

ANALYSIS OF TWITTER TO IDENTIFY TRENDS AND INFLUENTIALS

WITH A CASE STUDY ON TURKISH TWITTER USERS

BY

GÖKHAN GÖKTÜRK

SUBMITTED TO THE GRADUATE SCHOOL OF ENGINEERING AND

NATURAL SCIENCES

IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

ii

SABANCI UNIVERSITY

AUGUST 2014

ANALYSIS OF TWITTER TO IDENTIFY TRENDS AND INFLUENTIALS

WITH A CASE STUDY ON TURKISH TWITTER USERS

APPROVED BY:

Assoc. Prof. Dr. Yücel Saygın ..

 (Thesis Supervisor)

Assoc. Prof. Dr. Berrin Yanıkoğlu ..

Assist. Prof. Dr. Emre Hatipoğlu ..

DATE OF APPROVAL: 07/08/2014

iii

© Gökhan Göktürk 2014

All Rights Reserved

ANALYSIS OF TWITTER TO IDENTIFY TRENDS AND INFLUENTIALS

WITH A CASE STUDY ON TURKISH TWITTER USERS

Gökhan Göktürk

Computer Science and Engineering, Master Thesis, 2014

Thesis Advisor: Assoc. Prof. Dr. Yücel Saygın

Keywords: Social Network Analysis, Sentiment Analysis, Text Classification

Abstract

Social media is one of the largest information flow medium today. Nevertheless,

despite its centrality, conventional public opinion research doesn't take social media into

account but instead focuses on surveys, polls and interviews. These research methods

have their limitations. By nature, even the most meticulously designed survey, for

example, is limited by time and seldom bias free.

If properly utilized social media, can address limitations of these shortcomings;

Social Media allows us to continuously observe how information flows both temporally

and spatially since its users communicate with each other rather than answering survey

questions; the data is without experimenter bias and sample size is much larger than of

conventional methods. We aimed to show an interdisciplinary work that provides

empirical quantifiable answers for social science problems using network analysis and

machine learning.

With this aim in mind, this work combines network analysis and sentiment

analysis to analyze Istanbul 2014 local elections as a proof of concept. Furthermore, it

illustrates the performance of our sentiment analysis system and structural differences

between two parties in the event.

v

TURK TWITTER KULLANACILARINI INCELEYEREK, TWITTER’IN

ANALIZI ILE TRENT VE FIKIR LIDERLERININ BULUNMASI

Gökhan Göktürk

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Assoc. Prof. Dr. Yücel Saygın

Anahtar Kelimeler: Sosyal Ağ Analizi, Duygu Analizi, Yazı Sınıflandırma

Özet

Sosyal medya günümüzde en büyük bilgi akış ortamlarından biri olmasına karşın

geleneksel kamuoyu araştırması kendi merkezi önemine rağmen sosyal medyayı gözardı

etmektedir. Geleneksel kamu araştırması onun yerine anketlere yönelmektedir. Ama

doğası gereği en titiz hazırlanmış anket bile zaman sınırlı ve meyilli olabilmektedir.

 Eğer düzgün kullanılabilirse sosyal medya bu sorunları aşmakta yardımcı

olabilir; sosyal medya bizim haberleşmeyi ve bilgi akışını zaman ve yer olarak

kesintisiz olarak izlememize imkan vererek araştırmacının anket ile meyilli olmayan,

hem de daha büyük verisetine ulaşmasını sağlamaktadır.

Bu tezde disiplinler arası bir çalışma göstererek, ağ analizi ve makine öğrenmesi

kullanarak,sosyal bilim sorularına empirik ölçülebilir cevaplar vermeye çalıştık. Bu

çalışma sosyal ağ analizi ve fikir madenlemesinin birleştirerek, kavram kanıtlamak için

2014 İstanbul yerel seçimlerini analiz etmektedir. Ve, sonuçlarda fikir madenlemesi

sistemizin performasını ve iki politik grup arasındaki yapısal farkları sunmaktadır.

vi

to my beloved family…

vii

TABLE OF CONTENTS

CHAPTER 1 .. 1

INTRODUCTION .. 1

CHAPTER 2 .. 3

BACKGROUND INFORMATION .. 3

2.1. Social Networks ... 3

2.1.1. Social Media .. 3

2.1.2. Social Networks ... 4

2.1.3. Influentials ... 6

2.2. Sentiment Analysis ... 7

CHAPTER 3 .. 9

SOCIAL NETWORK ANALYSIS .. 9

3.1. Retrieving Turkish Twitter Social Graph .. 9

3.2. Indentifying Influentials .. 13

3.2.1. Degree Centrality ... 13

3.2.2. Eigenvector Centrality ... 14

3.2.2.1. Power Iteration ... 15

3.2.3. Betweenness Centrality .. 16

3.2.3.1. Sampling Betweenness Centrality .. 17

3.2.4. Identifying Opinion Shaper Roles using Centrality Measures.. 20

CHAPTER 4 .. 22

SENTIMENT ANALYSIS ... 22

4.1. Pre-processing .. 22

4.2. Feature Extraction .. 23

4.2.1. Term Frequency ... 24

4.2.2. TF-IDF ... 25

4.3. Classification ... 25

4.3.1. Multinomial Naive Bayes Classifier .. 25

4.3.2. Linear Support Vector Machine ... 26

4.3.3. Recursive Auto-Encoder .. 28

viii

4.3.3.1. Semi-Supervised Recursive Autoencoder .. 33

CHAPTER 5 .. 35

SYSTEM DESIGN .. 35

5.1. Interface .. 36

5.2. News Scraper... 36

5.3. Twitter Network Crawler... 37

5.4. Timeline Retrieval ... 38

5.5. Twitter User Retrieval ... 38

5.6. Twitter Stream Collector ... 38

5.7. Sentiment Analysis ... 39

5.8. Social Network Analysis .. 39

CHAPTER 6 .. 40

IMPLEMENTATION .. 40

6.1. Web Interface .. 42

6.2. News Scrapper... 45

6.3. Twitter Information Retrieval .. 45

6.4. Sentiment Analysis ... 46

6.5. Social Network Analysis .. 46

6.6. Software Stack ... 47

CHAPTER 7 .. 48

RESULTS .. 48

7.1. Social Network Analysis Results ... 48

7.1.1. Indegree Centrality ... 48

7.1.2. Betweenness Centrality .. 49

7.1.3. Eigenvalue Centrality ... 50

7.2. Case Study: 2014 Turkish Municipality Elections... 50

7.2.1. Sentiment Analysis Results .. 50

7.2.2. Centrality Distribution ... 52

CHAPTER 8 .. 56

CONCLUSION ... 56

REFERENCES ... 57

ix

LIST OF TABLES

Table 1 Sample of users from the seed set. ... 10

Table 2 Actors’ roles in a network according to their centrality measures adapted from

(Moody, 2012) .. 20

Table 3 Preprocessing Examples .. 23

Table 4 Most influential users according to Indegree Centrality 49

Table 5 Most influential users according to Betweenness Centrality 49

Table 6 Most influential users according to Eigenvector Centrality 50

Table 7 Class distribution in training set .. 51

Table 8 Classifier accuracy on training set (5-fold CV) ... 51

Table 9 Distribution prediction of status messages shows support on whole dataset 51

Table 10 Distribution prediction of users that sent status messages on whole dataset ... 51

Table 11 Role distribution of the case study, with rank diff=0.4 55

x

LIST OF FIGURES

Figure 1 A scale-free network. ... 5

Figure 2 Degree rank histogram of a small scale-free network. 6

Figure 3 Two-degrees of separation, nodes are labeled as their separation degrees. 11

Figure 4 Decision Tree Model for Turkish Users (Simplified). 11

Figure 5 Degree Histogram of Turkish Twitter Network in log scale in both axes. 12

Figure 6 Power Iteration Algorithm. ... 16

Figure 7 Recursive Auto-Encoder .. 31

Figure 8 Greedy Unsupervised Recursive Autoencoder for structure prediction 32

Figure 9 Inter-process Messaging Diagram .. 36

Figure 10 Messaging Scheme on Task Distribution Architecture (Simplified). 41

Figure 11 Entity Relation Diagram. .. 42

Figure 12 Login page .. 43

Figure 13 Dataset page ... 43

Figure 14 Label page .. 44

Figure 15Models page .. 44

Figure 16 Pro-Topbaş users Indegree Centrality Rank Histogram 52

Figure 17 Pro-Sarıgül users Degree Centrality Rank Histogram 52

Figure 18 Pro-Topbaş users’ Eigenvector Centrality Rank Histogram 53

Figure 19 Pro-Sarıgül users’ Eigenvector Centrality Rank Histogram 53

Figure 20 Pro-Topbaş users’ Betweenness Centrality Rank Histogram 54

Figure 21 Pro-Sarıgül users’ Betweenness Centrality Rank Histogram 54

xi

LIST OF EQUATIONS

Equation 1 In-degree Centrality .. 14

Equation 2 Out-Degree Centrality .. 14

Equation 3 Degree Centrality ... 14

Equation 4 Eigenvalue Centrality ... 15

Equation 5 Betweenness Centrality .. 17

Equation 6 Dependency for Betweenness Centrality ... 17

Equation 7 Reformulated Betweenness Centrality ... 17

Equation 8 Sampling Betweenness Centrality .. 18

Equation 9 Hoeffding's formulas for finding sampling error ... 18

Equation 10 TF-IDF .. 25

Equation 11 Maximum Likelihood Estimation for Multinomial Naïve Bayes Classifier

 .. 26

Equation 12 Formula of Smoothed estimation I 26

Equation 13 Lagrange form of Support Vector Machine margin optimization 27

Equation 14 SVM margin expressed as combination of training data points. 28

Equation 15 Lagrange form of SVM margin optimization after substitution 28

Equation 16 Parent vector calculation with Auto-Encoder .. 29

Equation 17 Auto-Encoder input reconstruction .. 29

Equation 18 Auto-encoder error ... 30

Equation 19 Recursive Auto-Encoder optimization target ... 30

Equation 20 Class distribution prediction using Semi-supervised Recursive

Autoencoder .. 33

Equation 21 Cross-entropy error of Semi-supervised Recursive Autoencoder 33

Equation 22 Objective function for Semi-supervised Recursive Autoencoder 34

Equation 23 Error of greedy Recursive Autoencoder in Semi-supervised method 34

Equation 24 Error at each node in Semi-supervised Recursive Autoencoder 34

Equation 25 Keyword scores of Rake algorithm. ... 37

1

CHAPTER 1

Introduction

Today, social media represents of the largest information flow platforms.

Contemporary events including Occupy Wall Street, Arab Spring, and Gezi Protests,

have shown how much social media can be effective medium for both personal and

mass communications.

Nevertheless, despite its centrality, conventional public opinion research does

not take social media into account but instead focuses on surveys, polls and interviews.

These research methods have their limitations. By nature, even the most meticulously

designed survey, for example, is limited by time and seldom bias free. Conventional

methods not only show mere snapshots of public opinion but also fail to illustrate how

opinion can change along the information flow and events. Even though polling

overcomes a few of these problems, polls can be only applied after a hypothesis is

formed, and after significant delays are an intrinsic part of polling process. In addition,

both methods can only reach very limited sample of population.

If properly utilized, social media can address limitations of these shortcomings;

social media allows us to continuously observe how information flows both temporally

and spatially since its users communicate with each other rather than answering survey

questions; the data is without experimenter bias and sample size is much larger than of

conventional methods.

Even though, public opinion research on social media can solve many problems

of traditional opinion research, it brings new problems; Due to size of the data, the

2

analysis requires scale-able algorithms and software that can handle Big Data. Also, the

obtained communications data is unstructured and not quantifiable without the use of

Sentiment Analysis/Opinion Mining.

In this work, we aimed to create algorithms and a software system to process big

social media data that is scale-able and with as little supervision as possible. So that, the

concept system can works on real world events.

The resulting system is tested on the Istanbul 2014 local elections. The Istanbul

local elections are chosen due to its spatial closeness to this researcher. Also, The

Istanbul local election was worthy of analysis, because Istanbul local elections are

central for Turkish politics, it is the first election in Turkey that most prominent

candidates focused on social media, and also media censorship and self-censorship

made social media an important alternative for conventional media.

This thesis organized as follows: in chapter 2 we provide a background to social

networks, influentials, and sentiment analysis. The work done to generate, manage, and

analyze social networks and its structure is described in chapter 3. Also, detailed

description of centrality measures is given in this chapter. The sentiment analysis of the

content retrieved from the social network, and detailed description of the techniques is

described in chapter 4. Then, chapter 5 gives details of the system implementation.

Results from the analysis are available under chapter 6. Finally, chapter 7 gives a

conclusion about the work.

3

CHAPTER 2

Background Information

2.1. Social Networks

2.1.1. Social Media

Social media is an internet-based information sharing and consumption platform;

where the content is authored, shared, and exchanged by its users. It differs from

traditional media in many ways including, content, authorship, reach, frequency, delay,

and perpetuity. Content on social media, generated in a fashion much more rapid,

reaches much larger audience with immediacy. Social Media platforms can be listed as

internet forums, blogs, micro-blogs, collaborative encyclopedias, social networking

sites, virtual social games, social content sharing, and social bookmarking.

According to We Are Social, a global social agency, research in 2014, 2.5 billion

internet users active in world, and 1.8 billion of these users are active on Social Media.

4

On average, 4.8 hours spent daily online on personal computers and with 2.1 hours

spent daily online via mobile devices. (We Are Social, 2014)

2.1.2. Social Networks

Social Networks are graph structures that consist of social actors/agents and

relationships between these actors. Social networks are often self-organizing, complex

and emergent. (Newman, Barabási, & Watts, 2006) We will represent a graph as G =

(V, E) where V is the set of vertices and E is the edges that are associated with these

vertex set. n = |V| denotes the number of vertices and m=|E| denotes number of edges.

The distance between all pairs of two directly connected vertices is assumed to be

constant. Edges will be represented as Eij if there is an edge from vertex i to vertex j,

value of Eij will be 1, otherwise 0. In this work, the graph is assumed to be connected if,

not each separate graph is individually handled. Our scope in this work only considers

unweighted simple graphs.

Most of the social networks are not randomly distributed networks, where

relationships between actors are distributed randomly but Scale-free networks, where

relations are distributed according to a power law. (Barabási, 2003) In a Scale-Free

network, the probability of having k out-going edges in a vertex is where γ

is the parameter that shapes the distribution. Twitter is assumed to be a scale-free

network that follows the power law. Also, we have seen that the Turkish Twitter social

graph forms a scale-free network.

5

Figure 1 A scale-free network.

6

Figure 2 Degree rank histogram of a small scale-free network.

2.1.3. Influentials

Influentials are opinion shapers in society. Even though the definition of opinion

leader differs among researchers, many note that opinion leaders are influential people

that are more able to affect public opinion than others. Katz and Lazar define as

influentials as “the individuals who were likely to influence other people in their

immediate environment” (Katz & Lazarsfeld, Personal Influence, 1970) According to

Watts and Dodds, influentials may play a critical role in driving large cascades as the

early adopters, who make up the critical mass via which local cascades become global

(Watts & Dodds, 2007)

7

 The traditional approach for understanding opinion leaders and their social

influence is based on Two-step flow of communication model. Two-step flow of

communication model hypothesizes that option leaders shapes their opinion according

to mass media, then influences wider population around them. (Lazarsfeld, Berelson, &

Gaudet, 1948)

How opinion leaders influence people is often complex and multifarious. The

traditional communication model seems obsolete in age of online social networks where

consumers of the media are also its content creators and broadcasters/diffusers. By the

same reason, residing on important communication paths is also an import factor of

influentials. We define influentials as a small group of people that shapes other people's

opinion via both direct communication and participating in communication paths.

2.2. Sentiment Analysis

Sentiment Analysis is measurement of people’s attitude according their writings

with respect to some topic or context. The measured attitude of text may include

emotions, ratings, and perceptions. Sentiment Analysis relies on Natural Language

Processing and Machine Learning to make sense of documents and classify them

accordingly.

Sentiment analysis is onerous due to natural languages’ high complexity;

expressions are often hard to quantify and similar ideas could be written in so many

ways that is hard for a computer to analyze pattern in the text. In addition to these

difficulties, sentiment can be expressed with no apparent positive or negative words.

With the rise of social media and online abundance of ratings and reviews,

online opinion has become an important issue for business and politics. Sentiment

Analysis can measure public opinion and provide intelligence using a large amount of

data available online. Recently, re-election campaign of Barack Obama has made use of

sentiment analysis to organize millions of e-mails and messages according their issue

8

topics to keep supporters engaged with the campaign. (Schectman, 2012) Another

example could be Starbucks; Starbucks makes use of sentiment analysis to answer

customer complaints at extraordinary rate. (Bort, 2012)

9

CHAPTER 3

Social Network Analysis

In the social network analysis part of this work, we have aimed to reach subset

of users we are interested. Then, we tried to find influential users by calculating several

centrality measures. Due to computational complexity of Betweenness Centrality and

Eigenvector Centrality measures, we have used estimation methods that are much more

feasible.

This work focuses on Turkish Twitter users due to rapid rise of online social

network use in Turkey and spatial proximity to researcher.

3.1. Retrieving Turkish Twitter Social Graph

We wanted to reach Turkish Twitter Users to observe information flow on

between them. One way of the obtaining such data is snowballing. The method we had

used, snowballing, is simply a dept limited breadth-first search method.

First, in order to obtain Turkish Twitter users, we have selected approximately

6000 Twitter users that are known to be operating in Turkey as seed set to reach Turkish

Twitter users; this seed set is generated using a few randomly selected Turkish user’s

10

friends and followers on Twitter. Then, we have filtered resulting user set with human

supervision to obtain only Turkish speaking users.

Screen Name Real Identity

CMYLMZ Cem Yılmaz, Stand-up Artist

Cbadbullahgul Abdullah Gul, Turkish President

RT_Erdogan Tayyip Erdogan, Turkish PM

Komedyieni Ata Demirer, Actor

Hulyavsar Hulya Avsar, Celebrity

DemetAkalin Demet Akalin Kurt, Singer

GalatasaraySK Galatasaray, Sports Club

Table 1 Sample of users from the seed set.

Second, we have followed connections, both followers and friends, of the seed

set to reach users in first degree of separation. After, applied the same process to first

degree set to reach our seed set’s two degrees of separation. We reached approximately

15 million Twitter users’ account information. Then, we retrieved those users’ profiles.

Next, we have trained a decision tree classifier to identify Turkish users, using

language, time zone, location, and last status message as features. Using a decision tree

on these parameters we were able to extract approximately 10 million Turkish users.

Most of the Turkish users were identified by few most common parameters such as the

interface language as Turkish, or location names with in Turkey. We were able to build

a classifier to successfully extract Turkish users using most common identifiers. In this

case study, we have omitted links connected to non-Turkish users, spam bots, or

inactive accounts that haven’t got any activity in last two months.

11

Figure 3 Two-degrees of separation, nodes are labeled as their separation degrees.

Figure 4 Decision Tree Model for Turkish Users (Simplified).

12

After that, we have crawled who these Turkish Twitter users are following. Due

to rate limiting in Twitter, we have created a Twitter app that allowed us to utilize many

users’ rate limit. Then, we assigned look-up tasks for each user of our app.

Finally, the resulting social network gave us over 951 million connections of

which more than 451 million are connected to our Turkish Twitter user set. In our

observations, follower numbers were highly skewed and the resulting graph is a scale-

free graph.

Figure 5 Degree Histogram of Turkish Twitter Network in log scale in both axes.

13

3.2. Indentifying Influentials

We argue that opinion leaders shape public opinion in online social platforms

through two focal means; generating information by sharing ideas, and/or affecting flow

information by propagating certain information and not propagating other. The literature

review revealed that it is possible to find different characteristics of users by network

centrality measures including; Degree Centrality, Betweenness Centrality, and

Eigenvector Centrality.

3.2.1. Degree Centrality

 The primer of centrality measures is degree centrality, which is the most

intuitive and straight forward interpretation of importance in a graph; centrality

identifies the number of connections associated with an individual account, or in

network analysis terms, a node. The degree centrality can be interpreted as immediate

interactions available to the node.

 The degree centrality measure is often calculated as two separate measures: in-

degree and out-degree centrality. In-degree is the number of connections going into a

vertex and out-degree is the number of connections going out of a vertex. On simple

directed graphs, Degree Centrality ranges between 0 and the cardinality of graph. The

degree centrality has linear time complexity with respect to the number of edges, which

is in so we haven’t applied any sampling or convergence methods, because there

is not much performance improvement yet information loss is significant. The in-degree

centrality, and out-degree centrality, could be computed as follows;

14

Equation 1 In-degree Centrality

Equation 2 Out-Degree Centrality

The degree centrality, Cdegree, is summation of these measures, and it could be computed

as follows;

Equation 3 Degree Centrality

3.2.2. Eigenvector Centrality

Eigenvector centrality is also a measure of vertex importance. Eigenvector

centrality, not only accounts for the important of the vertex, but also that of the

importance adjacent vertices. This metric assumes that influential people are more

likely to connect with other influential people

Each vertex’s eigenvector centrality equals the sum of the eigenvector centrality

of all adjacent vertices. This measure can be calculated by converting a graph to an

adjacency matrix and calculating the largest eigenvector. Eigenvector Centrality ranges

between 0 and 1. This approach has cubic time complexity with respect to the number

of vertices, which is . This approach is not feasible for very large graphs due to a

long running time. However, eigenvector centrality can be estimated using power

iteration method.

15

Equation 4 Eigenvalue Centrality

where is greatest eigenvalue and is every vertices that are adjacent to

vertex i. (Newman M. E., 2008)

3.2.2.1. Power Iteration

The power iteration method estimates eigenvector centrality by the following

steps; initially eigenvector centrality value is assigned as 1.0, then in each iteration all

vertices’ centrality are assigned as the sum of all adjacent vertices’ centrality from the

previous iteration. The power iteration method can be terminated after a predefined

number of iterations and/or a predefined tolerance value is satisfied between iterations.

 Estimation would have linear time complexity with respect to the number of

edges, which is in . The number of iterations required depends on the graph’s

diameter and tolerance. However, the number of iterations should not be too big for real

world applications according to the Small World theorem.

16

Figure 6 Power Iteration Algorithm.

3.2.3. Betweenness Centrality

 Betweenness Centrality is a measure of vertex importance in networks. It

commonly used in social network analysis. It is a shortest-path distance based method

that shows how much a vertex is contained in the shortest paths connecting pairs of

other vertices.

 Betweenness Centrality counts every shortest path in graph G. The Betweenness

centrality score of the each vertex is calculated as the number of the vertex occurrence

on shortest-paths. Betweenness Centrality ranges between 0 and number of shortest

paths available. The number of shortest-paths starts from vertex s and ends at vertex t, is

denoted as σ(s,t) , if the path contains an intermediate vertex v, it is denoted as σ(s,t | v)

where s and t are members of the vertex set V. The Betweenness centrality, Cb, is

computed as follows (Brandes, 2001);

17

Equation 5 Betweenness Centrality

3.2.3.1. Sampling Betweenness Centrality

 Even though the graphs we are expecting are sparse, the computational time

complexity of the best algorithm, Brandes' Betweenness centrality algorithm, is .

Our experiments showed that on our 16 core server, our homegrown heavily optimized

Brandes' Betweenness centrality implementation would have an estimated running time

of 11 months.

 To overcome long running time, we have used sampling method by Brandes et

al.(Brandes, 2001) Brandes' work reformulates the Betweenness centrality by bringing

new dependencies;

Equation 6 Dependency for Betweenness Centrality

Then, Betweenness centrality can be represented as follows;

Equation 7 Reformulated Betweenness Centrality

After that, the whole problem could be solved as a single source shortest path problem

for all vertices in V. After reformulation, it is possible to select a subset S, of all vertices

18

V with size of k=|S|, where each element in subset S, namely pivots, contribute to

estimation of the Cb,. Estimated Betweenness centrality can be computed as follows;

Equation 8 Sampling Betweenness Centrality

 Assuming all single source shortest path computation in the algorithm are

random experiments and the variables are independent identically distributed. The error

of estimating Betweenness centrality using a pivot set with size of k and error margin ζ

can be calculated using Hoeffding's formulas;

Equation 9 Hoeffding's formulas for finding sampling error

Pivot selection is also important, due to different selection strategies can affect

convergence rate. (Schultes, Sanders, & Schultes, 2008) However, selecting non-

random pivots may make each pivots contribution dependent to each other, and

Hoeffding's formula would not hold on a dependent experiment.

19

20

3.2.4. Identifying Opinion Shaper Roles using Centrality Measures

The actors with high Indegree Centrality are popular leaders that can disseminate

ideas directly. On the other hand, the actors with high Eigenvector Centrality can reach

a larger group than their surroundings if their ideas can infect their surroundings, and

the people around them also disseminate the same idea. Besides, the actors with high

Betweenness centrality play another role; they have much more control of the

communication paths.

 Low In-Degree Low Eigenvector Low Betweenness

High

Indegree

 Marginal/Isolated leader:

Individual is embedded in

cluster that is far from the

rest of the network (or

key actors)

Conventional Ineffective:

Individual's connections are

redundant--communication

bypasses them

High

Eigenvector

Ghost opinion shaper:

Low number of

connections, but

connected to

important actors

 Specialized opinion shaper:

Individual might have

unique access to central

actors

High

Betweenness

Influence-broker:

Individual’s few ties

are crucial for

network flow

Gatekeeper: Gatekeeper

to central actors

Table 2 Actors’ roles in a network according to their centrality measures adapted from

(Moody, 2012)

Marginal/Isolated Leaders are popular in some isolated group, but due to their

group’s low connectivity, their Eigenvector Centrality is low and their ideas have

difficulty in passing outside of the their surroundings.

Conventional/Ineffective Opinion Shapers are popular but their connections are

redundant, the communication by-passes them.

21

Ghost Opinion Shapers are interesting because they do not directly disseminate

ideas much but since they are able to sway in important actors, Ghost Opinion Shapers

can reach larger audience.

 Specialized opinion leaders are influential within their respective surroundings,

but are weakly tied to others. Specialized opinion leader’s ideas circles through in the

same crowd rather than reaching beyond of their surroundings.

Influence brokers are not directly influential but they control the flow of

information, and their small number of connections is important to the communication

paths.

Gatekeepers are connected to important actors; they are on important

communication paths which allow them to control influence of other important actors.

22

CHAPTER 4

Sentiment Analysis

The sentiment analysis task is consists of several stages. Initially, some pre-

processing is done on the text to improve quality of the input data; since data retrieval

processing is often very forgiving and less strict to collect data as much as possible.

Secondly, features are generated since most of the analysis algorithms can only work on

structured data. Instead of giving arbitrary length character sequence to machine

learning algorithms, a fixed sized numerical and/or nominal vector are much easier to

utilize. After that, the resulting feature vectors are fed along with their corresponding

labels to train classifiers. Finally, classifiers are tested using validation techniques such

as cross-validation like in this work.

4.1. Pre-processing

The status messages obtained from Twitter often includes spelling errors. The

Turkish status messages are often uses English letters that are looking similar. The

status messages also may include hash tags or concatenated words which are harder to

make sense computationally without preprocessing. In addition, consecutive

punctuation marks, emoticons, are used show emotions but often not separated from the

actual words with white spaces.

23

In pre-processing stage we have applied following transformations to overcome

these problems;

 Asciification: We converted each non-English letter to a similar English variant

due to common typing problems regarding mobile users. E.g. letter Ç converted

to C, or letter İ converted to I

 URL removal: We removed any URLs in tweets to clean up unmatchable tokens

 Fix camel case hash tags: We split tokens before case change to match words in

hash tags or similar uses of camel case.

 Group consecutive punctuation marks: We group words with consecutive

punctuation marks to catch common tokens such as emoticons

Lowercase: We converted all letters to lowercase so matching is case insensitive.

Status Message After Preprocessing

Örnek Tweet #SomeHASHTag t.co/FOOBAR ['ornek', 'tweet', '#', 'some', 'hash', 'tag']

Değistirdiğime çok sevindim :) ['degistirdigime', 'cok', 'sevindim', ':)']

Table 3 Preprocessing Examples

4.2. Feature Extraction

Feature extraction is transformation of arbitrary data to more meaningful, less

redundant and clean form that is easier to be utilized by Machine Learning algorithms.

The character or word sequence is not directly meaningful to computers; the sequence

cannot be fed to the machine learning algorithms. The algorithms require rather fixed

sized numerical feature vectors for each instance in the dataset. Even-though,

algorithms such as Recursive Auto-Encoders and Recurrent Neural Networks can deal

with arbitrary length, the input in each state should be a meaningful fixed sized

numerical vector.

24

Feature extraction from text has few stages; sequence of symbols should be

tokenized, then the token should be vectorized, finally the vectors can be normalized if

needed.

In our case, most of the tokenization work is already done on pre-processing

stage, the stateful regex substitutions allows us to tokenize the strings by simply

splitting them on white spaces.

For vectorization, all methods except Recursive Auto-Encoder use Bag-of-words

approach to represent status messages. Each token is indexed and represented as a

sparse vector. Three BOW vector representations have been used including, TF vector,

binarized TF vector, and TF/IDF vector. Recursive Auto-Encoder method used its own

word embedding. The word embedding represents each word in a numerical space. The

word embedding used in Recursive Auto-Encoder in this work, is a meaningful n-

dimensional numerical mapping that an Auto-Encoder can make sense and combine

with other words.

4.2.1. Term Frequency

Term Frequency vector contains the number of tokens' occurrences for each

document. This approach allows us to represent unstructured text in a structured way,

which we have applied common statistical operations. Due to the large size of tokens

we have stored TF values as sparse vectors.

Also, many normalization and smoothing methods could be applied to increase

performance and generalization of classifiers, such as; binarization where all values

larger than 1 regarded as 1, or weighting frequency values using inverse document

frequencies.

25

4.2.2. TF-IDF

In text classification, common words that occurred in too many documents

might hold less information than less frequent words. To overcome this problem,

weighting with inverse document frequencies is commonly used.

Equation 10 TF-IDF

where N is total number of documents in the data set and is number of

documents where the term t appears.

4.3. Classification

4.3.1. Multinomial Naive Bayes Classifier

Naive Bayes Classification is a machine learning method that assumes given a

class, each feature is independent. The Naive Bayes classifies documents by probability

estimation due to its distribution. Multinomial Naïve Bayes uses the multinomial event

model (Rennie, Shih, Teevan, & Karger, 2003); the feature vector of Multinomial Naïve

Bayes Classifier represents multinomial distributed events. When feature vector F is

observed, the likelihood estimation according to Multinomial Naïve Bayes is

26

Equation 11 Maximum Likelihood Estimation for Multinomial Naïve Bayes Classifier

Often, instead of term frequency, pseudo-counts are used because, when a

feature value does not appearing in a given class, the probability estimation would be

zero. This special case of pseudo-count for Multinomial Naïve Bayes is called Additive

Smoothing. Instead of Fi , smoothed estimation i is used where µ is incident rates, α is

smoothing parameter, and α > 1.

Equation 12 Formula of Smoothed estimation I .

4.3.2. Linear Support Vector Machine

Support Vector Machines are discriminative classifiers that divide sample space

into classes with hyper planes using instances as support vectors. Using class labels as -

1 and 1, SVM tries to find maximum-margin hyper plane which separates data point’s xi

to their classes, yi.

The charm of Support Vector Machine is that, it allows getting a complex model

with a simple Support Vector Machine. The Support Vector Machines, instead of

generating a model via aggression, generation, or reproduction, uses the data points

from the training dataset to produce the model. Subset of the data points are selected to

be Support Vectors which are used to build a hyper plane that separates classes with a

maximum margin. The intuition of maximal margin is model having fewer dichotomies

27

and smaller VC dimensions. In addition maximum margin constrain allows optimization

methods works much efficiently since margin should be on some of the data points.

(Abu-Mostafa, 2012)

The hyper plane written as where w is the normal of hyper plane,

and

.is offset of hyperplane. The margin is between and

 . Consequently, class of a point xi can be found using sign(). Then, since

the margin is

, maximum-margin hyper plane can be found by minimizing ||w||

subject to , which is an optimization problem. (Alpaydın, 2010)

 The optimization issue exhibited is hard to solve because it relies on upon ||w||,

therefore optimization should deal with square roots. However, it is possible to adjust

the comparison by substituting ||w|| with

 without changing the result. The

substitution converts original optimization problem to

 subject to

 for all xi in x, a quadratic programming optimization problem. This

optimization problem can be solvable with Lagrange method;

Equation 13 Lagrange form of Support Vector Machine margin optimization

where is Lagrange multiplier associated with , subject to all . The solution

can be found by minimizing with respect to w and b while maximizing

with respect each .

In this form, the problem can be solved by quadratic solvers using combination

of training data points, due to Karush-Kuhn-Tucker stationarity condition. (Abu-

Mostafa, 2012)

28

Equation 14 SVM margin expressed as combination of training data points.

After substituting w with

 , we can maximize in to find solution to

Equation 15 with subject to and

 = 0

Equation 15 Lagrange form of SVM margin optimization after substitution

4.3.3. Recursive Auto-Encoder

Recursive Auto-Encoder is one of the Deep Learning algorithms that utilize

Auto-encoders recursively to learn structural representations in data. Deep Learning

aims to build models that are representationally efficient. Each layer uses layer beneath

learn non-local generalization about the data.

Auto-Encoders are one of the algorithms used in Deep Learning. Auto-Encoders

are artificial neural networks that have an input layer, hidden layers, and an output layer

that has same size as input layer. Auto-Encoder aims to reconstruct input using different

number of nodes. Common practice is using fewer nodes in hidden layers to force

learning relation between inputs to have a more compact representation.

Recursive Auto-Encoder utilizes Auto-Encoders to combine two embedding

vectors to represent them in a single vector. Therefore, sequences can be represented by

a single embedding by hieratically combining embedding vectors. This allows

classifiers to work on sequential data such as natural language since arbitrary length

hieratically structured data can be represented as a compact fixed length vector.

The major weaknesses of previous methods were the use of Bag-of-Words.

Bag-of-Words features unfortunately cannot distinguish word ordering and how words

29

affect each other in context, i.e. "I like A more than B" and "I like B more than A"

would have same representations in Bag-of-Words approach.

Recursive Auto-encoders overcome this weakness by constructing a tree that has

tokens for leafs and auto-encoders for intermediate nodes. Unsupervised Recursive

Auto-Encoder would try to construct a dependency tree using auto-encoder

reconstruction error to minimize total reconstruction by only giving edges between

dependent nodes. After the whole tree constructed, the auto-encoder's representation on

the root node is fed to a softmax regression as input.

According to Socher et al(2011), each token is represented with a vector of real

numbers where L is vocabulary embedding matrix; bk is one hot

representation of token where only k’th index is 1. The embedding matrix can either be

learned from training or it can be given. Given the sequence of words x = (x1 ….,xn), the

tree is build by pairing p -> c1c2 using auto-encoder, where c can be a terminal

embedding of a word or a conterminal node in the tree. Parent vectors are computed

from their children as follows;

Equation 16 Parent vector calculation with Auto-Encoder

where is input to hidden layer transformation weights of auto-encoder,

b
(1)

is bias term, and f is activation function such as tanh in our work. One can use any

other non-linear activation function such as sigmoid function. Then, the auto-encoder

can reconstruct inputs as follows;

Equation 17 Auto-Encoder input reconstruction

30

where is hidden to output layer transformation weights of auto-encoder,

b
(2)

is bias term of reconstruction. After that, the auto-encoders error can be calculated

using distance between input and output as follows;

Equation 18 Auto-encoder error

The autoencoder model shown illustrates n-dimensional vector representation of

parent node that has 2 children nodes with n-dimensional vector representation (c1, c2).

The autoencoder is recursively applied until there is single n-dimensional vector that

represents whole tree.

Recursive Autoencoder can either utilize given parsing tree or generate a parsing

tree without supervision if the parsing tree is unavailable. Unsupervised tree prediction

would try to pair consecutive nodes that have minimum reconstruction error when

paired together. Let A(x) be set of all possible parsing trees can be build on sequence

and T(y) be triplets of all the non-terminal nodes in the tree that is indexed by s,

Recursive Autoencoder can be computed as follows; (Socher, Pennington, Huang, Ng,

& Manning, 2011)

Equation 19 Recursive Auto-Encoder optimization target

A simple example for word sequence x= [x1, x2, x3, x4] can be seen in Figure 7

Recursive Auto-Encoderbelow;

31

x4 x3 x2 x1

p1=f(W
(1)

[x2;x1]+b)

p2=f(W
(1)

[x3;p1]+b)

p3=f(W
(1)

[x4;p2]+b)

Figure 7 Recursive Auto-Encoder

In the example, Recursive Auto-Encoder combines x1 and x2 to p1, which is parent node

that represents both x2 and x1 in respective order. Then, it combines p1 and x3 to p2

which is another parent node that represents x3 and p1 in respective order. Also, since p1

is previously constructed as representation of x1 and x2, p2 represents x3, x2, and x1. In

addition, the hieratical structure is also learned; if x3 and x2 had combined first, then

resulting node had combined with x1, resulting vector should be different than p2.

Finally, Recursive Auto-Encoder combines x4 with p2, and resulting node represents

whole sequence.

The optimization target of Recursive Autoencoder structure prediction includes

an argmin term, which makes it hard to optimize. When it is infeasible to find tree

structure that minimizes reconstruction error, which is often the case, one can construct

the tree greedily. Greedy unsupervised Recursive Autoencoder can apply the

autoencoder on nodes iteratively selecting which minimizes error on the step until a

connected tree is constructed. The algorithm makes several passes, in each step

32

reconstruction error is calculated for all non terminal nodes available, the pair with least

reconstruction error is selected and combined to a parent node. Then, resulting node is

again added to available nodes and it is repeated until the tree is constructed. A good

example can be found at (Socher, Pennington, Huang, Ng, & Manning, 2011), let’s

assume there is a sequence (x1,x2,x3,x4), it can be processed as follows; first, the

reconstruction error is calculated for all consecutive pairs of two, [x1,x2] , [x2,x3],

[x3,x4], then the pair with least reconstruction error, let’s say [x1,x2], is combined with

autoencoder. Then, resulting vector, p1,2 is added back, so new sequence is (p1,2, x3,x4).

Again, repeating the same process, we select the pair with least reconstruction error

from all consecutive pairs of two, [p1,2,x3], [x3,x4]. Now, there are two possible trees,

p((1,2),3),4), p((1,2),(3,4)) . Let’s assume [p1,2,x3] is the pair with least reconstruction error.

Combining [x3,x4] gives us following, p(1,2), p(3,4). Since there is there is only one

possible combination available, p((1,2),(3,4)); Finally, we can combine [p(1,2), p (3,4)] as

p((1,2),(3,4)).

x4x3x2x1

P(1,2)=f(W
(1)

[x1;x2]+b)

P(3,4)=f(W
(1)

[x3;x4]+b)

P((1,2),(3,4))=f(W
(1)

[p(1,2);p(3,4)]+b)

Figure 8 Greedy Unsupervised Recursive Autoencoder for structure prediction

33

4.3.3.1. Semi-Supervised Recursive Autoencoder

Recursive Autoencoder can be trained in semi-supervised way to predict class

distributions. Since, the root node in Recursive Autoencoder represents the whole

phrase/sentence as an n-dimensional vector, it is possible the feed this vector

representation to a classifier/regression to predict class distributions.

Socher et al.(2011) shows a method to use Semi-supervised Auto Encoders to

predict class distributions. The parent vector which represents the phrase, p, is utilized

by adding a simple softmax later to predict class distributions.

Equation 20 Class distribution prediction using Semi-supervised Recursive

Autoencoder

The prediction d is an m-dimensional vector where there are K labels and its’ elements

are prediction probabilities of instance being in corresponding class. So, dk = p(k|[c1,c2])

represents probability of a distribution k given phrase [c1,c2]. Then, cross-entropy error,

where is k’th element of target label distribution, can be calculated as follows;

Equation 21 Cross-entropy error of Semi-supervised Recursive Autoencoder

Finally, the objective function to minimize for Semi-supervised Recursive Autoencoder

over phrase x and label t pair can be calculated as follows;

34

Equation 22 Objective function for Semi-supervised Recursive Autoencoder

where is set of nodes that constructed by greedy Recursive Autoencoder,

the error can be calculated as follows;

Equation 23 Error of greedy Recursive Autoencoder in Semi-supervised method

For each non-terminal node, the error can be calculated as weighted average of

reconstruction and cross-entropy errors.

Equation 24 Error at each node in Semi-supervised Recursive Autoencoder

where is the parameter that weight of reconstruction and cross-entropy errors. The

parameter allows us to weight synaptic and sentimental information. (Socher,

Pennington, Huang, Ng, & Manning, 2011)

35

CHAPTER 5

System Design

The system used is designed as multiple communicating micro-services instead

of single monolithic software. The choice of multitude-ness is made for better fault

tolerance, scalability, and ease of development. Each micro-service was modeled as an

actor that sends and receives messages between other actors. In response to each

message; an actor can make its own decisions. Instead of short lived light-weight actors,

we have implemented long living heavy-weight actors that make their own

computational choices; all services except Social Network Analysis services

implemented as Communicating Sequential Processes for parallelism and concurrency,

whereas SNA services implement map/reduce for parallelism.

36

Figure 9 Inter-process Messaging Diagram

5.1. Interface

Sentiment Analysis tasks such as status message labeling, dataset and model

manipulation were provided by web interfaces. We developed two different interfaces;

one for optimized for faster status message labeling, and another for both labeling and

modeling tasks. More complicated tasks are provided by an interactive REPL shell.

5.2. News Scraper

Web Scraping is a method of automatic information extraction from The

Internet. Web Scrapers often crawl through web pages’ links to retrieve the pages, then

parses HTML to extract information from relevant pages. We have used web scraping

to generate set of keywords of issues that we are interested.

37

We have crawled major online news papers to fetch articles and their categories.

We have generated our keyword sets by sorting co-occurring words with seed sets and

ranking with respect to their scores after removing stop-words. For keyword extraction,

RAKE algorithm (Rose, 2010), is used with articles that contain words that are on our

seed set.

Equation 25 Keyword scores of Rake algorithm.

5.3. Twitter Network Crawler

Our Twitter Network Crawler manages many Twitter app users’ accounts, to

retrieve account information, followers, and friends of given users. This service allows

us to snowball a small sample set of users, and produce a large social network of people

whom we filtered with previously mentioned criteria. The Twitter network crawling

service listens to the processing queue for crawling jobs; each crawling job stores data

about whom to be crawled and how many steps of separation is going to be followed.

After execution of each job, the resulting social network persisted on the database with

timestamps, and then the processing queue is informed after the job is done.

38

5.4. Timeline Retrieval

The Timeline Retrieval service collects status messages from the given users’

timelines. Due to rate limiting and other potential problems, the service manages

multiple app accounts. The processing queue is listened to retrieval jobs, that stores

which timeline is going to be retrieved, and if the timeline is partially retrieved, and

which parts are to be retrieved. After each job executed, the resulting status messages

are persisted on the database with timestamps, then the processing queue is informed

after the job is done.

5.5. Twitter User Retrieval

The Twitter User Retrieval service is similar to the other data retrieval services.

It manages multiple accounts to collect user profile information from Twitter API, and

stores it on database.

5.6. Twitter Stream Collector

Besides collecting status messages from the users’ timelines, we also collected

status messages using Twitter Streaming API. Streaming API allows its users to filter

keywords, but the data is rate limited and rate limits are kept as a business secret.

39

We have also implemented software that fetches Trending Topics in Turkey

every 15 minutes and combines them with our interested keywords set. All tweets and

those tweets’ user information are persisted on our database.

5.7. Sentiment Analysis

Sentiment Analysis module processes datasets consisting of obtained status

messages and class labels associated to classify status messages. The module uses

several vectorizers such as; TF, TF/IDF, Embedding Matrix, and machine learning

algorithms including; Multinomial Naïve Bayes, Linear Support Vector Machines and

Recursive Auto-Encoders. After a model is constructed by using a dataset and one of

the Machine Learning algorithms mentioned, the model is serialized and persisted on

the database, so that the constructed model can be used to classify other datasets later

on.

5.8. Social Network Analysis

Centrality measures are used for quantifying complex interactions and

communication between nodes in the network. For quantified analysis of structural

importance in the social network, we have used network centrality measures including;

Indegree, Betweenness, and eigenvector centrality. The Social Network Analysis

module calculates these measures on the graph we have retrieved and stores results on

the database.

40

CHAPTER 6

Implementation

The system implemented as multiple services that dispatches jobs to distributed

task queue, and the workers, processes those tasks or dispatches tasks of their own.

Implementation is done mainly on Python programming language but also Go and Java

programming languages are used. In addition many open source libraries/frameworks

used during the development; Tweepy Twitter Library, Scikit-learn Machine Learning

Library, Django web framework, Celery task queue, Scrapy framework, lxml and

matlotlib plotting library are used in Python code. One of the labeling interfaces is

written in Go programming language with Revel Web Framework. Also, some of the

data retrieval services written with help of kukrik/OAuth2 library in Go programming

language. The centrality measures are implemented in C++ programming language

since they are memory allocation and array access heavy computation.

41

Figure 10 Messaging Scheme on Task Distribution Architecture (Simplified).

42

Figure 11 Entity Relation Diagram.

6.1. Web Interface

The web interface is implemented using Django web framework, inter-process

message passing is done with RabbitMQ, and data persisted on PostgreSQL database.

The web interface allows users to login with their passwords, manipulate tweet datasets,

label tweets, train machine learning models, and predict any given tweets’ sentiment.

All long running tasks, such as training and prediction are done asynchronously by

worker processes on several servers. In the front end side, JQuery and Twitter Bootstrap

are used.

43

Figure 12 Login page

Figure 13 Dataset page

44

Figure 14 Label page

Figure 15Models page

45

6.2. News Scrapper

The news crawler was implemented using Scrapy framework and lxml. News

scrapper periodically, visited news papers, and fetched articles within a given depth

from seed URLs. Content from each page visited is extracted with XPATH queries.

Then, the articles including our seed set are selected and RAKE scores are calculated.

Finally, top scoring keywords are sent to Twitter Stream Collector module.

Interval between runs chosen as 1 hour and crawling depth has been 3 links from

the main page of the site. Since maximum of 400 words can be tracked by Twitter

Streaming API as implementation is done, only top scoring 400 keywords are send to

Stream Collector.

6.3. Twitter Information Retrieval

Twitter user, timeline, network retrieval services are very similar. Our Twitter

information retrieval services assign jobs to many Twitter app users, while keeping

track of rate limits of each app user. These services are implemented in Go

programming language, with OAuth2 library. The data is persisted on PostgreSQL

database with the exception of status messages. Status messages are persisted on a small

Apache Cassandra Cluster with GoCQL driver, which gave us better performance and

space efficiency on database write operations, since only small portion of the status

messages are used in the sentiment analysis and needs to be in a relational database.

46

6.4. Sentiment Analysis

Sentiment Analysis service was implemented mostly by utilizing Scikit-learn.

Multinomial Naïve Bayes classifier and Linear SVM used from Scikit library. On the

other hand Semi-supervised Recursive Auto-Encoder is based on Sanjeev Satheesh’s

work and it is written in Java programming language. (Satheesh, 2014)

6.5. Social Network Analysis

Social network analysis services are the computationally heaviest part of our

systems. For efficient computation, it is implemented in C++ programming language,

instead of common practice use of hash-maps; we have used faster arrays to implement

adjacency lists. Also, Eigenvector centrality and Betweenness centrality

implementations are parallelized to utilize multiple processors and computers.

The Eigenvector Centrality is parallelized by splitting computation of sparse dot

product operation in power iteration algorithm to multiple processors. The result array

sliced into smaller chunks, and each chunk is calculated in a different processor.

On the other hand, the Betweenness Centrality algorithm was calculating

shortest paths starting from a sample set of nodes. The implementation was parallelized

by slicing sample node set into smaller sets, calculating Betweenness Centrality for sub-

samples, and then normalizing results. Another alternative distributed memory method

from Edmonds et al (Edmonds, Hoefler, & Lumsdaine, 2009) is also experimented.

Social Network Analysis jobs are scheduled from command line interface,

scheduled by job processing queue then calculated from the worker daemons in our

servers. Then, results are persisted on the database.

47

6.6. Software Stack

Due to high traffic from Twitter, large size of the dataset and unusual access

patterns of our project, infrastructure was a very important issue. We have run several

benchmarks to assess current software options. Overall results showed us that it is best

to store transactional data in PostgreSQL due to its speed and overall features, and non-

transactional, update heavy data in Cassandra. The production system persistent data on

two databases, large dataset of timeline status messages are stored on a Cassandra

cluster, but the rest of the data is persisted on PostgreSQL database.

Messaging between services is carried by RabbitMQ message broker.

48

CHAPTER 7

Results

7.1. Social Network Analysis Results

The results given below are calculated on Turkish Twitter social network, which

was retrieved in March 2013. Edges associated with non-Turkish users, spam bots, and

inactive accounts are omitted.

7.1.1. Indegree Centrality

Name Indegree Rank Eigenvector Rank Betweenness Rank

Cem Yılmaz 1 29 195

Abdullah Gül 2 101 1592473

atademirer 3 50 42

Demet Akalin Kurt 4 72 3

Recep Tayyip
Erdoğan

5 195 6216422

NTV Spor 6 232 481

Gülben 7 112 4

Galatasaray SK 8 172 377

Sertab Erener 9 121 48

okan bayulgen 10 37 23

Murat Boz 11 109 123

ayse ozyilmazel 12 126 101

Fenerbahçe SK 13 262 202

NTV 14 145 380

Nil Karaibrahimgil 15 108 600

Kenan Doğulu 16 147 52

49

Yalın 17 179 485

Ece Erken 18 230 39

Yılmaz Erdoğan 19 149 1065

Hande Yener 20 156 10

hilal cebeci 21 465 56

Ozan Doğulu 22 247 382

Kemal Kılıçdaroğlu 23 341 55

Alex10 24 337 318

cüneyt özdemir 25 226 280

Table 4 Most influential users according to Indegree Centrality

7.1.2. Betweenness Centrality

Name Indegree Rank Eigenvector Rank Betweenness Rank

Bak ne demiş ? 129 1 5

Lady 171 2 15

Erostroloji 175 3 16

gaf ebesi 64 4 1

Yetkin Acar 255 5 86

Kiss'li Sözler 257 6 107

Düşersem tutun beni 314 7 91

Ferudun ÖZDEMİR 325 8 83

Edebiyat Kulübü 322 9 152

RenkliTweetler 224 10 47

Kelebek Etkisi 443 11 142

❤ LoVely ❤ 434 12 162

Cümle Doktoru 424 13 156

Öz'lü Söz'lü 342 14 130

Tweet Günlüğü 352 15 80

Keskin Sözler 285 16 59

Bay Enteresan 296 17 36

Sevdim Bunu 332 18 82

Twitine Geldim★ 435 19 133

Sence 345 20 102

edebiyat felsefe 183 21 41

Çekici Tweet 333 22 128

mehmet hacıbeyoğlu 262 23 32

Özel Cümleler 476 24 176

Bay Empati 334 25 62

Table 5 Most influential users according to Betweenness Centrality

50

7.1.3. Eigenvalue Centrality

Name Indegree Rank Eigenvector Rank Betweenness Rank

gaf ebesi 64 4 1

HUYSUZ AYI 63 69 2

Demet Akalin Kurt 4 72 3

Gülben 7 112 4

Bak ne demiş ? 129 1 5

Her gün 1Yeni Bilgi 181 243 6

KitapCümleleri 147 93 7

Ümit Yaşar Oğuzcan 202 58 8

Burcunuz Ne Diyor? 233 373 9

Hande Yener 20 156 10

Cebimdeki Kelimeler 189 327 11

Hayat Felsefesi 89 169 12

Can Yücel 169 148 13

Film Replikleri 188 54 14

Lady 171 2 15

Erostroloji 175 3 16

Kaliteli Tweetler 245 90 17

PopulerTwitler 187 53 18

fragman.web.tr 378 212 19

ahmet hakan 53 357 20

Türkçe Olimpiyatları 474 871 21

Melih Bayram Dede 878 787 22

okan bayulgen 10 37 23

allahcc 420 909 27

battin 787 297 28

Table 6 Most influential users according to Eigenvector Centrality

7.2. Case Study: 2014 Turkish Municipality Elections

7.2.1. Sentiment Analysis Results

We have used 2014 Istanbul local elections as our test case and collected tweets

for a month before the elections. We have used 3739 status messages to train our

models. MNB classifier is tested with Term Frequency vectors; on the other hand, SVM

classifier with cost value as 3 is trained with TF-IDF vectors with L2 normalization.

51

Recursive Auto-Encoder is trained with 100 BFGS iterations, alpha value as 0.5 and

with cost value as 1.

Class # of status messages

Pro-Topbaş 2396

Pro-Sarıgül 882

Other 461

Total 3739

Table 7 Class distribution in training set

Classifier Accuracy

MLP* 74.9%
NB* 78.4%
MNB 80.1%

SVM 82.0%
SSRAE 88.3%

Table 8 Classifier accuracy on training set (5-fold CV)

 Ratio

Topbaş 72.54%

Sarıgül 27.46%

Table 9 Distribution prediction of status messages shows support on whole dataset

 Ratio

Topbaş 60.91%

Sarıgül 39.09%

Table 10 Distribution prediction of users that sent status messages on whole dataset

52

7.2.2. Centrality Distribution

Our analysis shows that both groups have similar rank distributions in all the

centrality measures we have calculated. The correlations between distributions are high

and shapes of the histograms are nearly identical.

Figure 16 Pro-Topbaş users Indegree Centrality Rank Histogram

Figure 17 Pro-Sarıgül users Degree Centrality Rank Histogram

53

Figure 18 Pro-Topbaş users’ Eigenvector Centrality Rank Histogram

Figure 19 Pro-Sarıgül users’ Eigenvector Centrality Rank Histogram

54

Figure 20 Pro-Topbaş users’ Betweenness Centrality Rank Histogram

Figure 21 Pro-Sarıgül users’ Betweenness Centrality Rank Histogram

55

The users are classified with users’ centrality rank differences. Actors’ roles are

classified according to the structural indicators that are mention in

. If rank differences between two centrality measures are greater than some

given value; rank of the lesser percentile is accounted for high centrality, and greater

percentile is accounted for low centrality. After using centrality rank classification,

users are assigned to their network role classes. For example, if a user’s Indegree

centrality rank is in 5% percentile, Eigenvector centrality is in 55%, rank difference

parameter used in classification is 50 percent; the user is classified as

“Marginal/Isolated Leader”.

Actor Role Pro-Topbaş Pro-Sarıgül

Marginal/Isolated Leader 0.81% 0.57%

Conventional Ineffective 2.13% 2.14%

Ghost Opinion Shaper 2.33% 1.87%

Specialized Opinion Shaper 0.72% 0.62%

Influence Broker 8.23% 9.26%

Gatekeeper 8.12% 9.33%

Table 11 Role distribution of the case study, with rank diff=0.4

The analysis shows that Topbaş has more Marginal/Isolated leaders and Ghost

Opinion Shapers; on the other hand, Sarıgül has more Infuence Brokers and Gate

keepers. The Ineffective/Conventional and Specialized Opinion Shapers are distributed

similarly for both parties. Even though nearly 3 times Topbaş supporting tweets are

published and twice as many users are supporting him, the election results were %47.91

for Topbaş and %40.05 for Sarıgül, a lesser difference than their Twitter presence.

56

CHAPTER 8

Conclusion

In this thesis, we aimed to show an interdisciplinary work that provides

empirical quantifiable answers for social science problems using network analysis and

machine learning. We built a software system that can generate social graph of online

platforms, target specific group, and analyze both their structural importance and

content they are generating/disseminating. While doing so, we tried to make the system

bias free and its result quantifiable. Also, the system should be able to process data with

little supervision as possible.

The dataset is generated from Twitter. The graph retrieval started from a small

set of users and snowballed into most of the Turkish users. The account information

provided for Twitter users allows us to classify them using machine learning. After

generating a social graph of Turkish Twitter users, we used centrality measures to find

structural importance and roles.

After selecting an event, namely the Istanbul 2014 local elections: we focused on

the content people are sharing on Twitter, classified status messages using a state of the

art sentiment analysis techniques, and developed easy to use collaborative user interface

for sentiment analysis.

Finally, we combined two parts, network analysis and sentiment analysis to

analyze an actual political event. The results showed us the performance of our

sentiment analysis system and structural differences between two parties in a political

event.

57

REFERENCES

Abu-Mostafa, Y. (2012, May 18). Support Vector Machines - Hard Margin. Retrieved

from Machine Learning Video Library: http://work.caltech.edu/library/140.html

Alpaydın, E. (2010). Introduction to Machine Learning. The MIT Press.

Barabási, A.-L. (2003). Linked: how everything is connected to everything else and

what it means for business, science, and everyday life. New York, NY: Plum.

Bort, J. (2012, December 4). How Starbucks And Other Companies Use Complex Math

Algorithms To Read Your Feelings Online. Retrieved from Business Insider:

http://www.businessinsider.com/twitter-facebook-monitoring-2012-11

Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. The Journal of

Mathematical Sociology, Volume 25, Issue 2 , 163-177.

Brandes, U., & Pich, C. (2007). Centrality estimation in large networks. International

Journal of Bifurcation and Chaos , 17 (07), 2303--2318.

Edmonds, N., Hoefler, T., & Lumsdaine, A. (2009). A Space-Efficient Parallel

Algorithm for Computing Betweenness Centrality in Sparse Networks. Indiana

University tech report .

Freeman, L. C. (1979). Centrality in Social Networks: Conceptual Clarification. Social

Networks. n.1. , pp. 215-239.

Hauskrecht, M. (2003). Support Vector Machines. Retrieved March 15, 2013, from

Lecture notes of Machine Learning: http://people.cs.pitt.edu/~milos/courses/cs2750-

Spring03/lectures/class11.pdf

Katz, E. (1957). The two-step flow of communication: An up-to-date report on an

hypothesis. Public Opinion Quarterly , 21 (1), 61--78.

58

Katz, E., & Lazarsfeld, P. F. (1970). Personal Influence, The part played by people in

the flow of mass communications. New York: Transaction Publishers.

Lazarsfeld, P. F., Berelson, B., & Gaudet, H. (1948). The People's Choice: How the

Voter Makes Up His Mind in a Presidential Campaign. Columbia University Press.

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes

text classification. AAAI-98 workshop on learning for text categorization, (p. 752).

Moody, J. (2012). Social Network Analysis Lecture Notes. Retrieved March 15, 2014,

from www.soc.duke.edu/~jmoody77/s884/notes/class_centrality.ppt

Newman, M. E. (2008). The mathematics of networks. The new palgrave encyclopedia

of economics .

Newman, M., Barabási, A.-L., & Watts, D. J. (2006). The Structure and Dynamics of

Networks. Princeton University Press.

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor

assumptions of naive bayes text classifiers. Proceedings of the Twentieth International

Conference on Machine Learning. Washington DC.

Rose, S. E. (2010). Automatic Keyword Extraction from Individual Documents. In S. E.

Rose, Text Mining: Theory and Applications (pp. 5-11). John Wiley & Sons.

Satheesh, S. (2014, January 26). jrae. Retrieved from github.com/sancha/jrae

Schectman, J. (2012, December 7). Wall Street Journal. Retrieved from Obama’s

Campaign Used Salesforce.com To Gauge Feelings of Core Voters:

http://blogs.wsj.com/cio/2012/12/07/obamas-campaign-used-salesforce-com-to-gauge-

feelings-of-core-voters/

Schultes, R. G., Sanders, P., & Schultes, D. (2008). Better Approximation of

Betweenness Centrality. Proceedings of the 10th Workshop on Algorithm Engineering

and Experimentation, (pp. 90–100). Siam.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., & Manning, C. D. (2011). Semi-

supervised recursive autoencoders for predicting sentiment distributions. Proceedings of

the Conference on Empirical Methods in Natural Language Processing, (pp. 151-161).

Watts, D. J., & Dodds, P. S. (2007). Influentials, Networks, and Public Opinion.

Journal of consumer research , 441--458.

59

We Are Social. (2014, January 9). Social, Digital & Mobile Worldwide in 2014.

Retrieved May 17, 2014, from We Are Social:

http://wearesocial.net/blog/2014/01/social-digital-mobile-worldwide-2014/

