
Use of Genetic Algorithms in Multi-Objective Multi-Project Resource
Constrained Project Scheduling

Fikri Küçüksayacıgil

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

January, 2014

To my wife and family

Acknowledgements

I would like to express my deepest gratitude to my thesis advisors Prof. Dr. Gündüz
Ulusoy for his huge and never-ending support. The ingenuity character, the great deal
effort, skills, the knowledge and the guidance of Prof. Dr. Gündüz Ulusoy were the
factors that kept this research going. Without his hope, motivation, and assistance, this
research would have never existed.

Secondly, I am grateful to my beloved wife, Gulnihal, for her early contributions to
this research, and her moral support through my thesis. She was always there for me,
whenever I needed help.

I am thankful to many of our faculty members for their helpful advices and support.
I am also thankful to my dear colleagues, Canan, Gürkan, Murat, Burcu and Ezgi for
sharing their experiences and their smile whenever necessary.

Finally, I would like to thank to my family for all the support they have provided.
Without their wisdom, I would have never been able to earn a master’s degree or write a
thesis.

iv

© Fikri Küçüksayacıgil 2014

All Rights Reserved

Çok Amaçlı Kaynak Kısıtlı Çoklu Proje Çizelgelemede Genetik
Algoritmanın Kullanımı

Fikri Küçüksayacıgil

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Prof. Dr. Gündüz Ulusoy

Anahtar Kelimeler: Kaynak Kısıtlı Proje Çizelgeleme Problemi; Genetik Algoritma;
Çok Amaçlı Kaynak Kısıtlı Proje Çizelgeleme Problemi; Kaynak Kısıtlı Çoklu Proje

Çizelgeleme Problemi; Geriye-ileriye Yöntemi

Özet

Kaynak kısıtlı proje çizelgeleme problemi, araştırmacılar tarafından, yenilenebilir ve
yenilenemez kaynaklar da göz önüne alınarak çokça çalışılmıştır. Çözüm yöntemleri
olarak, birçok kesin ve bulgusal yöntem önerilmiştir. İlgili problemin teknik yazında,
çok modlu kaynak kısıtlı proje çizelgeleme problemi, çok amaçlı kaynak kısıtlı proje
çizelgeleme problem ve kaynak kısıtlı çoklu proje çizelgeleme problem gibi uzantıları
çalişılmıştır. Bu çalışmada, çok amaçlı kaynak kısıtlı çoklu proje çizelgeleme problem
üzerinde durulmuştur. Çözüm yöntemi olarak, teknik yaznda Bastırılmamış Sınıflandırmalı
Genetik Algoritma II (NSGA-II) olarak bilinen algoritma tercih edilmiştir. Çeşitli çaprazlama
yöntemleri ve ebeveyn seçim yöntemleri kullanılarak, genetik algoritma parametrelerinin
hassas ayarları ayrıntılı bir şekilde yapılmıştır. Bu deneyde, teknik yaznda Yanıt Yüzeyi
Yöntemi olarak bilinen istatistiksel bir yaklaşım kullanılmıştır. Çözüm kalitesini geliştirmek
için, geriye-ileriye (forward-backward) yöntemi hem işlem sonrası aşamada, hem de algo-
ritma devam ederken yeni nüfüs üretilmesinde kullanılmıştir. Ek olarak, çeşitli ıraksama
yöntemleri önerilmiştir ve bunlardan entropi temelli olanı ayrıntılı bir şekilde çalışılmıştır.

vi

Algoritmanin performansı ve çözüm süreleri kaydedilmiştir. Bu çalışmada ayrıca, yeni bir
çoklu proje sınama dataları üretme yöntemi önerilmiş, sınama dataları üretilmis ve bun-
lar ile algoritmanin performansı sınanmıştır. Sonuçlar, geriye-ileriye yönteminin cözüm
kalitesini artırmada etkili olduğunu göstermiştir.

vii

Use of Genetic Algorithms in Multi-Objective Multi-Project Resource
Constrained Project Scheduling

Fikri Küçüksayacıgil

Industrial Engineering, Master’s Thesis, 2014

Thesis Supervisors: Prof. Dr. Gündüz Ulusoy

Keywords: RCPSP; Genetic Algorithms; Multi-objective RCPSP; Multi-project
RCPSP; backward-forward scheduling

Abstract

Resource Constrained Project Scheduling Problem (RCPSP) has been studied exten-
sively by researchers by considering limited renewable and non-renewable resources.
Several exact and heuristic methods have been proposed. Some important extensions
of RCPSP such as multi-mode RCPSP, multi-objective RCPSP and multi-project RCPSP
have also been focused. In this study, we consider multi-project and multi-objective re-
source constrained project scheduling problem. As a solution method, non-dominated
sorting genetic algorithm is adopted. By experimenting with different crossover and
parent selection mechanisms, a detailed fine-tuning process is conducted, in which re-
sponse surface optimization method is employed. In order to improve the solution quality,
backward-forward pass procedure is proposed as both post-processing as well as for new
population generation. Additionally, different divergence applications are proposed and
one of them, which is based on entropy measure is studied in depth. The performance
of the algorithm and CPU times are reported. In addition, a new method for generating
multi-project test instances is proposed and the performance of the algorithm is evaluated
through test instances generated through this method of data generation. The results show
that backward-forward pass procedure is successful to improve the solution quality.

viii

Contents

1 Introduction 1

2 Literature Survey 7
2.1 Single objective . 7

2.1.1 Exact solution methods . 7
2.1.1.1 Minimization of Cmax 7
2.1.1.2 Maximization of net present value 9
2.1.1.3 Other objectives . 10
2.1.1.4 Other problems . 10

2.1.2 Heuristic solution methods . 10
2.1.2.1 Priority rules . 10

2.1.2.1.1 Minimization of Cmax 10
2.1.2.1.2 Maximization of net present value 12

2.1.2.2 Forward and backward recursion 13
2.1.2.3 Sampling method . 13
2.1.2.4 Variable neighbourhood search 14
2.1.2.5 Other methods . 14
2.1.2.6 Other objectives . 15

2.1.3 Metaheuristic solution methods 15
2.1.3.1 Genetic algorithm . 15

2.1.3.1.1 Minimization of Cmax 15
2.1.3.1.2 Maximization of net present value 18
2.1.3.1.3 Other formulations 18

2.1.3.2 Simulated annealing 20
2.1.3.3 Tabu search . 20
2.1.3.4 Other methods called hybrid 21

2.1.4 Review papers . 21

ix

2.2 Multi-objective . 22
2.2.1 Exact solution methods . 22
2.2.2 Heuristic methods . 23
2.2.3 Other formulations . 29

2.3 Multi-project . 32
2.3.1 Exact solution methods . 32
2.3.2 Genetic algorithms . 33
2.3.3 Hybrid methods . 34
2.3.4 Priority Rules . 35
2.3.5 Auction mechanism . 36
2.3.6 Other methods . 37

3 A Multi-objective Genetic Algorithm Approach and Extensions 42
3.1 Project instance . 44

3.1.1 Modifications in single project instances 44
3.1.2 Multi-project instance generation 46

3.1.2.1 Data generation for testing due date 47
3.1.2.2 Data generation for testing lump sum payments 51
3.1.2.3 Data generation for testing resource limits 52
3.1.2.4 Data generation with different number of activities . . . 52

3.2 Preprocessing . 52
3.3 Forming the initial population . 53

3.3.1 Precedence feasible activity list 54
3.3.2 Mode assignment list . 54

3.3.2.1 Random mode assignment 54
3.3.2.2 The mode with longest duration 55
3.3.2.3 The mode with minimum average utilization 55
3.3.2.4 Iterative assignment 55
3.3.2.5 Local repair . 56
3.3.2.6 Extensive repair . 56

3.3.3 Random and feasible initial population 56
3.4 Fitness calculation . 59
3.5 Forming the next generation . 62

3.5.1 Crossover . 62
3.5.1.1 One-point crossover 62

x

3.5.1.2 Two-point crossover 62
3.5.1.3 Multi component uniform order-based crossover (MCUOBC) 65

3.5.2 Mutation . 65
3.5.3 Parent selection . 65

3.5.3.1 Roulette wheel selection 67
3.5.3.2 Binary tournament selection 69

3.5.4 Population reduction . 69
3.5.4.1 The best ones . 70
3.5.4.2 Random reduction . 70
3.5.4.3 Elitist reduction . 70

3.6 Non-dominated sorting procedure . 70
3.7 Crowding distance . 71
3.8 Basic scheme . 73

4 Fine-Tuning of the Parameters 75
4.1 Commonly used performance measures in the literature 75

4.1.1 The size of the approximation set M 75
4.1.2 Distance from the reference set R 76
4.1.3 Coverage error . 76
4.1.4 Error ratio . 76
4.1.5 Hypervolume . 77
4.1.6 Binary ε indicator (Zitzler et al. [155]) 77
4.1.7 Maximum spread (Zitzler [152]) 77

4.2 Other studies in the literature about performance measurement 78
4.3 GA parameter design in the literature . 79
4.4 Getting the best parameter combination in our study 80
4.5 Selecting the best operant combination 86
4.6 Fine-tuning process with multi-project instances 86

5 Divergence Applications and Local Searches 89
5.1 Divergence applications . 89

5.1.1 Entropy-based divergence application 89
5.1.2 Objective value-based divergence application 92
5.1.3 Grid-based divergence application 94
5.1.4 Archive-based convergence check 95

5.2 Local searches . 95

xi

5.2.1 Backward and forward pass procedure 95
5.2.2 Simulated annealing . 96

6 Computational Study 102
6.1 Implementation with test instances . 102

6.1.1 Implementation with the test instances generated in Can and Ulu-
soy [20] . 102

6.1.2 Implementation with the test instances generated in this thesis . . 112
6.2 Results . 121

6.2.1 The test instances generated in Can and Ulusoy [20] 122
6.2.2 The test instances generated in this thesis 123

6.2.2.1 Bi-objective . 124
6.2.2.2 Triple-objective . 125
6.2.2.3 The evaluation of BFP for current objectives 126

7 Conclusion 128

Appendices 148

A Results of Fine-Tuning Experiments for Single Projects 148

B Results of Fine-Tuning Experiments for Multi-Project 151

xii

List of Figures

3.1 Multi-Project Network Structure . 48

4.1 Hypervolume Indicator for Two Different Cases 82

5.1 An Example of an Individual for CFP 89
5.2 An Example Calculation of Divergence Measure for RCPSP 91
5.3 BFP Procedure . 97
5.4 General Framework of BFP . 98
5.5 An Example of Activity Insertion . 99

6.1 Instance A11 11 . 105
6.2 Instance A11 21 . 105
6.3 Instance A21 11 . 106
6.4 Instance B1010 21 . 106

xiii

List of Tables

3.1 Merging the Single Projects . 47
3.2 The Earliest Finishing Times of The Projects 48
3.3 Average Usage of Renewable Resource 49
3.4 Average Usage of Nonrenewable Resource 49
3.5 The Npv of The Projects . 50

4.1 Design of Experiment . 81
4.2 The Result of the Experiment 1 . 85
4.3 The Best Parameter Combinations . 88

6.1 Threshold and Stoppage Values for BFP Procedure 104
6.2 Abbreviations Used in Tables . 105
6.3 Results for Set A - BFP in the Final Stage 105
6.4 Results for Set B - BFP in the Final Stage 106
6.5 Results for Set C - BFP in the Final Stage 106
6.6 Paired t-test Result for Set A - BFP in the Final Stage 107
6.7 Paired t-test Result for Set B - BFP in the Final Stage 107
6.8 Paired t-test Result for Set C - BFP in the Final Stage 108
6.9 Results for Set A - BFP in the Intermediate Stages 109
6.10 Results for Set B - BFP in the Intermediate Stages 109
6.11 Results for Set C - BFP in the Intermediate Stages 110
6.12 Frequency of BFP During the Implementation of GA 110
6.13 Activity and Mode Entropy Thresholds 111
6.14 Results for Entropy-Based Divergence - First Level 111
6.15 Results for Entropy-Based Divergence - Second Level 111
6.16 Frequency for Entropy-Based Divergence - First Level 112
6.17 Frequency for Entropy-Based Divergence - Second Level 112
6.18 Results for maxNPV/minMFT . 114

xiv

6.19 CPU Times for maxNPV/minMFT . 114
6.20 Results for maxNPV/minMWT . 115
6.21 CPU Times for maxNPV/minMWT . 115
6.22 Results for maxNPV/minMCT . 116
6.23 CPU Times for maxNPV/minMCT . 117
6.24 Results for minCMAX/maxNPV/minRUD 117
6.25 CPU Times for minCMAX/maxNPV/minRUD 118
6.26 Results for minCMAX/maxNPV/maxMO 118
6.27 CPU Times for minCMAX/maxNPV/maxMO 118
6.28 Threshold and Stoppage Values for Different Objective Combinations . . 119
6.29 The Result of BFP Procedure for maxNPV/minMFT 120
6.30 The Result of BFP Procedure for maxNPV/minMWT 120
6.31 The Result of BFP Procedure for maxNPV/minMCT 120
6.32 The Result of BFP Procedure for minCMAX/maxNPV/minRUD 121
6.33 The Result of BFP Procedure for minCMAX/maxNPV/maxMO 121

A.1 Result of the Experiment for Single Projects - 1 149
A.2 Result of the Experiment for Single Projects - 2 150
A.3 Result of the Experiment for Single Projects - 3 150

B.1 Result of the Experiment for Multiple Projects - 1 152
B.2 Result of the Experiment for Multiple Projects - 2 153
B.3 Result of the Experiment for Multiple Projects - 3 154

xv

Chapter 1

Introduction

With the advent of humankind and increasing economic activity in global scale we ob-
serve projects increasingly more for accomplishing large complex work. For example,
large infrastructure construction such as building subways, dams, and suspension bridges
and complex, knowledge based work such as research and development (R&D), new prod-
uct development (NPD) and software development are all organised as projects. Finishing
these projects on time, within budget and meeting required quality requirements is a ma-
jor task indeed providing a great challenge for the project owners as well as the project
managers alike.

In the last decades an extensive amount of work has been accomplished in developing
exact and heuristic algorithms for the solution of resource constrained project scheduling
problem (RCPSP) for single as well as multiple projects. In recent years, there has been
considerable improvement in the development of methods emulating the real life decision
environments in project management. Research on multi-objective project scheduling is
one such attempt.

Management of multi-project turns out to be always challenging for organizations.
However, if the case is to deal with different type of projects for multiple organiza-
tions, the complexity increases even more. Managing and tracking different project plans,
checking budget and costs, considering different types of resources and materials and
communicating with the customers become one of the most challenging tasks of project
managers, if the right solutions are not available. Therefore, the right solutions regarding
the projects, their schedules and resource profiles should be in hand. For this purpose,
many researches have been conducted for obtaining the right solutions, if possible, of
project scheduling problems.

1

Organizations can be divided in two main groups in relation with projects. The
first group is called project-driven organizations, whose primary business is made up of
projects. This kind of firms measure their growth with the type, size, location and na-
ture of the projects that they conduct. Another measurement of growth is performed with
the decisions about how the required resources are provided. The examples of project-
driven organization include architect and engineering firms, software development firms
and other firms that bid for work on a project-by-project basis. The R&D department
of many companies work on project basis as well. The second class of organizations
is project-dependent companies. In contrast to project-driven firms, they do not work
on project basis. Rather, they provide goods and services as their mainstream business.
The projects conducted within project-dependent organizations are generally funded in-
ternally. The reason why these companies are grouped as project-dependent is that they
depend on projects in order to support their primary lines of business, but the projects are
not their principle offering to the marketplace. The examples of these organizations are
banking, financial services, governmental agencies, universities, hospitals, etc.

Boctor [11] explains three main organization types for project management. He de-
scribes their characteristics, advantages, disadvantages and the environments where they
can be seen. The first group is functional type of organization where the project is part
of the functional organization of company. A project can be seen in any of the functional
part of the company. The second group of organization types is pure project management
organization, which is independent from the home organization with its owns staff and its
own administration. The last organization type is matrix form, which is proposed because
of the serious disadvantages of previous forms of organizations. Matrix form organiza-
tion is developed by combining functional and pure organization types in order to take
advantage of their advantages.

RCPSP can be said to be a generalization of job shop scheduling problem because
each activity in a project may use multiple resources and each resource have a capacity
larger than one. In this type of problem, each activity requires some amount of limited re-
sources and there are precedence relations between activities. Additionally, preemption of
activity is not allowable. The objective which is generally accepted and commonly stud-
ied is the minimization of Cmax; that is, total project completion time without violating
the resource constraints and precedence relations.

After development of the large scale projects during World War II, many researches
have begun to emerge for dealing with project scheduling. Initially, the main purpose of
the studies was to determine the start times of the activities and to obey the precedence

2

relations such that Cmax can be minimized. This effort has led to Critical Path Method
(CPM) and Program Evaluation and Review Technique (PERT). While CPM deals with
project which has deterministic task duration, PERT requires the project to have stochastic
task durations and tries to determine probabilistic manner of the completion time of the
project.

Whereas there is an unconstrained version of above mentioned problem, resource con-
straints have been currently taken into consideration because it can be thought as more
realistic. Additionally, each activity may have multiple execution modes. A mode is an
alternative way of executing of an activity. That is, the duration and resource requirement
amounts may vary between the modes of an activity. If multi-mode is considered rather
than single mode, then this problem is called multi-mode RCPSP, but single mode version
of it will be shortly mentioned at first in this chapter.

There generally exist three types of resources (Slowinski [127]). Renewable resource
is a limited resource in each period of the project. In other words, when the period finishes,
the resource is renewed and becomes prepared for a new period. The example of it can
be manpower. On the other hand, non-renewable resource is limited in total over the
project duration. The example of it can be financial resource. An amount of money is
available at the beginning of the project and as long as the project proceeds, this amount
declines through the end of the project. Doubly-constrained resource is limited both for
each period and for all project progress.

Mathematical formulation of the single mode RCPSP is given as the following: Let
xjt equal to one if activity j completes in period t, otherwise it equals to zero. Let N
denote the number of activities existing in the project. Ej and Lj denote the earliest and
latest finish time of the activity j, respectively. These values are obtained by performing
forward and backward recursion. P denotes the set of all pairs of immediate predecessor
activities. That is, (a, b) ∈ P denotes that the activity a precedes the activity b. Let
dj denote the duration of activity j. Activity j requires the renewable resource k in the
amount of rjk and the capacity of this resource is denoted as Rk. Each activity uses
the non-renewable resource i in the amount of wji and the capacity of this resource is
represented by Wi. H denotes the known heuristic project completion time. Now, the
mathematical formulation can be given:

min

LN∑
t=EN

txNt (1.1)

3

subject to
Lj∑
t=Ej

xjt = 1 ∀j ∈ [1, N], (1.2)

−
La∑
t=Ea

xat +

Lb∑
t=Eb

(t− db)xbt ≥ 0 ∀(a, b) ∈ P, (1.3)

N∑
j=1

t+dj−1∑
q=t

rjkxjq ≤ Rkt ∀k ∈ [1, K] and ∀q ∈ [1, H], (1.4)

N∑
j=1

Lj∑
t=Ej

wjixjt ≤ Wi ∀i ∈ [1, l], (1.5)

By putting (1.1), this model is forced to minimize the completion time of the last
activity which represents the Cmax. With (1.2), an activity can not have finishing times
more than one. (1.3) maintain the predecessor constraints. The last two constraints (1.4)
and (1.5) consider the resource limits.

In addition to this formulation which is for only single mode RCPSP, multi-mode
version of this problem is formulated as below:

• xjmt: if activity j operating in mode m completes in period t, otherwise it equals to
zero.

• djm: duration of the activity j operating in mode m.

• rjkm: the amount of renewable resource k required to operate the activity j in mode
m.

• wjim: the amount of non-renewable resource i required to operate the activity j in
mode m.

Besides these parameters, the earliest and latest finish time of the activities denoted
by Ej and Lj are the same, with the only difference that forward and backward recursion
are operated with the smallest duration mode. At this point, the multi-mode formulation
of RCPSP can be given below:

min

MN∑
m=1

LN∑
t=EN

txNtm (1.6)

4

subject to
Mj∑
m=1

Lj∑
t=Ej

xjtm = 1 ∀j ∈ [1, N],

(1.7)

−
Ma∑
m=1

La∑
t=Ea

xatm +

Mb∑
m=1

Lb∑
t=Eb

(t− dbm)xbtm ≥ 0 ∀(a, b) ∈ P,

(1.8)
N∑
j=1

Mj∑
m=1

t+dj−1∑
q=t

rjkmxjqm ≤ Rkt ∀k ∈ [1, K] and ∀q ∈ [1, H],

(1.9)
N∑
j=1

Mj∑
m=1

Lj∑
t=Ej

wjimxjtm ≤ Wi ∀i ∈ [1, l],

(1.10)

It should be noted that network representation in this thesis is based on activity-on-
node representation. In other words, activity is represented on the node and precedence
relations between the activities are shown with the arcs.

RCPSP has been studied in the literature both with single projects and multi-project.
Firstly, the studies related to single objective RCPSP are explained. Secondly, the litera-
ture about multi-project RCPSP is given in Section 2.3 of Chapter 2.

As can be seen in the literature, exact, heuristic and metaheuristic solution methods
have been developed for solving RCPSP. In this thesis, metaheuristic solution methods
are focused and among them, genetic algorithm (GA) is taken into account. More specifi-
cally, we aim at developing multi-objective GA-based solution method for effectively and
efficiently solving RCPSP.

In this thesis, our motivation is to deal with multi-project RCPSP because this prob-
lem is real-life problem. Many companies, or the departments of the companies encounter
enormous number of situations in which they should schedule the activities of the multi-
projects in order find good solutions. Thus, they should consider many projects simulta-
neously. Moreover, in recent years, the companies have been forced to take into account
many objectives simultaneously because of the increase of the system complexities and
competition between the companies. All of these issues motivate us to study this problem.

The outline of the thesis is as follows: Chapter 2 presents the literature in detail.
In Chapter 3, solution approach is explained elaborately. The next chapter, Chapter 4,
presents the literature about fine-tuning procedure and describes the fine-tuning procedure

5

for both single project and multi-project case applied in this thesis. Chapter 5 proposes
some divergence applications and improvement procedures. Computational studies are
presented in Chapter 6. The last chapter, Chapter 7, concludes the thesis.

6

Chapter 2

Literature Survey

2.1 Single objective

2.1.1 Exact solution methods

2.1.1.1 Minimization of Cmax

• Single mode case: Brucker et al. [19] solve RCPSP with the minimization of Cmax.
Preemption is not allowed and each activity uses constant amount of renewable resources.
Additionally, precedence relations between activities are taken into account. Branch and
bound algorithm (B&B) is proposed for solving this problem and the test problems devel-
oped by Kolisch and Sprecher [89] are used for evaluating the algorithm proposed in the
study.

Demeulemeester and Herroelen [42] solve RCPSP. In this study, B&B algorithm is
used with depth first solution strategy. Preemption is not allowed and multiple renewable
resources are required for activities to proceed. The amount of resources required by
an activity per period does not change. The objective is the minimization of total project
completion time with satisfying the resource constraints and precedence relations between
activities.

Demeulemeester and Herroelen [43] report the new insights obtained by using the
modified version of B&B procedure proposed by Demeulemeester and Herroelen [42].
They try depth first, best first and hybrid strategy on this algorithm. Additionally, they
define stronger lower bound. The problem characteristics remain the same with the former
study.

7

Mingozzi et al. [101] focus on RCPSP. Activities require constant amount of renew-
able resources in each period. In addition, there exist precedence relations between activ-
ities that have to be obeyed. The objective is the minimization of Cmax without violat-
ing the resource constraints and precedence relations. They give classical mathematical
formulation which leads to lower bound calculations in the literature until that time. Af-
terwards, the authors define a new mathematical formulation which helps creating new
lower bound calculation methods. B&B procedure using newly developed lower bounds
and depending on newly proposed mathematical formulation is proposed.

Bartusch et al. [9] study RCPSP with the minimization of Cmax. They consider that
there may be time windows such as minimal and maximal time lags between activities.
After proposing a structural approach, B&B algorithm exploiting this approach is devel-
oped.

De Reyck and Herroelen [36] focus on RCPSP with generalized precedence relations
in order to minimize Cmax. That is, there exist arbitrary minimal and maximal time
lags between activities. The proposed method which is depth first B&B algorithm is
appropriate for general class of scheduling problems.

Fest et al. [52] solve RCPSP with the objective of Cmax minimization and minimal
or maximal time lags exist between activities. The authors device a new resource con-
flicts method when employing their B&B algorithm. This modified method has some
advantages and drawbacks when compared to other B&B algorithms.

Dorndorf et al. [45] study RCPSP with generalized precedence constraints while min-
imizing Cmax. The proposed method is time-oriented B&B method which depends on
constraint propagation technique and uses temporal and resource constraints of the prob-
lem. It is stated that this solution method can be applied to other regular objectives.
Additionally, truncated version B&B algorithm is compared to other heuristic methods.

Brucker and Knust [18] develop a new lower bound calculation method for RCPSP in
order to minimize Cmax. Activities have finish to start precedence relations and require
certain amount of resources. The lower bound calculations contain two methods, one of
which uses constraint propagation technique and the other one uses linear programming
formulation. An algorithm containing these two approaches is proposed by the authors.
• Multi-mode case: De Reyck and Herroelen [38] focus on RCPSP with three sig-

nificant properties. Generalized precedence constraints exist between activities, activities
require multiple renewable, non-renewable and doubly-constrained resources and activi-
ties can be performed in different ways; that is, they can have several execution modes.
The authors propose local search-based solution methodology and tabu search (TS) pro-

8

cedure. The problem is divided into two sub-problems: Mode assignment phase and
scheduling phase with assigned modes. It is explained that these sub-problems are both
NP-hard. Thus, multi-mode RCPSP should also be NP-hard.

Sprecher et al. [129] solve RCPSP optimally. They consider that each activity has
multiple modes. B&B algorithm is proposed by the authors. Several bounding rules
are presented. In one of them, preprocessing operation is performed. The detail of this
procedure is explained in Chapter 3.

2.1.1.2 Maximization of net present value

De Reyck and Herroelen [37] solve RCPSP with discounted cash flows and generalized
precedence relations. In other words, it is an extended version of RCPSP with minimal
and maximal time lags between activities and with the objective of maximizing the net
present value (Npv) of the project calculated by taking into consideration positive or neg-
ative cash flows for each activity. The authors propose depth first B&B algorithm in order
to solve this problem.

Vanhoucke et al. [144] solve RCPSP with the maximization of Npv. Activities have
constant amount of resource requirements and positive or negative cash flows. At the end
of execution of activities, progress payments and cash outflows are realized. Depth first
B&B algorithm is proposed by the authors.

Doersch and Patterson [44] consider the project scheduling problem with the maxi-
mization of Npv. Objective function includes activity cash flows and any penalties re-
sulting from delayed completion of the project. In order to solve the problem, zero-one
integer programming model has been developed. The authors claim that the model pro-
posed in the study solves the problem optimally. However, for larger data sets, it can not
reach to an optimal solution.

Icmeli and Erenguc [73] focus on RCPSP. Although the most frequently considered
objective is the minimization of Cmax, they deal with the maximization of Npv because
this objective is more financial motivated and realistic. They propose B&B procedure
to solve this problem. Resource violations that might be encountered are tried to be
solved by adding additional precedence relations between certain activities. This method
is called minimal delaying alternatives. The bounds are computed by solving Payment
Scheduling Problem.

Kazaz and Sepil [77] deal with project scheduling problem the objective being the
maximization of Npv. In that study, contrary to tradition, cash inflows are assumed to
occur at the end of a period such as one month, one year; which is called progress pay-

9

ment. However, cash outflows are realized at the end of corresponding activities. The
authors present the mixed-integer programming formulation of this problem. For solving
the problem, Benders Decomposition technique is proposed and significant computational
results are observed.

2.1.1.3 Other objectives

Vanhoucke et al. [143] consider RCPSP with the minimization of weighted earliness-
tardiness penalty cost. Activities have a known due date and constant amount of renew-
able resource requirement. The authors propose depth first B&B algorithm. Finish to start
precedence relations exist between the activities.

Drexl [46] consider RCPSP as assignment type problem. For this problem, a stochas-
tic scheduling heuristic and a hybrid B&B/dynamic algorithm have been presented. Min-
imization of the total cost is the unique objective function in this problem. The prob-
lem presented in the study considers precedence relations between activities, resource-
resource trade-offs and time-resource trade-offs. Additionally, each job has a release date
and a deadline.

2.1.1.4 Other problems

Slowinski [127] considers the Resource Allocation Problem which assigns the resources
to the activities by considering the resource capacities and trying to improve the objec-
tive. Each activity has three type of resources; renewable, non-renewable and doubly-
constrained. Two different solution methods are proposed by the authors. Those are both
dependent on the linear programming formulation of this problem.

2.1.2 Heuristic solution methods

2.1.2.1 Priority rules

2.1.2.1.1 Minimization of Cmax

Davis and Patterson [34] solve RCPSP with the objective of project duration min-
imization. They compare eight different priority-rule heuristics, proposed in order to
solve this problem, relative to an optimal solution. Those priority rules are minimum job
slack (MINSLK), resource scheduling method (RSM), minimum late finish time (LFT),
greatest resource demand (GRT), greatest resource utilization (GRU), shortest imminent

10

operation (SIO), most jobs possible (MJP) and select jobs randomly (RAN). It is observed
that MINSLK is the best heuristic among others and RSM and LFT are close to MINSLK
in terms performance. Thus, these three heuristics outperform other methods.

Kolisch [85] deals with RCPSP. Specifically, he focuses on RSM priority rule and
analyzes it. It is observed that it leads to poor solutions. Thus, an improved version of it is
developed and two new priority rules, which depends on MINSLK rule and resource based
slack priority rule are proposed by the author. With the help of experimental investigation,
those newly proposed method are observed to outperform other priority rules developed
until that time.

Kolisch [86] studies RCPSP with the objective of total project completion time mini-
mization. Specifically, he focuses on the comparison of serial and parallel schedule gen-
eration schemes (SGS) in depth. The author refers to some studies to show which exact
and heuristic methods have been studied. Among heuristic methods, it is said that priority
rule based scheduling heuristic are the most important procedure. In each stage of this
method, eligible set of activities (that is, activities whose all predecessors have already
been scheduled) is found and one of these activities which is selected by using given pri-
ority rule is scheduled. For scheduling, two different methods (serial and parallel SGS)
are used.

SGS defined so far is termed as single pass approach, which means one priority rule
and one generation scheme are used and only one solution is obtained. However, in
multi-pass approach, Z single passes are applied so as to provide a sample of at most Z
unique feasible solutions whose the best solution is selected. Two different kinds of multi-
pass approach can be explained. Whereas multi-priority rule method uses one scheduling
scheme and various priority rules, sampling benefits from one scheduling scheme and one
priority rule.

The author gives some observation about generation schemes. He states that both of
them can obtain feasible schedules with respect to both precedence relations and resource
availabilities. Secondly, it is said that both methods reduce to a simple forward recursion
in resource unconstrained case. Additionally, he suggests a theorem stating that serial
SGS obtains active schedules and parallel SGS provides non-delay schedules.

Ulusoy and Ozdamar [136] solve RCPSP with a priority rule developed in that study.
The objective is the minimization of total project duration. Types of network and resource
characteristics are investigated in order to determine whether they affect the priority rules’
performance. The authors develop a new priority rule called weighted resource utilization
and precedence (WRUP) and it is observed to outperform other most commonly used

11

priority rules such as MINSLK, LFT and RSM.
Khattab and Choobineh [78] solve the single resource RCPSP. In addition to existing

ten priority rules in the literature that can solve this problem heuristically, they define
new eight priority rules. The method taking into priority rules consideration to solve this
problem ranks the activities with respect to corresponding priority rule and then schedules
them in earliest resource feasible time so that the Cmax of the project is minimized.
By considering these priority rules, the authors propose a new heuristic called SEARCH
working with those rules and performance of it is compared to other heuristics.

Some performance measures are defined to compare the newly proposed priority rules
with already existing ones. In that paper, five different performance measures are defined:
Resource utilization measures how well a schedule uses its resources as a function of
time. Average deviation from the shortest known duration is the difference between the
best known project duration and the project duration obtained by the kth heuristic aver-
aged over all projects. Another measure is the frequency of obtaining the shortest duration
considering how many times a heuristic obtains the best duration when compared to other
heuristics. Resource range is another one measuring the difference between the minimum
resource level required to complete the project and the resource level needed to schedule
the activities by critical path method. The last measure is project delay which calculates
the difference between the project duration computed by assigning the resources which
have minimum usage levels to the activities and the project duration computed with criti-
cal path method.

Boctor [12] deals with RCPSP with the objective of minimizing Cmax. The authors
proposed some multi-heuristic methods containing both parallel and serial rules. The
performance measure used in the study is either the percentage of critical path length (for
large problems) or optimal solution in the case that it is known.

Neumann and Zhan [109] solve the problem of the minimizing the total project dura-
tion in the presence of resource constraints where there may be minimal and maximal time
lags between activities. The authors propose efficient priority rule heuristics for solving
this problem.

2.1.2.1.2 Maximization of net present value

Selle and Zimmermann [123] consider RCPSP with the objective of Npv maximiza-
tion. Temporal constraints exist between the activities. The authors propose bidirectional
priority rule based method. Well known serial SGS is compared to this proposed algo-

12

rithm and the efficiency of the latter algorithm is shown.
Neumann and Zimmermann [110] focus on RCPSP by considering two different ob-

jectives. When they try to minimize the resource usage deviation, they call this problem
as resource leveling. Otherwise, if they consider the financial aspect of the project, they
call this problem as Npv problem. Minimal and maximal time lags exist between the ac-
tivities. They construct that study by considering various aspect of both problems such as
whether there is resource constraint and whether minimal or maximal or both of them are
used in the problems. The authors propose exact and heuristic methods (a different TS
algorithm) for resource leveling for constrained and unconstrained case and Npv problem
for unconstrained case. In addition, a heuristic procedure is developed for Npv problem
when there exist resource constraints.

Sepil and Ortac [124] focus on RCPSP with the aim of the maximizing Npv. Cash
inflows are not defined to occur at event realization times, rather they are defined to occur
periodically. In that case, cash inflows do not depend on the activities. Single-pass greedy
forward algorithm is proposed to solve this problem and three different priority rules are
included in this algorithm. The aim of these rules is to select an activity to be scheduled
from the eligible activities.

2.1.2.2 Forward and backward recursion

Li and Willis [98] solve RCPSP with forward and backward recursion. This procedure
continues scheduling the activities until there is no improvement in the objective function,
which is the minimization of project completion time. It is stated that this method leads
to cheap and short schedule because backward recursion tries to schedule the activities as
late as possible.

Ozdamar and Ulusoy [115] deal with RCPSP with the minimization of Cmax. They
propose iterative forward and backward scheduling technique, which is based on the study
Li and Willis [98] to solve this problem. However, those techniques are different in the
algorithmic way and the activity selection method.

2.1.2.3 Sampling method

Cooper [32] deals with RCPSP with the minimization of Cmax. He studies two groups of
heuristic methods, both of which use priority rules. First one is parallel method generating
one schedule and the second one is sampling method generating multiple schedules and
selecting the best one. The impacts of the heuristic methods, network characteristics and

13

priority rules are evaluated.

2.1.2.4 Variable neighbourhood search

Fleszar and Hindi [54] solve RCPSP with variable neighbourhood search, which is a
heuristic solution method proposed by Mladenović and Hansen [102]. The solution is
coded with activity list that does not violate precedence relations between the activ-
ities. The activity list is turned into the schedule by using serial schedule generation
scheme. In this study, the solution space is explored by utilizing effective lower bounds
and precedence augmentation. The computational study is conducted with 2040 bench-
mark instances. According to the result, the best known solutions are improved for some
instances. The authors say that variable neighbourhood search is inferior for some in-
stances, but even in this case, average deviation is small.

Bouffard and Ferland [14] create another solution method consisting of simulated
annealing (SA) and variable neighbourhood search to solve resource constrained schedul-
ing problem. Actually, they try to improve SA procedure with variable neighbourhood
search. The author compare this method to other local search methods, which are thresh-
old accepting methods and tabu search. These methods are combined with multi-start
diversification strategies and with the variable neighborhood search technique. A detailed
computational study is performed to evaluate the performances of these methods. Ac-
cording to the results, simulated annealing improved with variable neighbourhood search
outperforms the other methods.

2.1.2.5 Other methods

Brinkmann and Neumann [16] focus on the problem of leveling the resource consump-
tion and minimizing the total project completion time. Minimal and maximal time lags
are allowed to exist between starting time of the activities. The authors propose two dif-
ferent heuristics called direct method and contraction method. At the end of the empirical
analysis, the contraction method becomes superior over the other method for minimum
completion time problem. For resource usage leveling problem, both methods are seen to
behave similarly.

Cesta et al. [22] solve RCPSP with generalized precedence relations. They propose
a heuristic method, which depends on the constraint satisfaction problem (CSP) solving
search procedure. This procedure tries to find ”resource contention peaks” (that is, the set
of activities whose resource requirement summations are the maximum) and the levels.

14

Naphade et al. [108] focus on RCPSP by proposing two heuristics based on Problem
Space Search metaheuristic procedure. This algorithm is compared to B&B method de-
veloped by Demeulemeester and Herroelen [42]. It is observed that proposed heuristics
perform well when comparing to B&B algorithm.

Sampson and Weiss [121] deal with RCPSP by applying local search technique. A
solution representation is determined so that it can be precedence feasible. It is explained
that two significant advantages of local search technique are its ability to deal with ar-
bitrary objective functions and its efficiency over a wide range of problem sizes. The
proposed method is observed to have important improvements over the best heuristics
developed until that time.

Ulusoy and Ozdamar [137] deal with RCPSP with the objective of the minimization
of Cmax. A new heuristic method called local constrained based analysis (LCBA) is pro-
posed and it is said to be more robust than the dispatching rules existing in the literature.
After computational studies, it is observed that LCBA outperforms dispatching rules and
can obtain near optimal time efficient solutions.

2.1.2.6 Other objectives

Yamashita et al. [150] focus on RCPSP to minimize resource availability cost. The authors
call this problem Resource Availability Cost Problem (RACP). They claim that several
exact methods for solving it have been proposed, but they are aware of heuristic methods.
Thus, a heuristic method called scatter search has been developed. For small instances,
scatter search has been compared to known exact methods, but multi-start heuristics has
been proposed in order to show the quality gain generated by scatter search for medium
and large instances.

2.1.3 Metaheuristic solution methods

2.1.3.1 Genetic algorithm

2.1.3.1.1 Minimization of Cmax

• Single mode case: Hartmann [64] focuses on RCPSP with single objective. Indi-
viduals are constructed as precedence feasible activity list(the other name is permutation
based genetic encoding). While forming the initial population, one of the unscheduled
activities whose predecessors have already been scheduled is selected and put in the or-

15

der. In addition, a sampling procedure is used in order to form the activity list. That is,
one activity is selected for the next position with a probability derived by a priority rule.

Crossover is applied in three different ways. One-point crossover and two-point
crossover will be explained in Chapter 3. The third method called Uniform Crossover
generates N (the number of activities) random integer. However, these random number
can take only two values, 0 and 1. While creating the daughter, if Nt is equal to 0, then
that activity existing in tth position is taken from the mother. If not, that is taken from the
father. In this type of crossover, algorithm is designed so that precedence relations can be
taken into account.

Mutation operator considers all activities. The activities jt and jt+1 are changed with
a probability pm, if the resulting sequence does not violate the precedence relations.

For selection operator, four different ways are defined: Ranking method, propor-
tional selection, where each individual has a probability of dying, 2-tournament and 3-
tournament selection.

Priority value based GA has been considered by the author. In this representation,
individuals are presented with randomly generated priority values. Crossover methods
are the same with those of precedence feasible representation. Mutation is performed as
follows: For all activities, a new random priority value is generated with a probability pm.

Priority rule based GA has also been paid attention by the author. For each position
of the individual, a priority rule exists to schedule an activity. Crossover and selection
operators are the same. However, mutation operator is performed by generating a new
priority rule for each position with a probability pm.

Leon and Balakrishnan [97] deal with RCPSP with considering two objectives sep-
arately; minimization of Cmax and mean tardiness. They propose a method that can be
regarded as local search making use of problem-space based neighborhoods. This method
can be beneficial for all regular objectives, if it is adapted. By using GA additionally, fur-
ther improvements are observed. Close-to-optimal solutions are provided in both cases;
with and without GA.

Alcaraz and Maroto [4] solve RCPSP with single mode. Objective adopted in that
paper is the minimization of Cmax. The solution is tried to be reached by GA. However,
they propose new solution representation and crossover operators. Thus, it turns out to
be that a new GA is proposed by the authors. Basically, various changes in genetic op-
erators such as population size, crossover rate and mutation rate have been observed and
compared each other.

They present different solution encoding techniques. Activity list representation con-

16

structs the feasible list. In other words, every activity comes after its all predecessors in
this list. Parallel SGS can not be applied to this type of representation. The authors give
the list of studies that have used this kind of representation. Priority rule representation
include some rules to schedule the activities. The rule P existing in tth position of activity
list has to be used while determining tth activity of the schedule. Parallel and serial SGS
can be used for scheduling the activities. Random key representation and shift vector rep-
resentation has been also presented by the authors. Finally, Alcaraz and Maroto [4] have
preferred the activity list representation. However, they added a gene to the list indicat-
ing the method by which the schedule is constructed. This gene determines whether this
schedule is constructed by forward or backward schedule.

During forming the initial population, activity list is constructed with the help of LFT
rule. Thus, the authors have use sampling approach for computing the initial popula-
tion. After solving the schedules with two different methods (forward and backward), the
algorithm selects the one with the smallest Cmax.

For selection mechanism, three methods have been presented. The remainder stochas-
tic sampling without replacement, 2-tournament selection and ranking method have been
presented. For crossover operator, firstly the checking method about whether crossover
is beneficial or not is proposed. Afterwards, three types of crossover are proposed.
Precedence set crossover is applicable for standard activity list. Forward and backward
crossover technique is beneficial for newly proposed solution encoding. In this operator,
the last gene of activity list becomes important because it affects the crossover procedure.
Two-point forward backward crossover is also applicable to newly proposed activity list.
Thus, it takes into the last gene consideration during crossover. The only difference be-
tween the previous one and two-point crossover is that two random integers have been
used for the latter one.

In order to perform mutation operator, two kinds of this operator have been used. One
of them is to select random position for each activity by preserving the precedence fea-
sibility and put this activity in this randomly selected position. In the second one, each
position is swapped with the following one with a probability. If the last gene is for
scheduling method, then this gene is changed with a probability during mutation proce-
dure.
• Multi-mode case: Mori and Tseng [104] solve RCPSP with multi-mode. Cmax is

aimed to be minimized. The authors define some heuristic methods which try to solve this
problem and they develop a new heuristic method GA. Deterministic scheduling rules pro-
posed by Talbot [132] and stochastic scheduling method defined by Drexl and Grnewald

17

[47] are selected to be compared to GA.

2.1.3.1.2 Maximization of net present value

Ulusoy et al. [139] solve the single objective form of RCPSP with discounted cash
flows. This type of problem is generally represented as RCPSPDCF. They apply four
different payment models on this problem; lump sum payment, payments at event occur-
rences, equal time intervals and progress payment. The problem is solved by GA. Ini-
tial population is constructed randomly. For each individual, one of the activities whose
predecessors are already in the scheduled list is put in this list. Schedule generation is
performed by scheduling each activity in resource and precedence feasible time. Ad-
ditionally, the starting time of an activity can not be larger than the starting time of the
previous activity in the feasible list. If an individual is infeasible with respect to resources,
it is discarded. As for crossover and mutation, if crossover is applied, then two parents
from current population are selected and one child is produced by crossover. Otherwise,
fitness-based selection is applied to the current population to select a chromosome to be
reproduced as the offspring. Then, this child is applied mutation operator. Of course, this
newly generated child is checked if it is feasible with regard to resources. If not, it is dis-
carded. Chromosome representation is succeeded by activity list with mode assignment.
The crossover operator is multi-component uniform order-based crossover operator.

Ulusoy and Cebelli [135] solve RCPSP to maximize Npv. They propose double-loop
GA for solving this problem. In double-loop representation of the problem, outer loop and
inner loop represent the client and the contractor, respectively. Information flows between
client and contractor. More specifically, the knowledge of timing of payment becomes
available for the client and the knowledge of payments amount becomes available for the
contractor.

2.1.3.1.3 Other formulations

Shadrokh and Kianfar [125] solve Resource Investment Problem which is a branch of
RCPSP. The objective is the minimization of cost resulting from activities and overdue of
the project. Thus, a cost is defined for each activity and a due date is given for the project
completion. For solving the problem, GA is proposed.

Crossover operator is performed with a probability pc. If this probability is not satis-
fied, then each of the selected parents are applied only mutation operator and local search.

18

If satisfied, then the algorithm decides whether the generated individuals should exist in
the population or be discarded by a comparison operator. After constructing the popu-
lation, immigration operator is applied to this population. A new randomly generated
individual is compared to randomly selected individual from the population. If new gen-
erated one wins the other one, it replaces the selected one in the population.

Chromosome structure is the precedence feasible activity list. Capacity list exists
with the activity list. To compute the fitness value, the equation calculates the cost of
every activity and tardiness cost if the schedule is overdue.

Crossover is performed in three types. One-point and two-point crossover by Hart-
mann [64] are performed. The other operator is type-2 two-point crossover. For the
capacity list, a different crossover technique is applied. Mutation is performed as follows:
For the activity α, let the last predecessor of it be activity β and the first successor of it be
θ. Random integers x ∈ [β+1, θ−1] and y ∈ [0, N] is generated, where N is the number
of activities. Afterwards, activity y is inserted between the activities x− 1 and x+ 1.

Najafi and Niaki [107] focus Resource Investment Problem (RIF). This problem is
defined in the literature that resource availability levels are decision variables. In this
problem, there is a deadline for project completion time. Since the costs are realized for
providing the resources, the objective is to find a schedule and resource levels such that
objective function can be minimized.

The authors propose GA to solve this problem. Initial population is created randomly.
For generating the next population, the best individuals determined by evaluating the
fitness functions of the individuals are copied to the next generation. Afterwards, the
population is divided into two parts randomly. For each pair of individuals, crossover
operator is applied with a probability. Then, two obtained individuals are subject to mu-
tation operator with a probability. Finally, a local improvement procedure is executed so
as to improve the provided schedules with a probability.

Chromosome representation is accomplished through feasible activity list. Each gene
in the chromosome denotes the floating time of an activity in that schedule. That is,
floating time FH(i) of activity i at schedule H is equal to SH(i) − ESi, where SH(i)

denotes the starting time of the activity i at schedule H and ESi denotes the earliest
starting time of activity i obtained with critical path method.

For creating initial population, two methods are used with equal probability. These
are forward and backward approach for chromosome representation. Crossover is defined
as specific for the chromosome representation. For each crossover execution, a random
integer number between [1, N−1] is generated, whereN denotes the number of activities.

19

Then, the parents are divided into two parts with respect to this randomly generated num-
ber. Afterwards, backward and forward floating time of the activities are calculated and
crossover is performed with these values. For mutation operator, two integer values are
generated between [1, N − 1]. For the selected intervals with respect to these values, the
backward or forward floating time of each activity in this interval is calculated randomly.

Finally, two different local improvement techniques are proposed by the authors. First
one is the removal of the empty period at the schedule. Second one is achieved through
the shifting of activities either to left or to right depending on whether the activity has
forward floating time or backward floating time.

2.1.3.2 Simulated annealing

Cho and Kim [28] study RCPSP with the objective of Cmax minimization. They propose
SA algorithm and a solution is represented with priority list. To generate schedules, a
priority scheduling method is performed. In the proposed algorithm, some activities can
be delayed so as to have larger solution space due to the fact that non-delay schedules can
not always contain an optimal schedule.

Pan and Yeh [117] focus on RCPSP. They think that the knowledge about activity
parameters (in particular, the duration of the activities) is not precise. Thus, fuzzy set
theory is used by the authors since they think that it is the best way to deal with such
a situation. In order to solve the problem, fuzzy SA approach is proposed. The unique
objective is the minimization of total project completion time.

Probabilistic way is used for handling imprecise cases about activities, but although
it is valid in theory, it is not efficient method in practice since project managers generally
have not information about the parameters in advance. Thus, fuzzy set theory is regarded
as the best way to handle this problem.

2.1.3.3 Tabu search

Icmeli and Erenguc [72] study RCPSP with discounted cash flows. Each activity possess
a cash inflow or outflow and the objective is the maximization of Npv of the project. A
tabu search (TS) procedure is proposed by the authors and this method is modified to call
long term memory function. It is observed that this method can produce near optimal
solutions within reasonable time.

20

2.1.3.4 Other methods called hybrid

Lee and Kim [96] consider RCPSP to minimize Cmax. Authors prefer to use three search
heuristics, which are TS, SA and GA. The solution is represented by a set of numbers,
each of which denotes the priority value for the corresponding activity. It is said that
this representing method can always give feasible neighborhood solutions. These search
procedures are compared to already existing heuristics in the literature; minimum slack
method, the iterative method and and the SEARCH method proposed by Khattab and
Choobineh [78].

In GA phase, one-point crossover method is applied. As for mutation operator, two
genes are selected randomly from the string and their values are exchanged with a proba-
bility.

2.1.4 Review papers

Herroelen et al. [69] review the project scheduling problem with the objective of Npv
maximization. Firstly, they define Npv criterion and explain contracts and payment struc-
tures. Various problem types and assumptions (changing with objectives, resources, etc.)
are given by the authors in detail.

Hartmann and Kolisch [67] evaluate the state-of-the-art heuristics for RCPSP. They
consider this problem with single objective, which is the minimization of Cmax. At first,
they explain SGS in detail. They point out that serial SGS always holds optimal schedule
in the set of active schedules. It generates optimal active schedules for unconstrained
resource case. List scheduling is a variant of serial SGS. On the other hand, parallel SGS
can be regarded as alternative method for serial SGS. Parallel SGS generates non-delay
schedules, which may be optimal for unconstrained resource case. However, this has a
drawback that it may exclude the optimal schedules.

They define X-pass methods. They contain single-pass method and multi-pass method.
Afterwards, the authors show the most important metaheuristics for RCPSP, which are TS,
SA and GA. They have tested various problem properties, different initial population con-
structing techniques and different SGSs. Furthermore, different metaheuristics have also
been tested.

Finally, it has been observed that the most successful metaheuristics are SA procedure
of Bouleimen and Lecocq [15] and GA of Hartmann [64]. Activity list representation
outperforms the best among other representation techniques. Furthermore, serial SGS
can be seen to be better than parallel SGS, but in larger problems, the latter one can be

21

better than the former one.
Kolisch and Hartmann [88] evaluate the most recent papers and heuristic methods

proposed since the last survey of Hartmann and Kolisch [67]. In the last survey, the most
promising heuristics were GA of Hartmann [64] and SA procedure of Bouleimen and
Lecocq [15]. Some heuristics developed since the last survey seem to outperform them.
The heuristics developed by Alcaraz et al. [5], Debels et al. [40], Hartmann [66], Kochetov
and Stolyar [83] and V. et al. [140] are tested and accepted as the most successful heuristic
developed for RCPSP. In addition, it is said that forward and backward improvement is
one of the most significant component in four of these six important heuristics.

2.2 Multi-objective

2.2.1 Exact solution methods

Nudtasomboon and Randhawa [113] study RCPSP. Single objective versions of this prob-
lem are evaluated before and some algorithms are proposed. The authors examine the
minimization of Cmax, the minimization of project total cost and the minimization of
variation in resource levels. Zero-one integer programming model is developed for this
problem. As for solution algorithms, extensions of the implicit enumeration technique are
used to develop these algorithms. Afterwards, zero-one preemptive goal programming ap-
proach is proposed for the multi-objective case of RCPSP. These objectives include time,
cost and resource leveling aspects. In that study, several components of RCPSP are de-
scribed and included in the model proposed throughout the paper. These components are
splittable / non-splittable jobs, three types of resources (renewable, non-renewable and
doubly-constrained), variance in resource consumption and time-cost trade-offs.

Azaron et al. [7] deal with the time-cost trade-off problem. Each activity has the dura-
tion which is non-increasing function of the resource amount assigned to it. The authors
try to solve this problem by using optimal control theory in Markov PERT networks. They
develop multi-objective control problem and two different solution techniques called goal
attaintment and goal programming are used. The objectives are the minimization of total
direct costs, the mean of project completion time and the variance of the project comple-
tion time.

22

2.2.2 Heuristic methods

Al-Fawzana and Haouari [3] study robustness maximization and total project time mini-
mization simultaneously for the single mode RCPSP. They define robustness as the ”project’s
ability to cope with small increases in the time duration of some activities that may result
from uncontrollable factors”. It is said that multi-objective combinatorial optimization
problem can be solved by three types of algorithm. First, exact methods such as B&B
and dynamic programming can be used. Second, metaheuristic methods such as GA,
TS and SA can be beneficial in order to find the approximate efficient solutions. Third,
some decision support system (DSS) with interactive usage can be developed. The DSS
can include both exact methods and heuristic methods. In that paper, TS has been pre-
ferred. Two important performance measures for evaluating the quality of the obtained
non-dominated solutions are proposed in this study.

Abbasi et al. [1] study the bi-objective case of RCPSP. The objectives are Cmax min-
imization and robustness maximization. They define robustness as ”if the duration of an
activity becomes larger than the estimated duration, the project completion time will not
change without any cost”. Objective function is formed as a weighted combination of
those two objectives. In order words, they are combined into one objective function by
assigning weight for each objective. SA has been performed to solve this problem.

Ulusoy and Ozdamar [138] study RCPSP and try to solve it with two objectives, the
minimization of Cmax and the maximization of Npv. Two different cash structures are
examined. In the first one, each activity has cash outflow at its start time and lump sum
payment takes place at the project completion time. In the second structure, activities
are allowed to have multi-mode. The authors apply an iterative scheduling algorithm for
solving this problem.

Davis et al. [35] examine RCPSP as a multi-objective problem. They consider the
minimization of project completion time and balancing the resource usage simultane-
ously. The method that is used within the study is an interactive procedure based on
vector maximization.

Viana and de Sousa [146] focus on RCPSP with multiple objectives. They are the
minimization of Cmax, the minimization of mean weighted lateness of activities and the
violation of resource constraints. Although in the mathematical formulation, there are
two constraints regarding the feasibility of resource usages for both renewable and non-
renewable, the relaxation of these constraints leads to the objective of minimization of
resource usage over capacity because the authors think that the constraints with respect

23

to resource usage may be violated in practical. Since the single objective form of this
problem is NP-hard, multi-objective case becomes even more difficult. It is stated that
classical methods such as ε-method proposed for solving multi-objective form are not ef-
ficient by examining the study of Steuer [130]. Thus, multi-objective metaheuristics have
been preferred in the study of Viana and de Sousa [146]. Specifically, Pareto simulated
annealing (PSA) and multi-objective tabu search (MOTS) have been used for obtaining
good approximation of non-dominated solutions. For evaluating the solution quality, two
different performance metrics have been presented. First, the closeness of the obtained
non-dominated set to true Pareto front is evaluated. For doing this, closeness measure de-
fined in the literature is used. Secondly, the measure of distance to Zeleny point is utilized
for evaluating the solution quality.

Hapke and R. [62] study RCPSP with renewable, non-renewable and doubly-constrained
resources. The problem has three objectives considering the time and cost aspects. Taken
from a real life problem, these objectives are accepted as the minimization of project
completion time, handling of manpower resource smoothness and the minimization of
total project cost. The problem studied by the authors has been considered by observ-
ing agricultural procedure. In this problem, solution procedure has two stages. In the
first stage, PSA tries to find good approximate solutions to the problem in a reasonable
time. Afterwards, Light Beam Search is executed interactively in order to examine the
non-dominated solutions provided by the first stage.

Slowinski et al. [128] propose a DSS for multi-objective project scheduling. Renew-
able, non-renewable and doubly-constrained resources are included in the problem for-
mulation. The objectives considered in that paper have time and cost aspects. In order to
solve the problem, three heuristics are involved into DSS. These are parallel priority rules,
SA and B&B procedure. In interactive phase, decision maker can have the algorithm to
search for the best compromise schedule.

Ballestı́n and Blanco [8] study the multi-objective RCPSP. One important factor of
this problem is that it has regular objective functions (Cmax, total tardiness, sum of start
times, maximum tardiness and Npv with only positive cash flows). Some significant
observations are given about multi-objective project scheduling problem (PSP) and multi-
objective RCPSP. With the help of them, some heuristics have been proposed. Strength
Pareto evolutionary algorithm (SPEA), non-dominated sorting genetic algorithm (NSGA)
and PSA are those procedures.

In order to execute these algorithms, some details about the stages of procedures have
to be shown. Firstly, two-point crossover and mutation of Hartmann [64] have been ap-

24

plied. The other significant component is that they use regret-based biased random sam-
pling of Drexl [46] for generating the initial population. Additionally, sampling method
combined with a local search called double justification can almost compete with the best
metaheuristic algorithms. Moreover, different schedule generation schemes are tried. Al-
though parallel SGS may not reach to an optimal solution, it uses the resources in the way
that the resulting schedule is compact. That is, parallel SGS tries to use the resources in
the sense that it leads to relatively small idle time. Thus, some authors like Hartmann
[66] and Kochetov and Stolyar [83] have preferred to use combined form of serial SGS
and parallel SGS. Finally, elitism has been studied to see whether it is effective in multi-
objective RCPSP by comparing non-dominated sorting genetic algorithm - II (NSGA-II)
with and without elitism.

Cochran et al. [29] study parallel machine scheduling problems. The objectives con-
sidered are the minimization of Cmax, the minimization of total weighted completion
times and the minimization of total weighted tardiness. The method preferred in that
study is two-stage multi-population genetic algorithm (MPGA). Actually, the authors
basically propose GA with dispatching rule, but MPGA has been presented in order to
handle multi-objective case. MPGA is made up from two heuristics, which are vector
evaluation genetic algorithm (VEGA) and multiobjective GA (MOGA). After developing
the MPGA, this method is compared to MOGA, which is called the benchmark method
with two objectives; the minimization of Cmax and total weighted tardiness.

General scheme of MPGA has been presented by the authors. One important compo-
nent is the selection mechanism. Each parent is selected with the probability. Crossover
and mutation are performed in a simplest way. As for fitness function, it is formed as a
single function by weighting the objectives. It is important that the weight of an objective
in one iteration is generated randomly. Elitism is applied to this problem by preserving
the best solution of each objective and the best solution of the combined objective. The
procedure explained until here has been called the first stage. After obtaining the solu-
tions of the first stage, the population is divided by rearranging the solutions with respect
to each objective and combined objective. If there exist p objectives to be optimized, then
the population is divided into p + 1 sub-populations. The first p populations are for p
objectives and the last one is for the combined objective. Selection, crossover and muta-
tion operators of the second stage are the same with those of the first stage. In order to
preserve the best solutions, algorithm searches the best solution for each objective over
all populations. Thus, it provides p+ 1 best solutions to be preserved.

Slowinski et al. [128] study PSP with multiple category resources and propose a DSS

25

for solving this problem. Solution procedure takes into account several objectives si-
multaneously. In the model studied in that paper, renewable, non-renewable and doubly-
constrained resources are included and activities are considered to have multi-mode. The
structure of DSS is presented by the authors. First module of it is model editor. There are
heuristic procedures, which solve the single objective PSP in the second module. These
are parallel priority heuristics, SA and B&B method. The interactive procedure for solv-
ing multi-objective PSP is given in the third module. In this phase, the interactive module
uses the solution obtained by one of the heuristics defined above. The aim of the fourth
module is to display the results to the decision maker.

The objectives considered in that study are the minimization of project completion
time, mean weighted lateness, total number of tardy activities, mean weighted flow time,
weighted resource consumption and Npv. As a test problem, a hypothetically generated
agricultural project consisting of 30 activities is used.

Hapke et al. [63] consider multi-mode RCPSP with time parameters of activities.
Renewable, non-renewable and doubly-constrained resources are included in the model.
The objectives are the project Cmax, resource utilization smoothness, maximum lateness,
mean flow time, Npv and project cost. Since all time parameters of activities have fuzzy
nature, the duration of a mode, ready time and due date of an activity have fuzzy prop-
erty. Parallel SGS is used for scheduling the activities with some modifications to make
it proper for the fuzzy nature of this problem.

Two-stage solution procedure is proposed for solving this problem. In the first stage,
PSA is performed in order to obtain approximate non-dominated solution sets. In the
second stage, an interactive procedure called Light Beam Search tries to find the best
compromise solution over the non-dominated set with respect to the preference of the
decision maker.

Nabrzyski and Wȩglarz [106] solve multi-mode RCPSP with multi-objective. These
objectives are the project duration, mean weighted flow time, mean weighted lateness,
weighted resource consumption, Npv and profit obtained in the project. The solution
method has two phases. In the first stage, TS algorithm is used to solve this problem with
a single objective and then, non-dominated solutions are searched by examining the single
objective solutions. In the next phase, interactive procedure is performed so as to provide
compromise solutions with regard to decision maker’s preference.

Wang et al. [148] solve RCPSP with multiple objectives. The objectives are the min-
imization of total project time and satisfying of resource utilization of smoothness. The
latter one is defined as the average deviation from the average resource usage. The pro-

26

posed method is NSGA-II. Chromosome representation is achieved with feasible prece-
dence activity list and assigned mode for each activity. Serial SGS is preferred to schedule
the activities. Initial population is created randomly. For selection operator, binary tour-
nament is preferred. For daughter, crossover is applied as in the study of Hartmann [64],
but the mode is carried without any change with the activity. With a probability, mutation
is performed by selecting a position randomly, generating an activity and inserting this
activity into the selected position if precedence relations are satisfied. For the mutation of
modes, an activity is selected randomly and its mode is assigned randomly from its mode
set. The proposed algorithm is tested on agricultural example taken from Hapke and R.
[62]. It is seen that it can solve the problem efficiently.

Elloumi and Fortemps [49] study the multi-mode RCPSP with two objectives; mini-
mization of Cmax and satisfying the non-renewable resource feasibility. Although they
approach to this problem as single objective, it is converted to bi-objective case since they
want to solve the infeasibility of non-renewable resources at the other objective. They im-
plement evolutionary algorithm to solve this problem, but with a new idea. They propose
an adaptive grid relying on clustering technique in order to avoid premature converge of
the algorithm.

Individual is represented by a pair of activity list and mode assignment list like in
the study of Hartmann [65]. Preprocessing of the data file (that is, reduction of the search
space) is performed as in the study of Sprecher et al. [129]. In other words, non-executable
modes are removed first. Then, redundant non-renewable resources are eliminated and all
inefficient modes are deleted. These last two operations are repeated in a loop until an
improvement can not be provided. Initial population is constructed in the same way of
Hartmann [65]. Since the algorithm proposed by the authors allows infeasible solutions
with respect to non-renewable resources, an aggregate value defined for leftover capacity
of non-renewable resources is accepted as one objective to be minimized. As for fitness
function, the rank-based fitness assignment (see Section 3.6 in Chapter 3) method is used.

For density computation, they avoid to use the classical method called cell-based den-
sity approach because it has some shortcomings. Thus, they propose a new idea called
clustering-based density approach. Crossover operator is applied in the same way of
Hartmann [65]. Mutation operator is applied in two stages. In the fist one, an activity j is
selected and is changed with j+1 with a probability, if precedence relation is not violated.
If not changed, then another activity is selected and is tried to be changed with neighbor
activity. These procedure continues until an activity is changed or N (the number of ac-
tivities) unsuccessful trials are executed. In the second stage, an activity is selected and

27

its mode is changed.
Ghoddousi et al. [56] study the multi-mode RCPSP with its extended version. Since

multi-mode RCPSP, the discrete time-cost trade-off problem and the resource allocation
and resource leveling problem are significant project scheduling problem, the authors con-
sider all of them in one problem. To solve this problem, multi-mode RCPSP is changed to
multi-mode resource-constrained discrete time cost-resource optimization model (MRC-
DTCRO). NSGA-II is proposed for solving this problem and it selects the best compro-
mise of total project completion time, total project cost and resource fluctuations.

Initial population is created in the same way of Hartmann [65]. In other words, an
activity precedence feasible list and a mode assignment list are used for representing the
individuals. Activity list is constructed by choosing the activity from the decision set
randomly. One-point crossover operator proposed by Hartmann [65] is applied. As for
generation scheme, serial SGS is preferred by the authors.

Elazouni and Abido [48] solve the project scheduling problem under cash constraints.
A SPEA with logic-preserving crossover and mutation operator is preferred by the au-
thors. Profit values of the individual projects construct a set of conflicting objectives. The
performance of the proposed algorithm is evaluated by comparing it with multi-objective
GAs. Proposed algorithm provides the same solutions with those of GAs. Moreover, it is
successful in obtaining well-diverged solutions.

Kılıç et al. [79] solve the project scheduling problem with each activity having risk.
During defining risk of activities, various levels for risk and preventive operations for
each level are defined. This problem has two objectives being the minimization of the
expected Cmax and the expected total cost. Mixed integer programming model and GAs
are proposed for solving this problem.

Additionally, improvement heuristic is proposed to reduce the total cost without chang-
ing the critical path and Cmax. This can be succeeded with a method resembling the
trade-off case in multi-mode RCPSP.

Nikulin and Drexl [111] focus on airport flight gate scheduling problem with multi-
objective, which is modeled as a multi-mode multi-criteria RCPSP. The objectives are the
maximization of total flight gate preferences, the minimization of the number of towing
activities and the absolute deviation of the new gate assignment from a so-called reference
schedule. The solution method preferred is PSA. When there is uncertainty in input data,
this problem is approached with fuzzy numbers.

Hanne and Nickel [60] deal with scheduling and inspection planning for software
development projects. They propose multi-objective evolutionary algorithm and three

28

objectives should be minimized; the total number of defects, the Cmax and the total cost.
It is observed that this algorithm outperforms first come first serve simulation method in
all of three objectives.

Xiong et al. [149] solve RCPSP with multi-objective. The activities have the stochas-
tic durations and that is why, three different objectives are considered. They aim at min-
imizing Cmax, maximizing robustness and stability. Hybrid multi-objective evolutionary
algorithm incorporated with local search procedure is proposed. Specifically, NSGA-II
is preferred as the solution method. As for the comparison of the algorithms, the perfor-
mance measure called set cover is utilized.

Yannibelli and Amandi [151] consider project scheduling problem with multi-objective.
While the minimization of Cmax is aimed, assigning the most effective set of human re-
sources to each activity is also aimed. The multi-objective hybrid search and the optimiza-
tion algorithm is proposed and it is composed of multi-objective evolutionary algorithm
and multi-objective simulated annealing. The integration of simulated annealing and evo-
lutionary algorithm is performed in order to improve the search ability of the latter one.
Parameters are chosen with preliminary experiments. Each instance is solved with differ-
ent parameter combinations and the best combination resulting in the best and most stable
results is chosen.

For evaluating the hybrid algorithm, some performance measures are defined. At first,
the spread and distribution of the obtained set are analyzed. Moreover, accuracy of the re-
lated set is also analyzed. As for the comparison of the algorithms, several quality aspects
of obtained non-dominated set are analyzed. Size and ratio of non-dominated solutions,
accuracy, spread and distribution of the non-dominated solution sets are analyzed and a
performance measure is proposed for each of these aspects.

2.2.3 Other formulations

Voβ and Witt [147] deal with the flow shop problem. They regard this problem as a
RCPSP. Although they consider to minimize two objectives, Cmax and weighted tardi-
ness, they focus on the minimization of weighted tardiness because they see this problem
from supply chain perspective. After assigning weights for both objectives, they set the
weight value for Cmax as 0. Thus, the problem turns into a single objective problem. In
order to solve this problem, dispatching rules has been used by the authors. These rules
are weighted earliest due date (WEDD), weighted latest finish time (WLFT) and weighted
minimum slack (WMINSLK). However, these rules are modified to make them proper for

29

flow shop problem.
Bomsdorf and Derigs [13] focus on the Movie Shoot Scheduling problem, which can

be seen a variant of RCPSP. However, the features existing in movie producing procedure
make this problem much different than the classical RCPSP. Objectives considered in that
study can vary. They are classified as the following: Minimization of location change,
the minimization of Cmax and satisfying the continuity during shooting the film, which
means trying to shoot the movie in the order given by the movie script. However, quality
of the schedules are evaluated by the following criteria: Changes of locations, length of
gaps (it should be minimized), number of gaps, number of capacity renewals and conti-
nuity. Thus, the objective function is composed of all of these six criteria.

Cheng et al. [26] focus on job shop scheduling problem. They propose hybrid al-
gorithm containing dispatching rules, the shifting bottleneck procedure and evolutionary
algorithm. The objectives are the minimization of Cmax and total tardiness. The authors
make use of two performance indicators to compare the algorithms. These are binary
hypervolume indicator developed by Zitzler and Thiele [154] and unary multiplicative
epsilon indicator Zitzler et al. [155].

Esquivel et al. [50] deal with job shop scheduling problem with single objective and
multi-objective. Evolutionary algorithm is used with its modified version. Multirecombi-
nation is included into this algorithm and a method is developed to prevent the premature
convergence of the algorithm. In multirecombination approach, multiple crossovers per
couple and multiple crossovers on multiple parents are applied.

Tamaki et al. [133] deal with identical parallel machine scheduling problem. The
authors propose GA approach, where an individual represents the job orders in a machine
and assignment of jobs to the machines. Starting time of the jobs are computed by solving
the linear programming problem.

During solving the linear programming problem, each objective is assigned a weight
value. The objectives are the minimization of the Cmax and the minimization of earliness-
tardiness costs. Thus, by changing the weight values, various schedules can be obtained.

Fowler et al. [55] deal with bi-criteria parallel machine scheduling problem. The main
purpose of the authors is to develop a new performance measure to evaluate the algorithms
and to make experiments for fine-tuning of the parameters because they believe that per-
formance measure should be robust and efficient. For this purpose, Integrated Convex
Preference (ICP) measure is developed and two different posteriori solution techniques
based on GA are used for solving the problem. It is observed that ICP evaluates the
approximation sets robustly, whereas other measures can misjudge the solution qualities.

30

The authors also classify all performance measures developed until that day. After-
wards, following decision maker’s utility function, they develop their own performance
measure called Integrated Convex Preference.

Jaskowski and Sobotka [74] pay attention to the construction project planning, schedul-
ing and contractors selection. There are two objectives; Cmax and cost minimization.
This problem is brought down to single objective form with the help of modified Tcheby-
cheff achievement scalarizing function. Evolutionary algorithm is applied to this problem.
As further research, the authors explain that parameter selection should be done with an
experiment because they do not make use of such a method while setting the parameters.

Jaszkiewicz [75] develop a new genetic local search algorithm for solving multi-
objective combinatorial optimization problem. At each iteration, the algorithm draws
at random utility function, a couple of best individuals among the previous generation are
selected and temporary population is constructed. Afterwards, a pair existing in this popu-
lation is selected randomly and applied recombination. Local search procedure is applied
to each of offspring. Computational experiments are performed on traveling salesman
problem.

The author states that most of the performance measure depend on the fact that true
Pareto front is known. However, this is not the case in that study. Thus, the quality of the
approximate set is defined by the expected value of weighted Tchebycheff utility function
over the set of normalized weight vectors.

Mansouri [100] deals with Just-In-Time sequencing problem with variation of produc-
tion rates and number of setups’ optimization, which are desired to be minimized. The
author applies MOGA to this problem. This algorithm is compared to total enumeration
and three heuristic solution methods. The results of the algorithms are evaluated by con-
sidering quality and diversity aspects. Fine-tuning of the algorithms are performed again
with both aspects.

Osman et al. [114] think that while solving multi-objective dynamic programming
problem, classical approaches convert to this problem into single objective case by as-
signing weights. This method requires to determine various weight values for each objec-
tive. Additionally, solving this problem becomes hard when the problem size increases.
Thus, the authors propose GA for finding solution to this problem, specifically for multi-
objective resource allocation problem.

31

2.3 Multi-project

2.3.1 Exact solution methods

Kramer and Hwang [90] develop a generalized resource constrained project scheduling
model. The developed model can deal with any of the important scheduling objectives,
alternative activity completion modes and scheduling multiple project simultaneously.
The authors state that the model can be solved by mixed integer / linear programming
software. The main issue of the developed model is to split the activities and to allocate
different resource usage rates. At the end, numerical examples are presented and it is
solved by a software.

Tiwari et al. [134] consider the situation in multiple project environment, where work-
ers have different skills. It is said that multiple project RCPSP models this situation by
assigning different durations for the activities conducted by the workers having differ-
ent skills. However, the authors explain it becomes often inadequate. The real project
that represents the customer training division of a large telecommunication company is
studied and the labor assignment problem is modeled and solved by implementing inte-
ger programming optimization procedures. The project environment has multiple project
being independent from each other but using the same resources. The results of the pro-
posed method show the bottleneck of the resources and the benefit of cross-training of
the labors. In addition, it guides which labors should be cross-trained in order to gain the
highest benefit.

Mohanty and Siddiq [103] say that project managers in real life have to deal with
multiple project simultaneously. Each project can have different number of activities and
each activity has to use a certain amount of scarce resources in different times. Project
managers must evaluate the performance of the projects with multiple criteria, but the
literature has not many studies dealing with this duty. Therefore, the authors develop an
integer goal programming, which then is analyzed with a case having three projects and
three resources. Moreover, the extension of the model to deal with cost-time trade-off in
managing the projects is presented.

Pritsker et al. [118] develop zero-one linear programming formulation for multiple
project job-shop scheduling problems. They claim that this formulation is more general
when compared to previously developed models. The formulation takes into account
multiple resource constraints, due dates, job-splitting and the other real-world situations.
Three objectives are tried, which are minimization of total time spent for finishing all

32

projects, minimization total throughput time for all projects and minimization of total
lateness.

Krger and Scholl [91] explain that most of the researches assume resource transfers
between projects without any cost and time. They think that this is not realistic and de-
velop a new multiple project scheduling problem with transfer times and cost. At first, a
framework is developed for involving this aspect to the problem, which considers man-
agerial approaches to the transfer, types of transfer and the new role of the transferred
resources. The problem is formulated as an integer linear programming problem. The ex-
perimental studies reveal that consideration of transfer of the resources is necessary and
significant.

Chen and Askin [23] deal with project selection and scheduling problem because in
real life, many project managers have to face such problems. The project return is defined
as a function of project completion time and the objective is to maximize the present
worth of profit. The resources considered in the study are renewable and limited. After
presenting mathematical formulations for both this problem and its extensions, implicit
enumeration algorithm that consists of project ordering and a prioritization rule for re-
source allocation is developed. The proposed algorithm has an embedded module for
solving RCPSP at each stage.

Heimerl and Kolisch [68] schedule multiple IT projects by assigning multi-skilled
workers with different efficiencies to the projects. The objective is to minimize the labor
cost and the problem is formulated as mixed integer linear program with a tight LP-bound.
The model is evaluated with regard to solution gap and computation time. The authors ex-
plain that applying mixed integer linear program is more beneficial than applying heuris-
tics because the former one can obtain lower-cost and feasible solutions. Moreover, it
is said that if central planning is adopted, then applying mixed integer linear program is
more beneficial.

2.3.2 Genetic algorithms

Ozmehmet Tasan and Gen [116] consider the network optimization problem. The con-
ventional integrated selection and scheduling solution methods becomes complex, if the
size of the problem gets bigger. Traditional methods aim at selecting the projects at first,
then scheduling them. However, it is stated by the authors that these tasks have to be
considered together because considering separately causes to loss of integrity. The au-
thors propose the integrated genetic algorithm using the multi-stage decision approach.

33

In this study, two newly defined problems with different characteristics are solved with
the proposed algorithm.

Goncalves et al. [57] deal with multi-project RCPSP. GA approach is proposed by the
authors. Chromosome representation is achieved by using random keys. The schedules
are formed with a heuristic, which builds the parameterized active schedules after the
definition of release dates, delay times and priorities by GA. The proposed procedure is
tested by using 10, 20, 30, 40 and 50 projects that have 1200, 2400, 3600, 4800, and
6000 activities, respectively. The results reveal that GA-SlackMod can provide better
results when compared to the results obtained by two other approaches (GA-Basic and
GA-SlackND).

Ramrez Palencia and Meja Delgadillo [119] deal with bus body assembly line in
Colombia, South America. They implement a computer system for this assembly line.
The sequencing of the assembly line is formulated as multiple project RCPSP. GA is pro-
posed as the solution methodology because of the capability of it to handle the constraints
of the production system. The algorithm is embedded into a software generating weekly
schedule. Thus, this software leads to the significant improvements in the company such
as increasing on-time delivery percentage from 65% to 85% and changing the organiza-
tional climate in the company.

Kumanan et al. [93] focus on scheduling multiple project with resource constraints in
order to minimize overall Cmax. The author explain that the proposed methods such as
mathematical techniques and heuristic algorithms for scheduling is appropriate for sin-
gle project, but they become cumbersome and inefficient for multiple project scheduling.
Thus, a GA with a heuristic approach is proposed for scheduling multi-project with re-
source constraints. The proposed method is tested with a numerical example and it is
observed to be efficient.

2.3.3 Hybrid methods

Chen and Shahandashti [24] deal with multiple project scheduling problem with multiple
resource constraints. It is explained that several heuristic methods are proposed for solv-
ing this problem because the solution procedure is a complex and time-consuming task.
However, each of heuristic algorithms are suitable for only one type of problem. Thus,
the authors propose hybrid GA and SA procedure as the solution algorithms because both
of these algorithms are generic and can be appropriate for all optimization problems. The
validation of the proposed algorithm is illustrated with three real projects and three test

34

projects. The results show that the hybrid procedure has better performance than GA, SA
and modified SA.

Kim et al. [80] develop a new hybrid genetic algorithm with fuzzy logic controller to
solve multi-project RCPSP. It is argued that trying to solve this problem with the classical
optimization techniques is not easy. The objectives are the minimization of total project
time and total tardiness penalty. Fuzzy logic controller depends on the initialization of
the revised serial method, which is better than non-preemptive scheduling. At the final
phase of the study, it is observed that the proposed hybrid algorithm outperforms the
conventional GAs and adaptive GA.

Chen [25] studies the RCPSP with multiple project for the maintenance of mineral-
processing equipment at a copper mine in China. At first, he applies 0-1 goal program-
ming to this problem. Because the problem size is large and the computing time is high,
the author proposes a two-phase hybrid solution method. In phase 1, a feasible schedule is
found with the help of a heuristic under resource constraints. While passing to the second
phase, many decision variables and redundant constraints are eliminated from the model.
In the second phase, implicit enumeration method is applied to the reduced problem. It
is said that 90 percent of the variables and 96 percent of the constraints can be removed,
thus this procedure is able to solve the medium size problem.

2.3.4 Priority Rules

Browning and Yassine [17] claim that past researches have not revealed a clear guidance
for the project managers about which activity priority rules should be preferred. There-
fore, the authors deal with multiple project RCPSP and 20 different activity priority rules
are tested on tremendous amount of instances. The objectives are the minimization of
project lateness and portfolio lateness. One of the results is that some of commonly used
and advocated priority rules show worse performance. Additionally, the authors state that
project managers have to decide about which priority should be preferred by observing
their local and global objectives.

Krüger and Scholl [92] explain that many studies in the literature have assumed that
a resource can be transferred from one project to another without any cost in multiple
project environment. In that study, sequence- or resource-dependent transfer times that
can be regarded as setup activities are defined for the resources in order to complete this
gap. The objectives are the minimization of mean project duration and priority rule based
solution procedures are proposed. It is observed that if the scheduling scheme and priority

35

rule is chosen appropriately for each other, the procedures provide good results.

2.3.5 Auction mechanism

Adhau et al. [2] say that dealing with multiple project is quite common and resource con-
flicts between project become a serious task for the project managers. In that study, two
types of resources are considered. While one of them is always available to corresponding
project, the other one is common for all projects. The existing multi-agent system using
auction applies exact methods for solving winner determination problem so as to allocate
the resources to the projects. However, this system is observed to fail to converge for
some multiple project instances and unsuccessful for real life large projects. Thus, the
author propose multi-unit combinatorial auction and a novel distributed multi-agent sys-
tem using auctions based negotiation approach is used for solving winner determination
problem.

Arazo et al. [6] focus on the project portfolio scheduling. Each incoming project af-
fects the portfolio’s schedule, resource availability and planned performance. It is stated
that there is no analytical solution to schedule the resources dynamically. Mathemati-
cal approaches such as integer programming and network-based techniques can not be
enough for such complex problems. In this paper, multi-agent system, where projects
and resources are defined as agent and each project negotiate for the procurement of the
resources through auction mechanism is proposed.

Confessore et al. [31] consider multiple project scheduling problem in which each
project have several activities using special resources and common resources. The ob-
jective is the minimization of the duration of each project. The authors think that local
decision makers representing projects should exist and combinatorial auction mechanism
should be implemented. A dynamic programming formulation is proposed for auction
mechanism and heuristic algorithms are proposed for both auction and bidding processes.

Homberger [70] try to solve the RCPSP with restart evolution strategy, which solves
this problem through evolutionary algorithm repeatedly and uses the best solutions pro-
vided by each run. The instances having at most 2400 activities are solved with the
provided method and the results show that it is better than the best-known heuristics.
Integrating restart evolution strategy into multi-agent system, the authors solve decen-
tralized resource constrained multiple project scheduling problem, in which each project
has an agent who negotiates about the allocation of shared resources and schedules the
activities using restart evolution strategy. To evaluate the proposed method, 80 generated

36

instances having up to 20 projects and up to 120 activities are solved. The results reveal
that this method is competitive with central solution approach.

2.3.6 Other methods

Hao et al. [61] focus on multiple project RCPSP. The authors firstly propose a dynamic
project scheduling algorithm, which is based on partial task networks. It is stated that this
algorithm can solve large scale RCPSP with complex time and resource constraints. For
the project environment having multiple project, an interactive decision support system is
involved to the algorithm and the resource conflicts are solved by this system. The pro-
posed algorithm is applied and tested in a web-based aircraft maintenance management
system.

Kao et al. [76] deal with uncertainty in project management. Specifically, during exe-
cution of multiple projects, some unexpected events occur and this leads to resource con-
tentions among projects and schedule disruptions. With respect to this consideration, the
authors adopt an event-driven approach in order to design a trade-off decision framework
for project portfolio scheduling and rescheduling. High Level Petri nets, Activity-Based
Costing and Technique for Order Preference by Similarity to Ideal Solution are performed
in sequence to generate feasible schedules, estimate the Cmax and cost values and select
the best compromise schedule.

Varma et al. [145] consider the pharmaceutical R&D projects and state that some crit-
ical decisions have to be made about project selection, activity scheduling and resource
assignments to the projects. Pharmaceutical R&D activities have critical issues, which
make it complex such as technological and market uncertainties, long development cy-
cle times and work process constraints. The authors explain that in spite of these risks,
the literature about allocating the resources among R&D activities is limited. A proce-
dure called SIM-OPT is proposed by the authors to maximize the portfolios expected net
present value, to control risk and to reduce drug development cycle times.

Coffin and Taylor III [30] say that the literature on R&D project selection focus on
multiple criteria modeling of the problem. Mathematical programming models, decision
theory models and scoring models are such models. However, these models do not take
into account the project scheduling. The proposed model evaluates the single objective
function, which represents the multiple criteria of the R&D selection and scheduling. The
objectives are maximization of the expected profit for the portfolio, maximization of av-
erage probability of success for the portfolio, and minimization of Cmax of the portfolio.

37

The solution method includes fuzzy logic within a standard beam search approach. A real
project is used for illustrating the procedure of the algorithm and benchmark studies are
implemented to evaluate the efficiency of the algorithm.

Carazo et al. [21] consider the problem of project selection and scheduling. Multi-
ple objectives conflicting often to each other, resource constraints, the transferring of the
resources that are not used in the current period to the following period and project inter-
dependence (complementarity, incompatibility,synergy and precedence relationships) are
involved to the model. The author develop a multi-objective binary programming model,
which is appropriate for both selection and scheduling objectives. The proposed solution
method is a heuristic algorithm that is based on scatter search. In order to compare this
method to other heuristics, instances are generated randomly and computational studies
are performed. It is observed that the proposed procedure is stable against the changes of
the characteristics of the problems. Additionally, it outperforms the SPEA2.

Sun and Ma [131] say that selection of R&D projects are studied, but scheduling
them is considered rarely. The authors study the development and the application of
packing-multiple-boxes model, which is a heuristic method and based on packing-single-
box model. This model is said to be appropriate for both selecting and scheduling of R&D
projects and it is used for both tasks of a case R&D company. The company conducts 20
projects simultaneously with financial constraints. Although the method may not be an
optimistic one, it is said to be beneficial and efficient.

Lawrence and Morton [95] focus on RCPSP with multiple project and consider to
minimize weighted tardiness costs. By extending their earlier proposed heuristic, they
develop efficient and effective procedure so as to generate low cost schedules for the prob-
lem mentioned above. By considering the balance between the marginal cost of starting
an eligible activity later and the marginal benefit of such an operation, a ’cost-benefit’
scheduling policy is developed. This method is compared to a couple of dispatching rules
taken from the literature and several new scheduling rules. The authors say that the results
are in favor of ’cost-benefit’ scheduling policy.

Gutjahr et al. [58] approach to Project Portfolio Selection problem with employees’
multi-skills and evolutions with the objectives stated as economic gains and competency
gains. The problem is divided into two sub-problems. Master problem is considered as
project selection problem and subproblem is considered as slave problem dealing with as-
signing workforce to the selected projects. As for slave problem, asymptotic approxima-
tion of it by applying linearized formulation is proposed and efficient and exact solutions
of the corresponding problem are found. For the master problem, NSGA-II and parallel

38

ant colony algorithm (P-ACO), which are multi-objective problem solving methods are
compared. The randomly test instances and real world test instances are used for showing
the results of computational analysis.

Kogan and Shtub [84] deal with multiple project RCPSP with variable-intensity activ-
ities to minimize the dynamic earliness and tardiness of project activities. Four dynamic
models based on four types of precedence relations are studied. The first two models are
created in order to deal with start-to-end relations with unit step function and specially
constructed penalty functions, respectively. The last two models are designed to deal with
overlapping precedence relations by considering the milestone approach and start-to-start
precedence relations with lags, respectively. For solving the last three models, an effi-
cient time-decomposition approach is adopted, which is used a guide for solving the first
model.

Fatemi Ghomi and Ashjari [51] explain that resource constrained single project schedul-
ing problem with stochastic task durations is a complex problem and this complexity be-
comes more when it has multiple project and common resources. The authors approach
multiple project resource allocation problem (MPRA) as a multi-channel queuing system.
The simulation modeling has been used to solve MPRA and the study of Fatemi Ghomi
and Ashjari [51] develops a framework and a solution procedure by using simulation lan-
guage GPSS. A numerical example is showed and the statistical results are presented.

Kim and Schniederjans [81] state that some real world scheduling problems are sub-
jected to limited resources and this certainly turns out to be a challenge for the project
managers. When it has multiple project, the complexity increases. The authors claim
that conventional scheduling techniques such as PERT and CPM becomes insufficient to
deal with this complexity due to their unrealistic assumptions. By making use of recent
development in artificial intelligence and knowledge engineering with heuristic methods,
expert systems are developed. The authors present a framework and development strategy
for an expert system in multiple project scheduling domains. A practical application of
the proposed system is presented as well.

Chiu and Tsai [27] deal with multiple project RCPSP with discounted cash flows by
considering the project delay cost and early completion bonus. An efficient heuristic
method is developed and proposed by the authors. To evaluate its performance, 42 small
size instances are solved with it and the solutions of it are compared to optimal ones. It is
observed that the solutions provided by the heuristic are very close to optimal. In addition,
the heuristic algorithm is compared to existing four heuristics by solving single project
and multiple project instances with the objectives of average total project net present value

39

and the average total project delay. The results show that the heuristic proposed by the
author outperforms the other ones and the number of times that it obtains the best solution
with those objectives are far more than that of other heuristics.

Lova et al. [99] explain that although many researches focus on scheduling single
project and improves the objective function related to time, companies conduct several
projects simultaneously and take into account no time objectives. Thus, they develop a
multi-objective heuristic that improves one time type objective such as mean project de-
lay or multiple project duration increase and one no time type objective such as project
splitting, in-process inventory, resource leveling or idle resources. The proposed heuris-
tic method consists of several algorithms based on the improvement of multiple project
feasible schedules. After finding feasible schedules by priority rule based heuristics or
project scheduling softwares, this method improves them by applying backward and for-
ward passes.

Kurtulus and Davis [94] say that heuristic methods to solve the project scheduling
problem are studied deeply, but there is not an exact guide for the project managers about
which method should be preferred. In addition, since there is no categorization for the
heuristic rules, it is generally assumed that once a rule is selected, it must be applied
throughout the project. The authors develop a categorization for the heuristic rules based
on two different performance measures, which are the location of the resource usage peak
and rate of utilization of each resource type.

Kolisch [87] consider multiple, large-scale, make-to-order assembly scheduling, which
consists of scheduling assembly operations belonging to different orders. In addition to
classical project scheduling constraints such as precedence and resource constraints, spa-
tial resource and part availability constraints are also taken into account. The objective is
to minimize sum of weighted tardiness and the problem is formulated as mixed integer
programming. The proposed solution method is a list-scheduling heuristic. To evaluate
the effectiveness of it, some benchmark instances are solved with it.

Shtub et al. [126] consider the scheduling problem in the environment in which the
same products are produced repeatedly. In this problem, the authors have to decide how
many units of product should be assigned to an available individual or an available team.
It is stated that these kind of problems are classified by two conflicting aspects: (i) the
requirement to complete each product by its due date, (ii) learning effect. This problem
is studied with two different penalty cost structures and the models are developed for
both of them. Different heuristics, which are SA, GA and pair-wise swap heuristic, and
exhaustive search are tested. The results make clear that pair-wise swap algorithm is the

40

best.

41

Chapter 3

A Multi-objective Genetic Algorithm Approach
and Extensions

In this chapter, problem characteristics, especially the objectives and the objective com-
binations, are firstly defined. Then, the way of creating and modifying problem instances
are explained in detail. As proposed in the literature, preprocessing of the instance files
to reduce the solution space are described. For the main components of GA, the ways of
forming the initial populations are explained firstly. The different ways of fitness calcu-
lation are presented in the next step. The various types of crossover and parent selection
mechanisms are implemented in this thesis. The explanations of these mechanisms plus
mutation and parent reduction mechanisms are presented. Since the developed algorithm
is for solving the multi-objective RCPSP, some additional operators such as crowding dis-
tance and non-dominated sorting procedure are implemented, whose definitions are given
at the last sections of this chapter. Finally, the basic schemes of GA are given.

RCPSP has been tried to be solved to optimality. Blazewicz et al. [10] states that this
problem is NP-hard. As stated before, many exact, heuristic and metaheuristic methods
have been developed and proposed until so far. According to significant studies which
review the heuristic and metaheuristic methods, GA is one of the successful metaheuristic
algorithms to solve RCPSP. Hartmann and Kolisch [67] argue that GA and SA procedure
are the most effective algorithms. Moreover, Kolisch and Hartmann [88] claim that GA is
one of the most significant algorithms for solving this problem.

In this thesis, multi-mode multi-objective form of RCPSP is tried to be solved effi-
ciently. As for solution procedure, GA is preferred due to the its successes mentioned
above. In the literature, several algorithms have been proposed for solving the multi-

42

objective RCPSP. One of the most successful procedures is NSGA-II (Zitzler et al. [153]),
which compares the individuals fast and maintains the diversity well (see Deb [39]).

There exist different objectives that are considered together in this thesis. At first, a list
of the objectives are given below and the definitions of some of them are explained shortly,
if required. The abbreviations inside the parenthesis will be used for these objectives.

• Minimization of Cmax: Minimization of the completion time of the last activity
(minCMAX)

• Maximization of net present value (Npv): Maximization of total Npv computed by
summing Npv of the costs and payments of the activities (maxNPV)

• Maximization of minimum outflow: Maximizing the minimum summation of the
Npv of the costs (maxMO)

• Minimization of resource usage deviation (minRUD): For the definition of this ob-
jective, see the Equation (3.14) in Section 3.4

• Minimization of mean weighted tardiness of the projects (minMWT)

• Minimization of mean flow time of the projects (minMFT)

• Minimization of mean completion time of the projects (minMCT)

The last three objectives make sense, if the problem environment has multi-project.
In implementation phase of this thesis, RCPSP is studied with both single project and
multi-project. Thus, all of above mentioned objectives are meaningful for this thesis. The
last three objectives are particularly relevant for multi-project. In other words, weighted
tardiness values are calculated for the projects which have some certain due dates. In
addition, average flow and completion time are also for the projects.

In this thesis, the objectives considered together while solving the multi-objective
RCPSP are listed as below. The abbreviations next to the explanations will be used for
the corresponding objective combinations.

• Min. of Cmax and Max. of Npv (minCMAX/maxNPV)

• Min. of Cmax & Max. of Npv & Min. of resource usage deviation (minC-
MAX/maxMNPV/minRUD)

• Min. of Cmax & Max. of Npv & Max. of minimum outflow (minCMAX/maxMNPV/maxMO)

43

• Max. of Npv & Min. of mean weighted tardiness (maxNPV/minMWT)

• Max. of Npv & Min. of mean flow time of the projects (maxNPV/minMFT)

• Max. of Npv & Min. of mean completion time of the projects (maxNPV/minMCT)

Besides its ability to solve the multi-objective case, the algorithm implemented in
our study can also solve the single objective case of RCPSP. These objectives are the
minCMAX and the maxNPV.

3.1 Project instance

3.1.1 Modifications in single project instances

For implementing the algorithm and solving multi-objective RCPSP, some researchers
have created data instances. Demeulemeester et al. [41] develop a library consisting of
project scheduling networks and those network are updated by the study of Vanhoucke
et al. [142]. Moreover, Kolisch and Sprecher [89] create another instance library for
project scheduling problem. In this thesis, the library PSPLIB (project scheduling prob-
lem library) created by Kolisch and Sprecher [89] is preferred.

In order to solve RCPSP with the objective minCMAX, the original form of the in-
stance files are used. In other words, no change or modification is operated. Each ac-
tivity including dummy source and dummy sink activities has its own number of modes,
the number of successors, the set of successor activities. Additionally, each mode of an
activity has duration, resource usage amount for two renewable resources and two non-
renewable resources. There exist a capacity for each resource.

On the other hand, since these files are not generated for the objective maxNPV or
other monetary objectives, they do not include the corresponding information both for
the project and the activities. That is, some changes are required to turn them into the
appropriate form.

Firstly, for non-dummy activities, cash outflows are generated for each mode of each
activity. For doing this, the sum of all resource usage amount sumjm is obtained by the
following equation:

sumjm =
K∑
k=1

rjkm +
l∑

i=1

wjim ∀j ∈ [1, N] and ∀m ∈ [1,Mj] (3.1)

44

Afterwards, rawjm is calculated by the equation rawjm = −10 · sumjm. It should
be noted that if rawjm is not decreasing with the increasing duration by considering all
modes of the activity j, the order of the costs is modified and converted to the proper
form. Following this stage, the largest cost is multiplied by 1.8, the second largest cost
is multiplied by 1.2 and the least cost is multiplied by 1 (there are three modes for each
activity excluding dummy source and sink activities). At the end of this procedure, the
difference between costs are well distinguished and it allows the algorithm to select the
most proper mode during maximizing Npv or when Npv is among the objectives during
solving multi-objective RCPSP.

As for the dummy source and sink activities, the former one is not assigned any cost.
However, the dummy sink activity is assigned a payment (cash inflow) called lump sum
payment by applying the following procedure: The averages of the costs of the modes cj
computed by the following equation

cj =

Mj∑
m=1

cjm

Mj

∀j ∈ [1, N] (3.2)

are summed and the resulting value is multiplied by 1.1.

cN =
N−1∑
j=1

cj · 1.1 (3.3)

At the end of these operations, the lump sum payment of the dummy sink activity
denoted by cN is assigned, where 1.1 represents the factor such that the payment of this
activity can become large enough. This factor is determined intuitively for this purpose.
It should be stated that it can take other values such as 1.2 and 1.3, if needed.

The payment amount of the dummy sink activity is assigned relatively large because
the algorithm would increase the Cmax infinitely, if this value is not that large while
maximizing the Npv. After these all modifications, the instance files are turned into the
proper form being solved by this algorithm.

This operation is performed for only single project instance file. With these instances,
fine-tuning of the parameters (will be explained later) are performed. The reason why this
experiment is conducted with only single project instance files is to spend less time for
it. In addition, multi-project instance files are created in this thesis. During creation, a
different cost assignment technique is utilized. Therefore, there exist two different cost
assignment techniques. It should be noted that the result of fine-tuning experiment con-

45

ducted with single project instance files are used for solving multi-project instance files.
Another fine-tuning experiment whose scope is kept limited is conducted with multi-
project instance files. The creation method of multi-project instance files are explained in
the following:

3.1.2 Multi-project instance generation

When GA runs with multi-project instances, two different instance sets are utilized. First
of them is created by the study of Can and Ulusoy [20]. In these files, the names of
combined single projects taken from PSPLIB are recorded. Each project is assigned a
lump sum payment and investment value. While lump sum payment is realized at the
end of the project, the investment is realized at the start of the project. In addition, the
capacities for renewable and non-renewable resources are determined for major project.
Finally, interest rate is recorded in the instance files.

Second multi-project instance set is created in this thesis. In addition to project fea-
tures mentioned above, the due dates and weights of the projects are assigned. However,
the investment is not assigned for the projects.

As stated before, the instances existing in PSPLIB do not have monetary objective.
Thus, each activity excluding dummy sink activities of the projects should be assigned a
negative cash flow. In both multi-project instance sets (created in Can and Ulusoy [20] and
in this thesis), cost assignment technique proposed by Can and Ulusoy [20] is preferred,
which will be explained later.

The main purpose of generating a new multi-project instance set is to obtain instances
which have different difficulty with respect to due dates, lump sum payments and resource
capacities. Thus, with these instances, GA is tested and its behavior is observed under
different instances. It should be noted that the observation becomes reasonable if the
values of one of the mentioned factors are changed and the values of the remaining factors
are kept steady. For instance, if it is desired to test GA with varying due dates, lump sum
payments and resource capacities should be kept steady.

Single projects having the same number of activities taken from PSPLIB are merged
for generating multi-project instances. Additionally, single projects having different num-
ber of activities are also combined in order to observe how GA behaves under different
size projects. The way of multi-project instance generation for the first case is defined in
Table 3.1. In this table, the number of activities that multi-project has are shown.

46

Single # of Activities for Single # of Activities for Single # of Activities for
10 Projects Multiple Projects 15 Projects Multiple Projects 20 Projects Multiple Projects

10 Activities 100 10 Activities 150 10 Activities 200
12 Activities 120 12 Activities 180 12 Activities 240
14 Activities 140 14 Activities 200 14 Activities 280
16 Activities 160 16 Activities 240 16 Activities 320
18 Activities 180 18 Activities 270 18 Activities 360
20 Activities 200 20 Activities 300 20 Activities 400
30 Activities 300 30 Activities 450 30 Activities 600

Table 3.1: Merging the Single Projects

3.1.2.1 Data generation for testing due date

Multi-project instances are generated for different due dates because some of the objec-
tives require the projects to have due dates. For this purpose, the instances should have
different due date difficulties. Due date difficulty implies how strictly due dates are set
for the projects. Difficulty starts with 1, which denotes the most challenging situation and
ends with 5, which denotes the easiest situation.

It is obvious that other factors, which are renewable and non-renewable resource ca-
pacities and lump sum payments should be determined clearly. It is considered that it
might be difficult to assign rational values without solving these instances with GA or
making some experiments. Thus, in order to have proper values for these factors, multi-
project instances are solved and some insights about resource usages, Npv values and
completion time of the projects are provided. The procedure is as follows:

Single projects presented in Table 3.1 are merged and a multi-project instance is pro-
vided. For doing so, the dummy source activity of each single project is deleted and
a major dummy source and sink activity are inserted. Thus, each single projects has a
predecessor activity, which becomes major dummy source activity and has a successor
activity being dummy sink activity. In this case, this network represents a single project
because there is no difference between single project and multi-project in terms of net-
work structure (see Figure 3.1).

After constructing the project network, an individual that has precedence feasible ac-
tivity list and mode assignment list are formed. Critical path method (CPM) is applied
on this individual in order to assign the earliest finishing and the latest finishing times for
each activity. It should be noted that the resource capacities that have not been already
assigned are not taken into account during this procedure. With the help of CPM, the
earliest finishing time of each projects are recorded.

47

Figure 3.1: Multi-Project Network Structure

The procedure mentioned above is repeated by the number of activities of multi-
project instance. Thus, EF j

i that denotes the earliest finishing time of the project j in
iteration i are recorded. The Table 3.2 summarizes this procedure. In this table A de-
notes the number of projects to be combined and B denotes the total number of activities
existing in multi-project network.

As for renewable resource, the average usage of the resource over time horizon is
computed and recorded for each iteration. Let rit denote the renewable resource usage
level in time t for iteration i. Then the Equation (3.4) gives the average value. Applying

Iteration Projects

1 2 · · A

1 EF 1
1 EF 2

1 · · EFA
1

2 EF 1
2 EF 2

2 · · EFA
2

3 EF 1
3 EF 2

3 · · EFA
3

· · · · · ·
· · · · · ·
· · · · · ·
B EF 1

B EF 2
B · · EFA

B

Table 3.2: The Earliest Finishing Times of The Projects

48

Iteration Average
Usage

1 r1
2 r2
3 r3
· ·
· ·
· ·
B rB

Table 3.3: Average Usage of Renewable Resource

Iteration Average
Usage

1 n1

2 n2

3 n3

· ·
· ·
· ·
B nB

Table 3.4: Average Usage of Nonrenewable Resource

the same process for each iteration, the Table 3.3 is constructed.

ri =

Cmax∑
t=1

rit

Cmax
(3.4)

The average of non-renewable resource usage (ni) is computed as in Table 3.4.
Npv values of each project should be calculated and observed to determine the lump

sum payments properly. The cost of each activity is assigned as in the study Can and
Ulusoy [20]. The following definitions are given to explain the procedure for cost assign-
ment:

• cjm: cost of the activity j operating in mode m

• djm: duration of the activity j operating in mode m.

• rjkm: the amount of renewable resource k required to operate the activity j in mode
m.

• wjim: the amount of non-renewable resource i required to operate the activity j in
mode m.

49

Iteration Projects

1 2 · · A

1 Npv11 Npv21 · · NpvA1
2 Npv12 Npv22 · · NpvA2
3 Npv13 Npv23 · · NpvA3
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
B Npv1B Npv2B · · NpvAB

Table 3.5: The Npv of The Projects

• αk: unit resource usage cost of utilizing one unit of renewable resource k for one
period

• βi: resource usage cost of consuming one unit of non-renewable resource i

• K: the number of renewable resources

• l: the number of non-renewable resources

cjm =
∑

r∈[1,K]

djm · rjkm · αk +
∑
i∈[1,l]

wjim · βi (3.5)

In this thesis, the values αk and βi are constant and equal to three. They are assumed
to be equal to three in the study of Can and Ulusoy [20], as well.

With Equation (3.5), every activity except for dummy source and sink activities are
assigned cost. Therefore, during calculation of Npv values of the projects, only the activ-
ities that are assigned costs are taken into account. The Table 3.5 summarizes this process
(Npvji denotes the net present value of the project j in iteration i).

After completing the simulation, renewable and non-renewable resource value are
assigned to instances. However, these should not change between instances because these
instances are created for testing different due dates. Thus, the average value of ri and
the average value of ni are assigned as renewable and non-renewable resource capacities,
respectively. As for lump sum payments, the Table 3.5 is modified by the Equation (3.6).

Npvji =
−Npvji

(1 + e)EF
j
i

(3.6)

50

where e denotes the interest rate. After this procedure, the average of Npvji for each
project j is computed and assigned to the instance as lump sum payment of the project j.

In order to assign different due dates, the following procedure is developed:
Let DS represent the difficulty coefficient of due date, which takes the values in [0.8,

0.9, 1.0, 1.1, 1.2]. For each DS value, the Table 3.2 is modified by the Equation (3.7)

Eij = Eij ·
(

log(
B

Bj

) +DS

)
, ∀i, j (3.7)

where Bj denotes the number of activities of the project j. The function log(B
Bj

) in
this equation calculates the coefficient for determining how late due date should be for
the corresponding project j. While calculating this coefficient, it takes into account the
proportion of the total number of activities to the number of activities of the project j. For
example, if total number of activities is 200 and the number of activities of the project j
is 20, then this coefficient becomes 1. Otherwise, if project j has 10 activities, this means
that due date of this project should be determined later than the previous one and the result
of the calculation turns out to be 1.30103. In addition, with the help of DS values, the
different due dates for a project j can be assigned. It is clear that the most difficult (the
earliest) due date of the project j is calculated if DS = 0.8 and the easiest (the latest) due
date is calculated if DS = 1.2.

After modifying all of Eij values with a DS value, the average value of Eij for each
project is assigned for the corresponding project j and for the current DS. Thus, if this
process is repeated for all DS values, five distinct instances, where due dates are different
can be created.

3.1.2.2 Data generation for testing lump sum payments

To generate the instances with resource capacities which have different difficulty, the
same procedure with that of due dates is repeated. However, in the current case, due dates
and lump sum payments should not change between the instances. During the simulation,
Table 3.2 is formed again and the Equation (3.7) is calculated by using only DS = 1. The
resulting values are determined as the due dates of the projects. In addition, Tables 3.3 and
3.4 are constructed with the same way and the same procedure is repeated for assigning
resource capacities with the Equation (3.4). As for lump sum payments, Table 3.5 is
again provided with the same way. However, Equation (3.6) is calculated with different
difficulty coefficients, which have 0.8, 0.9, 1, 1,1 and 1.2 and the resulting values are
assigned as lump sum payments of the projects.

51

3.1.2.3 Data generation for testing resource limits

The way of generating multi-project instances for testing resource capacity is the same
with that of due dates and lump sum payments. However, due dates and lump sum pay-
ments should be the same between instances and calculated with the corresponding equa-
tions. As for resource capacities, Tables 3.3 and 3.4 are formed with the same way. While
calculating the resource capacities for the instance, Equation (3.4) is calculated with dif-
ferent difficulty coefficients which have 0.8, 0.9, 1, 1.1 and 1.2. The resulting resource
capacities are assigned for the instances.

3.1.2.4 Data generation with different number of activities

Beside the data generation with the same number of activities for testing due date, re-
source and lump sump payments difficulty, single projects having different number of
activities should also be combined in order to test GA with again different due dates,
resource capacities and lump sum payments.

For this purpose, the projects having 10, 20 and 30 activities are desired to be com-
bined. In each multi-project instance, the number of 10-activity, 20-activity and 30-
activity single projects can become either one, five or ten. For any combination of these
numbers, the method mentioned in Section 3.1.2.1 for due date difficulty is applied. Thus,
for each multi-project instance, 15 instances with different due date, resource capacity and
lump sum payment difficulties are generated.

3.2 Preprocessing

Sprecher et al. [129] propose that some unnecessary modes and resources may be deleted
from the project network without losing the feasible solutions and reducing the search
space. The authors define three types of situations with respect to modes and resources.

Minimum and maximum request of the non-renewable resource i by the activity j is
computed as follows, respectively:

min(wji) = min(wjim, ∀m ∈ [1,Mj]), (3.8)

max(wji) = max(wjim, ∀m ∈ [1,Mj]), (3.9)

After these definitions, the authors say that a mode is non-executable with respect to a

52

renewable resource k, if rjkm > Rk, ∃j ∈ [1, N]. A mode is non-executable with respect
to non-renewable resource i, if

N∑
j=1
j 6=z

min(wji) + wzim > Wi. (3.10)

A mode is said to be inefficient, if there exists another mode so that duration, re-
newable resource requirement and non-renewable resource requirement of the first one
is larger than those of the second one. In addition, a non-renewable resource is called
redundant, if the total of maximum usage of this resource for all activities is less than the
capacity of this resource.

Preprocessing procedure is defined by the authors as follows: Firstly, all non-executable
modes should be removed from the instance. Then, redundant non-renewable resources
must be deleted. Afterwards, all inefficient modes need to be eliminated. At this point, if
any modes are removed at the last step, second and third step must be repeated sequen-
tially until any mode can not be removed in the last step. The reason why the second
and third steps should be applied sequentially is that any operation (removing redundant
non-renewable resources) in the second step might make some modes inefficient. Thus,
they must be performed sequentially.

3.3 Forming the initial population

Evolutionary algorithms start the solution procedure by constructing the initial popula-
tion. In the literature, different ways are employed to form the initial population. In this
thesis, two different techniques are implemented for constructing the initial population:
Random initial population generation and feasible initial population generation. The first
method selects the activity for the next position randomly. However, since some instances
are tough with respect to the capacities of the resources, initial population might be in-
feasible in this respect. Therefore, feasible initial population technique is proposed in our
study.

Individual representation becomes a significant aspect of the initial population con-
struction procedure. In this thesis, an individual I = (λ, µ) is represented by a pair
of precedence feasible activity list λ = (j1, j2, ..., jN) and mode assignment list µ =

(m1,m2, ...,mN). That is to say, each activity in the precedence feasible list has a mode
assigned from its mode set. This representation is defined by Ulusoy et al. [139] and by

53

Hartmann [65].

3.3.1 Precedence feasible activity list

Eligible activity is an activity whose predecessor activities have already been replaced in
the feasible activity list. Precedence feasible activity list is constructed in two ways: In
the first method, dummy source activity j1 is replaced into the first position of feasible
activity list. Afterwards, one of the eligible activities is selected randomly and replaced
for the next position. This operation is repeated until all activities are replaced in the
feasible activity list. This procedure is called random sampling because each activity has
an equal probability for being selected.

In the second method, regret-based biased random sampling of ?] is performed. In
this method, each activity in the eligible activity set is assigned a selection probability,
which is derived from relative portion of priority values calculated by the latest finish
time of activities. For the details, interested readers are referred to Drexl [46] and ?].

In our study, among those two methods, random sampling is generally preferred.

3.3.2 Mode assignment list

Several mode assignment techniques are designed for this thesis. The reason for this
variety is to try to construct feasible initial population with respect to non-renewable
resources because each of those methods may be successful or unsuccessful for forming
the feasible initial population.

3.3.2.1 Random mode assignment

This method is described in the study of Hartmann [65]. The procedure is as follows:
Firstly, for each activity j in the precedence feasible list, a mode mj is assigned from

its mode set. Let the initial mode assignments for all activities become µ1. Then, the
capacity over utilization Lµ1 with respect to non-renewable resources is calculated. If
Lµ1 = 0, it means that feasible activity list with respect to non-renewable resources is
obtained and mode assignment operation terminates. Otherwise, the second mode as-
signment µ2 is performed. If Lµ2 ≤ Lµ1 , then the current mode assignment is set to µ2.
This operation is repeated until N unsuccessful trials (that is, it can not reduce Lµk) are
performed or a feasible activity list with respect to non-renewable resources is obtained.

54

3.3.2.2 The mode with longest duration

This method is proposed in this thesis as a part of the effort to create a feasible initial
population with regard to non-renewable resources. The procedure is defined as follows:
For each activity j in the precedence feasible list, a mode having the longest duration
comparing to other modes of the activity j is assigned.

3.3.2.3 The mode with minimum average utilization

This technique is also proposed in our study for the sake of getting feasible initial popu-
lation. Let wjim denote the requirement of the non-renewable resource i by the activity j
operated in mode m.

In this method, for each activity j in the precedence feasible list, the mode mj is
assigned, where

mj = (mj | min((
l∑

i=1

wjim)/l)), ∀j ∈ [1, N] (3.11)

3.3.2.4 Iterative assignment

Iterative assignment is another procedure proposed in our study for constructing the fea-
sible initial population. Starting from the empty mode assignment list, the activities are
reviewed iteratively. Let bit denote the sum of the utilization of non-renewable resource
i of all activities, which have been reviewed until the iteration t. In each iteration, the
non-renewable resource i is selected, where

i = (i | min(Wi − bit), ∀i ∈ [1, l]) (3.12)

Afterwards, for determined non-renewable resource, the mode using this resource
minimally comparing to other modes is selected for the corresponding activity. If other
non-renewable resources are at the minimum value for this mode, then this mode is as-
signed for the corresponding activity. Otherwise, a mode is selected and assigned by
reviewing the resource-resource trade-off between these resources.

Up until now, mode assignment techniques are defined. However, these techniques
may be still unsuccessful to obtain a feasible individual with respect to non-renewable
resources. Therefore, some repair procedures are proposed in this thesis. With the help
of these repair procedures, an infeasible mode assignment might be changed to a feasible
one.

55

3.3.2.5 Local repair

Given an infeasible mode assignment, this simple technique tries to convert it to a feasible
one. This procedure visits the activities in the precedence feasible activity list starting
from the first activity. Let t denote an iteration. For an iteration, this algorithm changes
the mode of the activity. Then, bit values, defined in Section 3.3.2.4 are updated. If
bit ≤ Wi, ∀i ∈ [1, l], then this procedure stops. Otherwise, it keeps the initial mode of the
corresponding activity and continues visiting the next activity in the list. This algorithm
terminates until a feasible mode assignment is provided or all activities are visited.

3.3.2.6 Extensive repair

Given an infeasible mode assignment, the sum of non-renewable resource usages by all
activities are known. The non-renewable resource i whose sum is the most deviated one
from the capacity Wi is determined and the activity operating this resource at the largest
level comparing to other activities is selected. For this activity, all of its mode are reviewed
and the mode whose determined non-renewable resource usage level is the minimum
when compared to other modes is assigned to the corresponding activity. If the new
mode assignment turns out to be feasible, then this procedure terminates. Otherwise, it
continues repeating the same operations until a feasible mode assignment is obtained or
all activities in the precedence feasible activity list are visited.

3.3.3 Random and feasible initial population

As stated before, random initial population means that feasible activity list in each indi-
vidual of the population is constructed randomly. That is to say, an activity in eligible set
is selected for the next position randomly.

Random initial population is proposed by Hartmann [65]. Let POP denote the desired
population size, then the procedure is summarized as in the Algorithm 1.

As mentioned above, this thesis has the second method for providing the feasible
initial population. Since the method of Hartmann [65] to convert an infeasible individual
to a feasible one (see Section 3.3.2.1) is observed to be unsuccessful by making several
experiments on different instances, we need to develop a method in order to find feasible
initial population. First of all, in Phase I of this procedure, it tries to find a feasible
individual with respect to non-renewable resources. In Phase II called as tree structure,
it provides other feasible individuals by changing a mode of an activity on the feasible
individual found at Phase I.

56

Algorithm 1: Random Initial Population
1 repeat
2 foreach Individual I do
3 Get activity list (see Section 3.3.1);
4 Assign modes (see Section 3.3.2.1);
5 Schedule the activities (to be explained later);
6 end
7 until The population size reach POP ;

∗ Phase I
Phase I uses all of the mode assignment techniques defined above. In addition, after

each assignment method, obtained mode assignment is checked whether it is feasible.
Moreover, previously defined repair functions are performed in certain places of Phase I.
The detailed procedure is given in Algorithm 2.

After terminating the Phase I, it turns out to be that there are exactly two situations
about the individual. If Phase I is able to get a feasible mode assignment, then feasible
initial population procedure is continued with Phase II. Otherwise, feasible initial popula-
tion procedure is canceled and random initial population procedure is performed. In this
case, each individual is assigned a fitness value, which is much poor compared to standard
fitness value.
∗ Phase II
If Phase I is able to provide a feasible individual, then phase II of this algorithm tries to

generate different feasible individuals. After finding a feasible individual, this algorithm
keeps and labels it as the first level of tree structure. It should be noted that there does not
exist another feasible individual in the first level.

For the second level of the structure, the algorithm selects the activity in the prece-
dence feasible of the first level individual iteratively. It is checked whether the individual
would again become feasible with another mode of the selected activity. If this is satis-
fied, then a new individual is created with the changed mode of the corresponding activity
and this newly created individual is labeled as the second level of tree structure. If this
does not satisfy, then the other mode of the selected activity is checked with regard to
feasibility. Second level of tree structure is completed after reviewing all activities.

As for the following levels of the structure, the individuals created for the previous
level are visited iteratively and the same operation is repeated for those individuals with
only exception that the activities whose mode has been changed in previous levels can not
be reviewed again. It should be stated that the number of branches to be created is set as

57

Algorithm 2: Phase I of Feasible Initial Population
1 Get activity list (see Section 3.3.1);
2 Assign modes as defined in The Mode with Longest Duration;
3 if Mode assignment is feasible then
4 Terminate the procedure;
5 else
6 Assign modes as defined in Random Mode Assignment;
7 if Mode assignment is feasible then
8 Terminate the procedure;
9 else

10 Assign modes as defined in The Mode with Minimum Average;
11 if Mode assignment is feasible then
12 Terminate the procedure;
13 else
14 Apply Local Repair;
15 if Mode assignment is feasible then
16 Terminate the procedure;
17 else
18 Assign modes as defined in Iterative Assignment;
19 if Mode assignment is feasible then
20 Terminate the procedure;
21 else
22 Apply Extensive Repair;
23 Terminate this procedure;
24 end
25 end
26 end
27 end
28 end

58

two.
Tree structure continues by applying the same operations until the number of individ-

uals created equals to the POP .

3.4 Fitness calculation

After constructing the precedence feasible activity list and the mode assignment list, an
individual must be assigned a fitness value. When it solves the single objective RCPSP,
the fitness calculation is made by either considering Cmax or Npv value. On the other
hand, if it deals with the multi-objective RCPSP, the fitness calculation is replaced with
rank computation, which is achieved by classifying the individuals according to their
domination over other individuals. An individual is said to dominate another individual,
if the former one is better than the latter one with respect to the objectives. At the end
of the rank computation, the rank value of an individual becomes one, if none of the
individuals in the population dominates it. The detailed procedure can be observed in
Section 3.6.

Scheduling means to assign starting and ending times for each activity existing in the
feasible activity list. Basically, serial schedule generation scheme (SGS) is applied in
order to obtain a scheduled feasible. Serial SGS schedules the next unscheduled activity
at the first precedence and resource feasible time. Precedence feasible starting time is
obtained by applying forward recursion with assigned modes. Serial SGS is preferred by
many authors such as Hartmann [65].

Serial SGS generates always feasible schedules, which are optimal for RCPSP. Kolisch
[86] has shown that serial SGS generates active schedules. Active schedules are defined
that none of the activities can be started earlier without delaying some other activity. For
scheduling problems with regular performance measures, there will always be an optimal
solution in the set of active schedules. On the other hand, while parallel SGS gener-
ates feasible schedules for RCPSP as well, it constructs non-delay schedules. Non-delay
schedule is a schedule that even if activity preemption is allowed, none of the activities
can be started earlier without delaying some other activity. It is stated that the set of
non-delay schedules is a subset of the set of active schedules. Therefore, it has smaller
cardinality. Parallel SGS is said to have a disadvantage that it might not have a optimal
solution for regular performance measures. Thus, serial SGS is preferred in this thesis.

It should be stated that another version of scheduling scheme is applied in this thesis.
In Ulusoy et al. [139], a scheduler is proposed and in addition to two conditions, which

59

should be satisfied during serial SGS, a new condition should also be satisfied. Each
activity can not be start earlier than the starting time of any activity existing at earlier
locations in feasible activity list. For the detailed information, we refer to Ulusoy et al.
[139].

After completing the starting and ending time assignment operation, the objective
values of an individual can be calculated. Firstly, Cmax, which is denoted by CmaxI is
determined as the ending time of the dummy sink activity. The other objective Npv is
calculated as below:

NpvI =
N∑
j=1

cj · (1 + e)−SFj (3.13)

where cj denotes the cost of the activity j with assigned mode, e represents the interest
rate and SFj denotes the finishing time of the activity j after scheduling. Resource usage
deviation of the individual (RUDI) can be computed by applying following equation:

Let rjk denote the usage amount of the renewable resource k of the activity j with its
assigned mode.

RUDI =

N∑
j=1

∣∣∣rjk −
N∑
j=1

rjk

N

∣∣∣
N

(3.14)

It should be stated that if the number of renewable resources is exactly one, the equa-
tion stays the same. However, if it is more than one, the average value over the number of
renewable resources K of the above equation is assigned as RUDI .

As for minimum outflow, time increment becomes an important aspect of this objec-
tive. It represents the minimum of sum of costs, which are realized throughout the project.
In addition to the costs, payments are also taken into consideration during calculating this
objective. For clarity, one can observe the Algorithm 3.

The algorithm 3 does not make sense in the case that single project RCPSP is being
solved because every activity has already negative costs and the dummy sink activity has
lump sum payment. Thus, it does not need to review the individual by incrementing the
time because finishing time of dummy sink activity is Cmax. On the other hand, this
algorithm is especially necessary for the multi-project case because an activity having
negative cash flow may finish later than dummy sink activities.

It should be noted here that some multi-project instances require to invest at the be-

60

Algorithm 3: Calculating the Minimum Outflow
1 Initialization;
2 t: denotes the time;
3 F : The set of activities finishing at time t;
4 MOI : denotes the minimum outflow value of the individual I;
5 q: a float value;
6 for t = 0 to Cmax do
7 Review all activities;
8 Construct the set F ;
9 foreach activity j ∈ F do

10 q = q +
∑
j∈F

cj · (1 + e)−SFj ;

11 end
12 if q < MOI then
13 MOI = q;
14 end
15 end

ginning of the projects. Thus, the procedure 3 must be modified so that if a project starts
at any time t, the investment must be realized in addition to the costs and the payments of
the other activities.

Remaining objectives that are weighted tardiness, average flow time of the projects
and average completion time of the projects are obviously for the multi-project case. By
classical definition of the tardiness, weighted tardiness value of the individual can be
easily calculated. Flow time of a project represents the difference between finishing and
starting time of it. Thus, average value can also be calculated easily. The last objective
for an individual is average completion time of the projects.

As stated above, the fitness calculation is performed, if only single objective case of
RCPSP is being solved. When the objective is the minimization of Cmax, the fitness is
assigned as Cmax value, if the individual becomes feasible with respect to non-renewable
resources. Otherwise, the fitness value of an individual is assigned as

FitnessI = CmaxI + horizon; (3.15)

where horizon represent the maximum value that Cmax can take. Thus, infeasibility of
the individual is penalized by assigned a worse value. If the objective is the maximization
of Npv, the fitness value is determined as Npv value of the individual, if it is infeasible.
Otherwise, it is assigned the value selected as poor enough.

61

3.5 Forming the next generation

Some operators such as crossover, mutation, parent selection and population reduction
must be performed for GA to proceed.

3.5.1 Crossover

In this study, three different crossover operants are preferred.

3.5.1.1 One-point crossover

This crossover technique generates two individuals, which are called daughter and son
from two parents called mother and father. In this type of crossover, two random integers
q1, q2 ∈ [1, N], where N denotes the number of activities in precedence feasible activity
list are drawn. The activities existing in the positions from 1 to q1 in mother’s feasible list
are transferred to daughter feasible list. Afterwards, all activities in father’s feasible list
are visited and those, which are not replaced into daughter’s list are transferred. As for
modes, the activities holding the positions from 1 to q2 in daughter feasible list must have
the same modes with those in mother’s list. The remaining activities should take the same
modes with those in father’s list. For simplicity, the pseudocode of one-point crossover is
given in Algorithm 4.

This type of crossover operant is defined by Hartmann [64] without considering the
mode list and used by Hartmann [65] with redesigning it by considering the mode list.

3.5.1.2 Two-point crossover

This crossover technique also creates two individuals from two parents.
Two random integers q1, q2 ∈ [1, N] are drawn. The activities holding the positions

from 1 to q1 in mother’s feasible list are carried to daughter’s list. For the positions from
q1 + 1 to q2 in daughter’s list, all activities in father’s list are reviewed and those, which
do not exist in daughter’s list are replaced until the position q2. The remaining positions
in daughter feasible list, activities in mother’s list, which do not exist in daughter’s list are
transferred.

For assigning modes, two random integers q3, q4 ∈ [1, N] are drawn again. For the
first q3 positions, the modes of the activities holding these position in mother’s list are
transferred to the corresponding activities. The modes of the activities between q3 and q4
are carried from the father’s list. The remaining activities must hold the the same modes

62

Algorithm 4: One-Point Crossover
1 Initialization;
2 pc: Crossover rate;
3 foreach pair of mother and father list, M&F do
4 Generate a decimal number p ∈ [0, 1];
5 if p < pc then
6 Generate two random integers q1, q2 ∈ [1, N];
7 foreach position x ≤ q1 in daughter’s feasible list (D) do
8 Dx = Mx;
9 end

10 foreach position x > q1 in D do
11 Dx = Fz, z = min(z | Fz /∈ D) ;
12 end
13 foreach activity j ∈ D do
14 if position of j ≤ q2 then
15 mj = my, ID(j) = ID(y), y ∈M ;
16 else
17 mj = my, ID(j) = ID(y), y ∈ F ;
18 end
19 end
20 Produce the son’s feasible list with the same way, but by exchanging M and

F ;
21 else
22 Skip to the next pair;
23 end
24 end

63

of the mother feasible list. For simplicity, the pseudocode of two-point crossover is given
in Algorithm 5.

Algorithm 5: Two-Point Crossover
1 Initialization;
2 pc: Crossover rate;
3 foreach pair of mother and father list, M&F do
4 Generate a decimal number p ∈ [0, 1];
5 if p < pc then
6 Generate two random integers satisfying q1 < q2 ∈ [1, N];
7 Generate two random integers satisfying q3 < q4 ∈ [1, N];
8 foreach position x ≤ q1 in daughter’s feasible list (D) do
9 Dx = Mx;

10 end
11 foreach position q1 < x ≤ q2 in D do
12 Dx = Fz, z = min(z | Fz /∈ D);
13 end
14 foreach position x > q2 in D do
15 Dx = Mz, z = min(z |Mz /∈ D);
16 end
17 foreach activity j ∈ D do
18 if position of j ≤ q3 then
19 mj = my, ID(j) = ID(y), y ∈M ;
20 else if position of j > q3 and position of j ≤ q4 then
21 mj = my, ID(j) = ID(y), y ∈ F ;
22 else
23 mj = my, ID(j) = ID(y), y ∈M ;
24 end
25 end
26 Produce the son’s feasible list with the same way, but by exchanging M and

F ;
27 else
28 Skip to the next pair;
29 end
30 end

This crossover technique is defined by Hartmann [64] for single mode project schedul-
ing. Therefore, we create two more random integers for mode assignment procedure in
this thesis.

64

3.5.1.3 Multi component uniform order-based crossover (MCUOBC)

This type of crossover operant, which is defined in the study of Ulusoy et al. [139], gen-
erates one individual called child from two parents.

For each iteration, a position in child’s feasible list is replaced with an activity begin-
ning from the first position. In an iteration, a random integer q, which can take the values
either 0 or 1 is drawn. If q = 0, then the position in child’s list is taken from the mother.
Otherwise, the related activity of the father’s list is transferred to the corresponding posi-
tion.

After completing the activity list of the child, the mode list is subject to crossover.
For each iteration starting from the first activity in child’s list, this algorithm checks the
modes of this activity existing in father and mother’s list. If those modes are the same,
then it does not need to do any operation for mode and that mode is transferred without
changing. However, if those modes are different, a random integer q, which can take the
values either 0 or 1 is drawn. If q = 0, the mode of that activity is taken from the mother.
Otherwise, it is taken from the father.

The pseudocode of this kind of crossover operant is given in Algorithm 6.

3.5.2 Mutation

Each newly generated individual is applied mutation, which is defined in the study of
Hartmann [65]. Both precedence feasible activity list and mode assignment list are subject
to mutation operator.

For each iteration starting from the first activity in child’s feasible list, that activity
and the next activity are checked whether they have a predecessor relationship. If there
is not any predecessor relationship between them and the mutation rate is satisfied, then
those are exchanged. For the related iteration / position, if mutation rate is satisfied again,
then the mode selected randomly is assigned for this activity. The pseudocode of this
procedure is given in Algorithm 7.

3.5.3 Parent selection

In this thesis, two variants of parent selection operator are applied. Parent selection is
applied on the population. According to the types of crossover, the number of pairs to be
selected can vary. If one-point and two-point crossovers are applied, the number of pairs
should be equal to POP

2
because each pair generates two individuals. Thus, at the end

65

Algorithm 6: Multi Component Uniform Order-Based Crossover
1 Initialization;
2 pc: Crossover rate;
3 foreach pair of mother and father list, M&F do
4 Generate a decimal number p ∈ [0, 1];
5 if p < pc then
6 foreach position x in offspring’s feasible list (O) do
7 Generate a random integer q ∈ [0, 1];
8 if q = 0 then
9 Ox = Mx;

10 else
11 Ox = Fx;
12 end
13 end
14 foreach activity j ∈ O do
15 if mj ∈M = mj ∈ F then
16 mj ∈ O = mj;
17 else
18 Generate a random integer q ∈ [0, 1];
19 if q = 0 then
20 mj ∈ O = mj ∈M ;
21 else
22 mj ∈ O = mj ∈ F ;
23 end
24 end
25 end
26 else
27 Skip to the next pair;
28 end
29 end

66

Algorithm 7: Mutation
1 P : The predecessor relationship;
2 pm: Mutation rate;
3 foreach position x in offspring feasible list O do
4 Generate a random decimal number q1 ∈ [0, 1];
5 if q1 < pm and (Ox, Ox+1) /∈ P then
6 Exchange the activities;
7 end
8 Generate a new random decimal number q2 ∈ [0, 1];
9 if q2 < pm then

10 Assign a mode randomly for the activity Ox;
11 end
12 end

of crossover operators, the population size turns out to be 2 · POP . On the other hand,
while applying MCUOBC, the number of pairs should be equal to POP since each pair
generates one individual.

3.5.3.1 Roulette wheel selection

Roulette wheel selection basically depends on assigning selection probability varying
with the fitness value or rank value. That is, the individual, which has better fitness or
rank value is assigned larger selection probability compared to other individuals existing
in the population.

Probability assignment procedure depends on whether single objective or multi-objective
RCPSP is solved. Thus, if the objective is the minimization of Cmax or the maximization
of Npv, then individuals in the population are assigned a probability value with regard
to fitness value. Otherwise, the probability values are assigned depending on the rank
values.

For the multi-objective case of RCPSP, this procedure works as in Algorithm 8.
In that case, the individual, which has the smallest rank value can have the largest

probability of selection.
In the case that GA tries to minimize Cmax as single objective, the procedure nearly

stays the same, the only exception being fitness value of the individual is considered
instead of rank value. On the other hand, if it maximizes the Npv, then the algorithm sorts
the population in decreasing order of fitness value and assigns selection probabilities by
considering the fitness values instead of rank values.

67

Algorithm 8: Roulette Wheel Selection
1 Initialization;
2 |Pair|: The number of pairs selected currently equal to 0;
3 ProbI : Selection probability of the individual I;
4 CumProbI : Cumulative selection probability of the individual I;
5 RankI : Rank value of the individual I;
6 Sort the population by increasing order of rank;
7 repeat
8 foreach Individual I in population do

9 ProbI =

1− RankI∑
I∈Population

RankI

POP−1 ;

10 CumProbI =
∑
untilI

ProbI ;

11 end
12 Generate a random decimal number q ∈ [0, 1];
13 Find the interval CumProbI′′ < q < CumProbI′;
14 Assign I ′ as mother;
15 Repeat this procedure without considering the currently assigned individual;
16 Assign the resulting individual as father;
17 |Pair| = |Pair|+ 1;
18 until |Pair| = (POP/2);

68

3.5.3.2 Binary tournament selection

Binary tournament selection compares two individuals with respect to their fitness or rank
values. The individual having the better fitness or rank value is accepted as the winner.
Additionally, if those individuals have the same fitness values, then one of them is selected
randomly. However, if the rank values are equal, then crowding distance operator takes
the responsibility to determine the winner.

Binary tournament selection has a feature called crowding distance, which basically
maintains the diversity of the evolutionary process. The detail procedure of the crowding
distance operator will be explained in Algorithm 12.

The pseudocode of the binary selection operator is given in Algorithm 9.

Algorithm 9: Binary Tournament Selection
1 Initialization;
2 DistanceI : The crowding distance value of the individual I;
3 repeat
4 Select two individuals (I ′, I ′′) from the population randomly;
5 if RankI′ < RankI′′ then
6 Assign I ′ as mother;
7 else if RankI′ > RankI′′ then
8 Assign I ′′ as mother;
9 else

10 if DistanceI′ > DistanceI′′ then
11 Assign I ′ as mother;
12 else
13 Assign I ′′ as mother;
14 end
15 end
16 Select two individuals (I ′′′, I ′′′′ 6= mother) from the population randomly;
17 Do the same operations for assigning a father;
18 |Pair| = |Pair|+ 1;
19 until |Pair| = (POP/2);

3.5.4 Population reduction

After applying the crossover, the population size becomes 2 · POP with parent and off-
spring individuals. Therefore, this size must be decreased to again POP . For this proce-
dure called population reduction, several techniques in the literature have been developed
for both single objective and multi-objective case of RCPSP.

69

In this thesis, reduction operator has also been implemented with various forms for
single objective RCPSP. These are the best ones, random reduction and elitist reduction.

3.5.4.1 The best ones

In this type of reduction, the best individuals with respect to fitness value are kept and the
remaining ones are deleted from the population.

3.5.4.2 Random reduction

The individual that is randomly selected is deleted from the population. This procedure is
repeated until the number of individuals existing in the population is POP .

3.5.4.3 Elitist reduction

In this type of reduction, a couple of the best individuals are left in the population and the
remaining ones that will continue existing in the population are selected randomly.

It is obviously a strategy to determine the number of the best individuals to be left in
the population. In our study, this number is accepted as the half of the population size.

As for multi-objective case of RCPSP, reduction procedure is implemented as de-
scribed in the study of Deb [39]. According to this procedure, the best individuals are
selected starting from the individuals whose rank value is equal to one. The pseudocode
of the procedure is given in Algorithm 10.

3.6 Non-dominated sorting procedure

As stated before, fitness calculation method is designed for only single objective. For
multi-objective, this calculation is performed with fast non-dominated sorting designed
by Deb [39]. During this procedure, each individual is labeled with a rank value according
to domination principle.

Domination principle states that individual I ′ dominates the individual I ′′ (I ′ � I ′′),
if I ′ is strictly better than I ′′ for at least one objective and I ′ is better than or equal to I ′′

for the remaining objectives. The pseudocode of this process is given in Algorithm 11.
In this algorithm, an individual is said to be rank z if i ∈ Frontz. By applying this

procedure, a list of individuals are sorted in a fast manner. Moreover, several fronts, which
represents the rank values of individuals are constructed.

70

Algorithm 10: Population Reduction
1 Initialization;
2 Next: The set of individuals that will continue for the next generation;
3 Frontq: The set of individuals whose rank value is q;
4 q = 1;
5 Frontpq: The individual in the pth position of Frontq;
6 repeat
7 foreach Individual I ∈ Frontq do
8 Next = Next ∪ I;
9 end

10 q = q + 1;
11 until |Next|+ Frontq > POP ;
12 Calculate crowding distance values ∀I ∈ Frontq;
13 Sort Frontq in decreasing order of distance value;
14 repeat
15 Next = Next ∪ I, (I | I ∈ Front1q);
16 Delete the individual I ∈ Front1q;
17 until |Next| = POP ;

3.7 Crowding distance

Divergence is one of the most significant components of GA. In non-dominated sorting
procedure, divergence is satisfied with crowding distance operator defined by Deb [39].
Each individual is assigned a distance value relative to other individuals existing in the
same frontier. In other words, crowding distance value of an individual represents how it
is close in terms of objective space to other individuals existing in the same front. This
operator is used by binary tournament selection and population reduction. In both of
them, crowding distance takes the responsibility to determine which individual becomes
the winner in the case that rank values have equality. The detailed procedure is given
below:

Let OB become the set of objectives. That is, it includes all of the objectives that
are being together such as minimization of Cmax and maximization of Npv. Let OBf be
the f th objective in this set and OBf

h denote the objective value of hth individual for this
objective. Thus, the detailed procedure can be seen in Algorithm 12.

71

Algorithm 11: Nondominated Sorting
1 SPI : The set of dominated individuals by the individual I;
2 NI : The number of individuals dominating I;
3 z = 1;
4 foreach Pair of I ′, I ′′ ∈ population do
5 if I ′ � I ′′ then
6 SPI′ = SPI′ ∪ I ′′;
7 else
8 NI′ = NI′ + 1;
9 end

10 end
11 Frontz = Frontz ∪ I, ∀I | NI = 0;
12 repeat
13 foreach I ′ ∈ Frontz do
14 foreach I ′′ ∈ SPI′ do
15 NI′′ = NI′′ − 1;
16 if NI′′ = 0 then
17 Frontz+1 = Frontz+1 ∪ I ′′;
18 end
19 end
20 end
21 z = z + 1;
22 until All individual is labeled with a rank;

Algorithm 12: Crowding Distance
1 foreach Frontq do
2 foreach OBf do
3 Sort Frontq by ascending or descending order of the objective;
4 DistanceFront1q =∞;
5 Distance

Front
|Frontq |
q

=∞;

6 foreach p = 2 to (|Frontq| − 1) do

7 DistanceFrontpq = DistanceFrontpq +
OBfp+1−OB

f
p−1

OBf|Frontq |
−OBf1

;

8 end
9 end

10 end

72

3.8 Basic scheme

Since the algorithm is able to solve both single objective and multi-objective case of
RCPSP, the basic scheme of both are needed to be explained.

For the single objective case, preprocessing of the problem instance is performed be-
fore GA execution. The initial population is constructed by using feasible initial popu-
lation function because each individual has to be feasible with respect to non-renewable
resources. Precedence feasible activity list of each individual is created by either ran-
domly or regret based biased random sampling procedure. After various mode assignment
procedure proposed in this thesis, a feasible individual can be found and the algorithm
makes use of tree structure to generate the remaining number of individuals. If not found,
then initial population is created by random initial population function. The individuals
as much as POP , which has to be even number, are created and their fitness value is
assigned as described in Section 3.4. After this phase, one of the parent selection proce-
dures are applied and each newly generated individuals are subject to one of the crossover
techniques and mutation. The number of individuals existing in the population turns out
to be 2 · POP . At this stage, the size of the population is declined to POP by using one
of the population reduction techniques, which evaluates fitness values of each individual.
This procedure is repeated until the given number of generations are reached.

While solving multi-objective RCPSP, some instances are not taken into account since
no feasible individual can be provided with any of the mode assignment procedures while
building the initial population. On the other hand, the feasible initial population can be
constructed with some other instances, but it is observed that if random initial population
is built with these instances, the population becomes feasible as GA proceeds. Thus, if
we eliminate the instances that is not appropriate for the feasibility and whose number is
very few, then feasible initial population creation procedure becomes unnecessary. In that
case, random initial population can be performed. In this thesis, this becomes our case.

Therefore, it tries to create initial population by random initial population. After get-
ting the initial population, non-dominated sorting and crowding distance procedure are
applied to the population. After applying parent selection, crossover and mutation opera-
tors, the size of the population increases to 2 · POP . Non-dominated sorting and crowd-
ing distance are applied to this extended population. The size of the population decreases
again to POP with the help of population reduction mechanism. This procedure is re-
peated until the prescribed number of generations is reached. It should be noted that after
each generation, the solutions belonging to the non-dominated front are copied to archive.

73

However, it is taken into consideration that a first-rank individual is not copied, if there is
already the same individual in the archive. At the end of each generation, archive is sorted
with regard to the considered objectives and dominated individuals are removed from the
population. At the end of GA, decision maker is presented the solutions existing in the
archive.

Above mentioned scheme for multi-objective RCPSP should be accepted as basic
scheme because some applications to maintain the diversity and improve the solution
quality are included into the scheme. These applications will be explained in the next
chapters.

74

Chapter 4

Fine-Tuning of the Parameters

4.1 Commonly used performance measures in the litera-
ture

In the literature, several performance measures are developed. It should be noted that
some of them require to have reference set, which is defined as the true / optimal Pareto
front. On the other hand, some of them can be beneficial without having reference set.

Ballestı́n and Blanco [8] propose some performance measures to evaluate which al-
gorithms can solve the multi-objective RCPSP better. Ballestı́n and Blanco [8] denote the
set of non-dominated solutions provided by an algorithm by M , which is called the ap-
proximation set. To assess the quality of the solution, the distance between Pareto optimal
front and the approximation set M needs to be measured. In case the Pareto optimal front
is not known, the union of all solution setsM obtained by different algorithms is regarded
as the reference set R.

4.1.1 The size of the approximation set M

Obviously, the higher the cardinality of the approximation set M is, the more preferred it
is. That is, if an algorithm can find more non-dominated solutions than another algorithm,
it is said that the first one outperforms the second one. However, that is not always the
case since there may be only one non-dominated solution, which makes this performance
measure ineffective.

75

4.1.2 Distance from the reference set R

Multi-objective solution algorithms aim at generating the Pareto optimal front. Thus,
it is necessary to measure the distance between the approximation set M and the Pareto
optimal front. A way of performing it is to take the average of minimum distance between
the approximation set and the Pareto optimal front. Czyzak and Jaszkiewicz [33] define
the distance between M and the reference set R as follows:

D =
1

|R|
∑
yεR

min
xεM
{c(x, y)}, (4.1)

where c(x, y) = max
k=1,...,p

|wk · (fk(x)− fk(y))| , (4.2)

with x ∈M, y ∈ R,wk = 1/4k. (4.3)

where4k represents the range of the kth objective in the reference set.

4.1.3 Coverage error

As Sayin [122] proposes, the coverage error C is computed as follows:

C = max
y∈R
{min
x∈M
{c(x, y)}} (4.4)

in which c(x, y) has been defined as in Equation (4.2). It is reported by Ballestı́n and
Blanco [8] that this metric is too sensitive to the size of the sets.

4.1.4 Error ratio

In Van [141], a metric called error ratio is proposed and is defined as follows:

E =

|M |∑
t=1

et
|M |

(4.5)

where et = 0, if the tth solution in M exists in the Pareto optimal set and it is equal to
1, otherwise. However, many algorithms can not find a large set of M or R. Thus, this
metric turns out to be an inappropriate performance measure.

76

4.1.5 Hypervolume

Hypervolume has been proposed by Zitzler and Thiele [154]. This indicator measures
the area between the reference point and the approximation set. In other words, for the
maximization of two objectives, a non-dominated solution x forms a rectangle defined
by the points (f1(x), f2(x)) and (0, 0). The union of the all rectangles formed by all
non-dominated solutions is set as hypervolume. A larger value of hypervolume indicates
better performance.

It is mentioned that this quality metric has a couple of important advantages over
other metrics. One of the advantages is that each algorithm can be applied independent
of other algorithms. In other words, each algorithm can be evaluated by its own without
constructing the reference set. For example, let A and B become the approximation sets
obtained by different algorithms. If the approximation setA dominates the approximation
set B with respect to hypervolume, then A has a better performance measure than that of
B.

4.1.6 Binary ε indicator (Zitzler et al. [155])

Assuming that p objectives are tried to be minimized and all of them are positive, an
objective vector x = (fx1 , f

x
2 , ..., f

x
p) ∈ A is said to be ε-dominant over the objective

vector y = (f y1 , f
y
2 , ..., f

y
p) ∈ B written as x �ε y, if and only if

fxp ≤ ε · f yp , ∀p, (4.6)

where A and B has been defined as in Section 4.1.5. Thus, binary ε indicator (this name
is written as binary additive ε indicator in Ballestı́n and Blanco [8]) is calculated as

Iε(A,B) = inf
ε∈R

(∀y ∈ B, ∃x ∈ A : x �ε y) (4.7)

4.1.7 Maximum spread (Zitzler [152])

This performance indicator measures the ability of an approximation set M to diverge.
Thus, it shows the size of the space covered by the approximation set. The maximum
spread is defined as follows:

77

MS =

√√√√ p∑
k=1

max
(x,y)∈M×M

(fk(x)− fk(y))2 (4.8)

where p represents the number of objectives, x and y denote the individuals in the approx-
imation set M and fk(x) denotes the objective value of x in kth objective.

Ballestı́n and Blanco [8] report that this measure should not be used alone because it
does not calculate how an approximation set is close to the Pareto optimal set.

4.2 Other studies in the literature about performance mea-
surement

Cheng et al. [26] evaluate the solutions with two different performance measures. Binary
hypervolume indicator proposed by Zitzler and Thiele [154] and unary multiplicative ε
indicator are preferred. Considering the definition of binary ε indicator explained in Sec-
tion 4.1.6, unary multiplicative ε indicator is defined as I1ε (A) = Iε(A,R), where R is the
union set of all non-dominated fronts obtained by different algorithms.

Fowler et al. [55] use four performance measures for evaluating the solution quality.
They are visual comparison, the number of Pareto optimal solutions, the number of com-
bined Pareto optimal solutions and Integrated Convex Preference (ICP) measures. For
finding the number of combined Pareto optimal solutions, the approximate Pareto fronts
found by each algorithm to be tested are unified and dominated solutions are removed
from the set. In this point, each algorithm is evaluated with respect to the number of
solutions of it existing in the final set. As for ICP measure, four different types of it are
suggested. In order to evaluate the solution quality with ICP measure, three methods are
utilized. First, ICP measure can be used directly. Thus, for comparing two algorithms, the
algorithm having the least ICP measure is said to be the best. Additionally, this method
can be used for fine-tuning the algorithm since it can be considered as response value dur-
ing response surface optimization. Secondly, the difference between ICP measure can be
used when two algorithms are compared. A third method is to use the ratio of ICP mea-
sure. ICP (A)

ICP (R)
can be evaluated, whereR is the reference set andA is one of the algorithms.

In the study of Fowler et al. [55], since the reference set or true Pareto front is not known,
the difference of ICP measures is preferred. At the end of the study, for a randomly
selected instance, all comparison methods defined above are used and evaluated.

78

Cochran et al. [29] compare the algorithms by employing the following method de-
fined by Hyun et al. [71]: Let the first algorithm be A and the second algorithm be B.
Let us consider that A could find 5 non-dominated front solutions and B could find 8.
Let us assume that if these two non-dominated solution sets are combined, the number of
Pareto solutions becomes 6; 2 from algorithm A and 4 from algorithm B. In this case,
qualitative measure of B indicates the proportion of the number of solutions obtained by
A in the combined set of non-dominated solution sets. Thus, qualitative measure of the
algorithm A becomes 2/6 and that of the algorithm B 4/6. Quantitative measure, on the
other hand, indicates the size of the non-dominated front obtained by the algorithm. Thus,
quantitative measure of the algorithm A is 5 and that of the algorithm B 8.

Kılıç et al. [79] compare the performance of different algorithms with extreme hy-
perarea ratio (EHR) developed based on the idea of hyperarea ratio defined by Knowles
and Corne [82]. In the case of the hyperarea ratio, the hyperarea bounded with non-
dominated solutions obtained by an algorithm is divided by the hyperarea formed by the
true Pareto solutions. However, in Kılıç et al. [79], since the true Pareto front is not known,
another metric is developed called EHR. The hyperarea bounded with the solutions ob-
tained by an algorithm is divided by the area of the rectangle having the points (0, 0)

and (max1,max2), where maxk represents the maximum value of the objective k. This
performance measure is used for both comparing different algorithms and fine-tuning the
parameters of GA.

Rojas et al. [120] adjust the GA parameters by using a well-defined experiment. They
state that the parameters of GA should be determined carefully, rather than manually.
Thus, they consider two different behaviors of the algorithm. Firstly, they think that the
exploration ability of the algorithm is significant. That is, the ability of the algorithm to
find the best solutions is taken into account. Secondly, it is claimed that the exploitation
ability of the algorithm, which defines the diversity of it, is another significant aspect of
the algorithm. The relevancy and the relative importance of the parameters are investi-
gated by using a powerful statistical tool, which is analysis of variance.

4.3 GA parameter design in the literature

Ghoddousi et al. [56] design the parameters of GA with trial and error for a case study,
which is defined and obtained for testing the algorithm. For evaluating the performance,
convergence to the Pareto optimal set and maintenance of diversity in solutions are taken
into account. These aspects are evaluated with graphical representation and any of the per-

79

formance measures is not used. For another case study, sensitivity analysis is performed
for fine-tuning the parameters. Ghoddousi et al. [56] claim that after 150th generation,
Pareto front solutions do not change and convergence criteria are reached.

Cheng et al. [26] make an experiment for obtaining the best parameters of the hybrid
algorithm. For each parameter combination, a linear weighted sum of objectives is ob-
tained. To generate the set of non-dominated solutions, the algorithm performs multiple
runs with different weight settings.

Hanne and Nickel [60] design the parameters of multi-objective evolutionary algo-
rithm (MOEA) with experiments. For evaluating the combination of parameters, the aver-
age relative improvement (compared with respect to the FCFS solution) for the maximum
improvement (over the population) in three objective values and for three stochastic rep-
etitions of the MOEA run are evaluated. Another approach for determining parameters is
based on the idea of applying another evolutionary algorithm (EA) and this procedure is
explained in Hanne [59].

Kılıç et al. [79] design the parameters of GA in the following way: Generation number
and population size are related so that their product results in 50,000. In the experiment,
the population size and generation number values to be tested are (100,500), (200,250),
(250,200) and (500,100). The crossover and mutation rate selected from set {0.15, 0.30,
0.45, 0.60, 0.75} are determined so that their summation does not exceed 1. This pattern
leads to 15 possible situations for these rates. By considering the population size and
generation number values, the number of situations to be tested becomes 60. As for
test data, 15 different instances are determined. Therefore, the number of experiments
turns out to be 900. EHR value is used as the response variable for each experiment
and ANOVA analysis is performed to understand which combination of parameters is the
best. According to this analysis, none of the parameter combinations is significant at 5%
significance level. Thus, the parameter combination with the best EHR value is chosen
for using in GA.

4.4 Getting the best parameter combination in our study

The parameters of GA should be selected in order to improve its performance. The param-
eters of GA, which are crossover rate, mutation rate, population size and generation num-
ber are determined as a result of detailed fine-tuning process. This process is performed
firstly for single project case of RCPSP. The similar fine-tuning process is repeated for
multi-project case of RCPSP and it will be explained in Chapter ??.

80

Crossover Type Roulette Wheel Binary Tournament
Selection Selection

One-Point Crossover 1 2
Two-Point Crossover 3 4
MCUOBC 5 6

Table 4.1: Design of Experiment

As for fine-tuning for single project case, five instances from 10-activity, 20-activity
and 30-activity instances are randomly selected. For each instance, six different experi-
ments varying with the type of crossover and parent selection operators are implemented
with the objective combination minCMAX/maxNPV (the minimization of Cmax and the
maximization of Npv). These experiments are shown in the Table 4.1:

As can be seen from Table 4.1, each cell represents an experiment for an instance.
In other words, for each of 15 instances, all of these six experiments are implemented.
During each experiment, an instance is solved with varying parameter values. The range
for crossover rate, mutation rate, population size and generation number are given in the
following list:

Crossover rate [0.6 , 1.0] increasing in increments of 0.1

Mutation rate [0.01 , 0.25] increasing in increments of 0.04

Population size [20 , 100] increasing in increments of 20

Generation number [25 , 150] increasing in increments of 25

For each combination of these parameter values (for example, crossover rate: 0.8,
mutation rate: 0.2, population size: 100, generation number: 125), each instance is solved
five times to reduce the undesired effect of randomness. This number might be larger
than five, but even in this case, the time spent for the experiment becomes huge. In each
solution, the performance of the provided non-dominated solution set is calculated by
using some performance measures.

In Section 4.1, seven performance measures in the literature are explained. Among
these, four of them require to find the reference set, which may represent the true / op-
timal Pareto set. However, since the reference set is unknown in our case, three of the
performance measures, which do not require to have the reference set are preferred for
measuring the performance of the parameter combinations. In fact, the reference set could
be constructed by taking the union of approximate Pareto fronts obtained by all parameter
combinations. However, in this case, the obtained reference set might have been biased

81

because the contribution of the high population size and high generation number to the
reference set would be most likely very large. Thus, the results would be in favor of
high population size and generation number. In order to avoid this kind of situation, the
performance measures, which do not require to have the reference set are preferred.

Hypervolume indicator defined by Zitzler and Thiele [154] (see Section 4.1.5) mea-
sures the rectangular area constructed by the approximate Pareto solution points and a
reference point. The larger this area is, the better the corresponding parameter combina-
tion shows performance. The following figures represent the hypervolume indicator:

Figure 4.1: Hypervolume Indicator for Two Different Cases

The first case of Figure 4.1 represents the area, Area 1, constructed by three approx-
imate Pareto solutions and a selected reference point. In the second figure, the same
approximate Pareto solutions form larger area, Area 2. If it is desired to compare which
one is better in terms of hypervolume, it should be stated that the second one is better be-
cause Pareto solutions of it seems to be closer to unknown true Pareto front. It should be
stated that the objectives in y-dimension and x-dimension are maximized and minimized,
respectively.

Maximum spread developed by Zitzler [152] (see Section 4.1.7) shows how well
Pareto solutions spread. For measuring this value, Equation (4.8) in Section 4.1.7 is cal-
culated. However, the pure difference is not preferred in our study. That is, differences
are scalarized with a meaningful value. Thus, with this equation, the largest difference
between the solutions for each objective are found.

82

The number of approximate Pareto solutions is another performance measure that
does not require to use the reference set. It is obviously a superiority to obtain more
Pareto solutions. Actually, this performance measure is defined by Hyun et al. [71] as
quantitative measure.

Hypervolume, maximum spread and the number of non-dominated solutions are used
as performance measures. As stated before, an instance in an experiment is solved with a
parameter combination (denoted by i) five times (each of them is denoted by j) and hyper-
volume indicator (denoted by Hij), maximum spread (denoted by Mij) and the number
of non-dominated solutions (denoted by Qij) are obtained. For fine-tuning procedure,
the maximum value of the obtained performance measures should be provided with the
equations (4.9), (4.10) and (4.11).

MaxH = max(Hij), ∀i, j (4.9)

MaxM = max(Mij), ∀i, j (4.10)

MaxQ = max(Qij), ∀i, j (4.11)

For a parameter combination, the average of the performance measure values are com-
puted with the list of equations (4.12), (4.13) and (4.14).

Hi =

5∑
j=1

Hij

5
∀i, (4.12)

Mi =

5∑
j=1

Mij

5
∀i, (4.13)

Qi =

5∑
j=1

Qij

5
∀i, (4.14)

For the fine-tuning procedure, response surface optimization method (RSOM) (Myers
and Montgomery [105]) is utilized. It is a well known statistical method for optimiz-
ing multiple response / output variables when there exist multiple input variables. In our
case, response variables turn out to be Hi, Mi and Qi. Input variables becomes the com-
binations of crossover & mutation rates, population size and generation number. RSOM

83

requires to set the lower and upper bounds for each of the performance measures. How-
ever, in our problem, since we do not have a determined lower and upper bounds, these
are set to 0 and the maximum value of them calculated before with the equations (4.9),
(4.10) and (4.11). Therefore, desirability function of the Hi, Mi and Qi are defined as in
Equation (4.4):

dHi =


0, if Hi < Lower

(Hi−Lower
Upper−Lower)

s, if Lower < Hi < Upper

1, if Hi > Upper

where s denotes how strictly this function should be. That is, if s = 1, the function
increases linearly from the lower bound to the upper bound. Otherwise, it forms a convex
function, if s < 1 and concave function, if s > 1. It should be noted that the Equation
(4.4) is showed in the case that Hi is desired to be maximized. If it is to be minimized,
then the Equation (4.4) should have the form of

dHi = 0, if Hi > Upper (4.15)

and the Equation (4.4) should be

dHi = 1, if Hi < Lower (4.16)

The desirability values of Mi and Qi must be computed with the same Equation (4.4).
At the end, RSOM proposes that the overall desirability of the parameter combination

i is calculated with

Di = (dHi · dMi
· dQi)

1
3 (4.17)

The parameter combination, which has max(Di) is selected for the corresponding
instance and experiment. Interesting readers are referred to Table A.1 in Appendix A.

At this point, each combination of crossover and parent selection types (experiment)
has 15 parameter combinations which are determined as the best. Five of these parameter
combinations are for 10-activity, five of them are for 20-activity and the remaining ones
are for 30-activity instances. For each instance set, which means the instances having the
same number of activities, the best parameter combination should be selected among five
combinations. In order to select, the closest parameter combination to another combina-

84

Instance Population Generation Mutation Crossover DesirabilitySize Number Rate Rate

10 Activity

1 60 25 0.25 1.00 0.44
2 60 25 0.25 0.80 0.83
3 80 25 0.25 0.60 0.56
4 80 25 0.21 0.60 0.59
5 100 25 0.25 0.80 0.68

20 Activity

1 80 125 0.17 1.00 0.40
2 100 50 0.17 0.80 0.39
3 100 125 0.21 0.90 0.45
4 100 150 0.25 0.90 0.41
5 100 75 0.17 0.80 0.40

30 Activity

1 100 150 0.05 0.80 0.34
2 100 150 0.17 1.00 0.31
3 80 50 0.21 0.70 0.26
4 100 125 0.09 0.70 0.32
5 100 150 0.05 0.60 0.22

Table 4.2: The Result of the Experiment 1

tions is selected. The closeness is defined as having the minimum deviation from other
parameter combination for population size, generation number, crossover and mutation
rates.

The mathematical calculation of the notion closeness is given in Equation (4.18):

Closenessk =

5∑
m=1

|Popk − Popm|

100
+

5∑
m=1

|Genk −Genm|

150

+

5∑
m=1

|Mutk −Mutm|

0, 25
+

5∑
m=1

|Crossk − Crossm|

1

(4.18)

where k denotes a parameter combination, Popk, Genk, Mutk and Crossk denotes the
population size, generation number, mutation and crossover rates belonging to parameter
combination k. The denominators of the Equation (4.18) represents the maximum value
the range experienced in this study.

For instance, Table 4.2 shows the result of the Experiment 1. To be clearer, the ab-
solute deviation of the first parameter combination from the other 10-activity parameter
combinations is calculated as 2.16.

This process is repeated for all the parameter combinations within the same set of

85

instances. Thus, for each experiment, three different parameter combinations belonging
10-activity, 20-activity and 30-activity instances are obtained. During determining which
parameter combinations are the closest to the other ones, if there is an equality for min-
imum closeness values, the parameter combination with the highest desirability value is
selected. One can observe the results of this operation in Table A.2 of Appendix A.

4.5 Selecting the best operant combination

As can be seen easily in Table 4.1, this study has three different crossover and two dif-
ferent parent selection techniques. Thus, the best combination among them needs to be
determined.

For doing this, GA is performed for all 10-activity, 20-activity and 30-activity in-
stances varying with operant combinations. Thus, six different approximate Pareto fronts
are provided for an instance. The most important issue is to determine which operant
combination (approximate Pareto front) is the best among others. In order to answer
this question, performance measures, which are hypervolume, maximum spread and the
number of non-dominated solutions on the approximate Pareto front are used.

For an instance, hypervolume, maximum spread and the number of approximate Pareto
solutions are calculated for each operant combination. The desirability and the degree,
which represents the rank of each operant combination in terms of desirability are recorded.
This operation is repeated for all instances.

Following this point, the average of desirability values is calculated for each operant
combination. In addition, the average of degree values and the frequency, which shows
how many times an operant combination is the first are also calculated. Observing all
of those statistical results, it is concluded that one-point crossover and roulette wheel
selection mechanism outperforms other combinations. (see Table A.3 in Appendix A)

4.6 Fine-tuning process with multi-project instances

The experiment explained until this point is conducted by using single projects whose
maximum number of activities is 30. Therefore, while using multi-project, the population
size and generation number value determined as the best might not be efficient since the
number of activities in multi-project instances can be very large. Thus, a similar and small
fine-tuning experiment may be appropriate for multi-project case.

86

The experiment procedure becomes nearly the same with the previous one, but some
differences are observed in the current experiment. Firstly, population size and genera-
tion number values to be experimented are not steady and these values are functions of
the number of activities, N . That is, if the number of activities N , then the population
size values to be experimented are [0.75N , N , 1.25N , 1.5N] and the generation number
values are [N , 1.5N , 2N , 2.5N , 3N]. Secondly, crossover and mutation rate values are
taken as constant because the time spent for the experiments would become tremendous,
if those were included in the experiment. Thus, mutation and crossover rate determined as
the best for 30-activity instances while applying one-point crossover and roulette wheel
selection are selected as the constant values. Those values are 0.13 and 1 for mutation
and crossover rate, respectively. (see Table A.2 in Appendix A).

The other difference regarding the current fine-tuning procedure is that crossover and
parent selection mechanisms are not tested. Considering the results of the previous exper-
iment, it can be concluded that one-point crossover and roulette wheel selection turn out
to be the best while being applied together. Thus, it is thought to be enough to consider
only these two mechanisms.

Finally, the previous fine-tuning experiment is conducted by considering only the min-
imization of Cmax and the maximization of Npv. However, in the current testing, all of
the objective combinations implemented in GA are included in the experiment procedure.
Thus, at the end of the process, the best population size and generation number values
are obtained for each objective combination. At this point, it should be noted that hyper-
volume indicator can easily be calculated when GA works with bi-objective. However, if
triple-objective is the case, the calculation of this performance measure is challenging. In
the literature, several methods are proposed for computing it efficiently and correctly. In
this thesis, the computation proposed by Fleischer [53] is applied.

As for the instance files used during the experiments, the multi-project instances hav-
ing 10 projects are preferred. Each project can have 10, 12 or 14 activities. Thus, total
number of activities can take the value 100, 120 or 140. For 10 projects with 10 activities,
three different instances varying depending on due date, resource capacity and lump sum
payment difficulties are selected. In other words, 10 projects having 10 activities whose
due date difficulty is in medium level, 10 projects having 10 activities whose resource ca-
pacity difficulty is in medium level and 10 projects having 10 activities whose lump sum
payment difficulty is in medium level are selected. With the same consideration for 120
and 140 activities, total number of instances used in the experiments turns out be nine.

The results of the fine-tuning procedure can be seen in Table B.1 in Appendix B. In

87

Objective Coefficients for

Combinations Population Size Generation Number

minCMAX/maxNPV 1.25 2.50
maxNPV/minMFT 1.25 3.00
maxNPV/minMWT 1.00 2.50
maxNPV/minMCT 1.25 3.00
minCMAX/maxMNPV/minRUD 1.00 2.50
minCMAX/maxMNPV/maxMO 1.00 2.50

Table 4.3: The Best Parameter Combinations

that table, the best population size and generation number coefficients for each instance
and for each objective can be observed. For a general understanding, the detailed results
of the experiment can be seen in Table B.2 of Appendix B. In that table, the best five
population size and generation number coefficients exist with their desirability values for
each instance and for each objective.

At the end of the experiment, the best parameter combination should be selected for
each objective. The selection is achieved by computing the distance between parameter
combinations and choosing the closest combination to others. In Table B.3 in Appendix
B, the closeness and desirability values for each instance and for each objective can be
seen. By selecting the closest parameter combination, the following population size and
generation number coefficients in Table 4.3 are determined for the objectives:

In this table, the objectives represented in the first column are explained in Chapter 3.

88

Chapter 5

Divergence Applications and Local Searches

5.1 Divergence applications

Incorporating divergence capability into GA is one of the more important issues to be
considered when implementing the algorithm. When divergence is not implemented, the
algorithm can converge prematurely and it might lead to low quality solutions. In this
thesis, four different divergence applications are implemented. These can be performed
either independently or in a hybrid way.

5.1.1 Entropy-based divergence application

As stated before, the individual is represented with two lists, which are the precedence
feasible activity list and mode assignment list. Thus, in any generation, some individuals
can resemble to each other in terms of activity positions and the kind of modes assigned
to the activities. Entropy-based divergence application depends on this consideration.

Nsakanda et al. [112] deal with Cell Formation Problem (CFP) and GA is preferred as
solution methodology. The genes in an individual represent which machine is assigned to
which cell. For avoiding the premature convergence, the authors propose an equation for
measuring the structural similarities of the individual existing in a population.

Figure 5.1: An Example of an Individual for CFP

For instance, in Figure 5.1, machine 1 and machine 2 are assigned to the first cell.

89

Machine 5 and machine 6 are assigned to cell 2 and the cell 3 has the machine 3, 4 and 7.
In fact, the major purpose of the study by Nsakanda et al. [112] is to show that entropy-
based measure is not suitable for measuring the population diversity for CFP. Thus, a
new measure called distance-based measure is proposed by the authors. However, in this
thesis, entropy-based measure is focused because it is considered to be appropriate for the
individual representation in RCPSP.

Entropy-based measure is implemented for CFP in the following way:

• m: The number of machines to be assigned

• Ui: The contribution of the machine i to the population diversity

• vij: The number of chromosomes in which machine i is assigned to cell j in the
current population (generation)

• POP : Population size

• c: The number of cells

• DG: Convergence measure

Then, the Equation (5.1) gives the entropy-based measure. According to this equa-
tion, DG converges to zero as the structural similarities of the individuals in a population
increase.

DG =

m∑
i=1

Ui

m
(5.1)

Ui =

−
c∑
j=1

vij
POP

· log
vij
POP

log c
(5.2)

An entropy-based measure for individual representation in our case can be developed
as follows: Let the activities in our problem replace the machines to be assigned in CFP
and let the positions in an individual replace cells in CFP. Thus, the same equations (5.1)
and (5.2) can be used for RCPSP as well.

Furthermore, another entropy-based measure can also be developed for the mode as-
signment list. If the activities replace the machines and the modes replace the cells, the

90

same equation shows how well the population has diversity in terms of modes. Therefore,
by focusing on both the activities and the modes, two distinct entropy-based measures,
which are called activity entropy and mode entropy can be proposed.

For simplicity, an example about how these measures can be calculated is given in
Figure 5.2.

Figure 5.2: An Example Calculation of Divergence Measure for RCPSP

In this example, the population has five individuals. In each individual, the first and
the second lists show the precedence feasible activity list and mode assignment list, re-
spectively. According to this figure, the contribution of the activity 2 to the population
diversity is calculated in Equation (5.3).

U2 =
3 · (1

5
· log 1

5
) + (2

5
· log 2

5
)

log 6
(5.3)

The activity 2 is assigned to the positions 1, 2 and 3 once. For the position 6, it is
assigned to this position twice. With the same consideration, the contribution of the other
activities to the population diversity can be calculated and the averages of Ui values shows
the overall diversity for activity entropy.

As for modes, the mode entropy measure can be calculated for activity 2 as in Equation
(5.4).

U2 =
3
5
· log 3

5
+ 2

5
· log 2

5

log 3
(5.4)

The activity 2 is assigned to mode 3 twice and to mode 1 three times. By repeating this
procedure for all activities, the overall mode diversity for mode entropy can be provided.

91

While controlling the diversity of the population, both measures can be checked either
independently or by converting them into one measure. In this thesis, those are checked
independently because the precautions taken are different.

The threshold values for both entropy measures are determined and if one of them
is less than this threshold value, then its own precaution is applied. For activity entropy
measure, if the divergence value is less than the determined threshold value, then the
individuals are sorted in the order of activity position similarity. That is, the individual
that is the most similar to each other becomes the first. At this point, predetermined
number of individuals from the beginning of this list are removed from the population.
Instead of them, randomly generated individuals are replaced.

For mode entropy measure, if the divergence value is less than the threshold value,
then a list that sorts the individuals in terms of mode assignment similarity is created. The
predetermined number of individuals starting from the beginning of this list are modified
by changing the modes of the activities.

In this kind of divergence application, the way that the threshold values for activity
and mode entropy are determined is obviously critical to the quality of GA solutions.
Moreover, it should also be considered as important to determine how many individuals
are removed from the population. Our purpose is to determine these values by some
experiments.

5.1.2 Objective value-based divergence application

In addition to the structural similarities of the individuals, similarities in objective value
should also be checked because both similarities may behave differently. In other words,
while the individuals have not similarity in terms of entropy-based measure, they might
be very similar to each other in terms of objectives, or vice versa. Thus, objective value-
based divergence application should also be developed.

While determining whether an individual is similar to another, the Euclidean distance
is used. With the help of its definition, the distance between two objective vectors can
be computed easily. The procedure of controlling the objective value-based diversity is
explained below:

• p: The number of objectives

• x, y: Objective vectors (individuals)

• fk(x): The kth objective value of x

92

• maxk: The maximum kth objective value in current population

The Euclidean distance between two individuals is computed using Equation (5.5).

EDx,y =

√
(
f1(x)− f1(y)

max1

)2 · (f2(x)− f2(y)

max2

)2 · · · (fp(x)− fp(y)

maxp
)2 (5.5)

For all pairs of objective vectors existing in the current population, the Euclidean dis-
tances between them are computed and the Γ value is provided by the following Equation
(5.6).

Γ =

∑
(x,y)∈Population

EDx,y

POP
(5.6)

As in entropy-based divergence application, Γ value must be compared to a threshold
value and if Γ is less than it, then it should be accepted as a sign of convergence in terms
of objective similarity. In this case, each individual is compared to other individuals by
observing the distance between them. If the distance is less than Γ, then the Euclidean
distance frequency (EDF) of the corresponding individual is incremented by one. The
Algorithm 13 summarizes this process:

Algorithm 13: Determining The Closest Individuals
1 foreach Individual x ∈ Population do
2 foreach Individual y ∈ Population do
3 if EDx,y < Γ then
4 EDFx = EDFx + 1;
5 end
6 end
7 end

After completing this procedure, the predetermined number of individuals are re-
moved from the population starting with the individual whose EDF value is the high-
est. In case of equality, the individual whose rank value is the worst is removed from the
population. In place of removed individuals, randomly generated individuals are inserted.

Obviously, the threshold value and the number of individuals to be removed should be
selected carefully because these make an impact on the process of GA. Our purpose is to
determine these values by some experiments.

93

5.1.3 Grid-based divergence application

The other divergence application, which is based on objective space is grid-based. In
other words, objective space is divided into grids in a rational way. In that case, if a grid
has two or more individuals, then it is accepted as a warning that these individuals are
similar to each other. Thus, it might be beneficial to remove all of them but one.

This divergence application is developed in case objective value-based divergence
may not be effective. It should be noted that the decision about this choice should be
made by several experiments.

Since grid-based divergence is checked in every generation, the reference lines or grid
borders should be modified as generations proceed. That is, if the reference lines are not
changed through generations, the natural convergence of GA is not taken into account
because the reference lines used for the initial population might become very different
than those used for any following generation.

Grid-based divergence application works as in Algorithm 14:

• RFk(l): The lth reference line for kth objective

• fk(t): The kth objective value of tth individual in the current population

Algorithm 14: Grid-Based Divergence Procedure
1 foreach Objective k do
2 Sum = 0;
3 Average = 0;
4 l = 1;
5 Sort the population in increasing order of k;
6 for t = 2 to POP do
7 Sum = Sum+ (fk(t)− fk(t− 1));
8 end
9 Average = Sum

POP−1 ;
10 RFk(l) = fk(l);
11 repeat
12 RFk(l) = RFk(l − 1) + Average;
13 l = l + 1;
14 until RFkl = fk(| POP |);
15 end

Thus, for each objective, reference lines are determined by this procedure. In other
words, for the same l value, the point (RF1(l), RF2(l), ..., RFp(l)) represents a corner

94

point for grid in the p-objective space. Afterwards, grid-based divergence application
checks all of the individuals and removes all individuals, which exist in the same grid ex-
cept for one. Removing process starts with the worst individuals in terms of rank values.
Thus, single remaining individual becomes the best individual among those existing in the
same grid. If there is an equality in rank values, then randomly selected individual contin-
ues occupying grid. Instead of removed individuals, randomly generated individuals are
inserted to the population.

It is clear that the way of deciding the width of the reference lines is a strategy, which
should be adjusted carefully. That is, the average value of the summations of differences
may not be preferred. Instead, if the first quartile of the summation is applied, then the
width of the reference lines become more narrow or if third quartile of the summation is
implemented, then they become wider.

5.1.4 Archive-based convergence check

Beside all the divergence applications mentioned above, a simple and not time-consuming
convergence check is also applied in our study. According to this kind of application, the
archive is checked in every generation. If no individual is added to the archive through
predetermined number of generations, then this is accepted as a sign of convergence be-
cause GA can not find any better solution than the existing ones in the archive.

5.2 Local searches

Local searches can be regarded as a divergence application because the algorithm that
prematurely converges can be diverged with the help of them. In addition to divergence,
improvement is another important aspect of local search procedures. In this thesis, two
different local search techniques are applied. Both can be applied while GA continues
proceeding or when GA stops. In other words, any population or the last non-dominated
solutions, which will be presented to the decision maker can be subjected to local search.

5.2.1 Backward and forward pass procedure

Backward and forward pass (BFP) procedure aims at assigning new starting and finishing
times for the activities without changing the modes so as to improve the solution quality.

A pass in this procedure can be defined as shifting all of the activities to right or
to left by using the slacks. The first pass to be applied is backward pass, which means

95

shifting all of the activities to right by considering some constraints. Before starting
the shifting process, the activities are sorted in decreasing order of their finishing times.
Afterwards, the activities are shifted as much as possible to right starting the first activity
in this order. The constraints taken into account are precedence relations and renewable
resource capacities. The non-renewable resource capacities are not checked because the
modes are not changed.

The second iteration is forward pass, which operates by shifting all activities to left
by taking into account the same constraints. First, the activities are sorted in increasing
order of their starting times. By following the same procedure with backward pass, the
activities in an individual are assigned new starting times and finishing times (see Figure
5.3).

However, the procedure does not only implement the BFP, but also some additional
operations. Firstly, as stated before, it applies backward pass on the individual. At this
point, it is possible that the starting time of the dummy source activity is larger than zero.
In that case, the starting and finishing times of all activities are decreased by the starting
time of the dummy source activity. Thus, a new individual is provided (I1), but original
individual (I0), which is the output of the backward pass is kept distinctly.

By applying forward pass on I0, a new individual is created (I2). After implementing
backward pass on I0 again, the starting time of the dummy source activity is checked and
if it is larger than zero, then the starting and finishing times of all activities are decreased
by that value (I3). Afterwards, I0 is subjected to forward pass again (I4).

At each pass, the objective values and renewable resource profiles are recalculated.
Starting from the first individual I1, an individual list is formed that includes all non-
dominated solutions. BFP procedure is terminated until this list can not be renewed
through predetermined number of passes. At the end, all of the non-dominated solu-
tions are accepted as the improved form of the initial individual. The flow chart of the
general scheme can be seen in Figure 5.4.

5.2.2 Simulated annealing

Another local search application can be implemented by simulated annealing (SA). SA
is observed to be an effective heuristic for this kind of problems such as RCPSP (Hart-
mann and Kolisch [67]). In our procedure, the neighborhood search is performed through
changing the position of an activity and changing the mode of another activity.

While changing the position, after randomly selecting an activity, the positions of the

96

Figure 5.3: BFP Procedure

97

Figure 5.4: General Framework of BFP

98

last predecessor lp and the first successor fs of it are determined. Then, this activity is
inserted into a position between lp and fs. Remaining activities existing between lp and
fs are shifted as a block to prevent the precedence feasibility.

Figure 5.5: An Example of Activity Insertion

For instance, in Figure 5.5, activity 7 is selected randomly. The lp and fs of it are the
activities 2 and 9. Between the activities 2 and 9 (i.e., lp and fs, respectively), activity
8 is selected randomly in order to insert activity 7 before activity 8 in the sequence. In
this case, the block of activities 8, 6 and 4 are shifted to right together to preserve the
precedence feasibility.

After finding a neighbor called the candidate solution, it is compared to the current
solution with respect to the objectives in order to decide whether the candidate solution
must be accepted as the current solution. As SA proposes, some worse candidate solu-
tions can be accepted as current solutions with a probability. As the iterations proceed
and temperature decreases, acceptance probability of worse individuals decreases. The
probability of acceptance is calculated depending on the difference between the objective
values of the current and candidate solutions.

While comparing, there exist several situations, all of which must be explained in
detail. Let x be the current solution and y be candidate solution. Additionally, let e

−δ
T

be the probability of accepting y, where δ represents the difference between objective
values of x and y and T denotes the temperature in the current iteration. Then, following
definitions can be made:

• p: Number of objectives

• k: kth objective

• fk(x): The kth objective value of x

• fk(x) B fk(y): The kth objective value of x is better than that of y

99

Algorithm 15: Acceptance Procedure When p = 2

1 r: A decimal random value between [0,1];
2 if f1(y) B f1(x) and f2(y) B f2(x) then
3 Accept y as current solution;
4 end
5 if f1(y) B f1(x) and f2(x) B f2(y) then
6 Generate r;
7 δ =| f2(x)− f2(y) |;
8 if e−δT > r then
9 Accept y as current solution;

10 end
11 end
12 if f1(x) B f1(y) and f2(y) B f2(x) then
13 Generate r;
14 δ =| f1(x)− f1(y) |;
15 if e−δT > r then
16 Accept y as current solution;
17 end
18 end
19 if f1(x) B f1(y) and f2(x) B f2(y) then
20 Generate r;
21 Generate a random integer r′ ∈ [1, 2];
22 δ =| fr′(x)− fr′(y) |;
23 if e−δT > r then
24 Accept y as current solution;
25 end
26 end

100

As can be seen in Algorithm 15, if both objectives of y are better than those of x, then
it is accepted as the current solution without calculating the acceptance probability. If
one of the objectives of it is worse, then it is accepted as current solution, if acceptance
probability computed depending on the difference between these objectives is bigger than
a randomly generated decimal value. If both objectives are worse, then one of them is
selected randomly and the same acceptance procedure is applied.

There also exist three objectives considered simultaneously in this thesis. In that case,
above procedure becomes longer because the number of situations to be investigated in-
creases. If one of the objectives or two of the objectives are worse, then the same proce-
dure is applied during accepting the candidate solution. If all of the objectives are worse,
then one of them is selected randomly and acceptance probability is provided depending
on that objective.

The basic scheme of the simulated annealing procedure is presented in Algorithm 16.

Algorithm 16: Basic Scheme of Local Search Using Simulated Annealing
1 T0: Initial temperature;
2 T = T0: Temperature varying in each iteration;
3 H: The number of iterations;
4 α: A decimal value in [0,1]
5 β: Termination condition
6 repeat
7 H = d 1

T
e;

8 while H > 0 do
9 Find a neighbor (y) of current solution;

10 Accept or reject y as current solution;
11 H = H − 1;
12 end
13 T = T · α;
14 until T ≤ β;

101

Chapter 6

Computational Study

6.1 Implementation with test instances

In order to evaluate the performance of GA, the algorithm is tested with different multi-
project test instances. In addition to using the instances generated in the study of Can
and Ulusoy [20], new multi-project test instances generated in this thesis are also utilized.
The performance of GA implemented can be compared to that of Can and Ulusoy [20]
because the same instances are solved.

6.1.1 Implementation with the test instances generated in Can and
Ulusoy [20]

Three problem sets denoted by A, B and C are created to represent a variety of different
environmental factors. Problem set A is formed to analyze the effect of resource based
factors while fixing other factors. Set A includes multi-project cases with the same num-
ber of projects and the same number of activities but different resource requirements and
resource availability levels. Each instance includes 14 projects consisting of 10 activities.
Problem set B consisting of 84 instances focuses on the effects of different number of
projects and activities. In these multi-project instances, three levels are set for the num-
ber of projects and seven levels are set for the number of activities. In problem set C, a
multi-project environment that is heterogeneous in terms of project sizes, is emphasized
by grouping projects consisting of different number of activities resulting in 27 instances.
The objective combination studied is minCMAX/maxNPV. First, NSGA-II is employed
to solve these sets of test problems. BFP is applied in two different modalities. In one

102

modality, it is applied on the archive of non-dominated set of solutions obtained at the end
of NSGA-II and is designated as BFP in the final stage. As an improvement routine, BFP
is also applied in the intermediate stages, which is designated as BFP in the intermediate
stages.

As for intermediate application of BFP, it should be determined in which condition
BFP is applied. One possible solution is to take into account the number of generations in
which no better solution is inserted into the archive. If a threshold value is determined for
the discontinuation of the archive, the algorithm implements the BFP procedure on the
population and convergence of the algorithm is tried to be handled by this way.

In order to assign the best threshold values for the instance sets A, B and C taken
from Can and Ulusoy [20], the algorithm is performed in advance to observe the behavior
of the archive since the archive behaves differently due to the fact that each instance has
different difficulty. During pre-solving the instances, the generation numbers in which
the archive reaches to discontinuation levels 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25
are recorded. For example, A11 11 instance has reached to discontinuation level 5 at first
when the generation number is 203. During solving the same instance, the algorithm has
stopped before reaching to discontinuation level 15. With the same considerations, all of
the multi-project instances in A, B and C sets are pre-solved and corresponding generation
numbers are recorded.

As state before, there are 81 instances in set A, 84 instances in set B and 27 instances
in set C. After recording the corresponding generation numbers, the instances existing in
the same instance set are separated into the subgroups. Finally, there are 9 subgroups in
set A, 21 subgroups in set B and 3 subgroups in set C. Actually, the instances in the same
subgroups have similar difficulty. This difficulty level is arranged in the phase of data
generation in Can and Ulusoy [20]. For each subgroup, the average value of the recorded
generation numbers for the same discontinuation level are calculated. Discontinuation
level whose average recorded generation number is larger than the half of the bound of
generation number is determined as the threshold value.

It is observed that the algorithm can not improve the solution quality after applying
a couple of BFP. In this case, the algorithm can be stopped and non-dominated solutions
can be presented to the decision maker. It is determined in this thesis that if the algorithm
applies BFP five times and can not find better solutions than current solutions during
each application, then the algorithm is stopped. This value is represented as stoppage in
the tables. Table 6.1 shows the determined threshold values and stoppage values for the
instance subgroups.

103

Instance Threshold Stoppage Instance Threshold Stoppage Instance Threshold Stoppage

A11 13 5 B1014 9 5 B1530 5 5
A12 21 5 B1016 15 5 B2010 19 5
A13 21 5 B1018 19 5 B2012 23 5
A21 5 5 B1020 15 5 B2014 11 5
A22 17 5 B1030 5 5 B2016 13 5
A23 19 5 B1510 13 5 B2018 5 5
A31 5 5 B1512 23 5 B2020 7 5
A32 17 5 B1514 5 5 B2030 5 5
A33 19 5 B1516 15 5 C1 7 5
B1010 5 5 B1518 7 5 C2 15 5
B1012 5 5 B1520 7 5 C3 11 5

Table 6.1: Threshold and Stoppage Values for BFP Procedure

Table 6.2 presents the explanations of various abbreviations used in the following
tables of this chapter.

The instance sets A, B and C are solved with GA for minCMAX/maxNPV by applying
BFP both in the intermediate stages and in the final stage separately. Tables 6.3, 6.4 and
6.5 show the results when BFP procedure is applied only in the final stage. In these tables,
the average values of the results of the instances belonging the same instance subgroup
are presented as ACMAX, ANPV and ANNS. In addition, the percent improvements with
respect to Cmax and Npv are presented. The columns under the heading Without BFP on
the Archive correspond to pure application of NSGA-II to the test problems. The columns
under the heading BFP on the Archive correspond, on the other hand, to ACMAX, ANPV,
and ANNS obtained after BFP is applied to the archive of non-dominated solutions re-
sulting from the application of NSGA-II.

Table 6.6, 6.7 and 6.8 show the statistical results. In order to evaluate whether a signif-
icant difference between average Cmax values, average Npv values and average number
of non-dominated solutions, paired t-test is applied. Since the same sample (instances)
are used, paired t-test should be applied. In addition, since we are concerned about the
existence of the equality between the means of average Cmax, average Npv and average
number of non-dominated solutions, p value of two-tail result must be evaluated.

In order to provide better understanding of the results, the following figures may help.
Figures 6.1, 6.2, 6.3, and 6.4 show the difference between the solutions obtained with pure
NSGA-II application and the solutions obtained after BFP application on the archive of
non-dominated solutions resulting from the application of NSGA-II. Recall that objectives
are minCMAX and maxNPV. Thus, it is observed that BFP is significantly effective in
getting better solutions in terms of objective values.

104

Abbreviations Explanations

INSSUB Instance Subgroups
INS Instance
ACMAX Average Cmax
ANPV Average Npv
AMFT Average of Mean Flow Times
AMWT Average of Mean Weighted Tardiness
AMCT Average of Mean Completion Time
ARUD Average Resource Usage Deviation
AMO Average of Minimum Outflows
ANNS Average Number of Non-dominated Solutions
ACPU Average CPU Times
% Imp. Percent Improvement
H. Mean Difference Hypothesized Mean Difference
D Represents the Difficult Case of Difficulty
M Represents the Medium Case of Difficulty
E Represents the Easy Case of Difficulty
CPU(D) CPU Times for solving Difficult Instances
CPU(M) CPU Times for solving Medium Instances
CPU(E) CPU Times for solving Easy Instances

Table 6.2: Abbreviations Used in Tables

INSSUB
Without BFP on the Archive by GA BFP on the Archive

ACMAX ANPV ANNS ACMAX % Imp. ANPV % Imp. ANNS

A11 61.39 8452.00 4.33 43.72 28.78 27448.15 224.75 1.33
A12 39.50 30205.81 2.22 29.67 24.89 65177.23 115.78 1.56
A13 38.33 35943.40 1.89 28.00 26.95 77852.86 116.60 1.00
A21 106.09 -3786.42 19.56 89.70 15.45 1313.29 134.68 13.67
A22 41.76 42472.89 1.67 31.50 24.57 91857.04 116.27 1.22
A23 39.06 46336.24 2.00 30.83 21.07 94562.36 104.08 1.11
A31 168.01 -9566.67 27.33 161.28 4.01 -9956.69 -4.08 28.78
A32 45.52 31616.04 1.44 35.56 21.88 82375.22 160.55 1.00
A33 43.50 54445.20 2.22 31.70 27.13 125864.36 131.18 1.56

Table 6.3: Results for Set A - BFP in the Final Stage

Figure 6.1: Instance A11 11 Figure 6.2: Instance A11 21

105

INSSUB
Without BFP on the Archive by GA BFP on the Archive

ACMAX ANPV ANNS ACMAX % Imp. ANPV % Imp. ANNS

B1010 65.80 -4284.41 21.00 51.73 21.38 -2394.56 44.11 16.25
B1012 70.57 -3325.96 22.50 55.12 21.89 -1562.10 53.03 17.75
B1014 63.50 4193.34 4.25 46.63 26.57 15971.34 280.87 1.25
B1016 58.63 6312.65 2.25 39.25 33.05 36364.15 476.05 1.50
B1018 61.84 2653.08 3.00 45.00 27.23 31971.18 1105.06 1.50
B1020 60.38 1082.86 1.75 41.25 31.68 31269.59 2787.69 1.00
B1030 133.84 -9476.70 39.50 90.85 32.12 11441.63 220.73 16.25
B1510 62.82 9352.66 4.75 47.00 25.18 23303.23 149.16 1.75
B1512 51.75 12917.71 1.75 38.50 25.60 35089.88 171.64 1.00
B1514 79.17 -284.76 12.25 49.25 37.79 20654.11 7353.16 1.50
B1516 67.65 1117.90 4.00 43.38 35.88 39419.66 3426.22 1.50
B1518 85.54 -5074.28 15.25 46.88 45.20 30145.27 694.08 1.50
B1520 91.51 -6035.83 20.00 44.38 51.50 34819.41 676.88 1.75
B1530 169.76 -12662.37 55.00 77.13 54.57 13885.18 209.66 11.00
B2010 42.69 30931.28 2.25 33.38 21.81 65006.28 110.16 1.75
B2012 54.60 17293.89 2.25 41.75 23.53 47993.94 177.52 1.50
B2014 74.85 1809.18 9.25 47.13 37.03 33407.60 1746.56 1.50
B2016 73.38 -3739.17 6.25 43.00 41.40 62090.64 1760.55 1.25
B2018 119.10 -8377.08 35.25 51.13 57.07 28389.37 438.89 1.50
B2020 126.34 -10501.11 40.00 46.88 62.89 47820.26 555.38 2.50
B2030 201.89 -14610.14 73.50 83.88 58.45 14614.88 200.03 12.25

Table 6.4: Results for Set B - BFP in the Final Stage

INSSUB
Without BFP on the Archive by GA BFP on the Archive

ACMAX ANPV ANNS ACMAX % Imp. ANPV % Imp. ANNS

C1 104.38 -7449.74 18.78 54.07 48.20 38144.69 612.03 2.33
C2 72.72 12308.41 5.67 50.04 31.19 50549.32 310.69 2.22
C3 82.55 -3299.87 12.22 45.28 45.15 43385.62 1414.77 1.67

Table 6.5: Results for Set C - BFP in the Final Stage

Figure 6.3: Instance A21 11 Figure 6.4: Instance B1010 21

106

Statistics ACMAX1 ACMAX2 ANPV1 ANPV2 ANNS1 ANNS2

Mean 64.80 53.55 26235.39 61832.65 6.96 5.69
Variance 1966.04 2004.47 512725072.6 2095148054 91.79 91.86
Observations 9 9 9 9 9 9
Pearson Correlation 0.99 0.99 0.98
H. Mean Difference 0 0 0
Degrees of Freedom 8 8 8
t Stat 9.40 -4.55 1.84
P(T ≤ t) one-tail 6.71535E-06 0.000935077 0.051160589
t Critical one-tail 1.859548038 1.859548038 1.859548038
P(T ≤ t) two-tail 1.34307E-05 0.001870153 0.102321177
t Critical two-tail 2.306004135 2.306004135 2.306004135

The column headings whose index is 1 present the results of Without BFP on the Archive
The column headings whose index is 2 present the results of BFP on the Archive
Significance level: 0.05

Table 6.6: Paired t-test Result for Set A - BFP in the Final Stage

Statistics ACMAX1 ACMAX2 ANPV1 ANPV2 ANNS1 ANNS2

Mean 86.46 50.64 442.51 29509.57 17.90 4.65
Variance 1693.23 222.06 116296330.10 315250177.40 401.97 34.89
Observations 21 21 21 21 21 21
Pearson Correlation 0.84 0.51 0.60
H. Mean Difference 0 0 0
Degrees of Freedom 20 20 20
t Stat 5.52 -8.63 3.54
P(T ≤ t) one-tail 1.05E-05 1.76729E-08 0.001027384
t Critical one-tail 1.724718243 1.724718243 1.724718243
P(T ≤ t) two-tail 2.09571E-05 3.53458E-08 0.002054769
t Critical two-tail 2.085963447 2.085963447 2.085963447

The column headings whose index is 1 present the results of Without BFP on the Archive
The column headings whose index is 2 present the results of BFP on the Archive
Significance level: 0.05

Table 6.7: Paired t-test Result for Set B - BFP in the Final Stage

107

Statistics ACMAX1 ACMAX2 ANPV1 ANPV2 ANNS1 ANNS2

Mean 86.55 49.80 519.60 44026.54 12.22 2.07
Variance 262.59 19.36 108537386.20 38776798.40 42.97 0.13
Observations 3 3 3 3 3 3
Pearson Correlation 0.6 0.97 0.16
H. Mean Difference 0 0 0
Degrees of Freedom 2 2 2
t Stat 4.61 -16.41 2.70
P(T ≤ t) one-tail 0.022026853 0.001847219 0.057050024
t Critical one-tail 2.91998558 2.91998558 2.91998558
P(T ≤ t) two-tail 0.044053707 0.003694438 0.114100048
t Critical two-tail 4.30265273 4.30265273 4.30265273

The column headings whose index is 1 present the results of Without BFP on the Archive
The column headings whose index is 2 present the results of BFP on the Archive
Significance level: 0.05

Table 6.8: Paired t-test Result for Set C - BFP in the Final Stage

A similar analysis is performed, but this time under BFP in the intermediate stages
by considering the same objective combinations, minCMAX/maxNPV. Tables 6.9, 6.10
and 6.11 present the ACMAX, ANPV and ANNS under different scenarios. In the first
scenario under the heading GA Application, these quantities are obtained with pure ap-
plication of NSGA-II. It is noted that these values are the same with the values under
the heading Without BFP on the Archive by GA in Tables 6.3, 6.4 and 6.5. The second
scenario becomes applying BFP in the intermediate stages, but without applying BFP on
the archive. The last scenario is to apply both, BFP in the intermediate stages and BFP on
the archive.

It may be beneficial to show how frequently BFP is applied during the implementation
of GA in order to understand the behavior of the algorithm. Table 6.12 shows these
results. The second, sixth and tenth columns denote the bounds of generation numbers,
which are determined before implementation of GA. The values in the next columns show
the average numbers of BFP operation and the average last generations of the algorithm.
For example, BFP is applied on the average 4.44 times during 275.11 average number of
generations in A11 subgroup of set A.

In addition to BFP observation, the efficiency of the entropy-based divergence appli-
cation is evaluated as well to assign the best threshold values. Similar to BFP, the behavior
of the algorithm with respect to activity entropy and mode entropy is observed. In other
words, it is studied how strictly activity and mode entropy values change from one genera-
tion to the next generation. For this purpose, the generation numbers in which the activity

108

INSSUB
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ACMAX ANPV ANNS ACMAX ANPV ANNS ACMAX ANPV ANNS

A11 61.39 8452.00 4.33 50.16 26130.72 3.78 43.39 27585.80 2.11
A12 39.50 30205.81 2.22 29.05 68494.32 2.44 29.05 68494.32 2.44
A13 38.33 35943.40 1.89 28.30 77474.89 2.44 28.30 77474.89 2.44
A21 106.09 -3786.42 19.56 89.65 -694.03 12.56 88.49 -773.11 12.33
A22 41.76 42472.89 1.67 29.55 97170.35 2.89 29.32 97863.80 2.67
A23 39.06 46336.24 2.00 29.66 100150.57 2.67 29.41 100415.73 2.33
A31 168.01 -9566.67 27.33 158.28 -9101.59 26.33 155.10 -9316.50 27.78
A32 45.52 31616.04 1.44 35.81 85830.11 2.11 35.81 85884.65 2.11
A33 43.50 54445.20 2.22 29.02 135491.89 2.33 29.06 135579.90 2.44

Table 6.9: Results for Set A - BFP in the Intermediate Stages

INSSUB
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ACMAX ANPV ANNS ACMAX ANPV ANNS ACMAX ANPV ANNS

B1010 65.80 -4284.41 21.00 62.59 -2450.04 21.25 55.18 -1645.53 14.50
B1012 70.57 -3325.96 22.50 60.90 -2605.09 19.75 51.57 -1693.82 15.75
B1014 63.50 4193.34 4.25 45.88 18307.21 2.00 45.81 18297.54 2.25
B1016 58.63 6312.65 2.25 38.25 37948.59 2.25 38.25 37948.59 2.25
B1018 61.84 2653.08 3.00 51.08 26680.20 3.75 42.50 31210.53 1.75
B1020 60.38 1082.86 1.75 40.19 36900.63 3.00 40.19 36900.63 3.00
B1030 133.84 -9476.70 39.50 76.92 11983.28 5.25 76.92 11983.28 5.25
B1510 62.82 9352.66 4.75 52.67 22824.77 3.50 46.67 25595.70 1.75
B1512 51.75 12917.71 1.75 38.96 37206.15 1.75 38.96 37206.15 1.75
B1514 79.17 -284.76 12.25 50.13 20227.01 2.25 50.13 20227.01 2.25
B1516 67.65 1117.90 4.00 53.72 35707.76 3.75 43.00 41429.02 1.75
B1518 85.54 -5074.28 15.25 59.42 28556.16 8.75 46.33 32060.41 2.00
B1520 91.51 -6035.83 20.00 44.88 33673.82 2.00 44.88 33673.82 2.00
B1530 169.76 -12662.37 55.00 85.66 14748.95 22.00 85.40 14705.95 22.25
B2010 42.69 30931.28 2.25 31.88 64775.01 2.25 31.88 64775.01 2.25
B2012 54.60 17293.89 2.25 40.75 49456.40 3.00 40.75 49456.40 3.00
B2014 74.85 1809.18 9.25 58.33 33136.85 8.25 47.38 37069.28 1.75
B2016 73.38 -3739.17 6.25 41.81 64622.47 2.00 41.81 64622.47 2.00
B2018 119.10 -8377.08 35.25 50.00 28125.86 2.50 50.00 28125.86 2.50
B2020 126.34 -10501.11 40.00 47.49 50985.14 2.75 47.49 50985.14 2.75
B2030 201.89 -14610.14 73.50 90.22 17661.04 27.25 89.82 17578.70 27.75

Table 6.10: Results for Set B - BFP in the Intermediate Stages

109

INSSUB
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ACMAX ANPV ANNS ACMAX ANPV ANNS ACMAX ANPV ANNS

C1 104.38 -7449.74 18.78 60.15 38602.39 6.11 59.62 38812.37 5.44
C2 72.72 12308.41 5.67 49.53 55377.17 3.56 49.53 55380.66 3.56
C3 82.55 -3299.87 12.22 49.92 45725.56 5.89 44.31 46359.41 1.89

Table 6.11: Results for Set C - BFP in the Intermediate Stages

INSSUB
Bounds on Average Last INSSUB

Bounds on Average Last INSSUB
Bounds on Average LastGeneration Number of BFP Generation Generation Number of BFP Generation Generation Number of BFP GenerationNumbers Operations Numbers Operations Numbers Operations

A11 350 4.44 275.11 B1014 350 5.50 187.00 B1530 1125 7.50 663.75
A12 350 6.56 332.44 B1016 400 6.75 313.00 B2010 500 7.50 296.00
A13 350 6.78 336.67 B1018 450 5.25 368.25 B2012 600 6.00 430.00
A21 350 6.11 265.89 B1020 500 6.25 403.75 B2014 700 4.75 473.75
A22 350 6.11 300.33 B1030 750 8.00 614.25 B2016 800 7.25 579.25
A23 350 6.22 303.56 B1510 375 4.50 306.25 B2018 900 9.00 520.75
A31 350 3.33 338.44 B1512 450 5.75 393.50 B2020 1000 7.00 599.00
A32 350 8.33 297.44 B1514 525 7.50 245.50 B2030 1500 6.25 897.75
A33 350 7.11 327.00 B1516 600 5.00 453.75 C1 750 5.11 517.33

B1010 250 1.50 241.00 B1518 675 5.00 500.00 C2 590 6.67 388.22
B1012 300 2.50 268.75 B1520 750 5.50 428.25 C3 740 4.78 547.78

Table 6.12: Frequency of BFP During the Implementation of GA

and mode entropy measure values reach to [1, 0.98, 0.96,..., 0.22] are recorded. By using
the same classification of the instances in BFP, the average values of the recorded genera-
tion numbers in the same subgroups of the instances are calculated. The first entropy value
whose average generation number is larger than half of the bound of generation number
is labeled as the threshold for activity and mode entropy measures. This procedure is
performed for activity and mode entropy separately.

The scale of this experiment is kept small and only set A is considered. The threshold
values of the activity and mode entropy measures of the instance subgroups are shown
in Table 6.13. The first and second divisions show the different levels for the threshold
values because both are intended to be experimented.

It should be noted that another important parameter in this experiment is how many
individuals are removed from the population. It is rational that this number is a proportion
of the population size. Thus, two different proportions, which are 0.25 and 0.15 are used
in this experiment. Finally, the algorithm is performed for four combinations of first and
second level thresholds and the proportions of population size which will be removed.
Tables 6.14 and 6.15 show the results of this experiment. In these tables, R = 0.25 and
R = 0.15 denote that 25 percent and 15 percent of the population size are removed from
the population, respectively.

Tables 6.16 and 6.17 show how frequently entropy-based divergence application is

110

INSSUB
First Level Thresholds For Second Level Thresholds For

Activity Entropy Mode Entropy Activity Entropy Mode Entropy

A11 0.42 0.78 0.44 0.80
A12 0.40 0.78 0.42 0.80
A13 0.42 0.76 0.44 0.78
A21 0.42 0.76 0.44 0.78
A22 0.38 0.76 0.40 0.78
A23 0.40 0.76 0.43 0.78
A31 0.44 0.72 0.46 0.74
A32 0.40 0.78 0.42 0.80
A33 0.40 0.76 0.42 0.78

Table 6.13: Activity and Mode Entropy Thresholds

INSSUB
First Level & R=0.25 First Level & R=0.15

ACMAX ANPV ANNS ACPU ACMAX ANPV ANNS ACPU

A11 65.15 8182.67 5.22 150.30 63.83 8264.17 5.00 148.46
A12 36.50 34437.61 1.22 140.94 39.54 28571.77 1.67 141.97
A13 38.83 34835.26 1.67 144.39 38.28 36192.52 1.89 143.34
A21 106.40 -4627.70 17.78 156.56 106.02 -4219.21 17.78 155.97
A22 43.19 39214.96 2.33 144.29 42.89 37918.21 1.67 143.69
A23 41.07 46453.15 2.11 144.14 41.78 44196.59 2.00 144.04
A31 168.79 -9662.36 28.00 165.08 173.22 -9933.66 29.11 164.39
A32 45.83 28138.41 1.89 146.43 44.94 33148.12 1.56 144.48
A33 44.27 50733.86 2.22 145.85 41.19 56085.39 1.67 142.70

Table 6.14: Results for Entropy-Based Divergence - First Level

INSSUB
Second Level & R=0.25 Second Level & R=0.15

ACMAX ANPV ANNS ACPU ACMAX ANPV ANNS ACPU

A11 64.83 6497.35 5.89 150.43 65.22 7585.52 5.22 150.65
A12 38.61 32341.76 2.33 142.86 37.56 31887.38 1.89 142.17
A13 39.20 32794.35 1.44 145.68 38.39 34714.21 1.78 144.49
A21 107.52 -4591.78 19.33 156.93 107.74 -4589.25 19.56 156.91
A22 43.59 40411.98 2.22 144.25 43.50 36124.90 2.00 143.74
A23 40.52 45318.95 1.78 143.37 40.20 43606.30 2.33 143.84
A31 171.16 -10143.21 27.00 165.88 173.49 -10009.68 28.78 165.31
A32 47.09 29067.71 2.22 146.45 44.44 31116.75 1.89 145.82
A33 40.56 57032.05 1.78 143.15 40.72 58656.40 2.00 143.82

Table 6.15: Results for Entropy-Based Divergence - Second Level

111

INSSUB
First Level & R=0.25 First Level & R=0.15

Activity Mode Activity Mode

A11 4.56 5.33 5.89 6.22
A12 1.00 7.22 3.56 7.78
A13 5.56 3.56 7.33 6.89
A21 0.33 4.22 3.56 6.67
A22 0.22 4.00 0.33 6.89
A23 1.22 4.33 2.44 7.56
A31 2.67 1.78 2.33 1.78
A32 1.89 7.00 3.22 9.44
A33 4.33 3.33 4.89 7.22

Table 6.16: Frequency for Entropy-Based Divergence - First Level

INSSUB
Second Level & R=0.25 Second Level & R=0.15

Activity Mode Activity Mode

A11 5.78 6.89 19.44 9.22
A12 6.44 8.00 6.11 12.11
A13 11.44 4.78 17.22 5.56
A21 2.78 6.44 6.89 9.33
A22 3.00 6.89 3.56 9.89
A23 3.56 6.33 7.56 8.67
A31 5.33 2.67 5.11 4.11
A32 5.78 9.67 7.00 13.33
A33 6.11 4.33 8.00 9.22

Table 6.17: Frequency for Entropy-Based Divergence - Second Level

operated during the implementation of the algorithm. For example, when the first level
threshold values are used and 25 percent of the population size are removed in the case
of application, the activity entropy measure of the algorithm decreases under the corre-
sponding threshold value 4,56 times in average for A11 subgroup of set A. It should be
recalled that generation number for the set A is 350.

6.1.2 Implementation with the test instances generated in this thesis

As for test instances generated in this thesis, they are solved with GA by experimenting
different difficulties with respect to due date, resource capacities and lump sum payments.
Since the objective combination minCMAX/maxNPV has been studied before, the test
instances generated in this thesis are performed with the other objective combinations.
The purpose of solving these instances is to observe the behavior of the algorithm while
performing it with different due date difficulties, resource capacity difficulties and lump

112

sum payment difficulties. In addition to this goal, it is desired to be observed whether BFP
is efficient with the objective combinations mentioned above. However, BFP is applied
only in the intermediate stages because it is observed in the previous experiments that it
is more efficient than BFP in the final stage.

The instances selected for this experiment are listed as below:

• Instance Subgroup 1: 10 Projects, 10 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

• Instance Subgroup 2: 10 Projects, 12 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

• Instance Subgroup 3: 15 Projects, 10 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

• Instance Subgroup 4: 15 Projects, 12 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

• Instance Subgroup 5: 20 Projects, 10 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

• Instance Subgroup 6: 20 Projects, 12 Activities, 9 Instances (3 instances for differ-
ent due date difficulties, 3 instances for different lump sum payment difficulties, 3
instances for different resource capacity difficulties)

That is, total number of activities in instance subgroups are 100, 120, 150, 180, 200
and 240, respectively. Additionally, total number of instances is 54.

Firstly, these instances are solved with the objective combination maxNPV/minMFT.
Tables 6.18 shows the average Npv and mean flow time values of the instances. Moreover,
Tables 6.19 shows the corresponding CPU times in seconds.

Secondly, these instances are solved with the objective combination maxNPV/minMWT.
Table 6.20 shows the average Npv and mean weighted tardiness values of the instances.
Moreover, Table 6.21 shows the corresponding CPU times in seconds.

113

INS
Difficult Medium Easy

ANPV AMFT ANNS ANPV AMFT ANNS ANPV AMFT ANNS

Due Date Difficulty

1 2314.78 32.77 3 2380.85 31.83 4 2672.70 30.93 3
2 1123.85 37.80 1 1247.38 38.85 2 731.30 40.00 1
3 1269.44 37.52 4 1200.33 40.22 4 891.57 40.18 4
4 605.11 43.27 5 807.07 42.20 1 473.85 42.19 5
5 -162.28 42.68 3 738.06 42.83 4 989.34 40.45 1
6 -503.92 47.68 5 116.55 42.33 5 -629.62 50.92 3

Lump Sum Payment Difficulty

1 195.88 32.60 2 2303.15 34.80 1 5832.06 30.70 1
2 -696.67 41.80 4 1008.54 39.08 4 2926.05 35.77 3
3 -1397.47 37.24 3 1002.51 38.42 7 5813.80 37.27 4
4 -1797.70 55.40 15 -149.13 46.47 2 3140.24 42.11 3
5 -2499.37 45.60 4 -185.17 43.81 7 4622.97 41.12 3
6 -2137.03 53.33 8 -838.97 47.03 6 2497.96 43.30 2

Resource Capacity Difficulty

1 2720.48 31.60 1 3510.08 28.40 3 3600.68 26.67 3
2 939.93 38.18 5 1994.76 30.77 3 1805.46 31.98 4
3 1419.42 39.67 2 2924.25 33.16 5 1916.94 38.80 4
4 397.20 43.00 2 1306.38 38.36 3 1446.32 38.44 5
5 -57.01 43.30 3 1443.12 38.62 3 2116.93 37.43 3
6 -272.40 46.29 8 1261.27 40.90 2 352.67 41.67 6

Table 6.18: Results for maxNPV/minMFT

INS
Due Date Lump Sum Payment Resource Capacity

CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E)

1 46.40 46.82 46.49 47.53 46.80 45.45 46.24 46.86 47.56
2 95.99 94.65 97.28 97.15 94.73 92.04 94.76 96.34 96.91
3 217.06 216.98 216.24 218.28 217.73 211.77 214.35 215.99 217.68
4 451.78 445.99 451.05 458.60 456.85 447.24 454.63 459.38 442.08
5 655.83 656.79 643.88 657.79 658.83 650.16 655.46 650.33 648.38
6 1353.11 1353.42 1364.62 1379.73 1372.18 1344.08 1364.38 1329.67 1345.29

Population Size: 126, 150, 188, 226, 250, 300, respectively
Generation Number: 300, 360, 450, 540, 600, 720, respectively

Table 6.19: CPU Times for maxNPV/minMFT

114

INS
Difficult Medium Easy

ANPV AMWT ANNS ANPV AMWT ANNS ANPV AMWT ANNS

Due Date Difficulty

1 2602.86 0.00 1 2843.05 0.00 1 2666.27 0.00 1
2 1321.09 0.00 1 1111.23 0.00 1 500.60 0.00 1
3 1980.81 0.07 2 805.66 0.03 2 1381.30 0.00 1
4 187.58 2.30 6 -142.53 1.00 2 -764.14 1.68 5
5 316.43 0.48 2 -1803.55 7.46 8 288.15 0.08 2
6 -737.08 1.23 8 96.56 0.00 1 -820.20 0.76 4

Lump Sum Payment Difficulty

1 172.13 0.00 1 2406.37 0.05 2 4672.87 0.00 1
2 -876.88 4.48 6 1345.44 0.00 1 3228.14 0.00 1
3 -1521.80 1.43 5 1734.01 0.03 2 4469.10 0.00 1
4 -1586.60 10.40 17 -212.19 0.58 3 3139.89 0.00 1
5 -3232.60 5.94 7 548.81 0.08 2 6493.79 0.00 1
6 -2568.69 10.86 19 -21.53 1.78 3 3393.50 0.00 1

Resource Capacity Difficulty

1 2373.63 0.00 1 3780.60 0.00 1 3616.15 0.00 1
2 1312.20 0.00 1 2074.74 0.00 1 2003.49 0.00 1
3 1095.13 0.10 2 1843.73 0.00 1 3562.30 0.00 1
4 -13.78 0.11 3 1543.94 0.00 1 1874.56 0.00 1
5 840.21 0.10 2 1561.49 0.00 1 1460.31 0.15 2
6 162.90 0.05 2 999.55 0.00 1 -427.63 0.27 3

Table 6.20: Results for maxNPV/minMWT

INS
Due Date Lump Sum Payment Resource Capacity

CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E)

1 29.96 29.85 29.91 30.62 29.63 30.29 30.21 30.83 30.67
2 61.71 63.18 62.41 63.72 61.67 61.95 61.54 62.55 62.61
3 138.99 139.44 142.14 143.22 138.47 139.74 141.60 142.59 140.20
4 296.51 295.91 297.59 300.56 295.11 290.26 293.27 295.05 293.11
5 419.76 431.77 422.26 431.40 424.69 412.92 425.40 431.74 428.88
6 893.51 890.36 897.20 905.16 894.98 860.06 897.78 891.15 898.15

Population Size: 100, 120, 150, 180, 200, 240, respectively
Generation Number: 250, 300, 375, 450, 500, 600, respectively

Table 6.21: CPU Times for maxNPV/minMWT

115

INS
Difficult Medium Easy

ANPV AMCT ANNS ANPV AMCT ANNS ANPV AMCT ANNS

Due Date Difficulty

1 2330.98 34.70 2 2919.73 32.00 1 2593.29 33.73 3
2 881.41 41.23 3 917.89 40.80 2 808.96 42.90 3
3 2399.85 39.31 3 2192.51 37.73 2 1410.81 42.87 3
4 403.59 43.75 4 989.16 41.37 2 84.09 46.30 6
5 2114.39 39.93 5 782.43 45.35 5 1036.96 42.07 3
6 183.18 44.85 6 260.57 43.45 5 -803.83 61.92 10

Lump Sum Payment Difficulty

1 -431.44 34.55 2 3244.05 30.40 1 5936.35 30.80 1
2 -912.83 49.49 8 1528.43 35.30 2 2363.57 41.57 3
3 -1974.80 47.12 4 2202.94 36.84 3 6407.08 36.30 2
4 -1524.79 61.31 10 168.99 44.13 3 3065.23 42.40 4
5 -3142.01 58.55 8 -193.93 47.25 4 4718.38 43.60 4
6 -2755.08 75.26 31 -433.98 50.00 6 2977.30 44.92 3

Resource Capacity Difficulty

1 2753.10 33.68 4 3698.37 28.80 1 3928.21 26.75 2
2 1094.99 37.35 2 2133.45 31.13 3 1932.18 31.94 5
3 1991.18 39.53 2 2805.99 37.12 4 3699.62 31.91 3
4 436.31 45.67 2 1355.08 37.03 2 1507.55 37.79 6
5 405.08 51.04 7 3418.17 36.02 3 2226.67 37.80 5
6 95.50 45.72 5 1775.36 39.35 1 -373.76 49.29 4

Table 6.22: Results for maxNPV/minMCT

In addition to these objectives, the instances are solved with the objective combina-
tions maxNPV/minMCT. Table 6.22 shows the average Npv and mean completion time
values of the instances. Moreover, Table 6.23 shows the corresponding CPU times in
seconds.

As for the next experiment, these instances are solved with the objective combina-
tion minCMAX/maxNPV/minRUD. Table 6.24 shows the average Cmax, average Npv
and average resource usage deviations of the instances. Moreover, Table 6.25 shows the
corresponding CPU times in seconds.

Finally, these instances are solved with the objective combination minCMAX/maxNPV/maxMO.
Tables 6.26 shows the average Cmax, average Npv and minimum outflow of the instances.
Moreover, Table 6.27 shows the corresponding CPU times in seconds.

In order to observe whether BFP is efficient for these objective combinations, some
experiments are performed. While solving the instances at first, discontinuation of the

116

INS
Due Date Lump Sum Payment Resource Capacity

CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E)

1 46.42 45.71 46.14 46.20 45.76 44.76 46.52 47.38 46.88
2 93.34 94.96 93.45 98.13 92.18 92.88 92.73 93.54 93.82
3 209.27 210.08 216.13 216.92 208.39 206.75 213.18 211.75 210.39
4 436.79 432.35 442.65 449.65 427.14 426.60 447.89 435.32 432.14
5 633.85 645.08 635.30 654.34 642.10 625.69 641.18 632.97 626.98
6 1297.86 1299.65 1363.93 1375.28 1346.56 1312.06 1337.46 1303.21 1343.46

Population Size: 126, 150, 188, 226, 250, 300, respectively
Generation Number: 300, 360, 450, 540, 600, 720, respectively

Table 6.23: CPU Times for maxNPV/minMCT

INS
Difficult Medium Easy

ACMAX ANPV ARUD ANNS ACMAX ANPV ARUD ANNS ACMAX ANPV ARUD ANNS

Due Date Difficulty

1 99.96 -2172.56 7.97 51 110.15 -2068.12 8.59 100 81.24 -1659.50 9.81 54
2 107.43 -1541.18 6.07 77 124.01 -1565.33 5.88 135 109.94 -1458.04 6.41 145
3 119.64 -3464.77 12.45 158 143.52 -3934.69 11.76 221 134.19 -3944.01 12.13 245
4 149.34 -2469.98 7.94 377 176.02 -2573.07 7.26 460 144.24 -2298.65 8.09 322
5 168.28 -5057.99 14.69 588 161.55 -4700.64 16.63 778 181.87 -4548.20 14.88 796
6 187.91 -3061.22 10.39 1115 169.22 -3328.57 9.84 728 186.37 -3075.58 10.45 974

Lump Sum Payment Difficulty

1 106.80 -2687.54 9.09 133 72.27 -1254.62 10.99 62 78.28 -469.23 10.13 32
2 116.08 -2004.31 6.12 166 113.17 -1547.40 5.50 54 91.76 -492.10 6.01 45
3 140.47 -4208.61 13.35 435 145.46 -3528.92 10.75 199 148.56 -3226.39 9.79 96
4 144.85 -3070.91 8.90 563 167.53 -2219.48 8.26 573 168.15 -1897.28 7.27 312
5 159.79 -5350.26 16.48 716 165.34 -4854.95 14.25 560 170.23 -4323.37 14.07 416
6 175.84 -3804.74 10.51 1074 186.81 -3204.16 10.24 940 188.57 -2947.06 9.34 679

Resource Capacity Difficulty

1 73.33 -1051.78 10.87 63 77.64 -339.75 10.18 56 65.59 -198.02 11.11 39
2 131.56 -1459.22 5.95 126 85.66 -826.55 6.67 67 115.51 -1444.93 6.04 116
3 143.58 -3327.58 12.35 342 145.51 -3929.64 10.14 164 144.73 -3094.60 11.03 216
4 135.72 -2371.84 8.10 240 148.61 -2505.77 7.04 199 164.28 -2082.87 7.41 475
5 162.46 -4568.76 16.16 653 176.60 -4556.24 13.72 601 185.35 -4535.24 13.27 653
6 182.57 -3399.02 9.62 900 196.82 -3089.85 9.13 809 184.41 -3080.62 8.80 654

Table 6.24: Results for minCMAX/maxNPV/minRUD

117

INS
Due Date Lump Sum Payment Resource Capacity

CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E)

1 49.58 50.23 48.99 50.11 48.40 49.02 49.12 50.89 51.05
2 103.52 104.89 103.51 104.13 102.97 102.71 104.94 102.70 105.83
3 229.03 237.79 235.44 238.15 234.71 234.13 237.48 238.51 240.10
4 481.18 487.97 482.13 479.92 487.04 493.94 478.55 486.65 486.95
5 694.24 691.04 703.34 695.25 695.82 696.78 689.25 709.38 710.63
6 1453.35 1427.51 1450.88 1449.41 1449.80 1439.01 1454.16 1473.15 1452.44

Population Size: 150, 180, 226, 270, 300, 360, respectively
Generation Number: 250, 300, 375, 450, 500, 600, respectively

Table 6.25: CPU Times for minCMAX/maxNPV/minRUD

INS
Difficult Medium Easy

ACMAX ANPV AMO ANNS ACMAX ANPV AMO ANNS ACMAX ANPV AMO ANNS

Due Date Difficulty

1 72.69 745.64 -3866.55 35 79.19 70.93 -4719.04 63 74.35 375.03 -4134.90 34
2 83.08 -218.93 -3517.75 87 81.32 2.58 -3322.99 82 100.91 -413.94 -2963.66 74
3 97.40 -1190.84 -6422.78 94 101.45 -1293.86 -6214.90 93 92.86 -1057.42 -6498.05 86
4 101.47 -478.25 -4311.34 144 112.56 -840.43 -3966.47 118 109.72 -884.04 -4106.28 109
5 106.36 -1336.48 -7936.36 122 95.31 -964.69 -8120.73 119 100.95 -1040.84 -7016.12 102
6 115.68 -1153.64 -5025.49 109 121.31 -1387.14 -5161.37 93 105.39 -877.03 -5604.20 141

Lump Sum Payment Difficulty

1 77.14 -1184.61 -4743.77 64 73.35 596.22 -3918.46 48 68.91 2404.94 -3895.79 35
2 95.34 -1029.00 -3181.42 94 78.25 138.78 -3244.73 60 83.95 634.11 -3444.09 77
3 93.03 -2627.97 -6587.96 65 90.09 -865.54 -6483.27 44 85.39 1693.97 -4826.69 49
4 109.78 -1544.41 -4137.29 130 100.09 -618.27 -4478.89 116 95.69 381.12 -4755.93 121
5 114.06 -2712.06 -7055.07 150 107.62 -1084.80 -7068.50 129 110.71 2.90 -7429.39 112
6 121.44 -2001.83 -4834.51 154 119.34 -989.80 -4781.64 132 102.56 339.90 -6420.26 161

Resource Capacity Difficulty

1 80.22 43.39 -4440.91 64 82.56 357.59 -3749.93 75 73.89 605.01 -4010.43 66
2 81.98 -79.62 -3410.03 88 74.49 734.85 -2782.68 41 80.00 513.34 -2537.35 71
3 95.77 -966.23 -6348.02 94 90.09 -262.19 -5545.99 67 86.25 31.89 -6299.82 97
4 105.01 -803.41 -4510.44 165 92.56 81.31 -4395.31 125 98.09 -336.16 -4094.31 128
5 103.31 -904.35 -6896.77 120 101.50 -878.29 -7640.89 121 97.79 -834.90 -7824.30 130
6 115.96 -1177.44 -5190.22 171 108.03 -256.27 -4731.20 116 102.93 -698.48 -6024.81 156

Table 6.26: Results for minCMAX/maxNPV/maxMO

INS
Due Date Lump Sum Payment Resource Capacity

CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E) CPU(D) CPU(M) CPU(E)

1 48.60 49.33 49.16 48.82 49.01 48.73 49.31 51.35 51.16
2 101.70 101.31 102.25 101.48 101.42 101.22 101.79 102.53 102.29
3 224.90 227.18 227.61 227.16 225.45 225.29 226.78 229.60 231.99
4 466.82 469.98 466.20 466.82 464.07 464.28 469.04 463.80 465.14
5 670.83 670.38 672.64 676.25 671.46 675.07 670.54 680.69 672.10
6 1400.71 1396.96 1390.42 1404.23 1391.66 1397.81 1394.22 1390.59 1385.37

Population Size: 150, 180, 226, 270, 300, 360, respectively
Generation Number: 250, 300, 375, 450, 500, 600, respectively

Table 6.27: CPU Times for minCMAX/maxNPV/maxMO

118

INS
maxNPV/minMFT maxNPV/minMWT maxNPV/minMCT

Threshold Stoppage Threshold Stoppage Threshold Stoppage

1 13 5 15 5 13 5
2 15 5 15 5 15 5
3 17 5 15 5 21 5
4 19 5 13 5 15 5
5 17 5 15 5 17 5
6 15 5 15 5 19 5

Table 6.28: Threshold and Stoppage Values for Different Objective Combinations

archive is recorded. Similar to previous experiments, the same method for determining
the threshold values for BFP in the intermediate stages are used. BFP in the final stage is
not applied because it is observed not to be more efficient than BFP in the intermediate
stages.

Firstly, the threshold values of the instances are given. These tables are prepared for
each objective combination separately. Table 6.28 shows the threshold values for BFP in
the intermediate stages. These values are not given for the objective combinations minC-
MAX/maxNPV/minRUD and minCMAX/maxNPV/maxMO because the discontinuation
level can not reach to even 5. This means that the ability of the archive to renewing it-
self is excellent for these objective combinations. Thus, for the corresponding objective
combinations, BFP is applied only in the final stage.

The results of the BFP in the intermediate stages are shown in the following tables.
For the objective combination maxNPV/minMFT, Table 6.29 show the average Npv, mean
flow time and the number of non-dominated solutions obtained with different scenarios,
which are explained for Tables 6.9, 6.10 and 6.11. For the following tables, the letters D,
M and E in the second columns corresponds to the different difficulty levels of the factors
in the first columns. (D: difficult, M: medium, E: easy)

For the objective combination maxNPV/minMWT, the algorithm is performed with
applying BFP in the intermediate stages by using the threshold values in Table 6.28. Table
6.30 shows the corresponding results.

For the objective combination maxNPV/minMCT, the algorithm is performed with
applying BFP in the intermediate stages by using the threshold values in Table ??. Table
6.30 show the corresponding results.

As for the objective combinations minCMAX/maxNPV/minRUD and minCMAX/maxNPV/maxMO,
BFP is applied only in the final stage. It should be noted that the number of solutions in
instances whose number of activity is 240 is very high. Thus, during applying BFP on

119

INS
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ANPV AMFT ANNS ANPV AMFT ANNS ANPV AMFT ANNS

Due D 774.50 40.29 3.50 3816.81 28.05 3.00 3797.25 28.01 3.17
Date M 1081.71 39.71 3.33 3550.47 28.48 3.17 3603.50 28.47 2.83
Difficulty E 854.86 40.78 2.83 3908.02 27.90 2.33 3908.02 27.90 2.33

Lump Sum D -1388.73 44.33 6.00 -616.84 37.48 7.00 -78.28 28.46 2.33
Payment M 523.49 41.60 4.50 3544.67 28.66 2.50 3544.67 28.66 2.50
Difficulty E 4138.85 38.38 2.67 7139.35 28.55 2.33 7139.35 28.55 2.33

Resource D 857.94 40.34 3.50 3520.85 28.21 2.83 3520.85 28.21 2.83
Capacity M 2073.31 35.03 3.17 4856.74 24.38 2.00 4856.74 24.38 2.00
Difficulty E 1873.17 35.83 4.17 4983.56 23.71 2.33 4983.56 23.71 2.33

Table 6.29: The Result of BFP Procedure for maxNPV/minMFT

INS
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ANPV AMWT ANNS ANPV AMWT ANNS ANPV AMWT ANNS

Due D 945.28 0.68 3.33 3946.53 0.00 1 3946.53 0.00 1
Date M 485.07 1.41 2.50 3640.64 0.00 1 3651.42 0.00 1
Difficulty E 542.00 0.42 2.33 3483.58 0.00 1 3483.58 0.00 1

Lump Sum D -1602.41 5.52 9.17 -365.25 1.21 3 226.05 0.00 1
Payment M 966.82 0.42 2.17 3917.38 0.00 1 3917.38 0.00 1
Difficulty E 4232.88 0.00 1.00 7368.43 0.00 1 7368.43 0.00 1

Resource D 961.72 0.06 1.83 3962.99 0.00 1 3972.28 0.00 1
Capacity M 1967.34 0.00 1.00 4869.80 0.00 1 4869.80 0.00 1
Difficulty E 2014.86 0.07 1.50 5181.15 0.00 1 5181.15 0.00 1

Table 6.30: The Result of BFP Procedure for maxNPV/minMWT

INS
GA Application

BFP in the Intermediate Stages

Without BFP on the Archive BFP on the Archive

ANPV AMCT ANNS ANPV AMCT ANNS ANPV AMCT ANNS

Due D 1385.57 40.63 3.83 4023.63 29.06 1.00 4023.63 29.06 1.00
Date M 1343.72 40.12 2.83 3235.12 31.12 1.67 3772.65 29.55 1.33
Difficulty E 855.05 44.96 4.67 4062.93 28.92 1.83 4062.50 28.92 2.00

Lump Sum D -1790.16 54.38 10.50 -1073.38 45.68 8.83 165.84 29.31 2.33
Payment M 1086.08 40.65 3.17 4175.99 28.83 1.83 4205.62 28.74 1.50
Difficulty E 4244.65 39.93 2.83 7064.32 30.09 1.50 7068.35 30.08 1.50

Resource D 1129.36 42.16 3.67 4025.36 29.06 1.67 4025.36 29.06 1.67
Capacity M 2531.07 34.91 2.33 5044.66 25.16 1.17 5044.66 25.16 1.17
Difficulty E 2153.41 35.91 4.17 5151.87 24.29 1.67 5151.87 24.29 1.67

Table 6.31: The Result of BFP Procedure for maxNPV/minMCT

120

INS
Without BFP on the Archive BFP on the Archive

ACMAX ANPV ARUD ANNS ACMAX ANPV ARUD ANNS

Due D 129.16 -2641.35 10.14 263.80 34.24 2691.25 4.79 19.20
Date M 138.93 -2865.66 9.57 293.20 35.03 2385.27 5.32 22.20
Difficulty E 133.33 -2835.01 9.79 270.60 33.99 2794.10 4.68 18.60

Lump Sum D 133.59 -3458.20 10.68 430.00 47.50 -519.64 9.37 30.20
Payment M 134.30 -2889.33 9.78 246.00 34.40 2757.05 5.68 23.00
Difficulty E 127.99 -1834.45 9.17 159.80 35.08 5865.37 5.34 17.40

Resource D 142.23 -2867.57 9.71 325.00 34.38 2554.33 4.98 20.00
Capacity M 136.65 -2562.70 9.36 291.60 44.56 3254.22 7.65 25.40
Difficulty E 127.59 -2503.89 9.35 214.80 61.11 2390.78 10.85 48.60

Table 6.32: The Result of BFP Procedure for minCMAX/maxNPV/minRUD

INS
Without BFP on the Archive BFP on the Archive

ACMAX ANPV AMO ANNS ACMAX ANPV AMO ANNS

Due D 94.48 -450.22 -5113.11 89.20 92.37 -32.78 -4971.15 84.40
Date M 89.17 -491.66 -5191.59 82.40 85.97 122.41 -5076.05 78.40
Difficulty E 92.78 -639.85 -5086.27 87.20 91.66 -211.79 -5082.06 79.40
Lump Sum D 97.56 -1908.76 -5217.07 91.80 94.12 -1564.31 -5248.70 90.80
Payment M 95.76 -649.61 -5031.59 77.80 93.39 -152.55 -5070.82 73.40
Difficulty E 94.69 863.25 -4493.67 78.40 88.67 1556.52 -4791.37 84.60
Resource D 94.30 -574.97 -4689.61 75.80 88.32 -60.14 -4991.76 81.80
Capacity M 90.81 -88.58 -4847.73 90.40 86.80 280.33 -5001.63 95.20
Difficulty E 89.58 60.44 -4856.91 87.20 89.62 360.93 -4700.45 79.20

Table 6.33: The Result of BFP Procedure for minCMAX/maxNPV/maxMO

these solutions, memory limit becomes a constraint for the algorithm. Therefore, follow-
ing tables 6.32 and 6.33 show the results of the instances excluding the instances whose
number of activity is 240.

6.2 Results

After all of the experiments, some insights are gained about the performance of the algo-
rithm, the performance of BFP and the performance of entropy-based divergence applica-
tion.

121

6.2.1 The test instances generated in Can and Ulusoy [20]

When BFP is applied only in the final stage, it is observed that BFP shows good perfor-
mance. For all of the instance sets A, B and C, the solutions obtained without BFP on
the archive are significantly improved by applying BFP on this solution set. However,
the number of solutions provided is decreased significantly. This situation can be evalu-
ated that as the quality of a solution increases, this solution starts becoming rare and the
probability of finding any better solution decreases. Another interpretation can be made
that BFP procedure can not explore the neighborhood of the solutions on which BFP is
applied.

In addition to simple observation made to determine whether a difference between
average Cmax and Npv values exists, the result of paired t-test can be evaluated for this
purpose as well. According to the results in Table 6.6, 6.7 and 6.8, there are significant
improvements between them for all sets A, B and C since the corresponding t stat values
are in rejection regions. That is, all t stat values are either bigger than the corresponding t
critical values or less than the negative of the corresponding t critical values. Paired t-test
is executed with 0.05 significance level.

BFP is applied in the intermediate stages of the algorithm. In this case, if the quality of
the solutions obtained without applying BFP on the archive is compared to the quality of
the solutions obtained with pure application of GA, it reveals that BFP in the intermediate
stages seems to be effective. In addition, the number of non-dominated solutions are gen-
erally decreased, but not seriously. That aspect can be accepted as one of the advantages
of BFP in the intermediate stages. Moreover, when BFP is applied in the intermediate
stages, the quality of the solutions obtained without BFP on the archive and the solutions
obtained with BFP on the archive can be compared. It is observed slight improvements, if
at all. This observation implies that improvements introduced by BFP in the intermediate
stages do not leave much room for further improvement. The number of non-dominated
solutions between these two groups are not significantly different as well.

CPU times should also be evaluated. Average running times of the algorithm in which
BFP is applied only in the final stage are longer than those of the algorithm, where BFP
is applied in the intermediate stages. While the difference between CPU times is not sig-
nificant for set A, it becomes very important if set B and C is considered. It means BFP
in the intermediate stages is superior than BFP in the final stage in terms of both solution
quality and CPU times. Even for set C, since the solution quality of BFP in the interme-
diate stages is better than those of BFP in the final stage, a small difference between CPU

122

times can be disregarded. The reason why CPU times of BFP in the intermediate stages is
less than those of BFP in the final stage is that the algorithm stops after a couple of BFP
applications.

It is interesting to interpret Table 6.12. In this table, the frequency of BFP applications
during the implementation of GA are shown. Additionally, the bounds on generations
numbers are presented. It should be noted that when pure GA is run, the algorithm runs
until the bound on generation numbers without observing its convergence. We should
inform that we will study pure GA with convergence application, which will be similar to
archive based convergence check.

When entropy-based divergence application is performed, it seems to be inefficient.
As stated before, entropy-based divergence application is operated for only set A. It
should be recalled that if entropy-based divergence is applied in the algorithm, BFP is
used neither for the final stage and nor for the intermediate stages. The results show that
the solutions obtained with entropy-based divergence application is worse than the solu-
tions obtained with pure GA application. In Table 6.3, the columns under the heading
Without BFP on the Archive show the results when BFP is never used. Thus, it can be
said that entropy-based divergence application performs worse than the pure GA. Fur-
thermore, since entropy-based divergence applies some additional operations, it increases
CPU times. Although it seems to be ineffective, we would like to study more on it by
modifying the procedure. This might become one of our future studies.

By observing the frequencies of activity and mode entropies, it can be seen that the
number of times that entropy-based divergence is applied is reasonable. It means that the
threshold values are determined well. In addition, it seems that the frequency values of
the second level thresholds are larger than those of the first level thresholds. It becomes
in line with our expectations.

6.2.2 The test instances generated in this thesis

The test instances generated in this thesis are solved with five different objective com-
binations, which are maxNPV/minMFT, maxNPV/minMWT, maxNPV/minMCT, minC-
MAX/maxNPV/minRUD and minCMAX/maxNPV/maxMO. In addition, the effect of
BFP is observed on these objectives.

123

6.2.2.1 Bi-objective

• maxNPV/minMFT (Maximization of Npv and minimization of mean flow time of the
projects): When maxNPV/minMFT is the objective combination, the differences in due
date difficulties and resource capacity difficulties of the instances do not effect the solution
quality. That is, no pattern in solution quality (the objective values) is observed. It can be
interpreted that the differences between difficulty levels might not be significant to be able
to create differences on solution qualities. However, the variation in lump sum payment
difficulties generally affects the solution quality. It is naturally true that if lump sum
payments of the projects are increased, average Npv values of the instances are increased.
The other point is that average mean flow time of the projects are also generally affected
and decreased. That might be a signal that as lump sum payments increase, the algorithm
tries to complete the projects as soon as possible to take advantage of the lump sum
payments. As for CPU times, the variation in lump sum payment difficulties are observed
to affect the running time. As lump sum payments of the projects are increased, the
running times of the algorithm are decreased. This might imply that when lump sum
payments increase, the objectives does not become conflicting any more and the problem
turns into single objective problem. Any clear pattern like this is not observed in due
date difficulties and resource capacity difficulties. It is not observed that average number
of non-dominated solutions are significantly different through different difficulties of due
dates, resource capacities and lump sum payments.
•maxNPV/minMWT (Maximization of Npv and minimization of mean weighted tar-

diness of the projects): If maxNPV/minMWT is the objective combination, the difficulty
levels of due date and resource capacity do not impact the solution quality. In other words,
as due date and resource capacity difficulties are decreased, any pattern in Npv or mean
weighted tardiness values is not observed. This can be evaluated with the same reason
above. However, the changes in lump sum payments clearly impact the solution quality.
As lump sum payments of the projects are increased, average Npv values are increased
and mean weighted tardiness values are decreased except for the first instance. Whereas
it is obvious that the increase of lump sum payments positively affects the Npv values,
it is interesting to observe that mean weighted tardiness values are decreased. This case
may be evaluated with the same consideration above. As for the average number of non-
dominated solutions, they are generally decreased with the decrease of mean weighted
tardiness. It is clear that if mean weighted tardiness becomes zero, then the problem turns
into single objective problem. Thus, the average number of non-dominated solutions are

124

generally one. If CPU times are considered, any pattern is not observed.
• maxNPV/minMCT (Maximization of Npv and minimization of mean completion

time of the projects): If maxNPV/minMCT is considered as the objective combination, the
mean completion times of the projects show an interesting pattern that average completion
time values of the medium due date difficulty instances are minimum as compared to other
difficulty labels, except for fifth instance. On the other hand, average Npv values are not
affected by the variation in due date difficulties. As for the number of solutions provided,
medium difficulty instances can find minimum number of solutions when compared to
other difficulty labels. Furthermore, as lump sum payments are increased, average Npv
values are also clearly increased and average completion times are decreased, except for
the first and the second instance. In contrast to all of these findings, the variation in
resource capacity difficulties do not influence the solution quality. Moreover, CPU times
of instances, which are solved with lump sum payment difficulties, show that as lump sum
payments are increased, running times of the algorithm are generally decreased. This
case may be evaluated with same reasoning above. As for the average number of non-
dominated solutions, any pattern is not observed.

6.2.2.2 Triple-objective

•minCMAX/maxNPV/minRUD (Minimization of Cmax, maximization of Npv and min-
imization of resource usage deviation): In the case that minCMAX/maxNPV/minRUD is
considered as the objective combination, the levels of due date difficulty and resource
capacity difficulty do not impact the solution quality. That is, no pattern is observed in
average Cmax, Npv and the number of non-dominated solutions. This case may be ex-
plained with the same reason that the difference between the due date difficulties and
resource capacity difficulties are not significant. The increase of lump sum payments
causes Cmax values to increase and average deviation values to decrease, especially for
the last four instances. Npv values are naturally increased with the decrease of lump
sum payment difficulties. It is also interesting to observe that number of solutions are
decreased as lump sum payment difficulties are decreased. This case might be explained
that as lump sum payments increase, the conflicting relationship between Cmax and Npv
is not valid anymore. Thus, domination principle of the algorithm labels less individu-
als as non-dominated. As for running times, no pattern is observed in CPU times of the
algorithm.
• minCMAX/maxNPV/maxMO (Minimization of Cmax, maximization of Npv and

maximization of minimum outflow): When GA is performed with the objective combi-

125

nation minCMAX/maxNPV/maxMO, it is observed that the variation in due date does
not influence the solution quality, but it impacts the average number of solutions. As
due date difficulty increases, the number of solutions increases. Like due date difficulty
levels, resource capacity difficulty levels do not impact the solution quality. In addition,
lump sum payment difficulty levels affect only Npv values. It should be emphasized in
this point that average minimum outflow values are not affected by the variation in lump
sum payment difficulties. This case is obvious that maximum outflow of the projects are
not affected by the lump sum payments if the way of calculating maximum outflow is
considered. Additionally, no pattern is observed in CPU times of the algorithm.

6.2.2.3 The evaluation of BFP for current objectives

As stated before in Section 6.1.2, BFP is applied in the intermediate stages when solving
the test instances with the objective combinations maxNPV/minMFT, maxNPV/minMWT
and maxNPV/minNCT. It is performed only in the final stage when GA solves them with
the objective combinations minCMAX/maxNPV/minRUD and minCMAX/maxNPV/maxMO.
The reason for this is that the archive can find better solutions in a couple of generations. It
means that the ability of the archive to find better solutions is excellent. One possible rea-
son for this situation is that non-dominated sorting procedure considers three objectives
simultaneously and this increases the probability of finding better solutions. Thus, since
BFP is applied for improving the solution quality when the algorithm can not find better
solutions through predetermined number of generations, it is not preferred for the objec-
tive combinations minCMAX/maxNPV/minRUD and minCMAX/maxNPV/maxMO.

It is observed that BFP in the intermediate stages becomes efficient for the objec-
tive combinations maxNPV/minMFT, maxNPV/minMWT and maxNPV/minNCT. Sig-
nificant improvements are observed when the quality of the solutions obtained after the
last generation of GA (the solutions under the heading Without BFP on the Archive) and
the quality of the solutions obtained with pure GA (the solutions under the heading GA
Application) are compared to each other. Furthermore, there are small improvements
between the solution quality obtained with BFP in the intermediate stages and BFP on
the archive. This observation implies that improvements introduced by BFP in the in-
termediate stages do not leave much room for further improvement. While these results
are enough to claim that BFP in the intermediate stages are efficient for these objectives,
CPU times also support the efficiency of the algorithm. The running time of the algorithm
in which BFP in the intermediate stages are applied are less than those of the algorithm,
which is called pure GA.

126

It can be said that BFP in the final stage is also efficient for improving the solution
quality when minCMAX/maxNPV/minRUD is the objective combination. However, the
same claim can not be made as strongly for objective combination minCMAX/maxNPV/maxMO
because only a small improvement is observed for this case.

127

Chapter 7

Conclusion

In this thesis, multi-objective multi-project resource constrained project scheduling prob-
lem is considered. For this problem, as can be seen in the literature, several exact, heuris-
tic and metaheuristic solution procedures have been developed. Among metaheuristic
procedures, GA, SA and TS are observed to be the best algorithms by different studies.
Since multi-objective solution requires a different framework in these algorithms, various
adjustments have been performed on them. For GA procedure, one of the best multi-
objective solution procedure is accepted as NSGA-II proposed by Deb [39]. Therefore,
in addition to utilizing NSGA-II in the proposed form, some extensions are proposed and
implemented in this thesis.

During implementing the algorithm, the effort is not bounded tightly. In other words,
while implementing a part of the algorithm, various forms of the corresponding part are
taken into account and tried to be applied, if possible. The reason of this variety is to
be able to gain and maintain the efficiency and the flexibility in the algorithm. For this
purpose, several objective functions (and objective combinations) are adopted from the
literature and some of them are developed in this thesis. While implementing the objective
combinations, conflicting objectives must exist in the objective combinations. That is,
while an objective gets better, the other objective should get worse. Therefore, a time-
based objective and a monetary-based objective are generally considered simultaneously
in an objective combination.

There are a couple of instance libraries created by different studies. In this thesis, the
instance library called PSPLIB (project scheduling problem library) created by Kolisch
and Sprecher [89] is preferred. Since the instances in this library have only time-based in-
formation of project and are created for only single project instances, the monetary-based

128

information of projects are assigned. There are two different cost assignment techniques
in this thesis, one of which is implemented for fine-tuning of the parameters, which is
conducted with single projects and the other one is applied for creating multi-project in-
stance files from single project instance files. The second cost assignment technique is
adopted from Can and Ulusoy [20]. While creating the multi-project instance files, a
method is proposed in this thesis. According to this method, three different instance sets
with respect to different due date, lump sum payment and resource capacity difficulties
are created. In addition, a multi-project instance set created by Can and Ulusoy [20] is
utilized as well.

In order to maintain the flexibility of the algorithm, three different crossover mech-
anisms (one-point crossover, two-point crossover and multi-component uniform order-
based crossover) and two different parent selection mechanisms (roulette wheel selection
and binary tournament selection) are implemented. Moreover, the way of forming the
initial population varies. Two different techniques, which are random initial population
and feasible initial population are implemented. Whereas random initial population is im-
plemented as proposed in the literature, the feasible initial population is proposed in this
thesis to secure that all individuals are feasible with respect to non-renewable resources.

Fine-tuning of the parameters of GA is executed twice. The first experiment is per-
formed in depth with single project instance files taken from Kolisch and Sprecher [89]. In
this experiment, parameter combinations (population size, generation number, crossover
rate and mutation rate) and operant combinations (one-point crossover and roulette wheel
selection, one-point crossover and binary tournament selection, two-point crossover and
roulette wheel selection, two-point crossover and binary tournament selection, multi-
component uniform order-based crossover and roulette wheel selection, multi-component
uniform order-based crossover and binary tournament selection) are experimented. In
order to evaluate the solution quality, hypervolume, maximum spread and the number
of non-dominated solutions obtained at the end of implementation of the algorithm are
accepted as performance measures. As for the second experiment, it is conducted with
multi-project instances. While the main procedure is the same with the previous exper-
iment, some differences exist such as the exclusion of crossover and parent selection
mechanisms and the exclusion of crossover and mutation rates. The reason of conducting
a new experiment is that population size and generation numbers should be functions of
the number of total activities in multi-project network. For both experiments, response
surface optimization, which is a statistical method, is utilized for determining the best
parameter combinations.

129

Various mechanisms for maintaining the diversity and improving the solution quality
are proposed in this thesis. However, entropy-based divergence application and backward
and forward pass procedures are studied in detail. The former one basically depends on
the structural similarity of the chromosomes for determining the convergence of the al-
gorithm. In this is the case, then some precautions are taken for both activity positions
similarity and assigned mode similarities. The second method is developed so as to im-
prove the solution quality. It improves the solution quality by shifting the activities to the
left by using the slacks (forward pass) and shifting the activities to the right (backward
pass). It is developed for all objective combinations considered in this thesis.

In computational study, the multi-project instance sets created by Can and Ulusoy [20]
are solved with the objective combination minCMAX/maxNPV. BFP procedure is applied
both in the final stage and in the intermediate stages to evaluate the affect of this procedure
on solution quality. When it is applied in the final stages, the solution quality improves.
However, the number of non-dominated solutions decreases because as BFP finds better
solutions, much better solutions become rare. An alternative explanation can be that BFP
can not explore the broader area. In case that BFP is applied in the intermediate stages,
it shows good performance if it is compared to pure GA. In addition, the number of
non-dominated solutions do not decrease seriously. If BFP in the intermediate stages is
compared to BFP on the archive, then a slight improvement is observed because the good
performance of BFP in the intermediate stages does not leave a room for improvement.
As for CPU times, the running times of BFP in the intermediate stages are less than
those of pure GA and those of BFP in the final stage. This occurs because the algorithm
can stop running if any improvement chance is not observed during application of BFP
in the intermediate stages. In this point, we should recall that pure GA will be studied
with archive-based convergence check. In other words, the algorithm will be able to stop
running if it is observed that the archive can not renew itself.

In addition to BFP procedure, entropy-based divergence application is applied as well
for a small part of the instance set created by Can and Ulusoy [20]. It is observed that the
divergence application is not efficient for improving the solution quality. We will try to
improve its mechanism and observe whether it is efficient.

The multi-project instance set created in this thesis are solved with the remaining ob-
jective combinations. Since they have different difficulty levels of due date, lump sum
payment and resource capacity, the effects of change in difficulties are observed on the
solution quality. In addition, BFP procedure is applied in the final stage for some objec-
tive combinations and is applied in the intermediate stages for the remaining objective

130

combinations.
According to the results, the variation in due date and resource capacity difficulties

do not affect the solution quality for almost all objective combinations. The reason of
this observation may be that difference in the difficulties is not significant to be able to
create differences in solution quality. For the objective combinations maxNPV/minMFT,
maxNPV/minMWT and maxNPV/minMCT, the differences in lump sum payment impact
the solution quality. In other words, as lump sum payments increase, average MFT, MWT
and MCT values decrease and average NPV values increase. The reason behind it is that
the algorithm tries to complete the projects as soon as possible to take advantage of lump
sum payments. If the objective combinations maxNPV/minMFT and maxNPV/minMCT
are considered, as lump sum payments increase, the running time of the algorithm de-
creases probably because of turning of the problem into single objective case. In both
the objective combinations maxNPV/minMWT and minCMAX/maxNPV/minRUD, the
number of non-dominated solutions decreases when average MWT decreases and lump
sum payments increase, respectively. The reasons for both case may be the same that the
multi-objective problem turns into single objective problem under the conditions men-
tioned. In other words, the domination principle of the algorithm can label less individu-
als as non-dominated. For the last objective combination minCMAX/maxNPV/maxMO,
lump sum payment do not affect the average MO because of the nature of MO calcula-
tion. As one of future studies, multi-factor analysis of the results will be studied more
elaborately.

BFP is applied in the final stage with triple-objective because the archive can renew
itself excellently. The reason of this is that triple-objective case facilitates the algorithm
to find better solutions easier. Thus, it is not necessary to apply BFP in the intermediate
stages when triple-objective considered. For the remaining objective combinations, BFP
is applied in the intermediate stages. According to the results, both BFP in the final stage
and intermediate stages show good performance.

131

Bibliography

[1] Abbasi, B., Shadrokh, S., and Arkat, J. (2006). Bi-objective resource-constrained
project scheduling with robustness and makespan criteria. Applied Mathematics and

Computation, 180:146.

[2] Adhau, S., Mittal, M. L., and Mittal, A. (2012). A multi-agent system for distributed
multi-project scheduling: An auction-based negotiation approach. Engineering Appli-

cations of Artificial Intelligence, 25:1738–1751.

[3] Al-Fawzana, M. and Haouari, M. (2005). A bi-objective model for robust resource-
constrained project scheduling. International Journal of Production Economics,
96:175–187.

[4] Alcaraz, J. and Maroto, C. (2001). A robust genetic algorithm for resource allocation
in project scheduling. Annals of Operations Research, 102:83–109.

[5] Alcaraz, J., Maroto, C., and Ruiz, R. (2004). Improving the performance of genetic
algorithms for the rcps problem. In Proceedings of the Ninth International Workshop

on Project Management and Scheduling, pages 40–43.

[6] Arazo, J. A., Pajares, J., and Lopez-Paredes, A. (2010). Simulating the dynamic
scheduling of project portfolios. Simulation Modelling Practice and Theory, 18:1428–
1441.

[7] Azaron, A., Katagiri, H., and Sakawa, M. (2007). Time-cost trade-off via optimal
control theory in markov pert networks. Annals of Operations Research, 150:47–64.

[8] Ballestı́n, F. and Blanco, R. (2011). Theoretical and practical fundamentals for multi-
objective optimisation in resource-constrained project scheduling problems. Comput-

ers & Operations Research, 38:51–62.

132

[9] Bartusch, M., Mhring, R. H., and Radermacher, F. C. (1988). Scheduling project
networks with resource constraints and time windows. Annals of Operations Research,
16:201–240.

[10] Blazewicz, J., Lenstra, J. K., and Kan, A. H. G. (1983). Scheduling subject to
resource constraints: classification and complexity. Annals of Operations Research,
5:11–24.

[11] Boctor, D. (2008). Project management organization. Management, 3:3–9.

[12] Boctor, F. F. (1990). Some efficient multi-heuristic procedures for resource-
constrained project scheduling. European Journal of Operational Research Volume,
49:3–13.

[13] Bomsdorf, F. and Derigs, U. (2008). A model, heuristic procedure and decision sup-
port system for solving the movie shoot scheduling problem. OR Spectrum, 30:751–
772.

[14] Bouffard, V. and Ferland, J. A. (2007). Improving simulated annealing with variable
neighborhood search to solve the resource-constrained scheduling problem. Journal of

Scheduling, 10:375–386.

[15] Bouleimen, K. and Lecocq, H. (2003). A new efficient simulated annealing algo-
rithm for the resource-constrained project scheduling problem and its multiple modes
version. European Journal of Operational Research, 149:268–281.

[16] Brinkmann, K. and Neumann, K. (1996). Heuristic procedures for resourcecon-
strained project scheduling with minimal and maximal time lags: the resourcelevelling
and minimum projectduration problems. Journal of Decision Systems, 5:129–155.

[17] Browning, T. R. and Yassine, A. A. (2010). Resource-constrained multi-project
scheduling: priority rule performance revisited. International Journal of Production

Economics, 126:212–228.

[18] Brucker, P. and Knust, S. (2000). A linear programming and constraint propagation-
based lower bound for the rcpsp.

[19] Brucker, P., Knust, S., Schoo, A., and Thiele, O. (1998). A branch and bound
algorithm for the resource-constrained project scheduling problem. European Journal

of Operational Research, 107:272–288.

133

[20] Can, A. and Ulusoy, G. (2010). Multi-project scheduling with 2-stage decomposi-
tion.

[21] Carazo, A. F., Gmez, T., Molina, J., Hernndez-Daz, A. G., Guerrero, F. M., and Ca-
ballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio
selection. Computers & Operations Research, 37:630–639.

[22] Cesta, A., Oddi, A. H., and Smith, S. F. (2002). A constrained-based method for
project scheduling with time windows. Journal of Heuristics, 8:109–136.

[23] Chen, J. and Askin, R. G. (2009). Project selection, scheduling and resource al-
location with time dependent returns. European Journal of Operational Research,
193:23–34.

[24] Chen, P. H. and Shahandashti, S. M. (2009). Hybrid of genetic algorithm and sim-
ulated annealing for multiple project scheduling with multiple resource constraints.
Automation in Construction, 18:434–443.

[25] Chen, V. Y. (1994). A 0-1 goal programming model for scheduling multiple mainte-
nance projects at a copper mine. European Journal of Operational Research, 76:176–
191.

[26] Cheng, H., Chiang, T., and Fu, L. (2011). A two-stage hybrid memetic algorithm
for multiobjective job shop scheduling. Expert Systems with Applications, 38:10983–
10998.

[27] Chiu, H. N. and Tsai, D. M. (2002). An efficient search procedure for the resource-
constrained multi-project scheduling problem with discounted cash flows. Construc-

tion Management & Economics, 20:55–66.

[28] Cho, J. H. and Kim, Y. D. (1997). A simulated annealing algorithm for resource
constrained project scheduling problems. Journal of the Operational Research Society,
48:735–744.

[29] Cochran, J., Horng, S., and Fowler, J. (2003). A multi-population genetic algo-
rithm to solve multi-objective scheduling problems for parallel machines. Computers

& Operations Research, 30:1087–1102.

[30] Coffin, M. A. and Taylor III, B. W. (1996). Multiple criteria r&d project selection
and scheduling using fuzzy logic. Computers & Operations Research, 23:207–220.

134

[31] Confessore, G., Giordani, S., and Rismondo, S. (2007). A market-based multi-
agent system model for decentralized multi-project scheduling. Annals of Operations

Research, 150:115–135.

[32] Cooper, D. (1976). Heuristics for scheduling resource-constrained projects: An
experimental investigation. Management Science, 22:1186–1194.

[33] Czyzak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria

Analysis, 7:34–47.

[34] Davis, E. and Patterson, J. (1975). A comparison of heuristic and optimum solutions
in resource-constrained project scheduling. Management Science, 21:944–955.

[35] Davis, K., Stam, A., and Grzybowski, R. (1992). Resource constrained project
scheduling with multiple objectives: A decision support approach. Computers & Op-

erations Research, 19:657–669.

[36] De Reyck, B. and Herroelen, W. S. (1998a). A branch-and-bound procedure for
the resource-constrained project scheduling problem with generalized precedence re-
lations. European Journal of Operational Research, 111:152–174.

[37] De Reyck, B. and Herroelen, W. S. (1998b). An optimal procedure for the resource-
constrained project scheduling problem with discounted cash flows and generalized
precedence relations. Computers & Operations Research, 25:1–17.

[38] De Reyck, B. and Herroelen, W. S. (1999). The multi-mode resource-constrained
project scheduling problem with generalized precedence relations. European Journal

of Operational Research, 119:538–556.

[39] Deb, K. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation, 6:182–197.

[40] Debels, D., Reyck, B. D., Leus, R., and Vanhoucke, M. (2006). A hybrid scatter
search/electromagnetism meta-heuristic for project scheduling. European Journal of

Operational Research, 169:638–653.

[41] Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). A random network
generator for activity-on-the-node networks. Journal of Scheduling, 6:13–34.

135

[42] Demeulemeester, E. L. and Herroelen, W. S. (1992). A branch-and-bound proce-
dure for the multiple resource-constrained project scheduling problem. Management

Science, 38:1803–1818.

[43] Demeulemeester, E. L. and Herroelen, W. S. (1997). New benchmark results for
the resource-constrained project scheduling problem. Management Science, 43:1485–
1492.

[44] Doersch, R. H. and Patterson, J. H. (1977). Scheduling a project to maximize its
present value: A zero-one programming approach. Management Science, 23:882–889.

[45] Dorndorf, U., Pesch, E., and Phan-Huy, T. (2000). Time-oriented branch and bound
algorithm for resource constrained project scheduling with generalized precedence
constaints. Management Science, 46:1365–1384.

[46] Drexl, A. (1991). Scheduling of project networks by job assignments. Management

Science, 37:1590.

[47] Drexl, A. and Grnewald, J. (1993). Nonpreemptive multi-mode resource constrained
project scheduling. IIE Transactions, 25:74–81.

[48] Elazouni, A. and Abido, M. (2011). Multiobjective evolutionary finance-based
scheduling: Individual projects within a portfolio. Automation in Construction,
20:755–766.

[49] Elloumi, S. and Fortemps, P. (2010). A hybrid rank-based evolutionary algorithm
applied to multi-mode resource-constrained project scheduling problem. European

Journal of Operational Research, 205:31–41.

[50] Esquivel, S., Ferrero, S., Gallard, R., Salto, C., Alfonso, H., and Schtz, M. (2002).
Enhanced evolutionary algorithms for single and multiobjective optimization in the job
shop scheduling problem. Knowledge-Based Systems, 15:13–25.

[51] Fatemi Ghomi, S. M. T. and Ashjari, B. (2002). A simulation model for multi-project
resource allocation. International Journal of Project Management, 20:127–130.

[52] Fest, A., Mhring, R. H., Stork, F., and Uetz, M. (1999). Resource-constrained project
scheduling witm time windows: A branching scheme based on dynamic release dates.
Technical report, Technical University of Berlin.

136

[53] Fleischer, M. (2002). The Measure of Pareto Optima: Applications to Multiobjective
Metaheuristics. Technical report, Army Research Laboratory.

[54] Fleszar, K. and Hindi, K. S. (2004). Solving the resource-constrained project
scheduling problem by a variable neighbourhood search. European Journal of Op-

erational Research, 155:402–413.

[55] Fowler, J. W., Kim, B., Carlyle, W. M., Gel, E., and Horng, S. (2005). Evaluating so-
lution sets of a posteriori solution techniques for bi-criteria combinatorial optimization
problems. Journal of Scheduling, 8:75–96.

[56] Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., and Javanmardi, A. (2013). Multi-
mode resource-constrained discrete timecost-resource optimization in project schedul-
ing using non-dominated sorting genetic algorithm. Automation in Construction,
30:216–227.

[57] Goncalves, J. F., Mendes, J. J., and Resende, M. G. (2008). A genetic algorithm
for the resource constrained multi-project scheduling problem. European Journal of

Operational Research, 189:1171–1190.

[58] Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., and Denk, M. (2010).
Multi-objective decision analysis for competence-oriented project portfolio selection.
European Journal of Operational Research, 205:670–679.

[59] Hanne, T. (2001). Intelligent Strategies for Meta Multiple Criteria Decision Making.
Kluwer, Boston.

[60] Hanne, T. and Nickel, S. (2005). A multiobjective evolutionary algorithm for
scheduling and inspection planning in software development projects. European Jour-

nal of Operational Research, 167:663–678.

[61] Hao, Q., Shen, W., Xue, Y., and Wang, S. (2010). Task network-based project
dynamic scheduling and schedule coordination. Advanced Engineering Informatics,
24:417–427.

[62] Hapke, M., J. A. and R., S. (1998). Interactive analysis of multiple-criteria project
scheduling problems. European Journal of Operational Research, 107:315–324.

137

[63] Hapke, M., Jaszkiewicz, A., and Slowinski, R. (1997). Fuzzy project scheduling
with multiple criteria. fuzzy systems. In Proceedings of the sixth IEEE international

conference, pages 1277–1282.

[64] Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics, 45:733–750.

[65] Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm.
Annals of Operations Research, 102:111–135.

[66] Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under
resource constraints. Naval Research Logistics, 49:433–448.

[67] Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-the-art
heuristics for the resource-constrained project scheduling problem. European Journal

of Operational Research, 127:394–407.

[68] Heimerl, C. and Kolisch, R. (2010). Scheduling and staffing multiple projects with
a multi-skilled workforce. OR spectrum, 32:343–368.

[69] Herroelen, W. S., Dommelen, P. V., and L., D. E. (1997). Project network models
with discounted cash flows a guided tour through recent developments. European

Journal of Operational Research, 100:97–121.

[70] Homberger, J. (2007). A multi-agent system for the decentralized resource-
constrained multi-project scheduling problem. International Transactions in Opera-

tional Research, 14:565–589.

[71] Hyun, C. J., Kim, Y., and Kin, Y. K. (1998). A genetic algorithm for multiple
objective sequencing problems in mixedmod el assembly. Computers & Operations

Research, 25:675–690.

[72] Icmeli, O. and Erenguc, S. S. (1994). A tabu search procedure for the resource
constrained project scheduling problem with discounted cash flows. Computers &

Operations Research, 21:841–853.

[73] Icmeli, O. and Erenguc, S. S. (1996). A branch and bound procedure for the resource
constrained project scheduling problem with discounted cash flows. Management Sci-

ence, 42:1395.

138

[74] Jaskowski, P. and Sobotka, A. (2006). Multicriteria construction project scheduling
method using evolutionary algorithm. Operational Research, 6:283–297.

[75] Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial opti-
mization. European Journal of Operational Research, 137:50–71.

[76] Kao, H. P., Wang, B., Dong, J., and Ku, K. C. (2006). An event-driven approach
with makespan/cost tradeoff analysis for project portfolio scheduling. Computers in

Industry, 57:379–397.

[77] Kazaz, B. and Sepil, C. (1996). Project scheduling with discounted cash flows and
progress payments. The Journal of the Operational Research Society, 47:1262–1272.

[78] Khattab, M. M. and Choobineh, F. (1991). A new approach for project scheduling
with a limited resource. International Journal of Production Research, 29:185–198.

[79] Kılıç, M., Ulusoy, G., and Şerifoğlu, F. (2008). A bi-objective genetic algorithm
approach to risk mitigation in project scheduling. International Journal of Production

Economics, 112:202–216.

[80] Kim, K., Yun, Y., Yoon, J., Gen, M., and Yamazaki, G. (2005). Hybrid genetic
algorithm with adaptive abilities for resource-constrained multiple project scheduling.
Computers in Industry, 56:143–160.

[81] Kim, S. O. and Schniederjans, M. J. (1989). Heuristic framework for the resource
constrained multi-project scheduling problem. Computers & Operations Research,
16:541–556.

[82] Knowles, J. and Corne, D. (2002). On metrics for comparing nondominated sets. In
Proceedings of the Congress on Evolutionary Computation.

[83] Kochetov, Y. and Stolyar, A. (2003). Evolutionary local search with variable neigh-
borhood for the resource constrained project scheduling problem. In Proceedings of

the third international workshop of computer science and information technologies,
pages 20–32.

[84] Kogan, K. and Shtub, A. (1999). Scheduling projects with variable-intensity activ-
ities: The case of dynamic earliness and tardiness costs. European Journal of Opera-

tional Research, 118:65–80.

139

[85] Kolisch, R. (1996a). Efficient priority rules for the resource constrained project
scheduling problem. Journal of Operations Management, 14:179–192.

[86] Kolisch, R. (1996b). Serial and parallel resource-constrained project schedul-
ing methods revisited: Theory and computation. European Journal of Operational,
90:320–333.

[87] Kolisch, R. (2000). Integrated scheduling, assembly area-and part-assignment
for large-scale, make-to-order assemblies. International Journal of Production Eco-

nomics, 64:127–141.

[88] Kolisch, R. and Hartmann, S. (2006). Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of Operational

Research, 174:23–37.

[89] Kolisch, R. and Sprecher, A. (1996). Psblib – a project scheduling problem library.
European Journal of Operational, 96:205–216.

[90] Kramer, B. A. and Hwang, C. L. (1991). Resource constrained project scheduling:
Modelling with multiple alternatives. Mathematical and Computer Modelling, 15:49–
63.

[91] Krger, D. and Scholl, A. (2010). Managing and modelling general resource transfers
in (multi-) project scheduling. OR Spectrum, 32:369–394.

[92] Krüger, D. and Scholl, A. (2009). A heuristic solution framework for the resource
constrained (multi-) project scheduling problem with sequence-dependent transfer
times. European Journal of Operational Research, 197:492–508.

[93] Kumanan, S., Jose, G. J., and Raja, K. (2006). Multi-project scheduling using an
heuristic and a genetic algorithm. The International Journal of Advanced Manufactur-

ing Technology, 31:360–366.

[94] Kurtulus, I. and Davis, E. W. (1982). Multi-project scheduling: Categorization of
heuristic rules performance. Management Science, 28:161–172.

[95] Lawrence, S. R. and Morton, T. E. (1993). Resource-constrained multi-project
scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing
heuristics. European Journal of Operational Research, 64:168–187.

140

[96] Lee, J. and Kim, Y. (1996). Search heuristics for resource constrained project
scheduling. The Journal of the Operational Research Society, 47:678–689.

[97] Leon, V. and Balakrishnan, R. (1995). Strength and adaptability of problem-space
based neighborhoods for resource-constrained scheduling. OR Spektrum, 17:173–182.

[98] Li, K. Y. and Willis, J. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research, 56:370–
379.

[99] Lova, A., Maroto, C., and Tormos, P. (2000). A multicriteria heuristic method to im-
prove resource allocation in multiproject scheduling. European Journal of Operational

Research, 127:408–424.

[100] Mansouri, S. A. (2005). A multi-objective genetic algorithm for mixed-model se-
quencing on jit assembly lines. European Journal of Operational Research, 167:696–
716.

[101] Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (1998). An exact
algorithm for the resource-constrained project scheduling problem based on a new
mathematical formulation. Management Science, 44:714–729.

[102] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24:1097–1100.

[103] Mohanty, R. and Siddiq, M. (1989). Multiple projects - multiple resources con-
strained scheduling: A multiobjective analysis. Engineering Costs and Production

Economics, 18:83–92.

[104] Mori, M. and Tseng, C. C. (1997). A genetic algorithm for multi-mode resource
constrained project scheduling problem. European Journal of Operational Research,
100:134–141.

[105] Myers, R. and Montgomery, D. (1995). Response surface methodology: Process

and product optimization using designed experiments. John Wiley, New York.

[106] Nabrzyski, J. and Wȩglarz, J. (1995). On an expert system with tabu search for mul-
tiobjective project scheduling. In Proceedings of INRIA/IEEE symposium on emerging

technologies and factory automation III, pages 87–94.

141

[107] Najafi, A. A. and Niaki, S. T. A. (2006). A genetic algorithm for resource invest-
ment problem with discounted cash flows. Applied Mathematics and Computation,
183:1057–1070.

[108] Naphade, K. S., Wu, S. D., and Storer, R. H. (1997). Problem space search algo-
rithms for resource-constrained project scheduling. Annals of Operations Research,
70:307–326.

[109] Neumann, K. and Zhan, Z. (1995). Heuristics for the minimum project-duration
problem with minimal and maximal time-lags under fixed resource constraints. Journal

of Intelligent Manufacturing, 6:145–154.

[110] Neumann, K. and Zimmermann, J. (2000). Procedures for resource leveling and
net present value problems in project scheduling with general temporal and resource
constraints. European Journal of Operational Research, 127:425–443.

[111] Nikulin, Y. and Drexl, A. (2010). Theoretical aspects of multicriteria flight gate
scheduling: deterministic and fuzzy models. Journal of Scheduling, 13:261–280.

[112] Nsakanda, A. L., Price, W. L., Diaby, M., and Gravel, M. (2007). Ensuring pop-
ulation diversity in genetic algorithms: A technical note with application to the cell
formation problem. European Journal of Operational Research, 178:634–638.

[113] Nudtasomboon, N. and Randhawa, S. U. (1997). Resoruce-constrained project
scheduling with renewable and non-renewable resources and time-resource tradeoffs.
Computers and Industrial Engineering, 32:227–242.

[114] Osman, M. S., Abo-Sinna, M. A., and Mousa, A. A. (2005). An effective genetic
algorithm approach to multiobjective resource allocation problems (moraps). Applied

Mathematics and Computation, 163:755–768.

[115] Ozdamar, L. and Ulusoy, G. (1996). A note on an iterative forward/backward
scheduling technique with reference to a procedure by li and willis. European Journal

of Operational Research, 89:400–407.

[116] Ozmehmet Tasan, S. and Gen, M. (2013). An integrated selection and scheduling
for disjunctive network problems. Computers & Industrial Engineering, 65:65–76.

142

[117] Pan, H. and Yeh, C.-H. (2003). Knowledge-Based Intelligent Information and En-

gineering Systems, volume 2773, chapter A metaheuristic approach to fuzzy project
scheduling, pages 1081–1087. Springer, Amsterdam.

[118] Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. (1969). Multiproject scheduling
with limited resources: A zero-one programming approach. Management Science,
16:93–108.

[119] Ramrez Palencia, A. E. and Meja Delgadillo, G. E. (2012). A computer applica-
tion for a bus body assembly line using genetic algorithms. International Journal of

Production Economics, 140:431–438.

[120] Rojas, I., González, J., Pomares, H., Merelo, J. J., Castillo, P. A., and Romero, G.
(2002). Statistical analysis of the main parameters involved in the design of a genetic
algorithm. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 32:31–37.

[121] Sampson, S. and Weiss, E. (1993). Local search techniques for the generalized
resource constrained project scheduling problem. Naval Research Logistics, 40:665–
675.

[122] Sayin, S. (2000). Measuring the quality of discrete representations of efficient
sets in multiple objective mathematical programming. Mathematical Programming,
87:543–560.

[123] Selle, T. and Zimmermann, J. (2003). A bidirectional heuristic for maximizing the
net present value of large-scale projects subject to limited resources. Naval Research

Logistics, 50:130–148.

[124] Sepil, C. and Ortac, N. (1997). Performance of the heuristic procedures for con-
strained projects with progress payments. The Journal of the Operational Research

Society, 48:1123–1130.

[125] Shadrokh, S. and Kianfar, F. (2007). A genetic algorithm for resource investment
project scheduling problem, tardiness permitted with penalty. European Journal of

Operational Research, 181:86–101.

[126] Shtub, A., LeBlanc, L. J., and Cai, Z. (1996). Scheduling programs with repeti-
tive projects: a comparison of a simulated annealing, a genetic and a pair-wise swap
algorithm. European Journal of Operational Research, 88:124–138.

143

[127] Slowinski, R. (1980). Two approaches to problems of resource allocation among
project activities – a comparative study. The Journal of the Operational Research

Society, 31:711–723.

[128] Slowinski, R., Soniewicki, B., and Wȩglarz, J. (1994). Dss for multiobjective
project scheduling. European Journal of Operational Research, 79:220–229.

[129] Sprecher, A., Hartmann, S., and A., D. (1997). An exact algorithm for project
scheduling with multiple modes. OR Spektrum, 19:195–203.

[130] Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and

optimization. Wiley, New York.

[131] Sun, H. and Ma, T. (2005). A packing-multiple-boxes model for r&d project selec-
tion and scheduling. Technovation, 25:1355–1361.

[132] Talbot, F. B. (1982). Resource constrainted project scheduling with time-resource
trade-offs: The nonpreemptive case. Management Science, 28:1197–1210.

[133] Tamaki, H., Nishino, E., and Abe, S. (1999). A genetic algorithm approach to
multi-objective scheduling problems with earliness and tardiness penalties. In Pro-

ceedings of the 1999 Congress on (Vol. 1). IEEE., pages 20–32.

[134] Tiwari, V., Patterson, J. H., and Mabert, V. A. (2009). Scheduling projects with
heterogeneous resources to meet time and quality objectives. European Journal of

Operational Research, 193:780–790.

[135] Ulusoy, G. and Cebelli, S. (2000). An equitable approach to the payment schedul-
ing problem in project management. European Journal of Operational Research,
127:262–278.

[136] Ulusoy, G. and Ozdamar, L. (1989). Heuristic performance and network/resource
characteristics in resource-constrained project scheduling. Journal of the Operational

Research Society, 40:1145–1152.

[137] Ulusoy, G. and Ozdamar, L. (1994). A constraint-based perspective in resource
constrained project scheduling. International Journal of Production Research, 32:693–
705.

144

[138] Ulusoy, G. and Ozdamar, L. (1995). A heuristic scheduling algorithm for improv-
ing the duration and net present value of a project. International Journal of Operations

& Production Management, 15:89–98.

[139] Ulusoy, G., Sivrikaya-Serifoglu, F., and Sahin, S. (2001). Four payment models
for the multi-mode resource constrained project scheduling problem with discounted
cash flows. Annals of Operations Research, 102:237–261.

[140] V., V., Ballestin, F., and Quintanilla, M. S. (2003). A hybrid genetic algorithm
for the RCPSP. Technical report, Department of Statistics and Operations Research,
University of Valencia.

[141] Van, V. D. (1999). Multiobjective evolutionary algorithms: classifications, anal-
yses, and new innovations. Master’s thesis, School of Engineering of the Air Force
Institute of Technology.

[142] Vanhoucke, M., Coelho, J. S., Debels, D., Maenhout, B., and Tavares, L. V. (2008).
An evaluation of the adequacy of project network generators with systematically sam-
pled networks. European Journal of Operational Research, 187:511–524.

[143] Vanhoucke, M., Demeleumeester, E., and Herroelen, W. (2001a). An exact proce-
dure for the resource-constrained weighted earliness-tardiness project scheduling prob-
lem. Annals of Operations Research, 102:179–196.

[144] Vanhoucke, M., Demeleumeester, E., and Herroelen, W. (2001b). On maximizing
the net present value of a project under renewable resource constraints. Management

Science, 47:1113–1121.

[145] Varma, V. A., Pekny, J. F., Blau, G. E., and Reklaitis, G. V. (2008). A framework for
addressing stochastic and combinatorial aspects of scheduling and resource allocation
in pharmaceutical r&d pipelines. Computers & Chemical Engineering, 32:1000–1015.

[146] Viana, A. and de Sousa, J. P. (2000). Using metaheuristics in multiobjective re-
source constrained project scheduling. European Journal of Operational Research,
120:359–374.

[147] Voβ, S. and Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-
project scheduling problem with batching requirements: A real-world application. In-

ternational Journal of Production Economics, 105:445–458.

145

[148] Wang, H., Lin, D., and Li, M. (2005). A competitive genetic algorithm for resource
constrained project scheduling problem. In Proceedings of the Fourth International

Conference on Machine Learning and Cybernetics, pages 2945–2949.

[149] Xiong, J., Chen, Y. W., Yang, K. W., Zhao, Q. S., and Xing, L. N. (2012). A hy-
brid multiobjective genetic algorithm for robust resource-constrained project schedul-
ing with stochastic durations. Mathematical Problems in Engineering.

[150] Yamashita, D. S., Armentano, V. A., and Laguna, M. (2006). Scatter search for
project scheduling with resource availability cost. European Journal of Operational

Research, 169:623–637.

[151] Yannibelli, V. and Amandi, A. (2013). Hybridizing a multi-objective simulated
annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-
objective project scheduling problem. Expert Systems with Applications, 40:2421–
2434.

[152] Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: meth-
ods and applications. Master’s thesis, Swiss Federal Institute of Technology (ETH).

[153] Zitzler, E., Laumanns, M., and Thiele, L. (2003a). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical report, Swiss Federal Institute of Technol-
ogy (ETH) Zurich.

[154] Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary
algorithms a comparative case study. In Proceedings of the international conference

on parallel problem solving from nature, pages 292–304.

[155] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and Grunert da Fonseca, V.
(2003b). Performance assessment of multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation, 7:117–132.

146

Appendices

147

Appendix A

Results of Fine-Tuning Experiments for Single
Projects

Abbreviations for the tables:

• INS: Instance

• OB: One-Point Crossover and Binary Tournament Selection

• OR: One-Point Crossover and Roulette Wheel Selection

• TB: Two-Point Crossover and Binary Tournament Selection

• TR: Two-Point Crossover and Roulette Wheel Selection

• MB: Multi Component Uniform Order-Based Crossover and Binary Tournament
Selection

• MR: Multi Component Uniform Order-Based Crossover and Roulette Wheel Se-
lection

• Pop: Population size or coefficient

• Gen: Generation number of coefficient

• Mut: Mutation rate

• Crs: Crossover rate

• Des: Desirability

• Act: Activities

• Freq: Frequency

148

INS Pop Gen Mut Crs Des Pop Gen Mut Crs Des

OB OR

10(1) 80 25 0,25 0,8 0,496 60 25 0,25 0,9 0,608
10(2) 100 25 0,25 0,7 0,849 80 25 0,21 0,6 0,848
10(3) 100 25 0,25 0,7 0,786 60 50 0,25 0,9 0,741
10(4) 100 50 0,25 1 0,817 100 100 0,25 0,6 0,858
10(5) 80 50 0,25 0,7 0,789 100 100 0,25 0,7 0,756
20(1) 100 150 0,13 0,6 0,693 100 150 0,17 0,7 0,694
20(2) 100 150 0,21 0,9 0,570 80 125 0,25 0,8 0,54
20(3) 60 75 0,21 0,8 0,644 60 125 0,25 1 0,674
20(4) 60 150 0,21 0,8 0,673 100 150 0,21 0,7 0,663
20(5) 100 75 0,25 0,9 0,648 100 150 0,21 1 0,637
30(1) 100 125 0,13 0,9 0,642 100 150 0,13 0,8 0,598
30(2) 100 150 0,17 1 0,645 100 150 0,13 1 0,674
30(3) 100 100 0,17 1 0,564 100 150 0,25 1 0,557
30(4) 60 125 0,21 0,8 0,610 100 150 0,13 1 0,636
30(5) 100 125 0,13 0,9 0,514 100 100 0,05 1 0,615

TB TR

10(1) 80 50 0,25 0,9 0,567 100 75 0,25 0,6 0,54
10(2) 100 25 0,25 0,6 0,824 100 25 0,25 0,8 0,824
10(3) 100 25 0,25 0,6 0,763 20 25 0,25 0,8 0,745
10(4) 100 50 0,25 1 0,761 100 100 0,25 0,6 0,824
10(5) 80 50 0,21 0,7 0,75 100 75 0,25 0,8 0,791
20(1) 80 150 0,17 0,9 0,714 80 150 0,13 0,8 0,671
20(2) 100 150 0,17 0,7 0,54 60 150 0,21 1 0,61
20(3) 80 75 0,21 0,7 0,69 60 100 0,25 1 0,611
20(4) 60 100 0,25 1 0,656 100 125 0,21 0,9 0,639
20(5) 100 50 0,17 0,9 0,575 80 150 0,25 0,8 0,655
30(1) 60 125 0,17 0,9 0,578 80 150 0,05 0,9 0,616
30(2) 100 125 0,21 0,9 0,584 100 100 0,09 1 0,676
30(3) 80 150 0,25 1 0,53 100 150 0,21 1 0,536
30(4) 80 75 0,13 1 0,609 100 150 0,09 1 0,629
30(5) 100 150 0,09 0,8 0,607 100 150 0,05 0,9 0,545

MB MR

10(1) 80 25 0,17 0,9 0,53 100 25 0,21 0,9 0,58
10(2) 100 25 0,25 0,7 0,849 100 25 0,25 0,9 0,817
10(3) 80 75 0,25 0,6 0,734 100 25 0,21 0,6 0,776
10(4) 100 75 0,25 1 0,772 60 100 0,25 0,8 0,836
10(5) 100 75 0,25 0,8 0,777 80 75 0,25 0,7 0,785
20(1) 100 125 0,21 1 0,636 80 75 0,13 0,7 0,658
20(2) 80 50 0,13 0,8 0,567 100 150 0,25 0,7 0,56
20(3) 100 50 0,17 1 0,619 80 125 0,21 0,7 0,686
20(4) 60 100 0,25 0,8 0,687 100 100 0,25 1 0,619
20(5) 100 50 0,13 0,8 0,7 100 150 0,25 0,9 0,681
30(1) 100 100 0,09 0,6 0,568 80 150 0,13 1 0,624
30(2) 100 150 0,21 0,9 0,563 80 150 0,13 0,8 0,533
30(3) 80 150 0,21 0,9 0,572 80 75 0,17 0,7 0,531
30(4) 100 125 0,17 0,8 0,583 100 125 0,09 0,8 0,572
30(5) 100 125 0,13 0,8 0,581 100 125 0,05 0,7 0,536

Table A.1: Result of the Experiment for Single Projects - 1
149

Operant # of Pop Gen Mut Crs DesCombination Act

OB
10 100 25 0,25 0,7 0,849
20 100 150 0,21 0,9 0,57
30 100 125 0,13 0,9 0,642

OR
10 60 50 0,25 0,9 0,741
20 100 150 0,21 0,7 0,663
30 100 150 0,13 1 0,674

TB
10 100 25 0,25 0,6 0,824
20 80 150 0,17 0,9 0,714
30 100 125 0,21 0,9 0,584

TR
10 100 75 0,25 0,8 0,791
20 80 150 0,25 0,8 0,655
30 100 150 0,09 1 0,629

MB
10 100 75 0,25 0,8 0,777
20 100 50 0,13 0,8 0,7
30 100 125 0,17 0,8 0,583

MR
10 100 25 0,25 0,9 0,817
20 100 150 0,25 0,7 0,56
30 80 150 0,13 0,8 0,533

Table A.2: Result of the Experiment for Single Projects - 2

Operant # of Mean Mean FreqCombination Act Des Rank

OB
10 0,77889 3,67724 93
20 0,75099 3,21818 105
30 0,71215 3,37273 94

OR
10 0,80084 3,44403 89
20 0,77619 3,01455 145
30 0,75293 2,95273 149

TB
10 0,79040 3,62873 89
20 0,70731 3,71273 68
30 0,70024 3,46727 92

TR
10 0,81405 3,29478 100
20 0,75072 3,28364 101
30 0,71528 3,32000 115

MB
10 0,77055 3,77425 56
20 0,65810 4,23818 46
30 0,63866 4,04727 40

MR
10 0,78287 3,54291 99
20 0,71741 3,59091 85
30 0,65782 3,89091 58

Table A.3: Result of the Experiment for Single Projects - 3

150

Appendix B

Results of Fine-Tuning Experiments for Multi-
Project

Abbreviations in the tables:

• minCMAX/maxNPV: Minimization of Cmax and Maximization of Npv

• maxNPV/minMFT: Maximization of Npv and Minimization of Average Flow Time
of the Projects

• maxNPV/minMWT: Maximization of Npv and Minimization of Weighted Tardi-
ness of the Projects

• maxNPV/minMCT: Maximization of Npv and Minimization of Average Comple-
tion Time of the Projects

• minCMAX/maxNPV/minRUD: Minimization of Cmax, Maximization of Npv and
Minimization of Resource Usage Deviation

• minCMAX/maxNPV/maxMO: Minimization of Cmax, Maximization of Npv and
Maximization of Minimum Outflow

• LS Payment: Lump sum payment

• Proj: Projects

• Clos: Closeness

• CPU: Processing time (seconds)

Other abbreviations used in this appendix is defined in Appendix A.

151

of Proj # of Act Sum of Act
minCMAX/maxNPV maxNPV/minMFT

Pop Gen Pop Gen

10 10 100 1.25 2.50 0.75 2.00
10 12 120 1.50 2.00 1.25 3.00
10 14 140 1.50 3.00 1.25 3.00
10 10 100 1.50 2.00 1.00 2.00
10 12 120 1.00 2.50 1.00 1.50
10 14 140 1.50 2.00 1.25 3.00
10 10 100 1.50 3.00 1.25 3.00
10 12 120 1.25 2.00 1.25 3.00
10 14 140 1.25 2.50 1.50 3.00

maxNPV/minMWT maxNPV/minMCT

Pop Gen Pop Gen

10 10 100 1.25 1.00 1.00 3.00
10 12 120 0.75 1.50 1.50 2.50
10 14 140 1.00 3.00 1.50 3.00
10 10 100 0.75 2.00 0.75 3.00
10 12 120 0.75 3.00 1.25 3.00
10 14 140 1.00 2.50 1.25 2.50
10 10 100 1.50 1.00 1.00 1.00
10 12 120 1.25 1.00 1.50 3.00
10 14 140 1.50 2.50 1.25 2.50

minCMAX/maxNPV/minRUD minCMAX/maxNPV/maxMO

Pop Gen Pop Gen

10 10 100 1.50 2.50 1.50 2.50
10 12 120 1.25 2.00 1.50 3.00
10 14 140 1.25 2.50 1.50 2.50
10 10 100 1.50 3.00 1.25 3.00
10 12 120 1.50 3.00 1.50 3.00
10 14 140 1.00 2.50 1.50 3.00
10 10 100 1.50 2.00 1.25 2.00
10 12 120 1.25 3.00 1.50 2.50
10 14 140 1.50 3.00 1.50 2.50

Table B.1: Result of the Experiment for Multiple Projects - 1

152

#
of

Pr
oj

#
of

A
ct

Su
m

of
A

ct
m

in
C

M
A

X
/m

ax
N

PV
m

ax
N

PV
/m

in
M

FT
m

ax
N

PV
/m

in
M

W
T

m
ax

N
PV

/m
in

M
C

T
m

in
C

M
A

X
/m

ax
N

PV
/m

in
R

U
D

m
in

C
M

A
X

/m
ax

N
PV

/m
ax

M
O

Po
p

G
en

D
es

Po
p

G
en

D
es

Po
p

G
en

D
es

Po
p

G
en

D
es

Po
p

G
en

D
es

Po
p

G
en

D
es

10
10

10
0

1.
25

2.
50

0.
48

0.
75

2.
00

0.
47

1.
25

1.
00

0.
36

1.
00

3.
00

0,
44

1.
50

2.
50

0.
77

1.
50

2.
50

0.
65

1.
50

1.
00

0.
39

1.
50

2.
00

0.
44

0.
75

1.
00

0.
35

1.
25

1.
50

0.
32

1.
25

3.
00

0.
74

1.
25

3.
00

0.
64

1.
50

2.
00

0.
38

1.
50

2.
50

0.
43

0.
75

1.
50

0.
22

1.
50

3.
00

0.
32

1.
25

2.
00

0.
71

1.
50

2.
00

0.
62

1.
00

1.
50

0.
34

1.
00

2.
50

0.
39

1.
25

1.
50

0.
20

0.
75

2.
50

0.
32

1.
50

3.
00

0.
71

1.
50

3.
00

0.
61

1.
00

1.
00

0.
31

1.
00

1.
50

0.
37

1.
00

2.
50

0.
19

0.
75

1.
00

0.
30

1.
25

2.
50

0.
71

1.
00

3.
00

0.
59

10
12

12
0

1.
50

2.
00

0.
40

1.
25

3.
00

0.
46

0.
75

1.
50

0.
31

1.
50

2.
50

0.
45

1.
25

2.
00

0.
74

1.
50

3.
00

0.
77

0.
75

3.
00

0.
36

1.
00

3.
00

0.
43

1.
00

1.
50

0.
21

1.
50

3.
00

0.
42

1.
00

3.
00

0.
74

1.
25

3.
00

0.
75

1.
25

2.
00

0.
36

1.
25

2.
00

0.
30

1.
50

1.
00

0.
17

1.
25

2.
50

0.
39

1.
50

2.
50

0.
74

0.
75

2.
50

0.
75

1.
00

2.
50

0.
33

1.
25

2.
50

0.
29

1.
25

1.
00

0.
11

0.
75

2.
50

0.
33

1.
25

3.
00

0.
74

0.
75

3.
00

0.
70

1.
25

2.
50

0.
32

1.
25

1.
50

0.
28

1.
25

3.
00

0.
11

0.
75

3.
00

0.
32

1.
50

2.
00

0.
73

1.
50

2.
50

0.
70

10
14

14
0

1.
50

3.
00

0.
27

1.
25

3.
00

0.
21

1.
00

3.
00

0.
18

1.
50

3.
00

0.
29

1.
25

2.
50

0.
81

1.
50

2.
50

0.
81

1.
50

2.
50

0.
22

1.
50

3.
00

0.
17

1.
50

3.
00

0.
16

1.
50

2.
00

0.
22

1.
50

3.
00

0.
80

1.
25

3.
00

0.
80

1.
25

2.
00

0.
21

1.
00

3.
00

0.
14

1.
50

2.
50

0.
13

1.
50

2.
50

0.
20

1.
50

2.
00

0.
79

1.
50

3.
00

0.
77

1.
25

2.
50

0.
20

1.
00

2.
00

0.
13

1.
50

2.
00

0.
13

1.
25

3.
00

0.
17

0.
75

3.
00

0.
78

1.
25

2.
00

0.
75

1.
50

2.
00

0.
16

1.
25

2.
00

0.
13

0.
75

3.
00

0.
11

1.
00

3.
00

0.
16

1.
25

3.
00

0.
77

1.
25

2.
50

0.
75

10
10

10
0

1.
50

2.
00

0.
45

1.
00

2.
00

0.
34

0.
75

2.
00

0.
35

0.
75

3.
00

0.
33

1.
50

3.
00

0.
66

1.
25

3.
00

0.
72

1.
00

2.
50

0.
38

0.
75

2.
50

0.
29

1.
50

1.
00

0.
29

1.
50

1.
50

0.
32

1.
25

2.
50

0.
65

1.
50

3.
00

0.
69

1.
00

3.
00

0.
36

1.
25

3.
00

0.
27

0.
75

1.
00

0.
28

0.
75

1.
50

0.
30

1.
50

2.
00

0.
64

1.
50

2.
50

0.
69

1.
00

2.
00

0.
35

1.
50

1.
00

0.
27

1.
00

1.
00

0.
27

0.
75

1.
00

0.
28

1.
25

3.
00

0.
61

1.
50

1.
50

0.
68

0.
75

2.
50

0.
34

1.
25

2.
00

0.
27

1.
25

1.
00

0.
16

1.
50

3.
00

0.
25

1.
50

1.
00

0.
61

1.
00

3.
00

0.
68

10
12

12
0

1.
00

2.
50

0.
34

1.
00

1.
50

0.
33

0.
75

3.
00

0.
32

1.
25

3.
00

0.
42

1.
50

3.
00

0.
72

1.
50

3.
00

0.
74

1.
25

1.
50

0.
32

1.
50

2.
00

0.
32

0.
75

2.
00

0.
20

1.
50

3.
00

0.
38

1.
00

3.
00

0.
72

1.
25

3.
00

0.
73

1.
50

3.
00

0.
29

1.
50

1.
50

0.
31

1.
00

1.
50

0.
16

1.
25

2.
00

0.
37

1.
25

3.
00

0.
72

1.
50

2.
50

0.
72

0.
75

1.
50

0.
28

1.
50

3.
00

0.
30

0.
75

1.
00

0.
16

1.
50

2.
50

0.
37

1.
25

2.
50

0.
70

1.
50

2.
00

0.
70

1.
00

2.
00

0.
23

1.
00

2.
50

0.
29

0.
75

1.
50

0.
11

0.
75

1.
00

0.
34

1.
50

2.
50

0.
68

1.
50

1.
50

0.
67

10
14

14
0

1.
50

2.
00

0.
34

1.
25

3.
00

0.
29

1.
00

2.
50

0.
25

1.
25

2.
50

0.
29

1.
00

2.
50

0.
80

1.
50

3.
00

0.
75

1.
50

3.
00

0.
33

1.
50

2.
50

0.
24

1.
25

1.
50

0.
17

1.
00

3.
00

0.
25

1.
00

3.
00

0.
80

1.
50

2.
50

0.
72

1.
00

2.
50

0.
29

1.
50

3.
00

0.
22

1.
50

3.
00

0.
15

1.
50

3.
00

0.
24

0.
75

3.
00

0.
76

1.
25

1.
50

0.
69

0.
75

2.
50

0.
28

1.
25

2.
50

0.
19

1.
25

2.
50

0.
14

1.
00

2.
50

0.
24

1.
50

1.
50

0.
75

1.
25

3.
00

0.
67

1.
25

3.
00

0.
24

1.
50

2.
00

0.
16

1.
00

3.
00

0.
13

1.
50

2.
00

0.
20

1.
25

2.
00

0.
74

0.
75

2.
50

0.
67

10
10

10
0

1.
50

3.
00

0.
36

1.
25

3.
00

0.
37

1.
50

1.
00

0.
31

1.
00

1.
00

0.
32

1.
50

2.
00

0.
73

1.
25

2.
00

0.
77

1.
50

1.
00

0.
33

1.
00

1.
00

0.
37

0.
75

1.
00

0.
27

0.
75

1.
50

0.
25

1.
50

2.
50

0.
73

1.
50

3.
00

0.
76

1.
25

2.
50

0.
33

1.
00

2.
00

0.
33

1.
00

1.
50

0.
15

1.
00

1.
50

0.
25

1.
50

3.
00

0.
70

1.
50

2.
50

0.
71

1.
50

2.
50

0.
30

0.
75

2.
50

0.
29

1.
00

1.
00

0.
10

1.
00

2.
00

0.
24

1.
00

3.
00

0.
69

1.
25

3.
00

0.
70

0.
75

2.
00

0.
28

1.
00

1.
50

0.
28

1.
25

1.
50

0.
10

1.
25

2.
00

0.
23

1.
25

1.
50

0.
68

1.
00

2.
50

0.
67

10
12

12
0

1.
25

2.
00

0.
49

1.
25

3.
00

0.
57

1.
25

1.
00

0.
22

1.
50

3.
00

0.
35

1.
25

3.
00

0.
74

1.
50

2.
50

0.
79

0.
75

3.
00

0.
48

1.
50

3.
00

0.
48

1.
50

2.
50

0.
15

1.
00

2.
00

0.
36

1.
50

2.
00

0.
70

1.
25

2.
50

0.
79

1.
50

2.
50

0.
44

1.
00

3.
00

0.
44

0.
75

2.
00

0.
14

1.
00

2.
50

0.
33

1.
50

2.
50

0.
67

1.
50

3.
00

0.
77

1.
00

2.
50

0.
38

1.
25

2.
00

0.
44

0.
75

1.
00

0.
13

0.
75

2.
50

0.
30

1.
25

2.
00

0.
67

1.
00

3.
00

0.
75

1.
25

1.
50

0.
37

0.
75

2.
50

0.
39

0.
75

1.
50

0.
12

1.
25

2.
00

0.
29

1.
00

2.
00

0.
66

1.
25

3.
00

0.
74

10
14

14
0

1.
25

2.
50

0.
22

1.
50

3.
00

0.
29

1.
50

2.
50

0.
15

1.
25

2.
50

0.
28

1.
50

3.
00

0.
81

1.
50

2.
50

0.
80

1.
50

2.
50

0.
20

1.
00

2.
50

0.
23

1.
25

2.
50

0.
14

1.
50

2.
50

0.
28

1.
25

2.
50

0.
81

1.
25

3.
00

0.
75

1.
25

1.
50

0.
19

1.
25

3.
00

0.
21

1.
50

2.
00

0.
13

1.
50

3.
00

0.
26

1.
50

2.
00

0.
79

1.
50

3.
00

0.
75

1.
50

3.
00

0.
17

1.
25

2.
50

0.
19

0.
75

3.
00

0.
11

0.
75

3.
00

0.
22

0.
75

2.
00

0.
77

1.
50

1.
00

0.
73

1.
00

2.
50

0.
17

1.
00

3.
00

0.
15

1.
00

2.
50

0.
10

1.
00

3.
00

0.
21

1.
50

2.
50

0.
76

0.
75

2.
50

0.
72

Table B.2: Result of the Experiment for Multiple Projects - 2

153

#
of

Pr
oj

#
of

A
ct

Su
m

of
A

ct
m

in
C

M
A

X
/m

ax
N

PV
m

ax
N

PV
/m

in
M

FT
m

ax
N

PV
/m

in
M

W
T

m
ax

N
PV

/m
in

M
C

T
m

in
C

M
A

X
/m

ax
N

PV
/m

in
R

U
D

m
in

C
M

A
X

/m
ax

N
PV

/m
ax

M
O

Po
p

G
en

C
lo

s
D

es
Po

p
G

en
C

lo
s

D
es

Po
p

G
en

C
lo

s
D

es
Po

p
G

en
C

lo
s

D
es

Po
p

G
en

C
lo

s
D

es
Po

p
G

en
C

lo
s

D
es

10
10

10
0

1.
25

2.
50

0.
11

0.
48

0.
75

2.
00

0.
26

0.
48

1.
25

1.
00

0.
25

0.
36

1.
00

3.
00

0.
16

0.
45

1.
50

2.
50

0.
10

0.
77

1.
50

2.
50

0.
07

0.
66

10
12

12
0

1.
50

2.
00

0.
11

0.
41

1.
25

3.
00

0.
11

0.
47

0.
75

1.
50

0.
24

0.
31

1.
50

2.
50

0.
17

0.
45

1.
25

2.
00

0.
16

0.
75

1.
50

3.
00

0.
07

0.
77

10
14

14
0

1.
50

3.
00

0.
15

0.
27

1.
25

3.
00

0.
11

0.
21

1.
00

3.
00

0.
26

0.
18

1.
50

3.
00

0.
16

0.
29

1.
25

2.
50

0.
11

0.
82

1.
50

2.
50

0.
07

0.
82

10
10

10
0

1.
50

2.
00

0.
11

0.
45

1.
00

2.
00

0.
19

0.
34

0.
75

2.
00

0.
23

0.
35

0.
75

3.
00

0.
22

0.
33

1.
50

3.
00

0.
11

0.
66

1.
25

3.
00

0.
12

0.
73

10
12

12
0

1.
00

2.
50

0.
18

0.
35

1.
00

1.
50

0.
26

0.
33

0.
75

3.
00

0.
29

0.
32

1.
25

3.
00

0.
13

0.
42

1.
50

3.
00

0.
11

0.
72

1.
50

3.
00

0.
07

0.
74

10
14

14
0

1.
50

2.
00

0.
11

0.
34

1.
25

3.
00

0.
11

0.
29

1.
00

2.
50

0.
21

0.
25

1.
25

2.
50

0.
14

0.
29

1.
00

2.
50

0.
18

0.
81

1.
50

3.
00

0.
07

0.
75

10
10

10
0

1.
50

3.
00

0.
15

0.
36

1.
25

3.
00

0.
11

0.
37

1.
50

1.
00

0.
30

0.
31

1.
00

1.
00

0.
36

0.
32

1.
50

2.
00

0.
15

0.
74

1.
25

2.
00

0.
18

0.
77

10
12

12
0

1.
25

2.
00

0.
12

0.
49

1.
25

3.
00

0.
11

0.
57

1.
25

1.
00

0.
25

0.
22

1.
50

3.
00

0.
16

0.
36

1.
25

3.
00

0.
12

0.
74

1.
50

2.
50

0.
07

0.
79

10
14

14
0

1.
25

2.
50

0.
11

0.
22

1.
50

3.
00

0.
18

0.
29

1.
50

2.
50

0.
27

0.
15

1.
25

2.
50

0.
14

0.
28

1.
50

3.
00

0.
11

0.
81

1.
50

2.
50

0.
07

0.
80

Table B.3: Result of the Experiment for Multiple Projects - 3

154

