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Abstract

High Efficiency Video Coding (HEVC), a recently developed international standard for
video compression, offers significantly better video compression efficiency than previous
international standards. However, this coding gain comes with an increase in computational
complexity.

Therefore, in this thesis, we first designed a high performance hardware architecture for
deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the
hardware to increase its performance. The proposed hardware is implemented in Verilog
HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to
work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T
FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD
(1920x1080) video frames per second.

We then proposed an energy reduction technique for Sum of Absolute Transformed
Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient
hardware architecture for SATD based HEVC intra mode decision algorithm including the
proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog
RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &
route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD
(1280x720) video frames per second. The proposed technique reduced its energy consumption
up to 64.6% on this FPGA without any PSNR loss.



YVVK VIDEO SIKISTIRMA DONANIM TASARIMLARI
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Anahtar Kelimeler: YVVK, blok giderici filtre, ¢erceve ici Kip se¢imi, hadamard doniisiimii

OZET

Yakin tarihte gelistirilmis uluslararasi bir standard olan Yuksek Verimlilikli Video
Kodlama (YVVK), kendinden 6nceki standartlara gore belirgin sekilde daha iyi sikistirma
verimi sunmaktadir. Ancak bu kodlama kazanci beraberinde islem miktarinda 6nemli bir artis
getirmektedir.

Bu tezde ilk olarak YVVK video standardinda kullanilan blok giderici filtre (BGF)
algoritmasi icin yiiksek performansli bir donanim mimarisi tasarlandi. Donanimin
performansm artirmak igin iki paralel veriyolu kullamldi. Onerilen donanim Verilog HDL
kullanilarak gerg¢eklendi. Verilog RTL kodu Xilinx XC6VLX240T FPGA’ne yerlestirildi ve
Xilinx XC6VLX240T FPGA iceren bir Xilinx ML605 FPGA kartinda dogrulandi. FPGA
gerceklemesi 108 MHz hizla galisabilmekte ve saniyede 30 tam HD (1920x1080) gergevesini
kodlayabilmektedir.

Daha sonra, Mutlak Doniisiim Fark Toplami (MDFT) tabanli YVVK cgergeve igi kip
secimi icin 6zguin bir enerji azaltma teknigi onerildi. Onerilen teknigi de iceren MDFT tabanli
YVVK cergeve ici kip secimi icin verimli bir donanim mimarisi tasarlandi. Onerilen donanim
Verilog HDL kullanilarak ger¢eklendi. Verilog RTL kodu Xilinx XC6VLX365T FPGA’ne
yerlestirildi ve yerlestirme sonrasi RTL simulasyonlart ile dogrulandi. FPGA gergeklemesi
116 MHz hizla calisabilmekte ve saniyede 21 HD (1280x720) cergevesini
kodlayabilmektedir. Onerilen teknik, donanimin enerji tiiketimini bu FPGA’da herhangi bir
PSNR kayb1 olmaksizin %64.6 azaltmstir.
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Chapter 1

INTRODUCTION

1.1 Motivation

Video compression systems are used in many commercial products, from consumer
electronic devices such as digital camcorders, cellular phones to video teleconferencing
systems. These applications make the video compression hardware devices an inevitable part
of many commercial products. Since better coding efficiency is required for high resolution
videos, recently, a new international standard for video compression is developed with the
collaboration of ITU and ISO standardization organizations. This new standard, called High
Efficiency Video Coding (HEVC), provides 50% bit rate reduction for equal perceptual video
quality in comparison to H.264/AVC standard [1]. The video compression efficiency achieved
in HEVC standard is not a result of any single feature but rather a combination of a number of
encoding tools, and this coding gain comes with an increase in computational complexity.
Because of its high coding efficiency, HEVC is expected to be widely used in many
applications such as digital TV, mobile phones, video transmission in wireless networks, and
video conferencing over the Internet.

The top-level block diagram of a HEVVC Encoder is shown in Figure 1.1. As shown in
this figure, HEVC encoder has a forward path and a reconstruction path. The forward path is
used to encode a video frame by using intra and inter predictions and to create the bit stream.
The reconstruction path is used to decode the encoded frame and to reconstruct the decoded
frame. Since a decoder never gets original images, but rather works on the decoded frames,
reconstruction path in the encoder ensures that both encoder and decoder use identical
reference frames for intra and inter prediction. This avoids possible encoder — decoder

mismatches [1, 2].
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Figure 1.1: HEVC Encoder Block Diagram

In HEVC there is a quad tree structure which partitions the frame into Largest Coding
Units (LCUs). LCUs can be recursively split into smaller Coding Units (CUs), which in turn
can be split into small prediction units (PUs) and transform units (TUs) [3]. LCUs can be as
large as 64x64 down to 16x16. LCU in HEVC is similar to that of a macroblock (MB) in the
previous video coding standards.

Forward path starts with partitioning the input frame into LCUs. LCUs split into CUs.
Each CU is encoded in intra or inter mode depending on the mode decision. In both intra and
inter modes, the current CU is predicted from the reconstructed frame. Intra mode generates
the predicted CU based on spatial redundancy, whereas inter mode, generates the predicted
CU based on temporal redundancy. Mode decision compares the required amount of bits to
encode a CU and the quality of the decoded CU for both of these modes and chooses the
mode with better quality and bit-rate performance. In either case, intra or inter mode, the
predicted CU is subtracted from the current CU to generate the residual CU. Residual CU is
split into TUs and transformed using integer transforms. Transformed residual data is
quantized and quantized transform coefficients are re-ordered in a zig-zag scan order. The
reordered quantized transform coefficients are entropy encoded. The entropy-encoded
coefficients together with header information, such as PU prediction mode and quantization
step size, form the compressed bit stream.

Reconstruction path begins with inverse quantization and inverse transform operations.
The quantized transform coefficients are inverse quantized and inverse transformed to
generate the reconstructed residual data. Since quantization is a lossy process, inverse
quantized and inverse transformed coefficients are not identical to the original residual data.

The reconstructed residual data are added to the predicted pixels in order to create the
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reconstructed frame. The reconstructed frame is filtered by three in loop filters to smooth out
artifacts induced by the block-wise processing and quantization.

Deblocking filter (DBF) is one of the in loop filters used in HEVC video encoder and
decoder. In a coding scheme that uses block-based prediction and transform coding,
discontinuities can occur in the reconstructed signal at block boundaries. Visible
discontinuities at block boundaries are known as blocking artifacts. A major source of
blocking artifacts is the block-transform coding of the prediction error followed by coarse
quantization. Moreover, in the motion compensated prediction process, predictions for
adjacent blocks in the current picture might not come from adjacent blocks in the previously
coded pictures, which create discontinuities at the block boundaries of the prediction signal.
Similarly, when applying intra prediction, the prediction process of adjacent blocks might be
different causing discontinuities at the block boundaries of the prediction signal [4].

The main difficulty when designing a DBF algorithm is to decide whether or not to
filter a particular block boundary, as well as to decide the strength of the filtering to be
applied. Excessive filtering may lead to unnecessary smoothing of the picture details whereas
lack of filtering may leave blocking artifacts which would reduce the subjective quality.
Deciding whether to filter a block boundary should therefore depend on the characteristics of
the reconstructed pixel values on both sides of that block boundary, and on coding parameters
indicating whether it is likely that a blocking artifact has been created by coding process [4].

HEVC DBF algorithm is designed to improve both subjective and objective quality.
Different from the H.264/AVC standard where DBF is applied on a 4x4 sample grid basis,
HEVC applies DBF on an 8x8 sample grid which enables parallel processing by preventing
cascading interactions between nearby filtering operations [1].

HEVC intra mode decision algorithm determines the best prediction mode for a block
by using cost metrics such as Hadamard Transform (HT) based Sum of Absolute Transform
Difference (SATD). In H.264, there are 9 intra prediction modes for 4x4 luminance (luma)
blocks, and 4 intra prediction modes for 16x16 luma blocks [5], where as in HEVC, there are
18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4 modes
for 64x64 luma blocks [6]. Therefore, HEVC intra mode decision algorithm has much higher

computational complexity than H.264/AVC intra mode decision algorithm.



1.2 Thesis Contribution

In this thesis, we first designed a high performance hardware architecture for
deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the
hardware to increase its performance. The proposed hardware [31] is implemented in Verilog
HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to
work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T
FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD
(1920x1080) video frames per second.

We then proposed an energy reduction technique for Sum of Absolute Transformed
Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient
hardware architecture for SATD based HEVC intra mode decision algorithm including the
proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog
RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &
route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD
(1280x720) video frames per second. The proposed technique reduced its energy consumption
up to 64.6% on this FPGA without any PSNR loss.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, first, introduces DBF algorithm used in HEVC standard. Then, it describes
the proposed HEVC DBF hardware in detail and presents the implementation results.

Chapter 3, first, introduces intra prediction and intra mode decision algorithms used in
HEVC standard. Then, it explains the proposed energy reduction technique. Finally, it
describes the proposed HT based SATD hardware in detail and presents the implementation
results.

Chapter 4 presents the conclusions and the future work.



Chapter 2

A HIGH PERFORMANCE DEBLOCKING FILTER HARDWARE FOR HIGH
EFFICIENCY VIDEO CODING

HEVC, same as the previous video compression standards, divides video frames into
blocks and performs transform and quantization for each block separately. This causes
correlation loss between blocks and discontinuities on the edges of blocks. Therefore,
reconstructed frames suffer from blocking artifacts. Deblocking filter (DBF) improves the
visual quality of decoded frames by reducing visually disturbing blocking artifacts and
discontinuities in a frame due to coarse quantization. Since the filtered frame is used as a
reference frame for motion-compensated prediction of future frames, DBF also increases
coding efficiency resulting in bit rate savings [4, 7, 8, 9].

HEVC DBF algorithm is applied to each edge of all luma and chroma blocks in a
Largest Coding Unit (LCU), a 64x64 pixel array, after inverse quantization and inverse
transform [4, 6]. In order to decide whether DBF will be applied to an edge or not, the related
pixels in the current and neighboring 16x16 Coding Units (CU) must be read from memory
and processed.

H.264 DBF algorithm has high computational complexity. H.264 DBF algorithm
accounts for one-third of the computational complexity of an H.264 video decoder [7]. HEVC
DBF algorithm also has high computational complexity. HEVC has higher computational
complexity than H.264, and HEVC DBF algorithm accounts for one-fifth of the
computational complexity of an HEVC video decoder [10].

Therefore, in this chapter, we propose the first HEVC DBF hardware in the literature.
The proposed DBF hardware can be used as part of an HEVC video encoder or an HEVC
video decoder. The proposed DBF hardware starts filtering the available edges after a new

64x64 LCU is ready. Two parallel datapaths are used in the hardware to increase its



performance. The proposed DBF hardware is implemented in Verilog HDL. The Verilog RTL
code is verified to work at 108 MHz in a Xilinx Virtex 6 FPGA. The proposed HEVC DBF
hardware can code 30 full HD (1920x1080) video frames per second.

The rest of the chapter is organized as follows. Section 2.1 presents a brief overview of
HEVC DBF algorithm. Section 2.2 describes the proposed HEVC DBF hardware in detail.
Section 2.3 presents the implementation results.

2.1 HEVC DBF Algorithm

HEVC DBF algorithm for an 8x8 block edge consisting of two segments is shown in
Fig. 2.1. In HEVC, there is a quadtree structure [6]. Each video frame is divided into 64x64
LCUs in raster scan order, and each LCU is divided into 16x16 CUs as shown in Fig. 2.2.
DBF is applied to edges of the 8x8 blocks in all 16x16 CUs. Each edge of an 8x8 block
consists of 8 consecutive lines which are divided into two independent 4 line segments. Each
line has 8 pixels along the edge. DBF can update up to 3 pixels in each direction that the
filtering takes place.

First, vertical edges are filtered. Then, horizontal edges are filtered. There are several
conditions that determine whether a segment will be filtered or not. There are additional
conditions that determine the strength of the filtering for 16x16 CU edges that will be filtered.
Strong or weak filtering can be applied to an edge depending on these conditions. Boundary
strength (BS) parameter, quantization parameter (QP), g and tc threshold values and the
values of the pixels in the edge determine the outcomes of these conditions, and the values of
up to 3 pixels on both sides of an edge can be changed depending on the outcomes of these
conditions.

Every edge is assigned a BS value depending on the coding modes and conditions of
16x16 CUs. The strength of the filtering done for an edge is proportional to its BS value. BS
value can be 0, 1, or 2. No filtering is done for the edges with a BS value of 0, whereas
strongest filtering is done for edges with a BS value of 2. BS decision is critical, since
excessive filtering may lead to unnecessary smoothing of the picture details whereas lack of
filtering may leave blocking artifacts which would reduce visual quality. The conditions used
for determining the BS value for an edge between two neighboring 16x16 CUs are

summarized in Table 2.1.
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Figure 2.1: HEVC Deblocking Filter Algorithm
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Table 2.1: Conditions That Determine BS

Coding Modes and Conditions BS
At least one of the blocks is Intra 2
At least one of the blocks has non-zero coded residual
coefficient and boundary is a transform boundary 1
Absolute differences between corresponding spatial motion
vector components of the two blocks are >= 1 in units of 1
integer pixels
Motion compensated prediction for the two blocks refers to
different reference pictures or the number of motion vectors is 1
different for the two blocks
Otherwise 0

2.2 Proposed HEVC DBF Hardware

The proposed DBF hardware architecture is shown in Fig. 2.3. It includes two parallel
datapaths, a control unit, a transpose memory, two input buffers to store the pixels in
segmentl and segment2 of a CU, two dual port and four single port internal SRAMs to store
partially filtered pixels, and two output buffers to store the filtered output pixels. In order to
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process full HD video frames in real time, proposed DBF hardware reads 16 pixels in one
clock cycle from external memory. Therefore, it fills the input pixel memory in 4 clock
cycles. Since the decision process needs the first and fourth lines of each segment, input pixel
memory is loaded with the pixels along the edge for subsequent filtering process.

DBF hardware starts filtering as soon as 64x64 LCU is ready. The two datapaths filter
two segments, segmentl and segment2, in parallel. Transpose memory is used to transpose
the filtered pixels before they are stored to intermediate or output SRAMs. This allows
accessing 16 pixels in one clock cycle from transpose memory and simplifies reading the

pixels from intermediate SRAMSs.
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Figure 2.3: Proposed HEVC DBF Hardware

If an LCU is located in the left frame boundary, its left edges are not filtered. This
causes an irregularity, and therefore increases the complexity of the control unit. In order to
avoid this irregularity and therefore simplify the control unit, frame is extended at left
boundary for 4 pixels as shown in Fig. 2.4. We assigned zero to these pixels and assigned zero
to the BS values of these edges in order to avoid filtering these edges without causing an

irregularity in the control unit.



Top and left memories are used to store the pixels in the leftmost and topmost edges of an
LCU as shown in Fig. 2.4. In the MxN frame shown in Fig. 2.4, squares represent 64x64
LCUs and each LCU has sixteen 16x16 CUs. In order to filter an LCU, its top and left
neighboring 4x64 and 64x4 blocks, shown as shaded small squares in Fig. 2.4, should be
available. In order to reduce the amount of off-chip memory accesses and therefore reduce
power consumption of the DBF hardware, top 64x4 blocks of all LCUs in a row of a frame,
shown as lightly shaded small squares in Fig. 2.4, and left 4x64 blocks of the current LCU,
shown as darkly shaded small squares in Fig. 2.4, are stored in on-chip SRAM memories. For
full HD video frames, 1920x32/2 = 960x32 size 2 SRAM memories are used for storing top
blocks, and 64x32/2 = 32x32 size 2 SRAM memories are used for storing left blocks.

64x4 blocks Upglircfkigﬂ
along frame o
width
Extended
Currently
4x64 blocks Left 4x64 Processed
around left blocks 64x64 LCU
frame
boundary
A

Figure 2.4: Pixels Stored in Top and Left Memories

The proposed DBF datapath is shown in Fig. 2.5. It can process 4 pixels, which are
selected by the first four multiplexers, in parallel to increase the performance. The proposed
datapath implements both the decision and filtering parts of HEVC DBF algorithm.
Comparatorl is used for implementing the decision part. Comparator2 is used for
implementing Clip3 function. Comparator3 and Comparator4 are used for implementing

CliplY function. The filtered pixels are stored in outreg register.
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Figure 2.5: Proposed HEVC DBF Datapath
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2.3 Implementation Results

The proposed HEVC DBF hardware is implemented in Verilog HDL. The
implementation is verified with the RTL simulations using Mentor Graphics Modelsim SE.
RTL simulation results matched the results of a software model of the HEVC DBF algorithm.
The Verilog RTL code is synthesized and mapped to a XC6VLX130T-ff1156 Xilinx Virtex 6
FPGA with speed grade 3. The resulting netlist is placed and routed to the same FPGA using
Xilinx ISE 11.5.

The FPGA implementation uses 5236 LUTs (6%), 1547 DFFs (1%) and 8 BRAMs
(3%). BRAMs are implemented as dual-port block SelectRAMs. The FPGA implementation
works at 108 MHz. It takes 7680 clock cycles in the worst-case to process an LCU. The
FPGA implementation can process a full HD (1920x1080) video frame in 33.9 ms (480 LCUs
x 7680 clock cycles per LCU x 9.2 ns clock cycle = 33.9 ms). Therefore, it can process
1000/33.9 = 30 full HD frames per second.

The FPGA implementation is verified to work correctly on a ML605 FPGA board
which includes a Virtex 6 XC6VLX240T FPGA, 512 MB DDR RAM and 32 MB Flash
memory, and interfaces such as UART and DVI. A software running on MicroBlaze
processor is developed to transfer the inputs of the HEVC DBF hardware from a host
computer in an appropriate order and to gather the outputs of the hardware for sending them
back to the host computer and displaying the resulting frame on a monitor. HEVC DBF
hardware is added as a peripheral to a bus where the MicroBlaze processor is the master. For
this purpose HEVC DBF hardware is modified to be a slave peripheral for this data bus and
16 software accessible registers are added to the hardware. 11 of these registers are used by
the software running on MicroBlaze for writing the inputs to the hardware and the other 5 are
used for gathering the outputs and the status information from the hardware.

The software gets 1 blocky input frame from the host computer using the UART
interface and writes it to a DDR RAM. Then, it loads the BRAMs of HEVC DBF hardware
with the input pixels. After HEVC DBF hardware generates the done signal, the software
reads the deblocked pixels by HEVC DBF hardware and writes them to the DDR RAM. This
process is repeated for all the LCUs. After all the LCUs are processed, the deblocked frame is

displayed on a monitor using the DV interface of the FPGA board as shown in Fig. 2.6.
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Figure 2.6: HEVC DBF Hardware FPGA Board Implementation

Since HEVC DBF algorithm is highly adaptive, amounts of strong and weak filtering
operations performed for block edges differ from frame to frame. The amounts of strong and
weak filtering operations performed for five different video sequences are shown in Fig. 2.7.
All video sequences are intra coded and quantization parameter (QP) is 42. An example
unfiltered video frame and the same frame filtered by HEVC DBF algorithm are shown in
Fig. 2.8 and Fig. 2.9. As it can be seen from Fig. 2.9, some of the blocking artifacts are

reduced and some of them are totally removed.
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Figure 2.7: Strong and Weak Filter Amounts

Figure 2.8: Unfiltered Tennis (1920x1080) Video Frame
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Figure 2.9: The Same Frame Filtered by HEVC DBF Algorithm

The power and energy consumptions of the FPGA implementation for several full HD
(1920x1080) video frames are given in Table 2.2. The power consumption results are
estimated using Xilinx XPower Analyzer tool. Post place & route timing simulations are
performed for one frame of each video sequence at 50 MHz, and signal activities are stored in
VCD files. These VCD files are used for estimating the power consumption of the FPGA
implementation using Xilinx XPower Analyzer tool.

The Verilog RTL code of the proposed HEVC DBF hardware is also synthesized to
Synopsys 90nm standard cell library using Synopsys Design Compiler and the resulting
netlist is place & routed using Cadence SoC Encounter tool. The resulting ASIC layout is
shown in Fig. 2.10. Gate count of the resulting ASIC implementation is calculated as 16.4Kk,

excluding on-chip memories, based on NAND (2x1) gate area.
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Table 2.2: Power and Energy Consumption Results

Video Sequences

Basketball

Category - Cactus Terrace Tennis Kimonol
Drive

Clock (mW) 7.63 7.61 7.63 7.62 7.62
Logic (mW) 11.44 11.72 11.55 11.15 11.86
Signal (mW) 25.44 26.26 25.83 25.03 26.72
BRAM (mW) 12.19 12.22 12.24 12.19 12.23
Total Power (mW) 56.70 57.81 57.25 55.99 58.43
Total Time 0.072 0.069 0.067 0.073 0.072
(sec)

Energy (mJ) 4,082 3.988 3.835 4,087 4.206

Figure 2.10: HEVC DBF ASIC Layout

In HEVC DBF algorithm, the pixels in the neighboring edges of 8x8 blocks do not

overlap. Since the pixels in the neighboring edges can be filtered in parallel, depending on the

application requirements, large number of parallel datapaths can be used in an HEVC DBF
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hardware. The impact of parallel filtering on the proposed HEVC DBF hardware is shown in
Table 2.3. The clock frequency for all cases is 108 MHz. As the number of parallel datapaths
in HEVC DBF hardware increases, its performance increases significantly. However, this
increases its gate count and on-chip memory usage. 640 byte on-chip memory is used for

processing 16x16 CUs, and each parallel datapath uses 32 byte on-chip transpose memory.

Table 2.3: HEVC DBF Hardware Scalability Results

Parallel Cycles/CU | Throughput | 1920x1080 On-Chip
Datapaths (worst case) (CU/sec) fps Memory Gate Count
(Byte)
2 480 230k 30 640+64 16.4k
3 320 345k 43 640+96 21.5k
4 240 460k 57 640+128 26.6k
5 192 575k 72 640+160 31.7k
6 160 690k 86 640+192 36.8k

Since this is the first HEVC DBF hardware in the literature, we compared it with the
H.264 DBF hardware in the literature. In order to make a fair comparison, we give its
implementation results for processing 16x16 CUs. The comparison results are given in Table
2.4. However, this comparison is not perfect because of the following differences between
HEVC and H.264 DBF algorithms.

Since the block sizes, conditions used to determine whether an edge will be filtered or
not, conditions used to determine the strength of the filtering that will be applied to an edge,
and the amount of computations performed in filtering operations are different, the amount of
computations performed by HEVC DBF hardware and H.264 DBF hardware will be different
for the same video frames. In HEVC DBF algorithm, 53% of the operations are performed in
the decision part, and because of the data dependencies most of these operations are
performed sequentially. However, this is not the case for H.264 DBF algorithm. Since the
pixels in neighboring edges can be filtered in parallel in HEVC DBF algorithm, HEVC DBF
hardware can use large number of parallel datapaths. However, this is not the case for H.264
DBF hardware. Because, the pixels in the neighboring edges of 4x4 blocks overlap in H.264
DBEF algorithm.
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Table 2.4: DBF Hardware Comparison

DBF Technolo Memory Cy(ilvf;sr/sl\t/[B Frequency | Throughput Throughput SII;S:;D Gate
Hardware 24 Type case) (MHz) (MB/sec) (fps) (Byte)y Count
Proposed -

HEVC Xilink 1l port 1920x1080 640 + 64 16.4k
Virt 4 | 230k '
DBF ;ng SRAM 80 08 30 30 fps =704 (ASIC)
Hardware
0.25 um
Huang two port 1920x1080
M 14 1 163k 4 20.6k
[11] iSIOCS SRAM 6 00 63 20 fps 640 06
0.25 um single
H[Lﬁr]lg CMOS port 878 100 114k 19?2’};280 640 18.9k
ASIC SRAM
0.25 um 64x32 +
S[hg;g CMOS d;'al port 446 100 224k 1922’};280 2X96X32 24k
ASIC RAM = 1024
Xilinx
Parlak virex2 | dualport | o 7 13k 392x288 1792 5.3k
[13] FPGA SRAM 33 fps
0.25um
. two port 1920x1080 160x32 + 32
hih [14 M 4 1 154k 18.7k
Shih [14] (fASI%S S 646 00 5 19 s 672 8
0.18um single
. +
Liu [15] CMOS port 250 100 400k 1920x1080 96x32 19.6k
SIo < 49 fps 2Nx32
0.18um 144x32 +
Chao[16] | CMOS t‘ggil‘\’; 228 100 369k 20;‘3’;155 36 2x16x32 | 16.6k
ASIC P =704
0.18um single
Shih [17] CMOS port 246 100 406k 1920x1080 512+ 12N | 209
ASIC SRAM 50 fps
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Chapter 3

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE FOR HEVC INTRA
MODE DECISION

HEVC intra mode decision algorithm has a huge computational complexity. HEVC
intra prediction algorithm predicts the pixels in prediction units (PU) of a coding unit (CU),
which is similar to macroblock (MB) in H.264, from the pixels of its already coded and
reconstructed neighboring PUs. In H.264, there are 9 intra prediction modes for 4x4
luminance blocks, and 4 intra prediction modes for 16x16 luminance blocks [5]. In HEVC,
there are 18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4
modes for 64x64 luminance PUs [6, 18]. The number of HEVC intra prediction modes for a
64x64 luminance CU is approximately 3.2 times larger than H.264. In order to determine the
best HEVC intra prediction mode for the luminance component of a 64x64 CU, predictions
for 7552 intra prediction modes should be calculated.

The intra mode decision algorithm implemented in HEVC HM reference software
encoder [19] uses Sum of Absolute Transformed Difference (SATD) based cost function. Fig.
3.1 shows the amount of addition operations performed by SATD calculations in HEVC and
H.264 intra mode decisions. Because of the larger PU sizes and more intra prediction modes,
24 times more addition operations are performed for SATD calculation in HEVC intra mode
decision than SATD calculation in H.264 intra mode decision. Therefore, in this thesis, we
proposed a computation and energy reduction technique for SATD calculation in HEVC intra

mode decision.
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Figure 3.1: Addition Amounts in HEVC and H.264 SATD Calculations

The proposed technique reduces the number of additions performed by SATD
calculations in HEVC intra mode decision algorithm used in HEVC HM reference software
encoder [19] for 4x4 and 8x8 luminance intra prediction modes by 54% and 70% respectively
without any PSNR loss. Since 94% of intra predicted blocks are predicted by 4x4 and 8x8 PU
sizes [21], we showed the impact of the proposed technique for 4x4 and 8x8 PUs. But, it can
also be used for 16x16, 32x32 and 64x64 PUs.

We designed efficient hardware architectures for both the original HEVC SATD
calculation and HEVC SATD calculation with the proposed technique for 4x4 and 8x8 PUs.
The proposed hardware architectures are implemented in Verilog HDL. The proposed
technique reduced the energy consumption of the original HEVC SATD calculation hardware
up to 64.6%.

A similar energy reduction technique is proposed for H.264 intra mode decision in [22].
However, the proposed technique is applied to HEVC intra mode decision and it includes an
additional optimization to further reduce the energy consumption. There are several H.264
intra prediction and intra mode decision hardware implementations in the literature [23, 24,
25, 26]. There are a few HEVC intra prediction hardware implementations in the literature
[21, 28]. A HEVC intra mode decision hardware only for 4x4 PU size is presented in [27].
However, no energy reduction technique is used in this hardware, and its power consumption

is not reported.

20



3.1 HEVC Intra Prediction and Mode Decision Algorithms

HEVC intra prediction algorithm predicts the pixels in PUs of a CU using the pixels in
the available neighboring PUs. For the luminance component of a frame, 4x4, 8x8, 16x16,
32x32 and 64x64 PU sizes are available. There are 16 angular prediction modes for 4x4 PU
size, 33 angular prediction modes for 8x8, 16x16 and 32x32 PU sizes, and 2 angular
prediction modes for 64x64 PU size. In addition to angular prediction modes shown in Fig.
3.2, there are DC and planar prediction modes for all PU sizes [6]. Fig. 3.2 shows the intra
prediction angles and intra prediction modes corresponding to these intra prediction angles.
Angles 0, 5, 13, 21 and 32 are used to predict 4x4 PUs. Angles 0, 2, 5, 9, 13, 17, 21, 26 and
32 are used to predict 8x8, 16x16 and 32x32 PUs. 64x64 PUs are predicted only with angle 0.

18 19 20 21 22 23 242562627 28 29 30 31 32 33 34  Mode
-3 -26 21 1713 8 520 2 b 9 13 17 21 26 32 Angle

s TN sy auopnumnimn

S

17 -26

A

Figure 3.2: HEVC Intra Prediction Mode Directions
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HEVC intra mode decision algorithm implemented in HEVC HM reference software
encoder is shown in Fig. 3.3 [29]. This mode decision algorithm uses two cost functions; Sum
of Absolute Transformed Difference (SATD) based Hadamard cost function shown in (3.1),
and Sum of Squared Difference (SSD) based Rate Distortion (RD) cost function shown in
(3.2). Hadamard cost function estimates distortion as SATD and rate as the number of bits
used for encoding the prediction mode. RD cost function calculates the actual distortion after
coding based on SSD and the actual bit rate used after coding. A is calculated based on

Quantization Parameter (QP).

This mode decision algorithm determines the best PU size, transform unit (TU) size and
intra prediction mode of a CU as follows. First, SATD values for each intra prediction mode
of each PU for the largest PU size are calculated as follows. Find residue block by subtracting
intra predicted block from current block, apply Hadamard Transform (HT) to the residue
block, and add the absolute values of the transformed residues. Then, 8 candidate modes for
4x4 and 8x8 PUs and 3 candidate modes for 16x16, 32x32 and 64x64 PUs with minimum
Hadamard cost function value are selected as candidate modes for each PU. After that, for
each PU, the most selected candidate modes for neighboring PUs are compared with the
candidate modes selected for the current PU and up to 3 additional modes from neighboring
PUs are added to the candidate modes of the current PU. Then, RD costs of each candidate
mode of each PU are calculated using the cost function in (3.2) and the best mode with
minimum RD cost is selected. After that, for each PU, RD cost of its best mode is calculated
with TU sizes from 4x4 to 32x32 and best TU size with minimum RD cost is also selected.
This process is repeated for each PU size of the CU from largest to smallest, and the best PU

size, TU size and intra prediction mode for the CU with minimum RD cost are selected.
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Figure 3.3: Intra Mode Decision Algorithm in HEVC HM Software Encoder
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3.2 Proposed Computation and Energy Reduction Technique

HT is a linear operation and it can be applied before subtraction operation as shown in
(3.3). H, C and P shown in (3.3) are Hadamard matrix, current block, and predicted block,
respectively. 8x8 Hadamard matrix is shown in (3.4). Instead of applying HT after subtraction
operation, we applied HT before subtraction operation. Applying HT before subtraction
requires performing two HTs instead of one. However, this decreases the computational
complexity of SATD based HEVC intra mode decision. Since the intra predicted blocks have
regular patterns, HTs of the predicted blocks (H*P*H") can be calculated with a small amount
of computation. In addition, since HT of the current block (H*C*H") is common to all intra
prediction modes, it can be calculated only once.

T=H+«x(C—-P)xH =H=*C+H)—(H+P=xH" (3.3)
1 1 1 1 1 1 1 17
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
H= 1 1 1 1 -1 -1 -1 -1 (3.4)
1 -1 1 -1 -1 1 -1 1
i 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

The predicted block pattern of horizontal mode and the result of performing HT for this
predicted block pattern are shown in Fig. 3.4 for 8x8 PU size. SATD of an 8x8 block
including HT can be calculated with 959 additions. However, SATD of an 8x8 block
predicted by horizontal mode including HT can be calculated with 95 additions and 8 shifts as
shown in Fig. 3.4. Similarly, SATD of an 8x8 block predicted by vertical mode and all angle
2 modes including HT can be calculated with 95 additions and 8 shifts. Therefore, the
proposed technique significantly reduces the number of additions performed by SATD
calculation.
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Figure 3.4: Hadamard Transform of Horizontal Mode

We applied the proposed technique to all 4x4 intra prediction modes except planar and
DC modes, and all 8x8 intra prediction modes of angles 2, 5, 13, 17 and vertical and
horizontal modes. Therefore, we applied the proposed technique to 16 4x4 modes and 18 8x8
modes. Since the other modes have relatively irregular prediction patterns, the proposed
technique achieves small amount of computation reduction for these modes. In order to have a
less complex and smaller SATD calculation hardware, we did not apply the proposed
technique to these prediction modes. Instead, for these prediction modes, we used the original
HT operation which is applying HT after subtraction operation.

We determined the computation reductions achieved by the proposed technique and
presented the results in Table 3.1. The columns labeled | show the amount of computations
performed by the original HT operation and the columns labeled Il show the amount of
computations performed by the HT operation using the proposed technique. The proposed
technique reduced the number of additions performed by HT operation for 4x4 and 8x8
luminance intra prediction modes by 54% and 70% respectively without any PSNR loss. The
results show that the proposed technique significantly reduces the computational complexity
of SATD based HEVC intra mode decision.

The proposed technique reduces the amount of computations because of two reasons.
First, as shown in Fig. 3.4, most of the values in HT of intra predicted blocks are zero.
Therefore, there is no need to calculate these values. Second, since intra predicted blocks have
regular patterns, some of the values in HT of intra predicted blocks are the same. Therefore,
these values are calculated only once. For example, the values in sixth row of HT of an 8x8
block predicted by an 8x8 intra prediction mode of angle 17 is shown in Fig 3.5. The first line
gives the first value in the row, and so on. Since some of the values are the same, they are

calculated only once.
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(6:1)
(62
(6,3)
(64)
(6,5)
(6.6)
(67

Table 3.1: Computation Reductions for Intra Prediction Modes

(68)

Hadamard Transform Residue
Prediction Addition Shift  Subtraction
Angles
[ 11 | 11 | 1]
5(4 modes) 444 108 0 16 64 64
13(4 modes) 444 188 0 128 64 64
g 21(4 modes) 444 332 0 64 64 64
X
o 32(2 modes) 222 134 0 44 32 32
= Vertical 111 27 0 4 16 16
Horizontal 111 27 0 4 16 16
Total 1776 816 0 260 256 256
2(4 modes) 3836 160 0 32 256 32
5(4 modes) 3836 628 0 128 256 256
® 13(4 modes) 3836 1740 0 688 256 256
?is 17(4 modes) 3836 2372 0 680 256 256
= Vertical 959 95 0 32 64 64
Horizontal 959 95 0 32 64 64
Total 17262 5090 0 1592 1152 928
a-2*ab+ad+ae |-| 2*ag+ai+aj-*al [+| an+ao-2%ag+as |+ | at- 2*av+az-2%c [+| e+f-2*h+r  |+| s5-2%uty+r
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a-2%ab+ad-ae |+ 2%ag-ai-aj+*al |-| an-ao+2%aq-as |- | at+2%av-az-2fc |+ e+f-2%h+er 4] s-2fubyei
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a+2%ab-ad-ae |+| 2%ag-ai-aj+*al |-| antao- 2%aq 4as |+ | at-2fav+az-2tc [+ e+f-2*her |- s42fu-y-z
a-2*abtad-ae |+| 2*ag-ai+aj-*al |+|an+ao-2*aq+as |- | at+2*av-az-2*c |+| e-f+2*h-r st2'u-yt2

Figure 3.5: Sixth Row of HT of 8x8 Intra Predicted Block
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3.3 Proposed Hardware Architecture

We designed two different hardware architectures for SATD calculation in HEVC intra
mode decision for 4x4 and 8x8 PU sizes. The first hardware implements the original SATD
calculation. Therefore, it first subtracts predicted block from current block, and then performs
HT. The second hardware implements the SATD calculation with the proposed technique.
Therefore, it first performs HT for predicted block and current block, and then performs
subtraction.

The hardware architecture implementing the original SATD calculation has two 8
parallel datapaths in order to increase its throughput. The hardware architecture with one 8
parallel datapaths is shown in Fig. 3.6. One of these datapaths is shown in Fig. 3.7. Input
pixels are stored in IBUF input buffer. First, predicted block pixels are subtracted from
current block pixels. Then, addition or subtraction operation is performed depending on HT
matrix. Since HT matrix is multiplied with the residue block both from left and right side as
shown in (3.3), the results of the left side multiplication are stored in transpose registers as
shown in Fig. 3.6. For 8x8 PU size, in each clock cycle, the values in one column of H*(C-P)
are calculated by 8 parallel datapaths. Therefore, H*(C-P) is calculated in 8 clock cycles.
Then, right side multiplication is performed. In each clock cycle, the values in one row of
H*(C-P)*H" are calculated by the same 8 parallel datapaths. Therefore, H*(C-P)*H" is
calculated in 8 clock cycles using the same 8 parallel datapaths. Then, absolute values are
calculated and stored in transpose memory. Finally, SATD value is calculated by adding the
absolute values using the last datapath. The original SATD calculation hardware calculates
SATD values of all 4x4 and 8x8 intra prediction modes in 879 clock cycles.
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Figure 3.6: Original SATD Calculation Hardware
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The hardware architecture implementing the SATD calculation with the proposed
technique is shown in Fig. 3.8. Parallel processing elements (PEs) are used in the hardware in
order to increase its throughput. As it is shown in Fig. 3.9, each PE only has 3 adders and 4
multiplexers. HTs for 4x4 intra prediction modes are calculated using 4 PEs. HTs for 8x8
intra prediction modes of angles 2, 5 and vertical and horizontal modes are calculated using
one PE. HTs for 8x8 intra prediction modes of angles 13 and 17 are calculated using 4 PEs.
Since the proposed technique is not applied to some intra prediction modes, as it is shown in
Fig. 3.8, the hardware also includes original SATD calculation hardware with 8 parallel
datapaths in order to calculate the SATDs for these intra prediction modes.

Architecture of 4 PEs is shown in Fig. 3.10. Since there is no matrix multiplication in
the proposed technique, there is no transpose memory in this hardware. First, predicted pixels
are stored in IBUF input buffer. Then, each PE reads 4 pixels from IBUF and performs
operations of HT. The outputs of PEs are stored either in SPAD for performing further
operations of HT or in OBUF output buffer. IBUF, SPAD and OBUF are implemented as
BlockRAMs.

CONTROL UNIT
v ¥ ¥ v ¥
8X8 ANGLE 2,5
& EXB ANGLE 17 BX8 ANGLE 13 4%4
MODE V,H MODULE MODULE MODULE
MODULE {4 PE) {4 PE) {4 PE) GENERIC
(1 PE) MODULE
(8 Parallel)
v ¥ ¥ v
ADDER TREE -2

SATD_Bx8 or SATD_4x4

v

S.Eu'll:Il_::lrigirlEII¢

Figure 3.8: SATD Calculation Hardware with Proposed Technique
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Figure 3.9: Processing Element (PE) Architecture
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Figure 3.10: Architecture of 4 PEs

4 PEs used for performing HTs of 4x4 intra predicted blocks perform HTs of four 4x4
blocks in an 8x8 block sequentially. These 4 PEs are divided into two groups. Each group has
2 PEs and the PEs in a group perform HTs of 4x4 blocks predicted by the same intra
prediction modes. HTs of 4x4 and 8x8 current blocks are calculated once in 8 parallel original
SATD calculation hardware and stored. Then, SATD values are calculated by subtracting HT
of intra predicted blocks from HT of current block and adding absolute values of the results
using the adder tree shown in Fig. 3.11. Since 56 of 64 values in the HT of 8x8 blocks
predicted by 8x8 intra prediction modes of angle 2 and horizontal mode are zero, these zero
values are not subtracted from HT of current block in order to reduce the power consumption.
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Figure 3.11: Adder Tree Architecture

Since, only one adder tree is used to reduce hardware area, the adder tree operations are
scheduled to use this adder tree hardware efficiently. HT flow and adder tree scheduling for
an 8x8 PU for 4x4 intra prediction modes and 8x8 intra prediction modes of angles 2, 5, 13,
17 and vertical and horizontal modes are shown in Fig. 3.12. Adder tree calculates SATD
value for each 4x4 intra prediction mode and 8x8 intra prediction mode in 5 and 9 clock
cycles respectively. Therefore, it takes 330 clock cycles to calculate SATD values of 4x4 and
8x8 intra prediction modes for which the proposed technique is applied. It takes 400 clock
cycles to calculate SATD values of the intra prediction modes for which the proposed
technique is not applied. Therefore, SATD calculation hardware with the proposed technique
calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Since
PEs and adder tree has to wait for 70 clock cycles before processing the next 8x8 block, they

are clock gated in order to reduce power consumption.
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3.4 Implementation Results

Both the original HEVC SATD calculation hardware and HEVC SATD calculation
hardware with the proposed technique are implemented in Verilog HDL. The
implementations are verified with RTL simulations using Mentor Graphics Questa. RTL
simulation results matched the SATD values calculated by HEVC HM reference software
encoder 7.0. The Verilog RTL codes are synthesized to a XC6VLX365T-ff1759 Xilinx Virtex
6 FPGA with speed grade 3. The resulting netlists are placed and routed to the same FPGA
using Xilinx ISE 13.4. Both FPGA implementations are verified with post place&route
simulations as well.

Both FPGA implementations work at 116 MHz. There are 14080 8x8 blocks in an HD
(1280x720) frame. FPGA implementation of the original HEVC SATD calculation hardware
can process one HD frame (1280x720) in 106.4 msec. (14080 8x8 blocks x 879 clock cycles
per 8x8 block x 8.6 ns clock cycle = 106.4 msec). Therefore, it can process 1000/106.4 = 9
HD frames per second. HEVC SATD calculation hardware with the proposed technique
calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Its
FPGA implementation can process one HD (1280x720) frame in 48.4 msec. (14080 8x8
blocks x 400 clock cycles per 8x8 block x 8.6 ns clock cycle = 48.4 msec). Therefore, it can
process 1000/48.4 = 21 HD frames per second. Therefore, the proposed technique

significantly increases the performance of SATD calculation hardware.
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Figure 3.12: HT Flow and Adder Tree Scheduling

FPGA implementation of the original HEVC SATD calculation hardware uses 6909
Slices (12%), 20473 LUTs (8%), 3504 DFFs (1%) and 8 BRAMs (1%). FPGA
implementation of the HEVC SATD calculation hardware with the proposed technique uses
6247 Slices (10%), 19227 LUTSs (8%), 2184 DFFs (1%) and 40 BRAMSs (9%). BRAMs are
implemented as dual-port block SelectRAMs. Therefore, the proposed technique reduces the

FPGA resources used by SATD calculation hardware except BRAMs.
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As shown in Table 3.2, in order to increase the performance of the original HEVC
SATD calculation hardware, the number of parallel datapaths can be increased at the expense
of using more FPGA resources. For example, 48 parallel datapaths can be used to process 27
HD frames per second.

The power consumptions of both FPGA implementations on a Xilinx Virtex 6 FPGA
are estimated using Xilinx XPower Analyzer tool. Post place&route timing simulations are
performed for Vidyol (1280x720), Vidyo3 (1280x720), Johnny (1280x720), and
KristenAndSara (1280x720) video sequences [30] at 100 MHz and signal activities are stored
in VCD files. These VCD files are used for estimating the power consumptions of both FPGA
implementations using Xilinx XPower Analyzer tool. The power and energy consumption
results for one frame of each video sequence are shown in Table 3.3. The results show that the
proposed technique reduced the power and energy consumptions of the original SATD
calculation hardware up to 24.2% and 64.6% respectively. Since HEVC SATD calculation
hardware is used as part of a HEVC video encoder, only internal power consumption is
considered and input and output power consumptions are ignored. Therefore, power
consumption of HEVC SATD hardware can be divided into four main categories; clock

power, logic power, signal power and BRAM power.

Table 3.2: Performance and Area Results

) . Performance
LUTs FlipFlops Slices BRAMs (HD fps)
Original 50,75 3504 6909 8 9
16 Parallel
Original —yho/6 7008 13818 16 18
32 Parallel
Original “c1019 10512 20727 24 27
48 Parallel
Proposed 19507 5194 6247 40 21
Technique
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Table 3.3: Energy Consumption Reductions for 1280x720 Video Frames

Vidyol Vidyo3 Johnny KristenAndSara
Frames

Org. Elr_lgrv;y Org. Elr_lg\rléy Org. Elr_lg\rléy Org. Ehgl\’/;y
Time (ms) 132 61.6 132 61.6 132 61.6 132 61.6
Clock (mW) 50 45 50 45 50 45 50 45
Logic (mW) 157 43 158 41 157 43 157 38
Signal (mW) 273 154 273 145 273 154 272 131
BRAM (mw) 17 163 17 162 17 163 17 162
-IID-S\J:\?eIr (mW) 497 405 498 393 497 405 496 376
Energy (uJ) 65604 24948 65736 24208 65604 24948 65472 23161
Power Red. 18.5% 21.0% 18.5% 24.2%
Energy Red. 61.2% 63.1% 61.2% 64.6%
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis, we first designed a high performance hardware architecture for
deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the
hardware to increase its performance. The proposed hardware is implemented in Verilog
HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to
work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T
FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD
(1920x1080) video frames per second.

We then proposed an energy reduction technique for Sum of Absolute Transformed
Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient
hardware architecture for SATD based HEVC intra mode decision algorithm including the
proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog
RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place &
route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD
(1280x720) video frames per second. The proposed technique reduced its energy consumption
up to 64.6% on this FPGA without any PSNR loss.

As future work, a complete HEVC video encoder hardware can be designed and it can
be implemented on the Xilinx ML605 FPGA board.
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