results.

Lastly, the conclusions and the future works are given in Chapter 5.
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Chapter 2

2 BACKGROUND AND RELATED WORK

2.1 Biological Background

2.1.1 Protein

Proteins are organic molecules that contain carbon, hydrogen, oxygen, and

nitrogen. Some also contain sulfur. They weigh more than all other organic

compounds found in a living cell. In fact, hundreds of different proteins can

be found in any single cell, and together they make up 50% or more of a cell’s

dry weight [38]. Proteins are composed of numerous combinations of 20 major

amino acids joined together by peptide bonds. These amino acids are listed

in Table 2.1. The properties of a protein depend mainly on its shape, which

in turn depends on the arrangement of the amino acids that make up the

protein [19,29]. Every amino acid contains at least one carboxyl (−COOH)

group and one amino (−NH2) group attached to the same carbon atom, called

an alpha-carbon (written Cα) [38]. This carbon atom is also bonded to a

side chain which gives each amino acid its characteristics properties such as

hydrophobicity, charge and volume Figure 2.1 [29]. Since these properties

affect the interactions of amino acid residues, they have a great influence on

protein three-dimensional structure and as a result protein’s main function.

The distribution of hydrophobic and hydrophilic (polar and charged) amino



acids dictates the structure of the protein where the hydrophobic residues

try to get away from water and hence take a position inside the protein core

while the hydrophilic ones prefer to be outside. When amino acids are joined

together into a polypeptide chain, a water molecule is released from each

joined amino acids. Therefore, rather than the original amino acids, the

protein is composed of amino acid residues [36]. These amino acid residues

form what is known as the primary structure of the protein [8].

Amino Acid Abbreviations Polarity Charge Hypath1 Hyphil2

Alanine Ala A nonpolar neutral 1.8 -0.87
Arginine Arg R polar positivel -4.5 15.86
Asparagine Asn N polar neutral -3.5 7.58
Aspartic acid Asp D polar negative -3.5 9.66
Cysteine Cyc C nonpolar neutral 2.5 -0.34
Glutamic acid Glu E polar negative -3.5 7.75
Glutamine Gln Q polar neutral -3.5 6.48
Glycine Gly G nonpolar neutral -0.4 0
Histidine His H polar positive -3.2 5.6
Isoleucine Ile I nonpolar neutral 4.5 -3.98
Leucine Leu L nonpolar neutral 3.8 -3.98
Lysine Lys K polar positive -3.9 6.49
Methionine Met M nonpolar neutral 1.9 -1.41
Phenylalanine Phe F nonpolar neutral 2.8 -2.04
Proline Pro P nonpolar neutral -1.6 -0.01
Serine Ser S polar neutral -0.8 4.34
Threonine Thr T polar neutral -0.7 3.51
Tryptophan Trp W nonpolar neutral -0.9 -1.39
Tyrosine Tyr Y polar neutral -1.3 1.08
Valine Val V nonpolar neutral 4.2 -3.1
1 Hydropathy Index
2 Hydrophilicity Index

Table 2.1: List of amino acids
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Figure 2.1: Illustration of the three groups that all amino acids contain. The
R side chain differs with each amino acid and determines the properties of
the amino acid [29]

2.1.2 Peptide Bonds

Amino acids bond between the carbon atom of the carboxyl (−COOH) group

of one amino acid and the nitrogen atom of the amino(−NH2) group of

another. The bonds between amino acids are called peptide bonds Figure 2.2.

For every peptide bond formed between two amino acids, one water molecule

is released; thus, peptide bonds are formed by dehydration synthesis. When

two amino acids are joind together by a peptide bond the resulting compound

is called dipeptide. Adding another amino acid to a dipeptide would form a

tripeptide. Further additions of amino acids would produce a long, chainlike

molecule called a peptide (4-9 amino acids) or polypeptide (10-2000 or more

amino acids) [38].

2.1.3 Protein Secondary Structure

Proteins have four levels of structure: primary, secondary, tertiary, and

quaternary [29]. In biochemistry and structural biology, secondary structure

5
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Figure 2.2: Peptide bond formation by dehydration synthesis. The amino
acids glycine and alanine combine to form a dipeptide. The newly formed
bond between the carbon atom of glycine and the nitrogen atom of alanine is
called a peptide bond [38]

is the general three-dimensional form of local segments of biopolymers such as

proteins and nucleic acids (DNA/RNA) [38]. A protein’s secondary structure

is the localized, repetitious twisting or folding of the polypeptide chain. This

aspect of a protein’s shape results from hydrogen bonds joining the atoms

of peptide bonds at different locations along the polypeptide chain. Certain

sequences of amino acids will arrange themselves into clockwise spirals or

helical structure termed alpha (α) helix while the roughly parallel portions of

the chain will form a pleated structure termed beta (β) sheet Figure 2.3 [29].

Both structures are held together by hydrogen bonds between oxygen or

nitrogen atoms that are part of the polypeptide’s backbone [38].

2.1.4 Permissive Sites

Permissive sites are defined as regions of the protein that are likely to

be flexible enough to accommodate inserts without damage to the protein

biogenesis, final localization, and folding [42]. Proteins can be remarkably

tolerant of major mutational changes. Sites that accommodate large insertions

without loss of function (permissive sites) appear generally to correspond to

6
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Figure 2.3: Secondary structure: helix and pleated sheets (with three polypep-
tide strands) [38]

surface regions at which the added sequences do not disrupt overall folding.

The identification of such sites can aid in the engineering of functional

derivatives of a protein with novel properties [24].

In order to find sites appropriate for insertion and cell surface exposure,

one may proceed with an educated guess or with an experimental approach.

The more one knows about the protein having similar properties related

to their sequence similarity, the more one may expect the educated guess

approach to work. However, if nothing is known about the protein and that

the gene has been cloned, one may use directly an experimental approach to

determine permissive sites. The educated guess approach consists of trying to

predict permissive sites by identifying certain sequence and structural features

of the experimentally successful permissive sites. For example, flexible regions

of the protein and among them try to select those that are likely to be cell

surface exposed. Hydrophilic sequences or regions predicted as turns can also

be good candidates for permissive sites [42].

7



2.1.5 Domain

Domains are distinct functional and/or structural units in a protein. Usually

they are responsible for a particular function or interaction, contributing to

the overall role of a protein. Domains may exist in a variety of biological

contexts, where similar domains can be found in proteins with different

functions. Proteins can comprise a single domain or a combination of domains

hence called multi-domain [2]. Therefore, domains are very important in

finding protein’s function, classifying protein’s fold, and identifying homology

relationships. In multi-domain proteins, each domain can have a different

function independent from the others, or they can work together in a concerted

action. Domains form the functionally important sites of the proteins such

as the catalytic sites of the enzymes or ligand binding sites. Moreover,

since domains can fold independently, they play a significant role in protein

folding by accelerating the folding process and reducing the potentially large

combination of residue interactions.

2.1.6 Types of Domain Insertions

Domain insertions can be categorized as either single or multiple depending

on the number of inserts as shown in Figure 2.4. In single insertions, one

domain is inserted into another domain, and both domains can belong to

the same or different superfamilies. In multiple insertions, more than one

domain, either of the same or different superfamily, is inserted into the parent

domain [2]. There are three types of multiple insertions:

1. Nested insertions

2. Two-domain insertions

8



3. Three-domain insertions

parent domain N terminus parent domain C terminus

parent domain N terminus

parent domain N terminus

parent domain N terminus

parent domain C terminus

parent domain C terminus

parent domain C terminus

insert1

insert1 insert2 insert3

insert1 N insert1 Cinsert2

insert2insert1

(a)

(b)

(c)

(d)

Figure 2.4: Schematic representation of types of domain insertions observed
in protein structures. (a) Single insertion. (b) Nested insertion. insert1 N’
and insert1 C’ represent the N and C terminus of insert, respectively. (c)
Two-domain insertion. (d) Three-domain insertion [2]

2.1.7 Characteristics of Glycine

Glycine (abbreviated as Gly or G) is an organic compound with the formula

NH2CH2COOH. Having a hydrogen substituent as its side-chain, glycine is

the smallest of the 20 amino acids commonly found in proteins. Its codons

are GGU, GGC, GGA, GGG. the genetic code. Glycine is a colourless, sweet-

tasting crystalline solid. It is unique among the proteinogenic amino acids in

that it is not chiral. Glycine is considered the most flexible among the amino

acids for its ability to fit into any configuration hydrophilic or hydrophobic

environments, and that is due to its minimal side chain of only one hydrogen

atom [26]. The structural formula of the Glycine is illustrated in Figure 2.5.

2.2 Support Vector Machine

The Support Vector Machine (SVM) is a state-of-the-art classification method

introduced in 1992 by Boser, Guyon, and Vapnik [6]. The SVM classifier is

9



C C

H

H

O

OH

H N2

Figure 2.5: Structural formula of the Glycine [38]

widely used in bioinformatics (and other disciplines) due to its high accuracy,

ability to deal with high-dimensional data such as gene expression, and

flexibility in modeling diverse sources of data [35]. SVMs belong to the

general category of kernel methods. A kernel method is an algorithm that

depends on the data only through dot-products. When this is the case, the dot

product can be replaced by a kernel function which computes a dot product

in some possibly high dimensional feature space. This has two advantages:

First, the ability to generate non-linear decision boundaries using methods

designed for linear classifiers. Second, the use of kernel functions allows

the user to apply a classifier to data that have no obvious fixed-dimensional

vector space representation. The prime example of such data in bioinformatics

are sequence, either DNA or protein, and protein structure. SVM performs

classification by constructing an N-dimensional hyperplane that optimally

separates the data into two categories. The basic aim is to classify the

items that are similar in their feature values. These supervised learning

algorithms are known to be enhanced from linear classifiers. The input victors

are mapped to a higher dimensional space and data is separated with a

hyperplane. Another two extra hyperplanes parallelly positioned on both

10



{
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Support vectors

Separating 
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Class 1
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Figure 2.6: Classification (linear seperabale case) [12]

sides of the hyperplane are also invented. The generalization is known to be

better as the margin between two parallel hyperplanes is larger. Thus, the

distance between these two parallel hyperplanes, is aimed to be maximized,

while the effects of the classification error is minimized [10] (Figure 2.6).

2.3 Feature Selection

Feature selection is frequently used as a preprocessing step to machine learn-

ing. It is a process of choosing a subset of original features so that the

feature space is optimally reduced according to a certain evaluation criterion.

Feature selection has proven to be effective in removing irrelevant and re-

dundant features, increasing efficiency in learning tasks, improving learning

performance like predictive accuracy, and enhancing comprehensibility of

11



learned results [5]. The large number of features may cause serious prob-

lems to many machine learning algorithms with respect to scalability and

learning performance. For example, high dimensional data (i.e., data sets

with hundreds or thousands of features) can contain high degree of irrelevant

and redundant information which may greatly degrade the performance of

learning algorithms. Therefore, feature selection becomes very necessary for

machine learning tasks when facing high dimensional data. Given an input

feature vector X = {x1, x2, ..., xM}, then the output Y is not determined by

the complete set of the input features, instead, it is decided only by a subset

of them, such that X = {x(1), x(2), ..., x(m)}, where m < M . With sufficient

data and time, it is acceptable to use all the input features, including those

irrelevant features, to approximate the underlying function between the input

and the output. But in practice, there are two problems which may be evoked

by the irrelevant features involved in the learning process.

1. The irrelevant input features will induce greater computational cost.

2. The irrelevant input features may lead to overfitting.

Feature selection algorithms fall into two broad categories, the filter model

or the wrapper model [13,18]. The filter model relies on general characteristics

of the training data to select some features without involving any learning

algorithm. The wrapper model requires one predetermined learning algorithm

in feature selection and uses its performance to evaluate and determine which

features are selected. As for each new subset of features, the wrapper model

needs to learn a hypothesis (or a classifier). It tends to find features better

suited to the predetermined learning algorithm resulting in superior learning

performance, but it also tends to be more computationally expensive than
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the filter model [20]. When the number of features becomes very large, the

filter model is usually chosen due to its computational efficiency.

2.4 Related work

There is a decent number of molecular experiments that were aimed at

identifying permissive insertion sites in various proteins. Those experiments

formed our main source for constructing the dataset used in this thesis. One

related work in the field is the publication of Manoil and Bailey, which is about

identifying permissive insertion sites of the Escherichia coli lac permease.

Their research resulted in identifying 11 permissive insertion sites out of the

20 insertions performed on the E. Coli [24].

Unlike the genetic approach, the literature seems to be really poor with

computational experiments related to our work. We have however, found one

attempt to predict permissive insertion sites by calculating the ’permissibly

score’ of amino acid ’windows’ [39]. The aforementioned work inspired us to

use a rolling window as an effective method to extract distinctive features.

The idea of using a window of amino acid residues was also mentioned by

Ofrana and Rosta in a publication titled "Predicted protein-protein interaction

sites from local sequence information" [30].

The literature shows that a number of experiments on various protein

classification problems were based on the calculation of Dipeptide Composition

(DC). The work of Pasquale Petrilli in the publication titled "Classification

of protein sequences by their dipeptide composition" formed a fundamental

cornerstone in our approach [31].

As for the machine learning techniques, the literature is really rich with

publications about various classification problems, classification and prediction
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techniques. Many of these publications were dealing with proteins and amino

acids which made them even more relevant to our work. In fact, as a result of

reviewing some of the bioinformatics publications dealing with classification

problems we decided to use SVM as the base classifier in our work.
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Chapter 3

3 METHODOLOGY

3.1 Introduction

In our approach, we used a moving window with adjustable size to capture

amino acids surrounding the insertion site being examined. The insertion site

of interest is always at a position equal to the median value of the residues

included by any given window. It is also worth mentioning that the window

size w was always set to be an odd number in order to be able to extract

equal number of features from the other amino acids surrounding the amino

acid of interest. Window size can be any odd number that is greater than 1

and less than or equals the sequence length. Each insertion site is represented

by a set of features extracted from the other amino acids included within the

window. Figure 3.3 illustrates the idea of the moving window. The schematic

illustration in Figure 3.1 gives a general overview of our methodology.

Our system takes a protein sequence represented by amino acids and its

corresponding secondary structure as inputs. After the feature extraction

process is complete our system, uses a trained SVM model to predict the

permissive insertion sites.

During the development stage of our methodology we tried to find a

solution to how to extract features for the first and last position in the

sequence. For example a w = 9 can not process the first 4 amino acids, where



Protein 
sequence

+
Input

Extract features for each 
amino acid

Predict permissive site using 
SVM trained model

Prediction of permissive insertion sites

Process

Output

Corresponding 
Secondary 
Structure

Window size Parameter

Figure 3.1: A schematic illustration of the methodology

the middle amino acid in the window is at the fifth position. To overcome

this issue we decided to add zeros to the beginning and end of the sequence.

The appropriate number of zeros z is given by Equation 1.

z = w − 1
2 (1)
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MYYLKNTNF
1 5 9

0000MYYLK

insertion site being examined

window size = 9

1 5

(a) (b)

Figure 3.2: An illustrationof the first position scenario. (a) First position
problem where features extraction starts at position 5. (b) Our proposed
solution

3.2 Feature Extraction

From a one-dimensional point of view, a protein sequence contains characters

from the 20-letter amino acid alphabet A = {A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W, Y}. An important issue in applying any classifier to

protein sequence classification is how to encode protein sequences, i.e., how to

represent the protein sequences as the input of the classifier. Indeed, sequences

may not be the best representation at all. Good input representations make

it easier for the classifier to recognize underlying regularities. Thus, good

input representations are crucial to the success of classifier learning [41].

Different distinctive sets of features were extracted and then joined to-

gether to represent each permissive or non-permissive site. The following

sections explain how each group of features was extracted.
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TGIIFA AISLFSLLF QPLFGL

insertion site being examined

window size = 9

45 51 55 59 65

--- ---TGIIFA AISLFSLLF QPLFGL
45 51 55 59 65

--- ---

Figure 3.3: Illustration of a window capturing 9 amino acids between the
positions 51 and 59 inclusive. The amino acid at the position 55 represents
the insertion site being examined

3.2.1 Calculation of Dipeptide Composition

Normally, The Dipeptide Composition (DC) gives 400 features, defined as:

f(r, s) = Nrs

N − 1 r, s = 1, 2, ..., 20. (2)

where Nrs is the number of dipeptide represented by amino acid type r

and type s. However, in our method we have divided the amino acids into

9 different groups according to their side chain properties so the range of

possible values of r and s in equation 2 is changed to r, s = 1, 2, ..., 9 which,

leaves us with 9× 9 = 81 features. Amino acid groups are listed in Table 3.1.

Referring to the window shown in Figure 3.4 we can replace each amino

acid by its corresponding group number then list the dipeptide possibilities

before calculating the fraction. A window of size w will produce w − 1 pairs

of dipeptide bonds. The resulting pairs of amino acids are sometimes referred

to as k-letter word where in this case k = 2. The occurrence of each pair

of amino acids was calculated and turned into a fraction. Our dipeptide

calculation section of the program outputs the fraction of each corresponding

pair.
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Group no. Amino Acid

1 N, Q, S, T, Y
2 H, K, R
3 E ,D
4 G
5 F, I, L, M, V
6 C
7 A
8 P
9 W

Table 3.1: Amino acid groups

TGIIFA AISLFSLLF QPLFGL
45 51 55 59 65

--- ---{ { {

AI

... {

IS SL LF FS SL LL LF

75 51 15 55 51 15 55 55

(a)

(b)

Figure 3.4: Construction of k-letter words where k = 2. (a) Resulting k-letter
words. (a) Representation by group number

3.2.2 Polarity

Amino acids can be divided into two groups based on their side-chain polarity.

They can be either polar or non-polar. The number of features extracted

in this step is equal to the window size w. Moreover we have added an

extra feature called window polarity to represent the overall polarity of the

window. Window polarity p is determined by summing the polarity of each
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residue included by the window then if the sum is greater than zero, the

window polarity is set to ’1’ and ’0’ otherwise as shown in 3. The numerical

representations for all possible amino acid side-chain polarity are shown in

Table 3.2.

p =


1, if sum of residues polarity > 0

0, otherwise
(3)

Side-chain polarity Numerical representation

Polar 1
Non-polar 0

Table 3.2: Numerical representation for possible amino acid side-chain polarity

3.2.3 Charge

In regards to side-chain charge, amino acids are divided into three groups;

positive, negative and neutral as shown in Table 2.1. These properties along

with hydrophilicity or hydrophobicity are important for protein structure and

protein–protein interactions [11]. Therefore we have decided to use amino

acids’ charge as a feature. The Histidine H amino acid is positive (10%)

neutral (90%) and thus we considered it to be neutral. A window of size w

would give a w number of features representing each amino acid included by

the window. Same as we did with polarity, we have added an extra feature

called window charge to represent the overall charge of the window. Window

charge c is determined by summing the charge of each residue included by the

window then if the sum is greater than or equal to zero, the window charge

is set to ’1’ and ’-1’ otherwise as shown in 4. The numerical representations
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for all possible amino acid side-chain charge are shown in Table 3.3.

c =


1, if sum of residues charge ≥ 0

−1, otherwise
(4)

Side-chain charge Numerical representation

Positive 1
Negative -1
Neutral 0

Table 3.3: Numerical representation for possible amino acid side-chain charge

3.2.4 Hydropathy and Hydrophilicity

Amino acids have different hydropathy and hydrophilicity indices influencing

their location inside the protein. The water-soluble proteins tend to have

their hydrophobic residues (Leu, Ile, Val, Phe, and Trp) buried in the middle

of the protein, whereas hydrophilic side-chains are exposed to the aqueous

solvent [40]. Two sets of features each equals the given window size were

extracted by replacing each amino acid with its corresponding hydropathy

and hydrophilicity indices. Moreover, we have added two extra features

representing the averages of window hydropathy and window hydrophilicity.

Hydropathy and hydrophilicity indices for the 20 amino acids are listed in

Table 2.1.

3.2.5 Corresponding Secondary Structure Sequence

Protein secondary structure can provide some useful features. To determine

the protein’s secondary structure we first sent the protein sequence to the
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PSIPRED Protein Sequence Analysis Workbench operated by UCL Depart-

ment Of Computer Science. The predicted secondary structure sequence

consists of three types of structures. Each amino acid in the protein sequence

is represented by either an C, E or H letter on the secondary structure se-

quence where C stands for coil while H stands for α-helix and E stands for

β-sheet as shown in Figure 3.5. The number of features extracted in this step

is equal to the window size. The numerical representations for all possible

secondary structure shapes are shown in Table 3.4. In addition, we have

added one more feature representing Window secondary structure s. This

feature was determined by summing the secondary structure of each residue

included by the window then if the sum is greater than or equal to zero, the

window charge is set to ’1’ and ’-1’ otherwise as shown in 5.

s =


1, if sum of residues secondary structure ≥ 0

−1, otherwise
(5)

---PYARPNAIVGTDASRNVITLGGTRAELENYLRTVQIFDV---

---CCCCCCCEEEEECCCCEEEECCCHHHHHHHHHHHHHCCC---

210 250

Figure 3.5: Sample residues of the XpsD protein and their corresponding
secondary structure

3.2.6 Amino Acids Occurrences

In this step we recorded the occurrences of each amino acid included by the

window producing a new set of 20 features. Each feature represents the total

number of occurrences for one amino acid.
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Secondary structure Numerical representation

C 0
H 1
E -1

Table 3.4: Numerical representation for possible secondary structure shapes

3.2.7 Presence of Glycine

The Glycine is known to be the most flexible amnio acid, therefore its

presence may increase any chance of successful insertion. To benefit from this

phenomena we have been able to extract two more features in addition to

total number of Glycine occurrences inside the window. The total number of

Glycine occurrences was determined by the previous step. The two features

indicate if the amino acid directly before or after the insertion site belong to

Glycine. These two features can take the value of ’1’ or ’0’.

3.2.8 Feature Vector

During this step we constructed our final feature vector where, each insertion

site is represented by a feature vector created by combining all features

extracted in the previous steps. The length of any feature vector depends

solely on the chosen window size. Refere to Table 3.5 for a list of all extracted

features and their possible numerical representations.

A window of size 7 will generate a total of 143 features arranged as shown

in Table 3.6.
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Feature set Features # Possible values

Dipeptide composition 81 [0, 1]
Polarity w {0, 1}
Window polarity 1 {0, 1}
Charge w {-1, 0, 1}
Window charge 1 {-1, 1}
Hydropathy index w column 5 in Table 2.1
Window hydropathy avg. 1 [-4.5, 4.5]
Hydrophilicity index w column 6 in Table 2.1
Window hydrophilicity avg. 1 [-3.98, 15.86]
Secondary structure w {-1, 0, 1}
Window secondary structure 1 {-1, 1}
Amino acids occurrences 20 [0, w]
Neighboring Glycine 2 {0, 1}

1
Class label 1 {P, N}
1 P = Permissive, N = Non-permissive

Table 3.5: List of all extracted features and their possible numerical represen-
tations

3.3 Dataset Collection

The presence of a well known and documented dataset is essential for every

classification problem. A great deal of effort in this work was directed towards

constructing a training dataset for protein insertion sites as there is no dataset

for protein insertion sites currently available. We have constructed our own

dataset by collecting individual protein sequences from a number of different

biology publications. We had to scan each publication for insertion sites and

identify both the permissive and non-permissive insertion sites.

3.4 Classifier Training

Continuing with our methodology, we have trained an SVM classifier with

5-fold cross-validation to be later used for predicting permissive insertion

24



Feature set Features #

Dipeptide composition 81
Polarity 7
Window polarity 1
Charge 7
Window charge 1
Hydropathy index 7
Window hydropathy avg. 1
Hydrophilicity index 7
Window hydrophilicity avg. 1
Secondary structure 7
Window secondary structure 1
Amino acids occurrences 20
Glycine before 1
Glycine after 1

Table 3.6: Possible number of features generated for w = 7

sites. When a classifier is trained a model is created, this model can then be

applied for any dataset to predict permissive insertion sites.
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Chapter 4

4 EXPERIMENTS AND RESULTS

4.1 Dataset

In our approach, we have tested our system with real world data as mentioned

in the previous chapter. Due to the lack of sufficient number of semi-permissive

sites samples; all semi-permissive sites were considered as permissive in the

training set.

For the train and test method, the available data is split into two parts

called a training set and a test set (Figure 4.1). First the training set is

used to construct the SVM classifier. The classifier is then used to predict

the classification for the instances in the test set. If the test set contains N

instances of which C are correctly classified the prediction accuracy of the

classifier for the test set is p = C/N . This can be used as an estimate of its

performance on any unseen dataset.

4.2 Training and Validation

Training involves using a dataset with known values, and learning a model

from that dataset. However, models that fit the training dataset very well

may fail to predict new data points. Such over-fitting of the training data will

most likely yield a model that cannot be generalized and, therefore, would



dataset

split training set

test set

learning 
algorithm

classifier

estimate

Figure 4.1: Train and test [7]

not be useful. Therefore, an algorithm and its associated parameters must

be validated before they are used to predict new data. This process involves

segmenting the training data into two sets. One set is used for training and

the other for testing the model. Typically, validation should be done with

a variety of algorithms and parameters, and results monitored to choose

the best combination. This combination can then be used to build a model

with the entire training dataset, and subsequently to predict for new data.

Cross-validation is an important tool to avoid overfitting models on training

data, as overfitting will give low accuracy on validation. Also, validation

can help choose the right set of descriptors, an appropriate algorithm and

associated parameters for a given dataset. Validation can be run on the

same dataset using various algorithms and altering the parameters of each
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References UniProt code1 Insertions # P2 N3

Manoil et. al. [24] LACY_ECOLI 21 10 11
Bailey et. al. [3] BGAL_ECOLI 8 6 2
Schlehuber and Rose [34] VGLG_VSIVA 6 6 0
Charbit et. al. [9] LAMB_ECOLI 13 7 6
Guedin et. al. [14] FHAC_BORPE 18 10 8
Nelson and Traxler [28] MALG_ECOLI 12 2 10
Teymournejad et. al. [37] FMS3_ECOLX 3 3 0
Lippincott and Taxler [23] MALK_ECOLI 12 7 5
Haft et. al. [15] TRAI1_ECOLI 33 21 12
Lee et. al. [22] TRAD1_ECOLI 9 3 6
Total # of samples 135 75 60
1 Protein Code on The Universal Protein Resource (UniProt)
2 Permissive sites #
3 Non-permissive site #

Table 4.1: Training dataset

References UniProt code Insertions # P N

Schifferli and Alrutz [33] FASD_ECOLX 17 7 10
Nelson et. al. [27] LACI_ECOLI 18 8 10
N.T. Hu and Others [17] GSPD_XANCP 21 9 12
Lecroisey et. al. [21] A7ZUQ6_ECO24 10 8 2
Total # of samples 66 32 34

Table 4.2: Test dataset

algorithm. The results of validation can then be examined to choose the best

algorithm and parameters for the model.

During N-Fold Cross-Validation, the compounds in the input data are

randomly divided into N equal parts; N-1 parts are used for training, and the

remaining 1 part is used for testing. The process is repeated N times, with a

different part being used for testing in each iteration. Thus, each compound

is used at least once in training and once in testing, and the average results
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are reported. This whole process is then repeated as many times as specified

by the ‘number of repeats’ [25] Figure 4.2.

D

D1 D2 D3 D4 D5
train trainvalidate

dataset

Figure 4.2: 5-fold cross-validation

4.3 Experiments with 5-Fold Cross-Validation

In our work, we used LIBSVM classifier available within the WEKA toolkit.

From the available user specific parameters associated with the LIBSVM

classifier, we changed the cost parameter C. The default value for this

parameter was 1 and we changed it to 30. SVM models have a cost parameter

which, allows some flexibility in separating the categories by controlling

the trade off between allowing training errors and forcing rigid margins. It

creates a soft margin that permits some misclassifications. Increasing the

value of C increases the cost of misclassifying points and forces the creation

of a more accurate model that may not generalize well. We also enabled the

normalization option. Large margin classifiers are known to be sensitive to the

way features are scaled. Therefore it is essential to normalize either the data

or the kernel itself. This observation carries over to kernel-based classifiers

that use non-linear kernel functions: The accuracy of an SVM can severely

degrade if the data is not normalized. Normalization can be performed at
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the level of the input features or at the level of the kernel (normalization in

feature space).

We ran the algorithm with five-fold cross-validation and for different

window sizes. Our training set consisted of 135 samples 75 of which are

labeled as permissive and the remaining 60 labeled as non-permissive.

w Features # Accuracy (%) RMSE

7 143 48.15 0.7201
9 153 52.59 0.6885
11 163 52.59 0.6885
13 173 56.30 0.6611
15 183 57.78 0.6498

Table 4.3: Training set results for different window sizes using SVM classifier
with 5-fold cross-validation

The Root Mean Square Error RMSE is a measure of the differences

between values predicted by a model or an estimator and the values actually

observed from the thing being modeled or estimated. RMSE is also a a

measure of how well the curve fits the data. Since the RMSE is a good

measure of accuracy, it is ideal if it is small.

The results we obtained from each window size are shown in Table 4.3

and the appropriate confusion matrices for all proteins and window sizes are

displayed in Table 4.5.

4.4 Experiments with Feature Selection

We performed feature selection using the two prominent methods; the wrapper

and filter. After performing the feature selection, we trained two SVM

classifier models on the same training set described in Table 4.1. One model

was trained using the set of features selected by the wrapper method and
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Accuracy (%)
w FasD1 LacI2 XpsD3 MalE4

7 64.71 61.11 42.86 80.00
9 58.82 44.44 47.62 70.00
11 41.18 44.44 42.86 70.00
13 64.71 55.56 47.62 50.0
15 58.82 50 52.31 60.00
1 Outer membrane usher protein FasD
2 Lactose operon repressor LacI
3 Type II secretion system protein XpsD
4 Maltose periplasmic protein MalE

Table 4.4: Test set results for different window sizes using SVM trained
model

w

7 9 11 13 15

Protein P N P N P N P N P N

FasD 6 1 4 3 3 4 6 1 6 1 P
5 5 4 6 6 4 5 5 6 4 N

LacI 4 7 5 3 4 4 5 3 5 3 P
3 4 7 3 6 4 5 5 6 4 N

XpsD 4 5 3 6 3 6 6 3 6 3 P
7 5 5 7 6 6 8 4 7 5 N

MalE 6 2 5 3 5 3 5 3 6 2 P
0 2 0 2 0 2 2 0 2 0 N

Table 4.5: Confusion matrices of test set results for different window sizes
using SVM trained model

another using the features selected by the filter method. The number of

selected features and the accuracy of the SVM classifiers for both feature

selection methods and for different window sizes are shown in Table 4.6

and 4.8.
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4.4.1 Wrapper Method

We used the WEKA toolkit to compute the feature selection subsets using

an attribute selector called ClassifierSubsetEval. The wrapper method uses a

subset evaluator which creates all possible subsets from the feature vector.

Then it uses a classification algorithm to induce classifiers from the features

in each subset. Finally, it will consider the subset of features with which the

classification algorithm performs the best.

4.4.2 Filter Method

For the filter method we have also used the WEKA toolkit to compute the

feature selection subsets by choosing an attribute selector called InfoGainAt-

tributeEval. Unlike the wrapper method the fileter method does not require

a classifier to select useful features it rather uses a ranker algorithm. The

ranker algorithms are used to rank the features by omitting one feature at a

time from the rank list. From the list of ranked features we choose the ones

that have rank value > 0.

4.5 Results

Our experiments produced two sets of results, a set without feature selection

and another with feature selection. Starting with the results obtained before

the feature selection, we have the training set results and the test set results.

As for the training set results Table 4.3, first we notice the proportional

relationship between the number of features and w. Regarding the accuracy

of the SVM classifier all window sizes produced fairly good accuracies apart

from w = 7 which, produced a lower accuracy. Highest accuracy was achieved
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w #1 Index2 Description3 Accuracy (%) RMSE

7 4 11 DC(11) 57.78 0.6498
94 Charge(5)
100 Hydropathy(3)
107 Hydrophilicity(2)

9 10 14, 63, 67, 68 DC(14, 63, 67, 68) 66.67 0.5774
86 Polarity(5)

96, 97, 100 Charge(5, 6, 9)
110 Hydropathy(9)
114 Hydrophilicity(3)

11 6 8, 14, 39, 44 DC(8, 14, 39, 44) 59.26 0.6383
112 Hydropathy(7)
121 Hydrophilicity(4)

13 4 56 DC(1) 71.11 0.5375
136 Hydrophilicity(13)
141 Secondary Structure(4)
152 Alanine count

15 6 10, 75 DC(10, 75) 67.41 0.5709
116 Hydropathy(3)
143 Hydrophilicity(14)
147 Secondary Structure(2)
178 Theonine count

1 Number of selected features
2 Feature index in the feature vector
3 Feature name

Table 4.6: Training set results for different window sizes using SVM classifier
with 5-fold cross-validation after applying wrapper method feature selection

with w = 15. However experiments proved that a higher accuracy does not

necessarily mean a better model. In other words, achieving high accuracy

on the training set could be a sign of overfitting. Overfitted models do not

generalize well and hence perform poorly when used for predicting unseen

data.
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Accuracy (%)
w FasD LacI XpsD MalE

7 52.94 61.11 61.90 70.00
9 52.94 50 52.38 50.00
11 52.94 55.56 47.62 80.00
13 52.94 61.11 52.38 60.00
15 47.06 61.11 38.06 50.00

Table 4.7: Test set results for different window sizes using SVM trained
model after applying wrapper method feature selection

The trained SVM model was applied to the test data set described in

Table 4.2. The test set consisted of four different proteins. Proteins were

individually classified using the trained model. The process was repeated for

different window sizes to be able to compare and choose the optimal w.

The results listed in Table 4.4 show that although w = 7 produced the

lowest accuracy on the training set, it outperformed all other window sizes

and demonstrated a better performance on the test set. However, w = 15

yielded the highest classification accuracy for the type II secretion system

protein XpsD. Moreover, w = 11 provided the lowest classification accuracy

for the outer membrane usher protein FasD . The reason for this can be

related to the increased number of features and hence the increased possibility

of noise.

Results for training with different window sizes after applying the feature

selection or wrapper subsets are given in Table 4.6. It can be observed that,

the number of features has been significantly decreased. Also, the accuracy

of the trained SVM model has significantly increased for all window sizes.

This is expected because feature selection efficiently excludes most noisy

features. The most increased accuracy was recorded for w = 13, where it
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w # Index Description Accuracy (%) RMSE

7 3 19 DC(19) 63.70 0.6025
83 Polarity(2)
107 Hydrophilicity(2)

9 3 19 DC(19) 66.67 0.5774
84 Polarity(3)
114 Hydrophilicity(3)

11 4 12 DC(12) 61.48 0.6206
85 Polarity(4)
121 Hydrophlicity(4)
144 Aspartic acid count

13 11 14, 19 DC(14, 19) 68.15 0.5644
86 Polarity(5)
122 Hydropathy(13)
123 Hydropathy Avg.

128, 136 Hydrophilicity(5, 13)
137 Hydrophilicity Avg.
154 Aspartic acid count
162 Methionine count
168 Threonine count

15 10 12, 14 DC(12, 14) 65.19 0.59
87 Polarity(6)
127 Hydropathy(14)

135, 143 Hydrophilicity(6, 14)
145 Hydrophilicity Avg.
164 Aspartic acid count
172 Methionine count
178 Threonine count

Table 4.8: Training set results for different window sizes using SVM classifier
with 5-fold cross-validation after applying filter method feature selection

has increased by almost 15%. The selected features column holds significant

information about what features have actually been selected. Moreover, the

35



Accuracy (%)
w FasD LacI XpsD MalE

7 70.59 50 47.62 60.00
9 58.82 50 52.38 60.00
11 41.18 44.44 52.38 70.00
13 47.06 44.44 33.33 80.00
15 52.94 27.78 28.57 90.00

Table 4.9: Test set results for different window sizes using SVM trained
model after applying filter method feature selection

nature of the selected features is a good indicator of how relevant our choice

of features is. It can be observed, that dipeptide composition features are

common among all window sizes. This is a very important indicator that

our choice of features is smart. Regarding the other feature sets, it was

noticed that all window sizes have at least one hydropathy or hydrophilicity

feature. Unexpectedly, features such as the ones related to Glycine were never

selected. This could indicate that hudrophilicity and hydropathy related

features hold more significant information than the Glycine related ones.

Moreover, Secondary structure related features were only selected once.

The classification results after the wrapper method feature selection which

are listed in Table 4.7, show that w = 7 produced the best overall accuracy.

Moreover, the XpsD protein has witnessed the highest prediction accuracy.

Accuracy of predicting permissive sites for the FasD has not improved after

the feature selection, instead it has slightly dropped.

Training results after the filter method feature selection are shown in

Table 4.8. Training accuracy for all window sizes was relatively close, however,

w = 13 recorded the highest training accuracy. Observing the selected features

column at the same table, it can be noticed that the dipeptide composition
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along with the hydrophiliciy related features are the most prominent features

as they were selected for all different window sizes. Our choice of hydropathy

and hydrophilicity average features was smart, were these features got selected

in two cases. Surprisingly, none of the secondary structure related features

were selected. It is also worth mentioning that in the case of the amino acid

occurrences features, the Asparatic acid D and Threonine T, both hydrophilic

were selected in three cases. This supports the fact that hydrophilic regions of

the protein have a higher potential of including permissive sites. Methionine

M was also selected on two cases.

Results for testing the prediction model after applying the filter method

feature selection are listed in Table 4.9. Again w = 7 gave the highest

overall classification results. The FasD and MalE proteins have seen the

best classification results with w = 7 and w = 15 respectively. However the

rest of the proteins did not show any improvement instead the classification

accuracy significantly dropped as in the case of the LacI and XpsD proteins

at w = 15. This is the result of overfitted model. The model started to show

overfitting signs as the w increased.

It is extremely important to note that our training and test sets are

comprised of a variety of proteins belonging to different protein families.

Therefore, classification results varies each time we add or remove proteins

from the training dataset. There are proteins that perform well together and

produce a very accurate prediction model, but still the performance of the

model depends on the proteins in the test dataset and how close they are to

the proteins in the training set. For example, training using LacY or LacI to

test on FasD did not yield good results as FasD belongs to different protein

family with different characteristics. However, training XpsD to predict
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FasD yielded better results. We strongly believe that this issue is worth

more investigation. If this is proven to be the case, then we suggest building

multiple trained models each trained using proteins belonging to different

protein family and in this situation a suitable model is chosen depending on

the family of the protein to be predicted for permissive sites.

Precision and recall are measures of performance and can help when trying

to classify very skewed classes, where one class is rare in the data. Simply

taking a percentage of correct classifications can be misleading, since always

guessing the more common class means the classifier will almost always be

right. However, the ratio of permissive to non-permissive classes in both the

training and test datasets is almost 1:1. Therefore we did not record the

values for precision and recall.

The training dataset being relatively small is that main reason that our

trained model showed some signs of overfitting.
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Chapter 5

5 CONCLUSION AND FUTURE WORKS

In this work, we have introduced an innovative way for effectively extracting

features to predict permissive insertion sites. We have investigated the

effect of feature selection and the resulting classification performance. More

specifically, feature subsets determined with a wrapper method. Extensive

experiments performed with different window sizes, lead to the following

conclusions.

Our educated guess approach was indeed effective. This claim was strongly

supported by the nature of the features that was selected after applying

both the wrapper and filter methods. Features from all feature sets except

the Glycine related ones, were proven to be useful. Unexpectedly, protein

secondary structure related features were proven to be redundant as only one

protein secondary structure feature appeared once with w = 13.

The classification accuracy achieved with the feature selection was higher

than the accuracy achieved with the complete feature set and with a reduction

of at least 95% of the feature space for all window sizes.

Despite the limited number of training samples we have been able to

predict permissive sites with very high accuracy as in the case of MalE

protein.

Our experiment shows that the prediction of permissive sites is protein



family sensitive. This means that it could be better to have in the training

dataset, proteins that belong to the same protein family as the proteins in

the test dataset. This issue deserves further investigation and study.

Our work is at a very early stage, so there is a place for future work and

improvement. Perhaps, one of the main obstacles that limited the performance

of our system was the relatively small size of the training dataset. Therefore,

increasing the size of the training dataset should be a priority for any future

work.

The results of our experiment show that some of the extracted features

did not improve the classification accuracy and even proven to be totally

redundant at some point. This fact, makes it imperative to start thinking of

alternative sets of features. One new set of features could be constructed by

using a dictionary of words collected from previously identified permissive sites.

Features could be extracted by segmenting the amino acids in the window

to possible words and then compare the words obtained from the window

against the words in the dictionary and record the fractions as features.
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