
HEVC VIDEO COMPRESSION HARDWARE DESIGNS

by

ERDEM ÖZCAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2013

© Erdem Özcan 2013

All Rights Reserved

IV

HEVC VIDEO COMPRESSION HARDWARE DESIGNS

Erdem ÖZCAN

EE, MS Thesis, 2013

Thesis Supervisor: Assoc. Prof. Dr. Ġlker HAMZAOĞLU

Keywords: HEVC, Deblocking Filter, Intra Mode Decision, Hadamard Transform

Abstract

High Efficiency Video Coding (HEVC), a recently developed international standard for

video compression, offers significantly better video compression efficiency than previous

international standards. However, this coding gain comes with an increase in computational

complexity.

Therefore, in this thesis, we first designed a high performance hardware architecture for

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the

hardware to increase its performance. The proposed hardware is implemented in Verilog

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD

(1920x1080) video frames per second.

 We then proposed an energy reduction technique for Sum of Absolute Transformed

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient

hardware architecture for SATD based HEVC intra mode decision algorithm including the

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD

(1280x720) video frames per second. The proposed technique reduced its energy consumption

up to 64.6% on this FPGA without any PSNR loss.

V

YVVK VĠDEO SIKIġTIRMA DONANIM TASARIMLARI

Erdem ÖZCAN

EE, Yüksek Lisans Tezi, 2013

Tez DanıĢmanı: Doç. Dr. Ġlker HAMZAOĞLU

Anahtar Kelimeler: YVVK, blok giderici filtre, çerçeve içi kip seçimi, hadamard dönüĢümü

ÖZET

Yakın tarihte geliĢtirilmiĢ uluslararası bir standard olan Yüksek Verimlilikli Video

Kodlama (YVVK), kendinden önceki standartlara göre belirgin Ģekilde daha iyi sıkıĢtırma

verimi sunmaktadır. Ancak bu kodlama kazancı beraberinde iĢlem miktarında önemli bir artıĢ

getirmektedir.

Bu tezde ilk olarak YVVK video standardında kullanılan blok giderici filtre (BGF)

algoritması için yüksek performanslı bir donanım mimarisi tasarlandı. Donanımın

performansını artırmak için iki paralel veriyolu kullanıldı. Önerilen donanım Verilog HDL

kullanılarak gerçeklendi. Verilog RTL kodu Xilinx XC6VLX240T FPGA’ne yerleĢtirildi ve

Xilinx XC6VLX240T FPGA içeren bir Xilinx ML605 FPGA kartında doğrulandı. FPGA

gerçeklemesi 108 MHz hızla çalıĢabilmekte ve saniyede 30 tam HD (1920x1080) çerçevesini

kodlayabilmektedir.

Daha sonra, Mutlak DönüĢüm Fark Toplamı (MDFT) tabanlı YVVK çerçeve içi kip

seçimi için özgün bir enerji azaltma tekniği önerildi. Önerilen tekniği de içeren MDFT tabanlı

YVVK çerçeve içi kip seçimi için verimli bir donanım mimarisi tasarlandı. Önerilen donanım

Verilog HDL kullanılarak gerçeklendi. Verilog RTL kodu Xilinx XC6VLX365T FPGA’ne

yerleĢtirildi ve yerleĢtirme sonrası RTL simulasyonları ile doğrulandı. FPGA gerçeklemesi

116 MHz hızla çalıĢabilmekte ve saniyede 21 HD (1280x720) çerçevesini

kodlayabilmektedir. Önerilen teknik, donanımın enerji tüketimini bu FPGA’da herhangi bir

PSNR kaybı olmaksızın %64.6 azaltmıĢtır.

VI

Acknowledgements

First and foremost I would like to thank my advisor Dr. Ġlker Hamzaoğlu for his

invaluable guidance and support throughout my study. I appreciate very much for his

suggestions, detailed reviews, invaluable advices and life lessons. He has been a great mentor

to me and I feel privileged to be his student.

I am sincerely grateful to my thesis committee members Dr. Ayhan Bozkurt and Dr.

Erkay SavaĢ for their invaluable feedback.

I would like to thank to all members of System-on-Chip Design and Testing Lab, Yusuf

Adıbelli, Ercan Kalalı, Tevfik Zafer Özcan, Serkan Yalıman, Yusuf AkĢehir, Kamil

Erdayandı and Hasan Azgın who have been greatly supportive during my study. I also would

like to thank Tarık Edip Kurt and Özge Arabacı for their friendship.

I would also like to express my deepest gratitude for my beloved family who always

believed in me, and always tried their best to make things easier for me.

Finally I would like to acknowledge Sabancı University and TÜBĠTAK for supporting

me throughout my graduate education.

VII

TABLE OF CONTENTS

Abstract ... IV

ÖZET .. V

Acknowledgements ... VI

TABLE OF CONTENTS .. VII

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

LIST OF ABBREVIATIONS ... XI

1 INTRODUCTION ... 1

 1.1 Motivation .. 1

 1.2 Thesis Contributions ... 4

 1.3 Thesis Organization .. 4

2 A HIGH PERFORMANCE DEBLOCKING FILTER HARDWARE FOR

HIGH EFFICIENCY VIDEO CODING ... 5

 2.1 HEVC DBF Algorithm ... 6

 2.2 Proposed HEVC DBF Hardware .. 8

 2.3 Implementation Results .. 12

3 A COMPUTATION AND ENERGY REDUCTION TECHNIQUE FOR

HEVC INTRA MODE DECISION .. 19

 3.1 HEVC Intra Prediction and Mode Decision Algorithms 21

 3.2 Proposed Computation and Energy Reduction Technique 24

 3.3 Proposed Hardware Architecture .. 27

 3.4 Implementation Results .. 32

4 CONCLUSION AND FUTURE WORK .. 36

Bibliography .. 37

VIII

LIST OF FIGURES

Figure 1.1 : HEVC Encoder Block Diagram .. 2

Figure 2.1 : HEVC Deblocking Filter Algorithm. .. 7

Figure 2.2 : Edge Processing Order .. 8

Figure 2.3 : Proposed HEVC DBF Hardware .. 9

Figure 2.4 : Pixels Stored in Top and Left Memories .. 10

Figure 2.5 : Proposed HEVC DBF Datapath .. 11

Figure 2.6 : HEVC DBF Hardware FPGA Board Implementation 13

Figure 2.7 : Strong and Weak Filter Amounts .. 14

Figure 2.8 : Unfiltered Tennis (1920x1080) Video Frame 14

Figure 2.9 : The Same Frame Filtered by HEVC DBF Algorithm 15

Figure 2.10 : HEVC DBF ASIC Layout ... 16

Figure 3.1 : Addition Amounts in HEVC and H.264 SATD Calculations 20

Figure 3.2 : HEVC Intra Prediction Mode Directions .. 21

Figure 3.3 : Intra Mode Decision Algorithm in HEVC HM Software Encoder 23

Figure 3.4 : Hadamard Transform of Horizontal Mode...................................... 25

Figure 3.5 : Sixth Row of HT of 8x8 Intra Predicted Block 26

Figure 3.6 : Original SATD Calculation Hardware .. 28

Figure 3.7 : Datapath for Original SATD Calculation Hardware 28

Figure 3.8 : SATD Calculation Hardware with Proposed Technique 29

Figure 3.9 : Processing Element (PE) Architecture .. 30

Figure 3.10 : Architecture of 4 PEs ... 30

Figure 3.11 : Adder Tree Architecture.. 31

IX

Figure 3.12 : HT Flow and Adder Tree Scheduling ... 33

X

LIST OF TABLES

Table 2.1 : Conditions That Determine BS ... 8

Table 2.2 : Power and Energy Consumption Results .. 16

Table 2.3 : HEVC DBF Hardware Scalability Results 17

Table 2.4 : DBF Hardware Comparison .. 18

Table 3.1 : Computation Reductions for Intra Prediction Modes 26

Table 3.2 : Performance and Area Results .. 34

Table 3.3 : Energy Consumption Reductions for 1280x720 Video Frames 35

XI

LIST OF ABBREVIATIONS

ASIC : Application Specific Integrated Circuit

BRAM : Block Ram

BS : Boundary Strength

CU : Coding Unit

DBF : Deblocking Filter

DFF : D Flip Flop

HD : High Definition

HEVC : High Efficiency Video Coding

HM : HEVC Test Model

HT : Hadamard Transform

IBUF : Input Buffer

ISO : International Standards Organization

ITU : International Telecommunications Union

LCU : Largest Coding Unit

LUT : Look-Up Table

MB : Macro Block

OBUF : Output Buffer

QP : Quantization Parameter

PE : Processing Element

PSNR : Peak Signal-to-Noise Ratio

PU : Prediction Unit

SATD : Sum of Absolute Transformed Difference

SPAD : Scratch Pad

SSD : Sum of Squared Difference

TU : Transform Unit

VCD : Value Change Dump

XII

1

Chapter 1

INTRODUCTION

1.1 Motivation

Video compression systems are used in many commercial products, from consumer

electronic devices such as digital camcorders, cellular phones to video teleconferencing

systems. These applications make the video compression hardware devices an inevitable part

of many commercial products. Since better coding efficiency is required for high resolution

videos, recently, a new international standard for video compression is developed with the

collaboration of ITU and ISO standardization organizations. This new standard, called High

Efficiency Video Coding (HEVC), provides 50% bit rate reduction for equal perceptual video

quality in comparison to H.264/AVC standard [1]. The video compression efficiency achieved

in HEVC standard is not a result of any single feature but rather a combination of a number of

encoding tools, and this coding gain comes with an increase in computational complexity.

Because of its high coding efficiency, HEVC is expected to be widely used in many

applications such as digital TV, mobile phones, video transmission in wireless networks, and

video conferencing over the Internet.

The top-level block diagram of a HEVC Encoder is shown in Figure 1.1. As shown in

this figure, HEVC encoder has a forward path and a reconstruction path. The forward path is

used to encode a video frame by using intra and inter predictions and to create the bit stream.

The reconstruction path is used to decode the encoded frame and to reconstruct the decoded

frame. Since a decoder never gets original images, but rather works on the decoded frames,

reconstruction path in the encoder ensures that both encoder and decoder use identical

reference frames for intra and inter prediction. This avoids possible encoder – decoder

mismatches [1, 2].

2

Figure 1.1: HEVC Encoder Block Diagram

In HEVC there is a quad tree structure which partitions the frame into Largest Coding

Units (LCUs). LCUs can be recursively split into smaller Coding Units (CUs), which in turn

can be split into small prediction units (PUs) and transform units (TUs) [3]. LCUs can be as

large as 64x64 down to 16x16. LCU in HEVC is similar to that of a macroblock (MB) in the

previous video coding standards.

Forward path starts with partitioning the input frame into LCUs. LCUs split into CUs.

Each CU is encoded in intra or inter mode depending on the mode decision. In both intra and

inter modes, the current CU is predicted from the reconstructed frame. Intra mode generates

the predicted CU based on spatial redundancy, whereas inter mode, generates the predicted

CU based on temporal redundancy. Mode decision compares the required amount of bits to

encode a CU and the quality of the decoded CU for both of these modes and chooses the

mode with better quality and bit-rate performance. In either case, intra or inter mode, the

predicted CU is subtracted from the current CU to generate the residual CU. Residual CU is

split into TUs and transformed using integer transforms. Transformed residual data is

quantized and quantized transform coefficients are re-ordered in a zig-zag scan order. The

reordered quantized transform coefficients are entropy encoded. The entropy-encoded

coefficients together with header information, such as PU prediction mode and quantization

step size, form the compressed bit stream.

Reconstruction path begins with inverse quantization and inverse transform operations.

The quantized transform coefficients are inverse quantized and inverse transformed to

generate the reconstructed residual data. Since quantization is a lossy process, inverse

quantized and inverse transformed coefficients are not identical to the original residual data.

The reconstructed residual data are added to the predicted pixels in order to create the

3

reconstructed frame. The reconstructed frame is filtered by three in loop filters to smooth out

artifacts induced by the block-wise processing and quantization.

Deblocking filter (DBF) is one of the in loop filters used in HEVC video encoder and

decoder. In a coding scheme that uses block-based prediction and transform coding,

discontinuities can occur in the reconstructed signal at block boundaries. Visible

discontinuities at block boundaries are known as blocking artifacts. A major source of

blocking artifacts is the block-transform coding of the prediction error followed by coarse

quantization. Moreover, in the motion compensated prediction process, predictions for

adjacent blocks in the current picture might not come from adjacent blocks in the previously

coded pictures, which create discontinuities at the block boundaries of the prediction signal.

Similarly, when applying intra prediction, the prediction process of adjacent blocks might be

different causing discontinuities at the block boundaries of the prediction signal [4].

The main difficulty when designing a DBF algorithm is to decide whether or not to

filter a particular block boundary, as well as to decide the strength of the filtering to be

applied. Excessive filtering may lead to unnecessary smoothing of the picture details whereas

lack of filtering may leave blocking artifacts which would reduce the subjective quality.

Deciding whether to filter a block boundary should therefore depend on the characteristics of

the reconstructed pixel values on both sides of that block boundary, and on coding parameters

indicating whether it is likely that a blocking artifact has been created by coding process [4].

HEVC DBF algorithm is designed to improve both subjective and objective quality.

Different from the H.264/AVC standard where DBF is applied on a 4x4 sample grid basis,

HEVC applies DBF on an 8x8 sample grid which enables parallel processing by preventing

cascading interactions between nearby filtering operations [1].

HEVC intra mode decision algorithm determines the best prediction mode for a block

by using cost metrics such as Hadamard Transform (HT) based Sum of Absolute Transform

Difference (SATD). In H.264, there are 9 intra prediction modes for 4x4 luminance (luma)

blocks, and 4 intra prediction modes for 16x16 luma blocks [5], where as in HEVC, there are

18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4 modes

for 64x64 luma blocks [6]. Therefore, HEVC intra mode decision algorithm has much higher

computational complexity than H.264/AVC intra mode decision algorithm.

4

1.2 Thesis Contribution

In this thesis, we first designed a high performance hardware architecture for

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the

hardware to increase its performance. The proposed hardware [31] is implemented in Verilog

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD

(1920x1080) video frames per second.

We then proposed an energy reduction technique for Sum of Absolute Transformed

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient

hardware architecture for SATD based HEVC intra mode decision algorithm including the

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD

(1280x720) video frames per second. The proposed technique reduced its energy consumption

up to 64.6% on this FPGA without any PSNR loss.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, first, introduces DBF algorithm used in HEVC standard. Then, it describes

the proposed HEVC DBF hardware in detail and presents the implementation results.

Chapter 3, first, introduces intra prediction and intra mode decision algorithms used in

HEVC standard. Then, it explains the proposed energy reduction technique. Finally, it

describes the proposed HT based SATD hardware in detail and presents the implementation

results.

Chapter 4 presents the conclusions and the future work.

5

Chapter 2

A HIGH PERFORMANCE DEBLOCKING FILTER HARDWARE FOR HIGH

EFFICIENCY VIDEO CODING

HEVC, same as the previous video compression standards, divides video frames into

blocks and performs transform and quantization for each block separately. This causes

correlation loss between blocks and discontinuities on the edges of blocks. Therefore,

reconstructed frames suffer from blocking artifacts. Deblocking filter (DBF) improves the

visual quality of decoded frames by reducing visually disturbing blocking artifacts and

discontinuities in a frame due to coarse quantization. Since the filtered frame is used as a

reference frame for motion-compensated prediction of future frames, DBF also increases

coding efficiency resulting in bit rate savings [4, 7, 8, 9].

HEVC DBF algorithm is applied to each edge of all luma and chroma blocks in a

Largest Coding Unit (LCU), a 64x64 pixel array, after inverse quantization and inverse

transform [4, 6]. In order to decide whether DBF will be applied to an edge or not, the related

pixels in the current and neighboring 16x16 Coding Units (CU) must be read from memory

and processed.

H.264 DBF algorithm has high computational complexity. H.264 DBF algorithm

accounts for one-third of the computational complexity of an H.264 video decoder [7]. HEVC

DBF algorithm also has high computational complexity. HEVC has higher computational

complexity than H.264, and HEVC DBF algorithm accounts for one-fifth of the

computational complexity of an HEVC video decoder [10].

Therefore, in this chapter, we propose the first HEVC DBF hardware in the literature.

The proposed DBF hardware can be used as part of an HEVC video encoder or an HEVC

video decoder. The proposed DBF hardware starts filtering the available edges after a new

64x64 LCU is ready. Two parallel datapaths are used in the hardware to increase its

6

performance. The proposed DBF hardware is implemented in Verilog HDL. The Verilog RTL

code is verified to work at 108 MHz in a Xilinx Virtex 6 FPGA. The proposed HEVC DBF

hardware can code 30 full HD (1920x1080) video frames per second.

The rest of the chapter is organized as follows. Section 2.1 presents a brief overview of

HEVC DBF algorithm. Section 2.2 describes the proposed HEVC DBF hardware in detail.

Section 2.3 presents the implementation results.

2.1 HEVC DBF Algorithm

 HEVC DBF algorithm for an 8x8 block edge consisting of two segments is shown in

Fig. 2.1. In HEVC, there is a quadtree structure [6]. Each video frame is divided into 64x64

LCUs in raster scan order, and each LCU is divided into 16x16 CUs as shown in Fig. 2.2.

DBF is applied to edges of the 8x8 blocks in all 16x16 CUs. Each edge of an 8x8 block

consists of 8 consecutive lines which are divided into two independent 4 line segments. Each

line has 8 pixels along the edge. DBF can update up to 3 pixels in each direction that the

filtering takes place.

 First, vertical edges are filtered. Then, horizontal edges are filtered. There are several

conditions that determine whether a segment will be filtered or not. There are additional

conditions that determine the strength of the filtering for 16x16 CU edges that will be filtered.

Strong or weak filtering can be applied to an edge depending on these conditions. Boundary

strength (BS) parameter, quantization parameter (QP), β and tc threshold values and the

values of the pixels in the edge determine the outcomes of these conditions, and the values of

up to 3 pixels on both sides of an edge can be changed depending on the outcomes of these

conditions.

Every edge is assigned a BS value depending on the coding modes and conditions of

16x16 CUs. The strength of the filtering done for an edge is proportional to its BS value. BS

value can be 0, 1, or 2. No filtering is done for the edges with a BS value of 0, whereas

strongest filtering is done for edges with a BS value of 2. BS decision is critical, since

excessive filtering may lead to unnecessary smoothing of the picture details whereas lack of

filtering may leave blocking artifacts which would reduce visual quality. The conditions used

for determining the BS value for an edge between two neighboring 16x16 CUs are

summarized in Table 2.1.

7

START

BS

BS=0

β

BS>0

tc

{ |p2,0-2*p1,0+p0,0|+

 |q2,0-2*q1,0+q0,0|+

 |p2,3-2*p1,3+p0,3|+

 |q2,3-2*q1,3+q0,3| } < β

{ |p2,4-2*p1,4+p0,4|+

 |q2,4-2*q1,4+q0,4|+

 |p2,7-2*p1,7+p0,7|+

 |q2,7-2*q1,7+q0,7| } < β

FALSETRUE FALSETRUE

 { |q2,0-2*q1,0+q0,0|+

 |q2,3-2*q1,3+q0,3| }

< (β +β>>1)>>3

 { |p2,0-2*p1,0+p0,0|+

 |p2,3-2*p1,3+p0,3| }

< (β +β>>1)>>3

2*(|p2,0-2*p1,0+p0,0|+

 |q2,0-2*q1,0+q0,0|) < β>>2

(|p3,0-p0,0|+|q0,0-q3,0|)< β>>3

(|p0,0-q0,0|) < (5*tc+1)>>1

(A)

2*(|p2,3-2*p1,3+p0,3|+

 |q2,3-2*q1,3+q0,3|)< β>>2

(|p3,3-p0,3|+|q0,3-q3,3|)< β>>3

(|p0,3-q0,3|) < (5*tc+1)>>1

(B)

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

p0'=Clip3(p0-2tc,p0+2tc,(p2+2p1+2p0+2q0+q1+4)>>3)

p1'=Clip3(p1-2tc,p1+2tc,(p2+p1+p0+q0+2)>>2)

p2'=Clip3(p2-2tc,p2+2tc,(2p3-3p2+p1+p0+q0+4)>>3)

q0'=Clip3(q0-2tc,q0+2tc,(p1+2p0+2q0+2q1+q2+4)>>3)

q1'=Clip3(q1-2tc,q1+2tc,(p0+q0+q1+q2+2)>>2)

q2'=Clip3(q2-2tc,q2+2tc,(p0+q0+q1+3q2+2q3+4)>>3)

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

Delta=(9(q0-p0)-3(q1-p1)+8)>>4

abs(Delta) < 10tc

FALSETRUE

Delta=Clip3(-tc,tc,Delta)

p0'=Clip1Y(p0+Delta)

q0'=Clip1Y(q0-Delta)

TRUE

Deltap=Clip3(-(tc>>1),tc>>1,

((p2+p0+1)>>1)-p1+Delta)>>1)

p1'=Clip1Y(p1+Deltap)

TRUE

Deltaq=Clip3(-(tc>>1),tc>>1,

((q2+q0+1)>>1)-q1+Delta)>>1)

q1'=Clip1Y(q1+Deltaq)

FALSE

FALSE
 { |q2,4-2*q1,4+q0,4|+

 |q2,7-2*q1,7+q0,7| }

< (β +β>>1)>>3

 { |p2,4-2*p1,4+p0,4|+

 |p2,7-2*p1,7+p0,7| }

< (β +β>>1)>>3

2*(|p2,4-2*p1,4+p0,4|+

 |q2,4-2*q1,4+q0,4|) < β>>2

(|p3,4-p0,4|+|q0,4-q3,4|)< β>>3

(|p0,4-q0,4|) < (5*tc+1)>>1

(C)

2*(|p2,7-2*p1,7+p0,7|+

 |q2,7-2*q1,7+q0,7|)< β>>2

(|p3,7-p0,7|+|q0,7-q3,7|)< β>>3

(|p0,7-q0,7|) < (5*tc+1)>>1

(D)

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

p0'=Clip3(p0-2tc,p0+2tc,(p2+2p1+2p0+2q0+q1+4)>>3)

p1'=Clip3(p1-2tc,p1+2tc,(p2+p1+p0+q0+2)>>2)

p2'=Clip3(p2-2tc,p2+2tc,(2p3-3p2+p1+p0+q0+4)>>3)

q0'=Clip3(q0-2tc,q0+2tc,(p1+2p0+2q0+2q1+q2+4)>>3)

q1'=Clip3(q1-2tc,q1+2tc,(p0+q0+q1+q2+2)>>2)

q2'=Clip3(q2-2tc,q2+2tc,(p0+q0+q1+3q2+2q3+4)>>3)

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

Delta=(9(q0-p0)-3(q1-p1)+8)>>4

abs(Delta) < 10tc

FALSETRUE

Delta=Clip3(-tc,tc,Delta)

p0'=Clip1Y(p0+Delta)

q0'=Clip1Y(q0-Delta)

TRUE

Deltap=Clip3(-(tc>>1),tc>>1,

((p2+p0+1)>>1)-p1+Delta)>>1)

p1'=Clip1Y(p1+Deltap)

TRUE

Deltaq=Clip3(-(tc>>1),tc>>1,

((q2+q0+1)>>1)-q1+Delta)>>1)

q1'=Clip1Y(q1+Deltaq)

FALSE

FALSE

Clip3(x,y,z)={ x ; z<x

 y ; z>y

 z ; otherwise}

Clip1Y(x)= { 255 ; x>255

 0 ; x<0

 x ; otherwise}

p3,0 p2,0 p1,0 p0,0

p3,1 p2,1 p1,1 p0,1

p3,2 p2,2 p1,2 p0,2

p3,3 p2,3 p1,3 p0,3

p3,4 p2,4 p1,4 p0,4

p3,5 p2,5 p1,5 p0,5

p3,6 p2,6 p1,6 p0,6

p3,7 p2,7 p1,7 p0,7

q0,0 q1,0 q2,0 q3,0

q0,1 q1,1 q2,1 q3,1

q0,2 q1,2 q2,2 q3,2

q0,3 q1,3 q2,3 q3,3

q0,4 q1,4 q2,4 q3,4

q0,5 q1,5 q2,5 q3,5

q0,6 q1,6 q2,6 q3,6

q0,7 q1,7 q2,7 q3,7

Vertical edge

 A & BTRUE

FALSE C & D
TRUE

FALSE

Segment1

Segment2

Figure 2.1: HEVC Deblocking Filter Algorithm

8

1

1

2

2

3

3

4

4

5 5 6 6

7 7 8 8

1615

1413

87

65

1211

109

43

21

1615

1211

87

43

1413

109

65

21

Frame LCU(64x64) CU(16x16)

Segment1 Segment2

Figure 2.2: Edge Processing Order

Table 2.1: Conditions That Determine BS

Coding Modes and Conditions
BS

At least one of the blocks is Intra 2

At least one of the blocks has non-zero coded residual

coefficient and boundary is a transform boundary

1

1

Absolute differences between corresponding spatial motion

vector components of the two blocks are >= 1 in units of

integer pixels

1

1

Motion compensated prediction for the two blocks refers to

different reference pictures or the number of motion vectors is

different for the two blocks

1

1

Otherwise

0

0

2.2 Proposed HEVC DBF Hardware

The proposed DBF hardware architecture is shown in Fig. 2.3. It includes two parallel

datapaths, a control unit, a transpose memory, two input buffers to store the pixels in

segment1 and segment2 of a CU, two dual port and four single port internal SRAMs to store

partially filtered pixels, and two output buffers to store the filtered output pixels. In order to

9

process full HD video frames in real time, proposed DBF hardware reads 16 pixels in one

clock cycle from external memory. Therefore, it fills the input pixel memory in 4 clock

cycles. Since the decision process needs the first and fourth lines of each segment, input pixel

memory is loaded with the pixels along the edge for subsequent filtering process.

DBF hardware starts filtering as soon as 64x64 LCU is ready. The two datapaths filter

two segments, segment1 and segment2, in parallel. Transpose memory is used to transpose

the filtered pixels before they are stored to intermediate or output SRAMs. This allows

accessing 16 pixels in one clock cycle from transpose memory and simplifies reading the

pixels from intermediate SRAMs.

8

DATAPATH1

DATAPATH28

8

8

C
O

N
T

R
O

L
 U

N
IT

 &
 A

D
D

R
E

S
S

 G
E

N
E

R
A

T
IO

N

IBUF2

(512x32)

SPAD2

(516x32)

TOP2

(960x32)

LEFT2

(32x32)

IBUF1

(512x32)

SPAD1

(512x32)

TOP1

(960x32)

LEFT1

(32x32)

S
P

L
IT

T
E

R

32

32

32

32

32

32

32

32

OBUF1

(512x32)

OBUF2

(512x32)

Input Pixel

Memory Transpose Memory

 Figure 2.3: Proposed HEVC DBF Hardware

 If an LCU is located in the left frame boundary, its left edges are not filtered. This

causes an irregularity, and therefore increases the complexity of the control unit. In order to

avoid this irregularity and therefore simplify the control unit, frame is extended at left

boundary for 4 pixels as shown in Fig. 2.4. We assigned zero to these pixels and assigned zero

to the BS values of these edges in order to avoid filtering these edges without causing an

irregularity in the control unit.

10

Top and left memories are used to store the pixels in the leftmost and topmost edges of an

LCU as shown in Fig. 2.4. In the MxN frame shown in Fig. 2.4, squares represent 64x64

LCUs and each LCU has sixteen 16x16 CUs. In order to filter an LCU, its top and left

neighboring 4x64 and 64x4 blocks, shown as shaded small squares in Fig. 2.4, should be

available. In order to reduce the amount of off-chip memory accesses and therefore reduce

power consumption of the DBF hardware, top 64x4 blocks of all LCUs in a row of a frame,

shown as lightly shaded small squares in Fig. 2.4, and left 4x64 blocks of the current LCU,

shown as darkly shaded small squares in Fig. 2.4, are stored in on-chip SRAM memories. For

full HD video frames, 1920x32/2 = 960x32 size 2 SRAM memories are used for storing top

blocks, and 64x32/2 = 32x32 size 2 SRAM memories are used for storing left blocks.

Extended

4x64 blocks

around left

frame

boundary

Left 4x64

blocks

Upper 64x4

blocks

Currently

Processed

64x64 LCU

M

N

64x4 blocks

along frame

width

Figure 2.4: Pixels Stored in Top and Left Memories

The proposed DBF datapath is shown in Fig. 2.5. It can process 4 pixels, which are

selected by the first four multiplexers, in parallel to increase the performance. The proposed

datapath implements both the decision and filtering parts of HEVC DBF algorithm.

Comparator1 is used for implementing the decision part. Comparator2 is used for

implementing Clip3 function. Comparator3 and Comparator4 are used for implementing

Clip1Y function. The filtered pixels are stored in outreg register.

11

Mux1 Mux4Mux3Mux2

Shifter
Shifter

Shifter

Shifter

Sel1 Sel2 Sel3
Sel4

Add1 Add2
Add/Sub Add/Sub

Barrel Shifter Barrel Shifter
Bshift3

Bshift4

Mux5 Mux6

Add3

Shiftl1
Shiftl2

Shiftl3 Shiftl4

Add/Sub

2's complementer 2's complementer

Add9
Add/Sub

Shifter

Barrel Shifter

2's complementer

Mux9 Mux10

Add6 Add7

Add8

Add/Sub

Add/Sub

Add/Sub

Sel5 Sel6

Sel9 Sel10

M
u

x
1

1

outpixelp outpixelq

Shifter Shifter

Barrel

Shifter

Barrel

Shifter

Add4 Add5

Comparator1

Mux7 Mux8 tc tc

outreg

D
e

m
u

x
1

lo
a

d
1

D
e

m
u

x
2

lo
a

d
2

 Reg3 Reg4 Reg5 Reg6 Beta

Barrel Shifter Barrel Shifter

Sel7 Sel8

compout1 addout4 addout5

Port1 bS Port2 0 1 Port3 Q Port4 0 1

Bshift1

twos1

 dpq0 0 1

Bshift2

 dpq3 0

twos2

twos3

Bshift5

Shiftl5

Shiftl6 Shiftl7

Bshift6 Bshift7

Add/Sub Add/Sub

compout2

0 2 4 8 0

Port5 Port6

Port7 Port8

 Reg1 dp0 Beta tc dp3 Beta tc Reg2 dq0 Beta tc dq3 DeltaBeta tc

 Comparator2

0

Comparator3

Comparator4

Sel11

Figure 2.5: Proposed HEVC DBF Datapath

12

2.3 Implementation Results

The proposed HEVC DBF hardware is implemented in Verilog HDL. The

implementation is verified with the RTL simulations using Mentor Graphics Modelsim SE.

RTL simulation results matched the results of a software model of the HEVC DBF algorithm.

The Verilog RTL code is synthesized and mapped to a XC6VLX130T-ff1156 Xilinx Virtex 6

FPGA with speed grade 3. The resulting netlist is placed and routed to the same FPGA using

Xilinx ISE 11.5.

The FPGA implementation uses 5236 LUTs (6%), 1547 DFFs (1%) and 8 BRAMs

(3%). BRAMs are implemented as dual-port block SelectRAMs. The FPGA implementation

works at 108 MHz. It takes 7680 clock cycles in the worst-case to process an LCU. The

FPGA implementation can process a full HD (1920x1080) video frame in 33.9 ms (480 LCUs

x 7680 clock cycles per LCU x 9.2 ns clock cycle = 33.9 ms). Therefore, it can process

1000/33.9 = 30 full HD frames per second.

The FPGA implementation is verified to work correctly on a ML605 FPGA board

which includes a Virtex 6 XC6VLX240T FPGA, 512 MB DDR RAM and 32 MB Flash

memory, and interfaces such as UART and DVI. A software running on MicroBlaze

processor is developed to transfer the inputs of the HEVC DBF hardware from a host

computer in an appropriate order and to gather the outputs of the hardware for sending them

back to the host computer and displaying the resulting frame on a monitor. HEVC DBF

hardware is added as a peripheral to a bus where the MicroBlaze processor is the master. For

this purpose HEVC DBF hardware is modified to be a slave peripheral for this data bus and

16 software accessible registers are added to the hardware. 11 of these registers are used by

the software running on MicroBlaze for writing the inputs to the hardware and the other 5 are

used for gathering the outputs and the status information from the hardware.

The software gets 1 blocky input frame from the host computer using the UART

interface and writes it to a DDR RAM. Then, it loads the BRAMs of HEVC DBF hardware

with the input pixels. After HEVC DBF hardware generates the done signal, the software

reads the deblocked pixels by HEVC DBF hardware and writes them to the DDR RAM. This

process is repeated for all the LCUs. After all the LCUs are processed, the deblocked frame is

displayed on a monitor using the DVI interface of the FPGA board as shown in Fig. 2.6.

13

Figure 2.6: HEVC DBF Hardware FPGA Board Implementation

Since HEVC DBF algorithm is highly adaptive, amounts of strong and weak filtering

operations performed for block edges differ from frame to frame. The amounts of strong and

weak filtering operations performed for five different video sequences are shown in Fig. 2.7.

All video sequences are intra coded and quantization parameter (QP) is 42. An example

unfiltered video frame and the same frame filtered by HEVC DBF algorithm are shown in

Fig. 2.8 and Fig. 2.9. As it can be seen from Fig. 2.9, some of the blocking artifacts are

reduced and some of them are totally removed.

14

Figure 2.7: Strong and Weak Filter Amounts

Figure 2.8: Unfiltered Tennis (1920x1080) Video Frame

0

10000

20000

30000

40000

50000

60000

70000

80000

Bdrive Cactus Terrace Tennis Kimono1

Strong Filter Weak Filter

15

Figure 2.9: The Same Frame Filtered by HEVC DBF Algorithm

The power and energy consumptions of the FPGA implementation for several full HD

(1920x1080) video frames are given in Table 2.2. The power consumption results are

estimated using Xilinx XPower Analyzer tool. Post place & route timing simulations are

performed for one frame of each video sequence at 50 MHz, and signal activities are stored in

VCD files. These VCD files are used for estimating the power consumption of the FPGA

implementation using Xilinx XPower Analyzer tool.

The Verilog RTL code of the proposed HEVC DBF hardware is also synthesized to

Synopsys 90nm standard cell library using Synopsys Design Compiler and the resulting

netlist is place & routed using Cadence SoC Encounter tool. The resulting ASIC layout is

shown in Fig. 2.10. Gate count of the resulting ASIC implementation is calculated as 16.4k,

excluding on-chip memories, based on NAND (2x1) gate area.

16

Table 2.2: Power and Energy Consumption Results

Category

Video Sequences

Basketball

Drive
Cactus Terrace Tennis Kimono1

Clock (mW) 7.63 7.61 7.63 7.62 7.62

Logic (mW) 11.44 11.72 11.55 11.15 11.86

Signal (mW) 25.44 26.26 25.83 25.03 26.72

BRAM (mW) 12.19 12.22 12.24 12.19 12.23

Total Power (mW) 56.70 57.81 57.25 55.99 58.43

Total Time

(sec)
0.072 0.069 0.067 0.073 0.072

Energy (mJ) 4.082 3.988 3.835 4.087 4.206

Figure 2.10: HEVC DBF ASIC Layout

In HEVC DBF algorithm, the pixels in the neighboring edges of 8x8 blocks do not

overlap. Since the pixels in the neighboring edges can be filtered in parallel, depending on the

application requirements, large number of parallel datapaths can be used in an HEVC DBF

17

hardware. The impact of parallel filtering on the proposed HEVC DBF hardware is shown in

Table 2.3. The clock frequency for all cases is 108 MHz. As the number of parallel datapaths

in HEVC DBF hardware increases, its performance increases significantly. However, this

increases its gate count and on-chip memory usage. 640 byte on-chip memory is used for

processing 16x16 CUs, and each parallel datapath uses 32 byte on-chip transpose memory.

Table 2.3: HEVC DBF Hardware Scalability Results

Since this is the first HEVC DBF hardware in the literature, we compared it with the

H.264 DBF hardware in the literature. In order to make a fair comparison, we give its

implementation results for processing 16x16 CUs. The comparison results are given in Table

2.4. However, this comparison is not perfect because of the following differences between

HEVC and H.264 DBF algorithms.

Since the block sizes, conditions used to determine whether an edge will be filtered or

not, conditions used to determine the strength of the filtering that will be applied to an edge,

and the amount of computations performed in filtering operations are different, the amount of

computations performed by HEVC DBF hardware and H.264 DBF hardware will be different

for the same video frames. In HEVC DBF algorithm, 53% of the operations are performed in

the decision part, and because of the data dependencies most of these operations are

performed sequentially. However, this is not the case for H.264 DBF algorithm. Since the

pixels in neighboring edges can be filtered in parallel in HEVC DBF algorithm, HEVC DBF

hardware can use large number of parallel datapaths. However, this is not the case for H.264

DBF hardware. Because, the pixels in the neighboring edges of 4x4 blocks overlap in H.264

DBF algorithm.

Parallel

Datapaths

Cycles/CU

(worst case)

Throughput

(CU/sec)

1920x1080

fps

On-Chip

Memory

(Byte)

Gate Count

2 480 230k 30 640+64 16.4k

3 320 345k 43 640+96 21.5k

4 240 460k 57 640+128 26.6k

5 192 575k 72 640+160 31.7k

6 160 690k 86 640+192 36.8k

18

Table 2.4: DBF Hardware Comparison

DBF

Hardware
Technology

Memory

Type

Cycles/MB

(worst

case)

Frequency

(MHz)

Throughput

(MB/sec)

Throughput

(fps)

On-Chip

Memory

(Byte)

Gate

Count

Proposed

HEVC

DBF

Hardware

Xilinx

Virtex 6

FPGA

dual port

SRAM
480 108 230k

1920x1080

30 fps

640 + 64

= 704

16.4k

(ASIC)

Huang

[11]

0.25 um

CMOS

ASIC

two port

SRAM
614 100 163k

1920x1080

20 fps
640 20.6k

Huang

[11]

0.25 um

CMOS

ASIC

single

port

SRAM

878 100 114k
1920x1080

14 fps
640 18.9k

Sheng

[12]

0.25 um

CMOS

ASIC

dual port

SRAM
446 100 224k

1920x1080

28 fps

64x32 +

2x96x32

= 1024

24k

Parlak

[13]

Xilinx

Virtex 2

FPGA

dual port

SRAM
5544 72 13k

352x288

33 fps
1792 5.3k

Shih [14]

0.25um

CMOS

ASIC

two port

SRAM
646 100 154k

1920x1080

19 fps

160x32 + 32

= 672
18.7k

Liu [15]

0.18um

CMOS

ASIC

single

port

SRAM

250 100 400k
1920x1080

49 fps

96x32 +

2Nx32
19.6k

Chao [16]

0.18um

CMOS

ASIC

two port

SRAM
228 100 369k

2048xl536

30 fps

144x32 +

2x16x32

= 704

16.6k

Shih [17]

0.18um

CMOS

ASIC

single

port

SRAM

246 100 406k
1920x1080

50 fps
512 + 12N 20.9k

19

Chapter 3

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE FOR HEVC INTRA

MODE DECISION

HEVC intra mode decision algorithm has a huge computational complexity. HEVC

intra prediction algorithm predicts the pixels in prediction units (PU) of a coding unit (CU),

which is similar to macroblock (MB) in H.264, from the pixels of its already coded and

reconstructed neighboring PUs. In H.264, there are 9 intra prediction modes for 4x4

luminance blocks, and 4 intra prediction modes for 16x16 luminance blocks [5]. In HEVC,

there are 18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4

modes for 64x64 luminance PUs [6, 18]. The number of HEVC intra prediction modes for a

64x64 luminance CU is approximately 3.2 times larger than H.264. In order to determine the

best HEVC intra prediction mode for the luminance component of a 64x64 CU, predictions

for 7552 intra prediction modes should be calculated.

The intra mode decision algorithm implemented in HEVC HM reference software

encoder [19] uses Sum of Absolute Transformed Difference (SATD) based cost function. Fig.

3.1 shows the amount of addition operations performed by SATD calculations in HEVC and

H.264 intra mode decisions. Because of the larger PU sizes and more intra prediction modes,

24 times more addition operations are performed for SATD calculation in HEVC intra mode

decision than SATD calculation in H.264 intra mode decision. Therefore, in this thesis, we

proposed a computation and energy reduction technique for SATD calculation in HEVC intra

mode decision.

20

Figure 3.1: Addition Amounts in HEVC and H.264 SATD Calculations

The proposed technique reduces the number of additions performed by SATD

calculations in HEVC intra mode decision algorithm used in HEVC HM reference software

encoder [19] for 4x4 and 8x8 luminance intra prediction modes by 54% and 70% respectively

without any PSNR loss. Since 94% of intra predicted blocks are predicted by 4x4 and 8x8 PU

sizes [21], we showed the impact of the proposed technique for 4x4 and 8x8 PUs. But, it can

also be used for 16x16, 32x32 and 64x64 PUs.

We designed efficient hardware architectures for both the original HEVC SATD

calculation and HEVC SATD calculation with the proposed technique for 4x4 and 8x8 PUs.

The proposed hardware architectures are implemented in Verilog HDL. The proposed

technique reduced the energy consumption of the original HEVC SATD calculation hardware

up to 64.6%.

A similar energy reduction technique is proposed for H.264 intra mode decision in [22].

However, the proposed technique is applied to HEVC intra mode decision and it includes an

additional optimization to further reduce the energy consumption. There are several H.264

intra prediction and intra mode decision hardware implementations in the literature [23, 24,

25, 26]. There are a few HEVC intra prediction hardware implementations in the literature

[21, 28]. A HEVC intra mode decision hardware only for 4x4 PU size is presented in [27].

However, no energy reduction technique is used in this hardware, and its power consumption

is not reported.

21

3.1 HEVC Intra Prediction and Mode Decision Algorithms

HEVC intra prediction algorithm predicts the pixels in PUs of a CU using the pixels in

the available neighboring PUs. For the luminance component of a frame, 4x4, 8x8, 16x16,

32x32 and 64x64 PU sizes are available. There are 16 angular prediction modes for 4x4 PU

size, 33 angular prediction modes for 8x8, 16x16 and 32x32 PU sizes, and 2 angular

prediction modes for 64x64 PU size. In addition to angular prediction modes shown in Fig.

3.2, there are DC and planar prediction modes for all PU sizes [6]. Fig. 3.2 shows the intra

prediction angles and intra prediction modes corresponding to these intra prediction angles.

Angles 0, 5, 13, 21 and 32 are used to predict 4x4 PUs. Angles 0, 2, 5, 9, 13, 17, 21, 26 and

32 are used to predict 8x8, 16x16 and 32x32 PUs. 64x64 PUs are predicted only with angle 0.

Figure 3.2: HEVC Intra Prediction Mode Directions

22

HEVC intra mode decision algorithm implemented in HEVC HM reference software

encoder is shown in Fig. 3.3 [29]. This mode decision algorithm uses two cost functions; Sum

of Absolute Transformed Difference (SATD) based Hadamard cost function shown in (3.1),

and Sum of Squared Difference (SSD) based Rate Distortion (RD) cost function shown in

(3.2). Hadamard cost function estimates distortion as SATD and rate as the number of bits

used for encoding the prediction mode. RD cost function calculates the actual distortion after

coding based on SSD and the actual bit rate used after coding. λ is calculated based on

Quantization Parameter (QP).

 (3.1)

 (3.2)

This mode decision algorithm determines the best PU size, transform unit (TU) size and

intra prediction mode of a CU as follows. First, SATD values for each intra prediction mode

of each PU for the largest PU size are calculated as follows. Find residue block by subtracting

intra predicted block from current block, apply Hadamard Transform (HT) to the residue

block, and add the absolute values of the transformed residues. Then, 8 candidate modes for

4x4 and 8x8 PUs and 3 candidate modes for 16x16, 32x32 and 64x64 PUs with minimum

Hadamard cost function value are selected as candidate modes for each PU. After that, for

each PU, the most selected candidate modes for neighboring PUs are compared with the

candidate modes selected for the current PU and up to 3 additional modes from neighboring

PUs are added to the candidate modes of the current PU. Then, RD costs of each candidate

mode of each PU are calculated using the cost function in (3.2) and the best mode with

minimum RD cost is selected. After that, for each PU, RD cost of its best mode is calculated

with TU sizes from 4x4 to 32x32 and best TU size with minimum RD cost is also selected.

This process is repeated for each PU size of the CU from largest to smallest, and the best PU

size, TU size and intra prediction mode for the CU with minimum RD cost are selected.

23

Figure 3.3: Intra Mode Decision Algorithm in HEVC HM Software Encoder

24

3.2 Proposed Computation and Energy Reduction Technique

HT is a linear operation and it can be applied before subtraction operation as shown in

(3.3). H, C and P shown in (3.3) are Hadamard matrix, current block, and predicted block,

respectively. 8x8 Hadamard matrix is shown in (3.4). Instead of applying HT after subtraction

operation, we applied HT before subtraction operation. Applying HT before subtraction

requires performing two HTs instead of one. However, this decreases the computational

complexity of SATD based HEVC intra mode decision. Since the intra predicted blocks have

regular patterns, HTs of the predicted blocks (H*P*H') can be calculated with a small amount

of computation. In addition, since HT of the current block (H*C*H') is common to all intra

prediction modes, it can be calculated only once.

 () () () (3.3)

[

]

 (3.4)

The predicted block pattern of horizontal mode and the result of performing HT for this

predicted block pattern are shown in Fig. 3.4 for 8x8 PU size. SATD of an 8x8 block

including HT can be calculated with 959 additions. However, SATD of an 8x8 block

predicted by horizontal mode including HT can be calculated with 95 additions and 8 shifts as

shown in Fig. 3.4. Similarly, SATD of an 8x8 block predicted by vertical mode and all angle

2 modes including HT can be calculated with 95 additions and 8 shifts. Therefore, the

proposed technique significantly reduces the number of additions performed by SATD

calculation.

25

[

]

[

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()]

Figure 3.4: Hadamard Transform of Horizontal Mode

We applied the proposed technique to all 4x4 intra prediction modes except planar and

DC modes, and all 8x8 intra prediction modes of angles 2, 5, 13, 17 and vertical and

horizontal modes. Therefore, we applied the proposed technique to 16 4x4 modes and 18 8x8

modes. Since the other modes have relatively irregular prediction patterns, the proposed

technique achieves small amount of computation reduction for these modes. In order to have a

less complex and smaller SATD calculation hardware, we did not apply the proposed

technique to these prediction modes. Instead, for these prediction modes, we used the original

HT operation which is applying HT after subtraction operation.

We determined the computation reductions achieved by the proposed technique and

presented the results in Table 3.1. The columns labeled I show the amount of computations

performed by the original HT operation and the columns labeled II show the amount of

computations performed by the HT operation using the proposed technique. The proposed

technique reduced the number of additions performed by HT operation for 4x4 and 8x8

luminance intra prediction modes by 54% and 70% respectively without any PSNR loss. The

results show that the proposed technique significantly reduces the computational complexity

of SATD based HEVC intra mode decision.

The proposed technique reduces the amount of computations because of two reasons.

First, as shown in Fig. 3.4, most of the values in HT of intra predicted blocks are zero.

Therefore, there is no need to calculate these values. Second, since intra predicted blocks have

regular patterns, some of the values in HT of intra predicted blocks are the same. Therefore,

these values are calculated only once. For example, the values in sixth row of HT of an 8x8

block predicted by an 8x8 intra prediction mode of angle 17 is shown in Fig 3.5. The first line

gives the first value in the row, and so on. Since some of the values are the same, they are

calculated only once.

26

Table 3.1: Computation Reductions for Intra Prediction Modes

 Prediction

Angles

Hadamard Transform Residue

Addition Shift Subtraction

I II I II I II

In
tr

a
 4

x
4

5(4 modes) 444 108 0 16 64 64

13(4 modes) 444 188 0 128 64 64

21(4 modes) 444 332 0 64 64 64

32(2 modes) 222 134 0 44 32 32

Vertical 111 27 0 4 16 16

Horizontal 111 27 0 4 16 16

Total 1776 816 0 260 256 256

In
tr

a
 8

x
8

2(4 modes) 3836 160 0 32 256 32

5(4 modes) 3836 628 0 128 256 256

13(4 modes) 3836 1740 0 688 256 256

17(4 modes) 3836 2372 0 680 256 256

Vertical 959 95 0 32 64 64

Horizontal 959 95 0 32 64 64

Total 17262 5090 0 1592 1152 928

Figure 3.5: Sixth Row of HT of 8x8 Intra Predicted Block

27

3.3 Proposed Hardware Architecture

We designed two different hardware architectures for SATD calculation in HEVC intra

mode decision for 4x4 and 8x8 PU sizes. The first hardware implements the original SATD

calculation. Therefore, it first subtracts predicted block from current block, and then performs

HT. The second hardware implements the SATD calculation with the proposed technique.

Therefore, it first performs HT for predicted block and current block, and then performs

subtraction.

The hardware architecture implementing the original SATD calculation has two 8

parallel datapaths in order to increase its throughput. The hardware architecture with one 8

parallel datapaths is shown in Fig. 3.6. One of these datapaths is shown in Fig. 3.7. Input

pixels are stored in IBUF input buffer. First, predicted block pixels are subtracted from

current block pixels. Then, addition or subtraction operation is performed depending on HT

matrix. Since HT matrix is multiplied with the residue block both from left and right side as

shown in (3.3), the results of the left side multiplication are stored in transpose registers as

shown in Fig. 3.6. For 8x8 PU size, in each clock cycle, the values in one column of H*(C-P)

are calculated by 8 parallel datapaths. Therefore, H*(C-P) is calculated in 8 clock cycles.

Then, right side multiplication is performed. In each clock cycle, the values in one row of

H*(C-P)*H´ are calculated by the same 8 parallel datapaths. Therefore, H*(C-P)*H´ is

calculated in 8 clock cycles using the same 8 parallel datapaths. Then, absolute values are

calculated and stored in transpose memory. Finally, SATD value is calculated by adding the

absolute values using the last datapath. The original SATD calculation hardware calculates

SATD values of all 4x4 and 8x8 intra prediction modes in 879 clock cycles.

28

Figure 3.6: Original SATD Calculation Hardware

Figure 3.7: Datapath for Original SATD Calculation Hardware

29

The hardware architecture implementing the SATD calculation with the proposed

technique is shown in Fig. 3.8. Parallel processing elements (PEs) are used in the hardware in

order to increase its throughput. As it is shown in Fig. 3.9, each PE only has 3 adders and 4

multiplexers. HTs for 4x4 intra prediction modes are calculated using 4 PEs. HTs for 8x8

intra prediction modes of angles 2, 5 and vertical and horizontal modes are calculated using

one PE. HTs for 8x8 intra prediction modes of angles 13 and 17 are calculated using 4 PEs.

Since the proposed technique is not applied to some intra prediction modes, as it is shown in

Fig. 3.8, the hardware also includes original SATD calculation hardware with 8 parallel

datapaths in order to calculate the SATDs for these intra prediction modes.

Architecture of 4 PEs is shown in Fig. 3.10. Since there is no matrix multiplication in

the proposed technique, there is no transpose memory in this hardware. First, predicted pixels

are stored in IBUF input buffer. Then, each PE reads 4 pixels from IBUF and performs

operations of HT. The outputs of PEs are stored either in SPAD for performing further

operations of HT or in OBUF output buffer. IBUF, SPAD and OBUF are implemented as

BlockRAMs.

Figure 3.8: SATD Calculation Hardware with Proposed Technique

30

Figure 3.9: Processing Element (PE) Architecture

Figure 3.10: Architecture of 4 PEs

4 PEs used for performing HTs of 4x4 intra predicted blocks perform HTs of four 4x4

blocks in an 8x8 block sequentially. These 4 PEs are divided into two groups. Each group has

2 PEs and the PEs in a group perform HTs of 4x4 blocks predicted by the same intra

prediction modes. HTs of 4x4 and 8x8 current blocks are calculated once in 8 parallel original

SATD calculation hardware and stored. Then, SATD values are calculated by subtracting HT

of intra predicted blocks from HT of current block and adding absolute values of the results

using the adder tree shown in Fig. 3.11. Since 56 of 64 values in the HT of 8x8 blocks

predicted by 8x8 intra prediction modes of angle 2 and horizontal mode are zero, these zero

values are not subtracted from HT of current block in order to reduce the power consumption.

31

Figure 3.11: Adder Tree Architecture

Since, only one adder tree is used to reduce hardware area, the adder tree operations are

scheduled to use this adder tree hardware efficiently. HT flow and adder tree scheduling for

an 8x8 PU for 4x4 intra prediction modes and 8x8 intra prediction modes of angles 2, 5, 13,

17 and vertical and horizontal modes are shown in Fig. 3.12. Adder tree calculates SATD

value for each 4x4 intra prediction mode and 8x8 intra prediction mode in 5 and 9 clock

cycles respectively. Therefore, it takes 330 clock cycles to calculate SATD values of 4x4 and

8x8 intra prediction modes for which the proposed technique is applied. It takes 400 clock

cycles to calculate SATD values of the intra prediction modes for which the proposed

technique is not applied. Therefore, SATD calculation hardware with the proposed technique

calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Since

PEs and adder tree has to wait for 70 clock cycles before processing the next 8x8 block, they

are clock gated in order to reduce power consumption.

32

3.4 Implementation Results

Both the original HEVC SATD calculation hardware and HEVC SATD calculation

hardware with the proposed technique are implemented in Verilog HDL. The

implementations are verified with RTL simulations using Mentor Graphics Questa. RTL

simulation results matched the SATD values calculated by HEVC HM reference software

encoder 7.0. The Verilog RTL codes are synthesized to a XC6VLX365T-ff1759 Xilinx Virtex

6 FPGA with speed grade 3. The resulting netlists are placed and routed to the same FPGA

using Xilinx ISE 13.4. Both FPGA implementations are verified with post place&route

simulations as well.

Both FPGA implementations work at 116 MHz. There are 14080 8x8 blocks in an HD

(1280x720) frame. FPGA implementation of the original HEVC SATD calculation hardware

can process one HD frame (1280x720) in 106.4 msec. (14080 8x8 blocks x 879 clock cycles

per 8x8 block x 8.6 ns clock cycle = 106.4 msec). Therefore, it can process 1000/106.4 = 9

HD frames per second. HEVC SATD calculation hardware with the proposed technique

calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Its

FPGA implementation can process one HD (1280x720) frame in 48.4 msec. (14080 8x8

blocks x 400 clock cycles per 8x8 block x 8.6 ns clock cycle = 48.4 msec). Therefore, it can

process 1000/48.4 = 21 HD frames per second. Therefore, the proposed technique

significantly increases the performance of SATD calculation hardware.

33

Figure 3.12: HT Flow and Adder Tree Scheduling

FPGA implementation of the original HEVC SATD calculation hardware uses 6909

Slices (12%), 20473 LUTs (8%), 3504 DFFs (1%) and 8 BRAMs (1%). FPGA

implementation of the HEVC SATD calculation hardware with the proposed technique uses

6247 Slices (10%), 19227 LUTs (8%), 2184 DFFs (1%) and 40 BRAMs (9%). BRAMs are

implemented as dual-port block SelectRAMs. Therefore, the proposed technique reduces the

FPGA resources used by SATD calculation hardware except BRAMs.

34

As shown in Table 3.2, in order to increase the performance of the original HEVC

SATD calculation hardware, the number of parallel datapaths can be increased at the expense

of using more FPGA resources. For example, 48 parallel datapaths can be used to process 27

HD frames per second.

The power consumptions of both FPGA implementations on a Xilinx Virtex 6 FPGA

are estimated using Xilinx XPower Analyzer tool. Post place&route timing simulations are

performed for Vidyo1 (1280x720), Vidyo3 (1280x720), Johnny (1280x720), and

KristenAndSara (1280x720) video sequences [30] at 100 MHz and signal activities are stored

in VCD files. These VCD files are used for estimating the power consumptions of both FPGA

implementations using Xilinx XPower Analyzer tool. The power and energy consumption

results for one frame of each video sequence are shown in Table 3.3. The results show that the

proposed technique reduced the power and energy consumptions of the original SATD

calculation hardware up to 24.2% and 64.6% respectively. Since HEVC SATD calculation

hardware is used as part of a HEVC video encoder, only internal power consumption is

considered and input and output power consumptions are ignored. Therefore, power

consumption of HEVC SATD hardware can be divided into four main categories; clock

power, logic power, signal power and BRAM power.

Table 3.2: Performance and Area Results

LUTs FlipFlops Slices BRAMs

Performance

(HD fps)

Original

16 Parallel
20473 3504 6909 8 9

Original

32 Parallel
40946 7008 13818 16 18

Original

48 Parallel
61419 10512 20727 24 27

Proposed

Technique
19227 2184 6247 40 21

35

Table 3.3: Energy Consumption Reductions for 1280x720 Video Frames

Frames

Vidyo1 Vidyo3 Johnny KristenAndSara

Org.
Low

Energy
Org.

Low

Energy
Org.

Low

Energy
Org.

Low

Energy

Time (ms) 132 61.6 132 61.6 132 61.6 132 61.6

Clock (mW) 50 45 50 45 50 45 50 45

Logic (mW) 157 43 158 41 157 43 157 38

Signal (mW) 273 154 273 145 273 154 272 131

BRAM (mW) 17 163 17 162 17 163 17 162

Total

Power (mW)
497 405 498 393 497 405 496 376

Energy (uJ) 65604 24948 65736 24208 65604 24948 65472 23161

Power Red. 18.5% 21.0% 18.5% 24.2%

Energy Red. 61.2% 63.1% 61.2% 64.6%

36

Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis, we first designed a high performance hardware architecture for

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the

hardware to increase its performance. The proposed hardware is implemented in Verilog

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD

(1920x1080) video frames per second.

We then proposed an energy reduction technique for Sum of Absolute Transformed

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient

hardware architecture for SATD based HEVC intra mode decision algorithm including the

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD

(1280x720) video frames per second. The proposed technique reduced its energy consumption

up to 64.6% on this FPGA without any PSNR loss.

As future work, a complete HEVC video encoder hardware can be designed and it can

be implemented on the Xilinx ML605 FPGA board.

37

BIBLIOGRAPHY

[1] G. Sullivan, J. Ohm, Woo-Jin Han, T. Wiegand, “Overview of the High Efficiency

Video Coding (HEVC) Standard,” IEEE Trans. on Circuits and Systems for Video

Technology, vol.22, no.12, pp.1649-1668, Dec. 2012.

[2] E.Sahin, “An Efficient H.264 Intra Frame Coder Hardware Design”, Master Thesis,

Sabancı University, Spring 2006.

[3] M. T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, “HEVC: The New Gold

Standard for Video Compression: How Does HEVC Compare with H.264/AVC?,” IEEE

Consumer Electronics Magazine, vol.1, no.3, pp.36,46, July 2012.

[4] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson,

Minhua Zhou, G. Van der Auwera, “HEVC Deblocking Filter,” IEEE Trans. on Circuits and

Systems for Video Technology, vol.22, no.12, pp.1746,1754, Dec. 2012.

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 13, no. 7. pp. 560-576, July 2003.

[6] B. Bross, W.J. Han, J.R. Ohm, G.J. Sullivan, T. Wiegand, “High Efficiency Video

Coding (HEVC) Text Specification Draft 6,” JCTVC-H1003, Nov. 2011.

[7] P. List, A. Joch, J. Lainema, G. Bjøntegaard, M. Karczewicz, “Adaptive Deblocking

Filter”, IEEE Trans. on CAS for Video Technology, vol. 13, pp. 614-619, July 2003.

[8] Y. Adibelli, M. Parlak, I. Hamzaoglu, "Energy Reduction Techniques for H.264

Deblocking Filter Hardware", IEEE Trans. on Consumer Electronics, vol. 57, no. 3, Aug.

2011.

[9] A. Otero et al., "Run-Time Scalable Architecture for Deblocking Filtering in

H.264/AVC-SVC Video Codecs", Int. Conf. on Field Programmable Logic and Applications,

Sept. 2011.

[10] J. Vanne, M. Viitanen, T. D. Hamalainen, A. Hallapuro, "Comparative Rate-Distortion-

Complexity Analysis of HEVC and AVC Video Codecs", IEEE Trans. on CAS for Video

Technology, vol.22, no.12, pp.1885-1898, Dec. 2012.

[11] Y.W. Huang, T.W. Chen, B.Y. Hsieh, T.C. Wang, T.H. Chang, L.G. Chen,

“Architecture design for deblocking filter in H.264/JVT/AVC”, IEEE Int. Conf. on

Multimedia and Expo., pp. 693-696, July 2003.

[12] B. Sheng, W. Gao, D. Wu, “An Implemented Architecture of Deblocking Filter for

H.264/AVC”, IEEE Int. Conf. on Image Processing, pp. 665-668, 2004.

[13] M. Parlak, I. Hamzaoglu, "Low Power H.264 Deblocking Filter Hardware

Implementations", IEEE Trans. on Consumer Electronics, vol. 54, no. 2, May 2008.

38

[14] S. Y. Shih, C. R. Chang, Y. L. Lin, “An AMBA-compliant deblocking filter IP for

H.264/AVC”, IEEE Int. Symp. on CAS, pp. 4529-4532, May 2005.

[15] T. M. Liu, W. P. Lee, T. A. Lin, C. Y. Lee, “A memory-efficient deblocking filter for

H.264/AVC video coding”, IEEE Int. Symp. on CAS, pp. 2140-2143, May 2005.

[16] Y C. Chao, J. K. Lin, J. F. Yang, B. D. Liu, "A high throughput and data reuse

architecture for H.264/AVC deblocking filter", IEEE Asia South Pacific Conf. on CAS, pp.

1262-1265, Dec. 2006.

[17] S. Y Shih, C. R. Chang, Y L. Lin, "A near optimal deblocking filter for H.264 advanced

video coding", IEEE Asia South Pacific DAC, pp.170-175, Jan. 2006.

[18] J. Lainema, F. Bossen, W.J. Han, J. Min and K. Ugur, “Intra Coding of the HEVC

Standard”, IEEE Trans. on Circuits and Systems for Video Technology, vol.22, no.12,

pp.1792-1801, Dec. 2012.

[19] I.K. Kim, K. McCann, K. Sugimoto, B. Bross, and W.J. Han, “High Efficiency Video

Coding (HEVC) Test Model 7 (HM 7) Encoder Description”, JCTVC-I1002, May 2012.

[20] H. Sun, D. Zhou, S. Goto, “A Low Complexity HEVC Intra Prediction Algorithm

Based on Level and Mode Filtering,” IEEE International Conference on Multimedia and

Expo, pp.1085-1090, July 2012.

[21] F. Li, G. Shi, F. Wu, “An Efficient VLSI Architecture for 4x4 Intra Prediction in High

Efficiency Video Coding Standard”, IEEE Int. Conf. on Image Processing, Sep. 2011.

[22] Y. Adibelli, M. Parlak, I. Hamzaoglu, “A Novel Energy Reduction Technique for H.264

Intra Mode Decision,” IEEE Int. Conf. on Image Processing, pp.385-388, Sept. 2011.

[23] Y.W. Huang, B.Y. Hsieh, T.C. Chen, and L.G. Chen, “Analysis, Fast Algorithm, and

VLSI Architecture Design for H.264/AVC Intra Frame Coder”, IEEE Trans. on Circuits and

Systems for Video Technology, vol.15, no.3, pp.378-401, Mar. 2005.

[24] J.C. Wang, J.F. Wang, J.F. Yang, and J.T.Chen, “A Fast Mode Decision Algorithm and

Its VLSI Design for H.264/AVC Intra Prediction”, IEEE Trans. on Circuits and Systems for

Video Technology, vol.17, no.10, pp.1414-1422, Oct. 2007.

[25] H.Y. Lin, K.H. Wu, B.D. Liu, J.F. Yang, “An Efficient VLSI Architecture for

Transform-Based Intra Prediction in H.264/AVC”, IEEE Trans. on Circuits and Systems for

Video Technology, vol.20, no.6, pp.894-906, Jun. 2010.

[26] C.W. Ku, C.C. Cheng, G.S. Yu, M.C. Tsai, and T.S. Chang, “A High-Definition

H.264/AVC Intra-Frame Codec IP for Digital Video and Still Camera Applications”, IEEE

Trans. on Circuits and Systems for Video Technology, vol.16, no.8, pp.917-928, Aug. 2006.

[27] F. Li, G. Shi, “A Pipelined Architecture for 4x4 Intra Frame Mode Decision in The

High Efficiency Video Coding”, IEEE 13
th

 Int. Workshop on Multimedia Signal Processing,

pp. 1-5, Oct. 2011.

39

[28] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low Energy Intra

Prediction Hardware for High Efficiency Video Coding”, Int. Conference on Field

Programmable Logic and Applications, pp. 719-722, Aug. 2012.

[29] Y. Kim, D. Jun, S. Jung, and J. Choi, “A Fast Intra Prediction Method Using Hadamard

Transform in High Efficiency Video Coding,” Proc. SPIE Visual Information Processing and

Communication III, vol. 8305, Feb. 2012.

[30] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-

I1100, May 2012.

[31] E. Ozcan, Y. Adibelli, I. Hamzaoglu, “A High Performance Deblocking Filter Hardware

for High Efficiency Video Coding”, Int. Conference on Field Programmable Logic and

Applications, Sept. 2013.

