
SARE: A SENTIMENT ANALYSIS RESEARCH ENVIRONMENT

by
MUS’AB HABIB HUSAINI

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University
July 2013

SARE: A SENTIMENT ANALYSIS RESEARCH ENVIRONMENT

Approved by:

Assoc. Prof. Dr. Yücel Saygın .
(Thesis Supervisor)

Assoc. Prof. Dr. Berrin Yanıkoğlu .
(Thesis Co-Supervisor)

Asst. Prof. Dr. Hakan Erdoğan .

Asst. Prof. Dr. Hüsnü Yenigün .

Asst. Prof. Dr. Cemal Yılmaz .

Date of Approval:July. . . .18,.2013 . .

.

u

.

.

.

c© Mus’ab Habib Husaini 2013
All Rights Reserved

SARE: A SENTIMENT ANALYSIS RESEARCH ENVIRONMENT

Mus’ab Habib Husaini

Computer Science and Engineering, MS Thesis, 2013

Thesis Supervisor: Yücel Saygın

Keywords: sentiment analysis, opinion mining, aspect lexicon extraction, set cover
approximation, integrated research environment

Abstract

Sentiment analysis is an important learning problem with a broad scope of applications.
The meteoric rise of online social media and the increasing significance of public opin-
ion expressed therein have opened doors to many challenges as well as opportunities for
this research. The challenges have been articulated in the literature through a growing
list of sentiment analysis problems and tasks, while the opportunities are constantly being
availed with the introduction of new algorithms and techniques for solving them. How-
ever, these approaches often remain out of the direct reach of other researchers, who have
to either rely on benchmark datasets, which are not always available, or be inventive with
their comparisons.

This thesis presents Sentiment Analysis Research Environment (SARE), an extendable
and publicly-accessible system designed with the goal of integrating baseline and state-
of-the-art approaches to solving sentiment analysis problems. Since covering the entire
breadth of the field is beyond the scope of this work, the usefulness of this environment
is demonstrated by integrating solutions for certain facets of the aspect-based sentiment
analysis problem. Currently, the system provides a semi-automatic method to support
building gold-standard lexica, an automatic baseline method for extracting aspect expres-
sions, and a pre-existing baseline sentiment analysis engine. Users are assisted in creating
gold-standard lexica by applying our proposed set cover approximation algorithm, which
finds a significantly reduced set of documents needed to create a lexicon. We also suggest
a baseline semi-supervised aspect expression extraction algorithm based on a Support
Vector Machine (SVM) classifier to automatically extract aspect expressions.

iv

SARE: BİR DUYGU ANALİZİ ARAŞTIRMA ORTAMI

Mus’ab Habib Husaini

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2013

Tez Danışmanı: Yücel Saygın

Anahtar Kelimeler: duygu analizi, düşünce madenciliği, görüş sözlüğü çıkarımı, set
kaplama yaklaştırımı, entegre araştırma ortamı

Özet

Duygu analizi geniş kapsamlı uygulama alanı olan önemli bir öğrenme problemidir. On-
line sosyal medyanın hızlı yükselişi ve burada ifade edilen kamuoyunun artan önemi, pek
çok zorluğun yanı sıra bu araştırma için fırsat kapılarını açmaktadır. Zorluklar gittikçe
büyüyen duygu analizi problemlerinin ve görevlerinin yer aldığı bir listeye eklenerek li-
teratürde ifade edilirken, fırsatlar bu zorlukları çözmek için önerilen yeni algoritmalar ve
teknikler ile avantaja dönüştürülmektedir. Ancak bu yaklaşımlar çoğunlukla diğer araş-
tırmacıların doğrudan erişimine uzak omaktadır. Bu araştırmacılar ya her zaman mevcut
olmayan kıyaslama veri setlerine dayanmak zorunda kalmakta veya karşılaştırma yapar-
ken yaratıcı olmak durumundadırlar.

Bu tezde genişletilebilir, temel ve modern yaklaşımları entegre ederek duygu analiz prob-
lemlerini çözmek için tasarlanmış ve kamuya açık bir sistem olan Duygu Analizi Araş-
tırma Ortamı (SARE) sunulmaktadır. Araştırma alanını tüm genişliğiyle ele almak bu ça-
lışmanın kapsamı dışında olduğu için, bu ortamın yararlılığı bir kısım görüş tabanlı duygu
analizi problemlerinin çözümlerinin ortama entegrasyonuyla gösterilmektedir. Şu anda
sistem, altın standardında bir sözlük oluşturulmasını sağlayan yarı otomatik bir yöntem,
görüş ifadelerini otomatik çıkarmak için bir yöntem, ve önceden varolan temel bir duygu
analiz motoru içermektedir. Kullanıcılara bizim önerdiğimiz set kaplama yaklaştırımı al-
goritması kullanılarak altın standardında bir sözlük oluşturmak için yardım edilmektedir.
Önerilen bu algoritma, sözlüğü oluşturmak için gerekli olan belgeler setinin eleman sayı-
sını ciddi miktarda düşürmektedir. Ayrıca, görüş ifadelerini ayıklamak için yarı denetimli
ve Destekçi Vektör Makinası (SVM) sınıflandırıcı tabanlı otomatik bir algoritma öneril-
miştir.

v

ú
	

æJ
K. àAî
f
k. P

�
A¿ Q

�
K P@ñ

�
�

�
X ÿï

f
ÿ�� ú

	
GAK. àAî

f

�
k.

@YJ
K� Q
	

¢
	
� ÿï

f
ú

�
Gñï

f
á�
Ó ÈX� Õ

�
æ
�
�k� ñ

�
K ñï

f
àñ

	
k QÂk.�

ÈAJ.
�
¯ @�

vi

ACKNOWLEDGMENT

I am deeply indebted to my academic advisor, Assoc. Prof. Dr. Yücel Saygın, for his
unwavering support, which has been essential to my academic and personal growth, and
I cannot thank him enough for it. The kind advice and feedback from Assoc. Prof. Dr.
Berrin Yanıkoğlu has shaped this project and given it the direction it has today. The
enthusiasm I received from Dr. Dilek Tapucu from the very beginning has been an indis-
pensable source of confidence and inspiration for me, for which I am very grateful.

Parts of this project were developed in the context of UBIPOL (Ubiquitous Participation
Platform for Policy Making) project funded by European Commission, FP7, and I would
especially like to acknowledge the work done by Ahmet Koçyiğit on the aspect-based
sentiment analysis engine. My continued education at Sabancı University would not have
been possible without the help of Dr. Brooke Luetgert of the Faculty of Arts and Social
Sciences, whose research project I have been funded by for the last year. I would also like
to mention the kindness and encouragement of my professors. I am especially grateful
to Asst. Prof. Dr. Cemal Yılmaz, Asst. Prof. Dr. Hüsnü Yenigün, and Asst. Prof. Dr.
Hakan Erdoğan for agreeing to be on the thesis committee.

In the end, it comes down to one’s support system and I am blessed to have the strongest
one. In particular, I would like to recognize the assistance given to me by my friends
Salim Sarımurat, Iyad Hashlamon, and Gizem Gezici. They never turned me down when
I needed favors and I cannot be more grateful to have met each one of them. I have
also been fortunate enough to have the most caring and loving in-laws that anyone could
ask for. Their constant concern and encouragement made things much easier than they
otherwise seemed. It is impossible to describe the debt I owe to my parents and siblings.
I have mostly been away from them, but being able to talk to them and laugh with them
has kept me going. To my mother, especially, I will be eternally thankful for always
believing in me, trusting me against all odds, and praying for my success. Finally, but
most importantly, none of this would have been possible without Alia, who has supported
me in every situation, whose comfort has kept me grounded, and whose happiness has
created happiness for me.

vii

CONTENTS

1 Introduction 1

2 Background and Related Work 5

3 Preliminaries and Problem Definition 9
3.1 Definition of Terms . 9

3.1.1 Natural Language Processing (NLP) 12
3.2 Research Environment . 12

3.2.1 Incremental Extendability . 13
3.2.2 Accessibility . 13
3.2.3 Open Source . 13
3.2.4 Multilingual Support . 14

3.3 Aspect Lexicon Extraction . 14
3.3.1 Gold-Standard Lexicon Creation 14
3.3.2 Aspect Expression Extraction 16

4 System Design 17
4.1 Application Layers . 17

4.1.1 Persistence Layer . 17
4.1.2 Data Access Layer . 19
4.1.3 Logic Layer . 19
4.1.4 Web Application Layer . 20

4.2 Module Definition and Workflow . 21
4.3 Multilingual Support . 23

5 Modules and Algorithms 24
5.1 Corpus Reduction Module . 24
5.2 Aspect Expression Extraction Module 26

5.2.1 Extracting Candidate Expressions 27
5.2.2 Automatic Labeling . 27

viii

5.2.3 Semi-Supervised Learning . 28
5.3 Aspect Lexicon Builder Module . 28
5.4 Aspect-Based Sentiment Analysis Module 29

6 Implementation and Experiments 31
6.1 Implementation Details . 31

6.1.1 A Basic Use Case . 32
6.2 Experimental Results . 34

6.2.1 Corpus Reduction Algorithm . 35
6.2.1.1 Setup . 36
6.2.1.2 Results . 36

6.2.2 Aspect Expression Extraction Algorithm 37
6.2.2.1 Setup . 38
6.2.2.2 Results . 39

7 Conclusion and Future Work 41
7.1 Future Work . 43

Appendices 46

Appendix A List of Software, Technologies, and Tools 46

ix

LIST OF FIGURES

4.1 Overall architecture of SARE . 18
4.2 Simplified database design . 19
4.3 Simplified hierarchy of data objects . 20
4.4 Basic architecture of the MVC application 21
4.5 Module resolution sequence . 22
4.6 A reduced class hierarchy of the linguistic processor factory design 23

6.1 Implemented architecture of SARE . 32
6.2 A screenshot of the main analysis page 33
6.3 A screenshot of the add corpus page . 33
6.4 A screenshot of the corpus optimization engine displaying the optimiza-

tion profile . 34
6.5 A screenshot of the aspect lexicon builder interface 35
6.6 A screenshot showing partial results of the aspect-based opinion mining

engine . 36
6.7 The aspect lexicon creation activity . 37
6.8 An overview of the aspect lexicon creation use case 38
6.9 Graph showing data reduction against error tolerance 39

x

LIST OF TABLES

6.1 Comparison of corpus reduction algorithms 37
6.2 Performance of the aspect expression extraction algorithm as compared

with the baseline . 39
6.3 Examples of aspect expression extracted by the algorithm 40

xi

LIST OF ALGORITHMS

1 An eagerly greedy minimal set cover approximation algorithm 25
2 An algorithm for extracting aspect expressions 29
3 Auto-labeling and classification methods for aspect expression extraction 30

xii

LIST OF SYMBOLS

α an instance of an algorithm.

b a parameter that indicates the extent of automatic labeling; greater than or equals to 0.

D a corpus of documents.

D̂ an approximation of a corpus of documents.

D a document.

D̂ an approximation of a document.

∆ the extent of data reduction.

Ê the set of all candidate aspect expressions.

ê a single candidate aspect expression.

k an arbitrary number.

L labeled data.

λ a probability acceptability threshold in the range [0, 1].

τ̂ error tolerance.

U unlabeled data.

xiii

LIST OF ABBREVIATIONS

API Application Programming Interface.

CRF Conditional Random Fields.

CSS Cascading Style Sheets.

CSV Comma-Separated Values.

GPL General Public License.

HMM Hidden Markov Models.

HTML HyperText Markup Language.

JPA Java Persistence API.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

LDA Latent Dirichlet Allocation.

MVC Model-View-Controller.

NLP Natural Language Processing.

ORM Object-Relational Mapping.

pLSA Probabilistic Latent Semantic Analysis.

PoS Part-of-Speech.

xiv

REST REpresentational State Transfer.

SaaS Software as a Service.

SARE Sentiment Analysis Research Environment.

SVM Support Vector Machine.

XML Extensible Markup Language.

xv

1

INTRODUCTION

What others think has always been a topic of deep curiosity for people, societies, gov-
ernments, organizations, and commercial enterprises; and in the age of democracy and
consumerism, finding an answer to it has become more important than ever before. Opin-
ions about a particular public personality or commercial product are considered highly
relevant and even essential sources of information for the respective stakeholders in de-
termining future courses of action and overall strategies. While research on sentiment
analysis and opinion mining within the field of computer science might have started al-
most a decade before the beginning of the new millennium, it was not until the rise of
the social web and the subsequent explosion and mass availability of opinionated data
that in-depth research in this area received greater impetus [39, 29, 28]. It is from this
practically infinite amount of data that we draw not only great opportunities but also im-
mense challenges for understanding opinions and representing them in a manner useful
for consumption by the target audience.

In the context of computer science research, sentiment analysis (or more generally opin-
ion mining) is “the field of study that analyzes people’s opinions, sentiments, evaluations,
appraisals, attitudes, and emotions towards entities such as products, services, organiza-
tions, individuals, issues, events, topics, and their attributes” [29]. While to a human
mind, the problem of understanding the opinion contained a single document may seem
solvable if not quite trivial, attempting to find an automated solution to it opens up a range
of other problems that defy any assumption of triviality. Even for humans, the problem
no longer remains minor, and in fact becomes prohibitively expensive, when we consider
the sheer volume of data that need to be processed and summarized. Thus, analyzing
sentiment can mean any number of things in a given context and can be open to several
limitations, not one of which can be easily eliminated without introducing yet another one
in exchange.

1

We can try to solve what is known as the subjectivity analysis problem by attempting
to separate subjective or opinionated text1 from objective or factual text. This does not
go a long way in determining the type of sentiment that the text expresses, but can at
least provide us with some indication of whether the text contains any sentiment at all
and also serves to eliminate noise created by purely objective and factual parts of the
text. We can take it a step further and separate text into three categories, viz.: positive,
neutral, and negative; where neutral denotes objective text and subjective text is classified
as containing either positive or negative sentiment [28]. This is referred to as the sentiment
classification problem. We can make the classification more granular and deal with the
polarity estimation problem which seeks to express sentiment polarity on an arbitrary
scale such as −1 to +1, 1 through 5, or A through F, etc.

At the same time, sentiment at the document level is not always uniform; a single docu-
ment can simultaneously contain many seemingly opposing sentiments expressed in dif-
ferent sentences or even about different entities or aspects of the same entity within the
same sentence [29]. Consequently, various strands of sentiment analysis research focus
on solving the sentiment detection problem at each of these levels. The case of aspect-
level analysis poses some other interesting questions. What are the target entities in a
given text? What are the various aspects or features of the target entity that opinion is
being expressed about? Any successful technique must solve these challenging problems
in order to produce useful results. An important step towards solving these problems is
the construction of an aspect (or feature) lexicon for a given corpus or domain, which will
be further discussed later in this thesis.

Then there is the primary problem of quantifying the sentiment expressed at any of the
levels mentioned above. Researchers have realized that certain words and phrases, known
as sentiment words and sentiment phrases, are important, albeit neither exclusive nor
even reliable, indicators of sentiment within a given text or portion thereof. A collection
of these expressions with some measure of their polarity orientation is thus essential to
assigning sentiment values to an aspect, sentence, or document. The construction of such
a collection, commonly called a polarity or sentiment lexicon, is another important task of
sentiment analysis [15, 9, 28, 27, 29, 42]. Equipped with a sentiment lexicon, researchers
use a combination of bag-of-words analysis, rule-based analysis, and other approaches
together with Natural Language Processing (NLP) techniques to obtain sentiment values
at the desired level.

1Although sentiment analysis is not limited to text and a great amount of opportunities exist in analyzing
sentiment contained in audible and visible human expressions, the present work will assume for the sake of
simplification that “sentiment analysis” and equivalent terms refer to the same as applied to natural language
texts.

2

Aside from the more obvious challenges mentioned above, there is yet a growing list of
problems that a sentiment analysis researcher faces along the way; for example, capturing
comparative opinions (e.g., of type: A performs better than B), filtering out opinion spam,
detecting sarcasm and irony, adopting sentiment lexica to particular opinion domains,
disambiguating word senses, and increasingly when working with data from online social
media, correcting spellings and dealing with unconventional language.

Many algorithms and techniques have been developed to tackle these problems, some-
times individually sometimes in tandem with other approaches. Even though some bench-
mark datasets exist for individual problems, a comprehensive system to determine reliable
accuracies for different approaches is still not available which makes it difficult to com-
pare various methods [27]. Thus, a researcher must find creative ways to compare their
proposed algorithm or technique with an existing one. There is a need for a system that
can house implementations for baseline and state-of-the-art methods and provide their
performance on any given dataset.

This thesis presents Sentiment Analysis Research Environment (SARE), a modular, ex-
tendable, open source, and web-based framework developed with the aim of filling this
gap. SARE is a generalization and extension of our tool presented previously in [19,
18, 46], and provides various tools for managing opinion corpora, extracting domain in-
formation from these corpora both manually and automatically, and performing various
sentiment analysis tasks on them such as aspect- and document-level sentiment analysis.
The goal of this platform is to provide an environment that integrates baseline and state-
of-the-art approaches to various sub-problems of sentiment analysis. Such a system will
allow researchers working on a particular sub-problem to see the effects of their research
on the overall problem and compare the performance of algorithms that they develop with
existing baseline and state-of-the-art ones. At the same time, industry users – for example
a public relations firm – can use SARE to analyze opinions on products, persons, events,
or other entities of interest.

Given the vastness of the field of sentiment analysis and the limited scope of this research,
our system currently only deals with certain facets of the aspect lexicon extraction prob-
lem. An aspect lexicon is a simple two-level ontology consisting of aspects and aspect ex-
pressions where aspects are features of the target domain and aspect expressions are terms
used by opinion holders to express the aspects. While there are several methods proposed
in the literature to automatically or semi-automatically extract aspect lexica from domain
corpora, true or gold-standard aspect lexicon for a new domain needs to be defined man-
ually. Since this can be a very time consuming task for a human, we approximate aspect
expressions with corpus nouns and propose a set cover approximation algorithm to find
the smallest set of documents needed to create the aspect lexicon. We also propose a Sup-

3

port Vector Machine (SVM) based machine learning algorithm to automatically extract
aspect expressions from a corpus, which can be used as a baseline for aspect expression
extraction techniques. We additionally augment our aspect extraction tools with a base-
line aspect-based sentiment analysis engine that can be used by researchers to compare
with new approaches.

Notwithstanding the limited set of operations supported at present, the fact that the sys-
tem has been consciously built in a modular fashion means that new modules can be
easily added to extend existing functionality and support an even wider array of tasks.
When this system achieves a higher level of maturity, we envision that those interested
in opinion trends will be able to use it to analyze sentiment contained in data that they
provide and sentiment analysis researchers will be able to compare the performance of
their approaches with baseline and state-of-the-art ones. The latest version of SARE can
be accessed online from http://sare2.sabanciuniv.edu.

The rest of the thesis is laid out as follows. In Ch. 2, we provide further background to
the problem with a discussion of related work. The specific problem dealt with in this
work is defined and formalized in Ch. 3, while Ch. 4 and 5 are devoted to describing the
architecture of our system and proposed algorithms for solving the problem. We discuss
implementation details and experimentally show the performance of our algorithms in Ch.
6. Finally, we conclude in Ch. 7 along with directions for future work on SARE.

4

http://sare2.sabanciuniv.edu

2

BACKGROUND AND RELATED WORK

The work presented in this thesis is connected with the broader field of sentiment analysis
and more specifically with the problem of aspect lexicon extraction. In the previous chap-
ter, we introduced sentiment analysis as a multidimensional and complex problem that
not only poses great challenges, but also furnishes equally rewarding opportunities. Con-
sequently, the breadth of research being conducted in this field and the volume of work
being produced has dramatically increased over the last decade or so. Some of the earlier
works such as [53, 52, 16, 44, 15] and others explored the concepts of beliefs, points of
view, perspectives, and semantic orientations. While the terms “sentiment analysis” and
“opinion mining” started appearing around 2003, some researchers had already started
venturing into the territory of sentiment classification earlier in the century as evidenced
by works such as [51, 48]. Some excellent surveys of the sentiment analysis field and
literature have been presented in [39], [31], and [29] that shed more light on the history
and current state of the field of sentiment analysis at large. To the best of our knowledge,
there is no single system that has been designed with the aim of bringing all major sen-
timent analysis techniques into one environment. Having said that, there are tools that
support operations in the larger fields of machine learning and data mining such as Weka
cited in [14] and RapidMiner described in [36], both of which provide further inspira-
tion for building an integrated system for sentiment analysis. We are similarly unaware
of an online system that supports the extraction of gold-standard lexica in an interactive
manner.

Using aspect extraction for sentiment analysis has also been studied extensively in the
literature. In this area, [17] introduced a technique that uses association rules to find the
most frequent nouns in a given set of documents. Based on these rules, a set of aspects can
be synthesized for the domain. Another work presented in [40] uses a similar concept: it
first finds frequent noun phrases from the opinion corpus and then extracts the product’s
parts and properties based on point-wise mutual information scores between these phrases

5

and meronymy descriptors related to the product. The technique presented in [30] mines
the pros and cons field available in some online reviews and uses sequential pattern rules
to learn aspect. In [13] and [34], the authors suggested using a clustering algorithm for
aspect identification. These techniques only focus on the overall aspects and not the
expressions associated with them. In wider domains, this approach would yield large
aspect sets not necessarily useful for aggregation and summarization. In our approaches,
we assume that the real set of aspects is limited and that various expressions are used to
represent these aspects in opinion documents. It is these expressions, and not the actual
aspect descriptors that we find in our documents.

Several approaches for utilizing frequency-based information to extract aspects have been
proposed in [45, 61, 32]. These approaches use various measures such as TF-IDF, Cvalue,
and information distance to identify aspect expressions within a corpus. A method pre-
sented in [21] takes into account the connection between a term and its related opinion in-
formation. They split each document into sentences before processing. Blair-Goldensohn
et al. [3] have also reported a sentiment summarizer with aspect information for local
service opinion documents. In this work, a double-propagation technique was employed,
which makes use of the relationship between sentiment expressions and aspect expres-
sions to discover both in conjunction with each other. A natural language dependency
parser can also be used for discovering these relations as has been reported in [54, 43].
We have also used frequency-based information in our techniques, but have not experi-
mented with double-propagation, which provides some inspiration for future work.

Supervised learning is another approach that is frequently used for aspect discovery. Hid-
den Markov Models (HMM) is a commonly applied supervised technique, which was
used by [23] to extract aspects from opinion documents. A Conditional Random Fields
(CRF) learning model has also been shown by [20] to provide good performance, and
Yang and Cardie in [55] have adopted the use of semi-Markov CRFs to improve the re-
sults of methods based purely on CRF. Another CRF method has been utilized in [59]
to extract product aspects. This method combines frequency, syntax tokens, and domain
knowledge to find aspects. The induction of domain knowledge is aimed to improve the
quality of extraction. In [56], a one-class SVM is first used to identify aspects. Synonym
clustering is then performed on these aspects to eliminate duplicates. A combination of
supervised and semi-supervised methods have also been used such as Naïve Bayes com-
bined with a multi-view semi-supervised algorithm in [12] and [41]. Supervised learning
requires labeled data, which is not always available and often expensive to create. Our
approach to aspect expression discovery is based on a bootstrapped semi-supervised al-
gorithm that does not require any labeled data.

6

Topic modeling approaches are also increasingly being used for aspect discovery. Mei et
al. proposed a topic-sentiment mixture model in [35] that uses the Probabilistic Latent Se-
mantic Analysis (pLSA) topic model combined with HMM to discover topics and extract
sentiment dynamics from weblogs. Similarly, a combination of Bayesian frameworks and
Latent Dirichlet Allocation (LDA)-style topic modeling was suggested in [4] that harvests
the pros and cons fields of certain review formats to find aspects in review texts. Titov and
McDonald proposed a statistical model called the Multi-Aspect Sentiment model, which
uses multi-grain LDA to learn aspects and aspect-based sentiment predictors for sentiment
analysis. Several other joint topic-sentiment modeling techniques that extend LDA have
been suggested, examples of which can be found in [26, 5]. Most of these joint techniques
do not separate aspect and sentiment expressions, for which a joint model of Maximum
Entropy and LDA was proposed in [60] which leverages syntactic features to separate
aspects and sentiment words. This approach uses a supervised method and therefore re-
quires some amount of labeled data. The case of entities with few reviews, the so-called
cold start problem, has been dealt with recently by [37] using an adaptation of LDA called
Factorized LDA and has been shown to provide promising results. Most of these topic
modeling techniques do not separate sentiment expressions from aspect expressions, a
differentiation that is crucial to the problem we have chosen to tackle. Our approaches
focus on aspect lexicon extraction independently of sentiment expressions.

As previously mentioned, much of the extant literature follows the assumption that aspect
expressions appear as nouns or noun phrases in opinion documents. This assumption can
be utilized in several ways to provide a starting point for extracting true aspect expres-
sions. Hu and Liu further extrapolate from this assumption in [17] that frequent nouns
within a corpus have a higher likelihood of being aspect expressions. This is an assump-
tion we have utilized in our work as well. In the OpinionMiner system presented in [22],
a bootstrapped machine learning algorithm augmented with linguistic features has been
used to extract aspect expressions from documents. Their algorithm provides very high
accuracy, but it is optimized for the camera domain and not altogether domain indepen-
dent. However, an exploration into combining their technique with ours will provide an
excellent opportunity for future work. In [58], a novel approach to grouping aspect ex-
pressions has been presented which utilizes aspect expression contexts to classify each
expression into an aspect. In our work, we have used a similar technique to classify can-
didate aspect expressions as being aspect expressions or not. Mukherjee and Liu in [38]
suggested a semi-supervised model called Seeded Aspect and Sentiment model, which
allows the user to specify some seed categories and uses a variation of LDA to discover
aspect and sentiment words. While the use of LDA offers many opportunities for this
task, our approach does not use user-provided seed words. Experimentation using our
semi-supervised technique with an LDA-based approach would be a worthy area for fu-

7

ture research. Another interesting approach called OFESP is presented in [57], which
extracts aspect expressions based on sentiment patterns. While our approach does not use
explicit sentiment patterns, we will compare our results to those presented in this paper
for evaluation.

8

3

PRELIMINARIES AND PROBLEM DEFINITION

We have previously highlighted the vastness of the sentiment analysis research area by
listing some of the sub-problems and sub-tasks of the larger problem. Since building
a complete environment that encompasses this entire field is a massive undertaking be-
yond the scope of this thesis, the problem tackled here is limited to: 1) developing and
introducing a research environment that can be incrementally extended to include sup-
port for solving various problems and performing different tasks in the sentiment analysis
domain; and 2) proving the capabilities of the aforementioned environment by tackling
one particular sentiment analysis problem – that of domain aspect lexicon extraction –
and providing an integrated solution for the same. In this chapter, we will define these
problems more specifically before presenting our solution.

3.1. Definition of Terms

Similar to other scientific fields, sentiment analysis has accumulated a large vernacu-
lar of varied and often synonymous technical terms. In order to prevent confusion, we
have attempted to use uniform language and avoided using terms interchangeably in this
work. While the previous chapter touched upon some of this jargon, an informal but more
definitive introduction to some essential terms will help contextualize the problem and
provide a better basis for understanding the proposed approach. Bing Liu, a prominent
researcher in this area, has provided more standard and formal definitions that can be
found in [28, 27, 29].

9

Definition 1 (Opinion Corpus): An opinion corpus is a collection of opinion documents.
Documents in an opinion corpus are presumed to belong to a particular opinion domain.
When a corpus is large enough, it can be assumed to encompass all of the terms and
expressions generally used in that domain.

Definition 2 (Opinion Domain): An opinion domain is a general but consistent and fi-
nite subject towards which opinion can be expressed. All terms and expressions within a
domain can generally be assumed to carry the same meaning and connotations. Alterna-
tively, we can say that texts within the same domain use similar expressions to describe
opinion targets and sentiment towards those targets. “Hotels,” “cars,” “movies,” etc. are
all examples of opinion domains.

Definition 3 (Opinion Document): An opinion document is a single coherent text that
represents a collection of opinions expressed using some sentiment expressions about a
target entity or aspects thereof. The aggregation of all opinion polarities is the overall
document polarity. Some sentiment analysis problems de-contextualize the individual
words in a text and treat it as a collection or bag of words. Opinion documents can be any
opinionated text such as a review, user comment, or blog. The following is a snippet from
a hotel review:

The hotel is in a good location – not far from Circular Quay, Opera House,
Bridge and Darling Harbour. Shops are also close by. Room has everything
you need – we paid a special rate due to construction, so we were pleased
with what we paid for ($105 for the night).

Definition 4 (Opinion Polarity): A classification of the orientation of a given opinion
expressed on a uniform (discreet or continuous) scale is termed as the opinion (or senti-
ment) polarity. As an example, the above review snippet could be classified as having a
positive polarity (as opposed to negative or neutral), or it can be said to have a polarity of
4 on a scale of 0 − 5 and so on.

Definition 5 (Sentiment Lexicon): A sentiment lexicon is a collection of sentiment ex-
pressions along with respective opinion polarity information. Sentiment lexica can be
domain-specific or general; the former usually provide better performance on domain-
specific data but generating one for each new domain can be expensive. SentiWordNet
presented in [9] is an example of a widely-used general sentiment lexicon.

10

Definition 6 (Sentiment Expression): A sentiment expression is a word or phrase that
can be used to express sentiment about a particular topic. In a sentiment lexicon, senti-
ment expressions are defined by their sentiment polarities expressed on a uniform (dis-
creet or continuous) scale and the contexts in which those polarities are valid. For ex-
ample, SentiWordNet provides three polarities for each word/Part-of-Speech (PoS) pair:
negative, neutral, and positive; all of which add up to one. According to this scheme, the
word “good” appearing as an adjective has a 0.005952 negative, 0.386904 neutral, and
0.607142 positive polarity. Based on these values, one could deduce that the adjective
“good” has a much higher probability of appearing in a positive context then in negative
or neutral ones.

Definition 7 (Aspect Lexicon): An aspect lexicon for a given opinion domain is a two-
level ontology consisting of aspects and the aspect expressions associated with each as-
pect.

Definition 8 (Aspect): An aspect (or feature) of a domain or entity denotes a certain
characteristic of the domain or entity that can be subject to opinion. In opinion documents,
sentiment is often expressed on aspects of the target entity as well as the target entity itself.
If we consider the “hotel” domain as an example, “staff” and “cleanliness” could be some
of the possible aspects.

Definition 9 (Aspect Expression): An aspect expression (or keyword) of an aspect is one
of many possible expressions of that aspect within a particular domain. A given aspect
may have several expressions that are considered to be synonymous to each other within
that domain. For example, any mention of the terms “housekeeping” or “bellboy” in the
“hotel” domain will naturally be taken to refer to the “staff” aspect. Most of the work in
this field assumes, as does the present work, that aspect are expressed as nouns or noun
phrases.

Definition 10 (Sentiment Analysis Engine): A sentiment analysis (or opinion mining)
engine is an implementation of a sentiment analysis algorithm that calculates sentiment
polarities at one or more levels of sentiment analysis. Thus, opinion mining engines can
be document-based, sentence-based, aspect-based, or a combination thereof.

11

3.1.1. Natural Language Processing (NLP)

NLP is a field of computer science concerned with formally expressing semantic and
syntactic information contained in various forms of human language and vice versa [24,
1, 7]. As such, sentiment analysis is a specialized NLP problem and thus relies heavily on
NLP techniques [29]. While there are several NLP operations that can be used to assist
with sentiment analysis, this work only uses three of them as defined below.

Definition 11 (Text Segmentation): In text segmentation, a natural language text is bro-
ken down into its constituent parts using boundary markers combined with mechanisms
that account for irregularities in the use of these boundary markers. Generally speaking,
text segmentation is used to divide the text into sentences or words.

Definition 12 (Part-of-Speech (PoS) Tagging): PoS is a term used in linguistics to refer
to the linguistic class of a word that describes its grammatical or morphological function
within a sentence. The same word can have different PoSs in different contexts. PoS
tagging is the process through which each word is assigned to one of the several PoSs
such as noun, adjective, verb, adverb, etc.

Definition 13 (Syntactic Parsing): Syntactic parsing attempts to deconstruct sentences
in order to reveal the grammatical relationships and dependencies between words. This
information can be used to determine the effect of words on each other and is generally
represented as a dependency graph.

3.2. Research Environment

The primary aim of this work is to provide the basis for an environment that can be used
by sentiment analysis researchers and practitioners to perform tasks and solve problems
pertinent to their fields. Such a platform must be architected from the ground up in a sys-
tematic way to adhere to standards that will permit it to successfully scale to its envisioned
potential. We will define here these standards and traits that the system needs to maintain
in order to create the promise for an all-encompassing research environment.

12

3.2.1. Incremental Extendability

The platform must be designed so that it can be built up to include solutions for a wider ar-
ray of sentiment analysis problems and tasks. Here, we introduce the concept of modules,
which is a unit of the system that performs a coherent set of operations. The system itself
would be a collection of such modules in addition to the supporting logic that glues them
together to form a fully functional application. Extendability is guaranteed by providing
a convenient mechanism for addition of new modules, and therefore, the architecture of
the system must ensure minimal inter-dependency within the modules.

3.2.2. Accessibility

Nowadays, the World Wide Web is the foremost platform for information and services
consumption, and desktop applications tend to be cumbersome to install and maintain.
The Software as a Service (SaaS) delivery model, realized through web services, provides
a convenient and easily accessible way for external users to interact with systems and
perform operations. For our system to be useful in a variety of circumstances and to a
wide range of customers, it should be conveniently accessible both as a web site and a
web service. Users who wish to use the services of this system may access them through
the website and perform desired tasks while other systems that wish to utilize the same
services may access them through an easily consumable web service structure.

3.2.3. Open Source

Open-source software creates more opportunities for extendability by allowing commu-
nity input and extension. Since the development of this platform is an ambitious project
that requires broader contribution and support from the sentiment analysis research com-
munity, it should use open-source technologies and libraries, and should in turn make
itself available as an open-source project.

13

3.2.4. Multilingual Support

Sentiment analysis is a wide area of research with applications in all languages and do-
mains. While some algorithms are language-independent, many tend to be dependent on
the language of the target text and their correct operation is consequently contingent on the
presence of an NLP package for the target language. Therefore, the extendability provided
by our proposed environment must also include support for multiple languages. Specifi-
cally, it should provide a convenient mechanism for adding NLP packages for languages
other than English as well as a transparent method for accessing the NLP functionality
thereof.

3.3. Aspect Lexicon Extraction

In sentiment analysis, domain aspect lexicon extraction is crucial for gaining a deeper
and more refined understanding of the opinions expressed in a given document [39, 27].
Without domain-specific aspects, the sentiment analysis process remains prone to gen-
eralizations and dilution of opinions. As explained stated, a domain aspect lexicon is a
two-level ontology that consists of a set of aspects that are broad features of the domain;
and for each aspect, a set of aspect-related expressions that represent those aspects in text.
For example, in the “hotel” domain, “room quality” might be one such aspect and the
terms “furniture” and “size” could be keywords associated with this aspect.

The problem of extracting such lexica is well-recognized within the sentiment analysis
domain. In this work, we tackle two sub-problems of aspect lexicon extraction, viz.,
1) creation of gold-standard aspect lexica; and 2) aspect expressions extraction. In the
following, we will further define these problems.

3.3.1. Gold-Standard Lexicon Creation

Several automatic and semi-automatic methods have been proposed in the literature to
extract a domain aspect lexicon from a given domain corpus, as discussed under Ch.
2. In evaluating their methods, researchers either compare the coverage of the extracted
lexicon to that of a hand-built one considered to be the gold standard; or they compare the
performance of a baseline sentiment analysis system using the generated lexicon versus

14

some other available lexica. The gold-standard lexicon mentioned in the former case is
obtained through one of the following ways: a) by manually tagging a large corpus;
b) by one or more domain experts choosing aspects and aspect expressions without the
use of a corpus; or c) using review sets that have already been annotated with aspects
and related expressions by the original reviewers. The first approach is naturally rather
tedious as domain corpora are usually too large to be manually processed. The second one
is vulnerable to generalization error since the experts’ vocabulary tends to be narrower
compared to the broader vocabulary of a mass of reviewers. Finally, the third approach
is not always applicable, since such review sets are not available in all cases. It is also
difficult to verify and evaluate a hand-built lexicon to make sure that it contains all the
relevant words and only the relevant words. The common aspect of the three approaches
is the need for human annotation. However, the burden of human annotation should be
as light as possible. Thus, we redefine our problem as that of discovering the smallest set
of documents that, in a given corpus, provide the highest amount of information needed
to develop a domain ontology. Alternatively, we would like to obtain the smallest set of
documents that contain all of the aspect expressions contained in that corpus.

We recall the definition of a corpus as a collection of documents and consider each doc-
ument as a bag of words, where the words can either be aspect expressions or regular
words. Since aspects are features of the target entity that opinion can be expressed about,
we can assume that they appear, in a linguistic sense, as nouns within their respective
texts. This is commonly taken to be true as noted by [27] and other researchers. Thus, we
can approximate the smallest set of document containing all the aspect expressions with
the smallest set of documents that encompasses all the corpus nouns.

This problem of finding the smallest set of documents containing all corpus nouns can
be reduced to the classical set cover problem with documents representing individual sets
(each taken as a bag of words) and the corpus representing the problem universe. The
set cover problem has long been known to be NP-complete due to [25], and therefore a
heuristic method is required to solve it. Fortunately, several such heuristics have been
suggested over the years, the most notable of which is the greedy technique of iteratively
selecting sets that provide the highest coverage until the entire universe is covered [49].
This method has been proven to be the best possible approximation for the problem by
[33], [10], [2], inter alia. However, for large corpora, a greedy algorithm that iterates
over the entire dataset at each step is still not the most optimal solution. Furthermore, set
covers produced by the canonical greedy algorithms are still too large to afford human
consumption. This is often due to the fact that they contain a number of sets that, when
considered in conjunction with other sets, contribute very little to the universe at large,
but which the algorithm is not designed to identify and eliminate. To account for these
shortcomings, we will suggest an alternative approach in Ch. 5.

15

3.3.2. Aspect Expression Extraction

In dealing with the problem of aspect-based sentiment analysis, we are motivated by the
desire to understand opinion expressed on the various aspects of an entity. This is not
trivial since these aspects are not always known in advance and need to be discovered
from data. Furthermore, it is known that various words and phrases can be used to refer to
the same aspect which makes the task even harder to accomplish. The problem of aspect
expression extraction deals with the discovery of such words and phrases from a corpus.
The extracted expressions can then be grouped into aspects using other algorithms that
have been reported in the literature for this task as discussed under Ch. 2.

Once again, we start by assuming that aspect expressions are a subset of corpus nouns.
Our problem in this context is to provide a binary classification method to separate aspect
expressions from regular nouns. We will present such a scheme in Ch. 5.

16

4

SYSTEM DESIGN

SARE is designed to be a modular platform. This modularity facilitates extendability
within the system, which has previously been highlighted as a basic requirement for such
an environment. In this section, we will outline the architectural and functional specifica-
tions of the system as well as explain some of the more crucial mechanisms that contribute
to the modularity of the environment.

4.1. Application Layers

The architecture of SARE follows a layered design pattern; that is, it consists of several
layers, each of which performs functions at a particular level of the system and provides
abstraction for layers at higher levels. This pattern allows for separation of concern within
the layers and makes it easier for each layer to operate while being oblivious to finer
details of operations that take place at lower levels. The overall architecture of SARE, as
depicted in Fig. 4.1, is divided into four main layers that are discussed below.

4.1.1. Persistence Layer

The persistence layer stores data representing final as well as intermediate results of mod-
ule operations in a relational database. To anticipate addition of new modules and data
objects, the database is designed in a very flat manner with only two tables so as not to
require changes to the database model every time a new module or data object is intro-
duced. The first table (persistent_objects) stores the actual data and only contains

17

Data

Logic Layer

Aspect Lexicon
Logic Core Logic

New Module 1
Logic

Data Access Layer

Entity Manager

ORM

Web Application Layer

Aspect Lexicon
Web Module

Corpus
Web Module

New Web Module 1

Request Router

New Web Module 2

Website

HTTP
Request

Web Server

User

REST
Web Service

Request

External Web Service

Figure 4.1: Overall architecture of SARE

such fields as are essential to the entire hierarchy of data objects. In this scheme, while not
all data objects make use of the full set of columns available, we achieve better query per-
formance as a trade-off. Additionally, this table has a multi-purpose column, which can be
used to store any arbitrary data in the JavaScript Object Notation (JSON) format, thereby
allowing the table to support any number of logical columns. It should be noted that this
extendability comes at the cost of the ability to perform reliable database-level queries
on these logical columns, which must instead be performed in the data access layer. The
second table (jt_object_references) is used to maintain many-to-many relationships
between the data entities. Fig. 4.2 shows a simplified graphical representation of this
database.

18

Table

persistent_objects

uuidPK

title

store_idFK

1

*

Table

jt_object_references

referer_id
PK
FK

referee_id
PK
FK

1 *

*

object_type

other_data

created

updated

owner_id

Figure 4.2: Simplified database design

4.1.2. Data Access Layer

The data access layer provides an abstraction between the persistence and higher-level
layers. We use an Object-Relational Mapping (ORM) library to manage data access as
well as the database itself. To provide better query performance and to mirror the database
setup described above, we use a single-object hierarchy to model our data objects. A sim-
plified class hierarchy of data objects is shown in Fig. 4.3. Conceptually, data objects
all derive from the same type (PersistentObject) and are divided into two main types:
documents (PersistentDocument), and document stores (PersistentDocumentStore).
Documents are used to store units of information such as opinion documents and aspect
expressions, and document stores are used for organizing multiple documents into collec-
tions of related documents such as opinion corpora and aspect lexica.

4.1.3. Logic Layer

This is where the primary logic of the application is placed. It houses data objects and
algorithms for creating and manipulating these data objects, which for the most part mirror
the concepts mentioned in Ch. 2 and derive from the objects mentioned above. Details
on algorithms used and other primary logic will be presented in Ch. 5. Since the logic

19

<<Class>>

PersistentObject

title: String

id: byte[16]

otherData: String

<<Class>>

PersistentDocument

store: PersistentDocumentStore

<<Class>>

PersistentDocumentStore

documents:

Iterable<PersistentDocument>

description: String

language: String

Figure 4.3: Simplified hierarchy of data objects

layer is the most crucial part of our application and the one most prone to errors, this
layer contains a robust unit test suite to ensure code correctness across releases and code
changes.

4.1.4. Web Application Layer

This layer contains the presentation logic of the application and uses the Model-View-
Controller (MVC) paradigm. The MVC pattern consists of models that represent the
data, views that represent the display logic, and controllers that represent the manipu-
lation logic of an application. Controllers build both models and views, where models
are based on underlying data objects and views are provided access to these models so
that they can display the data. Additionally, the web application is built on the REpre-
sentational State Transfer (REST) architecture presented in [11], which makes it a highly
robust web service as well as a website. These web services can also act as Application
Programming Interfaces (APIs) for external applications seeking to leverage the function-
ality of SARE independent of the website. Fig. 4.4 shows the basic architecture of our
MVC application.

20

Server

Controller

Model View

Browser

External Process

Uses

Builds/Uses Builds

HTTP Request HTML/JSON Response

HTTP Request

HTML/JSON Response

Figure 4.4: Basic architecture of the MVC application

4.2. Module Definition and Workflow

Modules provide cohesive functionality or perform operations on a particular kind of
objects and are naturally the building blocks of SARE. While conceptual modules may
exist at the logic layer level, they are more formally defined in the web application. It
is worth noting that the architecture represented in Fig. 4.1 shows only a selection of
modules available and new modules can be introduced by adding them in the web appli-
cation layer. Supporting primary logic can either be placed in the logic layer or even in
an external web service that the web module communicates with.

21

The design of SARE favors a workflow-type interaction; i.e., the user takes their data
through a series of steps to obtain the final result. Each of these steps is handled by a
module which performs a specific operation and provides a certain type of result. The
user is then presented with a list of modules that can utilize this type of result and the
process continues.

From the above description, it should be clear that each module has its own competencies;
that is, it can operate on certain types of data and produce a particular type of output.
For example, a module that builds aspect lexica might accept a document corpus as its
input and produce an aspect lexicon as its output, which can then be consumed by yet
another module. To facilitate this behavior, each module defined in the web application is
annotated with the types of data objects it can operate on. As depicted in Fig. 4.5, when
the website receives output from a module, it sends the same to the module resolver. The
module resolver, based on the annotated module inputs, determines modules that are able
to consume that result and provides to the website a list of possible next modules. The
website then displays this list for the user to make their selection.

User
Module
Resolver

Module

Perform
module operation

Website

Send operation

Respond with output

Respond with
possible

next modules
Display possible

next modules

Display output Send module output

Figure 4.5: Module resolution sequence

22

4.3. Multilingual Support

We have designed SARE such that support for any language can be added to the system
with minimum setup provided that an NLP package is available for that language. New
languages can be defined by introducing wrapper classes containing language-specific
NLP packages. We use the object factory design pattern to allow for transparently gen-
erating language processors for any of the supported languages. Since each document
corpus stores information about the language of the corpus, any algorithm operating on
that corpus can use the object factory to create a language processor and use it to process
that language in an abstract manner. Fig. 4.6 shows a reduced class hierarchy of this
factory design pattern.

<<Interface>>

ILinguisticProcessor

decompose()

tag()

<<Class>>

LinguisticProcessorFactory

create()

parse()

<<Class>>

LanguageA

decompose()

tag()

parse()

<<Class>>

LanguageB

decompose()

tag()

parse()

SomeAlgorithm

useNLP()

<<Import>>

<<Import>>

<<Instantiate>>

Figure 4.6: A reduced class hierarchy of the linguistic processor factory design

23

5

MODULES AND ALGORITHMS

SARE is a multidimensional sentiment analysis research platform that can contain nu-
merous modules, each providing unique services and performing useful sentiment anal-
ysis tasks. However, considering the limited scope of this research, we have chosen to
showcase a few selected modules with the expectation that future research will extend
the functionality of this application to fulfill its potential as a larger sentiment analysis
research environment. In this section, we will describe the current lineup of modules in
SARE and explain their process and algorithms.

5.1. Corpus Reduction Module

In Sec. 3.3.1, we discussed the problem of extracting gold-standard aspect lexica and
defined it as one of finding the smallest set of documents containing all the corpus nouns.
We now present a generalized solution to this problem that deals with discovering the
smallest set of documents containing all of a given PoS tag or a combination thereof.
This generalization will serve to make this solution useful for other annotation-related
tasks such as sentiment lexicon creation.

We have stated previously that the problem mentioned above is reducible to the problem
of finding a minimal set cover of a collection of sets. While the classical greedy set
cover algorithm has been proven to be the best approximation, we propose an algorithm
inspired by the greedy heuristic that allows us to operate on large datasets more efficiently.
We also keep a utility score for each set that allows us to ignore less significant sets in
the set cover according to an error tolerance parameter. An informal explanation of this
algorithm, which we term as being Eagerly Greedy, is given below.

24

We maintain a candidate set cover initialized to an empty set and iterate through the
document corpus sequentially. For each document encountered, we consider the set of
all PoSs of interest in that document as a new set, and attempt to sequentially match its
elements to those of the candidate cover sets, i.e., members of the candidate set cover.
Each time a candidate cover set consumes (presumes covered) an element, it increments
its own utility score by one and removes the element from the new set. If the candidate
cover set is a subset of the new set, then the candidate cover set is itself entirely consumed
and replaced by the superset (with utility score being set to the sum of existing utility plus
the size of the new set). This process continues until either all of the elements in the new
set are consumed or we run out of candidate cover sets to process. In the latter case, a new
candidate cover set is formed from the contents of the uncovered elements with the utility
score being initialized to its size. This algorithm has been formalized in Alg. 1.

Algorithm 1 An eagerly greedy minimal set cover approximation algorithm
Precondition: D is a set of documents
Precondition: ExtractSet is a function that extracts expressions of interest from a given

document

1: function SetCover(D, ExtractSet)
2: D̂ ← ∅

3: for all D ∈ D do . Do for each document in the corpus
4: X ← ExtractS et(D) . X are uncovered elements
5: for all D̂ ∈ D̂ do . Do for each set cover document
6: if X ⊃ D̂ then
7: D̂← X
8: D̂.utility← D̂.utility + |X|
9: X ← ∅

10: else if D̂ ∩ X , ∅ then
11: D̂.utility← D̂.utility + |D̂ ∩ X|
12: X ← X − D̂
13: end if
14: if X = ∅ then
15: exit for
16: end if
17: end for
18: if X , ∅ then
19: D̂← X
20: D̂.utility← |X|
21: D̂ ← D̂ ∪ {D̂}
22: end if
23: end for
24: return D̂
25: end function

25

The result of the above-mentioned algorithm is an approximate minimum set cover of the
document corpus such that all expressions of interest are represented. While the size of
the dataset is reduced, we still do not achieve any improvement over the greedy set cover
algorithm, and need to decrease the number of documents even further. We will suggest
here a pruning technique that can be applied to reduce the size of the corpus, wherein lies
the real usefulness of this algorithm.

At the end of the above procedures, we might be left with several sets having very low
utility scores; that is to say, D̂.utility ≈ 0. We can therefore eliminate some of the less
important sets by sorting them in decreasing order of utility and choosing the top sets
whose cumulative utility makes up at least a certain fraction of the total utility. Formally
speaking, we choose the top k cover sets that satisfy,

k∑
i=1

D̂i.utility∑
D̂∈D̂

D̂.utility
≥ 1 − τ̂

where τ̂ is tolerance to error that is a parameter of the algorithm and can be adjusted as
desired.

The application of the algorithm and the pruning step mentioned above yields a signifi-
cantly reduced set of documents with a maximum error of τ̂.

5.2. Aspect Expression Extraction Module

This module attempts to discover aspect expressions from a document corpus using semi-
supervised learning. For this purpose, we first extract all candidate aspect expressions
along with their contexts from the corpus, and apply a bootstrapping technique to auto-
matically label part of the data. An SVM classifier is then used to learn a model from this
training data and applied to the entire corpus to generate a new training set. This process
continues until the outputs stabilize. A detailed description of these steps follows.

26

5.2.1. Extracting Candidate Expressions

As noted in preceding chapters, we assume that all aspect expressions appear, in a lin-
guistic sense, as nouns in their respective contexts. All nouns in the corpus, therefore,
can be considered as candidate aspect expressions. We use a PoS tagger to identify all
such candidate expressions ê ∈ Ê from the corpus. The text of each opinion document
is broken down into sentences using text segmentation and each sentence containing a
candidate feature expressions is considered as a document for the purposes of the learn-
ing algorithm. The following machine learning features are then drawn from all of these
learning documents for each candidate expressions and their values are normalized.

Number of sentences: The number of sentences a candidate expressions appears in de-
notes its frequency in the corpus, which in itself is an indicator of the likelihood of
the expression being a true aspect expression. Based on this assumption, we include
this frequency as a machine learning feature.

PoS distribution: We expect that the words surrounding aspect expressions will gen-
erally follow a certain composition of different PoSs, an information that can be
utilized by a machine learning algorithm. Therefore, we extract the number of
verbs, adverbs, and adjectives surrounding each expression, each of which acts as a
separate feature (number of verbs, adverbs, etc.).

Polarity: Aspect expressions are more likely to appear in highly polar contexts and the
cumulative polarity of words surrounding a candidate expression can give strong
clues about its status as an aspect expression. Based on this idea, we utilize the total
polarity score of all surrounding words, which is the sum of positive and (unsigned)
negative polarities obtained from a polarity lexicon.

Neutrality: Conversely to the above, aspect expressions are less likely to be surrounded
by neutral words. Therefore, we extract the sum of neutrality score, similarly taken
from a polarity lexicon, of all words surrounding a candidate aspect expression.

5.2.2. Automatic Labeling

As in all semi-supervised learning approaches, we need to assemble a set of labeled data
to be used for training. Here, we utilize the assumption made by [17] that the most
frequent nouns in an opinion corpus are highly likely to be aspect expressions. We further
expand on this idea by making the converse assumption that the least frequent nouns in a

27

corpus are unlikely to be aspect expressions. Based on this assumption, our training data
is extracted by labeling k aspect expressions that appear in the most number of sentences
as belonging to the positive class, and k expressions that appear in the least number of
sentences as negative. Here, k is given by:

k = bln(|Ê|) + be

where Ê is the set of all candidate aspect expressions and b is a parameter of the algorithm
and controls the extent to which automatic labeling can be relied upon. Once we have
obtained labeled data L in this manner, the rest of the data is treated as unlabeled data
U. It should be noted that these are soft labels and can be changed in the process of
learning.

5.2.3. Semi-Supervised Learning

The labeled data L is used to train an SVM classifier. The model thus learned is used to
obtain class distributions for expressions in both labeled and unlabeled sets. If either of the
class score is higher than an acceptability threshold, λ, which is another parameter of the
algorithm, we assign the expression to that class. Thus an expression may be reassigned
to a different class if the class distribution changes after the initial labeling. At the end of
such an iteration, once again, we have a set of labeled and unlabeled data that are used
similarly to retrain and reclassify until the outputs stabilize. A formal definition of the
algorithm is given in Alg. 2 and 3.

5.3. Aspect Lexicon Builder Module

This module can be used to manually build an aspect lexicon from a document corpus
by sequentially traversing through corpus documents and trying to pick out aspects and
aspect expressions from the document texts. A reduced corpus obtained from the method
described in Sec. 5.1 can be used as well, thereby decreasing the annotator’s burden.
Since the mechanics of this module are mostly implementation-specific, we will explain
its function further in Ch. 6.

28

Algorithm 2 An algorithm for extracting aspect expressions
Precondition: Ê is a collection of candidate aspect expressions ordered by descending

frequency
Precondition: Machine learning features have already been extracted ∀ê ∈ Ê
Precondition: λ ∈ [0, 1] is a class score acceptability threshold
Precondition: b ≥ 0 indicates the extent to which automatic labeling is to be relied upon
Precondition: TrainSVM is a function that trains an SVM classifier from the given train-

ing data and returns a classification model

1: function ExtractAspectExpressions(Ê, λ, b)
2: 〈L

′

,U
′

〉 ← AutoLabel(Ê, b)
3: repeat
4: 〈L,U〉 ← 〈L

′

,U
′

〉

5: 〈L
′

,U
′

〉 ← Classify(L, U)
6: until L = L

′

7: return L
′

8: end function

5.4. Aspect-Based Sentiment Analysis Module

The objective of this module is to use a domain aspect lexicon for calculating aspect-based
and overall sentiment scores for each review and present a summarized result. Since this
work was done outside the scope of this thesis, we will only present a brief description
here. To calculate sentiment scores, word polarities are first obtained from a polarity lexi-
con. A polarity-placement algorithm is then used to calculate score values for each aspect
and the overall review. Using syntactic dependencies obtained through a dependency
parser, polarity values can be transferred from the polarity word to the aspect keyword,
and consequently to the aspect.

29

Algorithm 3 Auto-labeling and classification methods for aspect expression extraction
9: function AutoLabel(Ê, b)

10: k← bln(|Ê|) + be
11: 〈L

′

,U
′

〉 ← 〈∅, ∅〉
12: for all ê ∈ Ê do
13: if ê ∈ Top(Ê, k) ∨ ê ∈ Bottom(Ê, k) then
14: ê.class← 1[ê ∈ Top(Ê, k)]
15: L

′

← L
′

∪ ê
16: else
17: ê.class← null
18: U

′

← U
′

∪ ê
19: end if
20: end for
21: return 〈L′ ,U ′

〉

22: end function

23: function Classify(L, U, λ)
24: M ← TrainSVM(L)
25: 〈L

′

,U
′

〉 ← 〈∅, ∅〉
26: for all ê ∈ (L ∪ U) do
27: c←M.Classify(ê)
28: if c+ > λ ∨ c− > λ then
29: ê.class← 1[c+ > λ]
30: L

′

← L
′

∪ ê
31: else
32: ê.class← null
33: U

′

← U
′

∪ ê
34: end if
35: end for
36: return 〈L′ ,U ′

〉

37: end function

30

6

IMPLEMENTATION AND EXPERIMENTS

We implemented SARE as proposed in Ch. 4, which is the first major contribution of
this work. We also conducted some experiments on the algorithms discussed in Ch. 5.
Here, we will describe the system implementation accompanied by a simple use case, and
discuss the experiments with their goals, setup specifics, and results.

6.1. Implementation Details

The research environment was implemented using a combination of several state-of-the-
art tools and technologies. All of these technologies are open-source and no proprietary
software was used. The system is publicly-maintained and accessible as both a web ser-
vice and a web site from http://sare2.sabanciuniv.edu, and the source code is
available under the General Public License (GPL) from the same location.

The implementation employs a layered architecture as described in Ch. 4. We use a rela-
tional database provided by MySQL to implement the persistence layer. The data access
layer uses Java Persistence API (JPA) backed by Hibernate as the ORM. While we have
represented the data access layer separately, the set up required for it often spills in prac-
tice into the logic layer making the data access functionality not entirely distinguishable
from the logic layer. The primary logic of the application is written in Java and Scala.
We have also created a unit test suite for the logic layer, which is developed using the
JUnit testing framework. MVC framework for the web application layer is provided by
the Play Framework. In our case, the models and controllers are written in Java and some
Scala, while the views are written using Play’s template language, HTML, JavaScript,
CoffeeScript, and LESS CSS. An outline of the different layers of implementation and the
interaction of their various components is presented in Fig. 6.1.

31

http://sare2.sabanciuniv.edu

Persistence Layer

MySQL Database

Data Access Layer

Entity Manager
(Java)

ORM
(Hibernate-Provided JPA)

Logic Layer (Java/Scala)

Algorithm Data Object

Web Application (Play Framework using Java and Scala)

Model
Controller

View

LessCSS CoffeeScript
Play

Templates
JSON

Play Framework
Request Router

Build

Build

HTTP Response

CSS JavaScriptHTMLJSON

AsAsAsAs

Browser or other
external process

Receive HTTP request

Receive request

Send response

Respond with

Serve

Create

Figure 6.1: Implemented architecture of SARE

6.1.1. A Basic Use Case

We will now demonstrate the functionality of our system with a use case, in which the
user attempts to create a gold-standard aspect lexicon and perform sentiment analysis
on a corpus based on the created aspect lexicon. We assume that the user is already
logged into the system and on the main analysis page shown in Fig. 6.2. To start, the
user clicks the “Select a corpus” button and adds a new corpus by clicking the “Add”
button. A new corpus is then uploaded with the help of the the interface which currently
accepts specialized text, Extensible Markup Language (XML), and Comma-Separated
Values (CSV) formats either as a single file or as a collection of files compressed using
the ZIP format. This interaction is shown in Fig. 6.3. The “Optimize corpus” button is
then clicked which takes the user to the corpus optimizer page. Here the user can select
their optimization criteria, in this case by checking “Nouns” and the option to “Optimize

32

words with common roots” and click “Apply”. The optimization engine will create an
optimization profile according to the loss tolerance parameter and plot the result as shown
in Fig. 6.4. The user can then select the loss tolerance they are most comfortable with,
click “Apply” again, and then click the “Build aspect lexicon” button. On this page,
the user can turn on options to highlight any combination of PoSs to assist them with
the task of identifying aspects and expressions while traversing through the documents.
Any identified aspects and related expressions can be added using the controls on the
right-hand side of the page as shown in Fig. 6.5. Finally, the user can select the “Run
aspect-based opinion miner” to run the opinion mining engine on the corpus using their
aspect lexicon and view the results as partially shown in Fig. 6.6. A diagram detailing
the activity of creating a gold-standard lexicon is depicted in Fig. 6.7 and an overview
of the use case for the same activity is shown with the help of a use case diagram in Fig.
6.8.

Figure 6.2: A screenshot of the main analysis page

Figure 6.3: A screenshot of the add corpus page

33

Figure 6.4: A screenshot of the corpus optimization engine displaying the optimization
profile

6.2. Experimental Results

We devised and conducted experiments to test the performance and effectiveness of the
algorithms described in Ch. 5. With these experiments, we aim to show the usefulness
of our algorithms and their viability as baseline operations within the larger SARE sys-
tem.

34

Figure 6.5: A screenshot of the aspect lexicon builder interface

6.2.1. Corpus Reduction Algorithm

This experiment measured the extent of data reduction by applying the eagerly greedy set
cover algorithm presented in Sec. 5.1. In order to perform this evaluation, we need to
compare the proposed algorithm with the best and the worst approximations of set cover
problems. We chose a random selection approach as the worst case approximation; that
is to say, randomly choosing sets from the collection until all the elements in the universe
are covered. The best approximation, as referenced previously, is the classical greedy
algorithm. In this comparison, we looked at the sizes of the set cover approximation
computed by the individual algorithms relative to the size of the corpus, where size of
each collection is given by the number of documents in the respective collection. We also
experimented with various values of τ̂ to observe which value provides us with optimal
data reduction without compromising data quality.

Since the overall goal is to reduce the amount of data presented to the human annotator,
we observe the performance of these three algorithms as a function of the amount of
data reduction achieved. For a given algorithm, α, the data reduction it achieves is given
by:

∆(α) = 1 −
|D̂∗α|

|D|

35

Figure 6.6: A screenshot showing partial results of the aspect-based opinion mining en-
gine

6.2.1.1. Setup

Our opinion corpus was drawn from a set of TripAdvisor1 hotel reviews as published in
[50]. This dataset consists of 235,793 reviews on various hotels that were aggregated
over a one month period. For our experiment, we sampled a random subset of 10,000
reviews and used review nouns as each review’s elements of interest. The experiments
were performed using a Java implementation, and document nouns were extracted using
the Stanford PoS tagger presented in [47].

6.2.1.2. Results

The extent of data reduction achieved by each of the algorithms is given in Table 6.1. We
also experimented with several values of τ̂ to observe the one that provides us with the
best reduction while incurring the least amount of loss in utility. As shown by the plot
of τ̂ against ∆(EGτ̂) in Fig. 6.9, there is a significant drop in set cover size somewhere
near τ̂ = 8%. Thus, we can achieve very high utility coverage with a smaller part of
the corpus by allowing for some outlier documents to be ignored. The comparison of
algorithms shows that while the reduction achieved by the greedy algorithm is slightly
higher than our algorithm (a difference of 2.81%), we can leverage our pruning technique

1Online travel and reviews site: http://www.tripadvisor.com.

36

http://www.tripadvisor.com

Gold-standard lexicon creation

Analyze Select corpus Optimize corpus Build aspect lexicon

P
h

a
se

Select corpus Click "Add"

Edit information

Done?

Choose next action

Add file

Click "Apply"

Choose next module

Yes

Click

"Optimize corpus"

Click

"Build aspect

lexicon"

Done?

No

Done?

Edit criteria

Click "Apply"

Yes

Click

"Build aspect

lexicon"

Choose next action

No

Yes

Change

emphasized POS's

Traverse through

documents

Add aspect

Add aspect

expression

Upload lexicon

No

Figure 6.7: The aspect lexicon creation activity

to dramatically widen the gap in the opposite direction by introducing a small tolerance to
error. The error tolerance of 8% that we have chosen for this corpus gives our algorithm
an edge of 28.52% over the greedy algorithm.

Algorithm [α] Data Reduction [∆(α)]

Random 0%
Greedy 68.2%
Eagerly Greedy (τ̂ = 0%) 65.39%
Eagerly Greedy (τ̂ = 8%) 96.72%

Table 6.1: Comparison of corpus reduction algorithms

6.2.2. Aspect Expression Extraction Algorithm

We devised an experiment to to assess the performance of the semi-supervised classi-
fication algorithm presented in Sec. 5.2. The results presented in [57] for the OFESP
algorithm were used as the baseline for this experiment. We could also have adopted
the approach presented in [38] as the baseline, but their method uses user-provided seed

37

Create gold-standard
aspect lexicon

Select
source corpus

<<include>>

Upload
source corpus

<<extend>>

Optimize corpusAdjust optimization <<extend>>

Build aspect lexicon

<<extend>>

<<include>>

Traverse through
documents

Create aspects

<<include>>

Add keywords

<<extend>>

<<extend>>

<<extend>>

Upload aspect
lexicon

<<extend>>

Figure 6.8: An overview of the aspect lexicon creation use case

words, which is different from our approach. We will experiment with the effects of in-
corporating user interaction in our future work. Algorithmic performance was measured
and compared using precision, recall, and F-measure metrics.

6.2.2.1. Setup

A set of 500 hotel reviews from the TripAdvisor review corpus cited previously was used
[50]. For evaluating the performance of our algorithm, we constructed a gold-standard
aspect expression set with the help of the aspect lexicon builder module of SARE intro-
duced in Sec. 5.3. The Stanford Tagger was used for PoS tagging [47], and Weka and
LibSVM libraries for SVM implementation [14, 6, 8]. Word polarity and neutrality scores
were adopted from the SentiWordNet polarity lexicon created by [9]. We found the most
optimal values for our algorithm’s parameters as well as those for the SVM learner using
grid search and have reported the best results below.

38

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

τ̂ = 8%,∆ = 96.72%

τ̂

∆
(E

G
τ̂
)

Figure 6.9: Graph showing data reduction against error tolerance

6.2.2.2. Results

A comparison of performance metrics is shown in Table 6.2. As can be seen, the per-
formance of our approach is comparable to the baseline method. While OFESP provides
a higher recall and lower precision, our approach provides a balance between precision
and recall. The values are still quite low and can be further improved by introducing ad-
ditional machine learning features that we have not experimented with so far. Finally, it
should be noted that we did not apply the OFESP algorithm separately on our data and
only used the figures provided in the source paper. Since evaluations of this kind are
heavily dependent on the data itself and the gold-standard set used, a direct comparison
of results in the future will provide further insight. A few examples of feature expressions
that were discovered or missed are provided in Table 6.3.

Method Precision Recall F-Score

OFESP 0.4413 0.7032 0.5422
Proposed 0.5164 0.5946 0.5527

Table 6.2: Performance of the aspect expression extraction algorithm as compared with
the baseline

39

Type Rate Examples

True Positive 0.5164 “room service”, “furniture”, “entrance”,
“hotel”, “check-in”

False Positive 0.4836 “advisor”, “friendship”, “world”, “ail-
ment”, “occasion”

True Negative 0.8921 “paperback”, “pedestrian”, “quantity”,
“intestine”, “discussion”

False Negative 0.1079 “staircase”, “bedspread”, “countertop”,
“plumbing”, “bathrobe”

Table 6.3: Examples of aspect expression extracted by the algorithm

40

7

CONCLUSION AND FUTURE WORK

Sentiment analysis is a research area of computer science with a wide range of applica-
tions. The information produced by its processes can be used to inform everyone from
policy makers to stock brokers and average consumers. The astronomical growth of the
World Wide Web and more recently the explosion of web-based social media have brought
about a flood of opinionated data, and with it, an increased interest in the effort to under-
stand, manipulate, summarize, and represent this data. While the effort has sought to
exploit the many opportunities presented by this immense amount of data, it has also un-
covered a growing list of challenges posed by it. Sentiment analysis is thus a vast and
varied field with many complex problems and tasks for which numerous techniques and
solutions have been proposed and discussed in the relevant literature. Despite the breadth
of research in this area, there is a lack of unified resources which provides aspiring re-
searchers with benchmarks to compare their prospective approaches against and integrate
various baseline and state-of-the-art methods into one easily-accessible system. Such a
system would also be useful for industry professionals and private practitioners interested
in obtaining opinion profiles of various topics and corpora.

In this thesis, we presented SARE, which is a framework designed to provide a starting
point for such a unified resource. The contributions of our work are twofold, i.e.,:

1. To introduce a framework that allows for integrating various sentiment analysis
tasks and methods into one system. Since sentiment analysis is a vast and growing
problem and an ambitious project of this magnitude requires broader support, we
proposed that the system must be incrementally extendable, publicly accessible,
open-sourced, and provide mechanisms for multilingual support.

2. To exhibit the capabilities of this system by providing an integrated solution for two
facets of a particular sentiment analysis problem – that of domain aspect lexicon
creation and evaluation. These two facets are: gold-standard lexicon creation and

41

aspect expression extraction. We also integrated these solutions with a baseline
aspect-based sentiment analysis engine, which was created outside of the scope of
this work.

The system design is based on a layered architecture which consists of persistence, data
access, logic, and web application layers. Extendability is achieved by making the system
highly modular and minimizing modular inter-dependency. These modules are defined in
the web application and each module is a unit of the system that adopts a particular method
for solving a specific system problem. The design of the system favors a workflow-style
user interaction: each module produces a result which is then passed on to one of several
other modules as selected by the user until the user obtains their desired output. The
environment is also designed to support data in any language as long as a NLP package for
that language is integrated into the system. The individual algorithms and solutions can
thus be designed in a language-independent fashion. This system has been implemented
using open-source libraries and technologies, and is publicly accessible from http://
sare2.sabanciuniv.edu. The source code has also been made available under the
GPL license. We have implemented the application as a REST MVC application that
allows it to be used both as a web site and a web service.

Creating gold-standard aspect lexica is a difficult problem due to the extensive amount of
effort required to manually annotate large sets of documents. We approximate aspect ex-
pressions with corpus nouns and re-formulate the problem as a minimum set cover prob-
lem. This problem is then solved with an approximation algorithm termed as the Eagerly
Greedy set cover approximation algorithm which also scores each document’s usefulness
and allows for ignoring documents with low utility while maintaining a threshold of error
tolerance. The human annotator can then use this reduced set of documents to create an
aspect lexicon for the corpus domain. We tested the performance of our algorithm against
the classical greedy set cover approximation heuristic and a random set cover approxima-
tion approach and found that the proposed approach can significantly reduce the size of
the corpus if the user is willing to tolerate even a small amount of error.

We also proposed a semi-supervised baseline method for automatically extracting aspect
expressions from a corpus. Once again, we assume that all corpus nouns are candidate
aspect expressions and derive machine learning features based on natural language and
sentiment orientation information from all of the candidate aspect expressions. We further
make the assumption that the most occurring candidates are highly likely to be aspect ex-
pressions and the least occurring candidates are highly likely not to be aspect expressions.
We use this assumption to perform automatic labeling of some of the expressions and then
apply the SVM learning algorithm iteratively, changing automatic labels as needed, un-
til the results stabilize. We compared the performance of this algorithm with a baseline

42

http://sare2.sabanciuniv.edu
http://sare2.sabanciuniv.edu

method and showed that it provides a better balance of precision and recall. Moreover,
unlike the baseline method, ours does not use any predefined sentiment patterns but lever-
ages sentiment polarities to learn a classification model, which is a more generalizable
approach.

7.1. Future Work

The work discussed in this thesis presents the initial design and implementation of an
ambitious sentiment analysis research environment, and provides limited solutions for a
major sentiment analysis problem. As such, opportunities for extensions and future work
are enormous.

Sentiment analysis is a broad research area and as we have previously argued, there is
need for a system that supplies baselines and implementations for state-of-the-art algo-
rithms that can be used as benchmarks by sentiment analysis researchers and practition-
ers. In its current form, our platform mostly provides a framework that can be extended
to support such tasks. Our first and foremost suggestion for future work is to provide
implementations for prominent baseline sentiment analysis methods and pave the way
for incorporating state-of-the-art techniques into the system. This will dramatically in-
crease the usefulness of the system and its appeal to the wider sentiment analysis research
community.

We have approximated aspect expressions with nouns and not dealt with noun phrases in
our approach. It would be worthwhile to incorporate noun phrases into our approximation
and obtain more accurate results. Some researchers have also challenged the view that
aspects are represented as nouns and presented the possibility of other PoSs being used to
express aspects. The presence of implicit aspects has also been studied in the literature.
We have not dealt with either of these questions and left it as an opportunity for future
work.

While we believe our system is the first one to support the task of extracting gold-standard
aspect lexicon, there are still areas of improvement that can be made to our method and
interface aside from those mentioned above. Presently, our approach takes each document
as a whole and does not break it into smaller pieces. An investigation into whether smaller
parts of documents such as sentences or paragraphs can be used instead of the entire
document to achieve better corpus reduction and reduce the annotator’s burden would
be excellent grounds for future research. The gold-standard aspect lexicon is built by
sequentially traversing through the entire, albeit reduced, set of documents and annotating

43

them individually. Another area for improvement would be to organize our system as an
active learner so that it uses the already-annotated documents to decide which document
to display next based on levels of uncertainty. We believe such a method would reduce
the annotator’s burden even further than our currently proposed approach.

Sentiment lexica are similar to aspect lexica except that they are generally more focused
on adjectives and adverbs, and structured more like a dictionary and less like an ontology.
Our gold-standard aspect lexicon creation tool can also be extended to create a tool for
manually creating domain-based gold-standard sentiment lexica, which would be useful
for performing comparisons with automatic sentiment lexicon creation algorithms.

While our aspect expressions extraction algorithm provides promising baseline results,
its performance can be improved by adding more machine learning features and experi-
menting with other sentiment analysis lexica. An exploration into using domain-adapted
sentiment lexica is especially bound to provide interesting outcomes. Several other su-
pervised learning methods and topic modeling approaches have been reported as being
successful in extracting aspect expressions, as discussed in Ch. 2. In our future studies,
we are interested in investigating the impact of using such approaches in combination with
ours as a means to advance the state of the art. Many methods have also been proposed
in the literature to cluster aspect expressions into higher-level aspects, which we intend to
utilize in order to complete the task of automatic aspect lexicon extraction.

On a more general note, we have used a particular sentiment lexicon throughout our appli-
cation. This can easily be generalized by supplying the user with the option of uploading
or choosing their own sentiment lexicon, which will provide more customizability for
them. Furthermore, our platform only has an English-language NLP package installed
at present, but we are interested in extending the linguistic reach of our application by
introducing other languages such as Turkish.

While our application has the capability to interact with external web services and mod-
ules can be made, with limited effort, to interact with external processes, we have not
made this functionality available to the user. One of our future goals is to allow the user
to authorize any external web service to plug in to our system and interact with it just like
any other part of the application. This will make the application more customizable and
allow the user to harness the capabilities of our application and combine them with those
supplied by external services.

As previously mentioned, SARE is an ambitious undertaking that requires broad support
and contribution. We have already made our project open source, and will promote it
further as an open-source project so that researchers and developers can provide their
contributions and enhance the standing and usefulness of this environment. To this end,

44

we also need to expand the system documentation, which only covers the logic layer and
some parts of the web application layer at present. More comprehensive documentation
will help future collaborators to easily understand the application, perform maintenance
operations, and extend its functionality with new modules and languages. Scalability is
another issue that we have not thoroughly studied thus far. Currently, our application is
deployed on a single server and provides reasonable performance. However, we believe
that the current capacity is not enough to handle large amounts of traffic, and if the project
gains more prominence and use, this capacity will need to be reconsidered and increased
accordingly.

45

A

LIST OF SOFTWARE, TECHNOLOGIES, AND TOOLS

The following is a list of software, technologies, and tools used by our system. As men-
tioned in the main text, all of these are open-source software and no proprietary software
has been used. It should be noted that we have left out some items such as Java, JavaScript,
HTML, CSS, etc. since we believe they have a wide-enough recognition and impact not to
warrant an introduction. Additionally, there are many dependencies that are included with
the libraries that we have used, and such transitive dependencies are also not included in
this list.

Apache Commons: A project of the Apache Software Foundation that contains general-
purpose, reusable, and open-source Java components that provide quick and stan-
dard solutions to many programming problems.
URL: http://commons.apache.org

CoffeeScript: A programming language that provides syntactic convenience, brevity,
and other utilities over JavaScript. In our application, it only exists on the server-
side and compiles predictably into JavaScript when rendered as an HTTP response.
URL: http://coffeescript.org

Google Gson: A Java library developed by Google for converting between Java objects
and JavaScript Object Notation (JSON) objects.
URL: https://code.google.com/p/google-gson

Google Guava: A collection of general-purpose open-source libraries for Java developed
primarily by Google that provide basic utilities and convenience methods for creat-
ing and handling Java objects.
URL: https://code.google.com/p/guava-libraries

46

http://commons.apache.org
http://coffeescript.org
https://code.google.com/p/google-gson
https://code.google.com/p/guava-libraries

Hibernate: An Object-Relational Mapping (ORM) library for the Java programming lan-
guage. ORMs provide mapping from object models to classical relational databases
taking away the burden of database access from the developer. We have used hiber-
nate in the data access layer of our application. Hibernate is open-source software
available under the General Public License (GPL) license.
URL: http://www.hibernate.org

Java Persistence API (JPA): A Java framework for managing relational data. JPA pro-
vides a specification that can be harnessed by an implementation library to furnish
ORM services to an application in a standardized manner. We have used JPA pro-
vided by Hibernate in the data access layer of our system.
URL: http://goo.gl/EwUWU

jqPlot: A plotting and charting plugin for jQuery that can be used to draw various kinds
of charts in web pages.
URL: http://www.jqplot.com

jQuery: A JavaScript library that simplifies many common JavaScript tasks such as
querying and manipulating the HyperText Markup Language (HTML) document,
making Ajax calls, and handling JavaScript objects. Many open-source jQuery plu-
gins are also available that extend the functionality of jQuery, notably jQuery UI,
which provides widgets and support for several UI controls and functions.
URL: http://jquery.com

jsTree: A feature-rich jQuery plugin that can be used to display and manipulate tree
structures in web pages.
URL: http://www.jstree.com

JUnit: A popular Java-based unit testing framework that allows easy creation of robust
unit tests for Java code. URL: http://junit.org

LESS CSS: An extension of standard Cascading Style Sheets (CSS) that allows for writ-
ing more dynamic style sheets than is allowed by the original CSS specifications.
In our application, it only exists on the server-side and compiles into standard CSS
once rendered as an HTTP response.
URL: http://lesscss.org

LibSVM: An open-source and comprehensive tool for performing machine learning tasks
using Support Vector Machines (SVMs). We have used a Weka wrapper for Lib-
SVM that integrates LibSVM with Weka.
Original tool URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm
Weka wrapper URL: http://weka.wikispaces.com/LibSVM

47

http://www.hibernate.org
http://goo.gl/EwUWU
http://www.jqplot.com
http://jquery.com
http://www.jstree.com
http://junit.org
http://lesscss.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://weka.wikispaces.com/LibSVM

MySQL: An open-source relational database management system available under the
GPL license. The persistence layer of our environment uses MySQL.
URL: http://www.mysql.com

Play Framework: An open-source web application framework based on the Model-View-
Controller (MVC) application pattern and supports development in both Java and
Scala. Play can be used to create REpresentational State Transfer (REST) applica-
tions with limited amount of set up.
URL: http://www.playframework.com

Scala: An object-functional programming language that compiles into Java bytecode and
can be executed on the Java Virtual Machine (JVM). This means that Scala code can
utilize Java libraries and vice versa.
URL: http://www.scala-lang.org

Stanford Core Natural Language Processing (NLP) Library: A Java library that pro-
vides a set of NLP tools to analyze, tag, and parse English text.
URL: http://nlp.stanford.edu/software/corenlp.shtml

Twitter Bootstrap: A set of design templates, UI controls, and JavaScript extensions
that can be used for website development.
URL: http://getbootstrap.com

Weka: An open-source suite of machine learning tools and algorithms that can be used
both as a standalone application and from Java code.
URL: http://www.cs.waikato.ac.nz/ml/weka

48

http://www.mysql.com
http://www.playframework.com
http://www.scala-lang.org
http://nlp.stanford.edu/software/corenlp.shtml
http://getbootstrap.com
http://www.cs.waikato.ac.nz/ml/weka

BIBLIOGRAPHY

[1] James F. Allen. Natural language processing. In Encyclopedia of Computer Science,
pages 1218–1222. John Wiley and Sons Ltd., Chichester, UK, 2003.

[2] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006.

[3] S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G.A. Reis, and J. Reynar.
Building a sentiment summarizer for local service reviews. In WWW Workshop on
NLP in the Information Explosion Era, 2008.

[4] S. R. K. Branavan, Harr Chen, Jacob Eisenstein, and Regina Barzilay. Learning
document-level semantic properties from free-text annotations. J. Artif. Int. Res.,
34(1):569–603, April 2009.

[5] Samuel Brody and Noemie Elhadad. An unsupervised aspect-sentiment model for
online reviews. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, HLT
’10, pages 804–812, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[6] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[7] Gobinda G Chowdhury. Natural language processing. Annual review of information
science and technology, 37(1):51–89, 2003.

[8] Yasser El-Manzalawy and Vasant Honavar. WLSVM: Integrating LibSVM into
Weka Environment, 2005. Software available at http://www.cs.iastate.edu/
~yasser/wlsvm.

[9] Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical
resource for opinion mining. In Proceedings of LREC, volume 6, pages 417–422,
2006.

49

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.iastate.edu/~yasser/wlsvm
http://www.cs.iastate.edu/~yasser/wlsvm

[10] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[11] Roy T Fielding and Richard N Taylor. Principled design of the modern web architec-
ture. In Proceedings of the 22nd international conference on Software engineering,
pages 407–416. ACM, 2000.

[12] Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano. Text
mining for product attribute extraction. SIGKDD Explor. Newsl., 8(1):41–48, June
2006.

[13] M. Hadano, K. Shimada, and T. Endo. Aspect identification of sentiment sentences
using a clustering algorithm. Proceedings of FIT 2010, 2010.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
weka data mining software: an update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[15] Vasileios Hatzivassiloglou and Kathleen R McKeown. Predicting the semantic ori-
entation of adjectives. In Proceedings of the eighth conference on European chapter
of the Association for Computational Linguistics, pages 174–181. Association for
Computational Linguistics, 1997.

[16] Marti Hearst. Direction-based text interpretation as an information access re-
finement. In Paul Jacobs, editor, Text-Based Intelligent Systems, pages 257–274.
Lawrence Erlbaum Associates, 1992.

[17] M. Hu and B. Liu. Mining opinion features in customer reviews. In Proceedings of
the 19th national conference on Artifical intelligence, pages 755–760. AAAI Press,
2004.

[18] Mus’ab Husaini, Andrea Ko, Dilek Tapucu, and Yücel Saygın. Ontology supported
policy modeling in opinion mining process. In Pilar Herrero, Hervé Panetto, Robert
Meersman, and Tharam Dillon, editors, On the Move to Meaningful Internet Sys-
tems: OTM 2012 Workshops, volume 7567 of Lecture Notes in Computer Science,
pages 252–261. Springer Berlin Heidelberg, 2012.

[19] Mus’ab Husaini, Ahmet Koçyiğit, Dilek Tapucu, Berrin Yanikoglu, and Yücel
Saygın. An aspect-lexicon creation and evaluation tool for sentiment analysis re-
searchers. In PeterA. Flach, Tijl Bie, and Nello Cristianini, editors, Machine Learn-
ing and Knowledge Discovery in Databases, volume 7524 of Lecture Notes in Com-
puter Science, pages 804–807. Springer Berlin Heidelberg, 2012.

50

[20] Niklas Jakob and Iryna Gurevych. Extracting opinion targets in a single- and cross-
domain setting with conditional random fields. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP ’10, pages
1035–1045, Stroudsburg, PA, USA, 2010. Association for Computational Linguis-
tics.

[21] H. Jeong, D. Shin, and J. Choi. Ferom: Feature extraction and refinement for opinion
mining. ETRI Journal, 33(5), 2011.

[22] W. Jin, H.H. Ho, and R.K. Srihari. Opinionminer: a novel machine learning system
for web opinion mining and extraction. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1195–
1204. ACM, 2009.

[23] Wei Jin and Hung Hay Ho. A novel lexicalized hmm-based learning framework
for web opinion mining note from acm: A joint acm conference committee has
been determined that the authors of this article violated acm’s publication policy
on simultaneous submissions. therefore acm has shut off access to this paper. In
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 465–472, New York, NY, USA, 2009. ACM.

[24] Aravind K Joshi. Natural language processing. Science, 253(5025):1242–1249,
1991.

[25] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations, The
IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[26] Chenghua Lin and Yulan He. Joint sentiment/topic model for sentiment analysis. In
Proceedings of the 18th ACM conference on Information and knowledge manage-
ment, CIKM ’09, pages 375–384, New York, NY, USA, 2009. ACM.

[27] Bing Liu. Sentiment analysis: a multifaceted problem. IEEE Intelligent Systems,
25(3):76–80, 2010.

[28] Bing Liu. Sentiment analysis and subjectivity. Handbook of Natural Language
Processing, 2:568, 2010.

[29] Bing Liu. Sentiment analysis and opinion mining. Synthesis Lectures on Human
Language Technologies, 5(1):1–167, 2012.

[30] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion observer: analyzing and
comparing opinions on the web. In Proceedings of the 14th international conference
on World Wide Web, WWW ’05, pages 342–351, New York, NY, USA, 2005. ACM.

51

[31] Bing Liu and Lei Zhang. A survey of opinion mining and sentiment analysis. In
Charu C. Aggarwal and ChengXiang Zhai, editors, Mining Text Data, pages 415–
463. Springer US, 2012.

[32] Chong Long, Jie Zhang, and Xiaoyan Zhut. A review selection approach for accurate
feature rating estimation. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pages 766–774. Association for Computational
Linguistics, 2010.

[33] C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-
lems. Journal of the ACM (JACM), 41(5):960–981, 1994.

[34] D.K. Ly, K. Sugiyama, Z. Lin, and M.Y. Kan. Product review summarization based
on facet identification and sentence clustering. Arxiv preprint arXiv:1110.1428,
2011.

[35] Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. Topic
sentiment mixture: modeling facets and opinions in weblogs. In Proceedings of the
16th international conference on World Wide Web, WWW ’07, pages 171–180, New
York, NY, USA, 2007. ACM.

[36] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Eu-
ler. Yale: Rapid prototyping for complex data mining tasks. In Lyle Ungar, Mark
Craven, Dimitrios Gunopulos, and Tina Eliassi-Rad, editors, KDD ’06: Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 935–940, New York, NY, USA, August 2006. ACM.

[37] Samaneh Moghaddam and Martin Ester. The flda model for aspect-based opinion
mining: addressing the cold start problem. In Proceedings of the 22nd international
conference on World Wide Web, WWW ’13, pages 909–918, Republic and Canton
of Geneva, Switzerland, 2013. International World Wide Web Conferences Steering
Committee.

[38] Arjun Mukherjee and Bing Liu. Aspect extraction through semi-supervised mod-
eling. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Long Papers - Volume 1, ACL ’12, pages 339–348, Stroudsburg,
PA, USA, 2012. Association for Computational Linguistics.

[39] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and
trends in information retrieval, 2(1-2):1–135, 2008.

[40] A.M. Popescu and O. Etzioni. Extracting product features and opinions from re-
views. In Proceedings of the conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing, pages 339–346. Association for
Computational Linguistics, 2005.

52

[41] Katharina Probst, Rayid Ghani, Marko Krema, Andy Fano, and Yan Liu. Extract-
ing and using attribute-value pairs from product descriptions on the web. In Bettina
Berendt, Andreas Hotho, Dunja Mladenic, and Giovanni Semeraro, editors, From
Web to Social Web: Discovering and Deploying User and Content Profiles, volume
4737 of Lecture Notes in Computer Science, pages 41–60. Springer Berlin Heidel-
berg, 2007.

[42] Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. Expanding domain sentiment
lexicon through double propagation. In Proceedings of the 21st international jont
conference on Artifical intelligence, pages 1199–1204, 2009.

[43] Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. Opinion word expansion and target
extraction through double propagation. Comput. Linguist., 37(1):9–27, March 2011.

[44] Warren Sack. On the computation of point of view. In PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, pages 1488–1488.
JOHN WILEY & SONS LTD, 1995.

[45] Christopher Scaffidi, Kevin Bierhoff, Eric Chang, Mikhael Felker, Herman Ng, and
Chun Jin. Red opal: product-feature scoring from reviews. In Proceedings of the
8th ACM conference on Electronic commerce, EC ’07, pages 182–191, New York,
NY, USA, 2007. ACM.

[46] Dilek Tapucu, Andrea Kő, Mus’ab Husaini, Ahmet Koçyiğit, Yücel Saygın, and
Habin Lee. Obome-ontology based opinion mining in ubipol. In Proceedings of
European, Mediterranean & Middle Eastern Conference on Information Systems
2012, pages 134–145, 2012.

[47] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. Proceedings of the
2003 Conference of the North American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology NAACL 03, 1(June):173–180,
2003.

[48] Peter D. Turney. Thumbs up or thumbs down?: semantic orientation applied to un-
supervised classification of reviews. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 417–424, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

[49] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[50] Hongning Wang, Yue Lu, and Chengxiang Zhai. Latent aspect rating analysis on re-
view text data: A rating regression approach. Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 783–792,
2010.

53

[51] Janyce Wiebe. Learning subjective adjectives from corpora. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference
on Innovative Applications of Artificial Intelligence, pages 735–740. AAAI Press,
2000.

[52] Janyce M Wiebe and William J Rapaport. A computational theory of perspective
and reference in narrative. In Proceedings of the 26th annual meeting on Associa-
tion for Computational Linguistics, pages 131–138. Association for Computational
Linguistics, 1988.

[53] Yorick Wilks and Janusz Bien. Beliefs, points of view and multiple environments.
In Proc. of the international NATO symposium on Artificial and human intelligence,
pages 147–171, New York, NY, USA, 1984. Elsevier North-Holland, Inc.

[54] Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu. Phrase dependency parsing
for opinion mining. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 3 - Volume 3, EMNLP ’09, pages 1533–
1541, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

[55] Bishan Yang and Claire Cardie. Extracting opinion expressions with semi-markov
conditional random fields. In Proceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL ’12, pages 1335–1345, Stroudsburg, PA, USA, 2012.
Association for Computational Linguistics.

[56] Jianxing Yu, Zheng-Jun Zha, Meng Wang, and Tat-Seng Chua. Aspect ranking:
identifying important product aspects from online consumer reviews. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11, pages 1496–1505, Strouds-
burg, PA, USA, 2011. Association for Computational Linguistics.

[57] Y. Zhai, Y. Chen, X. Hu, P. Li, and X. Wu. Extracting opinion features in sentiment
patterns. In Information Networking and Automation (ICINA), 2010 International
Conference on, volume 1, pages V1–115. IEEE, 2010.

[58] Z. Zhai, B. Liu, H. Xu, and P. Jia. Clustering product features for opinion mining.
In Proceedings of the fourth ACM international conference on Web search and data
mining, pages 347–354. ACM, 2011.

[59] S. Zhang, W. Jia, Y. Xia, Y. Meng, and H. Yu. Product features extraction and
categorization in chinese reviews. In ICCGI 2011, The Sixth International Multi-
Conference on Computing in the Global Information Technology, pages 38–42,
2011.

54

[60] Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaoming Li. Jointly modeling as-
pects and opinions with a maxent-lda hybrid. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’10, pages 56–65,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[61] Jingbo Zhu, Huizhen Wang, Benjamin K. Tsou, and Muhua Zhu. Multi-aspect opin-
ion polling from textual reviews. In Proceedings of the 18th ACM conference on
Information and knowledge management, CIKM ’09, pages 1799–1802, New York,
NY, USA, 2009. ACM.

55

	Introduction
	Background and Related Work
	Preliminaries and Problem Definition
	Definition of Terms
	nlp

	Research Environment
	Incremental Extendability
	Accessibility
	Open Source
	Multilingual Support

	Aspect Lexicon Extraction
	Gold-Standard Lexicon Creation
	Aspect Expression Extraction

	System Design
	Application Layers
	Persistence Layer
	Data Access Layer
	Logic Layer
	Web Application Layer

	Module Definition and Workflow
	Multilingual Support

	Modules and Algorithms
	Corpus Reduction Module
	Aspect Expression Extraction Module
	Extracting Candidate Expressions
	Automatic Labeling
	Semi-Supervised Learning

	Aspect Lexicon Builder Module
	Aspect-Based Sentiment Analysis Module

	Implementation and Experiments
	Implementation Details
	A Basic Use Case

	Experimental Results
	Corpus Reduction Algorithm
	Setup
	Results

	Aspect Expression Extraction Algorithm
	Setup
	Results

	Conclusion and Future Work
	Future Work

	Appendices
	Appendix List of Software, Technologies, and Tools

