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Abstract

High precision stabilization is one of the fundamental problems in the control
of robotic manipulators. It is generally regarded as a special case of the trajectory
tracking problem in the control literature. This thesis focuses on the development
of various robust control algorithms for robotic systems to achieve and maintain
high precision stabilization against periodic/aperiodic parameter uncertainties and
unknown external disturbances due to terrain changes, high frequency vibrations
and sudden shocks, wind and other environmental factors.

Robust stabilization problem is first tackled by employing angular acceleration
feedback in an inner loop acceleration controller. To this end, a novel master-
slave type Kalman filter algorithm is proposed where an extended Kalman filter
(EKF) and an inverse phi-algorithm are combined in a master-slave configuration
to estimate reliable angular acceleration signals by fusing 3-axis gyroscope, 3-
axis accelerometer and 3-axis magnetometer data. Performance of the proposed
estimator is evaluated through a high fidelity simulation model where estimated
accelerations are used as feedback signals in the stabilization control of a pan-
tilt platform subject to external disturbances. When the acceleration feedback is
incorporated into the control loop, higher precision stabilization is achieved. The
performance of the proposed estimator is compared to Newton predictor enhanced
Kalman filter (NPEKF) and the error state Kalman filter (ErKF). The master-slave
Kalman filter outperforms NPEKF and provides comparable results with ErKF.

A polytopic quasi-LPV model of the pan-tilt system is developed and an LMI
based optimal LQR controller that utilizes acceleration feedback is then synthe-
sized based on this LPV model. Since the parameter vector is 4 dimensional, the
desired LQR controller is synthesized by interpolating LMIs at 16 vertices of the
polytope. A cascaded nonlinear high gain observer is designed to obtain reliable
estimates of position, velocity and acceleration signals from noisy encoder mea-
surements. Simulation results show that the proposed LMI based optimal LQR
controller outperforms the classical LQR controller.
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This thesis also tackles the robust periodic trajectory tracking problem of robot
manipulators. A hybrid learning based adaptive control approach using accelera-
tion feedback is developed for robot manipulators subject to parameter uncertain-
ties and unknown periodic dynamics with a known period. Learning and adaptive
feedforward terms are designed to compensate for periodic and aperiodic distur-
bances. The acceleration feedback is incorporated into both learning and adap-
tive controllers to provide higher stiffness to the system against unknown periodic
disturbances and robustness to parameter uncertainties. A closed-loop stability
proof is provided where it is shown that all system signals remain bounded and
the proposed hybrid controller achieves global asymptotic position tracking. Re-
sults obtained from a high fidelity simulation model demonstrates the validity and
effectiveness of the developed hybrid controller.
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Özet

Yüksek stabilizasyon hassasiyeti, robotik manipülatörlerinin kontrol edilme-
sinde karşılaşılan temel problemlerden biridir. Kontrol teorisi literatüründe, stabi-
lizasyon genellikle bir yörünge izleme probleminin özel bir hali olarak düşünülmek-
tedir. Dolayısıyla bu tez, robotik sistemler için sistemdeki periyodik/aperiyodik
parametre belirsizliklerine ve arazi değişiklikleri, yüksek-frekanslı titreşimler, rüz-
gar ve diğer çevresel faktörlerden kaynaklanan bilinmeyen dış bozucu etkilere karşı
yüksek hassasiyetli stabilizasyon sağlamak ve bunu korumak için çeşitli gürbüz
kontrol tasarımlarının geliştirilmesi üzerine odaklanmaktadır.

Gürbüz stabilizasyon probleminin üstesinden ilk kez açısal ivme geri beslemesi-
nin iç döngü ivme kontrolünde kullanılmasıyla gelinmektedir. 3-eksenli jiroskop,
3-eksenli ivmeölçer ve 3-eksenli manyetometre ölçümlerinin birleşiminden güve-
nilir ivme bilgisinin kestirimi için, genişletilmiş bir Kalman filtresi (GKF) ve ters-
φ algoritmasının bir usta-yamak biçiminde bütünleştirildiği özgün bir usta-yamak
Kalman filtresi önerilmiştir. Önerilen usta-yamak sensör füzyonu algoritmasının
performansı, bir yüksek sadakatli benzetim modeli üzerinde, kestirilen ivme bil-
gisini, dış bozucu etkilere maruz kalan 2-serbestlik dereceli pan-tilt platformun sta-
bilizasyon kontrolünde geri besleme sinyali olarak kullanılmasıyla değerlendiril-
miştir. İvme geri beslemesi kontrol döngüsünde kullanıldığı zaman yüksek sta-
bilizasyon hassasiyeti sağlanmıştır. Önerilen füzyon algoritmasının performansı,
Kalman filtresi ile geliştirilmiş Newton kestiricisi ve hata durum Kalman filtresi
ile karşılaştırılmıştır. Önerilen usta-yamak filtresi, Kalman filtresi ile geliştirilmiş
Newton kestiricisinden üstün gelirken, önerilen algoritma ve hata durum Kalman
filtresi ile elde edilen sonuçlar benzerlik göstermektedir.

Pan-tilt sisteminin bir politopik sözde doğrusal parametre değişim modeli geliş-
tirilmiş ve ivme geri beslemesini kullanan doğrusal matris eşitsizliği tabanlı doğru-
sal bir ikinci dereceden regülatör kontrolcüsü, bu model üzerinden sentezlenmiştir.
Parametre vektörü, 4 boyutlu olduğu için istenilen doğrusal ikinci dereceden regüla-
tör kontrolcüsü, doğrusal matris eşitsizliklerini 16 köşede interpole ederek sen-
tezlenmektedir. Bir iç içe geçmiş yüksek kazançlı gözlemci yapısı, gürültülü enko-
der ölçümlerinden güvenilir pozisyon, hız ve ivme sinyallerinin tahminlerini elde
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edebilmek için tasarlanmıştır. Benzetim sonuçlarına göre önerilen doğrusal mat-
ris eşitsizliği tabanlı doğrusal parametre değişim kontrolcüsünün klasik doğrusal
ikinci dereceden regülatör kontrolcüsünden üstün gelmektedir.

Bu tez çalışmasında ayrıca bir robotik platformun gürbüz periyodik yörünge
izleme problemi çözülmeye çalışılmıştır. İvme geri besleme sinyalini kullanan yeni
bir hibrit öğrenme tabanlı uyarlamalı kontrol yaklaşımı, parametre belirsizliklerine
ve periyodu bilinen ama kendisi bilinmeyen, zamanla değişen periyodik dinamik-
lere maruz kalan robotik sistemler için geliştirilmiştir. Öğrenme ve uyarlamalı ileri
besleme terimleri periyodik ve periyodik olmayan bozucu etkileri gidermektedir.
İvme geri beslemesi hem öğrenme hem de uyarlamalı kontrolcüsüne dahil edilerek
bilinmeyen periyodik bozuculara ve parametre belirsizliklere karşı sisteme yük-
sek sertlik ve gürbüzlük sağlamaktadır. Bütün sistem sinyallerinin sınırlı kaldığını
ve önerilen kontrolcünün global asimptotik pozisyon izleme başarımını gösteren
kapalı-çevrim kararlılık analizi verilmiştir. Bir yüksek sadakatli benzetim modeli
ile elde edilen sonuçlar, önerilen hibrit kontrol yönteminin geçerliliğini ve verimli-
liğini göstermektedir.
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Chapter 1

1 Introduction

A typical motion control problem consists of generating and following a desired
trajectory when the system is exposed to noises and uncertainties. Some of the
examples include autonomous vehicles, mobile robots performing tasks on rough
surfaces, and marine underactuated vehicles [1]-[3]. All those nonlinear systems
need highly accurate tracking performance. In the last two decades, a lot of in-
dustrial applications require robots to perform repetitive tasks such as assembly,
manufacturing systems and satellite formation with consistent precision and accu-
racy [4]-[5]. This type of control problem is referred as periodic trajectory tracking
problem.

Stabilization is regarded as special case of a general tracking problem in the
control theory literature although they are usually considered as two different con-
trol problems. Stabilization is becoming increasingly popular in different appli-
cation areas such as target identification, security and defense, gun-turret control,
search and rescue, entertainment and environmental monitoring [6]-[9]. The objec-
tive of stabilization is to maintain the desired orientation of the platform relative to
earth frame and at the same time reject all external disturbances. Gyro-stabilized
inertially stabilized platforms (ISP) and 2 DOF pan-tilt mechanisms are mostly
used for the need of pointing a camera, a laser range finder or a radar on a given
target while the mounted platform is moving. Examples of military and commer-
cial applications are given in Figure 1. All of these applications require very accu-
rate stabilization in the order of micro-radians because small angular displacements
may lead to large position errors if the target is kilometers away.



Figure 1: Stabilization with pan-tilt platforms

Motivated by the aforementioned applications, both periodic trajectory track-
ing and stabilization are important tasks in the control of robotic manipulators.
Various control methods such as PID control, adaptive control, neural network con-
trol, and fuzzy control [10]-[12] are used to improve the dynamic response of the
system. Due to unknown disturbances and parameter uncertainties during actual
system operation, it is not always possible to achieve desired tracking and stabiliza-
tion performances with traditional control approaches. Robust control algorithms
are required to cope with unknown disturbances and parameter uncertainties.

1.1 Motivation

Robust control algorithms are needed to achieve sufficiently small tracking and sta-
bilization errors. It is known that the use of acceleration feedback is effective for
the disturbance rejection in industrial applications such as servo control machines
and robot arms which continuously interact with the environment and work under
different loads. Although acceleration feedback is used in several applications, the
role of acceleration feedback has not been fully explored in the tracking and stabi-
lization problems. The main objective of this thesis is to develop robust tracking
and stabilization control algorithms based on acceleration feedback. However, the
success of acceleration control techniques largely depends on reliable acceleration

2



feedback. Therefore, novel observers and sensor/data fusion algorithms will be
developed for estimating reliable acceleration information.

Angular positions are generally provided by encoders or Inertial Measurement
Units (IMU). Typical inertial sensors that are used in IMU are 3-axis gyroscopes,
3-axis linear accelerometers, and 3-axis magnetometers. While a 3-axis gyroscope
measures angular velocities about 3 axes, a 3-axis linear accelerometer measures
specific forces about 3 axes and a 3-axis magnetometer measures earth’s magnetic
field in 3 axes, respectively. Sometimes, a 3-axis inclinometer, which is also an
accelerometer that provides higher precision data, is also used in IMU to measure
roll and pitch angles. Euler angles are generally estimated by fusing the raw sen-
sor data using an appropriate sensor/data fusion algorithm such as Kalman filter
[13]. Although the estimation of Euler angles is a well-known problem, accurate
and efficient estimation of Euler velocities and accelerations is still an active re-
search area. In the context of this thesis, we will extend the well-known estimation
problem to include estimation of Euler velocities and accelerations as well.

A new sensor fusion method for reliable angular acceleration estimation using
a master-slave Kalman filter is presented. The proposed filter estimates the angular
acceleration by extending the state vector of the AHRS (Attitude and Heading Ref-
erence System) to include both Euler rates and accelerations in addition to Euler
angles and gyro biases. It employs both an extended Kalman filter (EKF) and an
inverse Φ-algorithm in a master-slave configuration. While the master estimator
(EKF) feeds the slave estimator (inverse Φ) with the estimated gyro biases, the
slave estimator (inverse Φ) estimates bias compensated angular velocity, accelera-
tion and jerk signals in the body frame and sends them to the master. The proposed
Kalman filter is developed in a master-slave configuration due to the following
reasons:

• The master filter estimates the augmented state vector which includes gyro
biases as well.

• The process dynamics of the new estimation problem needs the computation
of body frame angular accelerations and jerks; so a slave filter is required to
estimate these accelerations and jerks.

• The process dynamics of the new estimation problem requires the use of
smooth and unbiased angular velocities to provide reliable Euler angle, ve-
locity and acceleration information; so a slave filter that utilizes the unbiased
gyroscope measurements is developed to obtain smooth and unbiased esti-
mates of angular velocities.

• In the slave filter, unbiased gyroscope velocities are used as measurements
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where biases estimated by the master filter are subtracted from the gyroscope
measurements.

The master-slave filter is used to obtain reliable estimates which are employed
as feedback signals in the stabilization control of a 2-DOF pan-tilt platform. The
performance of the stabilization control largely depends on the reliable feedback
information. The stabilization control is designed by using an inner loop accel-
eration approach. When the pan-tilt platform is subject to external disturbances,
use of reliable acceleration feedback improves the robustness of the system against
the disturbances. Results obtained from a high fidelity simulation model which
consists of the nonlinear dynamical model of the pan-tilt system subject to ex-
ternal disturbances and models of the inertial sensors (gyroscopes, accelerometers
and magnetometers), demonstrate better performance of the PI controller enhanced
with acceleration feedback over the conventional PI controller which does not uti-
lize such feedback.

Nowadays linear optimal robust controllers are used for the stabilization of
nonlinear systems represented by linear parameter varying (LPV) models. The key
feature of LPV models is to provide the use of linear optimal control methods for
the control of nonlinear MIMO dynamic systems. Such controllers are obtained
by optimizing a cost function. It is known that disturbances manifest themselves
first as acceleration signals; so better disturbance rejection can be achieved by ac-
celeration feedback. This motivated us to design a new cost function that includes
acceleration errors.

In literature, learning based controllers are considered for robotic manipulators
that perform the same task repeatedly. This type of controllers improve system
performance by utilizing previous error signals into the control input. However, the
standard learning controller cannot reject aperiodic disturbances. This motivates
the design of a new hybrid learning based adaptive controller using the acceleration
feedback to achieve global position tracking for robotic manipulators despite the
parameter uncertainties and unknown periodic dynamics.

The proposed hybrid controller utilizes learning based feedforward terms to
compensate for periodic disturbances, and adaptive based feedforward terms to re-
ject aperiodic disturbances. Since it is well-known that the effects of disturbances
manifest themselves in the acceleration signals first, acceleration feedback is in-
corporated into the learning control and this should improve the robustness of the
system against unknown periodic dynamics. The performance of the controller
largely depends on reliable position, velocity and acceleration signals. However,
obtaining velocity and acceleration signals from encoder position data is challeng-
ing due to the encoder quantization errors. In literature, different methods [14]-
[16] exist to provide useful velocity and acceleration estimates from noisy encoder
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measurements for the control purposes. In this thesis, a cascaded high gain ob-
server (HGO) structure is developed to estimate position, velocity and acceleration
signals. Estimated position, velocity and acceleration signals are then used in the
proposed hybrid controller. The hybrid controller is developed on an n-rigid link
robotic manipulator. A closed-loop stability proof where the filtered error is mod-
ified by including the integral of the position tracking error is provided to show
that all system signals are bounded and global asymptotic position tracking is en-
sured. The performance of the proposed hybrid learning based adaptive controller
is evaluated on a 2-DOF pan-tilt platform.

1.2 Contributions of the Thesis

This thesis makes the following contributions:

• A new estimation problem is stated by extending the state vector of AHRS
to include both Euler rates and accelerations in addition to Euler angles and
gyro biases. Thus, the state dimension of AHRS problem is increased from 6
to 12. A master-slave Kalman filter is proposed to solve this new estimation
problem by fusing noisy IMU measurements.

• A cascaded high gain observer (CHGO) is developed to estimate reliable
velocity and acceleration signals from noisy encoder measurements.

• A polytopic quasi-LPV model of a pan-tilt system is obtained and an accel-
eration based LQR controller is synthesized based on the developed LPV
model for the stabilization of the pan-tilt system.

• A new linear parametrization property is proposed for robotic manipulators.
The well-known linear parametrization property is modified such that the
regressor matrix depends on link accelerations besides link velocities, and
the unknown parameter vector includes both actuator moment of inertia and
friction parameters. By using this new linear parametrization property, ac-
celeration feedback is incorporated into the adaptive controller to improve
the robustness of the system against unknown aperiodic disturbances.

• A new learning controller that utilizes acceleration feedback is developed
for a general error system to successfully reject periodic disturbances. The
standard learning controller developed by [17] is modified by including ac-
celeration signals in the filtered error variable. Reliable accelerations are
estimated by the CHGO. The same learning controller is then modified for
rejecting periodic disturbances acting on the robot dynamics by including
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both acceleration error and the integral of the position tracking error in the
filtered error variable.

• A hybrid learning based adaptive control algorithm has been developed by
integrating acceleration based adaptive and learning controllers. The hybrid
controller increases the robustness of the system against aperiodic and peri-
odic disturbances.

• Closed-loop stability proofs of all nonlinear controllers are provided to show
that all system signals remain bounded and global asymptotic position track-
ing is ensured.

1.3 Outline of the Thesis

Chapter 2 presents the literature survey and theoretical background for the sen-
sor fusion algorithms, high gain observers, acceleration feedback, LPV modeling
approaches, and hybrid nonlinear learning/adaptive controllers. Chapter 3 details
development of the proposed master-slave Kalman filter, and a cascaded high gain
observer structure. Chapter 4 presents stabilization control using inner loop ac-
celeration control. Chapter 5 derives a polytopic quasi-LPV model of the pan-tilt
system, and synthesizes an acceleration based LMI-LQR controller based on the
proposed LPV model for pan-tilt stabilization. In Chapter 6, the proposed hybrid
learning/adaptive controllers are designed and the closed loop stability proofs of all
nonlinear controllers are provided. Chapter 7 presents simulation results. Finally,
Chapter 8 concludes the thesis with several remarks.

1.4 Publications

1.4.1 Journal Articles

• High Precision Stabilization of Pan-Tilt Systems Using Reliable Angular
Acceleration Feedback from a Master-Slave Kalman Filter, S. Evren, and
M. Unel, Journal of Intelligent and Robotic Systems, DOI: 10.1007/s10846-
017-0522-9, 2017 (Published Online).

• Planar Formation Control of Swarm Robots Using Dynamical Elliptic Fourier
Descriptors, S. Evren, and M. Unel, Transactions of the Institute of Mea-
surement and Control, Vol. 37, No. 5, pp. 661–671, May, 2015.
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• A Hybrid Acceleration Based Learning and Adaptive Controller for Periodic
Trajectory Tracking of Robot Manipulators, S. Evren, and M. Unel (To be
submitted).

1.4.2 Conference Proceedings

• Stabilization of a Pan-Tilt System Using a Polytopic Quasi-LPV Model and
LQR Control, S. Evren, and M. Unel, 42nd Annual Conference of the IEEE
Industrial Electronics Society (IECON 2016), Florence, Italy, October, 23–
27, 2016.

• A New Learning Controller for Periodic Disturbance Rejection, S. Evren,
and M. Unel, Asian Control Conference (ASCC), 2017 (Under Review).

• Stabilization of Pan-Tilt Systems Using Acceleration Based LMI-LQR Con-
troller, S. Evren, and M. Unel, Asian Control Conference (ASCC), 2017
(Under Review).
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Chapter 2

2 Literature Survey and Background

This chapter reviews recent developments in sensor fusion algorithms, nonlinear
high gain observers, acceleration feedback, learning controller, adaptive controller,
hybrid learning based adaptive controllers, and highlights the drawbacks and sug-
gests possible improvements.

2.1 Sensor Fusion

Sensor fusion is combining data measured by homogeneous and/or heterogeneous
sensors such that the fused information has less uncertainty (more accurate) than
when these sources were used individually. Today, the most widely used sensor
fusion algorithms are Kalman filter and its variations such as Extended Kalman fil-
ter (EKF), Unscented Kalman filter (UKF) and Adaptive Kalman filter (AKF). The
subsequent sections present the principles of Kalman filter and Extended Kalman
filter. Readers are referred to [13] for detailed information. Alternatively, an indi-
rect Kalman filter approach (error state Kalman filter) has emerged to estimate the
error in the state vector rather than the state itself [18]-[19].

2.1.1 Kalman Filter

Kalman filter [20] has been developed by Rudolf E. Kalman around 1960s. Since
then, it is a popular sensor fusion technique that combines a linear system model
with statistical methods to accurately estimate the state of the system. Kalman filter
can be used in different application areas such as guidance, navigation and control
for aircrafts and spacecrafts, time series analysis in signal processing, motion plan-
ning and control for robotic manipulators.

Kalman filter involves a two step process; prediction and update stages. In the
prediction stage, it estimates state variables along with their uncertainties by using
a linear process model. In the second stage, those estimates are updated by using
a weighted average when the noisy measurement is obtained. Less weight is given
to estimates with higher uncertainties. KF is a recursive linear algorithm where it



utilizes current measurements, and a priori predicted states, not the past informa-
tion. Kalman filter guarantees optimal estimates when process and measurement
errors are white Gaussian noises with zero means (time uncorrelated noises), and
noise covariance matrices are precisely known. Due to difficulty of getting better
estimates of noise covariance matrices, it is not easy to implement KF in practice.
Those matrices can be estimated by trial and error based on a priori knowledge or
using a well-known autocovariance least squares (ALS) technique [21] in which
the time-lagged autocovariances of routine operating data is utilized for covariance
matrix estimation.

A classical Kalman filter considers a discrete time linear dynamic system model
in a state space form:

xk = Fkxk−1 + Bkuk + ωk (2.1)

where Fk is the state transition matrix which is applied to the previous state, xk−1,
Bk is the control input matrix applied on the control input vector, uk, and ωk is
the white Gaussian process noise with zero mean, ωk ∼ N(0,Qk) with the process
noise covariance matrix, Qk. Measurement model is as follows:

zk = Hkxk + vk (2.2)

where zk is the measurement at time k, Hk is the observation matrix, and vk is the
white Gaussian measurement noise with zero mean, vk ∼ N(0,Rk) with the mea-
surement noise covariance matrix, Rk. The state of the KF can be represented by a
posteriori state estimate at time k given observations up to and including at time k,
x̂k/k, and a posteriori error covariance matrix, Pk/k. Kalman filter is implemented
based on the prediction and update equations given by (2.3)-(2.9).

Prediction Stage

Predicted a priori state estimate, x̂k/k−1, and a priori estimate covariance, Pk/k−1,
are as follows:

x̂k/k−1 = Fkx̂k−1/k−1 + Bkuk (2.3)

Pk/k−1 = FkPk−1/k−1FT
k + Qk (2.4)

where x̂k−1/k−1 and Pk−1/k−1 are the a posteriori state and covariance at time k − 1
given observations up to and including at time k − 1, respectively. Initial values,
x̂0/0 and P̂0/0, are randomly selected.

Update Stage

State estimates are updated based on the following innovation or measurement
residual:

ỹk = zk −Hkx̂k/k−1 (2.5)
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with zk provided in (2.2). Similarly, residual covariance is given as:

Sk = Rk + HkPk/k−1HT
k (2.6)

and an optimal Kalman gain is defined as:

Kk = Pk/k−1HT
k S−1

k (2.7)

A posteriori state estimate, x̂k/k, and a posteriori covariance, Pk/k, are updated using
Kalman gain and a priori estimates:

x̂k/k = x̂k/k−1 + Kk ỹk (2.8)

Pk/k = (I − KkHk)Pk/k−1 (2.9)

where I denotes identity matrix.

2.1.2 Extended Kalman Filter

Kalman filter provides optimal estimates for linear system models with additive
white Gaussian noise. However, most of the practical systems are nonlinear. This
motivates the development of the extended Kalman filter (EKF) to employ Kalman
filter for nonlinear models. EKF is the nonlinear version of the Kalman filter which
is based on the linearization of process and measurement models about an estimate
of the current mean and covariance. Process and measurement models do not have
to be linear functions of the state. However, they need to be differentiable func-
tions. Nonlinear process and measurement models are defined as follows:

xk = fk(xk−1,uk−1) + ωk (2.10)

zk = hk(xk) + vk (2.11)

where f and h are nonlinear state dynamics and measurement model,ωk ∼ N(0,Qk)
and vk ∼ N(0,Rk) are zero mean multivariate Gaussian process and measurement
noises with covariances Qk and Rk. Functions f and h cannot be applied directly. A
matrix of partial derivatives, called Jacobian matrix, is computed for each function,
f and h, at each time step with the current predicted states. Extended Kalman filter
is designed based on the prediction and update equations given by (2.12)-(2.20).

Prediction Stage

Predicted a priori state estimate, x̂k/k−1, and a priori covariance, Pk/k−1, are defined
as follows:

x̂k/k−1 = f (x̂k−1/k−1,uk) (2.12)
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Pk/k−1 = Fk−1Pk−1/k−1FT
k−1 + Qk−1 (2.13)

and the state transition matrix is defined by the following Jacobian matrix:

Fk−1 =
∂ f
∂x

∣∣∣∣∣
x̂k−1/k−1,uk−1

(2.14)

where x̂k−1/k−1 and Pk−1/k−1 are the a posteriori state and covariance at time k − 1
given observations up to and including at time k − 1, respectively. Initial values,
x̂0/0 and P̂0/0, are randomly selected.

Update Stage

The following innovation or measurement residual is used to update state estimates:

ỹk = zk − hx̂k/k−1 (2.15)

and the measurement zk at time k is given in (2.11). Residual covariance is as
follows:

Sk = Rk + HkPk/k−1HT
k (2.16)

where

Hk =
∂h
∂x

∣∣∣∣∣
x̂k/k−1

(2.17)

and a near-optimal Kalman gain is obtained as:

Kk = Pk/k−1HT
k S−1

k (2.18)

which updates the following a posteriori state estimate, x̂k/k, and a posteriori co-
variance, Pk/k:

x̂k/k = x̂k/k−1 + Kk ỹk (2.19)

Pk/k = (I − KkHk)Pk/k−1 (2.20)

where I denotes identity matrix.

2.2 IMU and Attitude Estimation with Sensor Fusion

This section describes typical inertial sensors used in an inertial measurement unit
(IMU), and well-known attitude estimation techniques that use IMU together with
a digital signal processor (DSP) to provide reliable attitude estimates.
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2.2.1 Inertial Measurement Unit

Reliable attitude (orientation) information is essential in the control of robotic plat-
forms. Traditionally, joint angles are sensed by high resolution encoders or re-
solvers. In recent years, advances in the development of micro-electromechanical
systems (MEMS) have significantly improved the cost-performance ratio of iner-
tial sensors such as a 3-axis gyroscope, a 3-axis accelerometer and a 3-axis mag-
netometer [22]-[23]. While a 3-axis gyroscope measures angular velocities about
3 axes, a 3-axis linear accelerometer measures specific forces about 3 axes and a
3-axis magnetometer measures earth’s magnetic field in 3 axes, respectively. Those
inertial sensors form an inertial measurement unit as depicted in Figure 2.

IMU

AccelerometerGyroscope Magnetometer

Tb b b b
g x y zω ω ω ω =

 

Tb b b b
g x y zf f f f =

 

Tb b b b
g x y zH H H H =

 

Figure 2: Inertial Measurement Unit

IMU together with a digital signal processor provides angle information by fus-
ing measured data from typical inertial sensors. Sometimes, a 3-axis inclinometer
is also used in IMU to measure roll and pitch angles. The inclinometer is an ac-
celerometer and provides higher precision data. In the subsequent sections, inertial
sensors used in IMU are briefly described. However, the detailed mathematical
models of these sensors are presented in Chapter 3.

2.2.2 Attitude Estimation with Sensor Fusion

The individual use of MEMS inertial sensors is not sufficient to determine atti-
tude angles. Gyroscopes have high bandwidth and thus operate in a fast manner.
However, they suffer from drift problems due to integration of gyro biases. On
the other hand, accelerometers have low bandwidth and therefore they provide rel-
atively accurate roll and pitch angles from the components of the gravity vector
in a slow manner. Similarly, determining yaw angle from the components of the
earth’s magnetic field using a magnetometer is a drift-free but slow process. To
obtain fast and accurate attitude angles, outputs of inertial sensors must be fused,
i.e. sensor/data fusion.
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Today, modern attitude and heading reference systems (AHRS) consist of an
inertial measurement unit (IMU) and an onboard processor. As mentioned previ-
ously, a typical IMU is formed by a 3-axis gyroscope, a 3-axis accelerometer and a
3-axis magnetometer. A sensor fusion algorithm is employed in AHRS to combine
individual sensor measurements to obtain more reliable attitude estimates. Sensor
fusion algorithms eliminate disadvantages of inertial sensors and provide a com-
plementary behavior where estimates mimic gyroscope measurements in the short
term and accelerometer outputs in the long term. The extended Kalman filter [24]-
[25], adaptive Kalman filter [26], unscented Kalman filter [27] to fuse signals from
a low cost IMU to estimate the orientation. On the other hand, the signals measured
by the same sensors can be fused to estimate the position, velocity and acceleration
information [28]-[30].

Deterministic (the bias, scale factor and misalignment errors) and stochastic
(angular white noise (AWN), angular random walk (ARW), rate random walk
(RRW), quantization noise and bias instability) errors in the gyroscope lead to drift
problems in the long-run. Therefore, the researchers have focused on modeling the
gyroscope accurately and analyzed its errors [31]-[33]. Bayard et al. [31] designed
a virtual gyroscope by integrating 4 low-cost MEMS gyroscope with Kalman Fil-
ter. The accuracy of the virtual gyroscope is increased by minimizing the variance
of stochastic error. Chang et al. [32] developed an integrated MEMS gyroscope
array method composed of two levels of optimal filtering to improve gyroscope
accuracy. In the first level filtering, several homogeneous gyroscopes are com-
bined through Kalman filtering into a single effective device that outperforms any
individual sensor. In the second level filtering, the accuracy of the gyroscope is
improved by fusing the heterogeneous sensor data observed by the gyroscope, ac-
celerometer and magnetometer. Experiments show that three gyroscopes with a
bias drift of 35 degree per hour could be combined into a virtual gyroscope with
a drift of 1.07 degree per hour through the first-level filter, and the bias drift was
reduced to 0.53 degree per hour after the second-level filtering . Similar to work in
[31], Lam et al. [33] designed a virtual gyroscope by fusing the data observed from
the homogeneous gyroscopes. However, they estimate both the deterministic errors
(scale factor and misalignment errors) and stochastic errors (RRW and ARW).

Diao et al. [34] analyzed the gyro error characteristics with the help of Allan
variance and built the gyroscope random drift by autoregressive (AR) and auto-
regressive moving-average (ARMA) models. Kalman filter is used to effectively
restrain the gyro drift and improve the gyro precision. Ruan and Yu [35] simi-
larly analyzed MEMS gyro based on the AR model. Improved Sage-Husa adaptive
Kalman filter which has a fading factor of Strong Tracking Filter (STF) is used to
filter out gyro drift.

GPS is widely used in navigation. However, the position obtained from GPS
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is often degraded due to obstruction and multipath effect caused by buildings, city
infrastructure and vegetation. IMU and a processor (e.g. DSP) with suitable fusion
algorithms form an inertial navigation system (INS). Inertial navigation systems
have also bottlenecks; they suffer from the large inertial sensor errors. Therefore,
integrated GPS/INS systems are becoming increasingly popular because of their
complementary characteristics [35]-[36]. GPS/INS systems provide high accuracy
position and orientation information in all environments, especially those where
satellite availability is restricted.

Bikonis and Demkowicz [36] proposed an EKF to integrate GPS and INS sys-
tems for pedestrians location in urban environment. Obtained results show that
EKF algorithm can overcome the problem of huge INS drifts and GPS outages.
Thus, the proposed EKF is more accurate and robust than algorithms using data
from GPS and INS systems separately. Rios and White [37] designed a low cost
solid state GPS/IMU navigation unit that integrates measurements from a GPS,
gyroscopes, accelerometers and magnetometers by an EKF algorithm to provide
a complete navigation solution at a high output rate. The results show that the
attitude and heading errors are less than 0.1 degrees under static conditions and
they are less than 0.5 degrees under dynamic flight tests when compared to a high
accuracy INS system.

Zhang et al. [38] developed an autonomous vehicle navigation method by in-
tegrating the measurements of IMU, GPS and digital compass. This method is
composed of two steps to overcome the low precision of the sensors. The first
step is to establish sophisticated dynamic models which consider Earth self ro-
tations, measurement biases and system noises. In the second step, the system
estimation is implemented by using an Unscented Kalman filter which has higher
calculation accuracy compared to an EKF. Nebot et al. [39] presented a strap-down
INS/GPS integrated system where the gyroscopes and the accelerometers are phys-
ically strapped to the vehicle. The strap-down systems are commonly used today
for reducing the costs, eliminating the gimbal rock and removing the need for some
calibrations.

Caron et al. [40] proposed a GPS/IMU Multisensor Kalman filter algorithm
and introduced the contextual variables to define the fuzzy validity domains of
each sensor. They detect and reject the bad data delivered by GPS sensor using
contextual information. Thus the algorithm increases the reliability of the posi-
tion information. Also, GPS/INS integration is not satisfactory due to INS drifts
and unreliable GPS data. To solve this problem, the authors propose to feed the
fusion process based on a multisensor Kalman filter directly with the acceleration
information provided by IMU.
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2.3 Nonlinear Observers

Some researchers focused on the design and analysis of nonlinear observers [41]-
[43] to have good estimates from low cost inertial sensors due to the convergence
problems in Kalman filtering. Mahony et al. [41] proposed three nonlinear ob-
servers posed directly on the special orthogonal group (SO(3)) driven by recon-
structed attitude and angular velocity measurements. Because of the similarity of
the architecture to those of linear complementary filters, proposed observers are
termed as direct complementary filter, passive complementary filter and explicit
complementary filter. Both direct and passive filters can be extended to estimate
gyro biases online. The performance of the observers are demonstrated with a set of
experiments performed on a robotic test bed and a radio controlled unmanned aerial
vehicle. Bachman et al. [42] presented a quaternion-based complementary filter al-
gorithm for processing the output data from 9-axis MARG (Magnetic field, Angu-
lar Rate, and Gravity) sensor unit containing three orthogonally mounted angular
rate sensors, three orthogonal linear accelerometers and three orthogonal magne-
tometers. Madgwick [43] introduced a new orientation estimation algorithm that is
applicable to both IMU and MARG systems. The algorithm employs a quaternion
based representation of orientation to describe the coupled nature of orientations in
three dimensions and is not subject to the problematic singularities associated with
an Euler angle representation.

High gain observers (HGOs) have been also utilized to get reliable position
estimates. Estimates provided by HGOs have been used in nonlinear feedback
control since 1980s [44]-[46]. The works presented in [47]-[49] applied HGOs to
nonlinear systems and obtained global results under global Lipschitz conditions.
Esfandiari and Khalil [50] mentioned that HGOs could destabilize the closed loop
system when the observer gains are designed as sufficiently high in the lack of
global Lipschitz conditions. The authors showed that peaking phenomenon which
was introduced by [51] causes finite escape time for nonlinear systems. The work
in [50] solved this problem by saturating the control input during the peaking pe-
riod. This can be achieved by designing the control input as a globally bounded
function of the state estimates.

It is known that asymptotic stability can be recovered through the separation
principle in linear control theory. However, this principle does not consider the
recovery of region of attraction and state trajectories. Many of the works [52]-[54]
related to HGOs that extend the separation principle to nonlinear systems have
been also focused on the recovery of asymptotic stability. Actual performance of
the nonlinear systems has been recovered by high gain observers. Atassi and Khalil
[55] show that HGO recovers also region of attraction and state trajectories of the
state feedback controller as the observer gains are sufficiently high. This is ob-
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served because of the combination of fast observer with control saturation. Since
then, many researchers [56]-[58] have used high gain observers to get reliable esti-
mates which are provided as feedback to nonlinear controllers to solve stabilization
and tracking problems.

2.4 Acceleration Feedback

Acceleration feedback control focuses on designing closed-loop control using ac-
celeration feedback to enhance robustness against external disturbances. The accel-
eration feedback signal contains the effects of unknown disturbances. Therefore,
acceleration control responds faster and rejects the disturbances successfully.

Schmidt and Lorenz [59] demonstrated the principles, design methodologies
and implementation of acceleration feedback to substantially improve the perfor-
mance of DC servo drives. They showed that acceleration feedback acts as an elec-
tronic inertia to provide higher stiffness to the system. The success of acceleration
control techniques in literature depends on the accurate and continuous acceler-
ation feedback. Robust angular accelerations which are estimated by the sensor
fusion algorithms mentioned above are incorporated as feedback signals into the
following control techniques: the inner loop acceleration control [60]-[61], distur-
bance observer based control [62]-[65], dynamic compensation [66]-[67], fuzzy
control [68], loop shaping [69], feedforward compensation [70]-[71] and contact
transition control [72]. Early studies reject the disturbances by using acceleration
signals as feedback to proportional-integral (PI) controller, proportional-derivative
(PD) controller and proportional-integral-derivative (PID) controller [60], [61],
[63].

Deur and Peric [60] extended PI speed controller with an inner loop acceler-
ation control. The proposed method provides 50% smaller response time than PI
speed controller. Han et al. [61] introduced the acceleration feedback to enhance
the independent PD control performance of multi-DOF mechatronic system.

Disturbance observers provide the estimates of the disturbances (total mechan-
ical load torque and parameter uncertainties) using the acceleration signal. Hori
[62] is one of the first researchers who presented theoretical analysis and exper-
imental results of disturbance observer based control with acceleration feedback.
Jeong et al. [63] proposed an acceleration based disturbance observer (AbDOB)
to improve the attitude control performance of a quad-rotor system under the un-
known disturbances. Acceleration signals are used to estimate the control input
torque. Then, the disturbance is estimated by the difference between the nominal
control input torque and the estimated control input torque. That difference cancels
out the disturbance. The proposed method performs better than the PD control.

Kobayashi et al. [64] analyzed the disturbance observers to identify the pa-
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rameter variations of the haptic motion platforms. Authors showed that the cut-off
frequency of the low-pass filter used in the disturbance observer where the ro-
bustness is assured depends on the parameter variations. Haptic motion platforms
require much wider bandwidth to interact with unknown environments. The con-
ventional disturbance observer attains the acceleration information by the second
order derivative of a position response so the bandwidth is limited due to the deriva-
tive noise. To enlarge the bandwidth of a disturbance observer, Katsura et al. [65]
proposed a position-acceleration integrated disturbance observer (PAIDO). Since
an acceleration sensor is implemented in it, the control performance of the PAIDO
is superior to the conventional one.

Mizochi et al. [66] showed higher significance of the sampling period of an
output than that of an input in acceleration control. The authors proposed the mul-
tirate sampling method for the acceleration control. Based on the experimental re-
sults, a shorter output sampling period has better performance than a longer input
sampling period. Shang and Cong [67] developed a dynamic acceleration control
(DAF) by introducing acceleration feedback into the robust dynamics compensa-
tion to restrain the trajectory disturbances on the planar parallel manipulator. DAF
can eliminate the trajectory disturbances due to sudden acceleration and decelera-
tion.

Rubaai et al. [68] implemented an embedded hybrid H∞ adaptive fuzzy con-
trol structure for trajectory tracking control of a brushless servo drive system. The
control structure employs a fuzzy logic controller incorporating a H∞ tracking con-
troller with an acceleration feedback signal. The fuzzy logic controller is integrated
with an adaptive law based on Lyapunov synthesis approach to compensate for sys-
tem uncertainty and random changes in the external load acting on the drive system.
The experiments show that the proposed method provides better performance than
the traditional H∞ controller.

Torsional resonance limits the velocity controller bandwidth in most industrial
drives. Acceleration feedback is a general solution for low-frequency resonance but
it has practical limitations such as dead time. Makkapati et al. [69] proposed an
extended acceleration feedback to overcome those limitations. In this method, ac-
celeration feedback is combined with loop shaping techniques. The results present
an improvement in the bandwidth of the velocity control loop. This technique can
be used for other mechanical systems suffering from mechanical resonance.

The angular acceleration information is generally used to increase the stabiliza-
tion and trajectory tracking performance of the inertially stabilized platforms (ISP).
Rezac and Hurak [70] designed accelerometer based feedforward vibration rejec-
tion for inertially stabilized 2 DOF gimbal platform. Experiments prove that signif-
icant vibration rejection is achieved with this feedforward compensation scheme.
Bai and Zhang [71] added accelerometer based feedforward compensation to PID
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control system to reject the disturbances in 3 DOF gimbal platform. The proposed
method improves the accuracy of ISP more than 10% compared to the traditional
PID controller without feedforward compensation. Joint acceleration and veloc-
ity feedbacks are incorporated into a classical internal force control of a robot in
contact with the environment. This is intended to achieve a robust contact transi-
tion and force tracking performance for varying unknown environments, without
any need of adjusting the controller parameters. Xu et al. [72] proposed a unified
control structure for free motion, contact transition, and constrained motion. The
authors discussed the influence of the acceleration and velocity feedbacks on the
force tracking performance during the postcontact period.

2.5 LPV Modeling Approaches

Linear parameter varying (LPV) models are linear state space systems whose ma-
trices depend on a time varying external parameter vector [73]. The entries of the
parameter vector are the scheduling variables that represent the varying operating
conditions of the system. LPV models are called as quasi-LPV when the schedul-
ing variables contain the measurable system inputs, outputs or states instead of
only exogenous signals.

Linear time-invariant (LTI) models are not sufficient when the nonlinear robotic
systems are used in large workspaces [74]. Shamma and Athans [75] first devel-
oped LPV models for gain-scheduled controllers. Since then LPV models have
attracted more researchers.

In literature, different LPV modelling approaches exist [76]. Jacobian lin-
earization [77] is the simplest approach to obtain LPV models. This method is
based on the first order linear approximations with respect to a set of equilibrium
points. State transformation [78] is also a popular technique to derive a LPV model.
The goal is to eliminate all nonlinear terms in the scheduling parameters. This
method performs a coordinate change in the nonlinear equations of the system and
provides quasi-LPV model of the system.

Marcos and Balas [79] developed a novel approach for the derivation of quasi-
LPV models. This approach is called as function substitution because it is based on
the substitution of a decomposition function by (scheduling parameter-dependent)
functions linear in the scheduling vector. The decomposition function is the com-
bination of all the terms of the nonlinear system that are not affine with respect to
the nonscheduling states and control inputs. These terms are not function of the
scheduling vector alone.

Today, well-known linear optimal controllers [80] are applied to nonlinear sys-
tems represented by LPV models. Therefore, the key feature of LPV models is
to provide the use of linear optimal control methods to nonlinear MIMO dynamic
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systems. LPV models can be used to synthesize linear optimal robust controllers
such as the linear quadratic regulator (LQR). This controller deals with the opti-
mization of a cost function or performance index [81]. The states and the control
inputs are weighted based on their importance to seek for appropriate transient and
steady state behaviours. The LQR controller has been generally derived by solv-
ing an algebraic Riccati equation. When a set of Lyapunov inequalities is solved,
it is difficult to find a common Lyapunov matrix analytically. This can be solved
numerically by convex programming algorithms involving LMIs [82]. While the
algebraic solution can only be applied to one plant, the numerical procedure can
take into account multiple plants. Thus, the LQR deals with uncertain systems at
different operation points.

Several H∞ control techniques have been also synthesized on LPV models.
Siqueira et al. [83] developed procedures based on H∞ techniques to achieve po-
sition control of underactuated manipulators. In the deterministic approach, two
nonlinear control techniques are compared in order to verify the differences in
structure and robustness of controllers based on quasi-linear parameter varying
representation and game theory. Experimental results have shown that the quasi-
LPV technique has presented better robustness in comparison with the game theory
technique. Yu et al. [84] combined the gain scheduling theory with H∞ controller
for the LPV model of the robotic manipulator. A control performance compari-
son between the proposed controller and the single H∞ LTI controller is made by
experiments. Hilhorst et al. [85] designed reduced order multi objective H2/H∞
controllers for discrete time LPV systems. Experimental validations on a lab-scale
overhead crane with varying cable length illustrate the practical viability of the
approach.

Many researchers synthesize the LPV controller for the stabilization purposes.
Seghal and Tiwari [86] designed the LQR controller to maintain the triple inverted
pendulum on a cart around its unstable equilibrium position using single control
input. Similarly, Kumar and Jerome [87] described the method for stabilizing and
trajectory tracking of Self Erecting Single Inverted Pendulum (SESIP) using the
LQR. Castiello et al. [88] presented a stabilization nonlinear control algorithm for
a mini rotorcraft with four rotors and compared the results with LQR controller.

2.6 Hybrid Learning Based Adaptive Controllers

Robotic applications usually involve repetitive tasks such as assembling, packag-
ing, manufacturing, construction, and mine clearing. This motivates researchers
to focus on the development of learning control methods that compensate the un-
known nonlinear periodic robot dynamics with a known period to improve link
position tracking performance. However, unknown robot dynamics can also be
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aperiodic. Hybrid control algorithms are usually required to compensate for un-
known disturbances with periodic and aperiodic components. The subsequent sec-
tions present the state of the art learning controller algorithms, and hybrid learning
based adaptive controller algorithms.

2.6.1 Learning Controllers

The aim of a learning control is to achieve desired system performance by updating
the control input from past errors either repeatedly over a fixed finite time interval,
or repetitively (cyclically) over an infinite time interval. Typical learning control
strategies are generally categorized into iterative learning control (ILC) and repet-
itive control (RC). ILC method achieves perfect tracking of the system output to
a desired trajectory repeatedly on a fixed time (pre-specified) interval whereas RC
handles the problem of the periodic reference tracking and periodic disturbance
rejection. ILC requires to reset the system to the initial condition at the beginning
of each cycle to perform the repetitive tasks, i.e. achieving same desired trajec-
tory. Repetitive control, on the other hand, needs no initial repositioning and the
system operates continuously. ILC scheme was proposed by Arimoto et al. [89] in
1984, and Lyapunov-like based designs of iterative learning control [90]-[92] have
been developed. ILC methods have been designed for both nonlinear and linear
uncertain systems with the global Lipschitz conditions [93]-[95].

In parallel to the developments in those controllers, repetitive learning con-
trollers have gained remarkable interest to solve similar tracking problems without
the requirement for initial repositioning. Earlier works of the repetitive controllers
have been developed by [96] for linear time-invariant systems. The stability analy-
sis was conducted for linear processes that repeat continuously in [97]. Similar to
ILC, repetitive control has been applied on nonlinear systems [98]-[102]. Messner
et al. [98] identified and compensated a nonlinear disturbance function where it is
represented as an integral of a predefined kernel function multiplied by an unknown
influence function. Using the past information of the plant, the learning rule was
utilized to indirectly estimate the disturbance function by updating the influence
function estimate. This controller achieves asymptotic disturbance cancellation.
Dixon et al. [99]-[101] proposed a repetitive learning control for nonlinear sys-
tems with an exogenous periodic disturbance that satisfies the matching condition.
The works in [98]-[100] needs parameterizable plants and their goal is to achieve
asymptotic convergence along the time horizon. Cao et al. [101] designed a repet-
itive variable structure control (RVSC) for nonlinear systems without the need of
parametrization. This method incorporates repetitive control into VSC. The robust-
ness to the uncertain system is ensured by the VSC, and the modeling uncertainties
are relaxed to be locally Lipschitz instead of being globally Lipschitz. State infor-
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mation may not be available in many applications for the controller design. Xu et
al. [102] developed a new observer based learning controller approach for a class
of nonlinear systems with time varying parameter uncertanities. Those uncertan-
ities are assumed to be periodic and the only prior knowledge is the periodicity.
This approaches considers two classes of system nonlinearities. The first class of
nonlinearity is the global Lipschitz continuous functions of the unknown state vari-
ables, whereas the second class is the local Lipschitz continuous functions of the
accessible output variables. The Lyapunov-like energy function is employed to fa-
cilitate the learning control design, for the incorporation of any available system
knowledge.

2.6.2 Hybrid Learning Based Adaptive Controllers

Dixon et al. [99]-[100] proposed a hybrid adaptive/learning control scheme to
achieve global asymptotic link position tracking despite unknown robot dynam-
ics with periodic and aperiodic components. The authors applied the saturation
function to the standard learning control law and solved the boundedness prob-
lem by showing that the proposed learning feedforward term is bounded for all
times. Ouyang and Zhang [103] developed a new control method called adaptive
learning PD (AL-PD) control. While PD control acts as a basic feedback con-
trol part, learning feedforward control is an iteratively updated term to cope with
the unknown robot dynamics. When the number of iterations increase, AL-PD
control guarantees the tracking errors converge arbitrarily close to zero. Ngo et
al. [104] also designed an adaptive iterative learning control (AILC) of uncertain
robot manipulators in task space for trajectory tracking. The hybrid controllers
developed in [100]-[104] need infinite memory due to iterative control structure
and exponential convergence is not guaranteed. Vecchio et al. [105] proposed a
hybrid adaptive learning control scheme to solve the periodic tracking problem for
single-input, single-output uncertain feedback linearizable systems with maximal
relative degree and matching unstructured uncertainties, i.e. no parametrization is
available for uncertain nonlinearities. The authors have developed in Fourier series
expansion the unknown periodic reference input signal with a known period. The
proposed controller learns the reference control signal and identifies the Fourier-
coefficients of any truncated approximation. Liuzzo and Tomei [106] developed
the input reference signals as Fourier series expansion and designed AL-PD con-
trol that learns the input reference signals by identifying their Fourier coefficients.
When the Fourier series expansion of each input reference signal is finite, global
asymptotic tracking and local exponential tracking of both the input and the output
reference signals is obtained. Delibasi et al. [107] proposed a self tuning, de-
sired compensation adaptation law (DCAL) [108] based adaptive controller with
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disturbance estimation based on Fourier Series Expansion. The proposed hybrid
controller guarantees global asymptotic link tracking.

Wang et al. [109] designed a backstepping adaptive iterative learning control
(AILC) where the backstepping like procedure is used to design the main struc-
ture of the AILC. The developed controller has two parts; a fuzzy neural network
(FNN) is utilized to approximate unknown certainty equivalent controller, and a ro-
bust learning term is used to compensate for uncertainty from the network approx-
imation error. Thus, the boundedness of internal signals is guaranteed. Tracking
error asymptotically converges to zero. Benosman [110] concentrated on the use
of well-known extremum seeking (ES) theory [111] in the learning based adap-
tive control structure. The local integral input-to-state stability (iISS) feedback
controller with a model-free ES algorithm is combined to obtain a learning-based
adaptive controller. Wang and Chien [112] developed an observer-based adaptive
iterative learning control using a filtered fuzzy neural network. A state tracking
error observer is introduced to design the iterative learning controller using only
the measurement of joint position. An observation error model is derived based on
the state tracking error observer. Then, by introducing some auxiliary signals, the
iterative learning controller is proposed based on the use of an averaging filter.
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Chapter 3

3 Sensors and Proposed Estimation Algorithms

Modeling of MEMS inertial sensors and the proposed estimation algorithms are
presented in this chapter.

3.1 Sensor Modeling

MEMS inertial sensors (gyroscopes, accelerometers and magnetometers) and en-
coders are modeled by corrupting the true sensor measurements with sensor errors.

3.1.1 Gyroscope

Gyroscopes measure angular rates in the body frame. The gyroscope output can be
modeled as:

ωb
g = ωb

0 + bg + ηg (3.1)

where ωb
0 =

[
ωb

x0
ωb

y0
ωb

z0

]T
defines the true rotation rates in the body frame, bg

and ηg represent the gyro biases and noises.

3.1.2 Accelerometer

Accelerometers measure specific forces in the body frame. These forces are the
total accelerations relative to free-fall and represented by fa. It is assumed that
IMU is attached to the body center and earth rotation effects are neglected. Then,
the true specific forces are computed in the inertial frame as follows:

f n
0 = V̇n + g, g =


0
0
−9.81

 (3.2)

where V̇n denotes a vector of the translational accelerations of the body and g is
the acceleration due to gravity. Since accelerometers measure the specific forces



in the body frame, f n
0 is multiplied by the rotation matrix, Rb

n, to transform from
inertial to body frame as shown in (3.3).

f b
0 = Rb

n f n
0 = Rb

nV̇n + Rb
ng (3.3)

The rotation matrix from the inertial frame to the body frame, Rb
n, is computed

using XYZ convention of the Euler angles. Specifically, the first rotation is about
X axis by a roll angle φ, which is denoted as Rx(φ). The second rotation, Ry(θ), is
about Y axis by a pitch angle θ. Finally, the third rotation, Rz(ψ), is about Z axis
by a yaw angle ψ. Then the rotation matrix is computed by the product of these
transformation matrices as follows:

Rb
n = Rx(φ)Ry(θ)Rz(ψ) (3.4)

=


cψcθ cθsψ −sθ

cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ
sφsψ + cφcψsθ cφsψsθ − cψsφ cψcθ


where

Rx(φ) =


1 0 0
0 cφ sφ
0 −sφ cφ

 , Ry(θ) =


cθ 0 −sθ
0 1 0
sθ 0 cθ

 , Rz(ψ) =


cψ sψ 0
−sψ cψ 0

0 0 1


with c∆ , cos ∆ and s∆ , sin ∆. Usually Vn is assumed to be constant and
therefore V̇n = 0. Then, (3.3) is expressed as:

f b
0 = Rb

ng =


−gsθ
gcθsφ
gcφcθ

 (3.5)

where φ and θ are the roll and pitch angles. The output of the accelerometer is
modeled as:

f b
a = f b

0 + ba + ηa (3.6)

where ba and ηa define the accelerometer biases and noises.

3.1.3 Magnetometer

Magnetometers measure the strength of the magnetic fields in the body frame. The
magnetometer output is modeled as:

Hb
m = Hb

0 + bm + ηm (3.7)

where Hb
0 defines the true magnetometer measurements in the body frame, bm and

ηm represent the magnetometer biases and noises.
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3.1.4 Encoder

Encoder measures joint angles in control applications. qm is the measured encoder
data defined as follows:

qm = q0 + be + ηe (3.8)

where qm is the measured encoder data, q0 is the true encoder measurement, and be
and ηe represent the encoder biases and noises, respectively.

3.2 Sensor Fusion by a Master-Slave Kalman Filter

Conventional sensor fusion methods based on Kalman filter estimate Euler angles
and the gyroscope biases [113]-[114]. The state vector is defined as follows [115]:

xs =
[
φ θ ψ bgx bgy bgz

]T
=

[
ΘT bT

g

]T
(3.9)

where Θ ≡
[
φ θ ψ

]T
represent Euler angles (roll, pitch and yaw) and the gyro-

scope biases are denoted by bg ≡
[
bgx bgy bgz

]T
. The nonlinear process dynam-

ics is described by the following kinematic relationship between the Euler rates

Ω =
[
φ̇ θ̇ ψ̇

]T
and the angular velocity vector ω =

[
ωx ωy ωz

]T
[116] :

Ω = Bω (3.10)

where B is the velocity transformation matrix defined as:

B =


1 sinφ tanθ cosφ tanθ
0 cosθ − sinφ
0 sinφ secθ cosφ secθ

 (3.11)

The velocity transformation matrix, B, given by (3.11) becomes singular when
θ = π/2 because tanθ = ∞ or secθ = ∞ at θ = π/2. In this work, the tilt
axis is constrained to be in the range [0, π/2), and therefore there is no gimbal lock
problem. It should be remarked that the choice of Euler angles or quaternions is a
matter of preference, and due to its simplicity Euler angles are preferred. The state
vector in (3.9) is extended to include angular velocities and accelerations; i.e.

X =
[
φ θ ψ φ̇ θ̇ ψ̇ φ̈ θ̈ ψ̈ bgx bgy bgz

]T
(3.12)

=
[
ΘT ΩT ΓT bT

]T
(3.13)

where Γ ≡
[
φ̈ θ̈ ψ̈

]T
defines Euler accelerations.
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In accordance with the new state vector (3.13), the following continuous-time
process dynamics is obtained by differentiating the nonlinear dynamics in (3.10):

d
dt

X =



Θ̇

Ω̇

Γ̇

ḃg


=



Bω

Ḃω + Bα

B̈ω + 2Ḃα + Bγ

03×1


+ W (3.14)

where angular accelerations and jerks are denoted by ω̇ ≡ α =
[
αx αy αz

]T
and

α̇ ≡ γ =
[
γx γy γz

]T
in the body coordinate frame. Non-deterministic effects

and modeling errors are represented by the process noise, W. In (3.14), gyro biases
are assumed to be constant. This model is known as a Wiener process and can be
considered as a special case of Gauss-Markov process [117].
Remark I. Gyro biases can also be modeled using Singer Model. This model as-
sumes that the gyro bias is a zero-mean stationary first order Markov process [30].
The continuous time bias model is defined as:

ḃg = −βbg + w (3.15)

where w is a zero mean white noise and β is the reciprocal of the time constant.
Note that β = 0 implies constant bias model.

To estimate the state vector X in (3.13), an extended Kalman filter that utilizes
sensor measurements was implemented. To run the EKF, we need to compute ω,
α and γ that appear on the right hand side of (3.14). Since there are no additional
sensors to measure angular accelerations and jerks, they need to be estimated from
gyro measurements. To this end, a slave type inverse Φ-algorithm is introduced
to estimate ω, α and γ using bias compensated gyro readings. Since biases will
be estimated by EKF and used as inputs to the inverse Φ-algorithm, we have a
master-slave configuration in Figure 3 where the master estimator feeds the slave
estimator with bias estimates and the slave estimator returns estimated angular ve-
locity, accelerations and jerks to the master estimator.
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Figure 3: Block diagram of the master-slave Kalman filter.

3.2.1 Master Estimator

Process dynamics of the master estimator is given by (3.14). Applying Euler’s
forward discretization to the process dynamics leads to:

Θ

Ω

Γ

bg


k+1

=



Θ

Ω

Γ

bg


k

+ Ts



Bω

Fω + Bα

Hω + 2Fα + Bγ

03×1


k

+ Wk (3.16)

where F ≡ Ḃ,H ≡ Ḟ = B̈, Ts is the sampling period and Wk is the white Gaussian
process noise with zero mean. Measurement vector of the master estimator con-
tains the specific force measurements, f b

a , from accelerometer and the yaw angle,
ψm, determined from the resolved components of the magnetic field measurements,
Hb

m, in the horizontal plane along the heading axis [118]. In order to increase the
observability of the state vector, the measurement vector of EKF is also extended
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by using angular velocities, ω̂, and accelerations, α̂ estimated by the slave filter:

Yk =
[

f b
a ψm ω̂ α̂

]T

k
=


Rb

n(Θ)g
ψ
EΩ

EΓ +GΩ


k

+ Vk (3.17)

where Vk is the time correlated measurement noise [119]:

Vk = Λk−1Vk−1 + ζk−1 (3.18)

with Λk−1 = e−
T
κ I3×3 is the transition matrix of the time correlated errors with the

time constant, κ, ζk−1 represents the white Gaussian noise with zero mean, Rb
n is

the rotation matrix from the inertial frame to the body frame in (3.4), G = Ė, g is
the gravitational acceleration vector and the inverse velocity transformation matrix,
E, is defined as:

E = B−1 =


1 0 sinθ
0 cosφ cosθ sinφ
0 − sinφ cosφ cosθ

 (3.19)

As it is seen from (3.16) and (3.17), the process and measurement models of the
master estimator are nonlinear so EKF will be implemented to estimate the state
vector X.
Remark II. Larger the time constant leads to more correlated measurement noises.
If κ approaches infinity, then the transition matrix becomes identity and Vk =
Vk−1 + ζk−1, i.e. the measurement noises are time correlated. On the other hand,
if the time constant is small, the measurement noises are less correlated and they
behave like a white Gaussian noise with zero mean, i.e. Vk = ζk−1.

3.2.2 Slave Estimator

The slave estimator provides estimates of angular velocities, accelerations and jerks
to the master estimator. The following process dynamics is constructed in discrete
time, based on the classical laws of motion using Taylor series where angular jerks
are assumed to be constant:

ω
α
γ


k+1

=


I3×3 TsI3×3 0.5T2

s I3×3
03×3 I3×3 TsI3×3
03×3 03×3 I3×3



ω
α
γ


k

+Wk (3.20)

where Ts is the sampling period andWk is the white Gaussian process noise with
zero mean. The gyro bias estimated by the EKF is subtracted from the gyro read-
ings to obtain bias compensated body angular velocity, ωb

g − b̂g, which is used as

28



the measurement for the slave estimator:

Yk = ωb
gk
− b̂gk =

[
I3×3 03×6

] 
ω
α
γ


k

+Vk (3.21)

where ωb
g − b̂g =

[
ωb

gx
− b̂gx ω

b
gy
− b̂gy ω

b
gz
− b̂gz

]T
and Vk is the time correlated

measurement noise [119]:

Vk = λk−1Vk−1 + ξk−1 (3.22)

with λk−1 = e−
T
κ I3×3 is the transition matrix of the time correlated errors with the

time constant, κ, and ξk−1 is the white Gaussian noise with zero mean. When the
measurement errors at different times are highly correlated, the classical Kalman
filter provides an approximate solution to the estimation problem because Rk is
the covariance matrix of only ξk, not Vk, i.e. ξk ∼ N(0,Rk). Bryson and Hen-
rikson [120] proposed a time-differencing algorithm also known as an Inverse R-
Algorithm in order to handle with time correlated measurement errors. However,
this algorithm introduces one step delay because the computation of apriori state
estimate must use the current measurement. To resolve this problem, Petovello
et al. [121]-[122] proposed a revised time-differencing algorithm which is known
as an Inverse Φ-Algorithm. We employ the inverse Φ-algorithm to estimate an-
gular velocity (ω), acceleration (α) and jerk (γ) using process and measurement
models given by (3.20)-(3.22), respectively. The prediction stage of the inverse
Φ-algorithm is the same with the prediction step of the Kalman filter. On the other
hand, the update stage of the inverse Φ-algorithm is modified based on Kalman
filter. The prediction and update stages of the inverse Φ-algorithm are presented in
the Appendix A.

3.3 Cascaded High Gain Observers

This section develops cascaded high gain observers to estimate reliable link ve-
locities and accelerations in addition to link positions by utilizing noisy position
measurements from an IMU or an encoder. To illustrate this, consider the follow-
ing second-order nonlinear system:

ẋo1 = xo2

ẋo2 = Ψ(xo,u)
y1 = xo1

(3.23)

where xo =
[
xo1 xo2

]T
is the state vector, xo1 denotes link angles of the robotic

manipulator, xo1 , q, and xo2 represent the link velocities, xo2 , q̇, u is the control
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input, and y1 is the position measurement provided by an IMU or an encoder.
Suppose that the state feedback control, u = γo(xo), stabilizes the origin xo = 0 of
the closed loop system:

ẋo1 = xo2

ẋo2 = Ψ(xo, γo(xo))
y1 = xo1

(3.24)

To implement this feedback controller using only position measurements, a new
observer which consists of two high gain observers in a cascaded structure is pro-
posed as depicted in Figure 4. The first HGO uses position measurements by an
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Figure 4: Block diagram of Cascaded HGO Structure

IMU or an encoder to estimate reliable position and velocity information. The
second HGO, on the other hand, utilizes estimated velocities by the first HGO to
provide estimates of acceleration signals. The dynamics of the first HGO is de-
signed as:

˙̂xo1 = x̂o2 + L1(y1 − x̂o1)
˙̂xo2 = Ψ̂(x̂o,u) + L2(y1 − x̂o1)

(3.25)

where y1 = xo1 is the position measurement, Ψ̂(x̂o,u) is a nominal model of the
nonlinear function Ψ(xo,u), and L1, L2 are the observer gains. Since the exact
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model of Ψ(xo,u) is not known, Ψ̂(x̂o,u) = 0 can be considered. The dynamics of
the second HGO is as follows:

˙̂zo1 = ẑo2 + L3(y2 − ẑo1)
˙̂zo2 = L4(y2 − ẑo1)

(3.26)

where y2 = x̂o2 is the estimated velocity by the first HGO, and L3, L4 are the
observer gains. Error dynamics in the first HGO are obtained as:

˙̃xo1 = −L1x̃o1 + x̃o2

˙̃xo2 = −L2x̃o1 + δo(xo, x̃o)
(3.27)

where the first HGO estimation error is defined as:

x̃o =

[
x̃o1

x̃o2

]
=

[
xo1 − x̂o1

xo2 − x̂o2

]
(3.28)

and δo(xo, x̃o) = Ψ(xo,u) − Ψ̂(xo,u). The observer gain L12 =
[
L1 L2

]T
should

be designed such that
lim
t→∞

x̃o(t) = 0 (3.29)

and the disturbance effects of δo(xo, x̃o) on x̃o is rejected. The transfer function
between δo and x̃ is defined as follows:

Ho(s) =
1

s2 + L1s + L2

[
1

s + L1

]
(3.30)

When sup
w∈R
|Ho( jw)| is arbitrarily small, undesired disturbances can be eliminated.

This can be achieved by choosing L2 � L1 � 1. Therefore, the first observer gains
are designed as:

L1 =
e1

ε1
, and L2 =

e2

ε2
1

(3.31)

for some positive constants e1, e2, and ε1 � 1. It is concluded that decreasing ε1
diminishes the disturbance effect, δo. Since large observer gains, L1, L2, are used in
order to achieve zero estimation errors by rejecting disturbances, these observers
are referred as high gain observers. Based on similar arguments, L3 and L4 are
designed as:

L3 =
e3

ε2
, and L4 =

e4

ε2
2

(3.32)

for some positive constants e3, e4, and ε2 � 1. However, [123] shows that the
transient response of the high gain observer suffers from a peaking phenomenon.

The transient response contains a term of the form
(

1
ε1

)
e−

f t
ε1 for some f > 0.

Thus, peaking is induced by the order
(

1
ε1

)
when ε1 is sufficiently small. This

phenomenon is handled by saturating the control input, u, or the state, xo.
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Chapter 4

4 Stabilization Using Inner Loop Acceleration Control

The aim of stabilization control is to maintain the desired orientation of a robotic
platform (e.g. a pan-tilt system) as in Figure 5 and reject all the external distur-
bances that act on the system. Pan and tilt axes can also be referred as azimuth and
elevation axes.

2q

PAN AXIS TILT AXIS

Base

1q
z

x

Sensor Arrays
(Camera, Radar, 
Antenna, etc.)

y

Figure 5: Pan-tilt mechanism.

The nonlinear model of the pan-tilt system based on the Euler-Lagrange formula-
tion is as follows [124]:

M
(
q
)

q̈ + C
(
q, q̇

)
q̇ + G(q) + Fvq̇ + Fssgn(q̇) = τ + τd (4.1)



where

q =
[
q1 q2

]T
, τ =

[
τ1 τ2

]T
, τd =

[
τd1 τd2

]T

M(q) =

[
M11 M12
M21 M22

]
, C(q, q̇) =

[
C11 C12
C21 C22

]

G(q) =
[
0 0.5gm2l2 cos q2

]T
, Fv

(
q̇
)

=
[
v1q̇1 v2q̇2

]T

Fs
(
q̇
)

=
[
k1sgn(q̇1) k2sgn(q̇2)

]T

M11 =
1
2

m1l21 + m2l21 + m2l1l2 cos q2 +
1
3

m2l22 cos2 q2 + J1

M22 =
1
3

m2l22 + J2, M12 = M21 = 0

C11 = −m2l1l2q̇2 sin q2, C12 = −
1
3

m2l22q̇1 sin 2q2

C21 = q̇1

(1
2

m2l1l2 sin q2 +
1
6

m2l22 sin 2q2

)
, C22 = 0

(4.2)

where q, q̇, q̈ ∈ R2 are the joint angles, velocities and accelerations, M(q) ∈ R2×2

denotes the symmetric and positive-definite inertia matrix, C(q, q̇) ∈ R2×2 is the
centripetal-Coriolis matrix, G(q) ∈ R2 is the gravity vector, Fv and Fs ∈ R2×2 are
constant, diagonal, positive-definite, viscous and static friction coefficient matrices,
sgn(q̇) is the signum function applied to the joint velocities, τ ∈ R2 is the torque
control input vector, τd ∈ R

2 defines the unknown disturbances acting on both
azimuth and elevation axes. J1 ∈ R and J2 ∈ R are motor inertias, m1 ∈ R and
m2 ∈ R are the masses of pan and tilt mechanisms, l1 ∈ R is the radius, l2 ∈ R
is the length, v1 ∈ R and v2 ∈ R are viscous friction coefficients, and k1 ∈ R and
k2 ∈ R are static friction coefficients.

Figure 6 depicts the block diagram of stabilization control. Ωc = 0 and Ω
are the velocity command and measured velocity, eΩ is the velocity error, Vc is
the voltage applied to the motor, τ is the torque control input and τd represents
the unknown disturbances acting on both azimuth and elevation axes. Since Ω is
fed by a gyroscope, stabilization is also referred as gyro stabilization. Velocity
controller is designed as a PI controller to follow the velocity command as closely
as possible.
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Figure 6: Block diagram of stabilization control.

The pan-tilt system converges from an initial orientation to the desired one
by utilizing a PID position controller as shown in Figure 7. Θre f and Ωre f are
reference Euler angles and rates, Θ̂ and Ω̂ are estimated Euler angles and rates,
and eΘ defines the position error. Since both orientation and velocity information
are used as feedback in the position controller, an IMU is needed to perform sensor
fusion.

+− ++
refΩ

cV τ

dτ

PID
Position

Controller

+−
refΘ eΘ eΩ PI

Velocity
Controller

DC
Motor b

af
b
gω b

mH

Sensor 
Fusion

+−

Ω̂
Θ̂

eΩrefΘ&

Figure 7: Block diagram of stabilization control with PID position control.

Stabilization control loop can be improved by using acceleration feedback in a
PI current controller to achieve high precision stabilization as shown in Figure 8. J
is the nominal inertia of motor, KT is the motor torque constant, Kβ is the acceler-
ation feedback gain, Ire f and Î represent reference and estimated currents, and eI is
the current error.

It is assumed that the center of rotation and the center of gravity of the pan-tilt
mechanism are coincident. In light of this assumption, the nonlinear pan-tilt sys-
tem given by (4.1) is decoupled along the azimuth and elevation axes. Therefore,
two separate linear controllers are designed for these axes. In this thesis, the inner
loop acceleration control detailed in [125] and [126] is implemented as depicted
in Figure 8. The goal of acceleration control is to improve the stabilization per-
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Figure 8: Block diagram of acceleration feedback control.

formance of the pan-tilt system by rejecting external disturbances. The position
loop produces reference signals for the velocity loop, which in turn creates refer-
ence signals for the current loop. Reliable angular acceleration signals estimated
by the master-slave Kalman filter are used as feedback in the current controller be-
cause the success of stabilization control largely depends on reliable acceleration
feedback. However, estimated accelerations are not directly utilized in the current
controller. When a torque is exerted on an object, it begins to rotate with an angular
acceleration inversely proportional to its moment of inertia. This relation can be
defined as τ = JΓ. Also, the torque is proportional to the current in the armature
windings of the rotor so it can be computed as τ = KTI. Using these relationships,
an estimate of the current is calculated as Î =

JΓ̂
KT

where Γ̂ is the estimated angular
acceleration. Then, the estimated current is scaled by the acceleration feedback
gain, Kβ, and used as feedback signal in the current controller.

Acceleration control is effective in disturbance rejection because the effects
of disturbance will be sensed first in the acceleration signal before a significant
velocity error can build up in the velocity loop. Higher acceleration gain adds
more electronic inertia to the physical inertia of the total system [127]. Thus, the
overall system exhibits high dynamic stiffness and has better disturbance rejection.
The increase in effective inertia reduces the speed of the system’s response. In
order to preserve the loop gain, one should scale up the control loop gains by the
factor

(
1 + Kβ

)
as in Figure 8.

The following PID controllers generate reference velocities for the velocity
control loops for the azimuth and elevation axes:

ψ̇re f = KPψeψ + KIψ

∫
eψdt + KDψ ėψ (4.3)

θ̇re f = KPθeθ + KIθ

∫
eθdt + KDθ ėθ (4.4)
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where the orientation errors in the azimuth and elevation axes are defined respec-
tively as follows:

eψ = ψre f − ψ̂ (4.5)

eθ = θre f − θ̂ (4.6)

Velocity and current controls are designed as PI controllers for the azimuth and
elevation axes. Reference currents for the azimuth and elevation axes are generated
as follows:

Ire f1 = (1 + Kβ1)KPψ̇eψ̇ + (1 + Kβ1)KIψ̇

∫
eψ̇dt (4.7)

Ire f2 = (1 + Kβ2)KPθ̇eθ̇ + (1 + Kβ2)KIθ̇

∫
eθ̇dt (4.8)

where
eψ̇ = ψ̇re f −

ˆ̇ψ (4.9)

eθ̇ = θ̇re f −
ˆ̇θ (4.10)

where eψ̇ and eθ̇ represent the velocity errors in the azimuth and elevation axes, re-
spectively. Finally, torque control inputs are designed for the azimuth and elevation
axes as follows:

τ1 = KP1eI1 + KI1

∫
eI1dt (4.11)

τ2 = KP2eI2 + KI2

∫
eI2dt (4.12)

where the current errors in the azimuth and elevation axes are defined as:

eI1 = Ire f1 − Î1 (4.13)

eI2 = Ire f2 − Î2 (4.14)
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Chapter 5

5 Stabilization Using Acceleration Based LQR Control

This chapter derives a polytopic quasi-LPV model of the pan-tilt system and uses
it to synthesize an acceleration based LQR controller. The proposed controller is
applied on the nonlinear pan-tilt system for robust stabilization against external
disturbances.

5.1 Derivation of the Quasi-LPV Model

Consider a linear parameter varying (LPV) model in the state-space form

ẋ(t) = A(σ(t))x(t) + B(σ(t))u(t)

y(t) = C(σ(t))x(t) + D(σ(t))u(t) (5.1)

where x ∈ Rn, u ∈ Rnu and y ∈ Rny . The mappings A(.), B(.), C(.) and D(.) are
continuous functions of the time-varying parameter vector σ(t) ∈ Rl. This model
can be represented as a linear input-output mapping:

P(σ) =

[
A(σ) B(σ)
C(σ) D(σ)

]
(5.2)

The parameter vector σ(t) depends on measurable quantities

σ(t) = f (υ(t)) (5.3)

where υ(t) ∈ Rk represents scheduling signals and f : Rk
→ Rl is a continuous

mapping. A compact set can be defined as Pσ ⊂ Rl : σ ∈ Pσ,∀t > 0 [128]. If it is
assumed to be a polytope, then Pσ can be represented as the convex hull,

Pσ := Co{συ1 , συ2 , ..., συL} (5.4)

where L = 2l are the total number of vertices. If the state space model depends
affinely on the parameters, then the LPV model is called as parameter-affine. Thus,
P(σ) in (5.2) becomes:

P(σ) =

l∑
i=0

σiPi = P0 + σ1P1 + ... + σlPl (5.5)



LPV model in (5.6) is called polytopic since it can be represented by a linear com-
bination of LTI models at the vertices. This is the case when (5.5) holds and σ can
be expressed as a convex combination of L vertices συi .

P(σ) = Co{P(συ1),P(συ2), ...,P(συL)} =
L∑

i=1

αiP(συi) (5.6)

where
∑L

i=1 αi = 1, and αi ≥ 0 are the convex coordinates. Since the aim is to
obtain the quasi-LPV model of the pan-tilt system, (4.1) and (4.2) can be rewritten
as:

τ1 =
[
a + bcosq2 + ccos2q2

]
q̈1 −

[
bsinq2 + csin2q2

]
q̇1q̇2 (5.7)

τ2 = cq̈2 +
[
bsinq2 + csin2q2

] q̇2
1

2
+ dcosq2 (5.8)

where a, b, c and d represent dynamic and kinematic parameters:

a =
1
2

m1l21 + m2l21, b = m2l1l2 (5.9)

c =
1
3

m2l22, d =
1
2

m2gl2 (5.10)

From (5.7) and (5.8), q̈1 and q̈2 are calculated as follows:

q̈1 =
τ1 +

[
bsinq2 + csin2q2

]
q̇1q̇2

a + bcosq2 + ccos2q2
(5.11)

q̈2 =
τ2 −

[
bsinq2 + csin2q2

] q̇2
1

2 − dcosq2

c
(5.12)

To construct the nonlinear dynamics given by (5.11) and (5.12) in the state-space
form, the state vector is designed as:

x(t) =
[

q1 q2 q̇1 q̇2
]T

(5.13)

where x(t) ∈ R4. The polytopic quasi-LPV model of the pan-tilt system is derived
by employing the ideas in [84]. Thus, the scheduling vector can be selected as the
state vector of the system:

υ(t) , x(t) =
[

q1 q2 q̇1 q̇2
]T

(5.14)
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By using the assumption in (5.14) and defining h = a + b cos q2 + c cos2 q2, the
polytopic quasi-LPV model of the pan-tilt system is computed from (5.11) and
(5.12) as follows:

A =


0 0 1 0
0 0 0 1
0 0 0 σ1
0 σ2 σ3 0

, B =


0 0
0 0
σ4 0
0 1

c

 ,
C =

[
I2×2 02×2

]
, and D = 02×2 (5.15)

where

σ1 =
(b sin q2 + c sin 2q2)q̇1

h

σ2 = −
d
c

cos q2

q2

σ3 = −
1
2c

(b sin q2 + c sin 2q2)q̇1

σ4 =
1
h

(5.16)

with I and 0 being the identity and zero matrices, and σ(t) ∈ R4. This model
development appeared in [129].

In this thesis, the state vector, x(t), is augmented to include the integral of the
position errors to eliminate the steady state error. A new extended state vector,
z ∈ R6, is designed as follows:

z =

[
q1 q2 q̇1 q̇2

∫ (
r1 − q1

)
dt

∫ (
r2 − q2

)
dt

]T

(5.17)

where the desired joint angles are denoted by r =
[
r1 r2

]T
∈ R2. In accordance

with the new state vector in (5.17), an extended polytopic quasi-LPV model is
designed as follows:

ż(t) = E(σ(t))z(t) + F(σ(t))u(t) + Hr(t)

y(t) = G(σ(t))z(t) + P(σ(t))u(t) (5.18)
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where

E =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 σ1 0 0
0 σ2 σ3 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0


, F =



0 0
0 0
σ4 0
0 1

c
0 0
0 0


,

H =
[
04×2 I2×2

]T
, G =

[
I2×2 02×4

]
, P = 02×2 (5.19)

and u ∈ R2 defines the control input, y ∈ R2 is the output. The system matrices
E(.) and F(.) depend on the time varying parameter vector, σ(t) ∈ R4 obtained in
(5.16).

Next section employs the extended polytopic quasi-LPV model given by (5.18)
and (5.19) to synhesize the classical LMI-LQR controller and an acceleration based
LMI-LQR controller.

5.2 LQR Synthesis Based on the Extended LPV Model

This section designs the classical LMI-LQR controller and an acceleration based
LMI-LQR controller on the proposed LPV model given by (5.18) and (5.19). These
controllers are used to stabilize the nonlinear pan-tilt system given by (4.1) and
(4.2) against external disturbances. The aim is to increase dynamic stiffness of
the pan-tilt system by incorporating acceleration feedback into the LMI-LQR con-
troller. The performance of the developed controller is compared with the classical
LMI based LQR controller in Chapter 7. The classical LQR controller is designed
as

u1 = Kz (5.20)

that minimizes the following cost function:

J1 =

∫ (
zTQz + uT

1 Ru1

)
dt (5.21)

where K ∈ R2×6 is the feedback gain matrix, Q ∈ R6×6 and R ∈ R2×2 are the state
and control input weighting matrices. These matrices are symmetric and positive-
definite, i.e. Q > 0 and R > 0. K is obtained by solving the following semidefinite
programming problem:

min tr(P) (5.22)

subject to
(E + FK)TP + P(E + FK) ≤ −Q − KTRK (5.23)
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where P ∈ R6×6 > 0 is the Lyapunov matrix and tr denotes the trace. The non-
convex optimization problem in (5.22)-(5.23) can be converted into a convex prob-
lem by multiplying left and right side of (5.23) with P−1 and applying Schur Com-
plement [130]:

max tr(Y) (5.24)

subject to 
−(E + FK) − (E + FK)T Y LT

Y Q−1 06×2
L 02×6 R−1

 ≥ 0 (5.25)

and
Y = P−1 > 0 (5.26)

where L ∈ R2×6 is introduced as L = KY and Y ∈ R6×6 is the inverse of the
Lyapunov matrix, Y = P−1. The feedback matrix can be recovered as:

K = LY−1 (5.27)

An acceleration based linear state feedback law is proposed as

u2 = K1z + K2ż (5.28)

where K1, K2 ∈ R2×6 are the feedback gain matrices which will be designed by
minimizing the following cost function:

J2 =

∫ (
zTQ1z + żTQ2ż + uT

2 Ru2

)
dt (5.29)

where the cost function in (5.21) is modified such that acceleration signals are also
included in the new cost function, J2. Q2 > 0 ∈ R6×6 is a symmetric positive
definite matrix that penalizes the derivative of the state vector. The overall control
system is presented in Figure 9. Utilization of both z and ż leads to redundancy in
terms of position and velocity in the controller formulation given by (5.28). In this
work, this redundancy is reduced by selecting smaller weights in Q2 corresponding
to velocity terms in ż.
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Figure 9: Control block diagram

The controller in (5.28) is designed by solving the following semidefinite pro-
gramming problem:

min
(
tr(P1) + tr(P2)

)
(5.30)

subject to
(E + FK1)TP1 + P1(E + FK1) ≤ −Q1 − KT

1 RK1 (5.31)

(E + FK2)TP2 + P2(E + FK2) ≤ −Q2 − KT
2 RK2 (5.32)

where P1 ∈ R
6×6 > 0 and P2 ∈ R6×6 > 0 are the Lyapunov matrices, and there

exists a first-order, differentiable, positive-definite function V(t) ∈ R such that

V̇(t) ≤ − zTQ1z − żTQ2ż − uT
2 Ru2 + 2żTKT

2 FP1z

+ 2rTHTP1z + 2zTKT
1 RK2ż

− żT
[
(E + FK2)TP2 + P2(E + FK2)

]
ż

(5.33)

Proof: A Lyapunov function candidate, V(t) is defined as

V = zTP1z (5.34)

The following expression is computed by taking the time derivative of (5.34), and
using (5.18) and (5.33):

zT
[
(E + FK1)TP1 + P1(E + FK1)

]
z + żT

[
(E + FK2)TP2

+ P2(E + FK2)
]
ż ≤ −zTQ1z − żTQ2ż − uT

2 Ru2

+ 2zTKT
1 RK2ż

(5.35)
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By substituting (5.28) into (5.35) and performing cancellations, one obtains

zT
[
(E + FK1)TP1 + P1(E + FK1)

]
z + żT

[
(E + FK2)TP2

+ P2(E + FK2)
]
ż ≤ −zT(Q1 + KT

1 RK1)z

− żT(Q2 + KT
2 RK2)ż

(5.36)

The following constraints are derived in order to satisfy the inequality in (5.35):

(E + FK1)TP1 + P1(E + FK1) ≤ −Q1 − KT
1 RK1 (5.37)

(E + FK2)TP2 + P2(E + FK2) ≤ −Q2 − KT
3 RK2 (5.38)

(5.30)-(5.32) is a non-convex optimization problem. It can be converted into a
convex problem by multiplying left and right side of (5.31)-(5.32) with P−1

1 and
P−1

2 , and applying Schur Complement [130]:

max
(
tr(Y1) + tr(Y2)

)
(5.39)

subject to 
−(E + FK1) − (E + FK1)T Y1 LT

1
Y1 Q−1

1 06×2

L1 02×6 R−1

 ≥ 0 (5.40)


−(E + FK2) − (E + FK2)T Y2 LT

2
Y2 Q−1

2 06×2
L2 02×6 R−1

 ≥ 0 (5.41)

and
Y1 = P−1

1 > 0, Y2 = P−1
2 > 0 (5.42)

where L1L2 ∈ R2×6 and L2 ∈ R2×6 are defined as L1 = K1Y1 and L2 = K2Y2.
Y1 ∈ R

6×6 and Y2 ∈ R6×6 are the inverses of the Lyapunov matrices, Y1 = P−1
1

and Y2 = P−1
2 . The controller matrices, K1 and K2 are recovered as:

K1 = L1Y−1
1 (5.43)

K2 = L2Y−1
2 (5.44)

The robust control toolbox YALMIP [131] is used to design the classical LMI
based LQR controller and the proposed controller.
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Chapter 6

6 Periodic Trajectory Tracking Using Hybrid Accelera-
tion Based Learning-Adaptive Control

This chapter develops nonlinear controllers for robust periodic trajectory tracking
problem where parametric uncertainties and unknown periodic dynamics are con-
sidered. The closed-loop stability proofs are provided.

6.1 Adaptive Controller with Acceleration Feedback

The nonlinear dynamical model of a n-rigid link robot with the actuator dynamics
are obtained as follows [132]:

M(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + G(q) = τ (6.1)

where M(q) ∈ Rn×n denotes the symmetric and positive-definite inertia matrix,
and M(q) , D(q) + J. D(q) and J are the robot and actuator inertia matrices.
C(q, q̇) ∈ Rn×n is the centripetal-Coriolis matrix, Fv ∈ Rn×n and Fs ∈ Rn×n are
constant, diagonal, positive-definite, viscous and static friction coefficient matrices,
sgn(q̇) is the signum function applied to the link velocities, and G(q) ∈ Rn is the
gravity vector.

Some dynamical parameters in (6.1) can change unpredictably due to varia-
tions in the environmental conditions. This problem may also occur because the
system parameters are slowly time-varying. Unmeasurable changes of the process
parameters lead to unsatisfactory control performance. An adaptive controller ad-
justs itself to tackle unknown parameter uncertainties. Large variations generally
occur in static friction coefficients. Thus, the adaptive controller uses the linear
parametrization property given by (6.2).

Property 1: Linearity in the Static Friction Parameters

Due to large variations in static friction coefficients of the robotic dynamics, the
static friction terms in (6.1) can also be linearly parameterized as

Fssgn(q̇) = W1(q̇)Φ1 (6.2)



where Φ1 ∈ R
n is the unknown constant static friction coefficients and W1(q̇) ∈

Rn×n is the known regression matrix. The regression matrix, W1(q̇), includes
known functions of the velocities.

According to data presented in [133], large variations occur in both motor in-
ertias and static friction coefficients for some robotic manipulators. This motivates
us to modify the unknown parameter vector, Φ1, to include both motor moment
of inertia terms and static friction coefficients. To illustrate this, a new linear
parametrization property in (6.3) is defined.

Property 2: Linearity in the Motor Moment of Inertia and Static Friction
Parameters

The motor moment of inertia terms and static friction coefficients in (6.1) can be
linearly parameterized as

Jq̈ + Fssgn(q̇) = W2(q̇, q̈)Φ2 (6.3)

where unknown parameter vector, Φ2 ∈ R2n, consists of motor moment of iner-
tia terms and static friction coefficients. Regression matrix, W2(q̇, q̈) ∈ Rn×2n,
includes both known velocities and accelerations. Using the new parametrization
property in (6.3), the robot dynamics given by (6.1) can be rewritten as follows:

D(q)q̈ + C(q, q̇)q̇ + Fvq̇ + G(q) + W2(q̇, q̈)Φ2 = τ (6.4)

The subsequent subsections develop the control input, τ(t), and provide the closed-
loop stability proof.

6.1.1 Controller Design

The control objective is to design the torque control input signal, τ(t), such that
desired trajectories will be converged despite the parameter uncertainties in the
dynamics of the robotic manipulator given by (6.4). The position tracking error,
denoted by e(t) ∈ Rn, is defined as follows:

e = qd − q (6.5)

where qd(t) ∈ Rn is the desired link position. The control objective is based on the
assumption that q(t), q̇(t) and q̈(t) are measurable, and the desired joint positions,
velocities and accelerations are bounded. To facilitate the subsequent control de-
velopment and stability analysis, the order of the robot dynamics given by (6.4) is
reduced by defining a filtered tracking error variable, ra(t) ∈ Rn as follows:

ra = ė + Γae (6.6)
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where ė(t) ∈ Rn is the joint velocity error, i.e. ė , q̇d − q̇, and Γa ∈ Rn×n is
a constant, diagonal and positive-definite controller gain matrix. After taking the
time derivative of (6.6), multiplying the resulting expression by the inertia matrix,
D(q), the open loop error system is obtained as

D(q)ṙa = D(q)(q̈d + Γaė) + C(q, q̇)q̇ + Fvq̇ + G(q) + W2(q̇, q̈)Φ2 − τ (6.7)

Based on (6.7) and the subsequent closed loop stability analysis, the proposed
adaptive controller with acceleration feedback is designed as follows:

τ = D(q)(q̈d + Γaė) + C(q, q̇)q̇d + Fvq̇d + G(q) + τa + Λae (6.8)

where acceleration feedback is incorporated into the regression matrix as

τa = W2(q̇, q̈)Φ̂2 (6.9)

and Λa ∈ Rn×n is a constant, diagonal and positive-definite controller gain matrix.
Φ̂2(t) ∈ R2n is an estimate of Φ2, and updated based on the following adaptive law:

˙̃Φ2 = ΥaWT
2 (q̇, q̈)ra (6.10)

with a constant, diagonal and positive-definite adaptation gain matrix, Υa ∈ R2n×2n.
Note that Craig et al. [134] developed adaptive inverse dynamics approach where
joint accelerations are augmented into the regression matrix besides link velocities.

In the proposed controller development (6.8)-(6.10), except for motor moment
of inertias and static friction parameters, it is assumed that the real system param-
eters are precisely known which is not possible in practice. For the case where all
the real system parameters are unknown, the proposed adaptive controller is inte-
grated with the designed learning controller in Section 6.3. Readers are referred to
Section 6.3 for the hybrid control development with unknown system parameters.

When (6.8) is substituted into (6.7), the closed-loop error system for ra(t) is
obtained as

D(q)ṙa = W2(q̇, q̈)Φ̃2 − C(q, q̇)ė − Fvė −Λae (6.11)

where Φ̃2(t) ∈ R2n is the parameter estimation error:

Φ̃2 = Φ2 − Φ̂2 (6.12)

6.1.2 Closed-Loop Stability Analysis

Theorem 1: The proposed controller developed in (6.8)-(6.10) can asymptotically
drive the position error to zero, i.e.;

lim
t→∞

e(t) = 0 (6.13)
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if there exists a first-order differentiable, positive-definite function V1(e, ė, ra, t) ∈
R such that

V̇1 ≤ −eTΓae + rT
a
(
C(q, q̇) + Fv

)
ė (6.14)

Proof: To prove the conclusion of Theorem 1, a Lyapunov function candidate,
V2(t) is defined as

V2 = V1 +
rT

a Dra

2
+

Φ̃T
2 Υ−1

a Φ̃2

2
(6.15)

The following is obtained by taking the time derivative of (6.15), and using the
assumption in (6.14):

V̇2 ≤ rT
a Dṙa − eTΓae + rT (

C(q, q̇) + Fv
)

ė + Φ̃T
2 Υ−1

a
˙̃Φ2 (6.16)

By substituting (6.10) and (6.11) into (6.16), it follows that:

V̇2 ≤ −eTΓae − rT
a Λae (6.17)

(6.17) can be simplified as:
V̇2 ≤ −eTΓae (6.18)

Signal Chasing: Based on (6.15) and (6.18), and using the positive-definite sym-
metric matrix Γa, it can be concluded that V2(t) ∈ L∞. It is observed that ra(t),
Φ̃2(t) ∈ L∞ since the signals in V2(t) given by (6.15) must remain bounded. The
boundedness of ra(t) implies e(t), ė(t) ∈ L∞ based on (6.6). Using Lemma 1 given
in Appendix B, one obtains that

‖e‖ =

√∫
∞

0
e2(t)dt < ∞ (6.19)

where ‖ · ‖ denotes 2-norm. Definition 1 provided in Appendix B is utilized to
conclude that e(t) ∈ L2. Barbalat’s Lemma which is presented in Appendix B
implies (6.13) in Theorem 1 because e(t), ė(t) ∈ L∞ and e(t) ∈ L2.

Using (6.5), the relationship ė = q̇d − q̇, and the boundedness of e(t), ė(t), it
follows that q(t), q̇(t) ∈ L∞. Since Φ2(t) represents bounded motor inertias and
static friction coefficients, and Φ̃2(t) ∈ L∞, it follows from (6.12) that Φ̂2(t) ∈ L∞.

6.2 Learning Controller with Acceleration Feedback for A General
Error System

Learning controllers have been developed to compensate for the unknown nonlin-
ear periodic dynamics with a known period. In this section, a standard learning
controller which is utilized for a typical error system in the literature is reviewed.
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Then, this learning controller is modified with acceleration feedback, and the use
of new learning controller for a typical error system is shown with the closed loop
stability analysis. Consider the system

ẋ = − f (x) + u (6.20)

where x ∈ R is the state and u ∈ R is the control input. f : R → R represents a
nonlinear function mapping. State error, ε ∈ R, is defined as:

ε = xd − x (6.21)

with the desired state, xd ∈ R, and it follows that

ε̇ = ẋd − ẋ (6.22)

By substituting (6.20) into (6.22), the open loop error dynamics is obtained as

ε̇ = ẋd + f (x) − u (6.23)

Since unknown nonlinear dynamics, f (x), are assumed to be periodic for learning
control, we can obtain

f (x(t)) = f (x(t + T)) (6.24)

for a known period, T. f (x(t)) can be considered as periodic disturbances, and so
(6.23) can be rewritten as:

ε̇ = ẋd + d(t) − u (6.25)

with the periodic disturbance, d(t) ∈ R, i.e. d(t) = d(t + T). The controller is
designed as follows:

u = ẋd + kεε + d̂(t) (6.26)

where kε ∈ R is positive constant control gain and d̂(t) ∈ R is a learning based
estimate of d(t). Then, the closed loop error dynamics are derived by substituting
(6.26) into (6.25):

ε̇ = −kε + d(t) − d̂(t) (6.27)

The goal is to design d̂(t) in (6.27). The repetitive update law for the system in
(6.27) is usually developed as:

d̂(t) = d̂(t − T) + k1ε (6.28)

with a positive control gain, k1 ∈ R. It is mentioned in [98] that d̂(t) ∈ L∞
cannot be satisfied when d̂(t) is updated by (6.28). Sadegh et al. [135] solved this
boundedness problem by saturating the entire right-hand side of (6.28) as follows:

d̂(t) = sat(d̂(t − T) + k1ε) (6.29)
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where sat(·) denotes the standard linear piecewise bounded saturation function.
The update law in (6.29) guarantees that d̂(t) is bounded for all time. However,
Dixon et al. [99] stated that the effect of saturation function on the stability is
not clearly analyzed in [135] using the Lyapunov theory. Therefore, the following
update law is developed in [99]:

d̂(t) = sat(d̂(t − T)) + k1ε (6.30)

where the error term on the right-hand side of the general repetitive update law
given by (6.28) is not saturated. The update law in (6.30) guarantees d̂(t) ∈ L∞, and
provides how Lyapunov-based stability analysis comply with the use of saturation
function.

In this thesis, acceleration feedback is incorporated into the repetitive update
law given by (6.30) to increase the robustness of the system exposed to periodic
disturbances. The proposed repetitive update law is designed as follows:

d̂(t) = sat(d̂(t − T)) + k1λ + k2ε̈ (6.31)

where the filtered tracking error, λ ∈ R, is defined as:

λ = ε̇ + k3ε (6.32)

with a positive constant gain, k3 ∈ R.
The proposed learning controller given in (6.31)-(6.32) achieves globally asymp-

totically tracking for a typical error system with unknown periodic disturbances. To
illustrate this, the following first-order error dynamics are obtained as [100]:

ė = h(t, e) + G(t, e) [ν(t) − ν̂(t)] (6.33)

where e(t) ∈ Rn is the error, ν(t) ∈ Rm is an unknown nonlinear function, ν̂(t) ∈
Rm is designed learning based estimate of ν(t), and the auxiliary functions h(t, e) ∈
Rn and G(t, e) ∈ Rn×m are bounded provided that e(t) is bounded.

Assumption 1: Asymptotic Stability

The origin of the error system e(t) = 0 is uniformly asymptotically stable for

ė = h(t, e) (6.34)

and there exists a first-order differentiable positive-definite function V3(e, ë, s, t) ∈
R, positive-definite symmetric matrix Q3 ∈ Rn×n, and known matrices K1, K2 ∈

Rm×n such that

V̇3 ≤ −eTQ3e + (ν − ν̂)TK1s + (ν − ν̂)TK2ë + sTKT
1K2ë (6.35)
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where the filtered tracking error variable, s ∈ Rn, is defined as:

s = ė + K3e (6.36)

for a constant, diagonal, positive-definite, controller gain matrix, K3 ∈ Rn×n.

Assumption 2: Periodicity and Boundedness

The unknown nonlinear disturbance, ν(t) is periodic with a known period, T. Thus,

ν(t) = ν(t − T) (6.37)

An upper bound also exists for the unknown function as follows:

|νi| ≤ πi for i = 1, 2, ...,m (6.38)

where πi =
[
π1 ... πm

]
∈ Rm is a vector of known, positive bounding constants.

6.2.1 Controller Design

The control objective for the general error problem given in (6.33) is to design a
learning based estimate, ν̂(t), such that

lim
t→∞

e(t) = 0 (6.39)

for any bounded initial condition, e(0). Estimation error is defined as:

ν̃(t) = ν(t) − ν̂(t) (6.40)

where the learning based feedforward term is designed as:

ν̂(t) = satπ(ν̂(t − T)) + K1s + K2ë (6.41)

using the error dynamics in (6.33) and the subsequent stability analysis. satπ(·) de-
notes the saturation function and it is obtained using the known, positive bounding
constants given by (6.38):

satπi($i) =


πi, $i ≥ πi

$i, −πi < $i < πi

−πi, $i ≤ −πi

(6.42)

with ∀$i ∈ R, i = 1, 2, ..,m. In light of (6.42), the following inequality will be
utilized in the subsequent stability analysis:

($1i − $2i)2
≥ (satαi($1i) − satπi($2i))2 (6.43)
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where ∀|$1i| ≤ πi, $1i ∈ R, i = 1, 2, ...,m. Note that the update law given in (6.41)
has the same structure with (6.31). In light of the Assumption 2 and (6.42), the
following relationship is derived:

ν(t) = satπ(ν(t)) = satπ (ν(t − T)) (6.44)

ν̃(t) is obtained by substituting (6.41) and (6.44) into (6.40):

ν̃ = satπ (ν(t − T)) − satπ(ν̂(t − T)) −K1s −K2ë (6.45)

It should be noted that the learning based feedforward term given in (6.41) is
bounded for all time, i.e. ν̂(t) ∈ L∞, provided that ë(t), s(t) ∈ L∞.

6.2.2 Closed-Loop Stability Analysis

Theorem 1: The proposed learning controller developed in (6.41) ensures that

lim
t→∞

e(t) = 0 (6.46)

for any bounded initial condition, e(0).

Proof: To prove the conclusion of Theorem 1, a Lyapunov function candidate,
V4(t) is defined as

V4 = V3 +
1
2

∫ t

t−T

(
satπν(φ) − satπν̂(φ)

)T(
satπν(φ) − satπν̂(φ)

)
dφ (6.47)

Taking the time derivative of (6.47), and using the Leibniz’s Rule provided in Ap-
pendix B and the assumption given in (6.35) yields

V̇4 ≤ − eTQ3e + (ν − ν̂)TK1s + (ν − ν̂)TK2ë + sTKT
1K2ë

−
1
2

[(
satαϑ(t − T) − satαϑ̂(t − T)

)T(
satαϑ(t − T) − satαϑ̂(t − T)

)]
+

1
2

[(
satαϑ(t) − satαϑ̂(t)

)T(
satαϑ(t) − satαϑ̂(t)

)] (6.48)

Using (6.45), (6.48) can be observed as follows:

V̇4 ≤ − eTQ3e + (ν − ν̂)TK1s + (ν − ν̂)TK2ë + sTKT
1K2ë

+
1
2

[(
satαϑ(t) − satαϑ̂(t)

)T(
satαϑ(t) − satαϑ̂(t)

)]
−

1
2

[(
ν̃ + K1s + K2ë

)T(
ν̃ + K1s + K2ë

)] (6.49)
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By expanding the last line of (6.49), and performing cancellations, it is obtained
that:

V̇4 ≤ − eTQ3e − sT
KT

1K1

2
s − ëT K

T
2K2

2
ë

+
1
2

[∥∥∥∥satπν(t) − satπν̂(t)
∥∥∥∥2
−

∥∥∥∥ν(t) − ν̂(t)
∥∥∥∥2

] (6.50)

(6.50) can be rewritten by exploiting the property given in (6.43):

V̇4 ≤ − eTQ3e − sT
KT

1K1

2
s − ëT K

T
2K2

2
ë (6.51)

(6.51) can be simplified as follows:

V̇4 ≤ −

[
min

(
‖Q3‖,

∥∥∥∥KT
1K1

2

∥∥∥∥, ∥∥∥∥KT
2K2

2

∥∥∥∥)]‖Y‖2 (6.52)

where an auxiliary signal, Y(t) ∈ R3n, is defined as

Y =
[
eT sT ëT

]T
(6.53)

Signal Chasing: Based on (6.47) and (6.52), and using the positive-definite sym-
metric matrix Q3, it can be obtained that V4(t) ∈ L∞. Utilizing Lemma 1 given in
Appendix B, it can be observed that

‖Y‖ =

√∫
∞

0
Y2(t)dt < ∞ (6.54)

and this implies Y(t) ∈ L2 based on Definition 1 given in Appendix B.

Property 3: Equivalent p-Norms

All p-norms are equivalent in the sense that if ‖ · ‖α and ‖ · ‖β are two different
p-norms, then there exists positive constants c1 and c2 such that

c1‖y‖α ≤ ‖y‖β ≤ c2‖y‖α (6.55)

for all y ∈ Rn. For L1, L2, and L∞ norms, these inequalities take the following
forms

‖y‖ ≤ ‖y‖1 ≤
√

n‖y‖, ‖y‖∞ ≤ ‖y‖ ≤
√

n‖y‖∞,
and ‖y‖∞ ≤ ‖y‖1 ≤ n‖y‖∞

(6.56)

where ‖ · ‖1 and ‖ · ‖∞ represent 1-norm and∞-norm, respectively.
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(6.55) and (6.56) imply that ‖Y‖∞ ≤ ‖Y‖. Using ‖Y‖ < ∞ in (6.54), it can
be obtained that ‖Y‖∞ ≤ ‖Y‖ < ∞, and so ‖Y‖∞ < ∞. Based on Definition 2
presented in Appendix B, ‖Y‖∞ = sup |Y(t)| < ∞ is observed, and it is concluded
that Y(t) ∈ L∞. Thus, Y(t) ∈ L2∩L∞. It is observed that e(t), ë(t), s(t) ∈ L2∩L∞
because the signals in Y(t) given by (6.53) must remain bounded.

Utilizing the boundedness of s(t) and ë(t) in (6.41) and (6.45), it follows that
ν̂(t), ν̃(t) ∈ L∞. By applying saturation function on ν(t) as shown in (6.44),
ν(t) ∈ L∞ is guaranteed. Since ν(t) and ν̂(t) ∈ L∞, and using the fact that h(t, e)
and G(t, e) are bounded for bounded e(t), it is obtained that ė(t) ∈ L∞ in (6.33).
Barbalat’s Lemma that is provided in Appendix B implies (6.46) in Theorem 1
because e(t), ė(t) ∈ L∞ and e(t) ∈ L2.

6.3 Hybrid Acceleration Based Learning-Adaptive Controller for Robotic
Manipulators

This section develops a new hybrid learning based adaptive controller using the
acceleration feedback to achieve a global position tracking for n-rigid link robotic
manipulators despite the parameter uncertainties and unknown periodic dynamics.
The proposed hybrid controller utilizes learning based feedforward terms given in
(6.31) to compensate for periodic disturbances, and adaptive based feedforward
terms given in (6.9)-(6.10) to reject aperiodic disturbances.

For the subsequent control development and stability analysis, the following
important properties will be utilized.

Property 4: Symmetric and Positive-Definite Inertia Matrix

It is previously mentioned that the robot inertia matrix, D(q), is symmetric and
positive-definite, and satisfies the following inequality:

β1‖η‖
2
≤ ηTD(q)η ≤ β2‖η‖

2
∀η ∈ Rn (6.57)

where β1, β2 ∈ R are known positive constants, ‖·‖ denotes the standard Euclidean
norm.

Property 5: Skew-Symmetry

The inertia and centripetal-Coriolis matrices satisfy the following skew-symmetric
relationship:

ηT
(1
2

Ḋ(q) − C(q, q̇)
)
η = 0 ∀η ∈ Rn (6.58)

where Ḋ is the time derivative of the inertia matrix.

Property 6: Bounding Inequalities
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The upper bounds for the norms of the centripetal-Coriolis, gravity, and viscous
friction terms can be obtained as follows:

‖C(q, q̇)‖i∞ ≤ σc1‖q̇‖, ‖G(q)‖ ≤ σg, ‖Fv‖i∞ ≤ σ fv (6.59)

where σc1, σg, σ fv ∈ R represents known positive constants and ‖·‖i∞ is the induced
infinity norm of a matrix.

Remark 1: Using the assumptions given in (6.57)-(6.59), it can be concluded that
the torque control input is bounded when all the terms on the left-hand side of (6.4)
are bounded provided that q(t), q̇(t), q̈(t) ∈ L∞.

6.3.1 Controller Design

The control objective is to design the torque control input signal, τ(t), such that
the robot link positions will converge to desired trajectories despite the parameter
uncertainties in the dynamic model given by (6.4), i.e. q(t)⇒ qd(t) as t⇒ ∞. To
quantify the control objective, the position tracking error, denoted by e(t) ∈ Rn, is
defined as follows:

e = qd − q (6.60)

where qd(t) ∈ Rn is the desired link position. The control objective is based on the
assumption that q(t), q̇(t) and q̈(t) are measurable, and the desired link positions,
velocities and accelerations are bounded, periodic functions of time that are defined
as follows:

qd(t) = qd(t − T), q̇d(t) = q̇d(t − T), (6.61)

and
q̈d(t) = q̈d(t − T)

with a known period of T. To facilitate the subsequent control development and
stability analysis, the order of the robot dynamics in (6.4) is reduced by defining a
filtered tracking error variable, rh(t) ∈ Rn as follows:

rh = ė + Γ1e + Γ2

∫
edt (6.62)

where ė ∈ Rn is the velocity error, i.e. ė , q̇d − q̇, and Γ1, Γ2 ∈ Rn×n are con-
stant, diagonal and positive-definite controller gain matrices. After taking the time
derivative of (6.62) and multiplying the resulting expression by the inertia matrix,
D(q), the open loop error system is obtained as

D(q)ṙh = −C(q, q̇)rh + ϑ + ξ + W2(q̇, q̈)Φ2 − τ (6.63)
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where the auxiliary expression ϑ, ξ ∈ Rn are defined as follows:

ϑ = D(qd)q̈d + C(qd, q̇d)q̇d + G(qd) + Fvq̇d (6.64)

and
ξ =D(q)(q̈d + Γ1ė + Γ2e) + G(q) + Fvq̇ − ϑ

+ C(q, q̇)
(
q̈d + Γ1e + Γ2

∫
edt

)
(6.65)

Since the real system parameters are not exactly known, the auxiliary signal, ϑ, as
a function of desired periodic trajectories, is an unknown periodic signal. In light
of (6.57), (6.59) and (6.61), it follows that

|ϑi| ≤ αi for i = 1, 2, ...,n (6.66)

where αi =
[
α1 ... αn

]
∈ Rn is a vector of known, positive bounding constants.

By utilizing (6.57), (6.59), (6.60) and (6.62), and motivated by the result in [100],
it is obtained that:

‖ξ‖ ≤ δ (‖Z‖) ‖Z‖ (6.67)

where the auxiliary signal Z(t) ∈ R3n is defined as:

Z(t) =
[
eT(t) rT

h (t) ëT(t)
]T

(6.68)

and δ(·) ∈ R is a known and positive bounding function. On the basis of the
structure of the open-loop error system in (6.63), the proposed hybrid control law
is designed by using an adaptive controller along with a learning based feedforward
term as follows:

τ = Λrh + κδ2 (‖Z‖) rh + ϑ̂ + τa (6.69)

where ϑ̂ ∈ Rn is an estimate of ϑ in (6.64) and generated by incorporating accel-
eration feedback into the standard feedforward term in [100]:

ϑ̂(t) = satα(ϑ̂(t − T)) + K1rh + K2ë (6.70)

and the adaptive controller, τa, is designed as follows:

τa = W2(q̇, q̈)Φ̂2 (6.71)

with the update law given by (6.10):

˙̂Φ2 = ΥhWT
2 (q̇, q̈)rh (6.72)
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where ë ∈ Rn is the acceleration error, i.e. ë , q̈d − q̈, Λ ∈ Rn×n is a constant,
diagonal, positive-definite, controller gain matrix, κ ∈ R is a constant positive
gain, K1, K2 ∈ Rn×n, Υh ∈ R

2n×2n represent constant, diagonal, positive-definite,
learning control and adaptation gain matrices. Saturation function is denoted by
satα(·) and defined using the known, positive bounding constants given by (6.66):

satαi(ςi) =


αi, ςi ≥ αi

ςi, −αi < ςi < αi

−αi, ςi ≤ −αi

(6.73)

with ∀ςi ∈ R, i = 1, 2, ..,n. In light of (6.73), the following inequality will be
utilized in the subsequent stability analysis:

(ς1i − ς2i)2
≥ (satαi(ς1i) − satαi(ς2i))2 (6.74)

where ∀|ς1i| ≤ αi, ς1i ∈ R, i = 1, 2, ...,n.
When (6.69) is substituted into (6.63), the closed-loop error system for rh(t) is
obtained as:

Dṙh = −Crh −Λrh + W2Φ̃2 + ϑ̃ + ξ − κδ2 (‖z‖) rh (6.75)

where the parameter estimation error, denoted by Φ̃2 ∈ R2n is defined as:

Φ̃2 = Φ2 − Φ̂2 (6.76)

and ϑ̃ ∈ Rn is the learning estimation error:

ϑ̃ = ϑ − ϑ̂ (6.77)

In light of (6.61), (6.64), (6.66) and (6.73), the following is derived:

ϑ(t) = satα(ϑ(t)) = satα (ϑ(t − T)) (6.78)

ϑ̃ is obtained by substituting (6.70) and (6.78) into (6.77):

ϑ̃ = satα (ϑ(t − T)) − satα(ϑ̂(t − T)) − K1rh − K2ë (6.79)

6.3.2 Closed-Loop Stability Analysis

Theorem 1: The proposed hybrid controller developed in (6.69)-(6.72) can asymp-
totically drive the position error to zero, i.e.;

lim
t→∞

e(t) = 0 (6.80)
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where the controller gains Γ1, Λ, κ, K1 and K2 given in (6.62), (6.69) and (6.70)
are selected to satisfy the following sufficient condition

min
(
‖Γ1‖,

∥∥∥∥Λ +
KT

1 K1

2

∥∥∥∥, ∥∥∥∥KT
2 K2

2

∥∥∥∥) > 1
4κ

(6.81)

where ‖·‖ is the 2-norm of a matrix, and there exists a first-order differentiable,
positive definite function V5(e, ė, ë, t) ∈ R such that

V̇5 ≤ −eTΓ1e + rT
h KT

1 K2ë + ϑ̃TK2ë + rT
h (K1 − I)ϑ̃ (6.82)

where I ∈ Rn×n is the identity matrix.

Proof: To prove the conclusion of Theorem 1, a Lyapunov function candidate, V(t)
is defined as

V6 =V5 +
rT

h Drh

2
+

Φ̃T
2 Υ−1

h Φ̃2

2
+

1
2

∫ t

t−T

(
satαϑ(φ) − satαϑ̂(φ)

)T

(
satαϑ(φ) − satαϑ̂(φ)

)
dφ

(6.83)

Taking the time derivative of (6.83), and using the Leibniz’s Rule provided in Ap-
pendix B and the assumption given in (6.82) yields

V̇6 ≤ − eTΓ1e + rT
h KT

1 K2ë + ϑ̃TK2ë + rT
h (K1 − I)ϑ̃ + rT

h Mṙh

+
rT

h Ḋrh

2
− Φ̃T

2 WT
2 rh +

1
2

[(
satαϑ(t) − satαϑ̂(t)

)T(
satαϑ(t) − satαϑ̂(t)

)
−

(
satαϑ(t − T) − satαϑ̂(t − T)

)T(
satαϑ(t − T) − satαϑ̂(t − T)

)]
(6.84)

Using (6.58) and (6.75), the following is obtained:

V̇6 ≤ − eTΓ1e + rT
h KT

1 K2ë + ϑ̃TK2ë + rT
h K1ϑ̃ − rT

h Λrh

+ rT
hξ − rT

hκδ
2rh +

1
2

∥∥∥∥satαϑ(t) − satαϑ̂(t)
∥∥∥∥2

−
1
2

(
satαϑ(t − T) − satαϑ̂(t − T)

)T(
satαϑ(t − T) − satαϑ̂(t − T)

) (6.85)

The expression given in (6.85) can be rewritten based on (6.67) and (6.79) as fol-
lows:

V̇6 ≤ − eTΓ1e + rT
h KT

1 K2ë + ϑ̃TK2ë + rT
h K1ϑ̃ − rT

h Λrh

+
[
δ‖Z‖‖rh‖ − κδ

2
‖rh‖

2
]

+
1
2

∥∥∥∥satαϑ(t) − satαϑ̂(t)
∥∥∥∥2

−
1
2

[
(ϑ̃ + K1rh + K2ë)T(ϑ̃ + K1rh + K2ë)

] (6.86)
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By expanding the last line of (6.86), and performing cancellations, one obtains

V̇6 ≤ − eTΓ1e − rT
h

Λ +
KT

1 K1

2

 rh − ëT KT
2 K2

2
ë

+
1
2

[∥∥∥∥satαϑ(t) − satαϑ̂(t)
∥∥∥∥2
−

∥∥∥∥ϑ(t) − ϑ̂(t)
∥∥∥∥2

]
+

[
δ‖Z‖‖rh‖ − κδ

2
‖rh‖

2
]

(6.87)

By exploiting the property given in (6.74), completing the square on the bracketed
term in the last line of (6.87), and using (6.68), (6.87) can be simplified as:

V̇6 ≤ −
[

min
(
‖Γ1‖,

∥∥∥∥Λ +
KT

1 K1

2

∥∥∥∥, ∥∥∥∥KT
2 K2

2

∥∥∥∥) − 1
4κ

]
‖Z‖2 (6.88)

where ‖·‖ is the 2-norm of a matrix.

Signal Chasing: When (6.81) is satisfied, it follows that V6(t) ∈ L∞ based on
(6.83) and (6.88). Since the signals in V6(t) must remain bounded, it can be con-
cluded that rh(t), Φ̃2(t) ∈ L∞. If the sufficient condition in (6.81) is satisfied and
using Lemma 1 given in Appendix B, it is obtained that

‖Z‖ =

√∫
∞

0
Z2(t)dt < ∞ (6.89)

and this implies Z(t) ∈ L2 based on Definition 1 given in Appendix B. Using (6.55)
and (6.56) in Property 3, ‖Z‖∞ ≤ ‖Z‖. From ‖Z‖ < ∞ in (6.89), it is concluded
that ‖Z‖∞ ≤ ‖Z‖ < ∞ so ‖Z‖∞ < ∞. According to Definition 2 presented in
Appendix B, ‖Z‖∞ = sup |Z(t)| < ∞ is obtained, and it follows that Z(t) ∈ L∞.
Therefore, Z(t) ∈ L2 ∩ L∞.

The definition of Z(t) given in (6.68) implies e(t), ë(t), rh(t) ∈ L2 ∩ L∞. It is
observed that ė(t) ∈ L2 ∩ L∞ because the signals in rh(t) given by (6.53) must
remain bounded based on (6.62). Since e(t), ė(t) ∈ L∞ and e(t) ∈ L2, Barbalat’s
Lemma which is provided in Appendix B implies (6.80) in Theorem 1.

In light of (6.60) and (6.61), and using the boundedness of e(t), ė(t), ë(t), it fol-
lows that q(t), q̇(t), q̈(t) ∈ L∞. By exploiting the fact that the learning feedforward
term given in (6.70) is composed of a saturation function, and r(t), ë(t) ∈ L∞, it
can be concluded that ϑ̂(t) ∈ L∞. Since Φ2 represents bounded static friction coef-
ficients and Φ̃2(t) ∈ L∞, it follows from (6.76) that Φ̂2(t) ∈ L∞. It is observed that
τa(t) ∈ L∞ using q̇(t), q̈(t), Φ̂2(t) ∈ L∞ in (6.71). Finally, τa(t), ϑ̂(t), rh(t) ∈ L∞
implies τ(t) ∈ L∞ based on (6.69). Therefore, all system signals remain bounded.
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Chapter 7

7 Simulation Results

Simulation results for the proposed control algorithms and estimation methods are
presented in this section where the proposed estimation methods are incorporated
into a high fidelity simulation model to test the stabilization performance of the
pan-tilt system subject to various external disturbances, and also evaluate periodic
trajectory tracking performance on the same platform which suffers from parameter
uncertainties and periodic disturbances with a known period. An inner loop accel-
eration approach that is given in Figure 8 is utilized to achieve high precision stabi-
lization by using reliable estimates provided by the proposed master-slave Kalman
filter algorithm that fuses 3-axis gyroscope, 3-axis accelerometer and 3-axis mag-
netometer measurements. The proposed acceleration based LMI-LQR controller
is applied on the pan-tilt system to ensure high precision stabilization where reli-
able estimates are predicted by a cascaded high gain observer structure from noisy
encoder measurements. On the other hand, the proposed hybrid learning based
adaptive controller in (6.69)-(6.72) is used to obtain satisfactory periodic trajectory
tracking performance by estimating reliable feedback signals with a cascaded high
gain observer structure from noisy encoder measurements.

In order to construct a high fidelity simulation model, both nonlinear dynamics
of the pan-tilt platform given by (4.1) and realistic sensor models given by (3.1),
(3.6), (3.7), (3.8) are utilized. Biases and noises that corrupt sensor outputs are
tabulated in Table 1 where SNR denotes signal to noise ratio. The update rates
of MEMS inertial sensors that are provided in Table 1 are selected based on the
specifications given in the inertial sensor market1.

1Advanced Navigation, Spatial FOG (GPS aided INS and AHRS)



Table 1: Simulation Parameters

Parameter Description Value

Bwg Bandwidth of gyro 440 Hz
Bwa Bandwidth of accelerometer 200 Hz
Bwm Bandwidth of magnetometer 110 Hz
bg Gyro bias [1 − 1 0.5]T deg/s
ba Accelerometer bias [0.01 − 0.01 0.005]T g
bm Magnetometer bias [0.01 − 0.01 0.02]T Wb/m2

Sηg SNR of gyro 65 dB
Sηa SNR of accelerometer 45 dB
Sηm SNR of magnetometer 61 dB
Sηe SNR of encoder 55 dB

7.1 Results of the Proposed Master-Slave Kalman Filter Algorithm

This section evaluates the performance of the proposed filter that employs both an
extended Kalman filter (EKF) and an inverse Φ-algorithm in a master-slave con-
figuration by using reliable angles, velocities and accelerations as feedback signals
in the stabilization control of the pan-tilt system. Sections 7.1.1 and 7.1.2 present
the first and second scenario results, respectively.

Since we assume that EKF and the inverse Φ-algorithm run at 1000 Hz, the
proposed sensor fusion algorithm executes faster than these inertial sensors. There-
fore, the master-slave Kalman filter algorithm may generate estimates before one
of the gyroscope, accelerometer and magnetometer measurements are completed.

The quality of the estimated signals with the incomplete measurements due
to the different rates for the MEMS inertial sensors will be deteriorated if proper
action is not taken. This leads to the loss of data integrity. In order to ensure
data integrity, we add a rate transition block at the output of each sensor in the
simulations. We use this rate transition as a double buffer. The gyroscope provides
angular velocity measurements to the slave estimator. When the gyro measurement
is obtained, this data is transferred to the first buffer. The slave estimator takes the
gyro data from this buffer until a new measurement is available. When a new
gyro measurement is available, it is saved to the second buffer, the buffer index is
changed, and the new measurement is used by the inverse Φ-algorithm. Similar
double buffers are also used for accelerometer and magnetometer.

The reference trajectories in the inertial frame are selected to be smooth step
functions of time in the simulations. Once the system reaches the target orientation,
the PID position controller is deactivated and the reference velocity becomes zero,
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Ωre f = 0, as shown in Figure 8. Thus, the pan-tilt system is stabilized by the PI
velocity controller instead of PID position controller. Since the goal is to improve
robustness of the stabilized pan-tilt system under external disturbances, accelera-
tion feedback is introduced into the PI current controller. External disturbances
are applied to the system to mimic realistic conditions in both scenarios. When
the external disturbances are discarded, PID controller is not activated but the ve-
locity controller is still utilized. The time synchronization between EKF and the
inverse Φ-algorithm is achieved by introducing a unit delay to the output of EKF.
The inverse Φ-algorithm uses the inverse of the state transition matrix. Thus, this
algorithm produces stable and converging estimates if the transition matrix is not
ill-conditioned. Since EKF is based on the linearization of nonlinear models given
by (3.16)-(3.18), convergence is not guaranteed; however, by the proper choice of
process and measurement noise covariance matrices, Q and R, and by increasing
the observability of the state vector, one usually achieves stable filter operation
with good convergence. In simulations, the filter parameters (Q and R) are tuned
as follows:

Qmaster =


10I3×3 03×3 03×3 03×3
03×3 11I3×3 03×3 03×3
03×6 03×3 12I3×3 03×3
03×3 03×3 03×3 13I3×3

 , Rmaster =

[
10−4I4×4 04×6

06×4 10−3I6×6

]

Qslave =


I3×3 03×3 03×3
03×3 2I3×3 03×3
03×3 03×3 3I3×3

 , Rslave = 10−2I3×3

where I and 0 represent the identity and zero matrices.

7.1.1 First Scenario

The pan-tilt platform is exposed to continuous, random and small amplitude dis-
turbances. Figure 10 shows the disturbances applied to the azimuth and elevation
axes. Gaussian distributed noises are used to generate these disturbances.
Azimuth and elevation angle responses are presented in Figures 11 and 12, respec-
tively. Desired values of azimuth and elevation references are 45 deg and 55 deg.
When the acceleration feedback is not used in the current controller, oscillations
occur in the azimuth angle response. The maximum overshoot from the azimuth
angle response curve is about 12%. On the other hand, the azimuth angle converges
to the reference value in a smoother way when the acceleration feedback is intro-
duced, e.g. Kβ = 5. For the elevation angle response, the system does not exactly
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Figure 10: External disturbances applied on the azimuth and elevation axes.

converge to 55 deg without the use of acceleration feedback. The elevation angle
oscillates between 54.5 deg and 55.2 deg at the steady state. As the acceleration
feedback is introduced, sufficiently small steady state error is achieved in the eleva-
tion angle response. Figure 13 shows control efforts for Kβ = 0 and Kβ = 5. The
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Figure 11: Azimuth angle responses.

amplitudes of the control inputs which are provided by the acceleration control are
similar to those that are obtained without the use of acceleration feedback. RMS
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Figure 12: Elevation angle responses.

value of the control input for the azimuth axis is 2.83 N.m and slightly decreases to
2.35 N.m with the use of acceleration feedback. When the acceleration feedback
is used in the PI current control loop, RMS value of the control input changes from
89.47 N.m to 89.13 N.m for the elevation axis. These results show that acceler-
ation control does not require larger control inputs to obtain better output angle
responses when the system is exposed to continuous disturbances. The master esti-
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Figure 13: Torque control inputs of the azimuth and elevation axes.
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mator which is implemented by using the EKF provides the estimates of pitch and
yaw angles, velocities and accelerations based on (3.16)-(3.18). In Figures 14 and
15, estimated Euler angles are provided. EKF performance is evaluated by RMS
value of the errors between measured and estimated pitch and yaw angles. RMS
values of the estimation errors of the pitch angle are 0.0057 deg and 0.0168 deg
for Kβ = 0 and Kβ = 5, respectively. Also, RMS values of the estimation errors
of the yaw angle are obtained as 4.48 × 10−7 deg and 4.66 × 10−7 deg for Kβ = 0
and Kβ = 5, respectively. Since all the estimation errors are small, estimated sig-
nals converge to measured values successfully for both Kβ = 0 and Kβ = 5.
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Figure 14: Estimated pitch angles.

On the other hand, Euler velocities and accelerations are estimated as depicted in
Figures 16 and 17. The amplitude of oscillations are larger in both velocity and ac-
celeration responses for Kβ = 0 because the angle responses are not smooth when
the acceleration feedback is not utilized. Angular velocities, accelerations and
jerks are estimated by the slave filter using the process and measurement models in
(3.20)-(3.22). When the acceleration feedback is utilized, small amplitude angular
velocities are obtained in Figures 18-20. These results are not surprising because
better angle responses are achieved with the use of acceleration feedback in the
current controller. Similar observations can be also done for estimated angular ac-
celerations and jerks in Figures 21 and 22.
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Figure 15: Estimated yaw angles.
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Figure 16: Estimated Euler velocities.

7.1.2 Second Scenario

In the second scenario, the pan-tilt platform is exposed to external disturbances
after the desired positions are reached. In order to illustrate this case, disturbance
torques are modeled as high amplitude step pulses with short durations. The am-
plitudes of the step pulses are assumed as 10 N.m and 15 N.m. Step disturbances
are applied on the system between t = 8 sec and t = 12 sec as shown in Figure 23.
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Figure 17: Estimated Euler accelerations.
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Figure 18: Estimated angular velocities about x axis.

Figures 24 and 25 show the tracking performance for the azimuth and elevation
axes. When the acceleration feedback is not used, azimuth and elevation angles
cannot follow the reference trajectories successfully due to step pulses. The az-
imuth angle reaches to approximately 59 deg. When the acceleration feedback is
used, small amplitude oscillations occur. Azimuth angle oscillates between 44.5
deg and 46 deg with the use of acceleration controller. In other words, azimuth an-
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Figure 19: Estimated angular velocities about y axis.
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Figure 20: Estimated angular velocities about z axis.

gle is successfully stabilized despite the step pulses. Similar performances are also
observed for the elevation angle responses. Smoother elevation angle response is
achieved with the introduction of acceleration feedback. However, amplitudes of
the oscillations increase to approximately 80 deg when the acceleration controller
is not active.
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Figure 21: Estimated angular accelerations.
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Figure 22: Estimated angular jerks.

In Figure 26, control efforts are provided for Kβ = 0 and Kβ = 12. In order to
reject the external disturbances, large acceleration gain, Kβ = 12, is used. As it is
expected that when the disturbances are not applied on the system, this acceleration
gain leads to high amplitude oscillations compared to the case where acceleration
feedback is not utilized. On the other hand, when the disturbances are applied on
the system, the amplitude of oscillations are larger without the use of acceleration
feedback. As a result, pan and tilt axes are not stabilized due to disturbances even

68



0 5 10 15
−15

−10

−5

0

5

10

15

Time (sec)

τ
d
1
(N

.m
)

0 5 10 15
−20

−10

0

10

20

Time (sec)

τ
d
2
(N

.m
)

Figure 23: External disturbances applied on the azimuth and elevation axes.

0 5 10 15
0

10

20

30

40

50

60

Time (sec)

q 1
(d
e
g
)

 

 

Reference
Kβ=0

Kβ=12

Figure 24: Azimuth angle responses.

high control efforts are obtained for Kβ = 0. Similar to that of the first scenario,
the master estimator is implemented by using the EKF based on (3.16)-(3.18). Fig-
ures 27 and 28 depict the estimated pitch and yaw angles. RMS values of the errors
between the measured and estimated pitch angles are 0.0121 deg and 0.0095 deg
for Kβ = 0 and Kβ = 12, respectively. On the other hand, RMS values of the
errors between the measured and estimated yaw angles are 2.72 × 10−7 deg and
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Figure 25: Elevation angle responses.
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Figure 26: Torque control inputs of the azimuth and elevation axes.

2.05 × 10−7 deg for Kβ = 0 and Kβ = 12. Since these errors are small, satisfactory
estimates of pitch and yaw angles are obtained for both Kβ = 0 and Kβ = 12.
On the other hand, pitch and yaw velocities and accelerations are estimated as de-
picted in Figures 29 and 30. When the acceleration controller is not active, high
amplitude oscillations are observed in the estimated values as expected.
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Figure 27: Estimated pitch angles.

0 5 10 15
0

10

20

30

40

50

60

Time (sec)

ψ
(d
e
g
)

 

 

Kβ=0

Kβ=12

Figure 28: Estimated yaw angles.

Figures 31-33 present the estimated angular velocities by the slave filter. When
the acceleration feedback is not used, high amplitude angular velocities are ob-
tained between t = 8 sec and t = 12 sec due to the disturbances. The dramatic
changes are also observed in the estimated angular accelerations and jerks when
the disturbances are applied on the system as depicted in Figures 34 and 35.
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Figure 29: Estimated Euler velocities.
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Figure 30: Estimated Euler accelerations.

7.2 Comparison with Other Sensor Fusion Algorithms

The performance of the proposed sensor fusion algorithm is compared to a Newton
predictor enhanced Kalman filter (NPEKF) [136] and an error state Kalman filter
(ErKF) [137]-[138]. In the NPEKF method, angular accelerations are estimated
by a classical Kalman filter and then estimated accelerations are passed through
the Newton predictor to further reduce the phase lag caused by the Kalman filter.
To compare the performance of the proposed method with NPEKF, pitch and yaw
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Figure 31: Estimated angular velocities about x axis.
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Figure 32: Estimated angular velocities about y axis.

accelerations are estimated by the proposed filter and then those estimated values
are passed through the following predictor designed by Han et.al [136]:

H1
2(z) = 3 − 3z−1 + z−2 (7.1)
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Figure 33: Estimated angular velocities about z axis.
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Figure 34: Estimated angular accelerations.

where H1
2(z) represent 1-step 2nd-order Newton predictor. Thus, only three past

states are required to predict pitch and yaw accelerations. To the best of our knowl-
edge, the global Kalman filter and ErKF have not been used to estimate Euler and
body frame angular accelerations. However, there are attempts to solve the attitude
estimation problem by using ErKF and underline differences between EKF and
ErKF [137]-[138]. Thus, advantages of ErKF over EKF are known for the attitude
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Figure 35: Estimated angular jerks.

estimation. While ErKF is used to only estimate the errors in the state, EKF is
implemented to obtain the state estimate itself. In this work, the performance of
EKF that is used in a master-slave configuration with the inverse Φ-algorithm is
compared with ErKF for the velocity and acceleration estimation problem. ErKF
is also used in a master-slave configuration with the inverse Φ-algorithm since the
process dynamics of this estimation problem requires to use body frame angular
accelerations and jerks estimated by the inverse Φ-algorithm. The estimated sig-
nals by the proposed filter, NPEKF and ErKF are presented in Sections 7.2.1 and
7.2.2.

7.2.1 First Scenario

The performance of the proposed filter is compared to the Newton predictor and
the error state Kalman filter while the system is exposed to random and continuous
disturbances given in Figure 10. Figures 36 and 37 present estimated pitch and
yaw angles. The performance of the proposed filter is almost similar with the
fusion algorithm where the master filter is designed as ErKF. However, estimated
angles by NPEKF are noisy. Thus, the proposed method outperforms the Newton
predictor.
Errors between measured and estimated pitch and yaw angles are provided in Fig-
ures 38 and 39. Estimation errors are almost the same when the master filter is
implemented as either EKF or ErKF, but errors of NPEKF are larger than the ones
obtained by the proposed filter. RMS values of the pitch angle estimation errors are
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Figure 36: Comparison between estimated pitch angles.
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Figure 37: Comparison between estimated yaw angles.

2.11 × 10−6 deg and 0.0451 deg for the proposed filter and NPEKF, respectively.
RMS value of the yaw angle estimation error is 0.0451 deg for NPEKF and smaller
RMS error is obtained with the proposed method, i.e. 2.11× 10−7 deg. Similar ob-
servations can be also done for the estimated values of pitch and yaw velocities and
accelerations in Figures 40-43. Estimated velocity and acceleration signals by the
proposed method are closer to the ones estimated by the fusion algorithm in which
the master estimator is implemented as ErKF. On the other hand, estimated signals
are smoother with the proposed method compared to NPEKF.
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Figure 38: Error between measured and estimated pitch angles.
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Figure 39: Error between measured and estimated yaw angles.

7.2.2 Second Scenario

The performance of the proposed filter is compared to the Newton predictor and
the error state Kalman filter when the disturbances are applied on the system. Esti-
mated pitch and yaw angles are provided in Figures 44 and 45. Similar to the case
of the first scenario, estimated pitch and yaw angles by the proposed method and
the fusion algorithm in which the master filter is implemented as ErKF, are almost
the same. On the other hand, better estimation performance is achieved with the
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Figure 40: Comparison between estimated pitch velocities.
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Figure 41: Comparison between estimated yaw velocities.

proposed filter compared to NPEKF because the proposed one provides smoother
estimates than NPEKF. Newton predictor leads to high amplitude peaks in esti-
mated pitch and yaw angles. Figures 46 and 47 also depict the errors between
measured and estimated pitch and yaw angles. Estimation errors that are obtained
by designing the master filter as either EKF or ErKF are similar. Those errors
are also smaller than the ones computed with NPEKF. While RMS value of the
pitch angle estimation error is 0.0481 deg for NPEKF, this RMS value decreases
to 9.63 × 10−6 deg as the proposed method is utilized. On the other hand, RMS
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Figure 42: Comparison between estimated pitch accelerations.
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Figure 43: Comparison between estimated yaw accelerations.

values of the yaw angle estimation errors are 2.05 × 10−7 deg and 0.0483 deg for
the proposed filter and NPEKF, respectively. Estimated pitch and yaw velocities
and accelerations are also presented in Figures 48-51. Similar velocities and accel-
erations are estimated by the proposed method and the fusion algorithm where the
master estimator is implemented as ErKF. However, estimated signals by NPEKF
have much more noise than the proposed filter. When the disturbances are applied
on the system, oscillations occur in all estimated velocity and acceleration signals
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Figure 44: Comparison between estimated pitch angles.
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Figure 45: Comparison between estimated yaw angles.

between t = 8 sec and t = 12 sec, but the amplitudes of those oscillations are larger
with NPEKF.
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Figure 46: Error between measured and estimated pitch angles.
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Figure 47: Error between measured and estimated yaw angles.
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Figure 48: Comparison between estimated pitch velocities.
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Figure 49: Comparison between estimated yaw velocities.
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Figure 50: Comparison between estimated pitch accelerations.
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Figure 51: Comparison between estimated yaw accelerations.
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7.3 Results of the Acceleration Based LQR Control

The physical constraints that are applied to the joints are as follow:

Table 2: Physical Constraints

Parameter Minimum Value Maximum Value
q1 −170◦ 170◦

q2 −85◦ 85◦

q̇1 −150◦/sec 150◦/sec
q̇2 −50◦/sec 50◦/sec

Using the physical constraint given in Table 2, scheduling position trajectories are
designed as quintic polynomials in Figure 52. Since the position trajectories are
designed as 5th degree polynomials, joint velocity and acceleration trajectories are
4th and 3rd degree polynomials as shown in Figures 53 and 54.
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Figure 52: Scheduling joint position signals

The parameter trajectories, σ j, are generated based on (5.16) in Figures 55-58.
σ1 and σ3 depend on q2 and q̇1. On the other hand, σ2 and σ4 are the function of
only q2. Due to this dependency, the parameter values have the upper and lower
bounds given in Table 3.

External disturbances shown in Figure 59 are applied on the system after the
desired positions are reached. These disturbances are modeled as high amplitude
step pulses with short durations. The amplitudes of the step pulses are assumed
as 10 N.m and 15 N.m. The performance of the proposed controller in (5.28) is
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Figure 53: Scheduling joint velocity signals
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Figure 54: Scheduling joint acceleration signals

compared with the performance of the classical LQR controller in (5.20).
LQR controller is synthesized based on the developed polytopic quasi-LPV

model in (5.18)-(5.19). The total number of vertices is L = 24 = 16. The proposed
state feedback controller given in (5.28) is designed by interpolating LMIs at each
vertex. The elements of the state feedback gain matrix, K, K1 and K2 are designed
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Table 3: Upper and Lower Bounds of the Parameter Vector

Parameter Upper Bound Lower Bound
σ1 (rad.sec−1) 0.4225 −0.4225
σ2 (rad.sec2)−1

−1.2812 −14.7
σ3 (unitless) 1.4405 −1.4405
σ4 (kg.m2)−1 1.2581 0.7059
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Figure 55: Parameter trajectory: σ1
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Figure 56: Parameter trajectory: σ2
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Figure 57: Parameter trajectory: σ3
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Figure 58: Parameter trajectory: σ4

based on the weighting matrices, Q, Q1, Q2 and R given by (7.1) and (7.2).

Q = Q1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5


, R =

[
0.001 0

0 0.01

]
(7.1)
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Q2 =



0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001


(7.2)

More weighting is added to the integral of the position errors than the other states
in Q1 to eliminate the steady state error. R limits the amplitude of the control input
and the elements of the matrix R are designed smaller than the elements of Q1
matrix. This makes the system sensitive to the states of the system instead of the
control input. As it is previously mentioned in Chapter 5, there is a redundancy
in the controller due to common velocity terms in z and ż. This redundancy is
eliminated by choosing the elements of Q2 are small, i.e. Q211 = Q222 = Q255 =
Q266 = 0.001.

Using the system model (5.18)-(5.19) and the weighting matrices in (7.1) and
(7.2), the optimal feedback gain matrices, K, K1, K2 ∈ R2×6, obtained by YALMIP
is given in (7.3)-(7.5).

K =

[
−81.5 −7.8 × 10−11

−36.2 −3.6 × 10−12 75.8 1.9 × 10−12

−1 × 10−11
−27.7 −8.8 × 10−12

−10.6 1.7 × 10−11 24.7

]
(7.3)

K1 =

[
−88.3 −3.4 × 10−11

−36.5 −1.2 × 10−12 85.4 −5.6 × 10−11

−3.7 × 10−9
−30.6 −3.7 × 10−10

−10.6 2.2 × 10−8 29.7

]
(7.4)

K2 =

[
−135.8 −2.7 × 10−10

−23.9 −2.2 × 10−11 384.3 5.8 × 10−9

−3.7 × 10−9
−24.3 −3.7 × 10−10

−3 2.19 × 10−8 105.6

]
(7.5)
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The performance of the controller is tested on the nonlinear pan-tilt system. Initial
joint angles are assumed as 150 deg and 75 deg. The desired angles are r1 = 65 deg
and r2 = 15 deg. Joint angles converge to reference values as depicted in Figure 60.
Joint velocities converge to zero in Figure 61. Higher amplitude oscillations are
obtained in all transient responses with the classical controller. As the external
disturbances are applied on the system, acceleration feedback improves the system
responses compared to the case where the acceleration feedback is not used in the
controller.
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Figure 60: Output joint angles
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Figure 61: Output joint velocities
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The performance specifications given in Tables 4 and 5 also show that the proposed
controller outperforms the classical LMI based LQR controller.

Table 4: Pan Axis Performance Specification

Transient Responses (t = 1 − 10 sec)

Performance Proposed Classical
Criteria Controller Controller

Absolute Worst Case Position Error (deg) 20.55 55.08
RMS Position Error (deg) 19.30 20.38
RMS Control Input (N.m) 5.35 3.62

System Responses During Disturbances

Performance Proposed Classical
Criteria Controller Controller

Absolute Worst Case Position Error (deg) 1.28 4.92
RMS Position Error (deg) 2.64 3.27
RMS Control Input (N.m) 7.14 7.35

Table 5: Tilt Axis Performance Specification

Transient Responses (t = 1 − 10 sec)

Performance Proposed Classical
Criteria Controller Controller

Absolute Worst Case Position Error (deg) 20.51 23.96
RMS Position Error (deg) 8.77 9.13
RMS Control Input (N.m) 4.40 4.16

System Responses During Disturbances

Performance Proposed Classical
Criteria Controller Controller

Absolute Worst Case Position Error (deg) 5.42 20.27
RMS Position Error (deg) 3.71 12.37
RMS Control Input (N.m) 7.74 7.27
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7.4 Results of the Hybrid Acceleration Based Learning-Adaptive Con-
troller

The performance of the developed hybrid learning based adaptive controller given
in (6.69)-(6.72) is evaluated on the pan-tilt platform and compared with the perfor-
mance of the hybrid learning based adaptive controller where reliable accelerations
are used as feedback in only adaptive controller, not the learning controller. The
desired trajectories which are presented in Figure 62 are generated based on the
following periodic functions:[

qd1

qd2

]
=

[
(2 + 0.2 sin(t))(sin(sin(t)))(1 + e−0.6t3

)
(1 + 0.2 sin(t))(sin(sin(t)))(1 + e−0.6t3

)

]
(7.6)

with a period of T = 6.28 sec and the exponential term is used to provide a "smooth-
start" to the system. The controller gains are tuned as follows:
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Figure 62: Desired trajectories

Γ1 =

[
20 0
0 14

]
, Λ =

[
40 0
0 12

]

K1 =

[
30 0
0 10

]
, K2 =

[
0.01 0

0 0.01

]
, Υh = 20I4×4

Position and filtered errors reduce after each period of the desired trajectory and
globally asymptotically converge to zero as depicted in Figures 63 and 64. Sudden
peaks occur in the position errors due to the integration of discontinues created by
signum functions in the static frictions terms of the dynamic model given in (4.1).
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Figure 63: Pan axis position error, e1(t)
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Figure 64: Tilt axis position error, e2(t)

Figures 65-68 depict the torque control inputs and the learning feedforward control
inputs. Due to the desired periodic trajectories, control inputs oscillate to reject the
unknown periodic disturbances. The proposed controller outperforms the hybrid
controller without acceleration feedback as shown in Tables 6 and 7.
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Figure 65: Pan axis control input, τ1(t)
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Figure 66: Tilt axis control input, τ2(t)

Table 6: Pan Axis Performance Specification

Performance Proposed Hybrid Controller
Criteria Controller without AFB

Absolute Worst Case Position Error (deg) 1.0052 1.9450
RMS Position Error (deg) 0.2275 0.4213
RMS Control Input (N.m) 7.4996 7.4731
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Figure 67: Pan axis learning feedforward control, ϑ1(t)
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Figure 68: Tilt axis learning feedforward control, ϑ2(t)

Table 7: Tilt Axis Performance Specification

Performance Proposed Hybrid Controller
Criteria Controller without AFB

Absolute Worst Case Error (deg) 0.6305 1.2496
RMS Error (deg) 0.1072 0.2372

RMS Control Input (N.m) 2.0086 1.8094
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Static friction coefficients are satisfactorily estimated by the adaptive controller.
Estimated values of the static friction parameters approximately converge to 3.1
Nm and 0.4 Nm as depicted in Figures 69 and 70. Motor moment of inertias are
estimated as 2.7 kg.m2 and 1.5 kg.m2 as shown in Figures 71 and 72.
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Figure 69: Pan axis estimated friction parameter, f̂s1
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Figure 70: Tilt axis estimated friction parameter, f̂s2

95



0 5 10 15 20 25

Time (s)

-8

-6

-4

-2

0

2

4

6

P
an

 A
xi

s 
E

st
im

at
ed

 M
om

en
t o

f I
ne

rt
ia

 (
kg

.m
2 )

Hybrid Control without AFB
Hybrid Control with AFB

Figure 71: Pan axis estimated moment of inertia, Ĵm1
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Figure 72: Tilt axis estimated moment of inertia, Ĵm2
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Chapter 8

8 Conclusions

This thesis investigates the role of acceleration feedback in various stabilization
and periodic trajectory tracking control algorithms to minimize effects of exter-
nal disturbances and parameter uncertainties. Since obtaining reliable acceleration
feedback signals is a challenging task, the work in this thesis has focused on esti-
mating reliable acceleration signals from an IMU or an encoder. In order to tackle
this problem, a novel master-slave Kalman filter algorithm and a cascaded high
gain observer structure are developed.

The master-slave Kalman filter estimates reliable Euler velocity and acceler-
ation signals in addition to Euler angles. Slave estimator based on the inverse
Φ-algorithm estimates angular velocities, accelerations and jerks. When these es-
timates are used in the master estimator, Euler angles, velocities and accelerations
are estimated. The stabilization performance of a pan-tilt system is assessed by
using estimated Euler angles, velocities and accelerations in a high fidelity simula-
tion model for two different disturbance scenarios. In the first scenario, the pan-tilt
platform is subject to random and continuous time varying disturbances whereas
step disturbances in the form of short duration pulses with relatively large ampli-
tudes are applied to the system in the second scenario. In the first scenario, azimuth
angle converges in a smooth way by utilizing acceleration controller whereas small
steady state errors are observed in the elevation angle with the use of acceleration
feedback. The amplitudes of the torque control inputs are almost the same with or
without the use of acceleration feedback. Thus, acceleration control provides bet-
ter performance without larger control efforts. Due to the step pulses in the second
scenario, system responses have high amplitude oscillations when the acceleration
controller is not active. As the acceleration feedback is introduced, the external
disturbances are successfully rejected and much smoother responses are achieved.
Although high control efforts were spent when the step pulses were exerted on the
system, the system could not be stabilized without the acceleration controller. The
performance of the proposed sensor fusion algorithm was compared to the New-
ton predictor enhanced Kalman filter (NPEKF) and the error state Kalman filter
(ErKF) in both scenarios. Estimated angle, velocity and acceleration signals by the



proposed master-slave Kalman filter and the fusion algorithm in which the master
estimator is implemented as ErKF, are similar to each other. On the other hand,
the proposed method outperforms NPEKF. The Newton predictor leads to much
more noisy estimates and has the largest estimation errors compared with the other
methods.

A polytopic quasi-LPV model of the nonlinear pan-tilt system has been derived
to synthesize acceleration based LMI-LQR controller for the pan-tilt stabilization.
Acceleration signals are estimated by a new high gain observer structure where
two different observers are employed in a cascaded structure. The first HGO uses
position measurements from an encoder to estimate reliable position and veloc-
ity information. The second HGO, on the other hand, utilizes velocities estimated
by the first HGO to provide estimates of acceleration signals. Obtained estimates
by the proposed HGO are used in the proposed LMI-LQR controller. The feed-
back gain matrix is designed by interpolating LMIs at each vertex of the polytopic
model. Step pulses are exerted on the system to compare the performance of the
proposed LMI-LQR controller with the classical one. During the application of
disturbances on the nonlinear system, the amplitude of oscillations gets smaller as
acceleration feedback is utilized in optimal LQR controller.

This thesis also develops a novel hybrid control method by combining accelera-
tion based learning controller with an adaptive controller for the trajectory tracking
in repetitive robotic tasks. The use of acceleration feedback in the learning control
provides robustness to the system against unknown periodic disturbances with a
known period. Adaptive controller, on the other hand, compensates for the uncer-
tainties in the actuator moment of inertia terms and the static friction parameters.
Integral of the position error is also included in the filtered error variable. The de-
veloped cascaded nonlinear high gain observer structure is utilized to estimate reli-
able position, velocity and acceleration signals from noisy encoder measurements.
Lyapunov based stability analysis show that all system signals remain bounded,
and the proposed controller ensures global asymptotic position tracking for a n-
rigid link manipulator. The performance of the proposed hybrid controller is tested
on a high fidelity simulation model of a pan-tilt platform and it has been found as
quite satisfactory.
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Appendix

A The Method of Petovello

The inverse Φ-algorithm assumes the following process and measurement mod-
els [119]:

xk = Ak−1xk−1 + Υk−1εk−1 (A-1)

yk = Ckxk + εk (A-2)

εk = Ψk−1εk−1 + ςk−1 (A-3)

Ψk−1 = e−
T
κ , Rk = σ2

(
I −Ψ2

k−1

)
(A-4)

E (εk) = E (ςk) = 0 (A-5)

E
(
εkε

T
l

)
= Qkδkl, E

(
ςkς

T
l

)
= Rkδkl, E

(
εkς

T
l

)
= 0 (A-6)

where Ak−1 is the state transition matrix, Ck is the output matrix, εk−1 and ςk−1 are
the white Gaussian noises with zero means, εk is time correlated noise, E(x) is the
expectation of x, δkl is the Kronecker delta function, Qk and Rk are the covariance
matrices of εk and ςk, Ψk−1 is the transition matrix of the time correlated error, T
is the sampling time, κ is the time constant, I is the identity matrix, and σ is the
standart deviation.
Prediction stage of the inverse Φ-algorithm:

x̂k/k−1 = Ak−1x̂k−1/k−1 (A-7)

Pk/k−1 = Ak−1Pk−1/k−1AT
k−1 + Qk−1 (A-8)

Update stage of the inverse Φ-algorithm:

Kk =
[
Pk/k−1C̄T

k + Sk

] [
C̄kPk/k−1C̄T

k + R̄k + C̄kSk + ST
k C̄T

k

]−1
(A-9)

x̂k/k = x̂k/k−1 + Kk

[
ȳk − C̄kx̂k/k−1

]
(A-10)

Pk/k = Pk/k−1 − Kk

[
C̄kPk/k−1C̄T

k + R̄k + C̄kSk + ST
k C̄T

k

]
KT

k (A-11)

where
ȳk = yk −Ψk−1yk−1 (A-12)

C̄k = Ck −Ψk−1Ck−1A−1
k−1 (A-13)

Sk = Qk−1ΥT
k−1A−T

k−1CT
k−1ΨT

k−1 (A-14)

R̄k = Ψk−1Ck−1A−1
k−1Υk−1Qk−1ΥT

k−1A−T
k−1CT

k−1ΨT
k−1 + Rk−1 (A-15)



B Important Lemmas and Definitions

B.1 Leibniz’s Rule

The Leibniz integral rule provides a formula for differentiation of a definite integral
whose limits are functions of the differential variable. Let f (x, t) be a function such
that both f (x, t) and its partial derivative fx(x, t) are continuous in x and t in some
region of the (x, t)-plane, including u(x) ≤ t ≤ v(x) and x0 ≤ x ≤ x1. Suppose
that the functions u(x) and v(x) are both continuous and both have continuous
derivatives for x0 ≤ x ≤ x1:

d
dx

∫ v(x)

u(x)
f (x, t)dt = f (v(x))

dv
dx
− f (u(x))

du
dx

+

∫ v(x)

u(x)

∂
∂x

f (x, t)dt (A-1)

that is the general form of the Leibniz integral rule.

B.2 Lemma 1

Given a nonnegative function denoted by V(t) ∈ R as follows [100]:

V =
1
2

x2 (A-2)

with the following time derivative

V̇ = −k1x2 (A-3)

then x(t) ∈ R is square integrable, i.e. V(t) ∈ L2.

Proof: If both sides of (A-3) is integrated, then the following is computed as

−

∫
∞

0
V̇(t)dt = k1

∫
∞

0
x2(t)dt (A-4)

and

k1

∫
∞

0
x2(t)dt = V(0) − V(∞) (A-5)

It is known that V(0) ≥ V(∞) ≥ 0 based on (A-2) and (A-3). Therefore, the
following relationships are obtained:

k1

∫
∞

0
x2(t)dt = V(0) − V(∞) ≤ V(0) < ∞ (A-6)√∫

∞

0
x2(t)dt ≤

√
V(0)

k1
< ∞ (A-7)

Definition 1 in the next page is used to conclude that x(t) ∈ L2.
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B.3 Definition 1

Consider a function f (t) : R+ → R. Let the 2-norm (denoted by ‖ · ‖) of a scalar
function f(t) be defined as [100]:

‖ f (t)‖ =

√∫
∞

0
f 2(τ)dτ (A-8)

If ‖ f (t)‖ < ∞, then it can be said that the function f (t) belongs to the subspace L2
of the space of all possible functions, i.e. f (t) ∈ L2.

B.4 Definition 2

Let the∞-norm (denoted by ‖ · ‖∞) of f (t) be defined as [100]:

‖ f (t)‖∞ = sup| f (t)| (A-9)

If ‖ f (t)‖∞ < ∞, then it can be said that the function f (t) belongs to the subspace
L∞ of the space of all possible functions, i.e. f (t) ∈ L∞.

B.5 Barbalat’s Lemma

Consider a function f (t) : R+ → R. If f (t), ˙f (t) ∈ L∞, and f (t) ∈ L2, then

lim
t→∞

f (t) = 0 (A-10)

This lemma is often referred to as Barbalat’s Lemma [17] .
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