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Abstract
Social media has taken an important part in our lives in a short amount of time. People
share parts of their experiences, opinions, and interests with others in a timely-fashion on
these platforms. In recent years, fast growth of user population in social media is not
only driving the research towards analyzing its inhabitants for fulfilling their
expectations but also making it a very crucial information source for decision making
processes in societies and in businesses. In this work, we propose methods for
identifying users and their interests by using the multimedia data shared in social media.
We show effectiveness of these methods in three applications. Our first application
considers extracting political interests of Turkish Twitter users. We collect tweets that
include a set of predefined words representing two different political stances in Turkey.
We extract profile images of the users who wrote those tweets and apply a computer
vision technique called image context extraction on this set of images to obtain some
textual explanations for each picture. The main goal of this work is inferring proportions
of two different political stances to forecast results of March 2014 local elections. Our
results show that the proportions obtained from our method are almost the same as the
vote percentages of two parties. In our second application, we find Facebook profiles of
people whose identification information (Name, surname and location) is given by
querying Facebook Graph API. Each query result returns a number of profiles due to
people having same name. We refine these results by checking location in profile pages
online. Our method achieves a successful match rate of 88% (1332/1500 people). The
third application deals with building a community about a given topic of interest by
condensing existing communities in a social media platform. We collect members of the
communities about the given topic in a set and apply our relevance scoring method on
these members. Those who receive a score below a threshold value are assumed to be
irrelevant to given topic and they are eliminated so that remaining users in the set are the
ones relevant to given topic. We validated the results of our framework by a user-study.
There is a 76% of match between user labelled and automated results.
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Sosyal Medyada Kullanıcı İlgi Saptanımı

Giray Havur
Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Yücel Saygın

Anahtar Kelimeler: Çevrimiçi topluluklar, bilgi çekimi, semantik analiz, duygu analizi,
sosyal ağlar, kullanıcı tasnifi.

Abstract

Sosyal medya kısa zamanda hayatlarımızda önemli bir yer edindi. İnsanlar
deneyimlerini, fikirlerini ve ilgi alanlarını bu platform üzerinde gerçek zamanlı olarak
paylaşmaya devam ediyorlar. Son yıllarda sosyal medyada süratle artan kullanıcı sayısı,
bu alanda yapılan araştırmaların kullanıcı beklentilerini karşılamak üzere
yoğunlaşmasına sebep olduğu gibi sosyal medyanın toplumlar ve iş dünyası içerisinde
yer alan karar mekanizmalarında kritik bir önem taşımasına yol açtı. Bu çalışmamızda
sosyal medya kullanıcılarını ve onların ilgi alanlarını saptamaya yönelik yöntemler
geliştirdik. İlk uygulamamız, Türkiye’deki Twitter kullanıcılarının politik ilgi odağını
belirlemeye yöneliktir. Ülkedeki iki farklı politik duruşu tarif eden iki anahtar kelime
kümesi belirleyerek, bu kümelerdeki kelimeleri içeren tweetleri ve bu tweetlerin
kullanıcılarını topluyoruz. Bu kullanıcıların profil fotoğrafları üzerinde bir bilgisayarlı
görüntü işleme tekniği olan görüntü özüt çıkarımı yöntemini uyguluyor ve fotoğrafların
içeriği hakkında metinsel bilgi elde ediyoruz. Bu bilgileri ve başta tanımladığımız
anahtar kelime kümelerini kullanarak Mart 2014 yerel seçimlerinden önce iki farklı
politik duruşu destekleyen grupların rakamsal oranlarını tahmin etmeyi hedefliyoruz.
Uygulamamızda elde ettiğimiz sonuçlarla seçim sonuçlarının birebir örtüştüğünü
gözlemledik. İkinci çalışmamızda insanların tanımlama bilgilerini (Örn. İsim, yaşadığı
yer) kullanarak bu insanların Facebook profil sayfalarına ulaşmaya çalışıyoruz. 1500
tanımlama bilgisini kullanarak 1332 Facebook profiline ulaştık. Son uygulamamız ise bir
ilgi alanı etrafında, bu konuyla ilgili insanları yakalamayı hedefliyor. Sosyal medya
üzerinde halihazırda bu konuyla ilgili olan toplulukların üyelerini bir kümede toplayarak
bu üyeleri önerdiğimiz ilgi değerlendirme yöntemiyle notlandırıyoruz. Eşik değerin
altında notlandırılan üyeler, belirlenen ilgi alanıyla alakasız oldukları öngörülerek
kümeden eleniyorlar ve böylece geride kalan üyeler belirlenen konuyla ilgili üyeler
oluyor. Sonuçlarımızı doğrulamak için yaptığımız çalışmada, insanlar tarafından ilgili
olduğu tespit edilen sosyal medya kullanıcılarıyla uygulamamızın tespit ettiği
kullanıcılar arasında %76’lık bir örtüşme olduğunu gözlemledik.
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“Dancing all paths

And swimming a song

around [t]his royal homeland

In the poorest full ”
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him for his continuous encouragement and guidance.

Many friends have helped me stay sane through these difficult years. Peter Schüller,
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Ceren, Saniye, Doğa, Sinan, Barış, Ümit, Orkun and Can. My extended family has aided

and encouraged me throughout this endeavor.

You are whom this thesis is dedicated to, has been a constant source of love, concern,

support and strength all these years.

vii



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4

2.1 Part-of-Speech Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Semantic Similarity Scoring . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Web Image Context Extraction . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Related Work 13

3.1 Text Analysis and Semantic Analysis . . . . . . . . . . . . . . . . . . . . 13

3.2 Sentiment Analysis for Social Web . . . . . . . . . . . . . . . . . . . . . 14

3.3 Recommender Systems for Social Media . . . . . . . . . . . . . . . . . . 15

3.4 Community detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Inferring Supporters of Political Parties in Twitter 18

4.1 Categorizing Twitter Users via Profile Pictures . . . . . . . . . . . . . . . 19

4.1.1 Dataset and Method . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Post-Election Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



5 Finding Audience for Advertisement 23

5.1 Searching Facebook Profiles via Name and Places Lived . . . . . . . . . 24

5.1.1 Dataset and Method . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Relevance-based Condensation of Online Communities in Social Media 26

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Relevance-based Condensation of Communities . . . . . . . . . . . . . . 29

6.3 An Integrated Semantic Approach to Relevance-based Condensation of

Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.3 Relevance Scoring . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4 A Use-Case Scenario: Implementation and Experiments with Facebook

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4.1 Experiment Setup and Dataset . . . . . . . . . . . . . . . . . . . 35

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusions 42

ix



List of Figures

2.2.1 Hyponymy (IS-A) relationship . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Path length on word relation graph . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Web image context extraction (simplified) . . . . . . . . . . . . . . . . . 10

4.1.1 Flowchart of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Flowchart of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.1 Online Community in Social Media . . . . . . . . . . . . . . . . . . . . 28

6.1.2 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1 Role of communities in reaching highly-relevant users . . . . . . . . . . 30

6.3.1 Framework Flowchart: (1) Information Retrieval, (2) Information Extrac-

tion, (3) Scoring Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.1 Number of groups obtained by each keyword and group sizes . . . . . . . 36

6.4.2 Relevance scores of U ′
C . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.3 Threshold vs number of users . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.4 Validation result arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4.5 Threshold (0-3) vs target percentage . . . . . . . . . . . . . . . . . . . . 40

6.4.6 Threshold (0-20) vs target percentage . . . . . . . . . . . . . . . . . . . 40

6.4.7 Threshold (0-100) vs target percentage . . . . . . . . . . . . . . . . . . . 41



Chapter 1

Introduction

In recent years, social media is playing an important role in everyone’s life. For instance,

82% of the world’s online population has profiles in different social media and nearly 1

in every 5 minutes spent online is spent on social media sites nowadays [1]. Social media

has become a part of our social lives as more and more people joined. These platforms

provide us new ways for self expression and communication with other people.

There are many different types of social media in which users participate. Social

networks, business networks, microblogging services, collaborative encyclopedias, vir-

tual worlds, online multimedia sharing platforms are considered as social media services.

Most of these services encourages their users for personalization, in other words, for

elaborating their profiles. Users disclose their thoughts, emotions and interests by sharing

multimedia content with other users.

As there is a great amount of public personal data in social media services, new re-

search opportunities arose on analysis, modeling, and exploitation of user interests. In

this thesis, we propose novel approaches towards user interest identification in different

applications. We primarily work on the following research issues:
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1. How to infer interests of social media users using multimedia data they publicly

share

2. How to reach such users sharing a common interest

To solve the former problem, we integrate various methods from information retrieval,

natural language processing and computer vision for estimating a quantitative score for

user that indicate his/her interest to a topic. For example, we can identify user interests

by analyzing his/her pictures such as profile image for extracting interests. An example

to this method is our political party supporter analysis on Twitter detailed in Chapter 4.

To solve the latter problem, we take advantage of existing online communities in

social media. We collected the users of online communities formed around an interest

topic and refined this set of users by giving them a relevance score so that we select users

with high scores. We propese a novel multi-stage computational framework using this

approach in Chapter 6.

1.1 Contributions

Most work in this thesis are closely connected to real applications in social media. They

are developed to addressing real world needs, therefore some of them can help improve

user experiences in large scale social networking platforms such as Facebook, and bring

light on user interests and preferences.

Our main contributions in this thesis are as follows:

• A new way of political preference extraction of Twitter users by applying image

context extraction on Twitter profile images (Chapter 4),

• A method for finding profiles of people in Facebook given their name, surname and

location (Chapter 5),

2



• A novel multi-stage computational framework for identifying users relevant to a

topic by using existing communities in social media (Chapter 6).

1.2 Outline

Following is the structure of the thesis: In Chapter 2, we give preliminaries on the meth-

ods we used for identifying user interests in social media. Afterwards, in Chapter 3, we

introduce related literature work. In Chapter 4, we describe a method for inferring sup-

porters of political parties using Twitter profile images, and show the applicability of the

proposed system through empirical data. In Chapter 5, we give the details of a basic user

targeting method on Facebook, and display the obtained results. In Chapter 5, we propose

a novel method for generalizing interest identification of social media users. In Chapter 5,

we conclude this thesis by summarizing our contributions. In addition, we also propose

some future research directions in identification of user interests in social media.
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Chapter 2

Preliminaries

Before delving into the details of our work in user interest identification in social media,

we present a brief introduction to methods we employ in order to extract interest of social

media users from the multimedia content shared in public profiles. We apply natural lan-

guage processing(NLP) methods on textual data; namely part-of-speech(POS) tagging,

semantic similarity scoring and sentiment analysis. POS tagging helps us to detect core

words in sentences such as nouns, semantic similarity scoring provides us a measurable

distance between meanings of different words, and sentiment analysis extracts sentiments

of users towards “things”. We also consider images of social media users for identify-

ing their interests. We apply image context extraction method for obtaining brief textual

explanations of user images. These methods are described in length for a better under-

standing in the following subsections.

2.1 Part-of-Speech Tagging

A part of speech(POS) is a category of words defined by the morphological or syntactic

nature of word being referred to. A list of POS tags are given in Table 2.1.1.

The assignment of allotting to each word in a textual content a part-of-speech like
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noun or adjective is called part-of-speech tagging. POS tagging was first investigated in

mid sixties and seventies [2, 3, 4]. Researchers engineered rules for this purpose back

then.

Eventhough this task is easy for a computer to do when a language framed by rules

and has a finite set of vocabulary, difficulties arise when it comes to dealing with POS

tagging of natural language. Natural language refers to the language that humans use to

communicate. It contains unknown words, indeterminacies in the sense that when there is

disagreement about which tag is the correct one among human experts, and noise which

means syntactic and morphological errors that are intuitive to humans to correct while

communicating. Resolving such ambiguities is a hot-topic for POS tagging research.
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Table 2.1.1: A practical list of POS tags in English

POS Tags Meaning Examples

ADJ adjective new, good, high

ADV adverb really, already

CNJ conjunction and, or, but

DET determiner the, a, some

EX existential there, there’s

FW foreign word esprit, quo

MOD modal verb will, can, would

N noun year, home

NP proper noun Africa, April

NUM number one, 2014

PRO pronoun he, their, her

P preposition on, of, at, with

TO the word to to

UH interjection ah, bang, ha

V verb is, has, get, do

VD past tense said, took, told

VG present participle making, going

VN past participle given, taken

WH wh determiner who, when

Consider the following sentence as for applying POS tagging:

We speak not only to tell other people what we think, but to tell ourselves what we think.

Speech is a part of thought.1

1Oliver Sacks, Seeing Voices
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Given this sentence to a part-of-speech tagger, a part-of-speech is assigned to each

word. In table 2.1.2, we can see that every word has a tag attached.

Table 2.1.2: Example of a tagged text

Word POS-Tag Word POS-Tag

We P tell V

speak V ourselves N

not ADV what PRO

only ADV we P

to TO think V

tell V . <PUNC>

other ADJ Speech N

people N is V

what WH a DET

we N part N

think V of P

, <PUNC> thought N

but CNJ . <PUNC>

to TO

In this thesis work, we use NLTK POS tagging software for our tagging purposes [5].

2.2 Semantic Similarity Scoring

Words are more similar when they share more features of meaning whereas they are less

similar in case they have fewer common meaning elements. Measuring distance between

senses of two words is called semantic similarity scoring.

Hyponymy-Hypernomy relationship is one of the most basic relationship between

7



senses of words. In linguistics, hyponomy is a word in a set of words grouped by mean-

ing that refers to a specific subject. A hyponymy is included within the set referring to

another word called hypernym. Computer science often refers this relationship an "IS-A"

relationship descibed in Figure 2.2.1. For example, “automobile”, “bus”, “jeep”, “limou-

sine”, “pickup”, “truck” and “van” are all hyponyms of hypernym “vehicle”.

Vehicle

ToolCar

Convertible Jeep

is-a

is-a

is-ais-a

is-a

Figure 2.2.1: Hyponymy (IS-A) relationship

This taxonomy idea is feasible to be applied for making similarity judgements on

noun pairs. There are alternatives to relating words in an IS-A taxonomy such as a wheel’s

being a part of a car, snow’s being made up of water etc. Such non–hierarchical relations

(e.g. has–part, is–made–of, is–an–attribute–of etc.) can be described additionally. Once

neighbours of a word is organised, measurable path length between words can be used for

word similarity measurement. Elaborations on this idea provided different measurement

functions defined over distances. Some examples of such distance metrics are lch [6],

wup [7] and path similarity.

Figure 2.2.2 displays a simple example on defining neighborhood and path distance

between two words. For example, path distance between “rim” and “tool” is 4.

These relations are implemented in WordNet::Similarity software package [8]. We

use this package for our similarity measurement purposes.
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vehicle

tool

scissor

car

engine

cylinder

wheel

rim

4

2

is-a is-a

is-ahas-ahas-a

has-ahas-a

Figure 2.2.2: Path length on word relation graph

2.3 Web Image Context Extraction

Image Context Extraction is a method for bridging the semantic gap in text-based and

content-based image representation methods [9]. While images are mostly accompanied

by textual data in web (e.g. full-text, metadata, tags, figure captions etc.) extracting

qualitative descriptions about these images requires methods that are capable of finding

out the image context using accompanying textual data to each image. However, textual

information may fail due to unannotated images or web pages in different languages.

Therefore, depending only one web-source for this extraction can lead wrong results. For

improving this situation by reducing the noise in the textual data, one way is increasing

this textual data by searching for the same or similar images online. Considering and

comparing different resources increases the chances of correct context extraction. In order

to reach a set of same/similar images, online reverse image search can be used.

Reverse image search is a content-based image retrieval (CBIR) querying method

that provides the CBIR system with an image which will be considered as a query. CBIR

system retrieves this image, constructs a representation containing the information about

9



Feature 
Extraction

Image
Descriptors

Database

Feature 
Extraction

Query
Descriptors

Comparison

CBIR System

Web
Images

metadata
tags

caption
URL
etc.

+

Context Extraction

Results Semantic
Context

Extraction

query
image

context

Figure 2.3.1: Web image context extraction (simplified)

its content, compares it with representations(i.e. Perceptual hashing [10]) of other images

in a database and returns a related set of images [11]. There are two basic approaches in

CBIR:

Low-level (local) feature approach: Retrieval by representing low-level features of images

such as color, texture and shape.

Semantic approach: Retrieval by representing images as collection of objects and their

relations.

Applying CBIR in web provides all metadata and tags of images along with the text

in the page where the image is displayed. All this data can be used for inferring a context

for the query image. Eventually, a best-guess context is obtained. Figure 2.3.1 simply

describes image context extraction process.

In our work, we used Google Images [12] for image context extraction.
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2.4 Sentiment Analysis

Textual data can be roughly categorized into two classes: facts and opinions. While facts

are objective expressions, opinions are mostly subjective. They usually describe people’s

sentiments and feelings towards entities. Following are examples of factual and opinion-

ated expressions [13]:

Factual statement

“The ocean is the connected body of salty water that covers over 70 percent of the

Earth’s surface.”

Opinionated statement

“Irresponsible oil companies have devastating effects on oceans.”

Eventhough understanding others’ opinions are very important not only for individ-

uals but also for organizations in decision making, the literature on processing opinions

has recently developed. One of the major reasons of this is that, opinionated text became

widely available after the World Wide Web. Before the web, people needed to ask for oth-

ers’ opinions before making a decision and organizations were conducting opinion pools

when they needed to understand their customers or the sentiment of the public about their

products. By the exponential growth of user-generated content on the web, this procedure

is reformed. Nowadays, if a consumer is curious about a product, he/she can go online and

search for opinions of other consumers. This invention allowed organizations to follow

the opinions of their customers in a timely-fashion.

All these have become possible by the development of automated opinion discovery

and summarization systems. Sentiment analysis, also known as opinion mining, is a result

of this need. Due to its value and practical applications, both research in academia and

applications in the industry have focused on improving this method. However, it is a

challenging task due to natural language processing. Subtasks of sentiment analysis can

be broadly categorized as follows:
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Objectivity vs subjectivity: It is about determining whether a sentence expresses an

opinion or not.

Opinion orientation: It is commonly known as sentiment classification. This process

aims to discover the sentiment of the author in an opinionated text. For example,

given a product review, it finds out whether the user has positive, negative or neutral

feelings about the product.

Object extraction: Opinions can be expressed on different things (e.g. A product, a

service, an individual, an organization, an event, or a topic). Object extraction

finds these “things” on which the opinion is targetted.

Imagine analyzing the following sentence:

“Engines and gearboxes of BMW Z series are superlative.”

This sentence is a subjective sentence. Opinion orientation is positive while its on

BMW Z series.

In this thesis work, we use an implementation of sentiment classification procedure

detailed in [14, 15, 16] for sentiment analysis purposes.
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Chapter 3

Related Work

User interest identification has been a hot-topic for a long time. It helps social media

service providers to recommend users personalized content, to infer their preferences and

to categorize them respectively. Major focus of this domain is analysing user generated

content. In this chapter we discuss the related work about targeting user interests.

3.1 Text Analysis and Semantic Analysis

Text analysis is usually described as a sub-field of data mining aiming at deriving high-

quality information from textual data [17]. It involves information retrieval, lexical anal-

ysis to study word frequency distributions, pattern recognition, tagging/annotation, infor-

mation extraction, data mining techniques including link and association analysis, senti-

ment analysis, visualization, and predictive analytics [18]. The goal is, mainly, to obtain

data from text by applying natural language processing and analytical methods. As user

interest identification depends on examining textual data of users, methods in text analysis

are very crucial for our purposes.

In [19], authors analyze social media graph, textual user interactions and group mem-

berships to infer user interests and fields of expertise of users. They propose a technique
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to obtain a similarity between a posts of users and their groups. In [20], a frequency-based

method is employed for keyword extraction in microblogs that identifies interests of users

accurately and efficiently. In [21], a search and summarization framework extracts rele-

vant representative tweets of users in Twitter to generate a coherent and concise summary

of different events.

Semantic analysis offers explicit ways to specify “things” related to users by devel-

oping standard measurable word sense relations. Therefore, needs, preferences, and ac-

tivities of users are connected in a way that different systems can benefit from each other

by sharing data data. This offers a wide range of benefits in the knowledge extraction and

increased the results accuracy of user interest identification systems [22].

In [23], Wikipedia is used as a knowledge base for categorizing extracted terms from

tweets. Categories of these terms are discovered for user profiling and interest extraction.

A similar study [24], again make use of Wikipedia for ontological mapping of user in-

terests for user clustering. Moreover, they integrate WordNet into their framework that

leads better word sense disambiguation in extracted terms. In [25], they exploit semantic

concepts captured from informal content of users such as messages and posts to build a

semantic network which reflects people expertise.

3.2 Sentiment Analysis for Social Web

Sentiment analysis plays an important role in identifying user interests. As interests has

a direction towards objects, activities, locations; more generally, towards “things”; sen-

timent analysis helps us to understand the sentiments of users on such “things”. More

specifically, sentiment analysis deals with the computational treatment of sentiments and

opinions expressed in texts [26].

In [27], ontological resources are combined with natural language processing tech-

niques to calculate polarity degree of user interests. In [28], semantic lexicons are created

in order to identify sentiment words in blogs and news corpora. Then, a polarity value is
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attached to each word in the lexicon. Such polarity is revised when a modifier appears

in the text. Results shows the interests of users in these blogs and online news resources.

In [29], topic-related opinionated texts are discovered and a sentiment score is calculated

for each user post. In [30] they extract objects from tweets and added its semantic con-

cept as an additional feature, and measure the correlation of the representative concept

with negative/positive sentiment.

3.3 Recommender Systems for Social Media

Nowadays, social media analysis and social mining are used in recommender systems.

These systems represent user interests on items. Effective recommendation includes fil-

tering methods to predict and to suggest items that pleases users. These systems act

as personalized decision guides, aiding users in decisions on matters related to personal

taste. The key concept to develop an efficient recommender system is developing a better

understanding of both users and interest items.

In individual user recommendation, the usual goal is to retrieve interest items with the

highest scores, also referred to as relevance rating, computed by a strategy investigating

users relation to an item. In [31], they identify topics and entities (e.g. persons, events,

products) mentioned in tweets for a personalized news recommendation system. They

consider temporal dynamics of those profiles, therefore quality of recommendations are

improved by collecting more data over time. In [32], relationship information among

people, tags, and items, is collected and aggregated across different sources for making

recommendations related to user’s topics of interest.

In group recommendation, however, an item may have different relevance to different

group members and this disagreement among members must be resolved. In [33], authors

analyze group data and propose a formal semantics that accounts for both item relevance

to a group and disagreements among group members. In [34], they propose a group

recommendation method that utilizes both social interests and item interests of group
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members.

The latest trends in recommender systems domain takes into account how human be-

ings function with their peers, especially in their interpersonal behaviors, which brings

it closer to the field of social media analysis. In [35], they show how to infer interests

for new users and inactive users from social media. Thus, they proposed an approach to

combine text information and link information of users (information about social connec-

tion) to infer interests for inactive users. In the other study [36], they examine the range

of data modalities such as text, network links, and categorical labels. They focused on

a scalable machine learning system to visualize and explore the interests of millions of

users on Facebook. Therefore, they obtain the relationship between concepts, user text

and friendships.

3.4 Community detection

Community detection in social media is a tool for detection and analysis of characteristic

communities. Detected communities often forms around topics of interests. It enables us

to monitor opinions and interests, and provides a valuable insight about trends. Most of

these opinion patterns are globally scarce yet locally dense in social media [37]. Social

media and graph theory researchers are involved with inferring structures by examining

these patterns among users and web pages.

In [37] all cliques in a social media graph are enumerated to find out maximal cliques

of communities and these communities are adjusted by merging fractional communities.

Therefore each community is labelled by a set of words describing interests of these com-

munities. In [38], network, utility, feature and partition integration schemes are applied

on different network dimensions of social media graph. Communities are extracted and

labelled. In [39], the problem of community detection in the context of Social Media is

explained on a wide variety of algorithms and their methodological principles.

In our work, we combine techniques form different categories and introduce novel
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approaches incorporating context extraction from multimedia data. In Chapter 4, we use

an method based on image context extraction technique. Textual data obtained from image

context extraction is represented in a multiset of unique words. The more frequent a

term appears, the more interested a user assumed to be in this term defining the topic.

In Chapter 6, we introduce a method takes advantage of semantic analysis methods. We

apply semantic analysis on textual data and multimedia data collected from users to obtain

a score indicating the level of their interests in a predefined topic.
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Chapter 4

Inferring Supporters of Political

Parties in Twitter

This work examines supporter ratios of two mainstream political parties (Justice and

Development Party(AKP) and Republican People’s Party(CHP)) using profile images of

Twitter users collected just before the 2014 local elections held on 30/05/2014 in Turkey.

Twitter is a popular micro-blogging service that allows messages of up to 140 char-

acters to be posted and received by its users. These messages are called tweets. Tweets

form the basis of interactions in Twitter where a user is updated about the tweets of other

people he/she is following. Considering that there are more than 30 million active user

of Facebook [40], and more than 9 million in Twitter [41] in Turkey, social media is an

effective tool for analysing political trends1.

Analyzing user content in Twitter gives an insight on public opinion in different top-

ics. This content is also used as an indicator of political tendencies in many parts of the

world [43, 44, 45]. As media stations and newspapers are known to have some degree

of political bias, liberal, conservative or other; a considerable amount of work is done in

providing objective results from Twitter data [46, 47, 48, 49, 50, 51]. These works em-

1Population estimation is 76,667,864 in 2013 [42]
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phasize the usefulness of receiving diverse opinions shared in social media and conclude

that inferring political atmosphere from Twitter provides healthier results than following

traditional media resources.

There are many different ways for analysing public opinion in tweets. One simple

approach would be defining a set of terms about the topic and counting the frequencies

of these terms in collected tweets. This method gives an idea about which term is spoken

more than the other. However, the opinion on these terms is not determined in this way.

In order to determine in which tone (i.e. positive, negative) these terms are used in tweets,

sentiment analysis is useful.

Our technique does not involve in text analysis. Instead, we collect profile pictures

of users who post tweets including a set of terms related to these political parties. We

assume that users presenting themselves by pictures having a “context” about these terms

are positively associated with these parties. Image context extraction method is employed

for obtaining textual information from these images. For this purpose, we use the Google

Images [12].

4.1 Categorizing Twitter Users via Profile Pictures

For collecting texts, we defined two set of terms related to AKP and CHP. They are pre-

sented in Table 4.1.1.
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Table 4.1.1: Term sets for two political parties

Term Set for AKP Term Set for CHP

AKP CHP

Recep Tayyip Erdoğan Kemal Kılıçdaroğlu

Recep Tayyip Mustafa Sarıgül

RTE Atatürk

Osmanlı Mustafa Kemal

Rabia Gezi

4.1.1 Dataset and Method

We collected 100,000 tweets using BirdWatch application [52]. BirdWatch connects to

the Twitter Streaming API and receives all Tweets that include at least one of terms in our

term set defined for describing two different political tendencies. From collected tweets

we extracted 65,000 unique twitter users including their usernames, names and profile

picture URLs. This list of users LU is our dataset.

For each user in LU , we query Google Images with his profile picture URL and obtain

either a best-guess context or an empty result. These results are collected in a frequency

dictionary.

The URL of user image may become invalid in some cases. For this reason, we first

check if the URL is valid. In case it is invalid, we try to extract user’s profile image

URL from his profile page by querying Twitter with his user name. However, users can

also change their user names and querying twitter with a non-existing username returns

an error page. If this happens, as a last chance, we try to find the user’s new username

via Google Web Search Engine [53] by a textual query including his name and “twitter”.

Supposing that we obtain user’s profile page, then we can obtaim a valid profile image

URL. Otherwise, we skip this user. We continue with this operation until each user is
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processed. A flowchart describing the mechanism is presented in Figure 4.1.1.
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Profile found
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no
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no no
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Figure 4.1.1: Flowchart of the system

Our framework is implemented in Python programming language.

4.1.2 Results

We manage to retrieve best-guess context results for 50,174 users out of 65,000(77%).

1,274 of these results are including one of our terms. Results are displayed in Figure 4.1.2.
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Table 4.1.2: Results

Term Set for AKP Term Set for CHP

AKP 4 CHP 19

Recep Tayyip Erdoğan 27 Kemal Kılıçdaroğlu 4

Recep Tayyip 53 Mustafa Sarıgül 11

RTE 197 Atatürk 235

Osmanlı 118 Mustafa Kemal 89

Rabia 382 Gezi 135

Total 781 493

% 61 39

4.2 Post-Election Evaluation

In the local elections of 2014, the main party AKP received 42.87% of the votes while the

second party CHP received 26.34% of the votes [54]. When we disregard the votes other

parties received, proportions are 62% for AKP and 38% for CHP. These numbers are very

similar (61% and 39%, Table 4.1.2) to our results. This result shows the real potential of

our work in inferring supporter proportions of political parties.
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Chapter 5

Finding Audience for Advertisement

Social media allows users to communicate, share knowledge about similar interests, dis-

cuss favorite topics, review and rate products/services, etc. It accommodates a big po-

tential for businesses if it is correctly integrated in the marketing mix [55]. The basic

marketing principles are still valid, yet, companies must now be creative in order to target

audiences and make a profit.

Social media marketing can be very profitable for businesses. If approached correctly,

it can help to find talent, to build brand awareness, to target new customers, and to conduct

brand intelligence and market research [56]. For example, viral propagation via friends

communicating among each other and creating user engagement by building brand ap-

plications are two possible ways of marketing strategies in social media [57]. Moreover,

social marketing is cost-saving. It is an inexpensive way to promote a business rather than

hiring a marketing team [58]. The advertising problem problem is essentially a problem

of matching. As J. Wanamaker, a pioneer in marketing once said, "Half the money I spend

on advertising is wasted. The trouble is, I don’t know which half". In social media, au-

tomated use of keywords and content targets the users that are most likely relevant to the

advertised product. Considering the number of users in social media, the advertisement

reaches a large and correct audience.
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5.1 Searching Facebook Profiles via Name and Places

Lived

Facebook is a popular free social networking website that allows registered users to create

profiles, upload photos and video, send messages and keep in touch with friends, family

and colleagues. In our work, we find Facebook profiles of people whose names and

locations are provided in a list. The results will be used for advertisement purposes.

5.1.1 Dataset and Method

We are given a list of 1500 people from a particular city in Turkey. The process starts

by querying the Facebook Graph API [59] to receive a list of matches for each entry in

the given list. For some common Turkish names, the Facebook Graph API returned up to

800 possible results. To refine such list of profiles for each name, we visited and checked

“Places lived” section of each profile in a parallel fashion. In case a location match occurs,

the found profile is associated with the name. A flowchart describing the mechanism is

presented in Figure 5.1.1.
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Figure 5.1.1: Flowchart of the system

5.1.2 Results

1,332 out of 1,500 names (88%) are matched to Facebook profiles whose “Places lived”

section are matched. This result shows the applicability of automated targeting of Face-

book profiles via names and locations.
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Chapter 6

Relevance-based Condensation of

Online Communities in Social Media

In this chapter, we describe our a novel framework for creating a community of a particular

interest. For this purpose, we analyze the users in existing communities about this interest,

and select the users that are defined as related by our framework. We name this process

community condensation.

6.1 Introduction

The most important characteristic of the humans is tendency to join with others in commu-

nities. In sociology, an offline community (often termed as a group) is defined as a number

of people who communicate and interact with each other. People join these communities

for many reasons. Even the notions of communities are complex, multidimensional, and

in flux; an intuitive approach would suggest that it satisfies needs of people that are either

difficult or impossible to access individually. They also benefit from numerous default

elements of being a member in such a community. Some of them are namely as fol-

lows: [60]
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Companionship – Communities provide company of other people.

Survival and security – History and evolution shows that hunting and defense requires

humans to act together.

Affiliation and status – Some members in different communities can obtain certain social

statuses or securities.

Power and control – Communities bring opportunities for leadership roles for individuals

who are strong in their opinions and can exert it over others.

Achievement – Overlapping of interest and motivation creates success.

By the internet revolution, as restrictions of location and time in communication meth-

ods teared down [61], boundaries become more permeable and connectivity ever more

possible. As a consequence, individual, social, organizational, professional and political

conceptions and configurations are undergoing a vast change. Not long ago, technological

foundations of Web 2.0 gave birth to a group of Internet-based applications called Social

Media [62]. This unprecedented invention has led to the proliferation of online communi-

ties by gathering people around mutual interests, helping to share knowledge and to spread

ideas quickly and providing support among community members in a timely fashion [63].

An example of online community formation in social media is shown in Figure 6.1.1.

These progresses contested the meaning of “offline” communities. Due to accessibil-

ity and efficiency of online communities, they are being considered offering an equivalent

value in community formation. As a supporting evidence, primary needs for participating

in online communities remained very similar of those previously listed for offline com-

munities [64, 65].

Undeniable potential of online communities may not be always fulfilled and many

communities fail. Communities heavily depend on individuals to develop and maintain

them. Overlaps on personal interests and shared focus among members is a must-have

for productive relationships in communities. Unfortunately, most of the communities

suffer from heterogeneous interests and purposes of their members due to random member

accessions. This provokes untidiness in communal interactions and ends up with lack of
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Figure 6.1.1: Online Community in Social Media

interest and under-contribution in the community [66].

We attack this problem by targeting highly-interested users on a given topic to cre-

ate a core community. Our novel multi-stage computational method integrates various

techniques adopted from information retrieval, natural language processing and computer

vision for estimating a quantitative relevance score for each user indicating his/her inter-

est to the topic. Afterwards, we rank users and form a condensed community from the

indivudials having a high score. A straightforward approach would be scoring all users in

a social media. However, social media service providers do not share a complete list of

their users, and even if they do, computing a relevance score for all users would be compu-

tationally infeasible. An alternative feasible solution is condensing existing communities

about the targeted topic into a smaller community consisting of users whose scores are

above a threshold score. An overview of our approach is given in Figure 6.1.2.

Bridging highly-related users together in a condensed community helps these people

to serve in the same direction and to build a productive community. Our framework can be

highly effective in bringing people together around personal interests and hobbies; gath-
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ering activists around issues; creating discussion and support communities; and targeting

consumers for advertisement.
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Figure 6.1.2: Overall Architecture

This chapter is organized as follows: First, we define the relevance-based condensa-

tion problem in Section 6.2. The proposed framework is introduced in Section 6.3. In

Section 6.4, we show the applicability of our framework on Facebook Groups and exhib-

ited results of a user survey to demonstrate the correctness of our framework. Finally, a

discussion is presented in Section 6.5.

6.2 Relevance-based Condensation of Communities

A perfect relevance scoring function γ(pu) simulating human cognitive processes to label

a user either as relevant or irrelevant to an interest topic T by going through the public

information on each user’s profile pu for all users U in a social media SM , would provide

us a set of related users Uγ to T . However, such a simulating function does not exist and

even if it does, applying a function on all users in a social media would be computationally

infeasible. Moreover, social media service providers do not reveal full list of users U .

We propose to start from an initial seed set of users rather than all users. In order
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to find this initial set of users, we take advantage of online communities that are already

present and formed around certain interests in SM . As shown in Figure 6.2.1, our hy-

pothesis is that sets of users of communities about topic T intersects with Uγ . If this

hypothesis holds, our proposed method should target some of these users in intersection.

We first search for communities CT in SM using the set of keywords defining the

interest topic inKT . Afterwards we extract their members UC who are possibly interested

in T . Our relevance scoring function r(pu) estimates a score for each user u ∈ UC using

pu. By selecting users having a score above a threshold t, we target a set of users UT t

that are interested in T . We call this process condensation of existing communities. The

higher the threshold value t is, the more relevant users are accumulated in UT
t. We

experimentally verified this claim in Subsection 6.4.3. Note that, it is not possible to say

that a user is irrelevant if his/her score is below t since relevance score depends on self-

disclosure1 of users. Our hypothesis about intersection of UC and Uγ is also justified by

asking experiment participants to label our results obtained by r(pu) in Subsection 6.4.3.

Figure 6.2.1: Role of communities in reaching highly-relevant users

Now, we can introduce the details of our framework.

1Self-disclosure is defined as what individuals publicly reveal about themselves to others,
including thoughts, feelings, and experiences [67]
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6.3 An Integrated Semantic Approach to Relevance-

based Condensation of Communities

We propose a novel framework for solving relevance-based condensation of communities,

that consists of three stages as depicted in Figure 6.3.1. These stages piece together some

techniques of information retrieval, NLP and image context extraction in the following

subsections.

SAPOS-NE

Profile Segmentation

Relevance Scoring

Topic Profile

Community Search 

Member Retrieval 1

2

3

Image
Context

Extraction

Figure 6.3.1: Framework Flowchart: (1) Information Retrieval, (2) Information
Extraction, (3) Scoring Engine

31



6.3.1 Information Retrieval

First, we search in a social media SM for a set of online communities CT using the

keyword set KT for topic T . After that, we collect all members of communities in CT in

a set of users UC . As our aim is targetting highly relevant users in UC , we need to collect

what individuals reveal about themselves on their public profiles in SM .

Posts are the most common way for users to express their thoughts and emotions in

their profiles. We gather this textual data for each user in a set XU . Along with tex-

tual data, pictures provide essential clues about lifestyles and interests. Therefore, public

pictures of each user is collected in PU . In some social networking sites there is a par-

ticular section for displaying things users care about (e.g. Likes in Facebook and +1s in

Google+). We create another set NL for storing such data in textual format for each user.

While collecting this information, users who do not share any public information in their

profiles are assumed to prefer staying private and are naturally excluded from the set UC .

We are now ready for extracting information about collected users described in the

following subsection.

6.3.2 Information Extraction

Given retrieved textual data XU and images PU , our target is to extract nouns from XU

by applying NLP methods and textual context from PU using image context extraction.

Identifying nouns provides us key words that determine the meaning of sentences. For

example, if we are trying to condense online communities in a domain related to politics,

the posts of their members would likely contain names of some politicians and political

parties. This implies that nouns are a set of relevant terms we target.

Before applying term extraction process on the set of user posts XU , we preprocess

this textual data in two steps. First, we ensure that the language of elements in XU are in

English. The language of the sentences are detected using NLTK language classifier [5]

and translated in English if necessary. For this translation task, we use online machine-
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translation service Google Translate [68, 69]. Second, sentences are normalized to help

Part-of-Speech(POS) tagging for noun extraction(NE). This process replaces abbrevia-

tions on auxilary verbs (e.g. “I’m”→ “I am”), and smileys (e.g. “:-)”→ “happy”). Once

this process is completed, preprocessed set of sentences XU
′ is ready for POS tagging.

We employ NLTK POS Tagger for identifying nouns [5] in sentences. It marks each

word in a text to its corresponding part of speech. For example, “A beautiful day!” is

respectively tagged as determiner, adjective, noun and punctuation mark. Given prepro-

cessed set of sentences XU
′, nouns are collected in a set of terms NX . At the same time,

we apply an unsupervised sentiment analysis method(SA) detailed in [15, 16] on XU
′ for

obtaining polarity values of sentences. This set of polarity values SN help us to determine

the sentiment of users towards extracted nouns.

While textual information of users are being processed, we query online reverse image

search engine Google Images [12] to obtain a textual context in a few words describing

each image in PU . These results are stored in NP . Since the elements of the set NP and

NL are brief titles and descriptions, we treat these texts as isolated nouns and directly use

them for relevance scoring.

6.3.3 Relevance Scoring

In this subsection, we calculate relevance score of each user in UC by measuring the

semantic similarity between the keywords in KT and extracted nouns for each user in

NX , NP and NL that are obtained in the previous stage. For estimating a relevance score

between two words, we use WordNet Path Similarity [8] measure.

This quantitative relation between senses of words are based on information contained

in a thesaurus hierarchy graph. For example, a “road” might be considered more like a

“path” than a “car”, if “path” has a common ancestor with “road”. Another possibility is

that “path” has a closer ancestor to “road” than “car” in hierarchy graph. Intuitively, the

shorter the path length between the words is in graph, the more similar their senses are.
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Algorithm 1: Relevance scoring
Input: UC , a set of users,

KT , a set of domain keywords,
NX , a set of terms from posts of users,
NP , a set of terms from images of users,
SN , sentiment analysis values of NX ,
NL, a set of terms from likes of users,
Y , a set of scoring constants for pictures and likes.

Output: RU , relevance scores of users.

// SN = {s : 0≤s≤1}
RU = {}
foreach user u in UC do

// Score of the user is 0 at the beginning
scoreu← 0
NXu ← get terms of user u from NX

foreach term t in NXu do
M = {}
sn ← get SA value of noun n from SN
foreach keyword k in KT do

M.append(simpath(n,k)*sn)
scoreu += getMaxV alue(M )

foreach noun n in NP do
if n in KT then

scoreu += getP ictureConstant(Y )
else

foreach noun n in NL do
if n in KT then

scoreu += getLikeConstant(Y )
else

RU .append(scoreu)

return RU
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The definition of WordNet Path Similarity metric is as follows:

pathlen(w1, w2) = #edges on the shortest path

simpath(w1, w2) = -logpathlen(w1, w2)

For each user u, the highest path similarity scores between extracted nouns from his

posts NX and keywords in KT are added up on his/her score scoreu. Therefore, we infer

a number indicating a degree of relevance from each user’s posts. Afterwards, the nouns

obtained from pictures NP and likes NL are searched for a string match in KT . In case

of matchings, predefined constants are added up on scoreu. The whole relevance scoring

process is detailed in Algorithm 1.

The final step is ranking users in U with respect to their relevance scores RU . The

ranked user vector uT is the output of our framework containing the users in an order of

relevance to domain T .

We apply our method on Facebook Groups in the following section.

6.4 A Use-Case Scenario: Implementation and Ex-

periments with Facebook Groups

6.4.1 Experiment Setup and Dataset

We selected a topic T about Cars because transportation is a common need in societies

and cars are among popular topics in social media. Our first step is creating a list of topic

keywords as follows:

KD = {Cars, Automobile, BMW, AUDI, Mercedes, Volkswagen, Ford, Renault, Toyota,

Honda}

Figure 6.4.1 exhibits number of members in groups obtained by group search in Face-

book by using each keyword in KT . We disregarded private groups and groups that have
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size smaller than 50. In total, 557 public groups collected in set of groups CT and about

1.1 million users are retrieved in set of users UC . This suggests that we can reach approx-

imately 100000 users per keyword.

Due to data collection limitations of Facebook, we randomly selected 2500 users from

this set of users UC for profile segmentation and applied our condensation methods on this

subset U ′
C of UC .
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Figure 6.4.1: Number of groups obtained by each keyword and group sizes

6.4.2 Results

During profile segmentation of users in U ′
C , we found out that about every 2 users out of

3 have either very limited publicly available content or none. Therefore, scores of 800

36



users out of 2500 are calculated and normalized by scaling between 0 and 100 as shown

in Figure 6.4.2.
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Figure 6.4.2: Relevance scores of U ′
C .

When a threshold t were defined over the results obtained, the number of users pro-

posed for the condensed group would be inversely proportional to t as it is displayed in

Figure 6.4.3.
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Figure 6.4.3: Threshold vs number of users
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6.4.3 Validation

We demonstrate the effectiveness of our proposed computational method via a user study.

First, we defined score intervals for labelling users in three categories. These categories

are namely Highly-relevant(HR), Relevant(R) and Irrelevant(IR) users(See Figure 6.4.2).

Afterwards, we asked three people to label 100 randomly chosen users from U ′
C . They

labeled these users by going through available public data in their Facebook profile pages.

Figure 6.4.4: Validation result arrays

Results of user labellings are exhibited as color coded label arrays of users in Figure 6.4.4.

Array u1, u2 and u3 represent labellings of three experiment participants. We aggregate

these three results by voting three answers for each profile. This result is displayed on

array v. In array v, we obtained 14 highly-relevant, 41 relevant and 45 irrelevant labels.

For deciding on score thresholds of these three labels, we first sort the relevance scores of

100 users, and then defined the thresholds on 14th and 55th users. Therefore, threshold

scores of labels are decided as follows:

• Highly-relevant users (relevanceScore > 20)

• Relevant users (20 >relevanceScore> 1)

• Irrelevant users (relevanceScore < 1)
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According to this labeling scheme, we labelled the results of our framework on 100

users. This labeling is shown in array c in Figure 6.4.4.

Table 6.4.1: Validation results using 3 labels

HR R IR Overall 1

u1 53 67 71 66

u2 60 60 71 64

u3 53 57 73 62

v 60 70 73 70

Table 6.4.1 and Table 6.4.2 exhibits matching percentages of user labellings to frame-

work results. In Table 6.4.1, we make the comparison using three labels as it is previously

described. We achieved 70% of matching in overall.

Table 6.4.2: Validation results using 2 labels

HR+R IR Overall 2

u1 80 71 76

u2 75 71 73

u3 77 73 75

v 80 70 76

In Table 6.4.2, we consider Highly-relevant and Relevant labels as one label shown as

HR+R. By doing this we inspect the differentiation capability of our framework between

Relevant and Irrelevant users. In overall, we achieved 76% of matching to user labellings.

This result shows that our hypothesis in Section 6.2 about the intersection of UC and Uγ

is correct.

We verify the functionality of threshold in community condensation process by using

the users labelled by experiment participants. As threshold value gets higher, we expect
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to obtain communities formed of more relevant users. For justifying this statement, we

calculated percentages of relevant users in communities using the labelled group members

by increasing t. Assume that Ut is the set of users obtained by using threshold t and Ur

is the set of users labelled as related by participants in Ut, percentage of relevant users at

a threshold t calculated as |Ur|/|Ct|. In Figures 6.4.5,6.4.6, and 6.4.7, we clearly see that

as threshold value is set higher, the proportion of relevant users increase in the condensed

community. Thus, our expectations about setting a threshold in Section 6.2 are justified.
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Figure 6.4.5: Threshold (0-3) vs target percentage
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Figure 6.4.6: Threshold (0-20) vs target percentage
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Figure 6.4.7: Threshold (0-100) vs target percentage

6.5 Discussions

The obtained results indicates the potential of our framework that can increase the value

of current online communities by bringing hobbyists, enthusiasts, activists, consumers

and people who share a common curiosity together. This work also affirms a solution to

problems of today’s online communities such as under-contribution.

We plan to improve our framework by using domain ontology that conceptualize user

relevance to a particular topic or area of interest. We hope this initial work serves as a

motivation to research seeking solutions to enhance online communities.
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Chapter 7

Conclusions

In this thesis, we have proposed three methods for identifying users and their interests

from multimedia data shared by users. In Chapter 4, we used image context extraction

on profile pictures of Turkish Twitter users for inferring proportions of two different po-

litical stances before March 2014 local elections. The percentages we obtained using our

system just before the elections were only 1% different from the proportions in election

results. This result suggests the variety of Turkish Twitter users and it emphasizes the

effectiveness of social media analysis in forecasting political tendencies in Turkey.

In Chapter 5, we found Facebook profiles of people whose identification information

(i.e. Name and location) is provided. We obtained 88% of the initial list including iden-

tification information of targeted people. This high rate matching rate demonstrates the

usefulness of our approach.

In Chapter 6, we presented a multi-stage computational framework for condensing

communities that are related to a topic in social media. We collected users of communi-

ties that are already present about a given topic and applied a relevance-scoring technique

through the public information these users share on their profile pages. Our results show

that our method accurately differentiate between users who are interested in given topic

and those who are not interested in it. We illustrated the functionality of defining a thresh-

42



old score for obtaining communities in different sizes and concentrations. We validated

the results of our framework by a user-study. We found 76% of match between user la-

belled and automated results. This promising result suggests that our framework that can

increase the value of online communities.

In the future, we want to integrate our user interest identification systems to domain

ontologies which are structural frameworks for organizing information in semantic web.

This direction will allow us to understand user-user and user-interest relations better. We

will also be able to apply rule based reasoning methods on these ontologies for inferring

new knowledge from observable user data.
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