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ABSTRACT 

 

 

RHEOLOGICAL INVESTIGATION OF COLLOIDAL SYSTEMS 

 

 

Omid Akhlaghi Baghoojari 

 

PhD Dissertation, August 2017  

 

 

Supervisor: Assist. Prof. Ozge Akbulut 

 

 

Keywords: Suspension, graft-copolymer, rheology, stability 

 

Ceramic processing such as cementation and casting are among the most widely used 

methods for production of commercial products with different size and properties to date. 

Highly loaded and stable aqueous suspensions whose rheological behavior can be 

controlled by low content of organic additives are highly desired. To have control over the 

viscosity and improve fluidity/solid loading of ceramic suspensions, different series of 

polycarboxylate ether-based copolymers (PCEs) that include acrylic acid, 2-acrylamido-2-

methylpropane sulfonic acid, vinylphosphonic acid, and polyethylene glycol-1000 were 

synthesized. The effect of monomer feed ratio and molecular weight of copolymer on 

dispersing ability of the copolymers, fluidity of the pastes, and rheological behavior of 

suspensions were characterized and performance of these copolymers as rheology modifiers 

was reported. For the first time in literature, dedicated superplasticizers for i) calcium 

aluminate cement (CAC) and ii) ordinary portland cement-calcined clay-calcium carbonate 

ternary blends were synthesized such that they caters to the characteristic properties of 

these systems; i) high rate of surface development and surface charge in CAC and ii) 

layered structure of calcined clay and high concentration of sulfate ions in ternary blended 
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cement. The effect of PCEs on i) rheological behavior of alumina suspensions and ii) 

fabrication of highly loaded alumina suspensions and machining of solid cast green bodies 

were also investigated.  While 20 vol. % pure alumina suspensions showed severe particle 

jamming, 35 vol. % alumina suspensions with more than 1 wt. % copolymers displayed 

Newtonian behavior. These suspensions found to be suitable for fabrication of solid cast 

green bodies and provided ability of significant removal of material in machining process.  
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Çimentolama ve döküm gibi seramik işlemleri, günümüze kadar farklı boyut ve özellikteki 

ticari ürünlerin üretimi için sıklıkla kullanılan yöntemler arasında olmuştur. Reolojik 

davranışları, düşük miktarda organik katkı maddeleri ile kontrol edilebilen yüksek miktarda  

yüklü  ve  kararlı  sulu  süspansiyonlar  çokça  tercih  edilmektedir.  Akrilik  asit, 

-akrilamido-2-metilpropan sülfonik asit, vinilfosfonik asit ve polietilen glikol-1000'i içeren 

farklı seri polikarboksilat eter bazlı kopolimerler (PCE'ler) viskoziteyi kontrol altına almak 

ve     seramik     süspansiyonların     akışkanlığını/katı     yüklenmesini     iyileştirmek     

için sentezlenmiştir.    Kopolimerlerin    dağılabilme    yeteneği,    macunların    akışkanlığı    

ve süspansiyonların kayma ve genleşmeli reolojik davranışları üzerine kopolimer monomer 

besleme oranı ve molekül ağırlığının etkisi belirlenmiş; bu kopolimerlerin reoloji 

değiştiricileri olarak performansı rapor edilmiştir. Literatürde   ilk   kez   i)   kalsiyum   

alüminat   çimento   (CAC)   ve   ii)   sıradan   portland çimentosu-kireç haline getirilmiş 

kil-kalsiyum karbonat üçlü harmanları I) CAC'de yüksek yüzey gelişimi ve yüzey yükü ve 

ii) üçlü harmanlanmış çimentoda kalsine kil ve katı sülfat iyonlarının katmanlı yapısının 

karakteristik özelliklerini karşılayacak şekilde sentezlenmiştir.  PCE'lerin  i)  alumina  
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süspansiyonlarının  kesilme ve genleşmeli reolojik davranışları ve ii) yüksek yüklü 

alüminyum süspansiyonların imalatı ve katı dökme yeşil gövdelerin işlenmesi üzerine olan 

etkisi de araştırılmıştır. Hacimce %20 saf alumina süspansiyonları önemli miktarda partikül 

sıkışması gösterirken hacimce ve ağırlıkça% 1'den fazla kopolimer içeren %35 alumina 

süspansiyonları Newton davranışı göstermiştir. Bu süspansiyonlar, katı dökme yeşil 

gövdelerin imalatı için uygun bulunmuş ve  işleme  sürecinde  malzemelerin  önemli  

derecede  uzaklaştırılabilmesini sağlamıştır. 
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Chapter 1 Extensional rheology and stability behavior of alumina suspensions in the 

presence of AMPS-modified polycarboxylate ether-based copolymers 

This chapter is written based on the article “Extensional rheology and stability 

behavior of alumina suspensions in the presence of AMPS-modified polycarboxylate ether-

based copolymers”. Here, we report the preparation and characterization of a new comb-

type copolymer that includes acrylic acid (AA), 2-acrylamido-2-methylpropane sulfonic 

acid (AMPS), and polyethylene glycol-1000 (PEG-1000). Copolymers with different 

chemical formulations and molecular weights were synthesized by changing the reaction 

conditions and feed ratio. Capillary breakup extensional rheometer (CaBER) was used to 

investigate the effect of addition of copolymers on the extensional flow behavior of 

alumina suspensions. Rheological measurements revealed that addition of 1 wt. % of the 

copolymer with lowest molecular weight increases the maximum fraction of alumina 

particles in the system to 44 vol. % compared to 20 vol. % in pure alumina suspension. 

1.1 Introduction 

Water is the solvent of choice during ceramic powder processing since it is 

environmentally benign and cost-effective [1, 2]. Dispersion of colloidal ceramic particles 

in aqueous media is, therefore, critical for industrial processing such as frequently used 

casting, ink-jet printing [3], and spray drying [4]. Stable suspensions with high solid 

loadings ( > 40 vol. %) [5] are desirable since obtaining sinterable and crack-free ceramic 

compact can hardly be achieved using suspensions with low solids contents. However, 

concentrated colloidal systems often show complex rheological behavior because of 

particle aggregation [6]. To obtain stable systems, dispersion of particles usually relies on 

prevailing of repulsive electrostatic force over Van der Waals force [7]. To impart charge 

on ceramic suspensions with high solid content, dispersants are used. Dispersants decrease 

the viscosity and agglomeration, homogenize the microstructure thus improve mechanical 

properties of the final product. The dispersant amount should be optimized since excess 

amounts can cause bridging flocculation whereas inadequate amounts lead to a reduction in 

absolute value of zeta potential [8-11]. 
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Polyacrylic acid (PAA) is widely used in many systems [10-12] such as dispersion of 

Ti, Al2O3, and yttria-stabilized zirconia in aqueous media; but, performance of PAA is 

limited due to its simple structure. On the other hand, linear copolymers of PAA, depending 

on the types of synergistic functional groups, can provide various properties such as wider 

pH range for high absolute zeta potential value, lower optimum dosage of dispersant, and 

less sensitivity to flocculation in the presence of excess amount of dispersant [12-14]. The 

stabilizing effect of linear polymers can be improved by addition of side chains in order to 

harness steric hindrance effect as well. These amphipathic structures are usually composed 

of long hydrophilic side chains grafted to a backbone. The backbone bears ionizable groups 

such that they can anchor to the surface of particles while side chains protrude into the 

medium and produce steric hindrance effect [1, 2, 7]. Bouhamed et al. [1] confirmed the 

stabilizing effect of 2-acrylamido-2-methylpropane sulfonic acid-polyethyleneglycol 

methacrylate copolymers at 30 vol. % alumina suspension. Ran et al. [15] reported poly 

(styrene-co-maleic anhydride)-methoxy polyethylene glycol copolymer as an effective 

dispersant to reduce viscosity of suspension with ~30 vol. % alumina particles. The 

performance of dispersants in these systems is usually evaluated by rotational rheometry. 

However, many applications of ceramic suspensions such as ink-jet printing [3], ink-jet 

deposition in microchannels [16], and spray drying [4] necessitate visco-elasto-capillary 

characterization of these suspensions. The elongational behavior of the drop of suspension 

can be studied by CaBER since it can determine the extensional properties of the drop 

before the pinch-off point [17]. 

1.2 Characterization of copolymers 

The esterification of PEG-1000 was carried out by maleic anhydride via the 

procedure that was proposed in literature [18]. This product was used for polymerization 

without any purification. Choosing PEG-1000 for esterification was based on the higher 

dispersing ability of AMPS/PEG-1100 copolymer than AMPS/PEG-2000 [19]. Different 

polycarboxylate ether-based AA/AMPS/PEGMA copolymers were synthesized based on a 

method described by Salami and Plank [20]; these are named from PCE1 to PCE6 in Table 

1.1. As a reference, we also synthesized AA/AMPS linear copolymer referred as PC in 

Table 1.1. 
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Table 1.1 Molar compositions of starting materials for polymerization 

 

Molar ratio    

 Polymer AA/AMPS/ PEGMA pH 

PCE1 25/25/1 6 

PCE2 25/25/1 8 

PCE3 25/25/1 13 

PCE4 10/40/1 8 

PCE5 20/30/1 8 

PCE6 30/20/1 8 

PC 25/25/0 6 

 

Chemical structure of copolymers was characterized by using H1-NMR (Figure 1.1). 

Proton chemical shifts were observed at δ 1.5, 1.7, 2.1, 3.4 and 3.7 ppm that are attributed 

to –CH3 group of AMPS (5), –CH2 (2) and –CH (1) groups in main chain of polymer, –

CH2 group of AMPS (4), and –CH2CH2–O group of PEG chain (3), respectively.  

 

Figure  1.1 H1-NMR of PCE2 

Dilute solution viscometry was used to confirm the polymerization of copolymers 

with different molecular weights. Figure 1.2 shows reduced viscosity of the copolymers as 

a function of concentration. Expectedly, AA/AMPS copolymer exhibited the lowest 

intrinsic viscosity (1.7 dl/g) while PCE1, PCE2, and PCE3 display the 4.3, 3.1 and 5.4 dl/g, 
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respectively. Thus, we concluded that the molecular weight of PCE2 is the lowest among 

the comb type copolymers. 

 

Figure  1.2 Dilute solution viscometry of selected polymers synthesized at different pH 
values 

1.3 Characterization of diluted suspension 

1.3.1 Adsorption of copolymers and electrokinetic study 

Figure 1.3a shows the adsorption isotherms of different copolymers at native pH 

(7‒8) of alumina suspensions. The amount of adsorbed copolymers increases significantly 

with initial amount and then stabilizes near a plateau value that is typical for a monolayer 

adsorption isotherm [21]. This plateau is reached at higher amounts when the molecular 

weight of copolymers increases (PCE3 > PCE1 > PCE2). Figure 1.3b is a representative 

result of TGA on dried alumina suspensions that contain different amounts of copolymer 

PCE2. Increasing amount of initial copolymer raised the amount of weight loss. This result, 

in parallel with the results of adsorption isotherm test, indicated that increasing amount of 

copolymers in suspensions increase the amount of strongly adsorbed copolymers on the 

surface of alumina particles.  
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Figure  1.3 a) Adsorption isotherms of different copolymers on alumina particles and b) 
TGA of dried alumina suspensions including different amounts of PCE2 

Given the importance of the electrokinetic behavior of suspensions for interpreting 

the adsorption behavior and also change of rheological properties in the presence 

copolymers, the effect of pH on zeta potential of alumina suspensions was given in Figure 

1.4. A representative result of zeta potential measurement that was carried out on alumina 

suspensions with different amounts of PCE2 was given in Figure 1.4a. Isoelectric point 

(IEP) of pure alumina suspension is ~8 indicating that the surface of alumina particles hold 

Al‒OH bonds and positively charged sites of Al‒OH2
+ between pH 7 and 8. Adsorption of 

the copolymer to surface of the particles shifts the IEP to lower pH values. Carboxylate and 

sulfonate groups are reported to be adsorbed on the surface of alumina particles by making 

bonds with Al‒OH2
+ ions [2, 10]. The inclusion of the copolymer results in bonding 

between ionized functional groups, (COO‾ and SO3‾) and Al‒OH2
+ sites. Consequently, 

positively charged alumina particles are covered with negatively charged copolymers as 

shown by IEP shifting to lower pH values. At higher than 0.3 wt. % copolymer, the number 

of negative charges introduced by the copolymer surpasses the number of positively 

charged sites and changing the sign of zeta potential values takes place as a result of this 

overcompensation phenomenon [22]. Figure 1.4b illustrates the zeta potential values in the 

presence of 0.5 wt. % and 2 wt. % of different copolymers. PCE1 and PCE2 display almost 

identical electrokinetic behavior while maximum absolute value of zeta potential was 

detected in the suspension containing PCE3. The latter observation can be attributed to the 
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higher number of ionized groups in the backbone of PCE3 due to its higher molecular 

weight.  

 

Figure  1.4 Effect of pH on zeta potential of the alumina suspensions in the presence of a) 

different amount of PCE2, and b) 0.5 wt. % and 2 wt. % of different copolymers 

Analysis of electrokinetic behavior of suspensions in the presence of PCE1 and PCE2 

is helpful to understand the conformation of adsorbed copolymers. Affinity of both 

copolymers to the surface of alumina particles is close to each other since the curves that 

they generate in zeta potential versus pH graph are superimposable (Figure 1.4b). However, 

according to adsorption isotherm test, more PCE1 is adsorbed on the surfaces of alumina 

particles; hence, we speculate that not all parts of the main chain of copolymers are 

adsorbed and copolymers adopt a loop structure on the surface of particles [23]. 

Furthermore, this loop conformation explains the difference among the amounts of 

adsorbed copolymer in plateau region in adsorption isotherm test (Figure 1.3a). A fraction 

of backbone of a copolymer with no bonding to the surface increases the amount of 

adsorbed copolymer. When molecular weight of copolymers increases, a rise in the length 

of copolymers with no bonding is inevitable. Given the certain number of sites on the 

surface of the particles available for adsorption, higher amount of adsorbed copolymer in 

plateau region with increasing molecular weight of copolymer (PCE3 > PCE1 > PCE2) is 

expected. 
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1.3.2 Stability 

Figure 1.5a shows change in hydrodynamic radius (rh) of alumina particles with time 

in 4 wt. % alumina suspensions and 2 wt. % of different copolymers compared to alumina 

particles at pH 7.5. Choosing 2 wt. % copolymers was based on the fact that all copolymers 

reach saturation plateau at 2 wt. % (Figure 1.4b). Pure alumina suspension displayed rh of 

350 nm initially and 390 nm after 10 min due to the formation of aggregated colonies. 

Since zeta potential of pure alumina suspension at this pH is around 5 mV (Figure 1.4), 

repulsive interactions among particles are not sufficient to prevent agglomeration. On the 

other hand, in the presence of 2 wt. % copolymers, initial rh of 117, 116, and 121 nm were 

observed in suspensions containing PCE1, PCE2, and PCE3, respectively (Figure 1.5a).  

We based stability measurements on a procedure proposed by Cynthia et al. [24] 

Since no discrete layer was observable during gravity settling, we used the time needed for 

25% mass removal of alumina particles at sampling height (height of 60 ml in 100 ml 

graduated cylinder). In the absence of copolymers, alumina suspension reached 75% of 

initial concentration at sampling height in 25 min while suspensions that contain PCE1, 

PCE2, and PCE3 necessitated 90, 110, and 35 min, respectively. This observation indicates 

the higher stability of suspensions in the presence of copolymers and is also consistent with 

the results of rh measurements (Figure 1.5a). In the absence of sufficient repulsive forces in 

pure alumina suspensions that is evidenced by low zeta potential value (Figure 1.4), 

attractive van der Waals force prevails over interparticle interactions [25] and aggregated 

colonies with particle size of ~400 nm are formed (Figure 1.5a). Hence, formation of these 

clusters decreased the time of sedimentation and caused higher mass removal of particles 

compared to well-dispersed particles in the presence of copolymers.  

To determine the lowest amount of copolymer that is needed for further rheological 

measurements, we measured particle size distribution of suspensions containing different 

amounts of PCE2 15 minutes after sonication (Figure 1.5b). PCE2 was chosen since it 

shows the highest dispersing ability and stability among all copolymers. Sample with 0.3 

wt. % PCE2 displays a low intensity peak at particle size of 1 µm in addition to the main 

peak centered at 110 nm. Appearance of this small peak can be described by incomplete 

surface coverage of 0.3 wt. % PCE2. Addition of 0.5 wt. % PCE2 led to disappearance of 
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this small peak and observation of a single population curve centered at ~120 nm; hence, 

we concluded that 0.5 wt. % is the minimum amount of PCE2 needed to stabilize alumina 

suspensions for further rheological tests. 

 

Figure  1.5 a) Change in rh of alumina particles with time in suspensions with and without 2 
wt. % copolymers and b) particle size distribution of suspensions after 15 minutes in the 
presence of different amounts of PCE2 

1.4 Rheological measurements 

We present the change of midpoint diameter in 20 vol. % (~50 wt. %) alumina 

suspension thread as a function of time in Figure 1.6a. In the absence of any additives, this 

20 vol. % solid content was found to be the highest amount of alumina for preparation of a 

suspension. As seen in Figure 1.6a, pure alumina suspension exhibits Newtonian behavior 

in low deformation times, characterized by linear necking rate in time that is followed by 

exponential decrease of midpoint diameter until the break up point. The deformation 

imposed on the fluid can be described by Hencky strain, ε = 2ln D0/D(t), where D0 is the 

plate diameter (mm).  Figure 1.6b shows extensional viscosity of pure alumina suspension 

as a function of Hencky strain. The apparent transient extensional viscosity (ηE) of 

stretching fluid can be calculated as: 

ηE = Δτ(t)
ε̇(t)

 = − σ
D(t)/dt

       (1) 

where Δτ(t) is the total extensional stress difference in elongating flow (Pa), 𝜀̇(𝑡) is 

instantaneous strain rate (s-1), and σ is the fluid surface tension (N/m) [26]. Without 
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inclusion of additives, pure alumina suspension displays a severe strain-hardening behavior 

and extensional viscosity diverges to maximum value of approximately 2,000 Pa.s. Since, 

alumina particles hold low surface charge in the native pH of alumina suspension, 

dominancy of Van der Waals attraction among particles results in particle flocculation. 

Thus, we postulated that the non-Newtonian stress contribution, generated by flocculation 

of particles, to total stress evolution retarded the necking rate of the thread. This behavior 

resembles the creation of a connected 3D network of aggregates beyond the percolation 

threshold [23], which similarly increases the viscosity asymptotical to infinity. 

 

Figure  1.6 a) Change of midpoint diameter as a function of time and b) extensional 
viscosity as a function of strain in 20 vol. % alumina suspension 

1.4.1 Effect of AA/AMPS ratio on the rheological behavior 

After inclusion of different copolymers even at 0.3 wt. %, 20 vol. % alumina 

suspensions showed high necking rates—the viscosity has decreased significantly such that 

change of midpoint diameter was not traceable by the laser micrometer. Consequently, we 

increased the solid content of suspensions to 35 vol. % (~68 wt. %). Figure 1.7a and Figure 

1.7b show the change of midpoint diameter in time and extensional viscosity as a function 

of Hencky strain, respectively, in the samples containing 0.5 wt. % of different copolymers. 

Presence of copolymers with different AA/AMPS ratio changed the extensional flow 

behavior of alumina suspensions, that is, Newtonian behavior in low deformation time 

followed by elastocapillary thinning region before the break up point (Figure 1.6a). As seen 

in Fig 7b, all samples except the one with PCE2 display a modest strain hardening before 

break up point. Increase of AA/AMPS ratio from 0.25 in PCE4 to 1 in PCE2 resulted in 
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disappearance of strain hardening while further increase of AA/AMPS ratio to 1.5 (PCE6) 

led to observation of strain hardening in these samples.  

For a model viscoelastic fluid, elastocapillary thinning region—the region before the 

break up point, can be described by an exponential decay of the midpoint diameter in time 

for t > t1 as shown in eq. 2 [27]: 

D(t)
D0

 = (G1D0
4σ

)1/3 exp(− t−t1
3λe

)      (2) 

where G1 is related to elastic modulus, t1 (s) is the onset of elastocapillary region, and 

λe is the longest fluid relaxation time (s-1). Fitting experimental points in elastocapillary 

thinning region in Figure 1.7a with eq. 2 indicated that the increase of AA/AMPS ratio 

from 0.25 in PCE4 to 1 in PCE2 reduces the relaxation time (λe) of suspension from 1.9 ms 

to 1.2 ms. Further increase of AA/AMPS ratio to 1.5 in PCE6 raised the λe to 3.1 ms. In 

addition to the deflocculating effect of copolymers, change in extensional flow behavior 

can be attributed to the increase in the fast motion of alumina particles as a result of the 

lower attraction between particles. We, therefore, concluded that using AA/AMPS ratio of 

1 leads to the highest synergistic effect of functional groups as indicated by the smallest 

relaxation time.  

 

Figure  1.7 a) Change of midpoint diameter as a function of time and b) extensional 
viscosity as a function of Hencky strain for samples with 0.5 wt. % PCEs 
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1.4.2 The effect of molecular weight of copolymers on the rheological behavior  

We also investigated the effect of molecular weight of the copolymers on extensional 

flow of suspensions. Among the polymers with AA/AMPS ratio of 1 (PCE1, PCE2, and 

PCE3), we first plotted extensional viscosity of 35 vol. % alumina suspensions in Figure 

1.8a as a function of Hencky strain for samples containing increasing amounts of PCE2. 

Pure Alumina suspension with 20 vol. % solid content was also used the reference sample 

for comparison. Addition of 0.3 wt. % PCE2 decreases the strain hardening behavior while 

thinning is observed in the presence 0.4 and 0.5 wt. % copolymer (Figure 1.8a). These 

observations are indicative of the presence of interparticle interactions in the system [28]. 

In addition, deviation from Newtonian behavior is minimal in the suspension with 1 wt. % 

copolymer due to the significant decrease of interparticle attraction that is in agreement 

with zeta potential measurements. We, then, studied the extensional viscosity of alumina 

suspensions as a function of Hencky strain in the presence of copolymers with different 

molecular weights (Figure 1.8b). Alumina suspension that contains the copolymer with the 

highest molecular weight (PCE3) displayed the highest extensional viscosity and modest 

strain hardening effect. Decrease of molecular weight led to reduction of extensional 

viscosity and disappearance of the strain hardening region. These results can be explained 

by the effect of adlayer thickness on the effective volume fraction (ϕeff) and effective 

particle distance (2Λ) in suspensions.  

 

Figure  1.8 Extensional viscosity of 35 vol. % alumina suspension as a function of Hencky 
strain for samples with a) different wt. % of PCE2 and b) 1 wt. % of copolymers with 
different molecular weight 
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The effective volume fraction of solids in suspension (ϕeff = ϕ �1 + δ
𝑎
�
3
) consists of 

the real volume fraction (ϕ) of particles with radius of (a) and the excluded volume formed 

by the stabilizing adlayer with thickness of (δ). This adlayer should be sufficiently thick in 

order to prevent agglomeration and also thin enough to minimize the excluded volume [29]. 

Presence of this excluded volume reduces the interparticle distance, which can be estimated 

by (Λ
r

= [ϕm
ϕeff

]
1
3 − 1), where ϕm is the maximum packing fraction of monodisperse spherical 

particles (0.638 for random packing) [30]. Using the difference between the hydrodynamic 

radius of the coated and bare alumina particle as the polymer adlayer thickness [31], 

effective volume fraction and effective interparticle distance were calculated (Table 1.2).  

Table 1.2 Effective volume fraction and effective interparticle distance of alumina particles 
in the presence of 1 wt. % copolymers with different molecular weight 

copolymer δ (nm) ϕeff 2Λ (nm) 

PCE1 7 0.42 33 

PCE2 6 0.41 35 

PCE3 11 0.47 24 

 

As seen in Table 1.2, presence of PCE3 reduces the interparticle distance to 24 nm, 

which is in the range of adlayer thickness (δ~Λ). Therefore, the strain hardening behavior 

observed in this suspension potentially results from the interaction of copolymers. On the 

other hand, decrease of molecular weight (PCE1 and PCE2) led to lower δ and higher Λ 

such that the system can incorporate higher volume fraction of alumina particles. 

1.4.3 Maximum volume fraction of alumina in suspensions 

Figure 1.9a shows the change of midpoint diameter in time for samples with 1 wt. % 

PCE2 and increasing amount of alumina particles to find the maximum volume fraction 

(ϕmax) of the dispersed phase. We chose 1 wt. % PCE2 based on the fact that deviation 

from Newtonian behavior is minimal in the suspension with 1 wt. % copolymer (Figure 

1.8). To describe the time evolution of the neck diameter, we used the power-law fluid 

expression, that is, the midpoint diameter changes as: 
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D(t)
D0

 = ϕ(n)(σ
K

)(tc − t)n     (3) 

where n is the power-law exponent, K is the consistency index and 𝜙(𝑛)  is a 

numerically determined factor [26]. The suspension with 30 vol. % alumina particles 

ruptured in less than 0.02 s while increasing amount of particles retarded the onset of 

elastocapillary region (t1). The onset is found by intersection point of the lines that are 

fitted to linearly decaying regime and exponentially decaying regime of elastocapillary 

region [27]. By fitting experimental points to the power-law fluid expression in eq. 3 and 

elastocapillary region to eq. 2, the fitting parameters were calculated as shown in Table 1.3. 

Table 1.3 Onset of elastocapillary region (t1), relaxation time (λe), and power-law exponent 
of suspensions (n) with 1 wt. % PCE2 at increasing amounts of solid volume fraction (ϕ)  

ϕ t1 (ms) λe (ms) n 

0.30 12 0.8 1.00 

0.35 17 1.1 0.99 

0.375 35 1.5 0.95 

0.40 180 4.1 0.85 

 

Figure 1.9b shows extensional viscosity of suspensions with 1 wt. % PCE2 as a 

function of Weissenberg number (λe.ε̇) that is used to horizontally collapse the results. 

Increasing solid volume fraction shifted the extensional viscosity curve to higher values 

and led to observation of thinning behavior above 35 vol. %. Change of flow behavior from 

well-dispersed system in 30 vol. % to flocculated system in 40 vol. % is also evidenced by 

reduction of n from 1, which is the characteristic value for Newtonian fluid, to n=0.85. 
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Figure  1.9 a) Change of midpoint diameter as a function of time and b) extensional 
viscosity as a function of Weissenberg number for increasing vol. % of alumina 
suspensions with 1 wt. % PCE2. 

The suspension with 40 vol. % alumina particles initially showed decrease of strain 

rate towards the maximum extensional viscosity (ηmax) and subsequently, decrease of 

extensional viscosity was observed with increasing strain rate, as shown in the Figure 1.9b 

with arrows. On the other hand, the suspension with 45 vol. % alumina particles only 

showed the region of decreasing strain rate towards ηmax (Figure 1.10). Similar CaBER 

response was reported by White et al. [32] for 35 vol. % cornstarch-water suspensions. 

They suggested that possibly the compressive flow in the radial direction is increasing the 

packing of particles locally and facilitating the jamming of particles or clusters.  

 

Figure  1.10 Extensional viscosity as a function of strain rate for 20 vol. % pure alumina 
suspension and for 45 vol. % alumina suspension containing 1 wt. % PCE2 

20 
 



In Figure 1.11, we present the change in extensional viscosity and relaxation time of 

alumina suspensions as a function of particle volume fraction. All suspensions contained 1 

wt. % PCE2 and extensional viscosity was obtained at λe𝜀̇=0.08. As particle fraction 

increases above 30 vol. %, viscosity and relaxation times of suspensions gradually 

increases up to 37.5 vol. % and grow significantly beyond this point. Rapid increase of λe 

and ηE towards maximum volume fraction of dispersed phase is an indication of 

pronounced elasticity and formation of network of aggregates.  

 

Figure  1.11 Dependency of viscosity at λe𝜀̇ = 0.08 and relaxation time on the volume 
fraction of alumina particles in the presence of 1 wt. % PCE2 

Dependency of the extensional viscosity on volume fraction of alumina particles is 

analogous to that of the shear viscosity on volume fraction of dispersed phase [23, 33]. This 

dependency could be fitted by Kreiger-Dougherty equation as:  

η = η0(1 − ϕ
ϕmax

)−[η]ϕmax     (4) 

where η0 is the viscosity of liquid medium (Pa.s) and [η] is the intrinsic viscosity 

[34]. However, the presence of copolymer adlayer increases the volume fraction of 

dispersed phase. In order to take into account the effect of higher ϕeff compared to ϕ on 

viscosity, we used modified Kreiger-Dougherty model (η = η0(1 − ϕeff
ϕmax

)−[η]ϕmax ). By 

satisfactory fitting of the experimental points with modified Kreiger-Dougherty equation, 

ϕmax of 44% and [η] of 5.6 were obtained, which are consistent with reported values in 
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literature [23]. Moreover, ϕmax  of 44% is in agreement with the 45% that we found 

experimentally (Figure 1.10).  

1.5 Conclusion 

Particle size analysis and rheological measurements confirmed the stabilizing effect 

of copolymers and we showed that the maximum amount of alumina that can be fed into 

the suspension is ~45 vol. % at 1 wt. % copolymer (PCE2) addition. The effect of 

copolymers in reducing extensional viscosity and elimination of strain hardening behavior 

in alumina suspensions suggests a strong potential for these copolymers to be used in 

applications like ink-jet printing, 3D printing, and spraying. 
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Chapter 2 A PCE-based rheology modifier allows machining of solid cast green 

bodies of alumina 

This chapter is written based on the article “A PCE-based rheology modifier allows 

machining of solid cast green bodies of alumina”. Here, we show the feasibility of the 

casting of aqueous alumina suspensions through the use of a PCE-based superplasticizer 

synthesized at pH 8 with monomer feed ratio of 25/25/1 (AA/AMPS/PEGMA). These 

conditions were chosen based on the superplasticizing ability of the copolymer compared to 

that of copolymers with different chemical and structural compositions (chapter 1). We 

drilled the solid-cast cylindrical bodies without visible cracks and obtained terraced 

structures with smooth surfaces. This system does not necessitate binders to sustain its 

strength and therefore, the binder burnout step is eliminated from the process. 

2.1 Introduction 

Solid casting is the method of choice for the production of several ceramic objects 

from laboratory crucibles to turbine blades since it is scalable, simple and necessitates only 

low cost capital investment [1, 2]. In general, for further shaping of solid cast and then 

sintered bodies, only limited post-sintered machining, such as grinding, can be used due to 

high hardness and low toughness of these objects [3].  On the other hand, machining of the 

green body can i) allow additional machining processes, such as milling, drilling, and 

lathing to be implemented , ii) increase production speed due to faster material removing 

rates, and iii) eliminate early tool wear and possible crack formations [4-6]. Therefore, for 

cost-effective and simple fabrication of ceramics, there is a need for developing systems 

that can produce green bodies with enough strength to withstand machining. In solid 

casting, high particle loadings and well-packing is necessary to produce high strength green 

bodies; however, at higher loadings the viscosity increases and homogeneity of the slurry 

decreases significantly [7].  

2.2 Rheological characterization  

In general, viscosities in the range of 0.3–10 Pa.s were found to work well with solid 

casting and shear rates of 1–100 s-1 are frequently encountered in the process [8-10]. Lower 

viscosities result in well-packed green bodies that is necessary to produce high strength 
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structures [11]. We monitored the shear viscosity of 35 wt. % alumina suspensions in the 

presence of 1–4 wt. % superplasticizer at the shear rate of 1 s-1 (Figure 2.1a). The viscosity 

exhibited a sharp drop at 1.25 wt. % addition of the superplasticizer. This kind of dip in the 

viscosity of PCE-based copolymers was shown to arise from steric contribution of PEG 

side chains and ionic charge in the backbone of the copolymers [12, 13]. Also, at 35 vol. % 

alumina loading, the system with 1.25 wt. % superplasticizer displayed lowest shear 

thinning behavior manifested by the lowest slope in viscosity versus shear rate graph 

indicating better dispersion of alumina particles (Figure 2.1b) [14]. 

 

Figure  2.1 a) Viscosity of 35 vol. % alumina suspensions in the presence of 1–4 wt. % 
superplasticizer at shear rate of 1 s-1, b) dependence of viscosity to shear rate at 35 vol. % 
alumina suspensions with different amounts of superplasticizer 

Figure 2.2 shows the effect of alumina content on the rheological behavior of the 

suspensions. As expected, shear thinning behavior increased with alumina content since the 

coagulation of particles became more probable at higher levels of loading [15].  
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Figure  2.2 Viscosity of alumina suspensions as a function of shear rate in the presence of 
1.25 wt. % superplasticizer 

Krieger-Dougherty model is used to determine maximum particle loading in 

suspensions [16]: 

µ = µ0(1 −  ϕ ϕmax
� )−( µ 

ϕmax
)     (1) 

Where µ  is the viscosity of the suspension (Pa.s),  µ0is the viscosity of the media 

(Pa.s), ϕmax  is the maximum particle loading (vol. %) achievable for a system. Feeding 

particle loadings and viscosities to Krieger and Dougherty model at 1 s-1 shear rate 

provided a ϕmax value of 45.7 vol. % that agrees well with the ϕmax obtained from the 

results of extensional rheology (chapter 1). 

2. 3 Mechanical characterization and machinability of green bodies 

Traditionally, binders such as poly(vinyl alcohol), poly(ethylene imine), poly(vinyl 

pyrrolidone), and high molecular weight poly(ethylene glycol) were used to increase the 

mechanical strength of the green bodies that are slip cast from suspensions [17, 18]. These 

binders are usually employed at least more than 4 wt. % and although adding more binder 

contributes to the mechanical properties, it hinders the flowability of the slurry during 

casting [19]. Rheology modifiers such as poly(acrylic acid), poly(maleic acid), and Na-

carboxymethyl cellulose were utilized in the presence of binders to homogenize the slurries 

and impose better packing of particles. In these systems, total amount of additive can reach 

to 4–10 wt. % [20]. Even at these concentrations of the polymers, machinable green bodies 

were not reported. On the other hand, in gel casting process, a common method to produce 
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machinable green bodies, crosslinkable polymers (e.g., poly(acrylamide) and poly(ethylene 

glycol) dimethacrylate) are used to form a network to host ceramic particles [21]. In these 

systems, the polymer content is 10–15 wt. %. In all of these methods, there is a need for 

careful binder burnout procedure, which can be as slow as  1 °C/min, to prevent structural 

defects that may appear due to the presence of the polymers at aforementioned amounts 

[22, 23]. Here, the compression tests were performed on 30–40 vol. % alumina loaded 

samples with 1.25 wt. % superplasticizer without any binders. The packing of the green 

bodies were tracked with helium pycnometry to find their percentage theoretical density. 

As expected, the compressive strength and percentage theoretical density of green bodies 

increased with alumina loading (Figure 2.3). The percentage of theoretical density at 30 

vol. % loading was larger than 55 vol. % loaded gel cast samples that were previously 

reported [24, 25].  

 

Figure  2.3 Compressive strength and percentage of theoretical density of green bodies with 
different vol. % alumina loadings at 1.25 wt. % superplasticizer addition 

Although, it is desirable to have high strength green bodies, fifteen samples with 40 

vol. % alumina content could not withstand machining and failed during the process. 

Therefore, a concentration of 35 vol. % alumina (with 1.25 wt. % superplasticizer) was 

chosen for testing reliability of green body machining. We consistently get smooth surfaces 

without visible cracks (over 60 samples) as exemplified by the inset in Figure 2.4a and b. 

The largest inner diameter of 8.2 mm was attained with a wall thickness of ~1.25 mm 

indicating that the green body can go through 59 % volume reduction (inset in Fig. 2.4a) 

without any crack formation. Sintered solid cast bodies shrunk 16.2 ± 1.8 % at the outer 
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diameter and 17.5 ± 0.9 % at the inner diameter independent of the initial diameter of the 

drill bit. Figure 2.4b exemplifies a lathed green body before sintering; this terraced body 

had a smooth surface and did not experience any cracking during the process. Machined 

green bodies fabricated by solid casting were similar to those which were produced via gel 

casting, starch consolidation, and protein coagulation casting in terms of green body 

strength and reproducibility [26-28].  

 

Figure  2.4 Photograph of a) sintered alumina samples that were drilled with (from left to 
right)  1.1, 2, 4, 6, and 8.2 mm drill bits before sintering, b) a green body after lathing 

2.4 Conclusion 

Here, by the use of a single additive, a PCE-based superplasticizer, we demonstrated 

the machinability of solid cast green bodies. This superplasticizer provided sufficient 

mechanical strength such that green bodies could withstand machining operations with no 

visible cracks and flaws. Exclusion of binders from the green body eliminated the time-

consuming binder burnout step. We believe that the use of this superplasticizer can also be 

extended to other types of solid cast ceramics. 
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Chapter 3 Poly(carboxylate ether)-based superplasticizer achieves workability 

retention in calcium aluminate cement 

This chapter is written based on the article “Poly(carboxylate ether)-based 

superplasticizer achives workability retention in calcium aluminate cement”. Here, we 

report a modified superplasticizer that caters to the properties of Calcium aluminate cement 

(CAC) such as high rate of surface development and surface charge. While neat CAC was 

almost unworkable after 1 hour, with the addition of only 0.4 % of the optimized 

superplasticizer, 90 % fluidity retention was achieved. 

3.1 Introduction 

CAC is the cement of choice for high performance applications such as those 

requiring resistance to abrasion, corrosion, and temperature [1-3]. Due to its high early heat 

and strength gain, CAC has also become an attractive binder for cold environments and 

situations that necessitate rapid repairs (e.g., highways, bridge decks, and airport runways). 

In general, long term durability of cementitious mixtures requires low water/cement ratio 

(w/c). At low water contents, superplasticizers, which are polymers that can facilitate the 

dispersion of cement particles, are utilized to provide necessary workability. 

Superplasticizers adsorb onto the surface of the cement particles through their charged 

backbone and provide electrostatic repulsion [4, 5]. They release the entrapped water from 

flocculated structures and modify the viscosity of cement mixtures [6, 7]. Latest 

generations, poly(carboxylate ether)-based superplasticizers, (PCEs), have acrylate groups 

in the backbone and also contain side chains (i.e., poly(ethylene oxide)) that protrude from 

the cement surface into the pore solution to produce steric hindrance effect [8, 9]. These 

grafted polymers exhibit superior dispersing ability compared to other types of 

superplasticizers (e.g., melamine and naphthalene based polycondensates) and are efficient 

in the preparation of high performance concrete [5, 10, 11]. 

The formulations of PCEs have always targeted ordinary Portland cement (OPC) 

since it is the most frequently used binder in cement industry. However, these 

superplasticizers are incompatible with CAC due to i) the rapid hydration reaction of 

monocalcium aluminate as the principal active phase in this type of cement, and ii) layered 
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structure of hydration phases in CAC compared to amorphous calcium-silicate-hydrate (C-

S-H) in OPC [6, 12, 13]. The use of PCEs in CAC systems resulted in poor fluidity 

retention (~15 min) and intercalation/sequestration of PCEs into lamellar calcium aluminate 

hydrates [13, 14]. Due to the absence of CAC-optimized superplasticizer, CAC systems are 

utilized in their neat form and consequently lose their workability in a relatively short 

amount of time [15]. Therefore, for wider and more efficient use of CAC, there is a need 

for the design of superplasticizers that can accommodate the characteristic properties of 

CAC. 

To incorporate into the acrylic acid (AA) backbone of PCEs, we have chosen two co-

monomers, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and vinylphosphonic acid 

(VPA), with different i) ionic character and ii) ability of association with multivalent 

cations. AMPS exhibits strong ionic character [16] whereas VPA demonstrates strong 

complexation ability with divalent cations [17, 18]. To comprehend the criteria of 

adsorption and workability retention, we cross-compared the performance of 

superplasticizers that contain varying amounts of AMPS and VPA in both OPC and CAC 

systems. The effect of both co-monomers on electrokinetic behavior of cement suspensions 

and rheological response of cement pastes were explored to design a dedicated 

superplasticizer for CAC. The fast reaction kinetics of hydrating CAC can be 

accommodated by controlled adsorption of VPA-modified PCEs (VPA-PCEs) that leads to 

the workability retention of the cement paste for longer periods of time (> 1 hour). 

This type of PCEs is the first set of superplasticizers to enable fluidity retention of CAC 

systems.  

Eight PCEs with increasing amounts of modifying co-monomer in the backbone, 

referred to as X5, X10, X20, and X30 (X: VPA, AMPS) were prepared [19]. Figure 3.1a 

and b shows H1-NMR of PCEs.   
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Figure  3.1 Representative H1-NMR of PCEs: a) VPA20 and b) AMPS30 

Molar ratios of building blocks and characteristic properties of PCEs were shown in Table 

3.1. Charge density and Ca-complexion ability of superplasticizers were calculated from 

direct addition of NaOH and Ca(OH)2 to polymer solution by titration, respectively.  
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Table 3.1 Molar composition and characteristic properties of PCEs 

 
Molar 

feed ratio 

Sample 

acronym 
VPA
AA

 
PEG

AA + VPA
 

mmol anionic site
1 mg solid

 
mmol bound Ca

1 mg solid
 

VPA/AA/PEG 

5/45/1 VPA 5 0.8/10 1.1/100 4.1 × 10-3 3.7 × 10-3 

10/40/1 VPA 10 1.6/10 0.9/100 4.2 × 10-3 3.9 × 10-3 

20/30/1 VPA 20 3.4/10 1/100 4.4 × 10-3 4.0 × 10-3 

30/20/1 VPA 30 5.6/10 0.7/100 5.2 × 10-3 4.2 × 10-3 

 
Molar 

feed ratio 

Sample 

acronym 
AMPS

AA
 

PEG
AA + AMPS

   

AMPS/AA/PEG 

5/45/1 AMPS 5 3.1/10 0.6/100 4.6 × 10-3 3.6 × 10-3 

10/40/1 AMPS 10 4.2/10 0.5/100 5.6 × 10-3 2.9 × 10-3 

20/30/1 AMPS 20 7.5/10 0.5/100 5.8 × 10-3 2.1 × 10-3 

30/20/1 AMPS 30 17/10 0.7/100 6.2 × 10-3 1.4 × 10-3 

 

All of the copolymers contain PEG-1000 side chains with a density of less than 1.1 

%. The general chemical structure of superplasticizers was shown in Figure 3.2. 

 

Figure  3.2 General chemical structure of superplasticizers 

3.1 Adsorption behavior and electro-kinetic study 

The dispersing ability of PCEs depends on the adsorption of the copolymer onto the 

cement particles. Adsorption of PCEs typically follows the Langmuir monolayer model 
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while multi-layer adsorption is plausible at high dosages of PCEs [20-22]. We first tracked 

the adsorption of modified-PCEs through measuring the amount of unadsorbed copolymer 

that remains in the solution (depletion method) [10]. Once adsorption starts, the amount of 

adsorbed PCEs in AMPS-PCEs/OPC, VPA-PCEs/OPC, and VPA-PCEs/CAC systems 

increases linearly with the amount of added polymer at low dosages (Figure 3.3). The 

adsorption, then, stabilizes to a plateau value (i.e., adsorption saturation) confirming the 

Langmuir monolayer adsorption behavior of PCEs in these systems.  This plateau indicates 

complete coverage of cement particles by PCEs while the slope of the linear range is 

related to the affinity of PCEs to the cement particles [14]. VPA-PCEs exhibited lower 

adsorption tendency compared to AMPS-PCEs in both OPC and CAC systems; whereas 

utilization of anionic co-monomer (AMPS-PCEs) caused depletion of the PCEs from CAC 

suspensions. To elucidate the effect of modifying block on induced charge of the cement 

particles upon adsorption of PCEs, zeta potentials were evaluated at differing amounts of 

polymer in the cement suspension.  In general, interactions of PCEs and cement particles 

comprise i) the electrostatic interactions and ii) formation of complexes between the Ca2+ 

and the ionic backbone of PCEs [21, 23]. Unlike direct electrostatic adsorption of PCEs, 

adsorption through Ca2+ bridging has little influence on the zeta potential of cement 

particles [22]. AMPS co-monomer adsorbs onto the surface of the cement particles through 

strong conjugation in its sulfonate group (SO3‒) [24]. Compared to carboxylic group of AA, 

which is a weak acid with strong complexation ability, sulfonic group is a stronger acid and 

mainly interacts with the surface of the cement particles via electrostatic interactions [25]. 

Lower basicity of the oxyanion in SO3‒ compared to that of acrylate (COO‒ ) reduces the 

charge transfer to counterions and results in ionic character of its bonding with counterions 

[24]. On the other hand, phosphonate groups (PO3
2‒) present more basic oxyanions than 

COO‒ and its bi-functionality, compared to mono-negative charge of COO‒, gives rise to 

strong complexation with multivalent cations [17, 18]. Therefore, substitution of AA with 

AMPS co-monomer encourages the shift of surface potentials to higher negative values 

whereas VPA substitution is expected to impart a slight change on the surface charge of the 

particles.  
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Figure  3.3 Adsorption behavior of (a) AMPS-PCEs and (b) VPA-PCEs on the surface of 
cement particles as a function of polymer dosage (dotted lines show 100 % adsorption). 
Zeta potential of cement suspensions in the presence of (c) AMPS-PCEs and (d) VPA-
PCEs 

In hydrating OPC, the presence of negatively charged silicate and positively charged 

aluminate phases leads to the formation of heterogeneous charge distribution on the surface 

of particles [26]. Compared to OPC, CAC, whose main component is monocalcium 

aluminate, offers higher positive zeta potential and thus, more anchorage points for direct 

adsorption due to the fast reaction of the aluminate phase at early stages of hydration [3]. 

Upon adsorption, zeta potential of suspensions decreased from +4 mV in neat OPC and 

from +30 mV in neat CAC (Figure 3.3c and d) confirming that negatively charged PCEs 

progressively consume positive charges on the surface of the particles. PCEs, once 

adsorbed, bring more negative charges to the surface than needed to compensate all of the 

positive ones. Therefore, increasing amount of adsorbed PCEs eventually leads to an 

inversion of the zeta potential (overcharging effect) [27]. In OPC systems, the decrease in 

37 
 



zeta potential ceases at 6‒8 mg/g of PCEs that is consistent with the dosages where the 

particles are fully covered (Figure 3.3a and b). After full coverage of OPC particles with 

AMPS-PCEs, overcharging effect is clearly observed where zeta potential lowers below -

20 mV. However, in CAC, surface of particles offers more positively charged areas; thus, it 

is less susceptible to overcharging effect. As a result, inversion of zeta potential appears at 

higher dosages and zeta potential cannot go below -15 ± 4 mV in CAC systems.   

To further understand the role of surface charge density on instability of CAC 

suspensions, surface area of the neat cement in the first 5 minutes of hydration (during 

mixing process) was determined (Figure 3.4).  

 

Figure  3.4 N2 adsorption-desorption isotherm of a) OPC and b) CAC with hydration time 

In early stages of CAC hydration, unequal solubility of Ca2+ and aluminate ions leads 

to roughening of the surface and enrichment of Al2O3. This incongruent solubility of ions 

increases the surface area and charge density of the hydrating particles, whereby double 

hydroxides of cationic [Ca2Al(OH)6]+ are formed as the hydrating product [28, 29]. In 

agreement with the results of Mangabhai [29], we have also observed high rate of surface 

development in CAC suspensions (Table 3.2) that is accompanied by the introduction of 

high positive potentials to the surface of particles (+30 mV). Therefore, high rate of surface 

development, surface charge density of hydrating particles, and affinity of adsorption result 

in depletion of anionic PCEs (AMPS-PCEs) from CAC suspensions.  
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Table 3.2 BET surface area of hydrating cement 

 BET surface area (m2/g) 

 1 min hydration 3 min hydration 5 min hydration 

Neat OPC 1.5 1.8 2.1 

Neat CAC 1.8 2.1 2.3 

 

In VPA-PCEs/CAC systems, the highest amount of phosphonate substitution (VPA30) 

resulted in i) the least overcharging effect (i.e., no inversion in the sign of zeta potential) 

and ii) the highest Ca2+ complexation as demonstrated by Ca2+ titration and conductivity 

measurements (Figure 3.5). In agreement with the less ionic character of phosphonate 

group compared to that of carboxylate group, these observations illustrate that Ca2+ 

mediated adsorption is the dominant process for VPA-PCEs/CAC systems. Therefore, 

through the utilization of phosphonic groups, adsorption affinity of PCEs to the surface of 

CAC particles is lowered and the change of surface potential is restrained upon adsorption.  
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Figure  3.5 Ca-titration (a and b) and conductivity measurements (c and d) of PCEs 

3.2. Flow behavior and workability retention of cement pastes 

Flow behavior of cement pastes depends on the physical and chemical interactions 

among its components: cement particles, admixtures (e.g., superplasticizers and stabilizing 

agents), and water [12]. Generally, the adsorption of superplasticizers on cement particles 

deflocculates the aggregate structure of the fresh paste and releases the restrained water and 

therefore, gives rise to an improved fluidity of cement mixtures [30]. To assess the 

compatibility of superplasticizers and cement, we carried out a mini slump test as a 

function of dosage of PCEs [31]. In this test, a cone of a height of 60 mm, and bottom and 

top diameter of 40 mm and 20 mm, respectively, is filled with cement paste and spread 

diameter is recorded after pulling out the cone. Typically, the flow diameter of cement 

mixtures increases with low concentration of the superplasticizers, and then, reaches a 

plateau at a certain dosage (i.e., critical dosage). Beyond this critical dosage, fluidity of the 

mixture does not depend on the amount of superplasticizer since the dispersion state of 
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particles does not change with further addition of the superplasticizer [21]. On the other 

hand, incomplete surface coverage of particles below a “minimum dosage” might decrease 

fluidity of the mixtures due to inhomogeneity in charge distribution and broad range of 

surface potentials [31]. Critical and minimum dosages were tracked to understand the effect 

of ionicity of the polymers on the fluidity of cement pastes. In AMPS-PCEs/OPC systems, 

as the content of AMPS is increased in the backbone, the minimum dosage shifted from 0.6 

% by weight of cement (hereafter wt. %) in AMPS5 to 0.1 wt. % in AMPS30, and the 

critical dosage changed from 0.8 wt. % in AMPS5 to 0.4 wt. % in AMPS30 (Figure 3.6).  

 

Figure  3.6 Fluidity behavior of (a) OPC and (b) CAC pastes in the presence of AMPS-
PCEs (dash-line) and VPA-PCEs (solid line), (∇): X5, (□): X10, (○): X20, and (∆): X30. 
Solid star shows flow diameter of neat cement pastes. Inset of figure 2b shows flow 
diameter of CAC pastes in the presence of 0.2 % VPA-PCEs as a function of VPA content 
in the backbone of copolymer 

Moreover, minimum dosages overlap with the dosages that surface potentials of 

particles enter into the electrostatically stable region (< -20 mV, Figure 3.3c) and particles 

experience homogeneous charge distribution (Figure 3.7).  
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Figure  3.7 Zeta potential distribution of OPC-AMPS30 mixtures with PCEs content of a) 0 
wt. %, b) 0.05 wt. %, c) 0.1 wt. %, d) 0.2 wt. %, and CAC-VPA30 mixtures with PCEs 
content of e) 0 wt. %, f) 0.05 wt. %, g) 0.2 wt. %, and h) 0.4 wt. % 
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Concurrently, critical dosages coincide with the beginning of the plateau region 

where surface of particles are fully covered by PCEs (Figure 3.3a and c). With rise of 

AMPS content of PCEs, the flow diameter of mixtures at critical dosages has increased to 

120‒150 mm compared to flow diameter of 80 ± 3 mm in neat OPC paste. Observed 

correlation between fluidity of OPC pastes and magnitude of zeta potentials in AMPS-

PCEs/OPC systems indicates that electrostatic repulsion capacity of the PCEs plays a key 

role in dispersability of these anionic superplasticizers [32, 33]. In VPA-PCEs/OPC 

systems, due to reduced affinity of adsorption and lower ionicity of VPA compared to 

AMPS, adsorption of VPA-PCEs cannot impart enough charge onto OPC particles (Figure 

3.3d). Lower fluidity of VPA-PCEs/OPC systems compared to that of AMPS-PCEs/OPC 

confirms that PCEs with higher anionic character are more favored for OPC paste for 

enhanced fluidity and compatibility. 

In AMPS-PCEs/CAC systems, the flow diameter of cement paste is decreased at all 

dosages (Figure 3.3b) such that increasing ionicity of the AMPS-PCEs progressively 

lowers the fluidity of the pastes. As shown in Figure 3.8, destabilization and quick setting 

of CAC paste underscores the incompatibility of CAC and a PCE-based copolymer with 

high anionic character.  

 

Figure  3.8 Top: quick setting of CAC paste in the presence of 0.5 % AMPS30 and bottom: 
fluidity of CAC paste in the presence of 0.5 % VPA30 

This incompatibility originates from high rate of surface development (Table 3.2) and 

high surface charge density of CAC particles (Figure 3.3c) that rapidly deplete AMPS-
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PCEs from the pore solution (Figure 3.3a). It is important to note that zeta potentials of 

larger than 20 mV (or smaller than -20 mV) are typically preferred for stable suspensions 

[34, 35]. Hence, AMPS-PCEs whose dispersing ability mostly relies on electrostatic 

interactions cannot form stable CAC suspensions even after full coverage of the particles. 

On the other hand, reduction of ionicity of PCEs by incorporation of VPA into the 

backbone progressively improves the fluidity of CAC pastes (dotted line in Figure 3.6b) 

and led to observation of a critical dosage at 0.2 wt. % of superplasticizer in VPA30. 

Enhanced compatibility of CAC with VPA30 (Figure 3) underlines that adsorption of PCEs 

through electrostatic interactions are detrimental for fluidity of CAC pastes. On the other 

hand, utilization of co-monomers with strong complexation ability facilitates the dispersion 

of CAC particles. In these systems, the fluidity behavior of the paste does not follow the 

zeta potential but rather directly correlates with the amount of adsorbed superplasticizer. 

Therefore, steric repulsion dominates the deflocculation of the dispersion [36-38]. 

The dispersion state of CAC particles in the presence of VPA30 and AMPS30 is also 

tracked by measuring the average particle size (dave) and particle size distribution (PDI) of 

CAC suspensions (Figure 3.9).  
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Figure  3.9 Size distribution of cement particles with and without 0.5 wt. % PCEs: a) neat 
OPC, (b) OPC-AMPS30, c) OPC-VPA30, d) neat CAC, e) CAC-AMPS30, and f) CAC-
VPA30 

In the presence of VPA30, davg and PDI decreased slightly illustrating colloidal 

stability of the system whereas the size of flocs increased from 3.9 ± 0.5 μm in neat CAC 

suspension to 6.3 ± 1.3 μm in the presence of AMPS30 (Figure 3.10, Table 3.3).  

45 
 



 

Figure  3.10 Effects of PCEs on the average particle size of OPC and CAC suspension 

This increase in floc size demonstrates the formation of assembled structures (Figure 

3.8) and hence, higher amount of entrapped water in flocculated particles [21]. 

Table 3.3 Polydispersity index of suspensions with and without 0.5 wt. % PCEs 

 OPC system CAC system 

Neat cement 0.80±0.1 0.53±0.02 

AMPS-30 0.33±0.05 0.78±0.1 

VPA-30 0.45±0.1 0.58±0.05 

 

To quantitatively evaluate the effect of modifying co-monomers and thus, dispersion 

state of particles on the fluidity of mixtures, rheological measurements were carried out on 

cement pastes. By fitting the experimental points of descending part of shear rate-shear 

stress curve (Figure 3.11) with Bingham equation (τ = τ0 + ηγ̇), two parameters are tracked; 

i) yield stress (τ0, Pa) as a measure of the shear stress required to initiate flow and ii) plastic 

viscosity (η, Pa.s) as a measure of material resistance to flow after the initiation of the flow 

[39]. While yield stress is proportional to the particle‒particle interactions in cement 

mixtures; plastic viscosity relates to the size of the flocs and varies with particle size 

distribution in cement particles [40, 41].  
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Figure  3.11 Hysteresis cycles with illustration of yield stress and plastic viscosity for 
cement pastes with admixtures 

Compared to neat CAC paste, VPA30 reduced the yield stress more than 35 % (Table 

3.4 and 5). Introduction of AMPS to PCEs progressively reduces the yield stress and plastic 

viscosity of OPC pastes such that more than 80 % reduction of yield stress was measured in 

the saturation dosage of AMPS30. This pronounced effect of anionic PCEs is fully linked 

with higher dispersing ability of these PCEs and narrow size distribution of flocs in OPC 

paste. However, this increasing ionicity has an adverse effect on CAC suspensions such 

that rheological parameters of CAC pastes could not be assessed as all of the AMPS-

PCEs/CAC pastes showed severe coagulation upon addition of these anionic 

superplasticizers.  
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Table 3.4 Yield stress and plastic viscosity for OPC pastes and admixture dosage (n.d.: 

not determined due to severe flocculation) 

 
Dosage of PCEs (% bwoc) Yield stress (Pa) Plastic viscosity (Pa.s) 

Pure OPC  14.4 ±1 0.5 

AMPS10 

0.2 10.1±0.5 0.58 

0.4 n.d. n.d. 

0.6 n.d. n.d. 

AMPS20 

0.2 7.7±0.4 0.90 

0.4 5.9±0.4 0.80 

0.6 5±0.2 0.67 

AMPS30 

0.2 14.2±1 0.49 

0.4 2.5±0.6 0.30 

0.6 2.1±0.5 0.35 

VPA10 

0.1 13±0.5 0.47 

0.2 14±0.7 0.58 

0.4 n.d. n.d. 

VPA20 

0.1 13±0.3 0.41 

0.2 12±0.2 0.40 

0.4 11±0.2 0.39 

VPA30 

0.1 13.5±0.3 0.41 

0.2 12±0.3 0.41 

0.4 10.4±0.2 0.39 
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Table 3.5 Yield stress and plastic viscosity for CAC pastes and admixture dosage (n.d.: not 
determined) 

 
Dosage of PCEs (% bwoc) Yield stress (Pa) Plastic viscosity (Pa.s) 

Pure CAC  7.8±0.3 0.30 

VPA10 

0.1 9.5±0.4 0.45 

0.2 11.1±0.5 0.41 

0.4 n.d. n.d. 

VPA20 

0.1 7.5±0.3 0.36 

0.2 8.9±0.4 0.38 

0.4 14±0.5 0.40 

VPA30 

0.1 6.5±0.3 0.44 

0.2 5±0.2 0.46 

0.4 4.6±0.2 0.45 

 

Increase of anionicity of PCEs has been shown to enhance the adsorption rate of 

superplasticizers onto OPC particles and hence, initial workability of the system [42]. 

However, retaining this induced fluidity depends on the gradual adsorption of PCEs from 

the pore solution [43, 44]. OPC, which has lower surface charge compared to CAC, can 

sustain gradual adsorption of the copolymer. On the other hand, anionic copolymers 

(AMPS-PCEs) got immediately adsorbed onto the CAC particles due to high surface 

development and charge in CAC systems. This depletion of AMPS-PCEs from the pore 

solution reduces the dispersing ability of this set of superplasticizers [13]. Therefore, 

achieving high initial fluidity and workability retention in CAC necessitates a controlled 

adsorption onto the particles. To evaluate the time dependent workability (fluidity retention 

behavior) of cement pastes, superplasticizers with the highest dispersing ability in each 

system were chosen and fluidity of the system was measured with varying dosages of the 

PCEs over a period of 60 min (Figure 3.12).  
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Figure  3.12 Time dependent fluidity of a) OPC and b) CAC pastes in the presence of PCEs 
with highest dispersing ability 

After addition of VPA30 to CAC and OPC pastes, fluidity retention in both systems 

was clearly improved. In VPA30-CAC system that contains 0.4 wt. % superplasticizer, 

only a 9 % decrease in flow diameter was observed after 60 min. In the absence of PCEs, 

both CAC and OPC showed ~ 50 % reduction in flowability after 60 min while 

approaching to the line of “no flow” at a diameter of 60 mm. 

3.3 Conclusion 

In widely used OPC systems, high affinity between the superplasticizer and the 

cement particles provides fluidity and stable dispersions. However, in CAC systems, 

gradual adsorption is necessary in order to avoid depletion of the superplasticizer from the 

suspension and accommodate the high surface charge and increasing surface area of the 

hydrating CAC particles. We utilized a co-monomer with less ionic character but with 

strong complexation ability, VPA, to offer controlled adsorption of PCEs and for the first 

time in literature, demonstrated workability retention of CAC pastes compared to the neat 

CAC systems. We believe this result will potentially open up venues for wider and more 

efficient use of calcium aluminate cement. 
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Chapter 4 Modified poly(carboxylate ether)-based superplasticizer for enhanced 

flowability of calcined clay-limestone-gypsum blended Portland cement 

This chapter is written based on the article “Modified poly(carboxylate ether)-based 

superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended 

Portland cement”. Here, we report the performance of a series of a modified 

poly(carboxylate ether)-based superplasticizers (PCEs) in a ternary ordinary Portland 

cement-calcined clay-limestone blend. The optimized polymer does not intercalate into the 

layered structure of calcined clay and preserves its steric size in the presence of high 

concentration of sulfate ions. 

4.1 Introduction 

Ordinary Portland cement (OPC) is the most produced human-made material 

and its production is responsible for approximately 8 % of total anthropogenic 

CO2 emissions [1]. Materials with lower emissions, such as pozzolans, clays, fly ash, blast-

furnace slag, and silica fume, are suggested to replace OPC [2-6]. However, this 

replacement is often associated with reduction of strength at early ages. Recently, 

introduction of limestone to these blends have been reported to remedy this problem 

through improving the reactivity of the system [7, 8]. Scrivener et al. [9, 10] and Habert et 

al. [11] have shown that the substitution of OPC, up to 50 %, with a combination of 

calcined clay, limestone, and gypsum offers an energy/cost-effective solution along with 

mechanical properties that are comparable to plain cement.  

The utilization of supplementary materials has significant impact on fluidity of 

blended cement and thereby, an increase in water to binder ratio (w/b) is required to 

maintain necessary fluidity of these mixtures [12]. Similar to plain cement, high range 

water reducer agents, known as superplasticizers, are added to these blends to limit the 

amount of mixing water while retaining the workability at low w/b ratios. Latest generation 

of superplasticizers, PCEs, which exhibit superior dispersing ability compared to other 

types of superplasticizers (e.g., sulfonated naphthalene formaldehyde and sulfonated 

melamine formaldehyde) have acrylate groups in the backbone and contain polyethylene 

glycol (PEG) side chains that protrude from the cement surface into the pore solution [13-
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15]. Despite the superior performance of PCEs in forming workable mixtures, their 

interaction with clay minerals and sulfate ions (SO4
2‒) still leads to a loss in fluidity or a 

higher water demand to achieve the same levels of workability of plain cement [15-17]. 

Based on the specific properties of clay minerals (e.g., layered structure and swelling 

ability), different type of clays can potentially increase the dosage of PCEs due to 

consumption of superplasticizers through intercalation. Therefore, highly-substituted 

mixtures require advanced superplasticizers that can address the high surface area and 

layered structure of the incorporated clay minerals as well as high concentration of sulfate 

ions in the pore solution. 

4.2 Characterization of superplasticizers and materials proportioning 

All copolymers, hereafter AMPS-PCEs, were synthesized by aqueous free radical 

polymerization of acrylic acid (AA), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), 

and esterified-PEG-1000 [18]. Chemical structure of AMPS-PCEs was shown in Figure 

4.1.  

 

Figure  4.1 Representative C13-NMR of AMPS-PCEs 

Characteristic properties of the copolymers (quantitative H1-NMR) were listed in 

Table 4.1. Charge density and Ca-complexion ability of AMPS-PCEs were calculated from 

direct addition of NaOH and Ca(OH)2 to polymer solution by titration, respectively. 

Hydrodynamic radius of copolymers was measured from solution of 1 wt. % AMPS-PCEs 

in synthetic pore solution and intrinsic viscosity was evaluated by dilute solution 

viscometry (Cannon glass capillary viscometer 1C) at 22 °C.  
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Table 4.1 Molar composition and characteristic properties of studied AMPS-PCEs 

 AMPS-PCE1 AMPS-PCE2 AMPS-PCE3 

pH of synthesis 6 8 13 

AMPS/AA 1.05/1 0.95/1 1/1 

PEG/AMPS+AA 0.5/100 0.7/100 0.6/100 

mmol anionic sites/mg solid 3.6 × 10-3 3.6 × 10-3 3.6 × 10-3 

mmol bound Ca/mg solid 1.8 × 10-3 1.9 × 10-3 1.9 × 10-3 

rh (nm) 12±1 10±0.5 14±1 

Intrinsic viscosity (dl/g) 4.3 3.1 5.4 

Mw (g/mol) 336,200 251,100 590,000 

PDI (Mw/Mn) 2.89 2.72 3.63 

 

Binders with different amounts of calcined clay, limestone, and gypsum were mixed 

with OPC to formulate binders of varying compositions (Table 4.2). Binder with 45 wt. % 

quartz substitutions was also prepared as control sample without addition of 

superplasticizer. 

Table 4.2 Composition and nomenclature of the binders that are utilized in this work 

Name of 

binder 
OPC % Calcined clay % Limestone % Gypsum % Quartz % 

OPC 100 0 0 0 0 

C45 55 45 0 0 0 

L5 55 40 5 0 0 

L10 55 35 10 0 0 

L15 55 30 15 0 0 

G5 50 30 15 5 0 

G3 55 28 14 3 0 

G1.5 55 29 14.5 1.5 0 

Q45 55 0 0 0 45 
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4.3 Fluidizing ability of AMPS-PCEs in plain OPC system 

To optimize the performance of AMPS-PCEs in blended cement, we, first, assessed 

the fluidity behavior of OPC, as the main binder, in the presence of superplasticizers with 

varying chemical compositions and structures. Figure 4.2a shows the slump flow diameter 

of OPC pastes (w/c of 0.45) as a function of AMPS to AA ratio (AMPS/AA) in AMPS-

PCEs. Increasing content of AMPS co-monomer improved the fluidity of the pastes up to 

AMPS/AA of 1 and beyond this point, the flow decreased towards the lowest slump 

diameter at AMPS/AA of 2.5. The improved fluidity also agrees well with the results of 

Liao et al. [19] that demonstrated the enhanced fluidity of OPC pastes through addition of 

linear copolymers of methacrylic acid and AMPS. To provide a relationship between 

density of PEG side chains (i.e., PEG/AA+AMPS mol/mol) and dispersing ability of 

copolymers, the performance of AMPS-PCEs with AA/AMPS of 1 but with varying side 

chain density was monitored in plain OPC pastes (Figure 4.2b). In these systems, side chain 

density of ≈  0.7 % provided the highest fluidity as indicated by the highest spread 

diameters at all superplasticizer dosages. Therefore, AA/AMPS of 1 and side chain density 

of ≈  0.7 % was chosen for further analysis. Superplasticizers with this chemical 

composition and structure but different molecular weight were then tested to fluidize the 

OPC and subsequently the blended cement pastes. 

 

Figure  4.2 Effect of a) AMPS content (density of side chains was kept at ≈ 0.7 %, 
PCEs/cement = 0.1 wt. %) and b) density of grafted chains (AA/AMPS was kept at ≈1) on 
dispersing ability of AMPS-PCEs in OPC pastes 
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As shown in Figure 4.3a, utilization of AMPS-PCE2, which possesses the lowest 

molecular weight and hydrodynamic radius (Table 4.2), gave rise to better fluidity 

compared to AMPS-PCE1 and AMPS-PCE3 systems. The difference between dispersing 

ability of AMPS-PCE2 and other copolymers also became more pronounced at lower water 

content (w/c = 0.4). To characterize the effect of sulfate ions on performance of 

copolymers, slump flow test was also conducted at a high concentration of sulfate ions and 

low AMPS-PCEs/c of 0.1 wt. %. As shown in Figure 4.3b, spread diameter of OPC pastes 

decreased after addition of 0.2 mol/l sodium sulfate; however, among all polymers, AMPS-

PCE2 induced the highest average flowability—only ~ 8% reduction.  

 

Figure  4.3 a) effect of molecular weight and amount of the copolymer on spread diameter 
of cement paste at different w/c, and b) slump flow diameter of OPC pastes with different 
PCEs at low and high concentration of sulfate ions (PCEs/c = 0.1 wt. %, w/c = 0.45) 

4.4 Electro-kinetic study and adsorption behavior of AMPS-PCEs 

In order to evaluate the dispersing ability of superplasticizers, variations in surface 

potential of particles were first measured in synthetic pore solution (Figure 4.4a‒c). Upon 

adsorption of the superplasticizer, the zeta potentials of OPC, calcined clay, and limestone 

particles decreased from -11, -22, and -4.5 mV, respectively, reaching higher absolute 

values and leveling off at ~ 4‒6 mg/g polymer addition. This gradual decrease in zeta 

potentials confirms that AMPS-PCEs bring more negative charge to the surface of particles 

than that is needed to compensate for the surface charges. AMPS-PCE2 offers the highest 

electrostatic interactions with binders that is evidenced by the most negative value of zeta 
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potential at the plateau region of the curves. This result is also in agreement with the higher 

charge density of AMPS-PCE2 compared to that of AMPS-PCE1 and AMPS-PCE3 (Table 

4.1). Due to superior electro-kinetic properties of AMPS-PCE2, this copolymer performed 

better compared to other copolymers in inducing fluidity at i) low w/c and ii) in the 

presence of sulfate ions. Therefore, we have singled out this copolymer for further testing. 

 

 

Figure  4.4 Zeta potential of a) OPC, b) clay, and c) limestone particles as a function of 
added AMPS-PCEs 

Adsorption isotherm was performed as a function of superplasticizer content in the 

synthetic pore solution. As shown in Figure 4.5, the adsorption of the AMPS-PCE2 onto 

cement, calcined clay, and limestone particles follows a typical Langmuir monolayer 

adsorption model [20]; the amount of adsorption increases linearly at low dosages and then 

stabilizes near a plateau (i.e., adsorption saturation). While adsorption saturation indicates 

complete coverage of binder particles with superplasticizer, the slope of the linear range is 
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related to the affinity of superplasticizer to the particles [21]. This type of adsorption is 

consistent with previous reports on adsorption behavior of PCEs onto cement, limestone, 

and clay particles [22-26]. Considering the slope of the linear range of adsorption 

isotherms, AMPS-PCE2 exhibited the highest tendency of adsorption to limestone whereas 

a controlled adsorption was observed in OPC system. This higher tendency is also 

supported by a sudden drop in surface potential of limestone particles while that of OPC 

particles displayed a gradual decrease upon adsorption of the copolymer (Figure 4.4a and 

b). In addition, adsorption curves start to level off at 4‒6 mg/g AMPS-PCEs/binder that is 

consistent with the dosages where zeta potential exhibits a plateau region, confirming the 

full coverage of particles by the copolymer molecules. 

 

Figure  4.5 Adsorption behavior of AMPS-PCE2 on the surface of different particles in 
synthetic pore solution (dotted-line shows 100 % adsorption) 

When cement grains are dispersed in aqueous medium, formation of different hydrate 

phases leads to the development of heterogeneous surface structure and thus, heterogeneous 

charge distribution on cement grains—silicate and aluminate hydrates exhibit negative and 

positive surface charge, respectively. In general, the adsorption of PCEs in cementitious 

systems comprises i) the direct electrostatic adsorption to positively charged phases and 

ii)  indirect adsorption to negatively charged phases through bridging with Ca2+ in the pore 

solution (i.e., complexation) [27-29]. Formation of complexes between PCEs and Ca2+ is 

mainly influenced by the type of functional group in the backbone of the copolymer. 

Acrylic acid monomer has carboxylic group (COOH) in its structure, which is a weak acid 

with strong complexation ability. On the other hand, AMPS co-monomer contains sulfonic 
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group (SO3H) as the interaction site, which is a strong acid, and mainly interacts with the 

particles through electrostatic forces [30, 31]. The strong conjugation of SO3
‒ in this co-

monomer lowers the basicity of the oxyanion and charge transfer to the counter ions. This 

lower basicity results in ionic character of the bonding and reduces the complexation ability 

of sulfonate compared to carboxylate group [32]. In order to comprehend the criteria of 

adsorption as well as copolymer-particle interaction, variations in zeta potential of particles 

were tracked as a function of AMPS-PCE2 dosage in water. As shown in Figure 4.6, OPC 

and limestone offer zeta potential values of +2 and +15 mV, respectively with notable 

change in surface potential upon the adsorption of the copolymer. On the other hand, 

calcined clay particles that exhibit zeta potential of -21 mV hardly interact with AMPS-

PCE2 since electrostatic interaction does not favor the adsorption of the copolymer. Hence, 

it can be concluded that high amount of adsorption of the copolymer by OPC and limestone 

particles in the pore solution (Figure 4.5) is due to available sites for both direct adsorption 

and complexation, while interaction of AMPS-PCEs with clay particles mostly relies on the 

presence of multivalent cations (e.g., Ca2+) in the medium to complex PCEs onto the 

surface of clay particles (Figure 6 compared to Figure 4b). 

 

Figure  4.6 Zeta potential of binders as a function of AMPS-PCE2 in water 

4.5 Fluidity behavior of blended cement 

To assess the dispersing ability of AMPS-PCE2 in blended cement, mini slump test 

was carried out on pastes with various amounts of binders as a function of dosage of the 

copolymer. As shown in Figure 4.7a, incorporation of 45 wt. % calcined clay particles 
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(C45) to OPC requires addition of a “minimum dosage” of 0.3 wt. % AMPS-PCE2. 

Appearance of this minimum dosage is due to the increase in the specific surface area of 

blended cement compared to plain OPC [33]. Beyond the minimum dosage, the slump flow 

diameter increases towards the maximum fluidity at 1 wt. % while further addition of the 

superplasticizer slightly reduces the fluidity. In agreement with saturation dosage of 

components (Figure 4.5), this reduction is attributed to the excess amount of PCEs that can 

cause bridging flocculation [34]. Upon addition of limestone to blends, not only the 

minimum dosage raised to 0.5 wt. %, but also the overall fluidity was reduced with 

increasing content of limestone (L5, L10, and L15 in Figure 4.7a). Since limestone exhibits 

highest affinity of adsorption and also highest saturation dosage (Figure 4.5), the 

introduction of limestone into the binder mixtures results in consumption of the 

superplasticizer in the pore solution and thus, lower fluidity is expected. On the other hand, 

inclusion of 1.5 and 3 wt. % gypsum (G1.5 and G3 in Figure 4.7b) improved the initial 

slump flow diameter of the pastes—G1.5 > G3> L15. Similar increase in initial fluidity 

with the addition of gypsum was also reported by Okamura et al. [35] and attributed to 

depressed hydration of aluminate-containing phases. 

To evaluate time dependent workability (fluidity retention) of pastes, we utilized 1 

wt. % AMPS-PCE2 and fluidity retention tests were carried out over a period of 60 min. As 

shown in Figure 4.7c, no significant reduction was observed in slump diameter of mixtures 

containing calcined clay and limestone (C45, L5, L10, and L15) up to 60 min. On the other 

hand, addition of gypsum changed the slump retention behavior of pastes (G1.5 and G3)—

higher percentage of gypsum led to higher slump loss over time. In order to understand the 

effect of gypsum on reaction kinetics, isothermal calorimetry was performed on OPC, 

G1.5, and G5 (Figure 4.7d, normalized with respect to the content of cement). In general, 

heat evolution in hydrating OPC comprises 4 stages; i) dissolution, ii) induction, iii) 

acceleration, and iv) deceleration periods [2, 36]. As seen in Figure 4.7d, the addition of 1 

wt. % AMPS-PCE2 prolonged the induction period for all studied mixtures. This prolonged 

induction period can be attributed to the hindering effect of adsorbed copolymers on 

dissolution of silicate phases (i.e., retardation effect) [23]. However, this effect can be 

minimized in the case of blends with calcined clay-limestone-gypsum because the reaction 

takes place earlier. The reaction on the aluminates seems to be little influenced by the 
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addition of polymers but mainly controlled by the presence of gypsum (G5+PCEs 

compared to G1.5+PCEs in Figure 4.7d). It is then very likely that higher rate of slump 

loss, when gypsum is incorporated to the blends, is attributed to i) accelerated rate of 

hydration—increasing the cohesiveness of the blended cement, and ii) formation of 

sulfoaluminoferrite hydrates (e.g., ettringite) that preferentially adsorb PCEs and reduce the 

available superplasticizer in the pore solution [37]. 

 

 

Figure  4.7 Effect of a) limestone and b) gypsum on flowability of blends with increasing 
AMPS-PCE2 content, c) effect of time on fluidity of blends containing 1 wt. % AMPS-
PCE2, and d) isothermal calorimetric curves of OPC and blended systems with/without 1 
wt. % AMPS-PCE2 

Increase of anionicity of PCEs has been shown to enhance the adsorption rate of 

copolymers onto cementitious particles and hence, initial workability of the system. 

However, retaining this induced fluidity requires gradual adsorption of PCEs from the pore 

solution [38-40]. Furthermore, dispersing ability of these superplasticizers in OPC-calcined 
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clay-limestone-gypsum system is affected by layered structure of clay and presence of 

sulfate ions. The PEG side chains have been known to intercalate (i.e., chemisorb) into the 

aluminosilicate layers of clays. Instead of adsorbing onto the surface of cement, the 

superplasticizer is consumed by clay through chemisorption, and thus dispersing ability of 

the superplasticizer declines [16, 17]. Presence of sulfate ions can also lead to reduction of 

dispersing ability of PCEs via decreasing the steric size of superplasticizer and 

condensation of grafted chains. This sensitivity to sulfate ions originates from i) the 

competition between COO‒ groups in the backbone of the copolymer and SO4
2‒ in the pore 

solution for attaching to the surface of cement particles and ii) decrease in the repulsive 

force between ionized groups of the backbone that can lead to the shrinkage of the PCEs 

[15, 41]. In order to correlate the ability of AMPS-PCE2 to retain workability of blends, we 

monitored i) the amount of remaining copolymer in the pore solution of L15, ii) structural 

changes in calcined clay, and iii) steric size of AMPS-PCE2 in the presence of elevated 

concentration of sulfate ions. The content of AMPS-PCE2in the pore solution that initially 

includes 10 mg/g PCE/binder (= 1 wt. % superplasticizer) was measured as 7± 0.2 and 

3.1 ± 0.3 mg/g after 15 and 60 min hydration, respectively. These amounts indicate that 

more than 30 % of initial copolymer still remains in the pore solution after 60 min. The 

XRD analysis of neat calcined clay particles (Figure 4.8a) demonstrates an interlayer 

spacing (d-spacing) of 0.75 nm, which is in good agreement with reported values in 

literature [42]. When mixed with synthetic pore solution containing AMPS-PCE2, similar 

d-spacing was recorded confirming that copolymer molecules interact only with the surface 

of clay particles and no intercalation occurs during the adsorption process. Size distribution 

of AMPS-PCE2 in extracted pore solution of L15 with and without addition of 0.2 mol/l 

Na2SO4 (Figure 4.8b) shows that increase in the concentration of sulfate ions induces no 

change in the steric size of the copolymer. Therefore, it can be inferred that high initial 

workability and fluidity retention of blends are due to gradual adsorption of AMPS-PCEs to 

the surface of particles (Figure 4.4b and 4.5) and stability of steric size of the 

superplasticizer (Figure 4.8b). 
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Figure  4.8 a) XRD of calcined clay particles in the presence and absence of AMPS-PCE2 
and b) size distributionof polymer coils in pore solution of L15 with Na2SO4 

4.6 Mechanical strength and pozzolanic reactions 

Figure 4.9 demonstrates compressive strength of hydrated blends at different ages. 

All mixtures displayed lower strength compared to reference OPC sample. The G1.5 

sample exhibited the highest strength among the blends at 1-day and 28-day that are 67% 

and 75% of the OPC strength, respectively. It is worth mentioning that no real gypsum 

adjustment was applied according to the cement composition. 

 

Figure  4.9 Compressive strength of blends at different ages 
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The evolution of calcium hydroxide (CH) of blends and reference samples was shown 

in Figure 4.10. The tangent method was used to quantify CH content from the weight loss 

between 450 and 600 °C and expressed per unit weight of cement [43]. 

 

Figure  4.10 Variation of the CH content in the pastes with hydration time 

Sample with 45 % quartz substitution (Q45) expectedly showed a higher CH content 

compared to OPC at all ages. This behavior can be attributed to the extra space and/or 

nucleation sites available for the hydrates (filler effect). On the other hand, C45 (45% clay 

substitution) displayed low CH content in comparison with OPC indicating the significant 

pozzolanic activity of calcined clay in the blend. In agreement with previous reports on 

highly substituted OPC-clay blends, this level of calcium hydroxide limit the long term 

strength development of the blend (Figure 4.9). Therefore, highly substituted OPC blends 

require extra CH for pozzolanic reaction to form calcium silicate hydrate (C‒S‒H) [9, 44] 

and the addition of external lime can compensate the lack of CH. After partial substitution 

of clay with limestone and gypsum (L15, G1.5, and G3) CH content at 1-day became 

higher than that of C45. This increase demonstrates that hydration kinetics are dominated 

by the filler effect [45] since no pozzolanic activity is expected from limestone [9]. At later 

ages, these samples showed considerable pozzolanic reactions, as indicated by the depletion 

of the CH content towards 28-day of hydration. According to Antoni et al., the high rate of 

strength gain in ternary mixtures is due to strong synergistic reaction between calcined clay 

and limestone to form mono/hemi carboaluminate phases [9]. Notably, the highest rate of 

strength gain in all samples was observed in G1.5 (Figure 4.9), which coincides with high 

CH content at 1-day and high rate of CH depletion in time (Figure 4.10). 
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4.7 Conclusion 

A series of PCE-based copolymers composed of AA, AMPS, and PEG was 

synthesized and their ability to disperse the binder particles (OPC, calcined clay, and 

limestone), and to provide fluidity retention in the blended cement paste was tested. The 

modified-PCEs was found to disperse mixtures even at high clay content and high 

concentration of sulfate ions. Results of XRD and dynamic light scattering revealed that the 

optimized copolymer does not intercalate into the layered structure of calcined clay and 

also preserves its steric size in the presence of sulfate ions. This copolymer exhibited 

controlled adsorption onto the surface of the particles, did not get depleted from the pore 

solution, and thus, induced fluidity retention for extended amounts of time. We believe the 

optimization route that we report here will provide insight for the design of other 

superplasticizers that are compatible with multi-component cement systems. 
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Chapter 5 Experimental Section 

5.1 Materials 

An α-Al2O3 powder (AKP-500, Sumitomo Chemical Company) was used with the 

mean particle size of 220 nm and specific surface area of 17 m2/g determined by BET 

method. Acrylic acid (AA-99%), 2-acrylamido-2-methylpropane sulfonic acid (AMPS, 

99%), potassium persulfate (KPS, ≥99.0%), and hydrochloric acid (HCl, 37%) were 

obtained from Sigma Aldrich. PEG-1000, maleic anhydride (MA, 99%), and sodium 

hydroxide (NaOH, ≥97%) were purchased from Merck. All reagents were of analytical 

grade and used as received without further purification.  

Ordinary Portland cement (OPC) CEM 1 42.5 R and CAC ISIDAC 40 were provided 

by, AKCANSA and CIMSA, Turkey, respectively. Physical and chemical properties of 

cements were listed in Table 5.1. 
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Table 5.1 Chemical analysis and physical properties of cements 

Cement Type  OPC CAC 

Chemical 

composition (%) 

SiO2 13.37 3.60 

Al2O3 4.68 39.80 

Fe2O3 3.35 17.05 

CaO 63.08 36.20 

MgO 1.42 0.65 

SO3 2.71 0.04 

Loss on ignition 3.30 0.30 

Physical 

properties 

Density (g/cm3) 3.15 3.25 

Fineness (Blaine) (cm2/g) 3275 3000 

BET surface area (m2/g) 1.65 2.2 

Initial setting time 155 280 

Final setting time 250 295 

Residue in 45 μm sieve 

(%) 
0 23 

Residue in 90 μm sieve 

(%) 
0.3 6.5 

Mechanical 

properties 

 2-day: 24.0 (MPa) 6 Hours: 47 (MPa) 

 28-day: 52.6 (MPa) 24 Hours: 70 (MPa) 

 

Calcium carbonate (CaCO3) was purchased from Sigma-Aldrich. The clay was 

calcined at 800 °C in a semi-industrial rotary kiln with a residence time of 15 min. The 

Rietveld analysis on calcined clay showed that it contains 42 % calcined kaolinite 

(metakaolin) and the rest is uncalcined kaolinite, quartz, and traces of illite, anatase, and 

hematite. Chemical and physical properties of CaCO3 were listed in Table 5.2. Raw clay 

contained 42 % kaolinite and the specific surface area of calcined particles was measured as 

10.5 m2/g by N2 adsorption method. 
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Table 5.2 Physical and chemical properties of CaCO3 

Density (g/cm3) 2.93 

BET surface area (m2/g) 8.2 

Sulfate (SO4
2-) ≤0.01% 

Chloride ≤0.001% 

Fluoride ≤0.0015% 

K ≤0.01% 

Na ≤0.1% 

Impurities ≤0.03% 

 

5.2 Synthesis and characterization of copolymers  

5.2.1 Synthesis of copolymers 

Equimolar amounts of PEG-1000 and maleic anhydride were charged in a 250 ml 

three neck flask and the reaction was heated up to 90 °C.  The reaction medium was kept 

under nitrogen for 2 hours; then, cooled to room temperature. We used this product reffered 

to as PEGMA for polymerization without any purification. 

In a typical aqueous free radical polymerization, we first prepared 15 wt% aqueous 

solutions of reactants with different molar ratios in 110 ml deionized water. Subsequently, 

pH of the mixture was adjusted by using aqueous solutions of 0.1M NaOH and HCl. Then, 

this mixture was charged into a three neck flask connected to a reflux condenser and 

nitrogen was purged for 30 min to remove free oxygen. After 30 min, the flask was heated 

up to 50 °C and 10 ml aqueous solution of 0.25 g KPS, the initiator, was added to the 

reaction chamber. After 50 min, we raised temperature to 60 °C and added the 10 ml 

solution of 0.25 g KPS to the medium for the second time and kept it at this temperature for 

75 min. We, then, increased the temperature to 80 °C and the reaction continued for another 

4 hours. Finally, the reaction medium was cool down to room temperature, copolymers 

were precipitated in ethanol, and the product was dried under vacuum at 60 °C until 

reaching a constant weight.  

 

73 
 



5.2.2 Characterization of copolymers 

Chemical and structural characterization of copolymers was carried out by nuclear 

magnetic resonance (NMR, Varian Unity Inova 500MHz spectrometer) and dilute solution 

viscometry (0.2 ‒ 0.5 g/dl, Cannon glass capillary viscometer 1C) at room temperature (22 

°C), respectively. Intrinsic viscosities were obtained through extrapolation of reduced 

viscosities to zero concentration of copolymers. We repeated each test for 3 times and 

reported the average value. 

Density if anionic sites and Ca-complexation ability of copolymers were determined 

by titration method with a HI-2211 bench top pH meter on 50 ml solution of 1 mg/ml 

copolymer/water at 22 ± 2 °C. Copolymer solutions were titrated with a 0.1 M NaOH and 

0.02 M Ca(OH)2.  

Copolymers were characterized by gel permeation chromatography (GPC, Agilent 

1260 Infinity equipped with refractive index detector) in aqueous solution of 0.14 mol/l 

NaCl, 0.01 mol/l Na2HPO4 and 0.01 mol/l NaNO3 at a flow rate of 0.7 ml/min. 

5.3 Preparation and characterization of alumina samples 

5.3.1 Sample preparation 

Alumina suspensions were prepared by adding 0.01 wt% alumina particles to a 

solution containing different amount of copolymers and, then, using ultrasound probe 

(Vibra Cell 75041, Bioblock Scientific) for 5 min in pulse mode to break soft 

agglomerations. To monitor the effect of time on particle size of suspensions, all specimens 

remained uninterrupted throughout the testing. Each test was repeated 6 times with 20 

cycles and average value was reported.  

5.3.2 Stability and gravity-settling 

Stability of alumina suspensions was determined by measuring particle size 

distribution and hydrodynamic radius (rh) of alumina suspensions with and without 

copolymers (Zetasizer nanoseries, Malvern Instruments, Ltd.).  

To observe the effect of different copolymers on stability of alumina suspensions, a 

gravity-settling based test was designed. Suspensions with 4 wt% alumina particles and 2 
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wt% copolymers (compared to alumina particles) were prepared in native pH of 

suspensions and then placed in 100 ml graduated cylinder. We took 1 ml of samples at the 

depth of 60 ml by using a stainless steel needle connected to a 10 ml syringe. These 

samples were immediately placed in a moisture analyzer (Shimadzu uniBloc MOC63u) to 

measure the solid content.  

5.3.3 Electro-kinetic study 

A zeta potential analyzer (Zetasizer nanoseries, Malvern Instruments) was used to 

monitor the electrokinetic behavior of alumina particles in the presence of different 

amounts of copolymers. After addition 0.001 wt% alumina particles to polymer solutions 

and 1 hour stirring, pH of the mixture was adjusted to 2–12. Subsequently, 6 measurements 

with at least 20 cycles were performed at 25 °C and the average value was reported. 

5.3.4 Isothermal adsorption  

Adsorption behavior of copolymers was investigated by using UV-vis spectroscopy 

(UV-3150 Shimadzu spectrometer) and thermogravimetrical analysis (Netzsch STA 449C 

Jupiter thermal analyzer). Alumina suspensions with 4 wt% of particles and different 

amounts of copolymers were prepared. After 3 hours of stirring, suspensions were 

centrifuged to separate the alumina particles. The amount of adsorbed polymer was 

quantified by measuring the difference between UV-adsorption of supernatant and bulk 

concentration of copolymers before addition of alumina particles. Moreover, the separated 

particles were used for thermogravimetrical analysis (TGA, Netzsch STA 449C Jupiter 

thermal analyzer). To eliminate unadsorbed and weakly bonded copolymers, the separated 

particles were redispersed in water and then centrifuged at 4,500 rcf for 1 hour. This 

process was repeated for six times following by drying at 70 °C under moderate vacuum for 

3 days. Thereafter, TGA was carried out by heating up the dried samples at 10 K/min from 

room temperature to 600 °C under nitrogen atmosphere. 

5.3.5 Rheological study 

The rotational rheological measurements were conducted in Anton-Paar MCR 302 

rheometer with cone-plate geometry of 50 mm/2° and a gap size of 0.208 mm. After 

loading of each sample, a thin layer of low-viscosity paraffin oil was employed around the 
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outer edge of the plates to protect the sample from evaporation. Temperature was set to 25 

°C and the shear rate was changed from 0.1 to 1000 s-1. 

The extensional rheological measurements were carried out by using a capillary 

breakup extensional rheometer (HAAKE CaBER 1, Thermo Scientific, Germany) with two 

plates which have a diameter of 6 mm. Plate separation was changed from L0 = 2 mm to Lf 

= 7.6 mm within 50 ms. The extension rate (ε̇), 26.7 s-1, was set according to the relation Lf 

= L0 exp (ε̇t), where t is time (s). After establishing liquid bridge, the midpoint diameter 

(D(t)) was monitored as a function of time using the laser micrometer. Suspensions with 

20‒45 vol% alumina particles and different amounts of copolymers were prepared by using 

ultrasound probe in pulse mode and stirring for 24 hours in a capped container to prevent 

evaporation. All samples were tested at ambient temperature immediately after stopping the 

stirring process. 

5.3.6 Machining  

For machining, the green bodies were drilled 5 mm deep with 1.1 mm to 8.2 mm drill 

bits using conventional mounting heads. Machining speeds were 700–1200 rpm for lathing 

and 500–900 rpm for drilling. Drilling deeper than 4–5 mm without getting rid of excess 

swarf initiated internal cracks. Machined samples were sintered at 1500°C for 2 hours with 

a heating rate of 5°C/min with no binder burnout step. Shrinkage rates were reported based 

on measurements from 25 samples.  

5.3.7 Mechanical properties 

Compression tests on green bodies were performed with Zwick/Roell Z100 universal 

testing machine according to ASTM 773 standard. All suspensions were cast in homemade 

gypsum molds (3/4 vol/vol gypsum to water ratio) with an inner diameter of 11 mm and a 

height of 15 mm. All samples were de-molded after 24 hours and then dried at 70°C for 24 

hours. Each experiment was repeated 5 times. 
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5.3.8 Density measurement 

AccupycII-1340 gas pycnometer was used to measure percentage of theoretical 

density of alumina green bodies. Before measurement, each sample was covered with 

silicone oil to prevent penetration of helium through open pores. 

5.4 Sample proportioning and characterization of cementitious suspensions 

5.4.1 Sample preparation 

Binders with different amounts of calcined clay, limestone, and gypsum were first 

dry-mixed with OPC for 5 min. Certain amounts of these blends were then charged to 100 

ml of polymer solutions containing 0‒15 mg/g superplasticizer/binder (0‒1.5 wt. %) to cast 

pastes with water to binder ratio (w/b) of 0.4. All binders were first hand-mixed for 30 sec 

and then stirred by Heidolph RZR 2102 mixer equipped with a 4-blade stainless steel 

propeller for 5 min at 1000 rpm. Such a high-shear mixing regime was used to ensure good 

dispersion of particles and homogeneous pastes.  

5.4.2 Rheologial study 

Rheological behavior of cement pastes was characterized by determining the plastic 

viscosity and yield stress using Anton-Paar MCR 302 rheometer equipped with cone-plate 

geometry of 50 mm/2° and a gap size of 0.208 mm at 25 ± 0.1 °C. All cement pastes were 

loaded immediately after cessation of the mixing process. After loading each sample, a thin 

layer of low viscosity paraffin oil (~150 mPa.s at 20 °C) was employed around the outer 

edge of the plates to protect the sample from evaporation. Rheological measurements were 

carried out by the measurement sequence as following; cement pastes were first kept under 

constant shear rate of 100 s-1 for 60 sec to ensure the structural breakdown. An increasing 

shear rate ramp from 10 to 100 s-1 in 150 sec was then applied followed by a decreasing 

ramp rate from 100 s-1 to 10 s-1 in 150 sec. The flow curve of descending shear rates was 

modeled using Bingham equation (τ = τ0 + ηγ̇) where τ is the shear stress (Pa), τ0 is the 

yield stress (Y-intercept, Pa), and η is plastic viscosity (Pa.s). When pastes are totally 

deflocculated, demonstrated by no hysteresis cycle, they behaved like Bingham fluids and 

the shear rate descent curves could be fitted to the Bingham equation. In some cases, the 

relationship between shear rate and shear stress was not linear. Therefore, plastic viscosity 
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and shear yield stress were assessed from the relationship between shear stress and shear 

rate such that shear yield stress and plastic viscosity were defined as the intercept point of 

the linear part nearest the Y-axis and the slope of the linear part of the relationship around 

50 to 100 s-1, respectively. 

5.4.3 Workability 

Mini slump test was carried out at 22 ± 2 °C according to ASTM C143. In this test, a 

cone with bottom diameter, top diameter, and height of 40 mm, 20 mm, and 60 mm, 

respectively, is filled with the paste and spread diameter is recorded after pulling out the 

cone. Average value of two crossing spread diameters after 2 times repetition of each test 

was reported as the test result. Time dependent workability tests (slump retention) were 

performed at the intervals of 15, 30, 45, and 60 min after the first touch of water. Four 

different batches were prepared and sealed to prevent the evaporation of water. The pastes, 

were, then stirred at 300 rpm for 30 sec and slump tests were conducted after 15 sec of 

resting time of the pastes in the slump cone. 

5.4.4 Isothermal adsorption 

Adsorption of AMPS-PCEs on different components was evaluated using depletion 

method in synthetic pore solution prepared from 0.6 g/L CaSO4·2H2O, 5.2 g/L NaOH, 17.9 

g/L KOH, and 2.4 g/L Ca(OH)2 in 1 L of deionized water (pH of ~ 13.5)[1]. Suspensions 

of OPC, clay, and limestone with 0‒10 mg/g AMPS-PCEs/particle at a pore solution to 

particle ratio of 2 were prepared. After 15 min of stirring, the suspensions were centrifuged 

at 10,000 rpm for 10 min to separate the particles. The liquid phase was diluted by 1/2 

(vol/vol) with 1.5 M HCl and filtrated through a 0.2 μm filter to remove any contaminants. 

The amount of adsorbed polymer was quantified by measuring the difference between 

intensity value of the scattered light (Zetasizer ZS, Malvern Instruments) of supernatant and 

bulk concentration of the polymer before addition of particles. Test result is the average of 

three independent measurements with at least 15 runs. 

5.4.5 Electro-kinetic study 

A zeta potential analyzer (Zetasizer ZS, Malvern Instruments) was used to monitor 

the electro-kinetic behavior of particles in synthetic pore solution and water at different 
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amounts of superplasticizers. The suspensions with solution to binder ratio of 40 and 

AMPS-PCEs/particle of 0‒10 mg/g were mixed by a magnetic stirrer for 10 min, dispersed 

by a bath sonicator for 3 min and again, magnetically stirred for another 2 min. Prior to the 

measurement, suspensions were diluted by deionized water (1/5 vol/vol) to adjust the 

conductivity of the medium to ~ 18 mS/cm. Each result represents the average value of 6 

measurements, with 15 to 20 runs per measurement. 

5.4.6 Stability 

Dispersing state of cement particles in aqueous medium was determined by dynamic 

light scattering (DLS) and measuring the Z-average (average particle size) of cement 

suspensions with and without polymers (Zetasizer nanoseries, Malvern Instruments, Ltd.). 

The suspensions with w/c of 40 and PCEs/cement of 0‒10 mg/g were mixed by a magnetic 

stirrer for 10 min and then diluted by distilled water with a ratio of 1 to 20 (v/v). Each 

result represents the average value of 6 measurements, with 15 to 20 runs for each 

measurement. 

5.4.7 Structural study 

To investigate the possible intercalation of AMPS-PCEs molecules into clay 

structure, X-ray diffraction (XRD) was carried out via BrukerAXS diffractometer fitted 

with a Siemens X-ray gun with 0.154 nm Cu Kα radiation. XRD was performed at room 

temperature with the scan range of 2θ =2‒40°, step size of 1 s/step, step width of 0.01° 

2θ/step, and spin revolution time of 4 s. All samples were prepared by mixing of 2 g of 

calcined clay sample and 80 g of water with or without 0.02 g AMPS-PCEs and 0.088 g 

CaCl2 (0.4 g/l Ca2+ as the synthetic pore solution for 15 min followed by centrifugation at 

5,000 rpm for 10 min. The solid residues were vacuum-dried for 12 hours at 80 °C and 

grounded before measurement. 

5.4.8 Mechanical properties 

Plastic molds with a diameter of 26.2 ± 0.3 mm and a height of 53 ± 1 mm were used 

to obtain cylindrical specimens for compression tests. After casting the pastes, all 

containers were sealed for 24 hours followed by demolding and placing into water at 22 ± 2 
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°C for up to 28 days. Compressive strength of specimens at different ages was examined by 

Zwick/Roell Z100 testing machine according to EN-196 standard. 

5.4.9 Thermo-gravimetric analysis  

After compression tests, the specimens were crushed and put in isopropanol for 5‒7 

days to stop hydration, then vacuum dried at 40 °C for 3 days and preserved in a sealed 

container for thermo-gravimetric analysis (TGA, Netzsch STA 449C). To determine the 

amount of calcium hydroxide (CH) in hydrated samples, TGA was performed on ~ 50 mg 

specimens using a heating rate of 10 K/min under nitrogen in the temperature range of 

30‒1000 °C. 

5.4.10 Isothermal calorimetry 

A TAM Air isothermal calorimeter from Thermometric was used. It consists of 8 

parallel twin type measurement channels. One cell is dedicated to the sample, the other to a 

reference vessel. The reference vessel containing 10 g of deionized water was used to 

reduce the signal to noise ratio and to correct measurement and temperature artifacts. 20 ml 

glass ampoules were used for both the sample and the reference container. Each channel is 

independent from the other channels and was calibrated before starting experiments. The 

baseline was recorded for approximately 30 minutes before ampoules placement inside the 

calorimeter and 30 min after removing of the ampoules. The procedure for mixing was 2 

minutes of mechanical mixing followed by the immediate placement of the ampoules inside 

the calorimeter, to monitor the hydration from the earliest time possible. All systems were 

mixed at a water to cement ratio (w/c) of 0.4 with deionized water. The mass of paste was ~ 

10 g. 

5.4.11 Conductivity 

Conductivity measurements were carried out with Zetasizer nanoseries (Malvern 

Instruments). PCEs solutions (1 mg/ml PCEs/water) were prepared and titrated with a 0.02 

M Ca(OH)2.  

 

 

80 
 



5.4.12 Specific surface area 

The Brunauer-Emmett-Teller (BET) specific surface area of samples was determined 

by analyzing the standard nitrogen adsorption isotherms at 77 K using nova 2200e, 

Quantachrome instruments. Suspensions with w/c of 0.4 (OPC) and 0.3 (CAC) were mixed 

for 1‒5 min followed by centrifugation at 5000 rpm for 5 min. OPC and CAC particles 

were then redispersed in 2-propanol and acetone, respectively and centrifuged at 5000 rpm 

for 15 min. This process was repeated for 3 times following by vacuum drying at 40 °C for 

3 days. 
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