SELF-CONFIGURING DATA MINING FOR UBIQUITOUS
COMPUTING

by
AYSEGUL CAYCI

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Sabanci University

January 2013

SELF-CONFIGURING DATA MINING FOR UBIQUITOUS COMPUTING

APPROVED BY

Assoc. Prof. Dr. Yiicel Saygin =
(Thesis Supervisor)

Assoc. Prof. Dr. Ernestina Menasalvas —...cooovevoiiiiin e,

Asst. Prof. Dr. Gurdal Ertek

Assoc. Prof. Dr. Albert Levi e

Assoc. Prof. Dr. Erkay Savag e

DATE OF APPROVAL:cccciiiiiiiiiiiee,

© Aysegiil Cayc1 2013
All Rights Reserved

to my son

Acknowledgments

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Yiicel
Saygin, whose patience and kindness, as well as his academic experience, have been
invaluable to me.

My sincere gratitude goes to Dr. Ernestina Menasalvas for her constant support
during all the phases of my research. Her guidance helped me in all the time of research
and writing of this thesis.

I thank Assoc. Prof. Dr. Albert Levi, Asst. Prof. Dr. Giirdal Ertek, and Assoc.
Prof. Dr. Erkay Savag for their kind attendance to the thesis committee and for their
valuable contributions.

Can Tunca and Engin Dogusay from Sabanci University contributed to this study
by developing the supporting software. I thank them for their efforts. Later on, Ahmet
Can Kan from Sabanci University ported the supporting software to Android platform.
I'm grateful to him for making the necessary changes to adapt the programs to Android
platform in a very short time.

I also thank to my friends in Universidad Politecnica de Madrid: Dr. Santiago
Eibe, Andrea Zanda, Joao Bartolo Gomes. I benefited all the discussions we had done
together.

Dr. Ozlem Cetinoglu provided me the formatting material for the thesis. Thanks
for supporting me on formatting the thesis.

Finally, I am forever indebted to my son for his endless love, support, and patience.

I am so lucky to have him.

SELF-CONFIGURING DATA MINING FOR UBIQUITOUS COMPUTING

Aysegiil Cayci
Electronics Engineering and Computer Science

Ph.D. Thesis, 2013

Thesis Supervisor: Assoc. Prof. Dr. Yiicel Saygin
Keywords: Data Mining, Ubiquitous Computing, Machine Learning

Abstract

Ubiquitous computing software needs to be autonomous so that essential decisions
such as how to configure its particular execution are self-determined. Moreover, data
mining serves an important role for ubiquitous computing by providing intelligence
to several types of ubiquitous computing applications. Thus, automating ubiquitous
data mining is also crucial. We focus on the problem of automatically configuring
the execution of a ubiquitous data mining algorithm. In our solution, we generate
configuration decisions in a resource-aware and context-aware manner. We propose
to analyze the execution behavior of the data mining algorithm by mining its past
executions. In order to extract the behavior model from algorithm’s executions, we
make use of two different data mining methods which are Bayesian network and decision
tree classifier.

Bayesian network is constructed in order to represent the probabilistic relationships
among device’s resource usage, context, algorithm parameter settings and the perfor-
mance of data mining.

Other data mining method that has been used is the decision tree classifier. The
effects of resource and context states as well as parameter settings on the data mining
quality are discovered through decision tree classifier. In this approach, a taxonomy
is defined on data mining quality so that tradeoff between prediction accuracy and
classification specificity of each behavior model that classifies by a different abstraction
of quality, is scored for model selection.

We formally define the behavior model constituents, instantiate the approach for
association rules and validate the feasibility of the two of the approaches by the exper-
imentation.

MOBIL VERI MADENCILIGINDE OTOMATIK YAPILANDIRMA

Aysegiil Cayci
Elektronik Miihendisligi ve Bilgisayar Bilimi
Doktora Tezi, 2013

Tez Danigsmani: Dogent Dr. Yiicel Saygin
Anahtar S6zciikler: Veri Madenciligi, Mobil Sistemler, Makine Ogrenimi

Ozet

Mobil cihazlarda kullamlan yazilimlar otonom olmali ve kendilerini yapilandirmak
gibi elzem kararlar1 verebilmelidirler. Ayrica, mobil platformlarda veri madenciliginin
gesitli uygulamalarda daha akilli kararlar almalar: dogrultusunda kullanilmalar: 6nemli-
dir. Dolayisiyla, mobil cihazlarda veri madenciliginin de otonom olmasi gereklidir. Bu
tezde, mobil cihazlarda veri madenciligi algoritmalarini otomatik olarak yapilandirma
konusunu ele aldik. Sunulan ¢éziimde, konfigiirasyon onerileri tiretilirken cihazin kay-
naklarimin kullanimi ve cihazin kullanildigr baglam goz ontine alinmigtir ¢linkii mobil
cihazlarin kullanildiklar1 baglam sikca degismektedir ve cihazin kaynaklari da genel-
likle kisithdir. Veri madenciligi algoritmasinin énceki galigtiriliglarindan isleyis mod-
elinin ¢ikarilarak yapilandirilmasinda kullanilmasini onermekteyiz. Bu amacgla iki farkl
yontem denenmigtir: Bayesian network ve decision tree classifier.

Bayesian network kullanarak, cihaz kaynaklarinin durumu, hangi baglamda kul-
lanildigi ile veri madenciligi yapilandirma degerleri ve elde edilen performans arasindaki
iligki olasiliksal olarak gosterilmistir. Bu bilgiye dayanarak, veri madenciligi uygula-
masinin ilerki caligtirihiglarinda mevcut duruma uygun yapilandirma kararlar: ¢ikaril-
maktadir.

Veri madenciligi algoritmasinin igleyis modelini ¢ikarmakta kullandigimiz diger yon-
tem ise decision tree classifier’dir. Cihaz kaynaklarimin kullanim durumlari ve cihazin
hangi baglamda kullanildigi ile algoritma yapilandirmasinin elde edilen veri modeli
kalitesine etkisi decision tree yontemiyle simiflandirma yapilarak aragtirilmigtir. Veri
modeli kalitesi hiyerargik olarak siniflandirilmak suretiyle elde edilen olasi veri maden-
ciligi algoritmasi isgleyig modellerinden en yiiksek tahmin dogruluguna sahip olup ayni
zamanda en Ozgil simflandirma yapan modeli se¢mek ic¢in bir yontem onerilmistir.

Mobil cihazlarda calisacak bir veri madenciligi algoritmasi igleyis modelini olugturan
unsurlar tanimlanmig, yontem association rule mining algoritmasi i¢in 6rneklenmis ve
yontemin kullanabilirligi deneysel olarak gosterilmistir.

Contents

Acknowledgments

Abstract

Ozet

List of Abbreviations

INTRODUCTION
1.1 Motivation

1.2 Approach
1.3 Outline of the Thesis

PRELIMINARIES AND RELATED WORK

2.1
2.2
2.3
24

2.5

Analysis of the Problem 00

Problem Definition

Bayesian Networks

Decision Tree Classification

24.1

Decision Tree Design Issues

Related Work

2.5.1

2.5.2
2.5.3

Ubiquitous Data Mining
Resource and Context Awareness
Autonomous and Adaptable Behavior
Automatic Parameter Configuration.

Characteristics Differentiating Our Approach

viil

vi

vii

xiv

W N =

© oo O ot O«

DATA MODEL 20

SELF-CONFIGURATION USING BAYESIAN NETWORK 24
4.1 Behavior Model in the Form of Bayesian Network 24
4.2 Mechanism to Predict Ubiquitous Data Mining Configuration 25
SELF-CONFIGURATION USING DECISION TREES 28
5.1 Modeling the Behavior of a Data Mining Algorithm with Classifiers . . 28
5.1.1 Data Mining Quality as the Class Label 29
5.2 Predicting the Behavior of a Data Mining Algorithm with Decision Trees 30
5.2.1 Abstractions over the Class Label 31
5.2.2 The AS/BM Strategy 34
INSTANTIATION OF THE APPROACH 40
6.1 A Museum Equipped with Ambient Intelligence 40
6.1.1 Circumstantial Factors Effecting Parameter Setting 43
6.1.2 Heuristics for Parameter Setting 43
6.1.3 Instantiation for Apriori L. 45
6.2 FESTweets, Movie Recommendations for a Film Festival 47
EXPERIMENTAL EVALUATION 52
7.1 Experiment Software 52
7.1.1 Execution Data Generator Architecture 52
7.2 Evaluation of Self-Configuration by Bayesian Network 54
7.2.1 Experiment Dataset00 55
7.2.2 Parameter Setting by Bayesian Network Inferences 56
7.2.3 Multi-level Full-Factorial Experiment Design 58
7.2.4 Comparison of Results 59

7.2.5 Effects of Mining Data Set Feature Variations on the Behavior

Model 60
7.3 Evaluation of Self-Configuration by Decision Trees 63
Experiment Dataset 64

X

Data Mining Quality Transformations and Taxonomy 67

7.3.1 Experiment Results 69
Analysis of AS/BM Strategy 70
Analysis of the Pre-Screening Presumption 72
Assessment of Configuration Decisions 73

Impact of the Proposed Approach on Android Device’s Resources 77

MINING SOCIAL MEDIA DATA ON ANDROID DEVICE 81
8.1 Movie Ratings Data Set L. 81
8.2 Frequent Itemset Mining with Apriori 83
8.2.1 Apriori Algorithm oo 83
8.2.2 Weka Implementation of Apriori 84
8.3 DM Model for Movie Recommendations 85
8.4 Android Operating System oL 89
8.5 Configuring Apriori for Movie Recommendations 91
8.5.1 Circumstance/Quality Mapping 92
8.5.2 Training Data o 94
8.5.3 Behavior Model 96
8.5.4 Configuration Recommendations 97
SUMMARY AND CONCLUSION 100

K2: A Bayesian Method for Learning Structure of Bayesian Network

from Data 103
Twitter: A Microblogging Site 106
Data Mining Model for Movie Recommendations 107
Training Data for Behavior Model Construction 110
Configuration Recommendations for Movie List Mining 112
BIBLIOGRAPHY 115

List of Figures

2.1 Overall view of automatic parameter setting
4.1 Data mining configuration using Bayesian network
5.1 Data mining quality taxonomy specific to association rule mining

6.1 Overall view of FESTweet

7.1 Class descriptions of EDG 0L
7.2 Experiment phases Lo
7.3 Bayesian network of Apriori runs
7.4 Main effects plot of 4 quality measurements for home-short on memory
7.5 Assessment of recommendations derived from Bayesian network

7.6 Behavior model decay oL
7.7 Cube of circumstances
7.8 Data mining quality taxonomy used in the experiment
7.9 Mappings from predecessor set domains to abstract domains
7.10 Analysis of decision tree models
7.11 Effect of garbage classes on the model’s accuracy
7.12 Assessment of recommendations derived from decision tree

7.13 Processes for self-configuring data mining

8.1 Movie recommendations.
8.2 Eclipse DDMS

8.3 Behavior model of movie lists mining

x1

26

33

20

C.1
C.2

D.1

E.1
E.2

Associations among movies 108
Associations among movies (cont.) 109
Subset of data collected by EDG L. 111
Configuration recommendations under possible circumstances 113
Configuration recommendations under possible circumstances (cont.) . 114

xil

3.1

5.1
5.2

7.1
7.2
7.3
7.4

8.1
8.2

List of Tables

Sample C, Pand Q. 22
Relation schema: discretized data mining quality 32
L,.i: set of possible class label attribute sets 35
Levels used for parameters 56
Comparison of results 60
Experiment fact table oo 64
Attributes corresponding to symbols in taxonomy 69
Parameters of Weka implementation of Apriori 84
Circumstance/quality mappings for movie lists mining 96

xiii

®@p,
Qtuple

tuple
A

fa

Qa,
Qum
Qa
Qr

List of Abbreviations

Configuration of an algorithm

Circumstance

Data Mining Quality

Bayesian Network Structure

Relation schema for parameters

Set of parameter tuples

Relation schema for circumstance

Set of circumstance tuples

Relation schema for quality features

Set of quality feature tuples

Relation schema for execution data

Set of execution data

Relation schema for discretized quality features
Set of discretized quality features

Singleton set of quality features. Q™" C Qp,
Singleton set containing an aggregated quality feature
Aggregation function

Relation schema for aggregated data mining quality
Set of tuples of aggregated data mining quality
Set of data mining attributes

Set of abstractions on data mining attributes
Set of data mining attributes and abstractions

Partial ordering on Qr

Xiv

Qgi
Lset

Gr
fgi

Gtuple

far,

Qar
Qar,
Sset

Qas
Qas,

Predecessor set of g; € p(Qr) derived from taxonomy
Set of class label attributes sets

Relation schema for abstractions on quality

Set of quality abstraction tuples

Mapping from predecessors set to their abstraction g;
Singleton set of abstract quality features. G**'¢ C G
Aggregation function to form i'th class label
Relation schema for class labels of aggregated quality
Set of class label tuples

Screened set of class label attribute sets

Relation schema for screened quality class labels

Set of screened class label tuples

XV

Chapter 1

INTRODUCTION

1.1 Motivation

Ubiquitous computing turned out to be today’s prominent computing paradigm as a
result of the advances in related technologies, especially, wireless, mobile and sensor
technologies coupled with the dissemination of these technologies in prices affordable
by large masses. Another important reason for the rise of this computing paradigm,
is the availability of diverse application areas which benefit ubiquitous computing. In
a variety of ubiquitous computing applications such as ubiquitous health care systems,
intelligent transportation systems and personal recommender systems, data mining is
a preferred method for incorporating intelligence. Consequently, special consideration
should be given to ubiquitous data mining which is complementary for a number of

ubiquitous computing applications.

Ubiquitous computing defines an environment where resources for computing are
spread rather than centralized and moreover, ubiquitous computing devices are oper-
ated most of the time by individuals who are not computer savvy and even devices
lie unattended in the environment. Data mining, on the other hand, is notorious for
high demand of computing resources and often requires domain experts for tuning the
process. Therefore, new principles and mechanisms for mining data on a platform con-

sisting of restricted resource devices with versatile context where the expert interaction

is not available, are needed. In that respect, the essential features of a service provid-
ing ubiquitous data mining are resource and context-awareness as well as autonomous

behavior and adaptability.

1.2 Approach

We address the problem of automatic configuration of the execution of a data mining
algorithm in a context and resource aware manner as a first step towards deploying an
autonomous ubiquitous data mining service that adapts to changing conditions. It is
important to note that, autonomous behavior of a service is a broader concept which
also involves decisions about scheduling the service, prioritizing its execution and others

along with automatic parameter tuning.

Cao, Gorodetsky and Mitkas ([9]) discuss the contribution of data mining to agent
intelligence. They argue that a combination of autonomous agents with data min-
ing supplied knowledge provides adaptability whereas knowledge acquisition with data
mining for adaptability relies on past data (past decisions, actions, and so on). Our
approach to provide adaptability is similar: we use machine learning approach in order
to generate adaptable parameter setting decisions and enhance ubiquitous data mining

with autonomy and adaptability.
Following list summarizes the principles our approach:
e We propose to extract what we call the behavior model of a data mining al-

gorithm’s execution for configuring its parameters and we define formally what

constitutes a behavior model in a ubiquitous computing environment.

e We present a solution that is based on learning from past experiences for fu-
ture configuration decisions which implies that the configuration decisions can be

adapted to changing conditions.

e We aim a general-purpose solution for configuring ubiquitous data mining. Thus,

the proposed solution is not for a specific data mining algorithm.

e We propose a solution so that no restrictions are imposed on the types of the algo-
rithm parameters when we configure by using the decision tree classifier. On the

contrary, it is possible to configure continuous parameters as well as categorical.

e We analyze algorithm’s execution conditions against the quality of the acquired
results. For the analysis, a combination of multiple quality indicators is consid-
ered rather than individual ones and moreover the number of quality indicators
may be extensive. Besides, behavior model classifies execution data on various
measurements of quality indicators. Thus, a single behavior model can be used

for analysis of several performance criteria on a quality indicator.

1.3 Outline of the Thesis

The organization of this thesis is as follows:

Chapter 2 introduces the problem of automatically configuring data mining in a
ubiquitous computing environment while providing brief information on the methods

used for the solution. Survey of related work is also provided.

In both of the approaches data collected during past executions of the data mining
algorithm is used as the training set. In Chapter 3, we formally define the data model

used in the approaches.

In Chapter 4 we present our approach to predict data mining algorithm behavior in

ubiquitous computing environments using Bayesian Network.

The approach presented in Chapter 5 makes use of decision trees for the prediction

of data mining algorithm behavior.

Instantiations of the approaches by making use of two motivating examples from

the ubiquitous computing environment are given in Chapter 6.

Chapter 7 elaborates on the experimental evaluation of both of the approaches where

the software designed and implemented for the experiments is also explained.

In Chapter 8, our approach is shown on mobile computing by making use of an

Android device which runs one of the prominent mobile operating systems.

Chapter 9 closes the thesis with discussion and conclusion.

Chapter 2

PRELIMINARIES AND RELATED WORK

We present a mechanism to predict the appropriate settings of a data mining algorithm’s
parameters in a resource-aware and context-aware manner. The mechanism is based
on learning from past experiences, that is, learning from the past executions of the

algorithm in order to improve the future decisions.

2.1 Analysis of the Problem

Our goal is to configure automatically a data mining algorithm which will run on a
ubiquitous device. Since circumstantial factors such as the conditions of the resources
and the context in which the device is used are important in a ubiquitous computing
environment, availability of the knowledge on the following is useful for determining

the algorithm’s appropriate configuration:

e the resources that the algorithm needs in order to accomplish its task,

e the algorithm parameters that have an effect on the resource usage or on the data

model quality,

e the context features which may have an effect on the efficacy of the data mining

model or the efficiency of data mining,

e the features of the mining data set,

e the quality indicators which show the efficacy of the data mining model and

efficiency of the data mining.

On the other hand, the problem that we tackle also implies the solution to address
an important issue which is to change or improve the configuration setting decisions
as the circumstances change. That means that, automatically generated configuration
decisions must be adapted to the changing conditions just like a data miner expert who

adapts his decisions when the conditions change.

Next, we define the factors for configuration that we derive from the items outlined

above

2.2 Problem Definition

When deciding how to set the parameters of an algorithm for a specific run, in a
ubiquitous computing environment circumstantial factors (conditions of the device’s
resources and the context in which the device is in) should be taken into account as
well as the required quality. For this reason, we grouped the relevant factors for the
configuration as circumstance and quality. Formal definition of automatic configuration

of ubiquitous data mining problem is as follows:

C": Circumstance is defined by a set of ordered pairs (f,s) where f is either a resource

or context feature and s is the state of this feature.

Q': Quality is defined by a set of ordered pairs (¢,]) where ¢ is a quality feature and I
is the required level for this quality. Quality features are metrics of efficiency or

efficacy of the algorithm.

P': Parameter settings constituting the configuration of the algorithm is defined by a
set of ordered pairs (p,v) where p stands for a parameter and v is the value it

takes.

f: Let C" and @' that are defined above, be the circumstance sensed and the required
quality respectively, then automatic configuration for ubiquitous data mining

which is defined as P’ above, is obtained by the mapping:

[0 xQ — P

In this way, we covered all but the “features of the mining data set” outlined in
problem analysis (subsection 2.1). We deliberately disregarded the effect of mining data
set features on the configuration decision for the time being because we want to focus
on the ubiquitous aspect in this work. On the other hand, we performed experiments to
understand the effects of mining data set feature variation on the behavior model over

time and discussed how to assess the deterioration of the behavior model performance.

We propose to use data mining techniques to discover configuration of a data mining
algorithm (P’), aiming to attain the requested quality (Q'), for the circumstance (C")
observed when a data mining request is issued. Our approach is to analyze the past
behavior of algorithm under different circumstances and learn the appropriate config-
uration(s) for data mining which satisfies the efficiency and efficacy requested. Thus
a behavior model is created by mining data collected during past executions of the
algorithm. Fig. 2.1 illustrates an overall view of the approach which consists of the

following basic steps:

Collect relevant information during the execution of the algorithm,

Maintain a collection of past execution data,

Learn a behavior model from the past execution data, and

Use behavior model for automatic configuration of data mining.

We proposed two approaches based on two data mining methods to solve self-
configuring data mining problem. Next, brief information on the data mining methods

employed is given.

Execution Data

Data Mining Mine

Algorithm Execution
Executes Data

Parameter
Setting
Decision

Behavior
Model

Figure 2.1: Overall view of automatic parameter setting

2.3 Bayesian Networks

Bayesian networks which represent the joint probability distributions for a set of domain
variables are proved to be useful as a method of reasoning in several research areas.
Medical diagnosis([4]), language understanding ([17]), network fault detection([38]) and
ecology([3]) are just a few of the diverse number of application areas where Bayesian
network modeling is exploited. An in depth knowledge on Bayesian networks can be

found in [53].

Classification by using Bayesian networks is based on Bayes theorem which is given

in Equation 2.1:
X|H)P(H)
P(X)

pa|x) = 2 (2.1)

where X and H is a pair of variables, P(X) and P(H) are the probabilities of X and
H respectively, P(X|H) and P(H|X) are the conditional probability of X and H

respectively.

A Bayesian network is a directed acyclic graph that shows the conditional depen-
dencies between domain variables and may also be used to illustrate graphically the
probabilistic causal relationships among domain variables. The nodes of the network
represent the domain variables and an arc between two nodes (parent and child) indi-
cates the existence of dependency among these two nodes. Conditional probabilities of
the dependencies among each variable and its parents are also represented along with
Bayesian networks. The joint probability of instantiated n variables (i.e. variable x;

has an assigned value) in a Bayesian network is computed by:

n

P(xy,....,z,) = H P(z;|parents(X;)) (2.2)

i=1
where parents(X;) denotes the instantiated parents of the node of variable Xj.

Learning the Bayesian network structure rather than creating the structure by an-
alyzing the dependencies of domain variables, is a field of research which was studied
extensively. Algorithms that learn the structure are most useful when there is a need to
construct a complex network structure or when domain knowledge does not exist as in
a ubiquitous computing environment. In depth information on topics of studies related
to Bayesian networks can be found in [37] whereas a survey of literature on Bayesian

networks is given in [8].

2.4 Decision Tree Classification

Classification by decision tree is inquiring the properties of an instance to find out
the class it belongs. For this purpose, a hierarchical structure named decision tree
consisting of nodes and directed edges is used. Nodes of the tree correspond to the
attributes of the instances whereas the leaf nodes constitute the class labels. Edges

emanating from the non-leaf nodes are labeled by possible values or range of values of

the attribute represented by that node. It is possible to perceive each node as a test
condition applied to an attribute and the edges from that node as the possible outcomes

of the test.

A decision tree is built from a set of instances having preset class labels (training set)
and then this structure is used to infer the unknown class labels of other instances which
have the common attributes with the training set. A simple decision tree construction
algorithm is to partition recursively the instances in the training set into smaller subsets
by applying attribute test conditions one at a time until the class that the instances
belong is found ([39]). Although the main logic of this algorithm is simple and it
constitutes the basis of several decision tree algorithms, since the number of possible
decision trees that can be generated from a given set of attributes is huge and moreover,
some of the decision trees are more accurate than the others, successor algorithms
were designed to construct a tree with reasonable accuracy without generating all the
possible decision trees. While constructing a decision tree, giving precedence to the
attributes that generate purer partitions with skewed class distribution is the preferred
strategy. Entropy-based information gain, gini impurity and classification error are
three measures for calculating the impurity of an attribute. There are a number of
well-known decision tree construction algorithms that make use of this strategy. 1D3

[56], its extension C4.5 [57] and CART [6] are three important examples.

Due to the advantages this method possesses, decision tree classification has been
used at various domains such as medicine for disease diagnosis, finance for fraud de-
tection, credit approval and marketing to manage campaigns. Computational inexpen-
siveness of decision tree construction can be counted as the foremost advantage as well
as the fast classification that can be performed via a built decision tree. Furthermore,
accuracy of decision tree is comparable to other classification methods and is preserved
even there exist redundant attributes. Robustness to the presence of noise is yet another

advantage. Decision trees are also favorable by being easy to interpret models.

10

2.4.1 Decision Tree Design Issues

The main objective of decision tree classification is to minimize the classification errors

by avoiding the following:

e Training errors are incorrect classifications of training data. A possible cause

is a training set where attribute combinations result in overlapping classes.

e Overfitting is high percentage of incorrect classifications of test data despite low

training errors.

The following are among the most important issues that should be considered for gen-

erating a good model for classification.

e Dependent attributes. A model built by not taking into account the depen-

dencies among the attributes of training data although related attributes exist.

e Nonpredictive attributes. FExistence of a unique attribute such as a key or
any attribute of training data that produces too many tiny partitions that is

insufficient for reliable classification.

e Plethora of classes. The number of instances in the training set that pertain

to a class is lower and less representative due to high number of different classes.

2.5 Related Work

We attempt to solve the problem of ubiquitous data mining. In that respect, our
work is related to existing study in ubiquitous data mining since we also consider
the resource conditions and the context when generating the configuration decisions
similar to a number of studies in ubiquitous data mining. At the same time, our work

bears similarities with automatic parameter configuration which is a well searched area.

11

Hence, related work on both of the topics are given in separate subsections below. We

finalize this section by discussing the differences among our work and others.

2.5.1 Ubiquitous Data Mining

Our focus in this work is ubiquitous data mining. Therefore, we determine the essential
features of ubiquitous data mining considering the characteristics of the devices where
the processing will take place. Consequently, when developing a data mining service

for a ubiquitous device the following need to be taken into account:

e Resource-awareness

Context-awareness

Autonomous behavior

Adaptability

In this subsection, we discuss our perspective and we mention the related work on
ubiquitous data mining whereas our analysis of research challenge of ubiquitous data

mining can be found in [12].

Resource and Context Awareness

Resource-awareness is assessing the availability of the required resources and reacting
accordingly. The aim of resource-aware data mining service is to optimize the resource
usage which necessitates knowing the necessary resources, being able to measure the
availability of the device’s resources and knowing the effects of the resources on its pro-
cessing. Ubiquitous devices may have limited resources like processor power, memory
and battery. Even if there is scarcity of a resource like memory, CPU or battery in the

system, a data mining service may wisely switch to an alternative algorithm than the

12

desired one or alter its parameter settings to optimize the usage of the scarce resource

and continue to service.

A number of studies has been proposed for ubiquitous data mining in resource
constrained environments. Majority of these studies apply to data stream mining tech-
niques. The approach in [27] [28] is for mining data streams where output granularity
is adapted to the data rate of the stream, available memory and time constraints. In
a later study ([30]), the idea of adapting output granularity is defined within a generic
framework for resource aware stream mining where input rate and data mining al-
gorithm are also adapted in a resource aware manner. A resource aware clustering
algorithm for ubiquitous data streams is proposed in [16] where the algorithm settings
are adapted and stream data is compressed based on available resources so that clus-
tering with acceptable accuracy is possible even under constrained memory. A quality
aware data stream mining model in [26] is able to adapt according to output quality
as well as the resource consumption patterns. Succeeding work in [45] improves the
former model by assessing the quality in real time. At a recent work, a general model
of resource and quality aware data stream mining is proposed in [44] where its applica-
bility is shown by the use of an example clustering algorithm. There are also resource
aware stream mining solutions that apply only to specific algorithms. For instance, a
frequent itemset stream mining algorithm is presented In [15] that utilizes an adaptive

memory scheme to maximize the mining accuracy for confined memory space.

Context-awareness refers to the capability of sensing the environment and reacting
accordingly. Context is domain/application specific most of the time but two common
context features almost always used are location and time. In this work, we will refer
to context-awareness in ubiquitous data mining as the capability of the device to adjust
data mining preferences depending on circumstances in order to obtain better /more ac-
curate results or improve the efficiency of the process. Context versatility of ubiquitous
computing makes possible to fine tune data mining by considering the current context
states. A number of examples are appropriate in order to give insight on how context

can be used for ubiquitous data mining but certainly the usage is not restricted to these

13

examples. For example, time of day can be a criteria on determining the amount of
mining such that more time consuming mining can be preferred during night. Context
indicating the urgency of the situation that induces to use an already available model

rather than re-generating the results is another example.

Similar to resource-aware solutions, context-aware ubiquitous data mining were also
proposed for data stream mining. Context-aware stream mining was proposed by [33]
where input and output granularity as well as algorithms of data stream mining are ad-
justed dynamically and autonomously according to context. An approach for situation-
aware adaptive processing of data streams was described in [34] and implementation
for a health monitoring application was also shown. A domain specific context-aware

ubiquitous stream mining model for intersection safety can be found in [58].

Autonomous and Adaptable Behavior

Autonomy and adaptability are two complementing features for a service. In general,
autonomy is the ability of a service to determine independently what actions to take

whereas adaptability is the ability to change the decision as the circumstances change.

A ubiquitous data mining service behaves autonomously if whenever a mining re-
quest is received; all the decisions about the mining process are taken independently
by the service. Simply put, the decision is a set of actions to perform against the
current situation. Setting a parameter value of data mining algorithm or selecting the
appropriate input to mine are two examples of the actions. Context or availability of
the resources which data mining service need may constitute a situation. The decisions
in an adaptable ubiquitous data mining service, on the other hand, are dynamic and
are expected to improve in terms of achieving the goals by learning from experience.
Existent work on autonomous ubiquitous data mining focus on determining the pa-
rameters of data mining algorithm either by statically binding situations (e.g., [29]) or

dynamically determining the actions by correlation functions [34].

In [11], we proposed a ubiquitous data mining service and in [10], a mechanism

14

for self-configuration of ubiquitous data mining aiming to fulfil the aforementioned

requirements.

2.5.2 Automatic Parameter Configuration

We propose a method to automatically determine the configuration of a data mining
algorithm to execute in a ubiquitous computing device. Algorithm selection, config-
uration setting or parameter tuning are similar research areas where similar solutions
are proposed for the automatization. Present work on the automatization of either of
them aims to speed up the process or to increase the probability of finding a solution
to a specific problem instance. We emphasize automatic parameter tuning to provide
autonomy in ubiquitous computing environments and it is important to use context

and situation information when deciding and decisions need to be adaptive.

Taxonomy of varying approaches for solving the algorithm selection, configuration
setting or parameter tuning problems is presented in several of the present research
on algorithm selection, configuration setting and parameter tuning. Since existing tax-
onomies are important resources for determining the lacking work of the research area,
we provide a summary of the categories defined for automatizing algorithm selection/
configuration setting/parameter tuning by different authors before presenting our tax-
onomy. In [40], three approaches are stated by taking into consideration the target
problem. First approach they defined aims to find the best default configuration across
a set of given instances. Some of the mentioned related work of this approach involve
racing algorithm, ILS search, fractional experiment design together with local search
and decision tree classification. Second approach is defined as solving the algorithm
selection problem which is selecting the most appropriate algorithm given a problem in-
stance. Usage of algorithm portfolios to choose among several algorithms is the general
term where usage of empirical hardness model or case base reasoning are two example
solutions given. Third approach in their categories is the online approach which is on-
line in the sense that within a group of solutions alternation between different problem

solving strategies during execution is possible. In this approach tuning of parameters

15

and even algorithm selection decision is dynamically adjusted during execution. Ex-
amples supplied that belong to that category employ a learning mechanism which is
reinforcement learning most of the time, to improve the settings done and algorithm

choice based on the information collected from the previous phases of the execution.

Another source of taxonomy for automatic parameter setting approaches is given
in [52] where they distinguished the following approaches: evolutionary algorithm run,
model selection and statistical estimation. In an evolutionary algorithm run which apply
to evolutionary algorithms, programs and strategies, parameters are adapted during
execution to obtain the best default configuration. In model selection, optimization
is performed based on a (usually) single objective to determine the best parameter
setting among the existing models. Statistical approach is defined as the estimation of
the parameter setting using one of the estimation methods such as maximum likelihood
(ML), expectation maximization (EM), maximum a posteriori (MAP) or hidden markov

model (HMM).

In [31], the existent parameter tuning or algorithm selection techniques are dis-
criminated using a number of orthogonal features: depending on the interval that tun-
ing/selection is performed (performed once for a set of problem instances or repeated for
each instance), whether the decision is made statically before execution or determined
dynamically during execution and whether the learning technique is offline (a separate

training phase) or online (criteria is updated on every instance solution).

We distinguished two alternatives disciplines in the literature which are dominantly
used to handle the parameter setting problem. These disciplines are (combinatorial)
optimization methods and machine learning methods. Parameter tuning by optimiza-
tion is a well searched area where proposed optimizations either tune parameters of a

specific algorithm or provide optimizations to general cases.

Only a brief list of representative optimization solutions to parameter tuning is com-
piled below as our work deviate a lot from them due to our preference of a machine

learning technique for automatizing parameter tuning. The main idea behind optimiza-

16

tion is to determine performance criteria to be optimized and find the configuration that
satisfies best this criteria. A racing algorithm by [5] for configuring metaheuristics, it-
erated local search approach by [41] for configuration determination of an algorithm, a
dynamic and online algorithm selection based on algorithm portfolios paradigm by [31],
experimental design combined with local search to fine tune parameters of an algorithm

by [1], are examples which employ an optimization technique.

Other prevailing technique proposed for automatic parameter tuning is based on
machine learning classifiers. In general terms, classifiers are used to learn the parameters
to set the configuration. In [59], usage of decision trees for automatic tuning of search
algorithms is suggested. They describe both an online version where training data is
not available and offline version in which training data is used for their method. In the
offline version, a J48 decision tree using Weka is constructed to classify training data.
The nodes of the tree are parameters of the algorithm, the branches from each node
correspond to different values that parameter may take and the value on the leaf node
classify the group of parameters as positive or negative with respect to a performance
criteria. In their experiments runtime of the algorithm is used as the performance
criteria. In order to derive candidate parameter settings, ranking functions are applied

to the part of the decision tree which end to leaf nodes having positive values.

Bayesian networks are used by [52] to automatize the parameter tuning process.
They distinguish two types of algorithm parameters as external and internal such that
the former are the ones that must be tuned and the latter are established and updated
in the model learning process. The “adjustment” model that they propose recommends
values for the external parameters after the learning and inference phase. In the learning
phase, Bayesian network is constructed from the data collected on previous runs. The
domain variables are parameters of the algorithm and some efficiency measures. The
inference mechanism updates the probability tables and obtains the most probable

parameter values to obtain a “good” result from the algorithm.

In [51], the adjustment model is enhanced by a combined case-based reasoning

system with the argument that optimal performance in different problem domains is

17

attained by different parameter settings. A case base which contains the Bayesian
networks from the adjustment model and the characteristics of their associated problems
is used for finding the similar problems of the domain. Similarities among problems are

calculated using Euclidean distance function.

2.5.3 Characteristics Differentiating Our Approach

Existing resource-aware and/or context-aware adjustments of ubiquitous data mining
parameters are proposed for data streams where data arrive continuously in a rapid
speed. Hence, proposed solutions are specific to data stream mining and some are
applicable to data stream mining algorithms with certain characteristics. On the other
hand, we anticipated that all types of data mining will be required by ubiquitous
computing applications. For example, mining multi-media data on the mobile device
for the organization of music, picture and video files is one potential application area
of ubiquitous data mining while data is not in streams ([47],[49]). Similarly, there are
other prospective ubiquitous computing application areas such as user profiling ([32]),
activity planning ([46]) and personal health monitoring ([19]) where there is a need
to apply machine learning or mining techniques on data which is not streaming but
batch. Thus, we worked on a general purpose solution to automatize the configuration
of any data mining algorithm running on a ubiquitous computing environment without

imposing any restrictions on the type of data mining algorithm or parameters.

The approach which we use for determining the configuration of data mining is also
quite different from the work mentioned in the subsection 2.5.1 such that we employ
data mining to discover the appropriate parameter settings from the history of execution
results whereas proposed resource/context aware stream mining techniques do not use
data mining methods to adjust stream mining parameters. The reasons we use a data
mining technique for generating configuration decisions are twofold: to discover the
effects of algorithm’s parameters to the quality of its results and to be able to adapt
the configuration decisions to the changing conditions. In our solution, configuration

decisions are adaptable in the sense that if there is a change on the discovered effects

18

due to a factor such as the growth of the data set which algorithm to be configured
mines, new parameter to quality effects can be tracked by regenerating or updating the

behavior model.

Decision tree classifiers were suggested for automatic parameter setting like us in
[59]. On the other hand, the method they suggested for automatically setting the

parameters of an algorithm lacks being a general purpose solution due to following:
e Classification can only be made on a single quality (performance) criteria. It is
not possible to classify by combination of quality criteria.

e Different parameter settings were classified into positive and negative examples
with respect to a performance criteria which implies that only two levels of quality

can be assessed.

e Assignment of class labels is static, quality attained after running the algorithm

by the derived parameter settings is not used to correct the class labels.
e A new model would be needed when the performance criteria changes.

e Moreover, the suggested method is only for search-based algorithms.

19

Chapter 3

DATA MODEL

Behavior model generation process uses data collected during past executions of the
data mining algorithm in order to learn its behavior. In each execution of the algo-
rithm, data specific to this run is captured and stored. This execution data is mined
to construct behavior model. Since we have used execution data to construct Bayesian
network and also to build decision tree, we formally define execution data before elab-

orating on either of the approaches used for self-configuring data mining;:

Definition 1 Let P(py : Dy, ...,pn : Dy) be a relation schema defining a data mining
algorithm’s parameters p;, where 1 < i < n. Let dom; be the set of values associated
with the domain named D;.

An instance of P that satisfies the domain constraints is a set of tuples with n fields:

Pr={<pi:di,...;pn:d, > |dy € domy,...,d, € dom,}

Definition 2 Let C(c; : Dy,...,c, : D) be a relation schema defining context and
resource features (circumstance), ¢;, where 1 < i < n. Let dom; be the set of values
associated with the domain named D;.

An instance of C' that satisfies the domain constraints is a set of tuples with n fields:

20

Cr={<c :dy,...cn: dy, > |dy € domy,...,d, € dom,}

Definition 3 Let Q(q : D1, ...,qn : Dy,) be a relation schema defining quality features,
qi, where 1 < i < n. Let dom; be the set of values associated with the domain named
D;.

An instance of () that satisfies the domain constraints is a set of tuples with n fields:

Qr=4{<q:di,....qn : d, > |d1 € domy, ...,d,, € dom,}

Definition 4 Let E(ay : Dy, ...,a, : D,) define a relation schema for execution related
data. An instance of execution data E, named Ey, is the subset of the Cartesian product
(cross product) of the instances Pr,Cr,Qy:

E;Cc PrxCr xQ

In Table 3.1, sample relational schemas for C, P, and @) together with small set of tuples
as instantiations of each are given. For the given example, we assume that circumstance
components (C') which may have an impact for the configuration decision of data mining
are location of the device and the time of day when the data mining is requested as
well as the free memory in the device. A number of possible circumstances are sampled
in the set C7 such that each tuple in C; has a location, a time and a memory value
chosen from Idom, tdom and mdom respectively. We based our examples on association
rule mining throughout the thesis for the coherence of explanations. On the other
hand, we propose general guidelines for configuring any data mining algorithm. For
this purpose, we exemplify in Table 3.1, k-means clustering as well as association rule
mining as the data mining algorithms to be configured. We assume that association
rule mining algorithm (ARM) that we configure has minimum support and minimum
confidence parameters whereas number of clusters, maximum number of iterations and
seed which is the number to be used for initial assignment of instances to clusters are

the parameters of k-means. Memory usage (memusg) and the run time (duration)

21

Table 3.1: Sample C', P and @)

Relational Schema [

Domain

C location : ldom, ldom = {indoor, outdoor}
time : tdom, tdom = {sunset, midday, night}
memory : mdom) mdom = {z|0 < x < MAXMEM?}

Cr < location : indoor, time : midday, memory : 500M >,
< location : outdoor, time : sunset, memory : 10K >,
< location : outdoor, time : night, memory : 1G >

ARM P minsupp : sdom, sdom = {z|0.3 <z <1}

minconf : cdom) cdom = {z]0.6 < z < 1}

Py < minsupp : 0.5, minconf : 0.8 >,
< minsupp : 0.5, minconf : 0.9 >,
< minsupp : 0.5, minconf : 0.95 >,
< minsupp : 0.6, minconf : 0.7 >

Q memusg : udom, udom = {z|0 < e < MAXMEM}
duration : ddom, ddom = {z|0 < =z < 1440}
model : odom) odom = {strong, weak}

Qr < memusg : 5K, duration : 10, model : strong >,
< memusg : 730K, duration : 3, model : weak >,
< memusg : 200M, duration : 125, model : strong >

K-means | P numClust : Cdom, Cdom = {z|1 < x < 30}

seed : edom) edom = {10, 15, 20, 25,30}
mazIter : idom) idom = {z|1 < z < 50}

Pr < numClust : 5, seed : 10, maxlter : 5 >,
< numClust : 5, seed : 15, maxlter : 5 >,
< numClust : 5, seed : 20, maxlter : 5 >,
< numClust : 6, seed : 15, maxIter : 5 >

Q memusg : udom, udom = {z|0 < e < MAXMEM}
duration : ddom, ddom = {z|0 < = < 1440}
WCSS : wdom) wdom = {high, low}

Qr < memusg : 5K, duration : 10, WCSS : high >,

< memusg : 730K, duration : 3, WCSS : low >,
< memusg : 200M, duration : 125, WCSS : high >

22

of data mining are assumed to be the common quality metrics for both data mining.
Interestingness degree of the model (model) and within-cluster sum of squares (IWCSS)

are the data mining quality metrics of ARM and k-means respectively.

23

Chapter 4

SELF-CONFIGURATION USING BAYESIAN
NETWORK

4.1 Behavior Model in the Form of Bayesian Net-

work

A Bayesian network is learned from the execution data and, afterwards, this Bayesian
network representing the behavior model, is used to predict the appropriate configura-
tions for the algorithm. Fig. 4.1 illustrates Bayesian network construction steps that
we propose. K2 algorithm by [21] was used when constructing the Bayesian network. A
comprehensive explanation of the method proposed in the papers [20],[21] can be found
at Appendix A. Initial step of behavior model generation is to discretize the execution
data since K2 assumes database variables to be discrete. K2 learns Bayesian network
structure from database of cases (E in our case) by determining the most probable
network structure By given E:

max|P(B;| E)] (4.1)

We made use of the open source code of Weka software ([35]) to construct the network
and updated it to fit our needs. The original algorithm seeks relationships among
all the variables. However, execution data has three groups of variables (C',Q,P) and

the relationships among the variables within a group such as the relationship among

24

circumstantial variables location and memory available are not interesting. For this
reason, modification of the K2 algorithm is necessary to look for relationships among
nodes belonging to different groups of variables. A level (lvl) is assigned to each group
based on the possible cause-effect relationship between them. The levels are used to
prevent the nodes in the lower level groups to be the parents of the nodes in the upper
level groups. Let V= {uv x|l =1,...;,lvl and k = 1, ..., 2;} be the set of nodes of Bayesian
network where z; is the number of nodes in level [and v; j, vy, € V. Then, i) nodes
v;; and v, , can not be related if ¢ = m, ii) v;; can be the immediate parent node of

Upn only if m =14+ 1.

The Bayesian network that is constructed from past execution data represents the
probabilistic relationship between circumstance states, discretized possible parameter
settings, and measured as well as discretized quality indicators. Appropriate setting of
an algorithm’s parameter is extracted from the Bayesian network as explained in the

next section.

4.2 Mechanism to Predict Ubiquitous Data Mining
Configuration

Once the behavior model is built, the steps that lead to automatic parameter configu-

ration are as follows (See Fig. 4.1 for details):

e A data mining model is needed for a specific data set,

e Current circumstance (C’) is observed and the quality requirements (Q)’) are ac-

quired,

e Configuration (P’) of the data mining algorithm is determined autonomously by

inferencing from the behavior model

25

variables

~
Categorlf&s Discretize Execution
of domain
records
—

l

omain

variables &
I groups
s =" = RS

Group circumstantial,
configuration, quality
measures as nodes of
the network

Determine the level
of each group

!

Search relationship
between nodes in all
adjacent levels

L

CONSTRUCT
BAYESIAN NETWORK

Execution record

* Circumstantial Information
* Configuration Parameters
* Quality Measurements

measuremepfs

Create
execution

record

Configurate
and run the
algorithm

IConfiguration

Inference
from Bayes
network

ICircumstance,
quality criteria

Evaluate current
circumstance,
required quality

1

ARM Request

Figure 4.1: Data mining configuration using Bayesian network

26

The most likely configuration is inferred from the behavior model by estimating the
probabilities of possible parameter settings from previous runs of the algorithm in ex-
ecution circumstances similar to current in order to obtain quality levels similar to the
required. In particular, p(z|F) which is the conditional probability of x (an instantiation
of parameter variable) given F (instantiations of circumstance and quality variables),
is evaluated. Formal definition of inferring a value of a parameter from a Bayesian

network structure is as follows:

Definition 5 Consider C; and Q; defined in Definition 2 and Definition 3 respectively.
Let ¢ be any single tuple from C; and ¢"**' be the associated quality tuple from Q.
Consider the relation schema P(py : D1, ...,p, : Dy) that defines data mining algo-
rithm’s parameters(Definition 1). Let dom; = {x1,xs, ...} be the domain set of p;. The
most likely setting of p; by a value from dom; under the circumstance c'*P*¢ in order to

tuple

attain the data mining quality q 1s the maximum of the ¢ calculated by:

o = Probability(p; = xy, | e q"P€) Yk < |dom;]|

27

Chapter 5

SELF-CONFIGURATION USING DECISION
TREES

5.1 Modeling the Behavior of a Data Mining Algo-

rithm with Classifiers

Predictive data mining is discovering from training data, patterns that can be gener-
alized to forecast explicit values. Since, our approach for predicting future parameter
settings is learning a model from past executions of the algorithm, we have chosen

predictive data mining as the appropriate technique for discovering configurations.

Classification is a predictive data mining technique where a training set is used for
discovering patterns to predict categorical values. We propose to use classification of
execution data, E given in Definition 4 to create the behavior model of the data mining
algorithm with the aim to use the model for predictive analysis of the algorithm’s
behavior. Thus past execution data of the algorithm is used as the training data

required for supervised learning of classification methods.

Efficiency of the data mining process and/or efficacy of data mining model, which
will be referred as data mining quality thereafter, are the objectives of parameter set-

tings for a particular execution of a data mining algorithm. For that reason, we analyze

28

under different circumstances the effect of parameter settings on the data mining quality

and thereupon we determine data mining quality as the class label to be predicted.

We will first elaborate on the properties of the class label chosen while discussing
the necessary transformations and later explain in detail behavior model construction
by using a specific classifier, decision tree. We have chosen decision trees classifiers due
to the following reasons: i) Behavior model is constructed on a ubiquitous computing
device where lowest resource consumption is essential. Existence of several computa-
tionally inexpensive and fast decision tree construction algorithms makes decision tree
classifier a suitable choice. ii) Data mining to be configured may have any kind of
parameters. Decision trees can deal with continuous data as well as categorical data so
that every kind of data mining parameters can be configured. iii) In general, accuracy
of decision trees is comparable to other classification techniques. iv) It is possible to
extract classification rules from decision trees which provide a convenient way to infer

configurations.

5.1.1 Data Mining Quality as the Class Label

Since we have determined to use classifiers for solving automatic parameter setting
problem, data mining quality attributes (each ¢; in Definition 3) are converted to cate-

gorical attributes. Formal definition of discretized data mining quality () is as follows:

Definition 6 Let Qp(q1 : D1,....qn : Dy) be a relation schema defining quality fea-
tures, q;, where 1 < i < n. Let dom; be the set of pairs (I, u) associated with the domain
named D; such that each pair corresponds to the lower and upper boundaries of a bin
interval after discretization.

An instance of Qp that satisfies the domain constraints is a set of tuples with n fields:

Qp, ={<q: (Lu),..,qn: (Luw), > |(l,u)1 € domy, ..., (L, u), € domy}

29

In order to use data mining quality as the class label of the classifier, () given in
Definition 6 is converted to a unary relation having a single attribute (say ¢4). Next, we
define the aggregation function to derive aggregated data mining quality. The aggrega-
tion function, f4 that will be used for this purpose may consist of arbitrary operations
given that a single value, g4 is obtained by making use of all other quality attributes
q1,,q, and fa should be an invertible function so that ¢i,,q, could be re-generated

given qa:

Definition 7 Let Q™ be a set containing any single tuple from Qp,. Let Qtfple be
a singleton set containing a unary tuple. Aggregation function for data mining quality,

fa is an invertible function that defines the mapping from QP to Q" given as:

fA . Qtuple N Qi;ipl@

Finally, formal definition of aggregated data mining quality is as follows:

Definition 8 Let Qa(qa : Da) define a relation schema for aggregated data mining
quality and doma = Ry, 1is the set of values associated with the domain named D 4.
An instance of aggregated data mining quality, Q4 that satisfies the domain constraints

is a set of tuples with 1 field:

Qa, ={<qa:da>|ds € domy}

5.2 Predicting the Behavior of a Data Mining Al-

gorithm with Decision Trees

We propose to use decision tree classifier to obtain a model that maps the attribute

sets consisting of circumstance (Definition 2) and parameters (Definition 1) to the class

30

label aggregated data mining quality (Definition 8):
f Cx P— QA

Since aggregated data mining quality (Q4) is a composite attribute formed by ag-
gregation of a number of attributes, the number of possible data mining quality classes

is denoted with the following equation:
k=]]k (5.1)

where n is the number of attributes in ()p, and k; is the cardinality of 7th attribute’s

domain (number of bins).

Although classifying by @ 4 will provide classes with exact data mining quality infor-
mation, the resulting number of aggregated quality classes (given in equation 5.1) can
be too high preventing accurate classification. For this reason, we consider abstractions
of Q4 as well as Q4 as possible class label attributes. We aim to find a tradeoff be-
tween estimated accuracy and classification specificity by ranking the possible behavior
models that can be generated using different abstractions of data mining quality as the

class label attribute.

5.2.1 Abstractions over the Class Label

We consider different abstraction levels of data mining quality as possible class labels.
A hierarchical structure that shows the taxonomy of data mining quality attributes in

@p is used to abstract the data mining quality:

Definition 9 Data mining quality abstraction is composed of:

o A tree structure T representing data mining quality taxonomy where Qr is the

node set of T' and data mining quality attributes Qp C Q7 are the leaf nodes. Let

31

Table 5.1: Relation schema: discretized data mining quality

[Relational Schema [Domain
Ob| (avg-mem : adom, adom = {(0,100000), (100001, 1000000, (1000001, 10000000)
max_mem : mdom, mdom = {(0, 250000), (250001, 4000000),
pre_cycles : cdom, (4000001, 10000000) }
% _prc : pdom, cdom = {(0,200K), (200K,4M), (4M,10M), (10M,20M)
battery_usg : bdom, pdom = {(0,45), (46, 80), (81,100)}
support : sdom, bdom = {(0, 25), (26,100)}
confidence : fdom) sdom = {(0, 0.50), (0.51,0.80), (0.81,1)}
fdom = {(0,0.89), (0.9, 1)}
Mappings to higher levels of abstractions: [Domains of abstract data mining quality:
QProcessor = {pre-cycles, %_prc} Memorydom = {VeryLow, Low, Average,
cdom X pdom — Processordom High,VeryHigh}
QMemory = {avg-mem, max_mem} Processordom = {VeryLow, Low,
adom X mdom — Memorydom Average, High, VeryHigh}
QResource = { Processor, Memory, battery_usg} Resourcedom = {Low, Average,
Processordom x Memorydom X bdom — Resourcedom High,VeryHigh}
QModel = {support, confidence} Modeldom = {Low, Average, High}
sdom X cdom — Modeldom Overalldom = {Good, Bad}
Qowverall = {Model, Resource}
Modeldom x Resourcedom — Overalldom

Qc ={91,92, .-} = Qr — Qp be the set of abstract data mining quality attributes.
Q¢ 1s partially ordered such that a quality attribute in Qg comes before its parent

T
e Domain sets g;dom of each g; € Q¢.

o Stepwise mappings to higher abstract levels.

For each g; € Qg wherei=1,....| Q¢ |:

— Let @y, be the successor set of g; in T

— Bvery combination of elements from the domain sets of (g, is mapped to the
domain values of g; such that:
fo: udom X gadom x ... X 4)Q,, |dom — gidom

where g;dom is the domain set of i'th member of Q.

Data mining quality abstraction given in Definition 9 is explained by the following
example. Discretized data mining quality schema, ()p in Table 5.1 is used in the ex-
ample to define usage measurements of device’s resources such as memory (avg_mem,
max_mem), processor (prc_cycles, % _prc) and battery(battery_usg) by the data min-

ing process as well as the calculations obtained from the data mining model such as

32

Overall

Resource Model
Memory Processor battery usg support confidence
avg mem || max_mem prc_cycles % _prc

Figure 5.1: Data mining quality taxonomy specific to association rule mining

con fidence and support. Figure 5.1 is the data mining quality taxonomy where the
leaf nodes are the “actual” data mining quality features (Q)p) whereas interior nodes

are the quality abstractions (Qg).

The domains (g;dom) of abstract data mining quality features which are the gen-
eralizations of the Memory, Processor and Resource usage as well as the data mining
Model and Owverall quality are shown in Table 5.1. Successor sets of abstract data min-
ing quality features (Qprocessors @nemory and so on) are derived from the taxonomy T
according to Definition 9. The values of the features in its successor set determine the
value of abstract feature. For this reason, each combination of values from the domains
of the features in the successor set of an abstract feature is mapped to a value in its
domain. For example, when average memory usage and maximum memory usage are
in the range (0,100000) and (250001,4000000) respectively, then Memory usage of the
process is Average, is a possible mapping that gives the value of an abstract data min-
ing quality feature based on the quality features in its successor set. The appearance
order of successor sets in Table 5.1 follow the partial order that is determined from the

taxonomy 7.

33

Next, we will use the relational schemas, relations and functions that are defined to
establish a method for constructing adequate behavior model(s) for algorithm configu-

rations.

5.2.2 The AS/BM Strategy

We propose a strategy that we call AS/BM (Accuracy Specificity Balanced Behavior
Model Selection) in which we enumerate the alternative abstraction levels of @ 4 as pos-
sible class label attributes and then evaluate the classification specificity and accuracy
of the models that are created as a result of classifications by alternative abstraction

levels. AS/BM has the following phases:

ENUM : Enumerate possible class label attributes based on data mining quality

taxonomy.

SCRN : Apply a pre-screening to possible class label attributes for elimination of

inappropriate ones for classifications.

CONS : Construct a separate model in the form of decision tree by using each enu-

merated class label attribute that passes pre-screening.
EVAL : Evaluate the performance of the models by observing the accuracy.

MSEL : Select the most appropriate model by taking into account accuracy and
specificity of classification provided by the models.

We first ENUMerate the class label attributes sets and obtain L.

Definition 10 Given a data mining quality tazonomy (T') and successor sets for ab-
stract quality attributes (Q,), Lset = {l1, 12, ...} which is the set of class label attributes

sets enumerated from data mining quality tazonomy (T') is obtained as follows:

1. Initially Ly = {Qp} and Oser = {Qp}.

34

Table 5.2: L, set of possible class label attribute sets

{{avgmem, maxmem, prccycles, %oprc, batteryusg, conf, support},
{Memory, prccycles, %opre, batteryusg, con f, support},
{avgmem, mazmem, Processor, batteryusg, conf, support},
{avgmem, maxmem, prccycles, %opre, batteryusg, Model},
{Memory, Processor, batteryusg, con f, support},
{Memory, prceycles, %pre, batteryusg, Model},

{avgmem, maxmem, Processor, batteryusg, Model},

{ Resource, conf, support},

{Memory, Processor, batteryusg, Model},

{Resource, Model},

{Overall}}

2. Repeat a — ¢ below until | Ogey |= 0

(a) Repeat for each oy in Oy (where k =1,..,| Oger |),

i. form a new class label attributes set by replacing successors of an ab-
stract quality attribute with itself. e.g. {a,qs,...} is formed from op =
{1, @2, 03} if Qo = {q1, ¢2}-

ii. repeat step (i) until all possible abstractions for oy is done.
(b) Union the class attribute sets formed in (a) to Lge.

(¢) Replace O with the class attribute sets formed in (a).

Set of class label attributes sets (L) shown in Table 5.2 is enumerated according to
Definition 10 from the data mining taxonomy given in Figure 5.1. Group of sets that
is placed between a pair of horizontal lines in the table corresponds to the sets merged
to Lge after each iteration of line (2) in Definition 10 and also constitutes the contents
of Oy for the next iteration. Abstract data mining quality features that are replaced

in the last iteration are shown in bold in the table.

Next, we augment E; with abstract data mining quality attributes and subsequently
with class labels which are the abstract data mining quality attributes aggregated ac-

cording class label attributes sets in L.

35

Definition 11 Definitions of abstract data mining quality relation schema (G), aggre-
gation function for class labels (far,) and class labels relation schema (Qar) are in

order:

o Abstract data mining quality
Let G(g1 : D1,...,9n : Digg|) be a relation schema defining abstract data mining
quality such that g; € Qg.
Gy for a particular Qp, is a set of tuples with |Q¢| fields such that f,, given in
Definition 9 maps successors of g; (Qg) to g; in Qp,.

o Aggregation function
Let Lgey = {ly,ls,...} be the set of class label attributes set enumerated from T
(Definition 10).
far, (fori =1,...,|Lse|) is an invertible function that aggregates tuples in Qp,

and G based on class label attributes in [;.

o Class labels
Let n = |Lset| and Qar(qai, : Datys Qaiy : Daiys s Qai, : Dai,) define a relation
schema for class labels and doma, = Ry,, s the set of values associated with the
domain named D, .
Qar, for a particular Qp, and Gy is a set of tuples with n fields such that far,

giwen above maps attributes in l; to G, -

In the extreme case, classifying the execution related data by using the class label
formed by aggregation of attributes in) p results in a model with the most exact quality
information but the predictive accuracy of the model is also important for generating
adequate parameter setting recommendations. For this reason, we considered model’s
accuracy as well as the classification specificity that the class label attribute provides
when choosing the most adequate class label attribute for the behavior model. Since
the accuracy of the model can be assessed once it is built, we pre-screened the class
label attributes by using a test in order to reduce the number of decision trees needed.

One of the known reasons for the model with high error rates is to use a training set

36

with insufficient number of instances per class. SCRN (Algorithm 1) tests whether the
number of instances per class for each class label attribute set in L, is sufficiently
large and eliminates the ones that contain high number of classes with small number

of instances in E7;.

Algorithm 1 SCRN

Require: Class label attributes are enumerated

{Input is Lseta QALI }

{OUtPUt is Sset, QASI }
1 Sset < {} {Screened set of class label attributes sets}
1 Sattr < {} {Screened attributes from Q4r}
D recs < 8oount(@ar,) {Total number of instances}
tf < threshold {Number of instances in a class}
t% <« threshold_percent {Number of instances in a class as % of recs}
n < numberof _classes_below_threshold
: t + smaller_of (t§, recs * t%)
for k =1 to |Lset| do

J thresh <— 0 {Number of classes below threshold}
for i = 1 to |domg,, | do
alg, + member(domyy, ,1)
{Returns the it class in the domain}

12: ¢ < Beount(Fgq;, =aly, (RAL;))
13: if ¢ <t then
14: 1 thresh + +
15: end if
16: end for
17: if | thresh > n then

= =
—RoOPINPT W

18: Sset < Sset Umember(Lset, k)
19: Sattr < Sattr U Galy,

20: end if

21: end for

22: Qas; « Usg,,,,. (QarL;)

SCRN returns S,.; and (45, which are the pre-screened class label attributes sets
and projection of pre-screened class labels on ()41, respectively. Let relation schema
of Qas, be Qas(qus; © Dasys Qasy © Dasys s Qasy, = Das,) Where D, is the name of the

domain set of qqs, .

As a result of classification of execution related data by decision tree using each gy,

as the class label attribute, the number of models that are CONStructed is |Sse] :

MiZCXP—>qasi

Each M; is EVALuated separately by using accuracy as the performance metric.

Let Sget = {51, 82, ...} be the screened set of class label attributes sets. M; is the model

37

obtained by classifying on the class label attribute g,s, which is the aggregation of

attributes in the set s;. The observed accuracy of M; is represented by acc;:

Si — Qas, — M; — acc;

Definition 12 Accuracy of M; (acc;) is estimated by k-fold cross-validation method
where training and testing are repeated for k times. Let Eyr, be a partition of Er which
is divided into k equal sized mutually exclusive subsets and lel Eyjpeq represent data in
the rest of the partitions. Ejj.eq ts used as the training set to build a model say mi;
at j*™ iteration whereas Ejpjy, is used for testing my;. At each iteration of j, Epp is
replaced by a partition from Er which is not used as test set previously and Ej e holds
the remaining subsets other than Eyj,. Let accy; be the number of correct classifications
from my; at § iteration, then the accuracy estimate of M; is the proportion of overall

accuracy estimations from the k-iterations to the number of instances in Fy:
_ Nk E
acc; = Y25 accij/|Ep|

Specificity of classification by ¢,s, which is the aggregation of quality attributes in s;, is
calculated by making use of s;’s every attribute’s level in data mining quality taxonomy
(T'). MSEL (Algorithm 2) evaluates the model constructed for each s; by estimating the
model’s accuracy as suggested in Definition 12, quantifies the specificity that s; provides
and computes a score for s;. A coefficient is added in the formula that computes the
score so that the weights of the two factors contributing to the score can be adjusted.
Behavior model is built using the class label which is scored highest in terms of accuracy

and specificity of classification.

38

Algorithm 2 MSEL

Require: Enumerated class labels are screened and data transformations on E; is done such that Q 45, is produced.
{Input is Ag, Sset , E1, Qas,, coef ficient}
{Output is M }
max_score < 0
top-s < return_finestspeci ficitydegree(Ar)
. choose < 0
for i =1 to |Sset| do
85 < member(Sset, 1)
{Estimate accuracy when s; is the class label}
accuracy < EVAL(E,Qas;, s:)
speci ficity < 0
for j =1 to |s;| do
qual_attr < member(s;,j)
{Returns the jt* attribute in class label set}
l + tazonomy_level(Aj, qual_attr)
{Returns the attribute’s level in the taxonomy}
speci ficity < speci ficity + 1
end for
{Normalize specificity degree }
13: specificity < specificity/top-s * 100
{Calculate score of classification by s; }

[—t
<

— =
DO =

14: score < accuracy + specificity x coef ficient
15: if score > max_score then

16: max_score < score

17: choose + 1

18: end if

19: end for

{Build a decision tree with highest scored class label}
20: M «+ BUILD(Efa Schoose QAS])

39

Chapter 6

INSTANTIATION OF THE APPROACH

In this chapter, we illustrate our approach through two ubiquitous computing applica-

tions in which data mining is used.

6.1 A Museum Equipped with Ambient Intelligence

In the given example, ubiquitous devices are used by many people performing the same
activity and somehow sharing information about their activity among themselves. In
this sense, they form a social network in the ambient intelligence environment that we
delineate. We explain how our approach can be employed in this application and finally

instantiate our approach with data specific to this example application.

The museum depicted in this example is huge so that it takes a lot of time of the
visitors to see all the exhibitions in it and it may even be impossible within the visit
time. Museum is conceived as an ambient intelligence environment where visitors are
fed information from the environment. The aim is to guide the visitors so that they can
visit the pieces (art work) that they would like to see within the available time rather
than trying to see all of the exhibitions. For this purpose, an application that we call
museum guide is loaded to the smartphones of the visitors upon request. museum guide

directs a visitor to the pieces that he would like in the museum.

40

As in a common web based book or movie recommender system, the objective of this
system is to discover common likes of users. In order to do that, information indicating
whether the visitor liked or not liked the last artwork he looked at, is needed. For this
purpose, the amount of time each visitor spends in front of a artwork is sensed and
collected and is taken as the indication of the visitor’s liking or not liking of that piece.
If an indoor positioning system is not present, visitor may also submit his feedback by
making use of the museum guide application. Sensed data or feedback of each visitor
is transformed to a record that we call visitor record. visitor record contains the pieces

liked by that visitor.

museum guide which runs on the smartphone of a specific visitor while recording the
pieces he liked to his smartphone, also downloads other visitors” records. Common likes
are discovered by association rule mining of all wisitors’ records on the smartphones
of the visitors. The purpose is to find the associations such as “visitors who liked
Picasso’s Three Musicians also liked Matisse’s Dance”. This museum has special offers
for different types of visitors such as tourists, students and elderly. For this reason,
visitor profile in one season, month or week of day may be quite different than the other.
Since more associations can be found when similar people’s likings are mined and the
museum has dynamic visitor profile by day, rather than discovering the associations
only once from data of one set of visitors, it is preferred to extract the association rules
dynamically on visitors’ smartphones. Moreover, continuous rotation of artwork also
necessitates mining to be performed dynamically. Since association rule mining is not
done by a central computer thus wvisitors’ records are not stored centrally, the exchange
of wisitors” records among the visitors is achieved by making use of the internet and
social media. After being updated each time, museum guide tweets the visitor record by
tagging it with a pre-determined hashtag. Tweets with the pre-determined hashtag are

downloaded by the museum guide to generate the records for association rule mining.

We focus on determining the configuration of the association rule mining algorithm
which must run autonomously since in a ubiquitous computing environment it is as-

sumed that the user can not provide this information. We exploit context and consider

41

the availability of the resources of the visitor’s smartphone as the determining factor
of the association rule mining parameter settings. The data mining process is referred
as discover artwork associations. Next, we describe a number of principles of museum

gutde and how it interacts with discover artwork associations:

o museum guide calls discover artwork associations to discover frequent itemsets
from the set of visitor records. The attribute of each wvisitor record is the list of

pieces liked by that visitor.

o museum guide downloads fresh data and calls discover artwork associations sev-
eral times during his visit for a visitor in order to incorporate data of newcomers

and to try different parameters for better recommendations.

Association rule mining algorithm Apriori [2] which accepts two parameters: min-

imum support and minimum confidence is used to discover artwork associations.

The resulting data mining model generated by Apriori are the association rules
demonstrating which pieces that are exhibited in the museum are liked by the
same persons. It is out of the scope of this work to speculate on how museum
guide uses the model to recommend artwork to the visitor or whether the recom-
mendations are ordered by physical location or some other criteria as well as when
a new model is needed. On the other hand, we are concerned on the automatic

configuration of discover artwork associations.

e Past executions of discover artwork associations are mined to discover the appro-
priate configuration that fulfils the required quality under a given circumstance.
Initial past execution data is downloaded to the smartphone together with the ap-
plication and is augmented by data collected during executions of Apriori locally

on the visitor’s smartphone.

42

6.1.1 Circumstantial Factors Effecting Parameter Setting

We argue that in a ubiquitous computing environment, in order to find appropriate
settings of the data mining algorithm parameters, context from the environment as
well as the conditions of the device’s resources need to be utilized. Next, we define
the relevant circumstantial factors for determining configuration of discover artwork

associations.

Context: Context, that we assume have an effect on the required quality of the final

model are:

time left to the museum’s closing (remaining time to close)

time left to average visit time since the start of visit time (remaining time

to leave)

visitor’s past attitude against the recommendations (feedback)

number of visitors in the gallery entered (no of visitors)

Resources: Since discover artwork associations runs on the smartphones that are re-
stricted resource devices, the resource usage of the data mining process need to be
considered when setting the parameters of the data mining process. We assume
memory and processor are the resources whose availability are critical for discover
artwork associations:

e amount of memory available (memory available)

e processor idle percentage (processor idle percent)

6.1.2 Heuristics for Parameter Setting

In this subsection, we give example heuristic configuration decisions for discover art-

work associations. We assume there exist default settings for each discover artwork

43

associations parameter: minimum support and minimum confidence and in the config-
uration decision whether to increase or decrease the defaults of the relevant parameters
depending on the circumstance is indicated. The following are some heuristics which
may be used when configuring discover artwork associations autonomously where the

reasoning explaining the heuristic follows it.

1. if memory available is low then increase the minimum support (with a higher
minimum support value it is expected to decrease the size of the frequent itemsets

and to optimize memory usage consequently),

2. if remaining time to close is small then increase both the minimum confidence
and minimum support (since limited time is left, provide less rules with higher

confidence so that the visitor will not miss the pieces that he would like most),

3. if remaining time to leave is small given that memory available is not low, decrease
the minimum support (the objective is to make the average visit time longer by
providing more pieces to the visitor that he would regret if he would leave without

seeing them)

4. if no of wisitors is high then decrease the minimum support but increase the
minimum confidence (as the visitor may prefer to skip the pieces with a crowded
audience in front of them, produce a list of high confidence containing sufficient

number of pieces to bypass some of them)

5. if feedback is negative then decrease the minimum support (if the visitor is not

satisfied with the previous recommendations then provide more accuracy)

Circumstance is the motive of each parameter setting but there is also an objective of
each recommended setting which is given in parentheses after each heuristic. Objectives
can be quantified by making use of the measurements obtained from the operating

system of the device as well as the data mining model quality indicators.

Quality Measures: Quality measurements are the means to control whether the heuris-

tic for a setting achieves the objective. The suggested quality measurements are

44

as follows:

e maximum amount of memory used by discover artwork associations (mazx

memory usage)
e number of association rules in the model (no of rules discovered)

e minimum confidence that an association rule in the model may have (model

min conf)

e minimum support that association rules of the model should have (model

min support)

Whether the objective of assigning certain value(s) to discover artwork associa-
tions’s parameter(s) is attained at a specific run of discover artwork associations can
be assessed by checking the related quality measure(s) after the discover artwork asso-
ciations runs with those settings. Similarly, the objective given is the required quality

for a given circumstance.

6.1.3 Instantiation for Apriori

In this subsection, automatic configuration setting is instantiated for the well known
association rule mining algorithm Apriori. Instantiation is based on the intelligent mu-
seum example and consists of appropriate discover artwork associations configurations
for the heuristic parameter setting decisions given in subsection 6.1.2 as well as the
possible circumstances and quality determined in subsection 6.1.1 for the intelligent

museum example.

Circumstance. It is assumed that context and resource availability values are dis-
cretized such that ‘low’, ’high’ and 'moderate’ categories are used for memory available,
few’ and and ‘many’ for no of visitors, ‘'not much’ and ’‘plenty’ are used for remaining
time to close and remaining time to leave and finally, ’positive’ and ’‘negative’ are for

feedback. Some possible instantiations of circumstances using discretized values are as

45

follows:
Ci= {(memory available, 'low’)}
Co= {(remaining time to close, 'not much’)}

(
(
C3= {(memory available, "high’),(remaining time to leave, "not much’)}
C4= {(no of visitors, 'many’) }

(

Cs= {(feedback, megative’)}

Quality. Similarly, it is also assumed that quality measurement values are discretized
such that “low’, ’high’ and ‘moderate’ categories are used for maz memory usage, ’few’
and and ‘many’ for no of rules discovered, ’low’ and ’high’ are used for both model
man conf and model min support. Some possible instantiations of circumstances using
discretized values are as follows:

Q1 ={(max memory usage, 'low’)}

Q2 ={(model min conf, 'high’), (model min support, "high’)}

Q3 ={(no of rules discovered, 'many’) }

Q4 ={(model min conf, 'high’), (no of rules discovered, 'few’)}

Qs ={(model min support, low’)}

Algorithm Configuration. Assuming that the default values of minimum support
and minimum confidence are 0.75 and 0.9 respectively, in each of the parameter setting
below either one of them or both are altered to meet the parameter setting decisions of
the example heuristics.

P; = {(minimum support, 0.9), (minimum confidence, 0.9)}

Py = {(minimum support, 0.85), (minimum confidence, 0.98)}

(

P3 = {(minimum support, 0.75), (minimum confidence, 0.9)}
(minimum support, 0.5), (minimum confidence, 0.98)}
(

P4:{
P5:{

minimum support, 0.70), (minimum confidence, 0.9)}

Configuration Decisions. Instantiation of configuration decisions are based on the

instantiations of circumstance, quality criteria and algorithm configuration such that

46

for each circumstance C; given above, Q; is the corresponding quality aimed for C; and
P; is the appropriate configuration setting given C; and Q;. The following pseudo code
generalizes the instantiation of configuration decisions for the heuristics of subsection

6.1.2:

forall i < 6
if C; is sensed/gauged and
Q; is the corresponding required quality

then P; is an appropriate configuration.

6.2 FESTweets, Movie Recommendations for a Film

Festival

FESTweets is an application that is designed to help film festival audience on choosing
the films. Film festival organization presents films from all around the world such that
a vast number of films that are not shown at the local cinemas during the cinema season

are screened within a limited amount of days during the festival.

Since most of the films in the festival program are screened only a few times and the
screening times of the films do overlap, it is impossible for a person to watch all the films
in the festival program. Hence, film festival audience who plans to follow the festival,
must be selective. On the other hand, it’s not easy, at least time-consuming to analyze
reviews and to acquire detailed information about each and every film appearing in the
festival program. Consequently, recommendations on which films to watch is very likely

to be welcomed by the film festival audience.

How festival audience obtains the film recommendations is an important issue. Most
of the people living in a metropolis use mobile phones categorized as smartphone and
usually prefer to connect to the internet by their mobiles. Thus, it is important that

film festival audience can get the recommendations to their smartphones and also able

47

to get a new set of recommendations everywhere that can be connected to the internet.

What type of recommendation system is appropriate for generating film recommen-
dations is another issue to be answered. There are two types of recommender systems:
collaborative and content-based. In contrast to content based recommender systems
that make use of the information and characteristics derived from the several attributes
of the items, collaborative recommender systems rely on users’ preferences instead of
the content for predicting the common tastes. It is unfeasible to collect content in-
formation for the festival films that will be aired due to their large number and the
limited time between the announcement of the festival program and the ticket release
date. Moreover, it had been observed at previous years that majority of the film viewers
bought tickets to several films rather than a single film indicating that suitable data

for collaborative filtering can be collected this year too.

Yet another important issue is how to collect the information needed for film recom-
mendations. There is no doubt that a substantial number of people in the world like to
share their interests, photos, opinions and even daily activities with their friends and
also with the related community through social media/network. Especially, widespread
usage of social network /media sites, Facebook and Twitter resulted in almost every in-
ternet user to sign up the mentioned sites. Social media which is the most appropriate

means for the people to collaborate must be the channel to share the film preferences.

In the design of FESTweets, we considered the aforementioned requirements. Col-
laborative filtering is preferred to content-based filtering when designing FESTweets
so that films are recommended based on the collaboration of film audience who shows
their interests in the film festival by buying tickets. The recommendations are based

7

on the extracted “people who buy ticket to film x also buy ticket to film y” associa-
tions. We have chosen Twitter([43]) as the media where festival audience can share
their preferences. On the other hand, associations among film preferences are extracted

and presented on the smartphones.

As of today, Twitter which lets the subscribed users to share content in the form of

48

short messages (tweets) not exceeding 140 characters, is the most popular microblogging
site without dispute. Twitter is not merely a media to form a social network among
individuals but it is also used by the organizations as a means to disseminate news
and publish information for several purposes such as marketing and public relations.
Furthermore, contents gathered by Twitter are made available so that third parties offer
a wide variety of applications that exploit Twitter data. For the mentioned reasons, we
have chosen Twitter as the data source of our data mining application that mines data

ubiquitously on a smartphone.

In short, FESTweets acquires film preferences of the festival audience who bought
tickets, discovers the associations between their choices and generates film recommenda-
tions to festival audience who plans to buy tickets based on the associations discovered.
An overall view of the application is given in Figure 6.1(a) and 6.1(b). FESTweets has
two independent parts. A social media interface allows the festival audience to enter
their film preference lists. Mobile interface generates film recommendations by mining

downloaded film preferences on the smartphone of the user.

As seen in Figure 6.1, all festival film audience who wants to participate FESTweets,
must use a Twitter account. Festival audience tweets their film preferences by hash-
tagging them using a predetermined hashtag (such as ffestweet). In this way, tweets
containing ffestweet are accumulated. Users who want to receive recommendations
on films download the ffestweet hashtagged tweets by a mobile application through
Twitter API’s. We provide a brief information on Twitter in Appendix B.

FESTweets will be used by the festival audience at any time between the festi-
val ticket release date and the end of the festival. During this period, as more and
more film viewers “tweet” their film choices, film recommendations that are generated
may increase in quantity and also may change. For this reason, mobile interface of
FESTweets should be repeatedly run in order to trigger the download of newly added
“tweet”s of film audience and mine the transactions obtained from “tweet”s. It is rea-
sonable to mine this ever increasing data with different configurations depending on

the situation. In Section 8.5, we discuss in detail the requirements of the data mining

49

FESTweets—Social Media Interface for Data Gathering

[BSE. BR S N B8 BN

The Descendants

Hit so hard

On the Edge

Innocent Saturday

The Descendants

' istanbul

(a) Social media interface for data gathering

FESTweets—Mobile Interface for Film Recommendations

Recommendations
|
RESTAPI 2t I =~
(Download Pl | .
i | —— ‘
| =
Data Mining Mine
- Algorithm Execution
Executes Data

—
~

T e I I I I I I T I I I YT YT Y

0
.

o e e = — — — — — —

50

(b) Mobile interface for recommendations

Figure 6.1: Overall view of FESTweet

model and probable processing constraints that would affect the data mining model

under different circumstances.

o1

Chapter 7

EXPERIMENTAL EVALUATION

This section explains the experiments that we have performed in order to show the
applicability of the proposed approaches for obtaining a behavior model that can be
used for recommending data mining configuration. After introducing the experiment
software that we used, in the next two subsequent sections empirical evaluations of the

approaches are given.

7.1 Experiment Software

We have developed a software that we call execution data generator to generate ex-
periment data. Execution data generator (EDG) collects execution related data (E)
for the experiment by running the data mining algorithm with various configurations

under various circumstances created by EDG.

7.1.1 Execution Data Generator Architecture

The main task of EDG is to run a data mining algorithm and to collect relevant data
from each execution of the algorithm. EDG also creates the planned bottlenecks on the

device’s resources before running the algorithm.

52

GUI <<interface>> <<interface>>

Runnable Algorithm
v
\ N
\ I
TestQueue ProcStats AprioriTest
+AddTest() > +Startnew() +LoadData()
+RemoveTest() +toString() +RunAlgorithm()

—»| PresetParser

> Preset

+Parse()
+CreateAprioriTest()

Figure 7.1: Class descriptions of EDG

We have chosen well known association rule mining algorithm, Apriori ([2]) as the
sample algorithm that is run by EDG for the experiment. Data generator software
consists of JAVA programs except the bottleneck creator modules which are C++
programs. Apriori is run by calling Weka ([35]) API’s within EDG.

EDG input (preset file). Each record in preset file defines a particular execution
of Apriori and contains associated context data for this execution, resource bottleneck
requests, data set to be mined and configuration of Apriori. Resource bottleneck re-
quests state the amount of memory and/or processor consumption in the device by the

workload other than Apriori during execution.

EDG output (execution file). A record which consists of circumstance (C),
parameter (P) and quality (@) attributes is written for each execution of Apriori.
EDG output is real data collected before, during and after Apriori execution such that
the gauges showing resources’ availability when Apriori was run, actual resource usages
by Apriori, quality indicators from the data model generated and Apriori configuration

are stored in C, () and P attributes respectively.

53

Briefly, EDG reads a record from the preset file, generates the resource scarcity
conditions if the given circumstance requires and runs Apriori with the given parame-
ters. For example, if the stated resource state is the scarcity of memory, EDG starts
dummy processes to use up the memory in order to run Apriori in memory constrained
situation. Upon completion, an execution record which is populated by real statistics

collected during the execution of Apriori, is created.

Class descriptions of EDG are shown in Figure 7.1. There is a graphical interface
(GUI) to set the name of the preset file and the execution file as well as to start
the data generation. PresetParser is used to parse the contents of preset file and
responsible for invoking bottleneck creators to call some “dummy programs” that will
consume the requested amount of related resource. TestQueue is typically a queue that
contains Algorithm instances. AprioriTest represents tests of the Apriori algorithm
and implements the interface Algorithm, thus its instances can be added to TestQueue.
ProcStats performs the gathering of performance statistics before, after and during the
execution of the algorithm tests. Specific system metrics related to memory or processor
usage are gathered using specific methods. This class is designed as an independent

cohesive unit to measure performance metrics, gather system information and statistics.

7.2 Evaluation of Self-Configuration by Bayesian Net-

work

We conducted an empirical study to demonstrate that parameter setting decisions by
the proposed mechanism are appropriate in the sense that they are good at delivering
the quality requested for the circumstances. To validate the proposed mechanism, we
selected Apriori as the data mining algorithm to be configured and created its behavior
model in Bayesian network representation to derive configuration decisions. Besides,
we employed another approach for parameter setting, full factorial experiment design

and compared the inferences made from the Bayesian network against the results of the

o4

Ubiquitous
Data Mining

Execution Records

Configuration

Levels for
Apriori Full]
i i Experiment]
Parameters Clrcumst?ntlal Factorial Rel;u'ts
Information Design

J

. Parameters
Simulator
Quality Bayesian
Circumstance Measurements Network

Constructo

Figure 7.2: Experiment phases

full factorial experiment design. The experiment has the following steps:

1. Ubiquitous data mining simulator is developed to generate experiment data.

2. Bayesian network is constructed in order to discover the probabilistic relationships

among parameters, circumstances and quality.

3. Multi-level full factorial design is used to find out the parameters that are effective

on the quality under a given circumstance.

4. The results of the two methods are compared to assess the proposed mechanism.

Fig. 7.2 shows the interaction of the experiment steps and the ubiquitous data mining

simulator.

7.2.1 Experiment Dataset

Execution data for the experiment was generated using the ubiquitous data mining

simulator. The states of the context and the type of resource constraints that were

95

Table 7.1: Levels used for parameters

Context state | Mnemonic | Parameter Settings
U upper bound minimum support | 0.7,0.8,0.9
M lower bound minimum support 0.1,0.2,0.3,0.4,0.5,0.6
Home D delta 0.01,0.05,0.1,0.15,0.2
N number of association rules 1,5,10,15,20
C minimum confidence 0.5,0.6,0.7,0.8,0.9
U upper bound minimum support | 0.7,0.8,0.9
M lower bound minimum support 0.4,0.5,0.6
Office D delta 0.01,0.05,0.1,0.15,0.2
N number of association rules 15,20
C minimum confidence 0.8,0.9

used in forming the circumstances of the test cases are {home, office} and {short on
memory, cpu bottleneck, none} respectively. All the types of resource constraints were
simulated for each context state, resulting in six different circumstances. Settings used
for each Apriori parameters are given in Table 7.1. There are different sets of settings
for home and office. In the experiment Apriori was run for all combinations of the
determined settings for each of the six circumstance. Therefore, the number of test
cases for each circumstance having home as context state are 2250(3x6x5x5x5) and

office as context state is 180(3x3x5Hx2x2).

7.2.2 Parameter Setting by Bayesian Network Inferences

In this step, we applied our mechanism to predict Apriori configurations from the
Bayesian network. Bayesian network construction and inferencing from the network

are two main tasks of this step.

Execution data generated by ubiquitous data mining simulator were first discretized
before constructing the Bayesian network given in Fig. 7.3. While discretizing, we used
equal frequency bins and chose the number of bins that produced the highest number
of relationships the among nodes. While constructing the network we made use of the
K2 algorithm ([21]) by modifying it to group the nodes and searched causal relationship
among these groups of nodes. The nodes in the upper level of the network in Fig. 7.3
represent the circumstance, middle level nodes represent Apriori parameters, and finally

the lowest level nodes are quality measures. The cause and effect relationships between

56

Location Available_Memary Avallabla_CPU

Min. Confidence Requested Rules i per Bound Min, Suppo;

Madel Min. Conf. Madel Min.Supp {umber of rules Avg, Memory Use Max. Mamory Usa Total CPU_Time Tatal CPU_Cyeles a

Figure 7.3: Bayesian network of Apriori runs

circumstances and parameters present which parameter settings are appropriate under
which circumstances, whereas the cause and effect relationships between parameters

and quality measures show which parameters are effective on which quality measures.

While producing the experiment data for this Bayesian network, we did not de-
termine appropriate parameter settings for circumstances but we ran Apriori for every
combination of parameters in each circumstance because our purpose is to find the effect
of parameters to quality measurements in the first place. Therefore, at this stage the
relationships between circumstances and parameters are not meaningful. We assumed
each circumstance node relates to each parameter node in order to include circum-
stances in the inference mechanism. The relationships between the parameter nodes
and quality measure nodes represent the effectiveness of parameters against quality
measurements. The Bayesian network in Fig. 7.3 shows that minimum confidence and
requested rules are related only to efficacy; delta to all efficiency measurements as well

as lower and upper bound minimum support, are related to all.

We determined parameter settings decisions by inferencing from the Bayesian net-

work given in Fig. 7.3. The pseudocode of the estimation is given in subsection 4.2.

27

Main Effects Plot For Awg. Memory Use Maiin Effects Plot for Total_CPU_Time
Data Mears: Dista Mears:

o] o u])

J
B
i

|

|

P
T
sconon
= o ™~ \\ i 1
[£
3 W a3 0l 62 13 04 85 0k 03 05 Ou 05 3 3 & w) s wm as 0
z C] (< z
p o
a0 2o
wawon e e . o
- — o e I
1 = 2
o T
1 1 w E N 85 M o 0 L 5 n = 0 S 0 T W
Main Effects Plot for Duration Main Effects Plot for Model Min. Support
D3 Mears: Data Mears:
u L] [M W =
05
xa0d
s
0l ."’/\
0008 Li] — e —
r/‘.__‘ —
0 — l\k‘-. 03
§ 1 [
g) B0l 02 63 B4 05 BE ML BE AN A5 1D] o o 63 0L 02 03 B4 05 B5 ML K5 0 A5 0
H 3 =
0 H c
2000
s
=
o= S —
" — \"‘*‘__ T
L i L)
: 2
L 5 L] E X 5 M 0 N e 1 5 » 5 A i W a1

Figure 7.4: Main effects plot of 4 quality measurements for home-short on memory

7.2.3 Multi-level Full-Factorial Experiment Design

In this step, we applied multi-level full factorial experiment design which is one of the
Design of Experiment (DoE) methods [48]. Full factorial experiment design is statisti-
cally determining the effects of the factors of a process to its response by systematically
varying the levels of the factors during testing of the process. In DoE terminology,
response is the output variable of the process, factors are its input variables and level
is a possible setting for a factor. The process that we want to analyze is the behavior
of Apriori, more specifically, to find out which Apriori parameters affect which quality
measurements. Therefore, Apriori parameters are the factors, their possible settings
are the levels and resulting quality is the response. In full factorial experiment design,
data is collected by running the process with all combinations of determined levels of
its factors. Hence, we generated execution data similarly by running Apriori for all
combinations of settings as explained in subsection 7.2.1. Moreover, since we ran Apri-
ori by simulating six specific circumstances, we are able to analyze the effects for each

circumstance.

o8

We used experiment software Minitab([42]) to estimate the effects and to plot the
analysis results. Fig. 7.4 illustrates the full factorial experiment design results obtained
for home-memory low. We analyze the results for this circumstance in detail in order to
explain the method. In the figure, the means of quality measurements for the utilized
levels of parameters are plotted. In quadrants of Fig. 7.4, plots for average memory use,
total CPU time, duration and minimum support of the model are given respectively.
Each plot (U, M, D, N, C) within a quadrant is for a parameter. The mean of the
measured value is plotted for every level we tested for that parameter in the experiment.
If the plot is not flat which indicates the means of measured values vary with different
value assignments of this parameter, then this parameter is effective on the measured
value. We considered the F test values to determine the significance of the effect. While
determining the appropriate value of the parameter which is designated as effective on
the measured criteria, we have chosen the value that has the smallest mean of response
for its factor level combinations. We compare the results of full factorial experiment

design against the results of the Bayesian network in the next subsection.

7.2.4 Comparison of Results

In order to determine the parameter settings of an algorithm, we explained two different
approaches, Bayesian networks and full factorial experiment design where the former
is a probabilistic approach and the latter a statistical approach. The outcomes of the

approaches are summarized as follows:

e Full factorial design provides

— The list of parameters which are not effective on a quality measure

— The parameter setting which has the highest /lowest least square mean for a

quality measure
e Inference from Bayesian network provides

— The list of parameters which are not related to a quality measure

29

Table 7.2: Comparison of results

Circumstance Efficiency Efficacy

(i) (ii) (i) (ii)
home-short on memory 73 7 90 100
home-CPU bottleneck 80 89 100 100
home-no constraints 73 77 80 80
office-short on memory 100 67 100 75
office-CPU bottleneck 100 89 90 75
office-no constraints 100 78 90 75

— Most likely parameter setting given the circumstance(s) and the quality mea-

sure(s) as evidence

To compare the results, we used two criteria: i) the percentage of alike parame-
ter /quality measure relationships and, ii) the percentage of identical parameter settings,
obtained by the two approaches. In Table 7.2, for each circumstance, we present, (i)

and (ii) by grouping quality measures as efficiency related and efficacy related.

It is possible to say based on the results (Table 7.2) that in majority of the cases,
parameters that are found to be effective on a quality measure under a circumstance in
full factorial design, are represented as related to that quality measure under the same
circumstance in the Bayesian network. The appropriate parameter settings decided
in order to optimize a quality measure in full factorial design is identical in most of
the cases to the parameter settings inferred from the Bayesian network given the same

quality measure.

7.2.5 Effects of Mining Data Set Feature Variations on the
Behavior Model

In the simulation phase of the experiment (subsection 7.1), we mined always the same
data set with Apriori and in this way we eliminated the effects of the data set feature
changes on the behavior model constructed. On the other hand, in a real life situation

data set to be mined may grow or shrink either by addition or deletion of instances into

60

the data set or by attribute set changes. Variations on the mining data set features
may necessitate refreshing the behavior model that is used to recommend algorithm
configurations for mining this data set. Thus, we performed a series of experiments to
affirm that mining data set size may have an effect on the parameter setting recom-
mendations and also to speculate on how to detect that the behavior model is decayed.
In the experiments, we made use of quality measurement figures collected during the
execution of Apriori to assess whether the recommended parameter settings provide the
requested quality. Experiments rely on the behavior model that we call basis behav-
ior model generated in the same way explained in subsection 7.2.2 from the execution
records collected by running Apriori with input data set (DSz1) in a simulated ubig-
uitous computing environment similar to the one explained in subsection 7.1. Brief

explanation of data set size variations effect evaluation experiments are as follows:

e Verify the recommendations. In this experiment, Apriori was configured by
the recommended settings acquired from the basis behavior model and ran with
input DSz1 in the simulated ubiquitous computing environment for every possible
recommendation. Afterwards, we determined the appropriateness of each recom-
mendation by comparing the relevant quality measurement value collected during
Apriori’s execution against the requested quality used when deriving the recom-
mendation from Bayesian network. For example, if an Apriori configuration is
recommended to minimize the memory usage of Apriori, we assess the parameter
setting objective by comparing the memory usage figures of Apriori’s execution
with this configuration against the lowest memory usage figures in the behav-
ior model. The percentage of the Apriori executions which achieve the objective
of the parameter settings grouped by relevant quality measurement are given in
Figure 7.5. Percentage of deviation from the requested quality is also analyzed
for each quality measurement group. The maximum amount of deviation is ten
percent of the requested quality whereas the average amount of deviation does
not exceed five percent of the requested quality for any of the groups (Figure
7.5). The results obtained are satisfactory to verify the appropriateness of the

recommendations.

61

120

100
80 -
60 -
B %success
40
20 -
M average %
deviation
0 4

Avg. mem Max.mem TotalCPU CPUcydes Duration Model supp

Figure 7.5: Assessment of recommendations derived from Bayesian network

Demonstrate the data set size effect. We try to find out in this experiment
whether the behavior models extracted from the executions of the same data min-
ing algorithm with same configuration settings but with different data mining data
set sizes, are different. For this purpose, we generated another behavior model,
behavior model 10 in a similar way that we generated basis behavior model but
the size of the data set (DSz10) used as input to Apriori in this experiment is ten
fold bigger than DSz1. After generating the behavior model (behavior model 10)
for Apriori mining DSxz10, we compared behavior model 10 against basis behavior
model and detected that half of the recommendation decisions are changed. By
this way, we have shown that input data set’s size of a data mining algorithm may
have an impact on certain parameter settings decisions given in order to achieve

certain quality objectives.

Estimate behavior model decay. In the final experiment, we gradually in-
creased the size of the mining data set mimicking a possible real life situation in
which a data set grows in time. Our purpose is to analyze the deterioration of

the recommendations in terms of achieving the quality requested as the data set

62

120

80

== Avg. mem
== Max. mem
60

>\\ \ ==fe=Total CPU
\ =3¢=CPU cycles
40 ==3jé=Duration
m =®=Model supp
20 \. \

T i—
DSx1 DSx20% DSx40% DSx60% DSx80%

Figure 7.6: Behavior model decay

grows. We iteratively increased the size of the mining data set by twenty percent,
run Apriori with all the possible recommended parameter settings extracted from
the basis behavior model while simulating the relevant circumstance, recorded the
requested quality for the recommendation and compare it against the achieved
quality. During this process we used the same behavior model (basis behavior
model) without populating new execution data or refreshing it completely. Figure
7.6 shows for different mining data set sizes the percentage of Apriori executions
where the objective of the parameter setting is achieved in terms of the quality
obtained. Experiment results show that the correctness of the configuration deci-
sions derived from the behavior model in order to obtain the requested qualities
of all types except the model minimum support are affected by the data set size
change. Furthermore, basis behavior model decays needing a refresh before DSxz1
grows by forty percent. This experiment revealed that mining data set size change
do not effect every parameter setting decision but if a parameter setting decision

do not provide the requested quality, it is possible to detect.

7.3 Evaluation of Self-Configuration by Decision Trees

This section explains the experiments that we have performed in order to show the ap-

plicability of the approach by decision tree for recommending data mining configuration.

63

Table 7.3: Experiment fact table

1 Data Mining Algorithm Apriori
Number of configurable parameters 5
Mining Size Number of Number of
data set (in bytes) attributes instances
3 4,955,737 11 325,610
Circumstantial Settings
4 | Number of context features 2 (c1,c2)
5 | Number of resource features 2 (c3,c4)
C1 Cc2 Cc3 Cq
6 | Number of states 6 5 3 3
7 | Number of situations 150
8 Number of repetitions of a situation 10
9 | Number of configuration templates 30
10 | Number of configurations generated 1500
Data Mining Quality Results
Resource Data mining
usage model
11 | Number of attributes 5 3

The objectives of the experimental evaluation are: i) compare in terms of accuracy and
specificity, the behavior models that classify execution data by different data mining
quality abstractions extracted from a taxonomy, ii) assess the appropriateness of the
heuristic used for pre-screening by calculating the accuracy of the models that would
be eliminated due to pre-screening, iii) assess the configuration decisions derived from

the behavior model.

Experiment Dataset

Experiment data was generated using the execution data generator that we have de-
signed and implemented. We have collected 1500 execution records of Apriori by run-
ning the algorithm through EDG. Figures related to experiment setup are shown in
Table 7.3. We chose five of the parameters Weka receives for Apriori API’s as con-
figurable parameters (line 2 in Table 7.3) and eliminated the parameters that are not
subject to tuning. Throughout the experiments, we have used the same mining data

set whose properties are given in line 3 in Table 7.3.

We incorporated circumstantial factors into the experiment as we were generating

data for a ubiquitous computing environment. Two context features (¢; and cy) with

64

six and five states respectively as well as two resources features (c3 and c4) each having
three states, were used in the experiments (line 4 thru 6 in Table 7.3). We selected
arbitrary names for the features aiming a neater presentation. On the other hand, it is
possible to associate them to any ubiquitous computing application domain. For exam-
ple, the following context features and state sets may be used: location {indoor —
con finedspace, indoor — highroof, outdoor — urban, outdoor — landscape, outdoor —
forest, outdoor — coast} and time {sunset, midday, night, sunrise, other} instead of ¢;
and co. Likewise, resource features can be associated to available memory and processor

idle percentage with a state set such as {plenty, suf ficient, scarce}.

During the experiments, we formed one hundred and fifty different circumstances by
combining different context and resource states and we setup EDG to execute Apriori

ten times for each circumstance (line 7 and 8 in Table 7.3).

We associated to every possible ¢; and ¢y state combination a configuration template
which was used for setting the parameters of Apriori that would run in the associated
context states. In a configuration template, either an interval of values or an exact value
is used as a setting of a parameter . When an interval of values is used as a parameter
setting, a random number within the given interval was generated by the PresetParser
to be used as the setting of the associated parameter. Consequently, we coded thirty
different configuration templates containing intervals in the preset file but the number
of different configurations that EDG generated and used while running Apriori was a

lot more since EDG generated the settings randomly within the given interval (line 9

and 10 in Table 7.3).

Generally, in order to determine how to set the parameters of an algorithm, we
need to know the objectives of running the algorithm. In our case, we need to know
the requirements of the context so that we can determine the parameter settings in
its configuration template. For this reason, we associated context states with data
mining model and processing requirements. Figure 7.7 shows the data mining model
and processing requirement assumptions that we made on ¢; (¢;-coordinate of the cube)

and ¢y (co-coordinate of the cube). For example, first state of ¢; implies to generate

65

00(\ C, ng’copistraints”

r SR
o Pl sinisneck

< 3 /sufficiedt mémofy

sc ce/ﬂe ory, 4y E/ /é/ /ér
1 | mapy rljlles 3 /g, }(3
o) u;{ 3 }g
2 | high certainty rgles /g’ g
84118
~ 3 | x ryles t high certain e o /‘é"
(&) (n/g;g/ (7]
4 | x rdles 7’ %
<4
5 |quick mode. 5 n b /
| 6 |no fest:Iicticn 2 2 07_

12345‘\/

Figure 7.7: Cube of circumstances

a data mining model with many association rules, second state of ¢;, a data mining
model consisting of rules bearing high certainty and so on. After then, we heuristically
determined intervals or exact values of parameters in the configuration templates of the

context state based on each of their requirements.

Resource constraints dimension in Figure 7.7 shows the resource states simulated by
EDG during the experiment. c3’s and ¢,’s all state combinations were not used instead
a subset of ¢3’s and c¢4’s states were selected to create five resource constraints for the
experiment. In order to produce scarce memory condition, we setup EDG to consume
all the memory leaving only an amount which is equal to 10% of the size of the data set
to be mined whereas for sufficient memory available memory left was equal to 50% of
the size of the data set to be mined. At CPU bottleneck and sufficient CPU situations

10% percent and 70% of available CPU were left respectively.

We run Apriori under every resource state given in Figure 7.7 ten times with each
configuration generated from every configuration template of ¢;’s and ¢y’s state combi-

nations. Hence, we produced 1500 execution records.

Finally, ¢3 and ¢4’s (resources’) usage measures by Apriori and quality indicators

66

from the data mining model generated by Apriori are collected by EDG to constitute
the base for the class label formation (line 11 in Table 7.3). In the next subsection,
we explain in detail the transformations made on the data mining quality and the

taxonomy used in the experiment.

Data Mining Quality Transformations and Taxonomy

In the execution data of Apriori, we had eight quality attributes that we applied dis-
cretization, aggregation and abstraction operations in order to produce the class labels
for decision tree. Let Q(qi11 : D1, qu12 : D2, qio1 © D3, quaz @ Da, qus : D5, qo11 = Dg, go12
D+, qos : Dg) be the relation schema defining the quality attributes in the ezecution file

of the experiment.

Firstly, we discretized each quality attribute since associated domains of each D;,i =
1, ...,8 were continuous. Nominal values for class label attributes were obtained by using
unsupervised discretization filter of Weka. There are two strategies for discretization:
equal-interval and equal-frequency binning.We have chosen equal-intervals for the bins
because data mining quality ranges which have low number of tuples are better pre-
served compared to equal-frequency binning. For example, with equal-interval binning,
the minimum range of memory usage observed as the result of the executions is pre-
served as a separate bin even though the number of executions that use memory in the
minimum range is not high. Additionally, rather than using a constant value for the
number of bins, we preferred the well-known method, entropy-based discretization that
utilizes entropy of intervals to determine the number of bins. As a result, data defined

by) was transformed to comply with ()p given in Definition 6.

Secondly, we aggregated the attributes in ()p to generate aggregated data mining
quality which is defined by @4 (Definition 8). The aggregation function that we used

consists of three simple steps:

e encode bins in the associated domain of every QQp’s attribute with ordinal values,

67

111
d11 <

Q112
q
1 dq2 Y d1o1
q 13 Q12;
%1 4211
d;
a2 PP

Figure 7.8: Data mining quality taxonomy used in the experiment

e find the ordinal value for every tuple’s every attribute in Q)p,,

e concatenate in the order they appear in ()p, all the attributes’ ordinal values of

each tuple in @p,.

Next operation on experiment data, is to generate the abstract data mining quality
attributes. Data mining quality taxonomy given in Figure 7.8 was used for this purpose.
We again prefer to use symbols instead of the names describing the execution file at-
tributes and the abstract attributes. On the other hand, corresponding attribute names
can be found in Table 7.4. As can be seen in Figure 7.8 abstract data mining quality
attributes are Q¢ = {q, q1, @2, @11, G12, G2, Go1, @22 } . First of all, domain of each abstract
data mining quality attribute in Qg was determined. Afterwards, mappings from the
domains of the attributes in the abstract data mining quality attribute’s predecessor set
to its domain were defined for each element of (). For these mappings, we used either
a two or three dimensional coordinate system depending on the number of attributes
in the predecessor set of the abstract data mining quality attribute (Figure 7.9). The
axes of each coordinate system were labeled by the ordinal values assigned to the bins
in the domains of the attributes in the predecessor set. The space represented by the
coordinate system was divided into areas in two dimensional coordinate system and into
cuboids in three dimensional coordinate system where each area/cuboid was assigned

a corresponding value from the domain of abstract data mining quality. Figure 7.9(a)

68

Table 7.4: Attributes corresponding to symbols in taxonomy

qi11 average memory usage
qi12 maximum memory usage

q11 memory usage

q121 total processor time in msec
q122 total number of processor cycles
q12 processor usage

q13 duration

q1 resource usage

g211 model minimum support

g212 model minimum confidence

q21 interestingness of the model

q22 number of rules in the model

q2 model quality

q overall quality

shows how we mapped the domains of ¢117 and ¢112 to the domain of ¢;;. Both ¢11; and
¢112 have nine bins in their domain sets. The ordinal values that are associated with
the bins label the axes. For this example, we combined three consecutive bins from the
domains of each attribute (¢11; and ¢i12) to map to a member in the domain of ¢;. In
this way, we reduced the size of ¢;1’s domain from eighty one to nine. Similarly, Figure
7.9(b) shows how three domains are mapped. Afterwards, we used the mappings to

generate the abstract data mining quality (G in Definition 11) for ezecution file.

Finally, fifteen class label attribute sets were formed in L, from the taxonomy by
enumeration (Definition 10). In the execution file, the ordinal values of attributes in
each of the fifteen class label sets were aggregated and fifteen alternative class label

attributes were formed (Q)z, in Definition 11).

7.3.1 Experiment Results

During the experiments, transformed content of the execution file was classified by
building a separate decision tree for each of the fifteen class label attributes obtained

from each member of L. J48 classifier of Weka was used for classification.

69

A ra
qllZ H
SO I T T
e I [I
;47 0 8 4 9 b il
6 - —-—-L - —--L _ _ I e oo
| | | ﬁ____l/ |
"T 4 ' 5 ' 6 ! | lq |
4 | | | | Iqlll
P R
11 2 3 & v %,
[— V4
| 1 4 1 1 J] | |
I L N e q,
1 2 3 4 5 6 7 8 9 qlll
@ a. ®)

Figure 7.9: Mappings from predecessor set domains to abstract domains

Analysis of AS/BM Strategy

We first analyzed the decision tree models to justify that data mining quality abstrac-
tion was necessary and also to understand the significance of finding a model balanced
in terms of accuracy and specificity. For this purpose, we compared the accuracies of
the decision tree models which classify experiment data by various data mining quali-
ties. The specificity degree versus the accuracy for each decision tree model is plotted
in Figures 7.10a,b. The X axis shows the decision tree models that are ordered by
their specificity degree. Decision tree’s specificity degree which was computed by using
Algorithm 2, indicates the specificity of the information that the class label attribute
has. The decision tree specificity degrees in Figures 7.10a,b were normalized by dividing
to the specificity degree of the decision tree that had the highest specificity. In Fig-
ure 7.10a, accuracy was computed from the training data which was used to build the
decision tree whereas accuracy in Figure 7.10b was computed by using ten-fold cross

validation as suggested in Definition 12. As usual, training data accuracy is higher than

70

120 120

100 & 100 &

80 W) \
60 ——Specificity 60 - =o=Specificity
_’\ degree degree
40 40 A
\ ~—Accuracy \ =@=Accuracy
20 \ 20 \
0 (a) 0 T

— T T T T T T T T T T T T L e — T T T T T T T
12 3 4 5 6 7 1011 9 8 13 12 14 15 1 2 3 4 5 6 7 10 11 9 8 13 12 14 15

(b)

100 450
90 A —y 20 200 |-
= \‘
80 - 350

70) _§ =4=—Accuracy by
training data 300 =o=Number
60 \ of class
250
50 \ labels
] 200
i ﬁ =8=Accuracy by \

30 150 \

o sg(l)iijsation 100

10 50 \
t—7/—7T—T——T"—T—TT—T—T—T—T—TTT (c) o . (d)

13421175 8106 9 13121415 13 4 2117 5 8106 9 1312 14 15

Figure 7.10: Analysis of decision tree models

generalization accuracy estimated by cross validation.

General trend observed in both of the graphs is that the accuracy of the decision
tree increases as its specificity degree deteriorates. Accuracy derived after ten-fold
cross validation is very low for some of the decision tree models. Clearly, if the model
that provides most specificity was used for configuration decisions, without leveraging
its accuracy by abstracting a subset of the data mining features, predictive accuracy
would be very low. Hence, we conclude that abstraction of data mining quality is

necessary.

However, accuracy is not always better when specificity is less. If a model having an
average specificity without estimating its accuracy, is chosen by assuming that it will
provide an average accuracy, it is a possibility to have the lowest accuracy. For instance
the decision tree model 7 in Figure 7.10b. Therefore, considering only the specificity of
the model when choosing the most appropriate decision tree for parameter configuration

is not sufficient.

These results are in accordance with our predictions and explain the reason why we

71

proposed our AS/BM strategy to choose a model that possesses a balanced amount of

accuracy and specificity.

Analysis of the Pre-Screening Presumption

Decreasing the number of decision tree constructions is the main reason for pre-screening.
However decision trees are eliminated without estimating accuracy in the pre-screening
phase. In this section, we question whether among the pre-screened ones are there

decision tree models which have high accuracy-preciseness scores.

While pre-screening we presumed that the predictive accuracy of a decision tree is
low if the associated class label attribute contains a high number of (garbage) classes
that do not have representative examples in the training data. To validate the pre-
sumption, we contrasted decision tree models in terms of the number of class labels
they have and their accuracy. In Figure 7.10c, we plotted the decision tree models’
accuracy figures derived from training data and computed by ten-fold cross validation
respectively by ordering the decision tree models according to the number of classes
they possess. Figure 7.10d shows the number of classes that decision tree models have.
According to the results, accuracy generally deteriorates as the number of classified

class labels increases which complies with the presumption.

Furthermore, we applied the pre-screening criteria given in Algorithm 1 to determine
the class label attributes that we expected to classify poorly due to high number of
garbage classes. In Figure 7.11, we compare the predicted accuracy figures of the
decision tree models against the number of garbage classes their class label attributes
have. In general, it is possible to say that there is an aggravating effect of garbage

classes on the accuracy.

We also computed the score of each decision tree model by using Algorithm 2. The

following list ranks the decision tree models by their score:

(8,12,2,6,15,5,14,10,9,13,1,4,3,7, 11)

72

B Number of
garbage classes

W Accuracy

Figure 7.11: Effect of garbage classes on the model’s accuracy

Final observation supporting pre-screening presumption is that, five out of six class
label attributes that are most likely to be eliminated by pre-screening (first six bars
in Figure 7.11) are among the class label attributes of six worst scored decision tree
models. Hence, it is possible to say that pre-screening eliminates the decision trees that
are very unlikely to be selected as the appropriate model for configuration decisions by

Algorithm 2.

Assessment of Configuration Decisions

In this part of the experiment, we derived configuration decisions from the selected
decision tree model and subsequently we used the derived configurations to configure
Apriori. The purpose of this experiment is to compare the quality attained by Apriori
executions which were run by a derived configuration against the quality that is pre-
dicted from the decision tree model for the derived configuration. We accomplished

this experiment in three main steps:

Extract Configuration For configuration extraction, the decision tree model that
classifies by the aggregation of the attributes in the set {qi, q211, G212, ¢22} was used
since it was found to be the highest scored model. We obtained decision rules from the
decision tree model (that will be referred as dts thereafter) so that data mining quality
class memberships of configurations are logically represented. An example decision rule

which consists of parameter setting predicates and the corresponding aggregated data

73

mining quality class, is as follows:

P4 <=0.668 AND P2 > 0.879 AND P5 > 0.324 AND

P5<=0.429 AND P4 > 0.526 AND P2 <= 0.976 : 19552

Note that, reverses of the data mining quality class abstraction and aggregation
functions (Section 7.3) applied respectively to the data mining quality class give the
individual quality predictions by the decision rule. For instance, the predicted data
mining quality (19552) for the configuration in the example decision rule indicates
high support, high confidence model having number of rules below average obtained
by average memory and high CPU usage within a short execution time. In fact, data
mining quality predictions are associated to the cube of circumstances given in Figure
7.7 because we executed Apriori for the circumstances in Figure 7.7. For example, data
mining quality (19552) must be attained under the circumstance where high certainty
rules (¢; = 2) having highest degree of usefulness (co = 1) are needed in spite of the
CPU bottleneck (¢4 = 1) and barely sufficient memory (c3 = 2) conditions in the device.

The number of decision rules formed from dtg is 144 bearing 116 different classes.

In order to use for Apriori configuration in the next step, we formed a configuration
template from each decision rule related to a circumstance in Figure 7.7. Parameter set-
tings in a configuration template are ranges of values where boundaries are constituted
by either the existing predicates in the decision rule or the highest/lowest possible set-
tings of the parameters whenever predicate for the boundary is nonexistent. Although
resource usage was abstracted in dtg, we obtained fine usage figures for memory and
processor as well as the duration of the data mining process after decoding ¢; so that
we generated recommendations for specific resource usages rather than overall resource
usage. When multiple decision rules were obtained for the same circumstance, we elim-
inated the ones other than the decision rule that has the highest number of classified

mstances.

In short, we extracted configuration templates that each one is predicted to achieve

a specific data mining quality in this step.

74

2
s

Q212
Qt

Q211
Q12

Q211

Data Mining Quality

Q2
2

o
=

60 65 70 75 80 85

Data Mining Quality lass %

(a) Successful recommendations by class (b) Successful recommendations in overall

Figure 7.12: Assessment of recommendations derived from decision tree

Execute Apriori with Derived Configurations The configuration templates ex-
tracted in the previous step were used to configure Apriori while running it via EDG.
During the verification runs of Apriori, if the corresponding decision rule indicated a
circumstance, that circumstance was simulated while executing Apriori. In this step,
Apriori was run 724 times until sufficient number of executions resulting in designated

data mining quality were collected.

Verify the Configuration Decisions In the final step, we assessed the appropri-
ateness of configuration decision rules. For this purpose, we made use of the quality
measurement figures collected during the Apriori runs in the previous step. As we did
when forming the class labels for the decision tree model, we abstracted and aggregated
the data mining quality attributes in these execution records using the functions given
in Section 7.3 to form the “realized” data mining quality. Afterwards, we compared the
“realized” data mining quality of each Apriori that ran with a configuration derived

from a decision rule against the data mining quality class of the same decision rule.

Percentages of successful recommendations for a sample set of data mining quality
classes are given in Figures 7.12(a). We selected a representative sample of classes to
illustrate different levels of data mining quality objectives achieved. Percentages are
plotted for each individual data mining quality attribute in the set {q1, g211, G212, @22}

as well as the combined model quality ¢, which is the aggregation of attributes in the

75

set {qo11, @212, @22} . We tested the equality of “realized” data mining quality and its
class while calculating the percentages. On the other hand, “realized” resource usages
(q1) of the classes given in Figure 7.12(a) always indicated lesser consumption than
their respective classes from which the recommendations were formed. Therefore, it is
reasonable to accept that the resource usage objectives of the recommendations are sat-
isfied. For this reason when plotting the percentages of successful recommendations in

Figure 7.12(a), we considered all recommendations were successful in terms of resource

usage (q1)-

Percentages of successful recommendations in overall are given in Figure 7.12(b)
in which the percentage of the Apriori executions which achieve the objective of the
parameter settings are grouped by the relevant quality measurement. In Figure 7.12(b),
when calculating the successful recommendation percentages, we looked for an exact
match between the “realized” data mining quality and the data mining quality class
of its configuration decision rule. Although the percentage of executions that do not
satisfy resource usage objective is around 19%, only 2% of the recommendations results
in higher resource consumption (¢;) than the designated objective which means that

better resource usage were achieved.

We proposed a mechanism to automatize data mining configuration based on the
argument that a specific circumstance requires a specific data mining quality. As the
final step of verification, we compared the experiment results to a baseline where there
is no automatization but default values were used for parameter settings. For this pur-
pose, we ran Apriori with the default settings of Weka and collected resource usage
and resulting data mining model quality indicators to form a baseline. When compared
to the baseline, Apriori executions that had been configured in the experiment (using
dtg) to optimize the related resource had 20% less memory usage and 88% less cpu
usage. Also, when run with a dtg derived configuration with the objective to minimize
the runtime of data mining, the elapsed time of Apriori had been 90% less compared
to the baseline. Minimum support and minimum confidence of the data mining model

generated by Apriori with default configurations were 0.4 and 0.91 respectively. On the

76

other hand, if either highest support or highest confidence rules are required, configu-
rations derived from dtg generated data mining models with minimum support value of
0.8 and minimum confidence value of 1 respectively. If the parameters of data mining
are not tuned, it is a possibility that data mining could not produce any model. In
our case, although the default settings of Apriori resulted in a model, the data mining
quality obtained was far below the figures that we had obtained by running Apriori
with the configurations derived to optimize a specific resource usage or data mining

quality indicator.

Impact of the Proposed Approach on Android Device’s Resources

In this section, we assess the overhead of behavior model generation and its deploy-
ment to the system. Behavior model generation and deployment are two independent
processes as can be seen in Figure 7.13. Every configuration of data mining does not
trigger the generation of a new behavior model, on the contrary, behavior model is gen-
erated once and is deployed repeatedly until it decays. The decay of the model can be
assessed by comparing the data mining quality realized against the data mining quality
predicted after each mining of data with the recommended configuration. The only case
which requires the behavior model to be re-built is when the percentage of successful

recommendations for a data mining quality class drops below a threshold value ().

In the experimental evaluation after configuring and running Apriori with extracted
recommendations from the behavior model, we detected predictions of varying accura-
cies for different data mining quality classes (Figure 7.12). Experiment results indicate
that there is a need to increase the predictive accuracy for the classes which have suc-
cessful recommendations below ¢ by supplying more training data. It is reasonable to
transfer merely the execution records pertaining to data mining quality classes where
percentage of successful recommendations are below £ so that the accuracy of predic-
tions are improved while the growth of the input for behavior model generation process

is kept minimal.

7

BEHAVIOR MODEL GENERATION

Learn Behavior

Model
Execution 4
Dat.
Merge . No action
Execution
Records A

A A

Y

A

Execution

Run Data Mining

Circumstance

from Setors

-

Behavio
odel

BEHAVIOR MODEL
ASSESSMENT

Data Mining

Algorithm -

Records /

Data Mini

Extract
Configurations

from Behavior Model

Request

-

BEHAVIOR MODEL DEPLOYMENT

Figure 7.13: Processes for self-configuring data mining

78

The overhead of behavior model deployment is minimal since the worst case com-
plexity of classifying by data mining quality from a behavior model at hand is O(d),
where d is the depth of decision tree. The depth of the decision tree that we used in
the experiment (dtg) was 16 which implies 16 accesses at most for each configuration

recommendation.

On the other hand, since behavior model generation is much more computationally
intensive, we evaluate the feasibility our approach by measuring the behavior model
generation although it is expected to run much less frequently. For this reason, we con-
structed the decision tree models on an Android device which runs one of the prominent
mobile operating systems. The Android device that we used for this purpose is Sony
Xperia Tablet Computer, SGPT12 model. Operating system installed on the device is
Android 4.0.3, kernel version 2.6.39.4. The tablet runs on a 1.4GHz Nvidia Tegra 3
CPU with 1 Gbyte of RAM. Device is equipped with 16 Gbytes of internal storage and
16 Gbytes of storage on SD CARD.

In order to find out the impact of our approach on Android operating system,
Weka libraries ported to Android platform were used for decision tree construction. We
measured the overhead of the same decision tree learning algorithm (J48) that we used
in the experiments and we supplied the same training sets. We applied the pre-screening
(Algorithm 1) and eliminated seven decision tree models by pre-screening. Eight out of
fifteen possible decision tree models need to be constructed to estimate their predictive
accuracies. On the Android device, the total elapsed time to construct eight decision
tree models left after pre-screening was 5.44 minutes whereas longest and shortest run
times of J48 were 57 and 17 seconds respectively. Since behavior model generation is
independent of its deployment for configuring data mining, it runs as a background
process but it must still end in a reasonable time range. The total elapsed time that
we measured for behavior model generation on an Android device can be considered as

acceptable in that respect.

We also analyzed the memory and CPU usage of J48 which learns behavior model

from execution related data on an Android system. While constructing eight decision

79

tree models left after pre-screening, highest peak memory usage observed for J48 was
55 Mbytes whereas average peak memory usage was 49Mbytes. We observed that J48
is a cpu-intensive task since almost 90% of its runtime is accounted for CPU usage.

Battery level of the device decreased by 2 percentage during entire executions of J48.

We conclude that, the overhead of deployment of an existing behavior model on the
system is negligible. Behavior model generation takes some time but it does not require
real-time computing and is expected to be much less frequently run. Furthermore,
although behavior model generation is a cpu-intensive task, it does not cause a cpu

bottleneck in the system since it runs in the background with low priority.

80

Chapter 8

MINING SOCIAL MEDIA DATA ON ANDROID
DEVICE

As the final step of our study, we carried out the experiments on a device running
Android operating system. We considered FESTweets, the movie recommendation
application that we described in Section 6.2 as the example Android application. In
order to use for experiment setup, execution data generator (EDG) software that is
introduced in Section 7.1 was modified to run on Android platform. As mentioned
before, EDG calls Apriori to collect execution data. Since the example application of
this experiment is a movie recommender, we used a movie ratings data set to mine with

Apriori. In the next section we provide details on the movie ratings data set.

8.1 Movie Ratings Data Set

Grouplens Research Project ([55]) which is a research group in the Department of
Computer Science and Engineering at the University of Minnesota has collected movie
ratings from the MovieLens web site ([50]). The purpose of the web site is to generate
recommendations for the users as well as to collect research data. The data was collected
during the seven-month period from September 19th, 1997 through April 22nd, 1998

and has been cleaned up - users who had less than 20 ratings or did not have complete

81

demographic information were removed from this data set ([55]).

After making the necessary transformations, we used the movie ratings data set that
is made available by Grouplens Research Project as the mining data set of Apriori in

this experiment. A brief description of data before any transformations, is as follows:

There are 100,000 ratings of 943 users in the data set.

Users rated 1682 different movies.

e Movies are rated on a scale of 1 — 5.

Each record in the data set consists of user id, movie id, rating, timestamp fields.

We first converted the movie ratings data set to the input format of Apriori where
attributes of the data set correspond to the movies and each record holds the movie
list of a single user which he scored as liked. While performing the conversion, movies
that are rated greater than 3 were accepted as liked, thus the corresponding attributes
of these movies were marked as true while all others were marked with ¢ indicating

not liked.

We have done a simple research on the number of movies aired on the well-known
domestic and international film festivals and we have found out that there are usually
between 100 to 200 movies in the festival programs. Since we aim to generate recom-
mendations for a film festival, the number of movies in the movie ratings data set is too
high and should be reduced. Instead of eliminating the movies randomly, we eliminated

the movies which are liked only by at most 12% of the users.
A brief description of data after the mentioned transformations is as follows:
e There are 670 records (correspond to transactions in frequent itemset terminology)
in the data set where each user has one record.

e The number of attributes of the data set (correspond to items in frequent itemset

terminology) is 135 where each attribute corresponds to a movie.

82

e Movies liked by the users are represented by the value true otherwise a ¢ is coded

so that Apriori searches associations among true values only.
e 68.5% of the users liked more than 20 movies.

e The movie which has the highest number of likings, is liked by 463 users. The

movie which has the least likings is liked by 71 users.

We refer to transformed movie ratings data set as data set of mowvie lists from

thereafter.

8.2 Frequent Itemset Mining with Apriori

As in the experiments performed in other platforms, EDG that we run on Android
also executed Apriori through Weka API calls. Before giving specifics about the class

weka.associations. Apriori, we provide a brief information on Apriori as introduced in

12].

8.2.1 Apriori Algorithm

Apriori is an algorithm for mining frequent itemsets for Boolean association rules. Mar-
ket basket analysis which is used for understanding the buying habits of the customers
is a typical example of frequent itemset mining. In this sense, discovering associations
among the likings of the festival audience for generating recommendations is similar to

market basket analysis.

Apriori is an iterative algorithm such that at each iteration k, frequent k-itemsets
(L) are extracted where k-itemsets is a set of itemsets each having & items. Moreover,
an itemset is frequent if it satisfies the minimum support threshold. Initially, frequent
1-itemsets are determined by counting the items in the input data set. Afterwards,

frequent k-itemsets are extracted by the following actions:

83

Table 8.1: Parameters of Weka implementation of Apriori

Parameter Option
Requested number of rules
Minimum confidence of a rule
Delta for minimum support

Upper bound for minimum support
Lower bound for minimum support

CUks W N =
za0azZ

e Generate candidate itemsets Cy by joining Lj_; with itself.
e Prune all itemsets in C} that have some (k — 1) — subset not in Lj_;.

e Obtain frequent k-itemsets Lj from the itemsets in C} that satisfy minimum

support threshold.

Actions listed above are iterated until Ly is empty. Frequent itemsets obtained
by Apriori satisfy the minimum support threshold. 1t is possible to generate strong
association rules from the frequent itemsets extracted by Apriori. Strong association
rules satisfy minimum confidence threshold as well as minimum support threshold. In-

depth information about Apriori can be found in [36] and [60].

8.2.2 Weka Implementation of Apriori

Weka implementation of Apriori (JAVA class weka.associations.Apriori) accepts five

principal parameters that affect the data mining model generated (Table 8.1).

Parameter settings of Apriori by Weka influence the resulting data mining model

according to the following principals ([61]):

e It is aimed to generate the requested number of rules (-N). The number of rules
in the resulting data mining model never exceeds -N but the strong association
rules that satisfy the requested minimum support and minimum confidence might

be less than -N.

e Algorithm starts searching frequent itemsets by making use of the minimum sup-

port given by -U.

84

e Algorithm repeatedly searches for frequent itemsets by decreasing an amount of

-D from the minimum support in each step.

e When either of the following occurs, algorithm stops searching for frequent item-

sets

— requested number of rules (-N) with the required minimum confidence (-C)

are found,

— the support has reached the lower bound given by -M.

It is also possible to set lift, leverage or conviction as the type of metric instead of
confidence to rank the rules. If a metric other than confidence is set, a minimum value
for that metric (metric score) should be given and therefore minimum confidence is not
the parameter of Apriori in such a configuration. The principals for generating a data
mining model given above still apply except the first stop condition. Frequent itemset
mining stops when requested number of rules (-N) with a score above the required

metric score are found.

8.3 DM Model for Movie Recommendations

Movie recommendations are extracted from the association rules which are mined by
Apriori from the data set of mowvie lists. A subset of the association rules generated
by a particular Apriori execution is given in Figure 8.1 whereas complete data mining
model can be found in Appendix C. We obtained the output given in Appendix C
by running Apriori through Weka Explorer in order to explain the data mining model.
Nevertheless, Weka API that is called by EDG also returns all the information that is

present in the output of Weka Explorer.

The configuration of Apriori for this execution instance is marked by green in Ap-
pendix C. Note that, it is requested to rank to rules by lift hence the value provided

by means of the parameter -C is the minimum lift score. As can be seen on the out-

85

1172=yes 293 =—> [I7A=YCIMIRI=YES 191 conf:(0.65) < lift:(2.66)> lev:(0.13) [119] conv:(2.15)
1172|Empire Strikes Back, The (1980) 1174|Raiders of the Lost Ark (1981) 1181|Return of the Jedi (1983)

1172=yes 293 => [BO=YCSMITA=Yes 229 conf:(0.78) < lift:(2.51)> lev:(0.15) [137] conv:(3.11)
1172|Empire Strikes Back, The (1980) 150(Star Wars (1977) 1174|Raiders of the Lost Ark (1981)

1174=yes 348 => 05598 191 conf:(0.55) < lift:(2.38)> lev:(0.12) [110] conv:(1.7)
T174|Raiders of the Lost Ark (1981) 1195|Terminator, The (1984)

1174=yes 348 => [BI0YEE 196 conf:(0.56) < lift:(2.26)> lev:(0.12) [109] conv:(1.71)
1174|Raiders of the Lost Ark (1981) 1210|Indiana Jones and the Last Crusade (1989)

1204=yes 235 =—> 7438 189 conf:(0.8) < lift:(2.18)> lev:(0.11) [102] conv:(3.15)
1204|Back to the Future (1985) 1174|Raiders of the Lost Ark (1981)

150=yes 198=yes 256 —> [IA=Ye8 201 conf:(0.79) < lift:(2.13)> lev:(0.11) [106] conv:(2.88)
150|Star Wars (1977) 198|Silence of the Lambs, The (1991) 1174|Raiders of the Lost Ark (1981)

179=yes 264 =—> [4=Y88 206 conf:(0.78) < lift:(2.11)> lev:(0.12) [108] conv:(2.82)
179[Fugitive, The (1993) 1174|Raiders of the Lost Ark (1981)

156=yes 294 =—> [OB=Y88 207 conf:(0.7) <lift:(1.93)> lev:(0.11) [99] conv:(2.12)
156[Pulp Fiction (1994) 198|Silence of the Lambs, The (1991)

1172=yes 293 => [O8=F8E 198 conf:(0.68) < lift:(1.85)> lev:(0.1) [91] conv:(1.94)
1172|Empire Strikes Back, The (1980) 1198Nikita (La Femme Nikita) (1990)

Figure 8.1: Movie recommendations.

put, minimum support was decreased to 0.2 (blue marked line in Appendix C) in 18
iterations (orange marked line in Appendix C) until a data model with 50 rules that
satisfy the requested lift is found. This means that frequent itemsets were mined 18

times before the requested data mining model is acquired.

Since labels are used instead of the movie titles in the data set of movie lists,
movie titles do not appear on the association rules. In order to improve understanding,
the matching movie titles of the movies occurring in each association rule are copied
underneath the rule in Figure 8.1. Each rule has a premise (marked grey in Figure 8.1)
and a consequence (marked red in Figure 8.1) preceding and following the = symbol
respectively. The number that is marked yellow in the premise is the support of premise.
First rule in the figure indicates that, the number of users in data set of mowvie lists
who liked “The Empire Strikes Back” is 293. The number in the consequence (again

marked yellow) is the support involving both premise and consequence. So that, 191

86

users liked all three films: “The Empire Strikes Back”, “Raiders of the Lost Ark” and
“Return of the Jedi”.

Four metrics, confidence, lift, leverage and conviction, measure the interestingness
of every rule in the model (Figure 8.1). Since the metrics are the means to individually
evaluate the rules as well as the data mining model in overall, choosing which metric to
optimize is important while configuring Apriori. Therefore, we discuss the metrics in
detail. Association rule A = B is assumed throughout this section. A U B means that
both A and B appear in the transaction. Both A (premise of the rule) or B (consequence

of the rule) may represent a single item (movie) or a set of items (movies).

confidence : Confidence is the conditional probability that a transaction having
A also contains B. It states an explicit percentage (that transactions having A also

contains B) and is a measure of certainty for a rule. Confidence is given by:

conf(A = B) 5“?5](9?(;)3)_P (ﬁ(j)B) _ p(B|A) (8.1)

Thus, conf(A = B) # conf(B = A).

A problem with confidence is that support of consequent is not taken into account

in its computation. If the consequent of the rule has higher support than the confidence

of the rule (i.e. P(B) > Pgéjj)g)), due to the formula used to calculate the confidence, a
very high confidence for the rule could be computed although strong association among

the items in the premise and consequent does not exist.

lift : Lift measures how likely for A and B to occur together than expected if they
where statistically independent. It is a measure of dependent or correlated events.

A positive lift value, implies that A and B are dependent and gives the degree of

87

dependence. Lift is denoted by the following equation:

conf(A= B) _conf(B=A) P(AUDB) (8.2)

lift(A= B) =lift(B= A) = supp(B) supp(A) P(A)P(B)

Lift is symmetric and thus measures co-occurrence not the implication.

conviction : Conviction is the proportion of the probability that A occurs without
B (if A, B are dependent) to frequency of A occurs without B. Conviction is given by

the equation:
_i—sup(B) P(AP(B)
com(A= B) =1 A= B) ~ P(AU-B) (8:3)

Conviction measures the implication adequately and takes into account both P(A) and

P(B).

leverage : Leverage is a variation of lift such that leverage finds the difference between
the frequency of A and B occurs in the data set and the probability that A and B occurs

independently. The following equation is used for computing leverage.

leverage(A = B) = P(AUB) — P(A)P(B) (8.4)

Further information on lift, conviction and leverage can be found in [7] and [54].

In conclusion, the data mining model metrics discussed in this section, support,
confidence, lift, leverage and conviction of the model as well as the number of rules
returned by the data mining model constitute the quality indicators of the data mining

model.

88

8.4 Android Operating System

Android is an open source operating system for mobile devices such as smartphones
and tablet computers. Android is a Linux-based operating system. In that respect,
basic operating system tasks such as I/O management, memory management, pro-
cess management, security and so on are handled by Linux kernel. Instead of JVM
(Java Virtual Machine) which is a stack-based architecture, a register-based architec-
ture DVM (Dalvik Virtual Machine) is introduced to run the applications on Android.
Register-based VM has the advantage that the number of VM instructions is substan-
tially reduced when compared to a stack-based VM.

Memory Management: DVM is designed to run the executables (dex files) which
are generated from JAVA class files by the “dx” tool. Due to the reason that Android
devices are memory constrained devices, DVM is designed to optimize the memory
allocation of the applications at runtime. The file format of the executable is improved
to obtain minimal memory footprint. JVM stores constants (such as string constants,
field, variable, class, interface and method names) used in the code in the private
heterogeneous constant pool of each class file whereas DVM stores the constants in a
single shared constant pool. In this way, duplication of constants across class files is
prevented. Debugging and monitoring of Android applications is possible by DDMS
(Dalvik Debug Monitor Server) which is integrated into Eclipse ([25]). DDMS works
with both the emulator and a connected device. Screen capture of heap information

provided by DDMS for an application can be seen in Figure 8.2.

In the experiments, Android API library is used to collect memory usage data. Run-
time class (http://developer.android.com /reference/java/lang/Runtime.html) is called
by EDG during execution of Apriori to calculate its average and maximum memory

usage.

89

n

Fai
>
Ploapuy;
57 =esued () |60 g
=g
oo
=0
9Tog TE6 neysfay ploipuewos
o
i STog 197 npioapue
o D0LB / +T98 @ 0TF BPU3|E2"PICJPUE"LUOD
£To8 £6£ 10]PHSIP PIOIPUR LIOD
E oo 198 T9e SLULTPIOJpUR LU0
=zis a3d Junod uonREIo|Y
o @ THE llewa*ploJpueios
R a8¥ a4 £Z0'8T a T a4 005'949 80T ([l4ey> [JHoys) fewe 334g-7 oteg @ OZE SuBLOXE PIOIpURLLIOD
ad Ere a91r A1 000 T a1z A 0L9°9 LTd ([Jue=joog [J=34q) Aewue 234q-T e09e 00E !PRwissaaoad-ploapue
g 967 9 89T a3 08T'8E g 89T 4795508 VRLT palgo sseps 2008 £6¢ _musoa.u_o._ucm.ES
ais aze a¥ 00T g9t M FET'T ECT'EE Palqo elep Lo98 ESC APRU0YpicIpug-wios
. 3 9098 g7¢ wodessadoid ploipue
4 6TE aoe X BZE'Sy a91 M BEG'BFE 6L ey
S098 u 1TZ sBumas-piospue o
abesany ueipaRy 1s3be FECTILITS 2715 [e3o] wno adfy +098 68T SYoUnE| pIoIpUE IO
E fepdsig E008 LT =uoyd-plospue o
098 o swyndurplospue o
= ™ - 3 TOOE THT TwWi23sAs ploJpue Luos
E B6LT'ES %057 L6 94 65E°EST an SE9'6 am EBE'e T P o e v
sypalgp & P50 % 3314 pa3e20|)y 2mg deay ar auuo S T
Ju=1j2 s1y3 104 59 Laa saye uaddey [sazepdn deay Jwiep)
03UOT) J03E|NLU IFETT:] 314 1l | 5213513915 Hi0MID i3¥2e1] UonEd0 | o2y [@) | speas & & i 53018
[1 D Jo3e|nuug @ | 12a01dxg 4 i#h | S213s513e35 3 N < |1292e4) uonedolly @ . 52 desH @ [speayl | g, L T | @ B & T 52 somea @
e e = i@ -O-0 - - A [=[&3]

dipy mopupy 3eafong youeag 21ebiaepy sojoegey 2unos uny WP 24

Hosddn - 500)

Eclipse DDMS

90

Figure 8.2

Process Management: Android performs multitasking which is crucial for the mo-
bile device users to switch among the opened applications instantly but at the same
time multitasking in a mobile device where memory is constrained is challenging. An-
droid does not allow to close the applications (unless force stopped) so that users have
a wide range of applications at their disposal all the time. On the other hand, so many
open applications consume memory which should be avoided in mobile devices. Process
management of Android is designed to allow multitasking while avoiding out of mem-
ory conditions. Android keeps the application’s process in “running” state although the
application is sent to background as a result of user switching to another application.
If the background application has more work to do, Android allows it to continue work-
ing. Conversely, if the background application has no more work to do, it is still kept
in the “running” state. In either case, application appears in the foreground instantly
when the user switches to that application. In order to avoid out of memory condition,
Android may force-kill the applications by considering their priority. However, Android
keeps the last-state of the application that is force-killed so that if a user later switches
to a force-killed application, its state is resumed. Application priority is determinant on
choosing the process to kill. Application states which imply the priority of the process

are: active, visible, started service, background, empty.

Substantial information on Android operating system can be acquired from the web

sites [24] and [62].

8.5 Configuring Apriori for Movie Recommenda-
tions

It is aimed by the the movie recommendation application (FESTweets) to generate a list

of recommendations for the movies in the festival program so that users can sift through

the list before buying tickets. We suggest to use Apriori to extract a data mining

model that reveals the common likes of the users. It is important to note that, data

91

mining model extraction for recommendation gathering is not a one-time process, on the
contrary, repeated mining of data set of movie lists will produce new recommendations
since more users will enter their movie lists over time. Prior to mining data set of mouvie
lists each time, two questions need to be answered: what are the expectations from the
data model (how many recommendations are enough, what certainty is expected from
the recommendations and so on) and what are the processing constraints. Therefore,
considering that movie recommendations are generated on a mobile device, we discuss
in the next section what could be the requirements of data mining model and processing

under different circumstances.

8.5.1 Circumstance/Quality Mapping

Date: FESTweets recommendations would be needed throughout the ticket sales pe-
riod which always begins days before the festival start date and continue during the
festival period. Before the festival period, users have plenty of time to decide so it is
reasonable to provide them more options during this period whereas during the festi-
val period users are tight on time for movie selection so offering them only significant
movie recommendations would be appropriate. We conclude that generating a data
model with lower minimum support before the festival period will provide users the
chance to examine also the rare movie lists. On the other hand, when there is a time
constraint for deciding, it is better to provide movie lists which are supported by higher
percentage of users. Therefore, we determined minimum support of the data model

as the effecting data mining quality for models generated at different dates.

Time: Another determining factor of the data mining model is the time of the day
when the movie recommendations are asked for. In general, people are more busy during
working hours but they may still want to glance at the movie lists. Few recommen-
dations of high certainty is convenient during the expected busy hours whereas during
off hours there is time for sifting through longer recommendation lists involving recom-

mendations of lower certainty. As we mentioned in Section 8.3, there are four metrics

92

that measure certainty. Lift suits best for our purpose because confidence is not reliable
all the time due to the drawback that in its computation support of the consequence
is not considered. Moreover, lift is a measure of co-occurrence which is sufficient for
measuring the certainty of associations among favorite movies of users. Hence, lift is
the measure for the appropriateness of the model generated during certain times of the

day.

Location: If a user needs a movie list recommendation in or in the vicinity of a cinema
complex where festival movies are aired, a recommendation list should be produced as
quickly as possible since the user is most probably about to buy tickets. This is the
situation in which the duration of data mining model creation is critical. Thus, when
user’s location is one of the festival cinema complex, then success criteria of the model

is the duration of data mining process.

Device’s Resources: New recommendations may be needed when there is scarcity of
device resources that are needed by the data mining process. A data mining model can
still be build by sparingly using the scare resource. When there is scarcity of available
memory, mining data with least average memory allocation is the best strategy

while when there is CPU bottleneck mining data with least CPU time is aimed.

Note that the designated requirements for data mining model and processing do
not specify how to configure Apriori. At the same time, it is not possible to tell with
certainty how to configure data mining so that the designated requirements are fulfilled.
For example, one can not tell what must be set for the Apriori parameters given in Table
8.1 so that a data mining model is extracted from data set of movie lists in shortest
duration. For this reason, in this thesis, we proposed to learn the behavior model of the
data mining algorithm (Apriori in this case) so that configurations which will generate

data mining models satisfying the designated requirements can be discovered.

From this stage on, we explain the steps to extract behavior model of Apriori for

mining data set of movie lists in order to determine the configurations that will most

93

likely fulfill the designated requirements for the data mining model and processing.

8.5.2 Training Data

Information collected during several executions of Apriori mining data set of movie lists
was needed to construct its behavior model. We ran Apriori with data set of mowvie
lists through EDG to collect training data for the behavior model. In each run, we
configured Apriori with a different set of settings. We first determined the possible set
of values for each parameter, afterwards we ran Apriori with every combination of the
settings. Next, we explain in brief how we determined the possible set of values for

each Apriori parameter given in Table 8.1.

e Upper bound minimum support (-U): If U is set higher than the support of the
large itemsets in the data set, Weka at each iteration of frequent itemset mining,
decreases the value given in U by the amount given in D until the real support of
large itemsets in the data set is found. If U is very much higher than the support
of large itemsets in the data set, high number of void iterations would increase the
overall processing cost. In order to set a practical U value for the experiments, we
ran Apriori once with the configuration given below to find the support of large

itemsets in the data set of movie lists.

-N1-C0.01 -D0.01 -U 1.0 -M 0.01

For this run, we set U and M to the highest and lowest possible values respectively
so that the highest support figure within the widest range can be detected. We
also set a very low minimum confidence on purpose so that no rules extracted from
the itemsets are eliminated. As a result, the obtained highest support of frequent

itemset in the data set is 0.48. Therefore, we set U to 0.5 for all configurations.

e Requested number of rules (-N): We used a constant value for N (= 50) for all

executions. The value we picked for N is large enough to generate sufficient

94

number of recommendations. By using a large value for N, we let the settings of
C and M to determine the number rules in the data mining model since N is the

upper bound for the number of rules generated but not an absolute value.

e Minimum confidence of a rule (-C): We ran Apriori with five minimum confidence

settings given in the set {1,0.9,0.8,0.7,0.6}.

e Lower bound for minimum support (-M): M should be less than U. The values in

the set {0.4,0.3,0.2,0.1} are used for the experiments.

e Delta for minimum support (-D): D determines how many iterations may exist
between U — M. If D is small, the number of iterations increases which negatively
impacts the processing cost of data mining. On the other hand a large D prevents

fine setting of support. D settings used in the experiment are {0.1,0.05,0.02}.

The experiments were performed on Sony Xperia Tablet Computer, SGPT12 model.
Operating system installed on the device is Android 4.0.3, kernel version 2.6.39.4. The
tablet runs on a 1.4GHz Nvidia Tegra 3 CPU (quad-core CPU, and includes a fifth
“companion” core) with 1 Gbyte of RAM. Device is equipped with 16 Gbytes of internal
storage and 16 Gbytes of storage on SD CARD.

List of executions containing the subset of the fields from the output of EDG is
given in Appendix D. Each line in the report given in Appendix D corresponds to an
execution record. Note that EDG returns all of the information presented in Appendix
C but in the report given in Appendix D we included only the fields that are used for
behavior model construction. Support given in each line of the report is the minimum
support of the data mining model. Confidence is the minimum of the confidences
calculated for the rules in the data mining model whereas lift is the average of the
rule lifts. We specified confidence as the type of the metric to rank the rules in the
data mining model so that we guaranteed that all the rules have higher confidence
than the minimum confidence requested. On the other hand, since we determined that

average lift of the rules (that satisfy the minimum confidence requested) is effective

95

Table 8.2: Circumstance/quality mappings for movie lists mining

CIRCUMSTANCE/ INTERVALS/
DM QUALITY RATING SCALES
C | DATE (0,15] (15,21] (21,31] (31,40)
| (Remaining days to the festival end date)
Q [SUPPORT highest average below average lowest
C | TIME (0,6] (6,9] (9,12] (12,14] (14,18] (18,24)
| (Time of day)
Q [LIFT lowest average highest average highest below average
C | LOCATION (0,4] (4,7] (7,10] (10,13)
| (Proximity to film festival cinemas)
Q [DURATION maximum average below average minimum
C | AVAIL. MEMORY (0,5] (5,9] (9,13] (13,17] (17,21]
| (Amount of free memory on device)
Q ‘ AVGMEM maximum ngve aver- average :ge(leow aVers inimum
C | AVAIL. CPU (1,4] (4,6] (6,8] (8,10] (10,12] (12,14]
| (Amount of free processor time in the device)
Q ‘ CPUTIME maximum deove aver average :giow aver il;;;)eelow " minimum

for configuration decisions (discussed in Section 8.5.1), lift is also included in behavior

model construction.

8.5.3 Behavior Model

Behavior model of movie lists mining was generated in the form of Bayesian network.
Bayesian network was constructed using the mechanism outlined in Section 4.1. Cir-
cumstance attributes that are mentioned in Subsection 8.5.1, date, time, location, avail-
able memory and available cpu were added to the execution records given in Appendix
D. We derived the contents of circumstance attributes that are added to each ex-
ecution record from the quality attributes in the same record such that the quality
attained by each execution was accepted as the indication of the related circumstance.

Circumstance attributes were populated by using the mappings given in Table 8.2.

In every C labeled line of Table 8.2, a circumstance attribute and the possible
intervals of values that we determined for that circumstance attribute are given. For

instance, we divided the time of day into six intervals considering the level of busyness of

96

a person during a day and anticipated that recommending movie lists of high certainty
is appropriate during too busy hours of a person. Likewise, we assumed that the festival
period is fifteen days and we anticipated that the support of recommended movie lists
should be higher during the festival days whereas necessary support of recommended
movie lists gradually decrease as the number of remaining days to the festival end
date increase. We rated the attained values of quality attributes which are shown
in) labeled lines of Table 8.2. In pairs of C, @) labeled lines of Table 8.2, quality
attribute rating and the associated interval of values for the circumstance are given one
under the other. In each execution record, after finding the associated interval for the
circumstance, we assigned a randomly selected value from that interval. For instance,
in an execution record, if the support of the data model is rated highest, date is assigned

a value in the range (0, 15] in that execution record.

After populating the circumstance attributes of the training data, Bayesian network
structure was learnt from the training data using K2 algorithm. We used the K2 imple-
mentation of Weka ([35] which we modified as discussed in Section 4.1. We discretized
avgmem, cputime, duration beforehand since K2 assumes variables are discrete. The
Bayesian network (Figure 8.3) that is extracted by including a subset of circumstance
attributes, Apriori parameters and a subset of data mining quality attributes is used
to show how configurations of movie lists mining are inferred from a behavior model.
It can be seen in Figure 8.3 that no relationships for the parameters N and U were

discovered since we set constant values for them during the experiments.

8.5.4 Configuration Recommendations

We extracted movie list mining configuration recommendations from the behavior model
given in Figure 8.3. Domain sets of circumstance and data mining quality attributes
as well as circumstance/quality mappings that are used for this purpose are given in
Table 8.2. Each parameter setting of Apriori that mines movie lists was inferred from
the behavior model shown in Figure 8.3 by applying the Definition 5. We explain

the behavior model inferences by referring to the constructs used in Definition 5. Cf

97

EH=-

Figure 8.3: Behavior model of movie lists mining

given below exemplifies the possible circumstance tuples that can be derived from Table
8.2. The associated data mining quality tuple of each circumstance tuple is given on
the same row under ();. Note that intervals such as (0, 6] and rating labels such as
minimum, maximum and so on are used instead of the exact values for legibility. For
example, first tuple of C} defines the circumstance where movie list mining is requested

during morning hours of the festival period at a place close to one of the festival cinemas.

Cr= Qr =
{< date : (0,15], time : (0, 6], location : (0,4] >, {< support : highest, lift : lowest, duration : mazimum >,
< date : (0,15], time : (0, 6], location : (4,7] >, < support : highest, lift : lowest, duration : average >,
< date : (0,15], time : (0, 6], location : (7,10] >, < support : highest,lift : lowest, duration : belowaverage >,
< date : (0,15],time : (0, 6], location : (10,13) >, < support : highest,lift : lowest, duration : minimum >,
< date : (0,15], time : (6, 9], location : (0,4] >, < support : highest, lift : average, duration : mazimum >,
< date : (0,15], time : (6, 9], location : (4,7] >, < support : highest,lift : average, duration : average >,

98

< date : (0,15], time : (6, 9], location : (7,10] >, < support : highest,lift : average, duration : belowaverage >,
< date : (0,15], time : (6, 9], location : (10,13) >, < support : highest,lift : average, duration : minimum >,

)

Parameter schema of Apriori is as follows:
P(C : edom, D :ddom, M : mdom) where

cdom; = {cy, ¢, ...} ddom; = {dy,ds, ...} and mdom; = {my, ma, ...}

Then, the settings of the parameters C (minimum confidence) , D (delta) and M
(lower bound minimum support) for the given circumstance (c'“P'), quality (¢"“?'¢) are
highest of the calculated ¢, , ¢p, and @y, respectively.

tuple) where ¢y, € cdom

¢c,, = Probability(C = ¢y, | ct¥Ple g
¢p, = Probability(D = dj, | ct¥Ple, gtuPle) where dj, € ddom

@, = Probability(M = my, | ctuPle, gtuPle) where my, € mdom

The conditional probabilities given above are calculated using the Bayesian network
tool: JavaBayes ([22]). JavaBayes accepts Bayesian network representations in BIF
(Bayesian Interchange Format) file format which is XML-based. BIF (]23]) is supported
by Weka so that a Bayesian network constructed by Weka using an algorithm such as

K2 can be saved as an XML BIF file.

In Appendix E, we publish the movie list mining configuration recommendations

for all possible combinations of date, time and location given in Table 8.2.

99

Chapter 9

SUMMARY AND CONCLUSION

After Web 2.0, there has been an extreme increase in the number of people that ac-
tively contribute to the creation of Web content. Sharing information in the form of
text, audio, video and image through social network/media sites that run Web 2.0 ap-
plications, became so indispensable habit of the great majority of the people in the
world that it turned out to be the normal way of communication. As a matter of
course, user-generated web content that grows enormously every moment, is processed
for different purposes such as marketing, recommendation generation or personalization
by using different methods. Data mining is among the preferred methods to discover

knowledge from user-generated web content.

Other two technological developments in the last decade that have an huge impact
on the habits of individuals were the dissemination of mobile phones succeeded by
smartphones in affordable prices as well as the increase in the coverage and bandwidth
of wireless networks. Consequently, the usage of mobile phones became pervasive and
smartphone usage boosted in time resulting in substantial number of people being
able to be online ubiquitously. So, nowadays it is quite customary to access the Web
2.0 applications, especially to the ones residing on the social sites via smartphones.
comScore’s report published in February 2012 ([18]) verifies the pervasive use of mobiles
(234 million in the U.S.A) as well as the increasing trend in smartphone ownership (104

million in the U.S.A). Mobile content usage statistics in comScore’s recently published

100

report also indicate a 3.1 percent increase (from 33 percent to 36.1 percent) on social

network or blog access from the mobile devices within a three month period.

Since smartphones are trendy and are known to be preferred for social network /media
access, it is possible and reasonable to download and mine relevant social network/media
data on smartphones. Although it is possible to mine social data centrally on the
servers, there can be several reasons and cases for favoring ubiquitous data mining to
centralized approach. Among others, one of the reasons may be privacy whereas lacking

of centralized computing power may be another.

We tackled the problem of automatically configuring an algorithm, in particular
a data mining algorithm and we searched a solution to this problem for ubiquitous
computing because not only autonomous behavior is essential for this dominant com-
puting model of today but also data mining is indispensable for enriching ubiquitous

computing applications with intelligence.

A number of challenges lie in the design of a general solution for ubiquitous com-
puting. Since ubiquitous computing defines a broad range of applications and device
types, configuration decisions should be dynamically given rather than applying a logic
that is statically coded. Circumstantial factors are effective on ubiquitous computing
and configuring an algorithm’s execution by considering the circumstantial factors is

important. Furthermore, assessing the success of the configuration decisions is essential.

In order to meet the challenges of the problem, we proposed an approach based on
machine learning so that the behavior of the data mining algorithm in varying circum-
stances is modeled to be used for the configuration of the algorithm. By our approach,
data mining quality that is realized is part of the behavior model so that whether the
configuration quality goals are attained or not is assessed. Most importantly, adapting
to the changing conditions by generating a new behavior model of data mining is pos-
sible whenever the existing behavior model lacks in attaining the configuration quality

goals.

In summary;

101

we specified the factors relevant to self-configuration of ubiquitous data mining.

we have shown how self-configuration of ubiquitous data mining is possible by

learning its behavior using Bayesian networks.

we formally defined the classification of the executions of ubiquitous data mining
by quality using decision trees so that data mining quality for self-configuration

of data mining can be predicted.

we performed experimental evaluations of the proposed self-configuration methods

individually.
we proposed a method to assess the efficiency of the behavior model.

we have contemplated on possible application areas of data mining on mobile
devices and social media and we elaborated on self-configuring social media data

mining on mobile device.

102

Appendix A

K2: A Bayesian Method for Learning Structure of

Bayesian Network from Data

A Bayesian method for constructing Bayesian network from data is explained in this
section. The method is presented in the papers, [20] and [21]. We used the method
in the first part of our study for constructing the behavior model of an algorithm’s

execution.

In the proposed method, the probabilistic dependencies among the domain variables
from a database of cases are searched in order to form possible Bayesian network struc-
ture(s) whereas the most probable Bayesian network structure of data is determined
consequently. In order to rank the possible Bayesian network structures so that the
most probable one is found, the method computes P(Bg, | D)/P(Bs, | D) where D
is the database of cases whereas Bg, and Bg; are pairs of Bayesian network structures

that can be extracted from D.

Most probable Bayesian network structure is learned from database of cases D by
proposing:

e A formula for computing P(Bg,, D) given that

P(Bs,|D) _ P(Bs,;,D)
P(Bs;|D) — P(Bs;,D)

103

e A heuristic search procedure (K2) that attempts to find the Bg that maximizes
(or nearly maximizes) P(Bg | D) since exhaustive search procedure is exponential

in the number of domain variables.
Solution is based on the following assumptions:

e Domain variables are discrete.
e (Cases in the database are independent.
e There are no cases with missing values.

e Assignment of a value to the conditional probability P(z | y) is independent
of the assignment of a value to the conditional probability P(z" | y') when two

probabilities are components of different conditional probability distributions.

e The conditional distribution function f(Bp | Bs) used in P(Bg, D)is uniform,
where Bp is a vector whose values denote the conditional probability assignments

associated with Bayesian network structure Bg.

Formula proposed in [20] and [21] for computing P(Bg, D) (provided that assump-
tions listed above hold) is given in A.0.1:

Ti

Bs, = CH H N T_Zi__nl_ 1) HN”k' (AOl)

11]1 k=1

Symbols used in the formula are as follows.

D is a database of m cases.Z is a set of n discrete variables, where a variable x;
in Z has r; possible value assignments: {v;1, ..., v; }. Bg denote the Bayesian network
structure containing just the variables in Z. Each variable x; in Bg has a set of parents

. Let @;[j] denote the jth unique instantiation of m; relative to D. ¢; is the number
of unique instantiations of ;. N,j; is the number of cases in D in which variable z; is

instantiated as v;, and 7; is instantiated as ®;[j]. N;; is computed as: N;; = 2;1 Nijk.

104

Equation that maximizes P(Bg, D) is denoted by:

max[P(Bs, D)] = cHn;?X H Z‘r = Hka (A.0.2)

K2 is a heuristic search method for maximizing P(Bg, D) with the assumption
that there is an ordering on the domain variables. In K2, a greedy-search method
is employed to find the parent set of each variable that maximizes the inner product
in A.0.2. In particular, each node which is assumed to have no parents initially, is
incrementally added parents so that each added parent increases the probability of the
resulting structure most. The parent set of a node increases until no node can increase

the probability of the resulting structure.

The time complexity of K2 is O(mn*r) where m is the number of cases in the
database, n is the number of variables and r represent the number of possible assign-
ments of variables. It has been assumed that factorials in A.0.2 are pre-computed and

are stored in arrays.

105

Appendix B

Twitter: A Microblogging Site

Twitter([43]) is a microblogging service that allows users to share 140 character status
updates (“tweets”). A “tweet” may contain picture, link and video as well as the text
message. Millions of “tweets” are posted per day through Twitter. User determines
what is interesting for him so that the messages from the users he chooses to follow
(“followee”) appear on his home page in “timeline” (in real time order they are posted).
User can allow his “tweets” to be available publicly or protect his “tweets” and let only
the confirmed users to be his “followers”. Users of Twitter are not only individuals
but also the organizations that prefer Twitter as a platform to reach customer base,
advertise their products and so on. It is possible to download publicly available “tweets”
resulting in abundance of third-party applications that either mine “tweets” or mash

up with data from a distinct source.

As of today Twitter is not only the most popular microblogging service having a
huge number of users but also it is the media where people like to share their status
all the time due to its practical use. It is also possible and customary to use Twitter
with mobile devices (smartphones and tablet PC’s) so that users can interact with
the application everywhere and anytime. Twitter also offers access or download to its

corpus of data through API’s to be used by the applications.

106

Appendix C

Data Mining Model for Movie Recommendations

An example data mining model of movie list mining produced by Weka Explorer.

107

=== Run information ===

Scheme: weka.associations.Apriori =N 50-T 1-C 1.1 -D 0.05-U 1.0 -M 0.1 -S -1.0 -¢ -1
Relation: movies_itemset clean

Instances: 942

Attributes: 194

[list of attributes omitted]

=== Associator model (full training set) ===

Minimum metric <lift>: 1.1

Generated sets of large itemsets:

Size of set of large itemsets L(1): 51
Size of set of large itemsets L(2): 37

Size of set of large itemsets L(3): 5

Best rules found:

1. 1172=yes 293 ==> [174=yes [181=yes 191 conf:(0.65) < lift:(2.66)> lev:(0.13) [119] conv:(2.15)
2. [174=yes 1181=yes 231 ==>1172=yes 191 conf:(0.83) < lift:(2.66)> lev:(0.13) [119] conv:(3.88)
3. 1172=yes 293 ==> [50=yes 1174=yes 229 conf:(0.78) < lift:(2.51)> lev:(0.15) [137] conv:(3.11)
4. 150=yes I174=yes 293 ==> [172=yes 229 conf:(0.78) < lift:(2.51)> lev:(0.15) [137] conv:(3.11)
5. 1174=yes 348 ==>1195=yes 191 conf:(0.55) <1ift:(2.38)> lev:(0.12) [110] conv:(1.7)

6. 1195=yes 217 ==>[174=yes 191 conf:(0.88) < 1ift:(2.38)> lev:(0.12) [110] conv:(5.07)

7. 1174=yes 348 ==> [172=yes [181=yes 191 conf:(0.55) <lift:(2.29)> lev:(0.11) [107] conv:(1.67)
8. I172=yes [181=yes 226 ==> [174=yes 191 conf:(0.85) <lift:(2.29)> lev:(0.11) [107] conv:(3.96)
9. I50=yes 1172=yes 274 ==> [174=yes 229 conf:(0.84) < lift:(2.26)> lev:(0.14) [127] conv:(3.76)
10. 1174=yes 348 ==> 150=yes 1172=yes 229 conf:(0.66) < lift:(2.26)> lev:(0.14) [127] conv:(2.06)

. [174=yes 348 ==>1210=yes 196 conf:(0.56) < lift:(2.26)> lev:(0.12) [109] conv:(1.71)
.1210=yes 235 ==>[174=yes 196 conf:(0.83) <lift:(2.26)> lev:(0.12) [109] conv:(3.7)
.1172=yes 293 ==>1174=yes 240 conf:(0.82) < lift:(2.22)> lev:(0.14) [131] conv:(3.42)
. [174=yes 348 ==>[172=yes 240 conf:(0.69) < lift:(2.22)> lev:(0.14) [131] conv:(2.2)

15. 1174=yes 348 ==>1204=yes 189 conf:(0.54) <lift:(2.18)> lev:(0.11) [102] conv:(1.63)

16. 1204=yes 235 ==>[174=yes 189 conf:(0.8) <lift:(2.18)> lev:(0.11) [102] conv:(3.15)

17. 150=yes 198=yes 256 ==> [174=yes 201 conf:(0.79) <lift:(2.13)> lev:(0.11) [106] conv:(2.88)
18. 1174=yes 348 ==> 150=yes 198=yes 201 conf:(0.58) < lift:(2.13)> lev:(0.11) [106] conv:(1.71)

19. 179=yes 264 ==> [174=yes 206 conf:(0.78) <lift:(2.11)> lev:(0.12) [108] conv:(2.82)
20. I[174=yes 348 ==>179=yes 206 conf:(0.59) <lift:(2.11)> lev:(0.12) [108] conv:(1.75)
21. 1173=yes 248 ==>1174=yes 189 conf:(0.76) <lift:(2.06)> lev:(0.1) [97] conv:(2.61)

22. 1174=yes 348 ==>1173=yes 189 conf:(0.54) <lift:(2.06)> lev:(0.1) [97] conv:(1.6)
23. 1172=yes 293 ==> [50=yes [181=yes 220 conf:(0.75) <lift:(2.03)> lev:(0.12) [111] conv:(2.49)
24. 150=yes [181=yes 349 ==>[172=yes 220 conf:(0.63) < lift:(2.03)> lev:(0.12) [111] conv:(1.85)

. I50=yes 1172=yes 274 ==> [181=yes 220 conf:(0.8) < lift:(2)> lev:(0.12) [109] conv:(2.98)

108

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

[181=yes 379 ==> [50=yes [172=yes 220 conf:(0.58) <lift:(2)> lev:(0.12) [109] conv:(1.68)
1172=yes 1174=yes 240 ==>1181=yes 191 conf:(0.8) <lift:(1.98)> lev:(0.1) [94] conv:(2.87)
[181=yes 379 ==> [172=yes [174=yes 191 conf:(0.5) <lift:(1.98)> lev:(0.1) [94] conv:(1.49)
I56=yes 294 ==> [98=yes 207 conf:(0.7) <lift:(1.93)> lev:(0.11) [99] conv:(2.12)

198=yes 344 ==> [56=yes 207 conf:(0.6) < lift:(1.93)> lev:(0.11) [99] conv:(1.71)

1172=yes 293 ==>1181=yes 226 conf:(0.77) < lift:(1.92)> lev:(0.11) [108] conv:(2.58)
[181=yes 379 ==>1172=yes 226 conf:(0.6) < lift:(1.92)> lev:(0.11) [108] conv:(1.7)

198=yes 344 ==> [50=yes [174=yes 201 conf:(0.58) < lift:(1.88)> lev:(0.1) [94] conv:(1.65)
I50=yes 1174=yes 293 ==> [98=yes 201 conf:(0.69) < lift:(1.88)> lev:(0.1) [94] conv:(2)
I56=yes 294 ==> [174=yes 203 conf:(0.69) < lift:(1.87)> lev:(0.1) [94] conv:(2.02)

I174=yes 348 ==> [56=yes 203 conf:(0.58) < lift:(1.87)> lev:(0.1) [94] conv:(1.64)

I50=yes 1174=yes 293 ==>[181=yes 219 conf:(0.75) < lift:(1.86)> lev:(0.11) [101] conv:(2.33)
[181=yes 379 ==> I50=yes [174=yes 219 conf:(0.58) <lift:(1.86)> lev:(0.11) [101] conv:(1.62)
198=yes 344 ==>1172=yes 198 conf:(0.58) < lift:(1.85)> lev:(0.1) [91] conv:(1.61)

1172=yes 293 ==>198=yes 198 conf:(0.68) < lift:(1.85)> lev:(0.1) [91] conv:(1.94)

I50=yes 501 ==> [172=yes [181=yes 220 conf:(0.44) < lift:(1.83)> lev:(0.11) [99] conv:(1.35)
1172=yes 1181=yes 226 ==> [50=yes 220 conf:(0.97) <lift:(1.83)> lev:(0.11) [99] conv:(15.11)
198=yes 344 ==>[174=yes 231 conf:(0.67) <lift:(1.82)> lev:(0.11) [103] conv:(1.9)

I174=yes 348 ==>198=yes 231 conf:(0.66) < lift:(1.82)> lev:(0.11) [103] conv:(1.87)

I50=yes 501 ==> [172=yes [174=yes 229 conf:(0.46) < lift:(1.79)> lev:(0.11) [101] conv:(1.37)
1172=yes 1174=yes 240 ==> [50=yes 229 conf:(0.95) <lift:(1.79)> lev:(0.11) [101] conv:(9.36)
I50=yes 501 ==>1174=yes [181=yes 219 conf:(0.44) <lift:(1.78)> lev:(0.1) [96] conv:(1.34)
[174=yes 1181=yes 231 ==>[50=yes 219 conf:(0.95) < lift:(1.78)> lev:(0.1) [96] conv:(8.32)
I50=yes 501 ==>[172=yes 274 conf:(0.55) <lift:(1.76)> lev:(0.13) [118] conv:(1.51)
1172=yes 293 ==>[50=yes 274 conf:(0.94) < lift:(1.76)> lev:(0.13) [118] conv:(6.86)

109

Appendix D

Training Data for Behavior Model Construction

Execution data of movie list mining collected through EDG consisting of the attributes:

e AVGMEM: Average memory usage in bytes.

e CPUTIME: Total CPU time in msecs.

e DURATION: Duration in msecs.

e N: Requested number of association rules.

e C: Minimum confidence requested.

e D: Delta for minimum support.

e U: Upper bound minimum support.

e M: Lower bound minimum support.

e SUPPORT: Minimum support of the data mining model.
e CONF: Minimum confidence of the data mining model.
e LIFT: Minimum lift of the data mining model.

e RULES: Number of rules in the data mining model.

110

AVGMEM
476800000
477543424
477486080
476205056
476235776
475051008
476123136
476214272
477288448
477177856
476118016
476163072
476168192
476891136
475256832
477320192
477314048
475063296
475066368
476136448
476137472
477206528
483871744
476151808
477078528
476141568
477200384
476223488
476243968
476158976
476148736
476154880
475086848
476150784
476146688
476158976
476274688
477205504
476139520
477339648
476230656
477220864
477233152
476172288
476158976
476153856
476169216
476167168
476154880
476155904
476166144

CPUTIME DURATION

165190
230200
363450
29300
29470
11190
6510
41690
41370
13330
9500
62240
62410
28890
20650
29250
29470
10780
6450
20800
20730
13320
9620
47860
48280
28890
20770
29660
30010
11240
6510
20800
21200
13270
9510
38450
38690
28860
24400
29910
29270
12550
6550
20760
20630
13260
9850
32010
32270
28800
20990

165305
230919
363368
29539
29471
11204
6543
41791
41412
13359
9563
62148
62251
29049
21210
29293
29607
11390
6492
20956
20630
13514
9486
47739
48425
28771
20544
29876
30107
11108
6381
20772
21468
13171
9504
38625
38482
29037
24444
29915
29267
12462
6484
20648
20647
13324
9914
32052
32806
28808
20936

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

1

1

1
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

0.1
0.05
0.02

0.1

0.1

0.1

0.1
0.05
0.05
0.05
0.05
0.02
0.02
0.02
0.02

0.1

0.1

0.1

0.1
0.05
0.05
0.05
0.05
0.02
0.02
0.02
0.02

0.1

0.1

0.1

0.1
0.05
0.05
0.05
0.05
0.02
0.02
0.02
0.02

0.1

0.1

0.1

0.1
0.05
0.05
0.05
0.05
0.02
0.02
0.02
0.02

111

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

L\

0.12
0.12
0.1
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4
0.1
0.2
0.3
0.4

SUPPORT
0.1
0.1

0.12
0.2
0.3
0.3
0.4
0.2
0.2
0.3
0.4

0.22

0.22
0.3
0.4
0.2
0.3
0.3
0.4

0.25

0.25
0.3
0.4

0.24

0.24
0.3
0.4
0.2
0.3
0.3
0.4

0.25

0.25
0.3
0.4

0.26

0.26
0.3
0.4
0.2
0.3
0.3
0.4

0.25

0.25
0.3
0.4

0.28

0.28
0.3
0.4

Figure D.1: Subset of data collected by EDG

CONF

0.95
0.95
0.92
0.92
0.95
0.95
0.92
0.92
0.91
0.91
0.92
0.92
0.95
0.95

0.8
0.85
0.82
0.82

0.8
0.85
0.84
0.84

0.8
0.85
0.95
0.95

0.7
0.85
0.82
0.82

0.7
0.85
0.79
0.79

0.7
0.85
0.95
0.95

0.6
0.62
0.82
0.82

0.6
0.62
0.67
0.67

0.6
0.62

LIFT
1.56
1.56
1.56
1.42
1.42
1.37
1.35
1.42
1.42
1.37
1.35
1.47
1.47
1.37
1.35
1.42
1.42
1.36

1.3
1.46
1.46
1.36

13
1.47
1.47
1.36

13
1.42
1.42

14

13
1.46
1.46

14

13
1.46
1.46

1.4

13
1.42
1.42
1.38
1.29
1.46
1.46
1.38
1.29

14

14
1.38
1.29

RULES
50
50
50
50
50

5
2
50
50
5
2
50
50
5
2
50
50
14
3
50
50
14
3
50
50
14
3
50
50
26
3
50
50
26
3
50
50
26
3
50
50
45
5
50
50
45
5
50
50
45
5

Appendix E

Configuration Recommendations for Movie List

Mining

Each line of the list given below shows a circumstance tuple followed by the recom-
mended configuration tuple for that circumstance.

Circumstance tuples consist of the attributes: date, time and location. For convenience,
ranges of values are used instead of exact values since the recommended configurations
are valid for all the circumstance states within the given range.

Configuration tuples consist of the attributes: C (minimum confidence requested), M

(lower bound minimum support), D (delta for minimum support).

112

CIRCUMSTANCE

< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(0,15
< date:(15,21
< date:(15,21
< date:(15,21
< date:(15,21
< date:(15,21
< date:(15,21

time:(0,6], location:(0,4] >
time:(0,6], location:(4,7] >
time:(0,6], location:(7,10] >
time:(0,6], location:(10,13) >
time:(6,9], location:(0,4] >
time:(6,9], location:(4,7] >
time:(6,9], location:(7,10] >
time:(6,9], location:(10,13) >
time:(9,12], location:(0,4] >
time:(9,12], location:(4,7] >
time:(9,12], location:(7,10] >
time:(9,12], location:(10,13) >
time:(18,24], location:(0,4] >
time:(18,24], location:(4,7] >
time:(18,24], location:(7,10] >
time:(18,24], location:(10,13) >
], time:(0,6], location:(0,4] >
], time:(0,6], location:(4,7] >
], time:(0,6], location:(7,10] >
], time:(0,6], location:(10,13) >
], time:(6,9], location:(0,4] >
], time:(6,9], location:(4,7] >
< date:(15,21], time:(6,9], location:(7,10] >
< date:(15,21], time:(6,9], location:(10,13) >
< date:(15,21], time:(9,12], location:(0,4] >
I,
I,
I,
I,
I,
I,
I,

1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,

< date:(15,21], time:(9,12], location:(4,7] >

< date:(15,21], time:(9,12], location:(7,10] >

< date:(15,21], time:(9,12], location:(10,13) >
< date:(15,21], time:(18,24], location:(0,4] >

< date:(15,21], time:(18,24], location:(4,7] >

< date:(15,21], time:(18,24], location:(7,10] >
< date:(15,21], time:(18,24], location:(10,13) >

Figure E.1: Configuration recommendations under possible circumstances

CONFIGURATION

<C:0.8,M:0.3, D:0.05 >
<C:0.8,M:0.4,D:0.02 >
<C:0.8,M:0.4,D:0.02 >
<C:0.8,M:0.4, D:0.05 >
<C:0.7,M:0.3,D:0.1 >

<C:0.7,M:0.3,D:0.02 >
<C:0.7,M:0.3, D:0.05 >
<C:0.7,M:0.3,D:0.1 >

<C:0.8,M:0.2, D:0.05 >
<C:0.8,M:0.3,D:0.02 >
<C:0.8,M:0.3, D:0.05 >
<C:0.8,M:0.3, D:0.05 >
<C:0.9,M:0.3,D:0.05 >
<C:0.9,M:0.3,D:0.02 >
<C:0.9,M:0.3,D:0.05 >
<C:09,M:0.3,D:0.1 >

<C:0.7,M:0.2, D:0.02 >
<C:0.7,M:0.2, D:0.02 >
<C:0.7,M:0.4, D:0.05 >
<C:0.7,M:0.4, D:0.05 >
<C:0.7,M:0.2, D:0.05 >
<C:0.7,M:0.2, D:0.05 >
<C:0.7,M:0.3, D:0.05 >
<C:0.7,M:0.2, D:0.05 >
<C:0.8,M:0.2, D:0.02 >
<C:0.8,M:0.2, D:0.05 >
<C:0.8,M:0.2, D:0.05 >
<C:0.8,M:0.2, D:0.05 >
<C:0.7,M:0.2, D:0.02 >
<C:0.7,M:0.2, D:0.02 >
<C:0.7,M:0.3, D:0.05 >
<C:0.7,M:0.2, D:0.05 >

113

CIRCUMSTANCE

< date:(21,31
< date:(21,31
< date:(21,31
< date:(21,31
< date:(21,31

], time:(0,6], location:(0,4] >

], time:(0,6], location:(4,7] >

], time:(0,6], location:(7,10] >
], time:(0,6], location:(10,13) >
], time:(6,9], location:(0,4] >

< date:(21,31], time:(6,9], location:(4,7] >

< date:(21,31], time:(6,9], location:(7,10] >
< date:(21,31], time:(6,9], location:(10,13) >
< date:(21,31], time:(9,12], location:(0,4] >
< date:(21,31], time:(9,12], location:(4,7] >
< date:(21,31], time:(9,12], location:(7,10] >

< date:(21,31], time:(9,12], location:(10,13) >
< date:(21,31], time:(18,24], location:(0,4] >

< date:(21,31], time:(18,24], location:(4,7] >

< date:(21,31], time:(18,24], location:(7,10] >
< date:(21,31], time:(18,24], location:(10,13) >
< date:(31,40), time:(0,6], location:(0,4] >

< date:(31,40), time:(0,6], location:(4,7] >

< date:(31,40), time:(0,6], location:(7,10] >

< date:(31,40), time:(0,6], location:(10,13) >

< date:(31,40), time:(6,9], location:(0,4] >

< date:(31,40), time:(6,9], location:(4,7] >

< date:(31,40), time:(6,9], location:(7,10] >

< date:(31,40), time:(6,9], location:(10,13) >

< date:(31,40), time:(9,12], location:(0,4] >

< date:(31,40), time:(9,12], location:(4,7] >

< date:(31,40), time:(9,12], location:(7,10] >

< date:(31,40), time:(9,12], location:(10,13) >
< date:(31,40), time:(18,24], location:(0,4] >

< date:(31,40), time:(18,24], location:(4,7] >

< date:(31,40), time:(18,24], location:(7,10] >
< date:(31,40), time:(18,24], location:(10,13) >

Figure E.2: Configuration recommendations under possible circumstances (cont.)

CONFIGURATION

<(C:0.9,M:0.2, D:0.02 >
< (C:0.8, M:0.4, D:0.02 >
< (C:0.8, M:0.3, D:0.05 >
< (C:0.8, M:0.4, D:0.05 >
<(C:0.9,M:0.1, D:0.05 >
<(C:0.9,M:0.2, D:0.1 >
<(C:0.9,M:0.1, D:0.05 >
<(C:0.9,M:0.1, D:0.05 >
<(C:0.9,M:0.2, D:0.02 >
<(C:0.9,M:0.2, D:0.05 >
<(C:0.9,M:0.2, D:0.05 >
<(C:0.9,M:0.2, D:0.05 >
<(C:0.9,M:0.2, D:0.02 >
<(C:0.9, M:0.3, D:0.02 >
<(C:0.9, M:0.3, D:0.05 >
<C:0.9,M:0.4, D:0.05 >
<(C:1,M:0.1, D:0.02 >
<C:1,M:0.1, D:0.02 >
<(C:1,M:0.1, D:0.05 >
<(C:1,M:0.4, D:0.05 >
<(C:1,M:0.1, D:0.02 >
<(C:1,M:0.1, D:0.02 >
<(C:1,M:0.3, D:0.05 >
<(C:1,M:0.1, D:0.05 >
<(C:1,M:0.1, D:0.02 >
<C:1,M:0.1, D:0.02 >
<(C:1,M:0.1, D:0.05 >
<(C:1,M:0.1, D:0.05 >
<C:1,M:0.1, D:0.02 >
<(C:1,M:0.1, D:0.02 >
<(C:1,M:0.3, D:0.05 >
<(C:1,M:0.1, D:0.05 >

114

Bibliography

[1] Belarmino Adenso-Diaz and Manuel Laguna. Fine-tuning of algorithms using frac-
tional experimental designs and local search. Oper. Res., 54(1):99-114, January
2006.

2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, pages 487-499, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

(3] Steven C. Amstrup, Hal Caswell, Eric DeWeaver, Ian Stirling, David C. Douglas,
Bruce G. Marcot, and Christine M. Hunter. Rebuttal of “polar bear population
forecasts: A public-policy forecasting audit”. Interfaces, 39(4):353-369, July
2009.

[4] T. A. Beinlich, Henri Jacques Suermondt, R. Martin Chavez, and Gregory F.
Cooper. The ALARM monitoring system: A case study with two probabilistic
inference techniques for belief networks. In Proceedings of the 2nd European Con-
ference on Artificial Intelligence in Medicine, pages 247-256. Springer-Verlag,
19809.

[5] Mauro Birattari, Thomas Stiitzle, Luis Paquete, and Klaus Varrentrapp. A racing
algorithm for configuring metaheuristics. In Proceedings of the Genetic and
FEvolutionary Computation Conference, GECCO ’02, pages 11-18, San Francisco,
CA, USA, 2002. Morgan Kaufmann Publishers Inc.

115

[6] Leo Breiman, Jerome Friedman, R. Olshen, and Charles J. Stone. Classification

and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[7] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic
itemset counting and implication rules for market basket data. In SIGMOD
1997, Proceedings ACM SIGMOD International Conference on Management of
Data, pages 255-264, Tucson, Arizona, USA, May 1997.

[8] Wray L. Buntine. A guide to the literature on learning probabilistic networks from
data. Knowledge and Data Engineering, IEEE Transactions on, 8(2):195 —210,
apr 1996.

9] Longbing Cao, Vladimir Gorodetsky, and Pericles A. Mitkas. Agent mining: The
synergy of agents and data mining. Intelligent Systems, IEEE, 24(3):64 —72,
May-June 2009.

[10] Aysegul Cayci, Santiago Eibe, Ernestina Menasalvas, and Yiicel Saygin. Bayesian
networks to predict data mining algorithm behavior in ubiquitous computing
environments. In Martin Atzmiiller, Andreas Hotho, Markus Strohmaier, and
Alvin Chin, editors, MSM/MUSE, volume 6904 of Lecture Notes in Computer
Science, pages 119-141. Springer, 2010.

[11] Aysegul Cayci, Joao Bartolo Gomes, Andrea Zanda, Ernestina Menasalvas, and
Santiago Eibe. Situation-aware data mining service for ubiquitous environments.
In Proceedings of the 2009 Third International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, UBICOMM ’09, pages 135-140,
Washington, DC, USA, 2009. IEEE Computer Society.

[12] Aysegul Cayci, Joao Bartolo Gomes, Andrea Zanda, Ernestina Menasalvas, and
Santiago Eibe. Research challenge of locally computed ubiquitous data mining.
In Maria Manuela Cruz-Cunha and Fernando Moreira, editors, Handbook of
Research on Mobility and Computing: FEvolving Technologies and Ubiquitous
Impacts, pages 576-594. IGI Global, 2011.

116

[13]

[14]

[17]

[18]

[20]

Aysegul Cayci, Ernestina Menasalvas, Yiicel Saygin, and Santiago Eibe. Self-
configuring data mining for ubiquitous computing. Inf. Sci., Submitted for re-

view, 2012.

Aysegul Cayci, Yiicel Saygin, and Ernestina Menasalvas. Twitter-based recommen-
dation system through ubiquitous data mining. FExpert Syst. Appl., Submitted

for review, 2013.

Joong Hyuk Chang and Won Suk Lee. Finding frequent itemsets over online data
streams. Information € Software Technology, 48(7):606-618, 2006.

Ching-Ming Chao and Guan-Lin Chao. Resource-aware high quality clustering in
ubiquitous data streams. In Runtong Zhang, José Cordeiro, Xuewei Li, Zhenji

Zhang, and Juliang Zhang, editors, ICEIS (1), pages 64-73. SciTePress, 2011.

Eugene Charniak and Robert Goldman. A semantics for probabilistic quantifier-
free first-order languages, with particular application to story understanding. In
Proceedings of the 11th international joint conference on Artificial intelligence -
Volume 2, IJCAI'89, pages 1074-1079, San Francisco, CA, USA, 1989. Morgan

Kaufmann Publishers Inc.

comScore. “http://www.comscore.com/Press_Events/Press_Releases/2012/
4/comScore_Reports_February_2012_U.S._Mobile_Subscriber_Market_

Share”.

Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen, Jon
Froehlich, Beverly Harrison, Predrag Klasnja, Anthony LaMarca, Louis
LeGrand, Ryan Libby, lan Smith, and James A. Landay. Activity sensing in
the wild: a field trial of ubifit garden. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 08, pages 1797-1806, New York,
NY, USA, 2008. ACM.

Gregory F. Cooper and Edward Herskovits. A bayesian method for constructing
bayesian belief networks from databases. In Bruce D’Ambrosio and Philippe

Smets, editors, UAI, pages 86-94. Morgan Kaufmann, 1991.

117

[21]

[22]

23]

[27]

28]

[29]

[30]

Gregory F. Cooper and Edward Herskovits. A bayesian method for the induction
of probabilistic networks from data. Mach. Learn., 9(4):309-347, October 1992.

Fabio Gagliardi Cozman. “http://www.cs.cmu.edu/~javabayes/”.

Fabio Gagliardi Cozman. “http://www.cs.cmu.edu/~fgcozman/Research/
InterchangeFormat/”.
Android Developers. “http://developer.android.com/”.

The Eclipse Foundation. “http://www.eclipse.org/”.

Conny Franke, Marcel Karnstedt, and Kai-Uwe Sattler. Mining data streams under
dynamicly changing resource constraints. In Klaus-Dieter Althoff and Martin
Schaaf, editors, LWA, volume 1/2006 of Hildesheimer Informatik-Berichte, pages
262-269. University of Hildesheim, Institute of Computer Science, 2006.

Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky. Adap-
tive mining techniques for data streams using algorithm output granularity. In
Workshop (AusDM 2003), Held in conjunction with the 2003 Congress on Evo-
lutionary Computation (CEC 2003). Springer Verlag, 2003.

Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady B. Zaslavsky.
Resource-aware mining of data streams. J. UCS, 11(8):1440-1453, 2005.

Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady B. Zaslavsky.
Resource-aware mining of data streams. J. UCS, 11(8):1440-1453, 2005.

Mohamed Medhat Gaber and Philip S. Yu. A framework for resource-aware knowl-
edge discovery in data streams: a holistic approach with its application to clus-
tering. In Proceedings of the 2006 ACM symposium on Applied computing, SAC
'06, pages 649-656, New York, NY, USA, 2006. ACM.

Matteo Gagliolo and Jiirgen Schmidhuber. Learning dynamic algorithm portfolios.
Annals of Mathematics and Artificial Intelligence, 47(3-4):295-328, August 2006.

118

[32]

[33]

[34]

Hamed Haddadi, Pan Hui, and Ian Brown. Mobiad: private and scalable mobile
advertising. In Proceedings of the fifth ACM international workshop on Mobility
in the evolving internet architecture, MobiArch "10, pages 33-38, New York, NY,
USA, 2010. ACM.

Pari Delir Haghighi, Arkady Zaslavsky, Shonali Krishnaswamy, Mohamed Medhat
Gaber, and Seng Loke. Context-aware adaptive data stream mining. Intell. Data

Anal., 13(3):423-434, August 2009.

Pari Delir Haghighi, Arkady B. Zaslavsky, Shonali Krishnaswamy, and Mo-
hamed Medhat Gaber. Mobile data mining for intelligent healthcare support.
In HICSS, pages 1-10. IEEE Computer Society, 2009.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Tan H. Witten. The weka data mining software: an update. SIGKDD
Ezplor. Newsl., 11(1):10-18, November 2009.

Jiawei Han and Micheline Kamber. Data mining: concepts and techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

David Heckerman. A tutorial on learning with bayesian networks. In Michael 1.
Jordan, editor, Learning in graphical models, pages 301-354. MIT Press, Cam-
bridge, MA, USA, 1999.

Cynthia S. Hood and Chuanyi Ji. Proactive network fault detection. IEEE Com-
puter and Communications Societies, Annual Joint Conference of the, 0:1147,

1997.

Earl B. Hunt, Philip J. Stone, and Janet Marin. Ezperiments in induction / Earl
B. Hunt, Janet Marin, Philip J. Stone. Academic Press, New York :, 1966.

Frank Hutter and Youssef Hamadi. Parameter adjustment based on performance
prediction: Towards an instance-aware problem solver. Technical report, In:

Technical Report: MSR-TR-2005125, Microsoft Research, 2005.

119

[41]

Frank Hutter, Holger H. Hoos, and Thomas Stiitzle. Automatic algorithm config-
uration based on local search. In Proceedings of the 22nd national conference
on Artificial intelligence - Volume 2, AAAT'07, pages 1152-1157. AAAI Press,
2007.

Minitab Inc. “http://www.minitab.com/us-EN/".
Twitter Inc. “http://www.twitter.com/”.

Conny Junghans, Marcel Karnstedt, and Michael Gertz. Quality-driven resource-

adaptive data stream mining. SIGKDD Explorations, 13(1):72-82, 2011.

Marcel Karnstedt, Conny Franke, and Mohamed Medhat Gaber. A model for qual-
ity guaranteed resource-aware stream mining. In Fifth International Workshop
on Knowledge Discovery from Ubiquitous Data Streams icw ECML/PKDD’07,
pages 72-82, 2007.

Lin Liao, Donald J. Patterson, Dieter Fox, and Henry Kautz. Learning and infer-

ring transportation routines. Artif. Intell., 171(5-6):311-331, April 2007.

Ingo Mierswa, Katharina Morik, and Michael Wurst. Collaborative use of features
in a distributed system for the organization of music collections. In Shephard
Shen and Liu Cui, editors, Intelligent Music Information Systems: Tools and

Methodologies, pages 147-176. Idea Group Publishing, 2007.

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons,
2006.

Katharina Morik. Nemoz: a distributed framework for collaborative media or-
ganization. In Michael May and Lorenza Saitta, editors, Ubiquitous knowledge

discovery, pages 199-215. Springer-Verlag, Berlin, Heidelberg, 2010.
Movielens. “http://movielens.umn.edu/”.

Reyes Pavon, Fernando Diaz, Rosalia Laza, and Victoria Luzén. Automatic pa-
rameter tuning with a bayesian case-based reasoning system. a case of study.

Ezpert Syst. Appl., 36(2):3407-3420, March 2009.

120

[52]

[53]

[54]

[59]

[60]

[61]

Reyes Pavén, Fernando Diaz, and Victoria Luzén. A model for parameter setting
based on bayesian networks. FEng. Appl. Artif. Intell., 21(1):14-25, February
2008.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988.

G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules.
In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge Discovery in
Databases. AAAI/MIT Press, Cambridge, MA, 1991.

GroupLens Research Project. “http://www.grouplens.org/”.
J. Ross Quinlan. Induction of decision trees. Mach. Learn, pages 81-106, 1986.

J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993.

Flora Dilys Salim, Shonali Krishnaswamy, Seng Wai Loke, and Andry Rakotoni-
rainy. Context-aware ubiquitous data mining based agent model for intersection
safety. In Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung Kim, Yuan-Shun Dai,
and Laurence Tianruo Yang, editors, FUC Workshops, volume 3823 of Lecture
Notes in Computer Science, pages 61-70. Springer, 2005.

Biplav Srivastava and Anupam Mediratta. Domain-dependent parameter selection
of search-based algorithms compatible with user performance criteria. In Pro-
ceedings of the 20th national conference on Artificial intelligence - Volume 3,

AAAT05, pages 1386-1391. AAAT Press, 2005.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Min-
ing, (First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

Tan H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition (Morgan Kaufmann Series in Data Management

Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

121

[62] Android Developers Youtube. “http://www.youtube.com/user/

androiddevelopers/”.

122

