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Abstract

In this thesis, we consider a variation of vehicle routing problem where different types

of resources are required. The problem is motivated by an application for a Home Health

Care service provider. In this problem, services are provided by a limited number of per-

sonnel (nurses and health care aids) in patients’ home. Each patient requires either a nurse

or a health aid or both depending on their conditions during a strict time window. The per-

sonnel are transported to patients’ home by vehicles that can carry at most two people. We

assume that a health aid provider cannot be substituted by a nurse and vice versa. The prob-

lem can be generalized to cases where patients require different resources at different levels.

In this study, a Branch and Price algorithm is implemented to optimally solve the problem.

The problem is formulated as a set-partitioning problem and solved by a branch-and-price

algorithm. We investigate the efficacy of some implementation features by conducting an ex-

tensive computational studies. The computational results show that the efficient exact method

surpass the off-the-shelf mixed integer programming solvers.

Keywords: Exact Methods, Home Health Care Routing Problem, Vehicle Routing Problem.
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KAYNAK KISITLI ARAÇ ROTALAMA PROBLEMİ İÇİN
DAL-VE-FİYAT ALGORİTMASI

Neda Tanoumand

Endüstri Mühendisliği Yüksek Lisansı

Tez Danışmanı: Tonguç Ünlüyurt

Özet

Bu tezde farklı kaynak kullanımının gerekli olduğu, bir Araç Rotalama Problemi çeşidi

sunulmuştur. Problem, Evde Bakım Servis sağlayıcıları ile ilgili bir uygulamadan yola çıkılar-

ak tasarlanmıştır. Ayrıca, problemde sağlık hizmetleri, hemşireler ve hasta bakıcılar tarafından

hastaların evlerinde sağlanmaktadır. Her hasta, belirli ve değiştirilemeyen zaman aralıklarına

bağlı olarak hemşire ve/veya hasta bakıcıya ihtiyaç duyabilir. Sağlık personelleri, hastaların

evlerine en fazla iki kişi kapasitesi olan özel araçlar ile ulaştırılmaktadır. Ek olarak, model ku-

rulumunda, hemşire ve hasta bakıcıların birbirlerinin yerine kullanılamayacağı varsayılmıştır.

Problem, genel olarak her hastanın farklı sayıda, farklı kaynaklara ihtiyaç duyması ile tanımla-

nabilir. Öncelikle, problem küme bölme metodu ile modellenmiş, daha sonra en iyilenmesi

için Dal-ve-Fiyat algoritması kullanılmıştır. Algoritmanın etkinliğinin ölçülmesi için bazı

özellikleri test edilmiştir. Test sonuçları, uygulanan algoritmanın Karışık Tam Sayılı Pro-

gramlama metodlarından daha iyi çalıştığını göstermektedir.

Anahtar Kelimeler: Araç Rotalama Problemi, Evde Bakım Servis, Pekin Yöntemler
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1 Introduction

We consider a generalization of the vehicle routing problem with time window (VRPTW)

where each customer requires a set of resources. It is not possible to substitute a certain

type of resource by another type. This corresponds to different types of resources providing

different type of services. This problem is motivated by a home health care service (HHCS)

routing problem. In particular, we have 2 types of resources and each patient may require at

most one of each type.

HHCS provider companies have become more popular in last decades. These companies

cover a broad range of services that are required by care-dependent people at their home.

The limited number of beds in the hospitals, the aging in the population, and increasing

number of people suffering from chronic disease are some of the factors that lead to the

birth of Home Health Care (HHC) companies. HHCSs were originally introduced by an

American professor, Bluestone, in 1945. Then, these services were developed in Canada,

France, Denmark, etc [1]. In the early age of HHCS, it was comprehended as a mean to

make earlier hospital discharge easier. Nowadays, these services are provided for old people,

adults with functional limitations, and patients with chronic diseases in the form of long-term

or short term care services [2].

There are two different services that HHCS companies are providing, Nursing and Health

aid. Nursing provides medical and paramedical services that can be only provided by hospi-

tals. On the other hand, health aid provides hygienic and essential daily care that elderly or

disable people need. Basically, the main purpose of HHCS companies is to provide medical,

paramedical, and social services for patients in their homes [3].

Due to the increase in the rate of care-dependent old people in Europe and adults with

chronic disease in United States in last decade [2], the demand for HHC services is grow-
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ing rapidly. Satisfying the highly expanding demand for the services requires companies to

explore efficient planing and scheduling methods for delivering HHC staff to patients’ home.

Motivated by the interest in developing effective planning means, many researchers all

over the world have examined the problem from different perspectives and under various

conditions. Begur et al. [4] and Cheng et al. [5] were among the first researchers who at-

tempted to model and solve the scheduling and routing problem in HHC area. A spatial

decision support system (SDSS) was suggested by Begur et al. [4] for a case study where the

problem was solved by using scheduling heuristics. Cheng et al. [5] proposed two mathemat-

ical formulation and two phase heuristic solution approach for HHC problem by considering

break time for service providers.

In general, the researches in the area of HHC can be categorized based on the planning

horizon of the problem. In particular, we can define single-period and multi-period HHC

problems where the former is related to the problems with planning horizon of one day and

the later mentions to the problems considering multiple days as the scheduling horizon [6].

On the other hand, other researchers categorize the problem as short-term, medium-term, and

long-term HHC problems. These categories refer to the problems with one day, one week,

and more than one week as planning horizon, respectively [7].

The majority of the researchers deal with the scheduling and routing of HHC service

providers by considering a single-period planning horizon. The single-period HHC problem

can be investigated in different settings. Some researchers deal with the problem by focusing

on temporal precedence and synchronization [8] [9] [10] and some others consider work and

break regulation [7] [11] [7]. Mode of transport is another setting that can be different in

the articles. Where most papers considers single mode for transporting the service providers

to the patients’ home, Hiermann et al. [12] and Rest et al. [13] incorporate public transport

as another option. Also, Fikar et al. [14] assume that the health providers are delivered and

picked up by a small bus fleet. In addition to the mentioned works which deal with the

HHC problem in different settings, there are a few articles regarding stochastic HHC routing

problem. In real-world cases, there is no perfect information before the operation. Therefore,

to consider this situation, Lanzarone et al. [15] assumes HHC operations with stochastic

demand whereas Yuan et al. [16] studies the problem under stochastic service time condition.
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Single-period HHC problems are mainly modeled as extension of VRP in recent papers.

Therefore, considering travel time, travel distance, and cost of trips as objective functions

are very common in the literature. On the other hand, there are some works which consider

the service provider’s working time as the major cost. These studies try to include overtime

and waiting time of the workers in the objective function [11] [12]. Another valid alternative

for the objective of HHC is to maximize the number of served patients which is recently

considered by Rasmussen et al. [17].

The constraints of short horizon HHC problems are mainly the same as VRPTW. Demand

satisfaction, time window, resource or capacity restrictions are the common constraints that

are considered in most of the papers. In these studies, all or most of the patients should be

visited during their specified soft/hard time windows. In some problems, patients have spe-

cific time windows [11] [18] whereas in other types of problems time windows are assigned

to each service provider [12] [19]. Besides, there are a few articles that considers working

time regulation and mandatory breaks for service providers. Yuan et al. [16] sets a maximum

total distance or duration for each service provider’s route. Eveborn et al. [18] are among the

pioneers who take into account lunch breaks for the nurses as mandatory breaks.

Multi-period HHC problems are different from single-period problems in terms of plan-

ning horizon. To adapt longer scheduling horizon, some changes should be applied to HHC

problem. In the adapted version, all requests do not arise in the same time and the demand

should be satisfied during a week or a month. Therefore, service providers should work

for multiple days or weeks. These settings compel the problem to consider stochastic de-

mand which can be arose randomly during the planning horizon. In this regard, Bennett et

al. [20], Koeleman at al. [21] are among the researchers who deal with HHC problem in

a dynamic setting and modeled the problem as a Markov decision process. Additionally,

Carello et al. [22] and Rodriguez et al. [23] investigated the importance of stochastic demand

and proposed solution methods based on the stochastic programming methods.

The objective function in the HHC problems with multi-period planning horizon, mainly,

considers the service providing and staffing related factors. Although, there are some arti-

cles that focus on the travel related cost, the majority of the researchers emphasize on the

providers’ working time and continuity of care for the patients. Minimizing overtime cost,
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balancing the workload of service providers, and minimizing the number of care providers

who visit the same patient (for considering continuity of care) are the most common objec-

tives used in the literature. Besides, there are some works which deal with continuity of care

in the constraints [22] [24]. Since, solving HHC problem in a dynamic and stochastic setting

is more common in contrast to single-period horizon problem, some researchers deal with

uncertainty by adding some constraints. For instance, adding chance constraints to the model

or using stochastic programming techniques for dealing with uncertainty in the demand can

be observed in the number of recent articles [20] [22] [23].

There are a number of recent works that developed a solution method for solving HHC

problems. For solving single-period HHC problems majority of the researchers have devel-

oped meta-heuristics [12] [10] [13]. Mankowska et al. [10] implemented local search based

procedure, whereas Hiermann et al. [12] compared the outputs of multiple metaheuristic on a

single data. On the other hand, there are a few articles that implemented exact algorithm for

solving HHC problems. Branch-and-price algorithm is predominant exact solution methodol-

ogy which is implemented in recent studies for solving the problem optimally [19] [17] [16].

Majority of the solution methods proposed for multi-period HHC problem are exact solu-

tion procedures. Bard et al. [25] and Trautsamwieser et al. [7] developed a branch-and-price-

and-cut algorithm to solve the problem optimally. Carello et al. [22] implemented robust

optimization approach whereas Rodriguez et al. [23] applied stochastic programming tech-

nique to handle the uncertainty in demand and solve the problem optimally.

The novel idea that discriminates our problem from the problems in the literature is to

have different types of service providers and group them to generate different service cat-

egories. Additionally, the patients are distinguished based on their required services and

can be assigned to any appropriate service categories. This problem can be generalized into

the cases where there are more than two types of service providers and we can define more

service categories. Particularly, the problem is a combination of assignment and routing prob-

lem. The patients are assigned to a proper service category and then the routing problem of

the vehicles which belong to the categories are solved. This idea was originally proposed by

Tozlu et al. [26] who called the problem home care routing problem with time window and

resource constraint (HCRPTWRC). Recently, they proposed a solution methodology based
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on Variable Neighborhood Search (VNS).

In this thesis, we deal with a single-period routing problem of HHCS personnel who

provide two types of care services in a specific tight time windows that are predetermined by

patients. In this problem, services are provided by a limited number of personnel (nurses and

health care aids). Each patient requires either a nurse or a health care aid or both depending

on their conditions. To the best of our knowledge, there is not any exact method proposed in

the literature for solving the problem efficiently. Tozlu et al. [26] utilized CPLEX to exactly

solve the mathematical formulation of the problem.

The main contribution of this thesis is an implementation of effective branch-and-price

[27] algorithm to optimally solve HCRPTWRC in a novel setting. Branch-and-price has been

proposed as an efficient methodology for solving variants of vehicle routing problems [28].

In general, Branch-and-Price algorithm is a beneficial tool for solving different types of Inte-

ger Programming (IP) and Mixed Integer Programming (MIP). The structure of the algorithm

is as Branch-and-Bound algorithm which solves Linear Programming (LP) relaxation in each

node of search tree. Branch-and-Price algorithm implements Column Generation algorithm

in the nodes which solves the problem in a tighter feasible region and consequently, gives a

better bound than LP relaxation.

For the implementation purpose, we formulate HCRPTWRC as set-partitioning problem.

The proper structure of the problem enables us to decompose it into a master problem and

three pricing sub-problems (one for each type of patients or vehicles). All of the sub-problems

are elementary shortest path problems with time window. A dynamic programming approach

called Label Setting Algorithm (LSA) [29] is implemented for solving the sub-problems.

Using Branch-and-Price algorithm, the problem is optimally solved through column genera-

tion algorithm and embedded in a branch and bound structure. Numerical results are reported

for selected instances generated based on Solomon’s benchmarks.

The remainder of this thesis is organized as follows. Chapter 2 presents a mixed-integer

programming formulation for HHC routing problem. Chapter 3 gives preliminaries for he

branch-and-price algorithm that is implemented in this study and presents implementation

issue regarding the method. Chapter 4 provides the results of our computational study and

illustrates the efficacy of our branch-and-price algorithm. Chapter 5 concludes with final
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remarks and highlights some future research directions.
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2 Problem Description, Formulation, and Solution method

In this section, first the problem definition will be presented. Then, mathematical formulation

for the problem will be presented. At the end, an exact solution method that is implemented

for solving the mathematical model will be explained.

2.1 Problem Description

In this problem, there is a set of patients each of whom require a certain type of service.

Also, there are two types of personnel (i.e. two different resources), to provide the required

services and the available number of each type of personnel is limited. Each patient has

predetermined tight time window that the services should be provided within it. Vehicles, in

this setting, carry at most two personnel. A feasible tour for a vehicle starts from the health

center, visit some patients by considering their time windows, and return to the health center

before completion time. In this problem, all the patients should be served within their tight

time window and the resource limitation should also be considered.

In this problem, we assume that the demands and corresponding time windows are de-

terministic and we know them beforehand. We classify the patients based on the demanding

services under three different types. Type 1 are the patients who require just nursing services,

type 2 are the patients need just health aid services, and type 3 are the patients that ask both

nursing and health aid services.

The major purpose of the HHCS provider company is to provide services for all of the

patients in their specified time windows. Additionally, this company has to consider the

limitation in the number of care personnel. During each day, the personnel are transported to

patients home to provide services for them in a specific time window . There is no limitation
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on the number of vehicles, since, they are rented daily and paid per kilometer. Therefore, the

objective of the company is to minimize the total distance traveled by the vehicles.

Current practice of the company is to solve the routing problem of the vehicles each trans-

porting one nurse and one aid provider. This strategy might cause an inefficient utilization of

the resources. Since there is a limited number of care provider staffs, with this strategy, some

patients might not be visited during their specified time windows which leads to an infeasible

problem.

In order to use the resources efficiently and overcome some infeasible cases, it has been

proposed in [26] to define three types of vehicles. Vehicles type 1 each carries just one

nurse, vehicles type 2 each transports one aid provider, and vehicles type 3 each conveys

both a nurse and an aid provider. Note that in this strategy, vehicles type 1 and 2 can provide

relevant services for patients type 1 and type 2, respectively. On the other hand, vehicles

type 3 can serve all types of the patients. Additionally, we assume that a health aid provider

cannot be substituted by a nurse and vice versa.

We provide a small example to demonstrate how this new practice may help the company.

Suppose that the company has 2 nurses and 2 health aid provider staff and assume that the

patients are as illustrated in Figure 2.1. In the case of current strategy that each vehicle caries

one nurse and one aid provider, the company needs two vehicles and tries to solve the routing

problem of two vehicles. From Figure 2.2, it can be seen that due to the time windows and

the limitation in the number of HHCS staff, all patients cannot be visited once; therefore,

this problem becomes infeasible. On the other hand, using the proposed strategy, as it can

be observed from Figure 2.3, all patients can be visited in their predetermined time window

at least once. In this case, we assure that we have at least one feasible solution for this

problem, then, we can solve the optimization problem to find the best solution. Note that

if the company can visit all customers with its current practice, this will also be one of the

feasible solutions that can be obtained with our strategy. In this cases, the proposed strategy

may also decrease the total traveled distance of feasible problems. Although the proposed

strategy requires more vehicles in some cases, it makes the problem feasible. Since the fleet

are leased and paid per kilometer, using more vehicle does not cause major problems for the

company.
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Figure 2.1: Illustration of a small example with different types of patients and a health center.

Figure 2.2: Best solution for the small example using current strategy of the company

Figure 2.3: A feasible solution for the problem with proposed strategy.

HCRPTWRC in our setting is to minimize the total distance traveled by the vehicles,

visiting all the patients in their specific time windows by considering resource limitations.

In other words, the optimization problem is to assign each patient to an appropriate route

by considering time windows and minimizing the total distance traveled by the compatible

vehicles.

2.2 Mathematical Formulation

HCRPTWRC can be mathematically formulated as follows. Let N be the number of patients

and V = {1, 2, . . . , N} be the set of patients. Then, we define V0 = V ∪ {0}, VN+1 =

V ∪{N+1}, and V0,N+1 = V ∪{0, N+1}where 0 andN+1 are the health centers that each

route should starts and ends, respectively. G = (V0,N+1, A) is a complete directed graph with

A = {(i, j)|i, j ∈ V0,N+1, i 6= j}, set of arcs. Each arc (i, j) has associated distance and travel
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time that we represent them by dij and tij , respectively. Additionally, S = {1, 2, 3} contains

the types defined for different patients based on their requested services and R = {1, 2}

represents the varied types for the resources (1 represents nurse, and 2 represents health aid).

Also, let V s be the set of patients of type s ∈ S and hr be the number of available staff type

r ∈ R . Furthermore, in our setting, each patient i has a predetermined tight time window

[ei, li] and a service time of sti. Also, note that the time window of the health centers are

[0, T ] which means that all tours should be completed before T .

Using the parameters that are defined in the previous paragraph, the mathematical formu-

lation of HCRPTWRC can be written as following:

minimize
∑

i∈V0,N+1

∑
j∈V0,N+1,j 6=i

∑
s∈S

dijx
s
ij (1)

subject to:
∑

i∈V0,i 6=j

x1
i,j +

∑
i∈V0,i 6=j

x3
i,j = 1 ∀j ∈ V 1 (2)

∑
i∈V0,i 6=j

x2
i,j +

∑
i∈V0,i 6=j

x3
i,j = 1 ∀j ∈ V 2 (3)

∑
i∈V0,i 6=j

x3
i,j = 1 ∀j ∈ V 3 (4)

∑
j∈VN+1

x1
0j +

∑
j∈VN+1

x3
0j ≤ h1 (5)

∑
j∈VN+1

x2
0j +

∑
j∈VN+1

x3
0j ≤ h2 (6)

∑
i∈V0,i 6=j

xsij =
∑

i∈VN+1,i 6=j

xsji ∀j ∈ V, ∀s ∈ S (7)

qi + xsij(tij + sti)− T (1− xsij) ≤ qj ∀i ∈ V0,∀j ∈ VN+1, j 6= i, ∀s ∈ S (8)

ej ≤ qj ≤ lj ∀j ∈ V0,N+1 (9)

xsij ∈ {0, 1} ∀i ∈ V0,∀j ∈ VN+1, j 6= i, ∀s ∈ S (10)

qj ≥ 0 ∀j ∈ V0,N+1 (11)

where xsij is a binary decision variable indicating whether arc (i, j) is used by vehicle

type s or not, also, the other decision variable is qj which is the arrival time at patient j. The
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objective function (1) is to minimize the total distance traveled by the vehicles. Constraints

(2) − (4) ensure that all patients should be visited only once. Since patients type 1 can be

served by vehicles type 1 and type 3, in writing constraint (2) we consider the vehicles of

appropriate types. Analogous to type 1 patients, type 2 patients can be served by vehicles

type 2 and type 3; therefore, constraint (3) takes into account the vehicles of both types.

Constraint (4) just considers vehicles type 3, since patients type 3 can only be served by

type 3 vehicles. Constraints (5) and (6) assure that the usage of the nurses and health aid

providers is no more than the available staff. Since the problem is a variant of VRPTW, to

assure the feasibility and elimination of the sub-tours we need constraints (7) − (9) which

are fundamental routing restrictions. Constraint (7) is a balance constraint and constraint

(8) is a sub-tour elimination restriction in our problem. Moreover, constraint (9) makes all

patients to be visited at their predetermined time windows. At the end, we have binary and

non-negativity constraints.

Aforementioned formulation is a mixed integer programming (MIP) formulation of HCR-

PTWRC. This formulation is originally introduced by Tozlu et al. (2015). To the best of our

knowledge, any exact solution method for solving this problem has not been studied in the

literature. In the remaining of this thesis we will introduce an exact solution method for solv-

ing HCRPTWRC to optimally. We implement the well known branch-and-price algorithm

which is considered as one of the best solution methods for large MIPs [28].
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3 Implementation Details

3.1 Branch-and-Price algorithm for Mixed Integer Programming Prob-

lems

In this section, we will introduce an efficient branch-and-price algorithm for HCRPTWRC.

This algorithm is known as an effective solution method for solving large scale MIPs. In this

regard, since HCRPTWRC is a variant of VRPTW, the exact solution methods that are pro-

posed for solving VRPTW efficiently can be implemented for HCRPTWRC. In the following

sub-section we will give a brief review on the structure of the branch-and-price algorithm.

3.1.1 Preliminaries

In this section, we will explain the fundamental components of a branch-and-price algorithm.

In the literature, branch-and-price algorithm has been proposed to solve many variants of the

VRP problem. Since, our problem can be modeled as a MIP, branch-and-price method is a

promising solution methodology by an effective implementation.

The structure of the branch-and-price algorithm is analogous to branch-and-bound algo-

rithm. The only difference is the solution method that is implemented in every node of the

search tree. In fact, branch-and-price is an enhanced version of branch-and-bound algorithm.

Let’s look closely to the structure of branch-and-bound algorithm.

Given a mixed integer minimization program, the first step in implementing branch-and-

bound algorithm is to drop integrality condition from the model and solve the LP-relaxation

of the problem in the root node of the search tree. Since the feasible region of the original

MIP is a subset of its LP-relaxation, the objective value of the LP-relaxation is a lower bound

for the original minimization problem. The LP-relaxation can be solved by any linear pro-
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gramming (LP) solution methods i.e. simplex algorithm. In this step, if the optimal solution

of the LP-relaxation is integer, then, this solution is also optimal for the original MIP and

the algorithm will be terminated in the root node. However, if the optimal solution of the

LP-relaxation is fractional, it will be required to perform branching and produce two or more

child nodes [30]. Branching strategy is another important factor which affects the efficiency

of the algorithm. In this regard, there are a lot of early researches which proposed problem

dependent branching strategies (see [31] [32] [33]). The algorithm proceeds by choosing and

solving a child node considering the branching strategy. Branch-and-bound algorithm termi-

nates when no unprocessed child node exists. In the branch-and-bound algorithm a node can

be fathomed because of three main reasons. First, if the problem in the node becomes infea-

sible, second, if the optimal solution obtained in that node is integer, and third, if the bound

captured in the node is worst that the objective value of the best incumbent solution. These

three rules help the algorithm to prune the branches and reduce the size of the search three.

For more detail on the branch-and-bound algorithm see [30].

Early solution methods for discrete optimization were based on the explicit enumera-

tion. These methods were not able to solve the problem with more than 30 integer decision

variables [34]. For the large scale MIPs, since the number of potential solutions are expo-

nentially many, the explicit enumeration has became impossible. In this regard, there are

tools which help the algorithms to search the parts of the feasible region implicitly. Bound-

ing the function that is optimized and using the best solution at hand assist the algorithms

to perform efficiently [30]. Branch-and-bound algorithm utilizes some bounding techniques

to efficiently search the feasible region. It uses the bounds that are obtained by solving the

LP-relaxation of the problem and the objective function of the incumbent solution as lower

and upper bounds.

It has been observed that the lower bound obtained from solving LP-relaxation is too

weak and it causes the search tree to become immense. To overcome this problem, some

techniques should be developed to generate strong bounds. Since the bounding is one of

the important means to speed up the algorithm and increase the efficiency, many researchers

have developed new bounding mechanisms. To the best of our knowledge, the first efficient

bounding technique was introduced by Desrochers et al.(for more detail visit [31]) with the
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application in the VRPTW. They suggested to solve LP-relaxation of the set partitioning for-

mulation of the VRPTW by column generation. The solution obtained by column generation

provides an excellent lower bound that can be utilized in the branch-and-bound scheme.

Column generation is one of the efficient algorithms that was proposed for solving LPs

in which the number of decision variables are exponentially many. In column generation

algorithm the simplex steps that determines whether the current basic solution is optimal

or not, and whether there is any non-basic variable with negative reduced cost or not are

done by solving an optimization problem [35]. To the best of our knowledge, Ford and

Fulkerson [36] were the first that proposed the idea of using column generation for solving

LPs with the application in the multi-commodity maximum flow problem. The algorithm that

they proposed can be generalized to solve any LPs. To this end, the mathematical model of

problem should be written as set partitioning formulation. Additionally, the set of constraints

should be partitioned into a set of master constraints and a set of sub-problem constraints.

The resulting algorithm is Dantzing-Wolfe Decomposition [35].

After partitioning the problem into master problem and sub-problem, we begin column

generation algorithm by solving a master problem that contains limited number of decision

variables and we call it restricted master problem (RMP). Since, in large scale problems the

number of decision variables are exponentially many, we do not consider all the variables in

the beginning, we generate them as they are needed using the pricing sub-problems. In fact,

objective function minimizing reduced cost along with the set of sub-problem constraints

enable the pricing sub-problem to generate the column that corresponds to the coefficients

of a non-basic decision variable in the set of master constraints. Additionally, the non-basic

decision variable must have the most negative reduced cost to be a candidate variable for

the basic solution of the RMP. Therefore, the optimal solution of the sub-problem must be

a coefficient column corresponds to a non-basic decision variable which has the smallest

reduced cost. If the reduced cost of the non-basic variable is non-negative, then, we can

claim that the problem is optimal and there is no entering variable to the basic (optimality

condition in Simplex algorithm). On the other hand, if the reduced cost is negative, then, the

non-basic variable with corresponding coefficient column will be added to the RMP and it

will be solved again. The iterations must be continued until sub-problem’s optimal solution
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has non-negative reduced cost which means RMP has found the optimal solution.

Branch and Price algorithm is the combination of two aforementioned algorithms in

which given a MIP, we implement branch-and-bound algorithm, and in every node of the

search tree the LP-relaxation is solved using column generation. When the number of vari-

ables in the MIP problem is huge, using branch-and-price algorithm became crucial. There

are interesting challenges in implementing column generation algorithm within the branch-

and-bound framework. The most important one is the branching rules, since, the traditional

branching strategies are not efficient and make the column generation more complicated.

Researchers tried to find effective, but problem dependent, branching strategies to make the

algorithm simple and more efficient. In this strategies, instead of branching on the variable

of set partitioning problem, the branching is performed on a decision variable of the original

problem. Which in this case making the master problem and sub-problem compatible with

the branching strategy is more convenient. The early use of this branching strategy for a ur-

ban transit crew scheduling problem is give in [37] and for a pickup and delivery problem

with time window is given in [38]. There are also other early studies which used this kind

of branching strategy in the problems like graph coloring and airline crew scheduling (see

[39] [40]).

In this thesis, we implement an efficient branch-and-price algorithm for solving HCRPT-

WRC. As the structure of the solution method, we implement a branch-and-bound algorithm

and in every node of the search tree we perform column generation. Therefore, in every

node of the search tree we need to define master problem and sub-problem based on the set

partitioning formulation. In the following sub-sections we will introduced the set partitioning

formulation of our specific problem.

3.1.2 Set partitioning formulation

In this section, we will introduce the set partitioning formulation of HCRPTWRC. For im-

plementing column generation it is required to partition the set of constraints into a set of

master constraints and a set of sub-problem constraints. For this purpose, from the original

mathematical formulation of HCRPTWRC, we define constraints (2)− (6) as a set of master

constraints and (7) − (11) as a set of sub-problem constraints. The objective of the sub-
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problem should calculate the reduced cost of basic and non-basic decision variables. As a

result, master problem becomes a set covering problem which takes into account the number

of staff utilized. On the other hand, sub-problem is a routing problem which tries to find

a resource feasible shortest path from node 0 to node N + 1. Note that the sub-problem

only considers the feasibility of the time windows, whereas, the master problem checks the

feasibility of the number of staff transported.

In each iteration of the column generation algorithm, RMP is solved optimally, then,

dual variables corresponds to the set of master constraints are obtained for the calculation

of the reduced cost i.e. objective function of sub-problem. After updating the objective of

the sub-problem, an elementary shortest path problem is solved optimally. If the objective

value of the optimal solution is non-negative, then, the algorithm terminates and optimal

solution of RMP is the optimal solution of the problem (LP-relaxation). On the other hand,

if the objective value of the optimal elementary shortest path is negative, then, the coefficient

column corresponding to this path is generated and added to the RMP. Afterwards, the RMP

is solved again and the procedure is analogous.

Master problem. The mathematical formulation of HCRPTWRC as a set partitioning

formulation can be obtained as following. If we define Ωs as the set of routes of type s ∈ S

and csp be the cost of path p ∈ Ωs that is traveled by vehicle type s ∈ S, the master problem

of set partitioning formulation can be written as following:

minimize
∑
s∈S

∑
p∈Ωs

cspθ
s
p (12)

subject to:
∑
p∈Ωs

αs
jpθ

s
p = 1 ∀s ∈ S,∀j ∈ V s (13)

∑
s∈S

∑
p∈Ωs

βs
rpθ

s
p ≤ hr ∀r ∈ R (14)

θsp ∈ N ∀s ∈ S,∀p ∈ Ωs (15)

where θsp is the number of times that route p of type s is used. The number of decision

variables in the above formulation is exponentially many. Therefore, column generation is an
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efficient method for dealing with this problem. It can be comprehended from the formulation

of the master problem that this problem is a set covering problem in which the aim is to visit

all the patients only once by considering the resource constraints and minimizing the total

cost. Since the problem is minimization problem and our cost matrix satisfies triangular in-

equality, we can replace constraint (13) with the following constraint and still get the solution

which visits all the patients exactly once.

∑
p∈Ωs

αs
jpθ

s
p ≥ 1 ∀s ∈ S,∀j ∈ V s (16)

by doing so, the dual variables corresponding to this set of constraints are restricted to

be non-negative. This restriction causes the column generation algorithm to converge faster

[28]. In implementing the algorithm, since the number of decision variables are huge, we

start with restricted master problem which contains only subset of decision variables. We

will generate the non-basic variables and add them to the RMP as they are requires. As

we have discussed earlier, this procedure is done by sub-problem. In the following of this

section, we will introduce definition of the column and the sub-problem of the set partitioning

formulation.

Column Definition. Definition of a column corresponding to the optimal solution of

the sub-problem should be compatible with the structure of RMP. We can define the column

as following:
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αs
p =



αs
1p

αs
2p

...

αs
jp

...

αs
Np

βs
1p

βs
2p



(17)

where αs
jp indicates whether vehicle type s visits patient j through route p or not which

can be formulated as following:

αs
jp =

∑
i∈V0,i 6=j

xsijp ∀s ∈ S,∀j ∈ V s,∀p ∈ Ωs (18)

where xsijp is the decision variable of the original mathematical formulation. If path p

visits patient j, then, the value of αs
jp is 1 and 0 otherwise. Also, parameters βs

ip are 1 if the

vehicle type s through route p carries resource type i and 0 otherwise.

For illustration, suppose there are 5 patients, (N = 5) and V0,N+1 = {0, 1, 2, . . . , N + 1}.

Also, assume that based on the required services the patients can be categorized as following:

V 1 = {1, 4} (patients type 1), V 2 = {2, 3} (patients type 2), and V 3 = {5} (patients type

3).

Lets assume that in one of the iterations of the column generation algorithm the optimal

shortest path is to start from the health center 0, then visit 2 and 3, then go to the health center

N + 1. In this case, the path p visits only patients of type 2. Therefore, α2
2p and α2

3p are equal

to 1 whereas other αs
jp are equal to 0.

Additionally, as we discussed earlier, patients type 1 ask for nursing service, patients type

2 require health aid services, and patients type 3 need both of them. Since the path p is a

type 2 vehicle that visits only type 2 patients it carries a health aid provider which means that
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β2
1p equals to 0 whereas β2

2p equals to 1. As a result, the column corresponding to the path p

which will be added to the RMP looks like following:

α2
p =



0

1

1

0

0

0

1


(19)

Similarly, for the other paths based on the type of vehicle and the patients that were visited

we can write the corresponding coefficient column and add the column to the RMP. Next we

will define the set partitioning formulation of HCRPTWRC master problem.

Pricing sub-problem. The pricing sub-problem of HCRPTWRC should be able to

produce a non-basic resource feasible route with the smallest reduced cost. Therefore, for

obtaining the objective function of the sub-problem we need to use the original formulation

of the reduced cost from Simplex algorithm. Lets Ω be the set of all routes, then, the reduced

cost can be identified as following:

cp = cp − yap ∀p ∈ Ω (20)

where cp is the cost of path p, y is a vector corresponding to the dual variables of the

master problem, and ap is the column that will be generated. In our setting, this column is

the same as the one which is represented by (17). For writing the objective function of the

sub-problem, we need to define dual variables of our master problem. Let γsj and ωr be the

dual variables corresponding to the constraints (13) and (14), respectively. Using the original

formulation of reduced cost and the the notation of our problem, the reduced cost of a path p
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of type s can be calculated as following:

csp =
∑

(i,j)∈As

dijx
s
ij −

∑
j∈V s

γsjα
s
jp −

∑
r∈R

ωrβ
s
rp ∀s ∈ S,∀p ∈ Ωs (21)

using the definition of αs
jp in (17) and simplifying the equation, we can modify the equa-

tion above and obtain the following equality:

csp =
∑

(i,j)∈As

(dij − γsj )xsij −
∑
r∈R

ωrβ
s
rp ∀s ∈ S,∀p ∈ Ωs (22)

The objective function of the sub-problem can be considered as the minimization of the

expressions in the right hand side of the equation (22). The decision variable, xsij , only exists

in the first expression. The second expression is a parameter and we call it dual constant. For

the sake of simplicity, we drop dual constant from the objective function of the sub-problem,

since, it does not affect the optimal solution of the sub-problem. When the optimal solution of

the sub-problem is obtained, we use dual constant to check the optimality condition (whether

reduced cost is negative or not). Eventually, the objective function of the sub-problem looks

like following:

minimize
∑
s∈S

∑
(i,j)∈As

csijx
s
ij (23)

where csij = dij − γsj , is called the modified cost of an arc (i, j) in the directed graph of our

problem.

Consequently, the sub-problem of set partitioning formulation of HCRPTWRC can be

written as following:

minimize
∑

s∈S
∑

(i,j)∈As csijx
s
ij

subject to: (7)-(11)

Let’s look at the structure of the sub-problem closely. Since, all the constrains are writ-

ten for each type of vehicles s ∈ S, also, the objective is minimizing the summation over

all vehicle types, we can state that the structure of the sub-problem is decomposible. The

pricing sub-problem can be decomposed into |S| numbers of independent sub-problems. In
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fact, decomposition helps us to partition the feasible region of the sub-problem into smaller

regions which accelerates the solution algorithms. From algorithmic point of view, it enables

us to solve the sub-problems in parallel and each time instead of sending one column with

negative reduced cost to the RMP, we could send one column per sub-problem with nega-

tive reduced cost (if there exists any). This parallelization provides more convenience and

less computational time. Therefore, the mathematical formulation for sub-problem(s) can be

written as following:

sub-problem(s):

minimize
∑

(i,j)∈As

csijx
s
ij (24)

subject to:
∑

i∈Qs
0,i 6=j

xsij =
∑

i∈Qs
N+1,i 6=j

xsji ∀j ∈ Qs (25)

qi + xsij(tij + sti)− T (1− xsij) ≤ qj ∀i ∈ Qs
0, ∀j ∈ Qs

N+1, j 6= i (26)

ej ≤ qj ≤ lj ∀j ∈ Qs
0,N+1 (27)

xsij ∈ {0, 1} ∀i ∈ Qs
0, ∀j ∈ Qs

N+1, j 6= i (28)

qj ≥ 0 ∀j ∈ Qs
0,N+1 (29)

where Qs is the set of patients that can be served by vehicle type s ∈ S. In our problem,

since we have three different types of vehicles, our sub-problem is decomposed into three

sub-problems. From the mathematical formulation (24)− (29), it can be observed that every

pricing sub-problem is an elementary shortest path problem. There are different methods to

solve this problem in the literature. Note that vehicle type 1 and type 2 can serve the patients

type 1 and type 2, respectively; therefore, we can state that Qs = V s for s = 1, 2. However,

this is not true for vehicles type 3. Since these vehicles can serve all types of the patients, the

corresponding set Q contains all the patients (Q3 = V ).

Up to now, we gave a general information regarding branch-and-price algorithm and in-

troduced the set partitioning formulation of HCRPTWRC. In the following section, we will

discuss the implementation issue and the techniques that we utilized to improve the perfor-

mance of the branch-and-price algorithm.
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3.2 Implementation Issues

We develop branch-and-price algorithm to solve HCRPTWRC. There are some factors which

affect the efficiency of the algorithm. In this section, we will touch upon these factors and

how we implement different parts of the algorithm for the problem.

3.2.1 Initial Solution

Initial solution is one of the crucial factors which affects the convergence of the column

generation algorithm in each node of the search tree. In the column generation algorithm, at

the first step, we need to solve RMP which contains only a subset of decision variables. These

variables should be able to create an initial basic feasible solution. Therefore, it is important

to choose or create the initial variables such that the initial RMP becomes feasible. There are

different ways to generate initial variables and their corresponding coefficient columns.

One of the common ways to generate initial columns is to use artificial columns. This idea

comes from phase I of the Simplex algorithm. In phase I, we usually add artificial decision

variables to the mathematical formulation and assign a very large number (in minimization

case) as their costs. Since, they are variables with high cost, Simplex algorithm in each

iteration tries to find better solution and get rid of the artificial variables. In fact, the problem

is feasible if in the optimal solution there is no artificial variables. If there exists any artificial

variable in the basic optimal solution, then, the problem is infeasible.

The procedure in the column generation algorithm is analogous to Simplex method. In

column generation algorithm, the artificial columns are able to create initial feasible solution;

however, these columns might not be a feasible column for the original problem. Therefore,

by assigning a very high cost to these columns, we can get rid of them in the next iterations

of the column generation algorithm.

In our setting, we tried to generate artificial columns in two ways. First, we generated

a column corresponding to a route which visits all customers twice. Also, this route does

not use any resources. We call this initial solution Artificial Single. The column of the

initial solution ensures the existence of the initial basic feasible solution. However, it is

not feasible in context of original problems, since, it does not consume any resources. We
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assign a large number as its cost in the objective function of the RMP. Therefore, column

generation algorithm, in each iteration, tries to find a good route to throw the artificial column

out from the basic solutions. For illustration purpose, assume we have 3 patients and 2 types

of resources. Our initial artificial column looks like following:

αinitial =



2

2

2

0

0


(30)

where the number of elements which equal to 2 is the same as the number of patients, and

elements equal to 0 indicates that the corresponding route does not consume any resources.

The second method that we have considered for generating the artificial columns, is to

use the columns of the identity matrix as initial routes. Each column of the identity matrix

corresponds to a route which starts from the health center, visits a particular patient and

returns to the health center. These routes are feasible for the original problem. However, if

we assign resource consumption to these columns, the number of resources required will be

more than the number of available staff and the columns will not be able to generate initial

feasible solution. Therefore, to avoid the infeasibility of the RMP, we do not assign resource

consumption to the initial routes. The resulting initial solution is what we call Artificial

Identity. For the illustration purpose, let’s again assume that there are 3 patients and 2

different types of resources, the initial columns that we use is as following:

Ainitial =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


(31)

23



where each column of the initial A matrix corresponds to a coefficient column of an

artificial decision variable in the RMP. In this method, the initial matrix contains N artificial

column.

These two methods each has positive and negative effects on the performance of the

branch-and-price algorithm. To analyze these effects, the algorithm is run in two settings and

the results are presented in Section 4. We report how the efficiency of the branch-and-price

algorithm is affected by implementing these two methods.

3.2.2 Solving the sub-problem

In this thesis, we considered four approaches for dealing with pricing sub-problem in each

iteration of column generation algorithm. First, we used CPLEX 12.6.2 for solving the sub-

problem optimally. Since, this method is computationally inefficient, then, we implemented

two enhanced variants of Label Correcting Algorithm for solving pricing problem which are

proposed by Feillet et al. [29] and Boland et al. [41]. Finally, we perform a heuristic pricing,

in which we limit the size of label sets.

Solving the sub-problem might be the most crucial part in the implementation of branch-

and-price algorithm. Since, it affects the performance of the algorithm directly, using efficient

techniques for solving the sub-problems becomes more important. To this end, there are

many methods proposed in the literature for solving the sub-problems. The simplest way to

solve the sub-problem of the column generation algorithm is to use the off-the-shelf solvers.

These solvers assist researchers to solve the sub-problem as LP or MIP in a straightforward

way. However, using these solvers at every pricing iteration is computationally expensive.

Therefore, researchers began to look closely to the structure of the pricing sub-problems and

tried to develop problem dependent solution methods.

The structure of some MIPs are such that the corresponding pricing sub-problem looks

like a well-known problem. We can mention to Cutting Stock problem which is very famous

in column generation area. Consider that we write the mathematical formulation of the Cut-

ting Stock problem as a set partitioning problem and decompose the problem into a master

problem and a sub-problem. In this case, the pricing sub-problem is a well-known Knapsack

problem [42]. Thus, if we apply column generation algorithm for solving Cutting Stock
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problem, at pricing iterations we can take the advantage of efficient algorithms which were

proposed for solving Knapsack problem.

In our problem which is a variant of VRPTW, the pricing sub-problem is an Elementary

Shortest Path problem [43]. Therefore, we can benefit from the algorithms suggested for

solving this specific problem. One of the algorithms in this area is Label Correcting Algo-

rithm which is proposed by Desrochers [44] and is suitable for solving shortest path prob-

lem with resource constraints. However, this algorithm is not appropriate for the Elementary

Shortest Path problems in which exsistance of cycles are not allowed. In this regards, Feil-

let [29] adapted Desrochers’ algorithm to solve the elementary shortest path problem with

resource constraints by adding binary node-visit resources to the definition of the labels.

Node-visit resource of a particular node in a label is consumed (equals to 1) if the partial path

corresponding to the label has visited that node.

Label correcting algorithm is a dynamic programming approach that tries to find an op-

timal path from source node s to sink node t by considering the resource limitations. In this

algorithm, every label represents a partial path and contains elements which correspond to

cost and resource consumption of the partial path. Additionally, for adapting label correcting

algorithm for elementary shortest path problems, binary node-visit resources must be con-

sidered by the labels. This algorithm starts with a trivial label (with all elements equal to 0)

from the source node and tries to extend this label along an arc if the extension is feasible.

The extension is infeasible, if the resulting partial path is not resource-feasible or if it cannot

reach to the sink node because of the resource limitations.

The performance of the label correcting algorithm depends mostly on the dominance rule

that eliminates partial paths. Let P ′i and P ∗i be two distinct partial paths from source to node

i. Also, let (C ′, R′) and (C∗, R∗) be the corresponding labels, where, C ′ and C∗ are costs,

and R′ and R∗ are resource consumption of P ′i and P ∗i , respectively. Path P ′i dominates path

P ∗i if and only if (C ′, R′) 6= (C∗, R∗), C ′ ≤ C∗, and R′k ≤ R∗k for ∀k ∈ K where |K| is the

number of resources.

To strengthen the dominance relation and consequently eliminate more partial paths, Feil-

let et al. [29] introduced the concept of unreachable nodes and proposed a new definition for

the labels. For a path Pi from the source node to a node i, a node v is said to be unreachable
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if it has already been visited by Pi, or it cannot be visited because of the resource limitation.

Using this notation, the description of the labels can be modified. In the new definition, node-

visit resource of a particular node in a label is consumed when the node is unreachable for

the partial path corresponding to the label.

In this thesis, we define a label, extension of a label, and the dominance relation as fol-

lowing.

Definition of a label. A label corresponding to a partial path from source node 0 to

node i can be defined as Λi = (θ, τ,Γ, P, ρ), where, θ represents the reduced cost of the

partial path, τ shows the beginning time of the service at node i, Γ = {γ1, γ2, . . . , γN}

is a visit-vector representing availability of node-visit resource of each node, P tracks

the sequence of the nodes in the partial path, and ρ is the cost of the route.

Label extension. Extension of a label Λi = (θ, τ,Γ, P, ρ) from node i to node j

creates label Λj = (θ′, τ ′,Γ′, P ′, ρ′), where:

• θ′ = θ + cij

• τ ′ = max{ej, τ + sti + tij}

• Γ′ = {γk = 1 if k is an unreachable node for label Λj; 0 otherwise}

• P ′ = P ∪ {j}

• ρ′ = ρ+ cij

Note that τ ′ which represents the starting time of the service at node j, cannot occur

before the specified time window ej . Therefore, if a service provider reach the patient earlier

that its time window, s/he should wait to start service at ej . Furthermore, definition of an

unreachable node is the same as proposed description. Specifically, node k is an unreachable

node for label Λj if:

• node k has already been visited via partial path corresponding to label Λj ,

• Λj cannot extend to node k because of the time restriction.
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• extension of the resulting label, Λk, to the health center exceeds the completion time,

T .

Dominance relation. Let Λi = (θ, τ,Γ, P, ρ) and Λ′i = (θ′, τ ′,Γ′, P ′, ρ′) be two

label on node i. Label Λi dominates Λ′i if:

• θ ≤ θ′

• τ ≤ τ ′

• γr ≤ γ′r, ∀r ∈ V

There is another variation of label setting algorithm which is introduced by Boland et

al. [41] and in called general label setting algorithm (GLSA). Boland et al. [41] enhanced the

algorithm proposed by Feillet et al. [29] by defining a set of unprocessed labels which keeps

track of the labels on a node that are not extended to another label yet. Also, for accelerating

Feillet’s algorithm, they proposed state space augmenting algorithm called GLSA(S) in which

they are trying to find a lower bound on the elementary shortest path problem by defining

node-visit resources only for the nodes contained in set S.

In this work, we implement the label setting algorithm proposed by Feillet et al. [29]

and GLSA suggested by Boland et al. [41] which is slightly modified version of the previous

one. In each iteration of label setting algorithm the later algorithm suggests to just extend the

labels included in the set of unprocessed labels and do not extend all the labels in each itera-

tion. This version enhances the performance of the algorithm, specially, when the number of

labels on each node is huge.

Solving pricing sub-problems by label correcting algorithm enhances the efficiency of

the branch-and-price algorithm. However, in some instances in which every patient has a

wide time window, the performance of the label correcting algorithm is not excellent. In

these instances, the number of feasible partial paths grows rapidly which implies that the

number of labels on each patient is huge. Therefore, the algorithm slows down and dynamic

programming approach seems to be an inefficient approach to deal with the pricing problem

of these instances.

As the forth approach, we implement a variant of label correcting algorithm in which we

limit the number of feasible labels on every patient. This method, accelerates the column
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generation algorithm and consequently enhances the performance of the branch-and-price

algorithm. In every pricing problem, we first try to find a feasible path with a negative

reduced cost using this approach. Then, if the proposed method fails to find such a path,

the original label correcting algorithm which we described in the previous paragraphs will

be invoked.

The four approaches that were discussed in this section are implemented and the perfor-

mance of the branch-and-price algorithm under each approach is reported in Section 4.2.

3.2.3 Branching Scheme

Branching strategy is another crucial point of the branch-and-price algorithm. When opti-

mal solution of the restricted master problem is fractional, we need to perform branching to

achieve an integer solution. There are several strategies for branching i.e. branching on frac-

tional variable of master problem (θsp), variable of the original formulation (xsij), and number

of vehicles. Among those techniques, branching on the variables of the original formulation

is more common and admitted to be more convenient [43].

In branching on the variables of the original formulation, we need to select an arc (i, j)

with a fractional flow, 0 < fij < 1. Then, we obtain two branches: in one branch we forbid

arc (i, j) to be a part of the solution (fij = 0), in another branch we enforce arc (i, j) to be

a part of the solution (fij = 1). The flow of an arc can be calculated using solution values

of the master problem. It is computed by summing values of those decision variables which

correspond a path containing arc (i, j). Our strategy for selecting an arc is to choose arc (i, j)

which its flow is closest to 0.5.

Once branching performed, two child nodes are generated and in each child node the

column generation algorithm should be performed compatible with the branching decision.

This requires modifications in the master problem and the sub-problems of the child nodes.

To modify master problem, in each child node, we simply discard all the columns from

master problem and rebuild it with an artificial initial solution. On the other hand, making

sub problem compatible with the branching decisions is somehow tricky.

To enforce an arc (i, j) to be a part of solution, we discard all the arcs (i, l) with l 6= j and

(l, j) with i 6= l from the pricing sub-problems. This modification makes the sub-problems
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generate paths which visit node j only after node i. Also, consider that in the master problem

we have the restriction of visiting all nodes at least one time. The modification along with

the restriction enforce arc (i, j) to be a part of the optimal solution. On the other hand, to

forbid an arc (i, j) to be a part of solution, we simple discard this arc from the sub-problems.

Note that since we have three sub-problems we need to modify all of them in every node of

the search tree. For more detail on branching scheme see [43].
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4 Computational Results

We implement a branch-and-price algorithm to solve HCRPTWRC. In this section we will

discuss the performance of the algorithm and the effect of different strategies that we have

used.

4.1 Instance Generation

In the computational experiment of this thesis, we utilized modified version of the instances

generated by Tozlu et al. [26]. The instances are adapted version of the benchmark Solomon

instances which have 25 and 50 nodes. For instances with 25 patients, C101, C106, C207,

C208, R103, R108, R201, R210, RC101, RC105, RC201, and RC205 are chosen and the in-

formation regarding coordinates and the time windows are obtained. To adapt these instance

to the HCRPTWRC, it is required to assign each patients a service type and service time.

In HCRPTWRC, three different types of services are defined. Therefore, in the adapted

versions, the instances can be grouped based on the percentage of the patients requiring each

type of services. The groups are called G1, G2 and G3 which are generated based on the

information presented in Table 4.1. For example, 60%, 48%, and 48% of the patients in G1,

G2, and G3, respectively, require type 1 services.

Table 4.1: Percentage of each service type in different groups

Service type
Groups 1 2 3

G1 60% 32% 8%
G2 48% 36% 16%
G3 48% 28% 24%
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Based on the data in Table 4.1, three variations of the Solomon’s instances are generated;

thus, 36 adapted instances with 25 patients are generated for our problem. The service time

of each patient is related to the type of the service that s/he requested. In fact, service time of

type 1, type 2, and type 3 patients are 10, 40, and 45 minutes, respectively.

Other important data that should be determined are the number of available nurses and

health aid providers. This part is not a simple task, since, the problem can become infeasible

if the number of resources are too tight. On the other hand, if the resources are too loose,

then, resource constraints will become redundant.

Based on the tightness and looseness of the resource parameters, 4 different variants of

the 36 instances can be produced. The resource level in these 4 variants can be considered

as tight-tight, loose-tight, tight-loose, and loose-loose. For obtaining loose and tight levels of

the resources, HCRPTWRC ((1)−(11)) solved optimally using different objective functions.

The optimal solution obtained by solving the problem using minimization of the resources

as the objective function is considered as tight resources. On the other hand, loose resources

are achieved by solving the problem with the objective of distance minimization when re-

source constraints are relaxed. Finally, there are generated 144 varied instances containing

25 patients.

Similarly, for the instances with 50 patients, we had the same strategy. However, in defin-

ing the resource levels, since, CPLEX is not able to solve the instances with 50 patients, we

used the reported optimal number of vehicles for each of the Solomon’s instances. Therefore,

we create 36 instances containing 50 patients.

In this work, HCRPTWRC is considered as a single-period routing problem. Also, it is

assumed that the service providers should complete their route within 4 hours. This assump-

tion is valid since most of the HHCS providers are a hospital or a health center personnel.

Therefore, they initiate the routes after their part time duty in the hospital. This working

schedule is convenient and preferable. Since, for long time window routing problems the

working time regulations and mandatory breaks must be considered.

To adapt the special setting to the problem we need to select appropriate instances. Among

the mentioned instanced, R103, R08, RC101, and RC105 are compatible with the settings

of our problem. Therefore, for implementing the branch-and-price algorithm, we select ap-
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propriate variants of these groups from instance pool.

The characteristics of the instances are demonstrated in Table 4.2. First column shows

the groups that each instance belongs to them. They are determined by using the information

of Table 4.1. Second and third columns are names and IDs of the instances. Following

column is optimal objective function value of the instances (OFV). Next two columns refer

to the available number of nurses and health aid providers for each instances. Based on

the available resources, the service levels are determined in the next column; L L, T T, and

medium mention to the loose, tight, and medium level resources. Finally, the last column is

the completion time (CT) of the problem in which all vehicles visiting the patients should

return to the health center.

For generating the instances with 50 patients we follow the same instructions. In this

case, it is a hard task to generate feasible instances. As initial resources, we used the optimal

vehicle numbers that are reported by Solomon. This gives us insights about the approximate

number of required staff. However, in some cases, these resource levels are inadequate and

we need to increase the number of available nurses and health aid providers. Also, we are

not sure that whether specific increase in the resource levels will make the instance feasible

or not. First, we solve the instances with the optimal vehicle numbers as resource levels.

Then, if the problem is feasible, we decrease the resource levels to generate feasible medium

and tight instances. On the other hand, if the instance with the optimal vehicle numbers as

resources is infeasible, then, we assume that there are large numbers of available staff and

solve the generated instances with CPLEX. After catching feasible instances, we decrease

the resource levels to generate feasible medium and tight instances.

Among the generated instances, we pick the feasible ones to implement our branch-and-

price algorithm. Table 4.3 represents the characteristics of the instances utilized. Since the

number of feasible instances are limited, in addition to Solomon’s R103, R108 instances we

used RC201, and RC205 instances which have longer completion time. Note that RC101 and

RC105 have become infeasible; therefore, we did not consider them. In Table 4.3, the first

column illustrates the groups that each instance belongs to them. These groups are deter-

mined based on the percentage of the Type 3 patients. Next two columns are the names and

the IDs of the instances. The number of available nurses and health aid providers are men-
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Table 4.2: Characteristics of the instances with 25 patients

Resources
Group Name ID OFV #N # aid Level CT(s)

G1

R103wd25-model-08-1-1 1 501 7 6 L L 230
R103wd25-model-08-1-2 2 556 5 4 T T 230
R103wd25-model-08-1-3 3 536 5 5 medium 230
R103wd25-model-08-1-4 4 531 6 4 medium 230

G2

R103wd25-model-16-1-1 5 553 7 7 L L 230
R103wd25-model-16-1-2 6 607 5 6 T T 230
R103wd25-model-16-1-3 7 604 5 7 medium 230
R103wd25-model-16-1-4 8 585 6 6 medium 230

G3

R103wd25-model-24-1-1 9 569 7 7 L L 230
R103wd25-model-24-1-2 10 605 6 5 T T 230
R103wd25-model-24-1-3 11 580 6 6 medium 230
R103wd25-model-24-1-4 12 601 7 5 medium 230

G1

R108wd25-model-08-1-1 13 443 5 5 L L 230
R108wd25-model-08-1-2 14 456 4 4 T T 230
R108wd25-model-08-1-3 15 451 4 5 medium 230
R108wd25-model-08-1-4 16 456 5 4 medium 230

G2

R108wd25-model-16-1-1 17 479 6 6 L L 230
R108wd25-model-16-1-2 18 480 5 6 T T 230
R108wd25-model-16-1-3 19 480 5 7 medium 230
R108wd25-model-16-1-4 20 479 7 6 medium 230

G3
R108wd25-model-24-1-1 21 470 6 6 L L 230
R108wd25-model-24-1-2 22 490 5 6 T T 230
R108wd25-model-24-1-4 23 470 7 6 medium 230

G1

RC101wd25-model-08-1-1 24 598 7 7 L L 240
RC101wd25-model-08-1-2 25 684 4 5 T T 240
RC101wd25-model-08-1-3 26 630 4 6 medium 240
RC101wd25-model-08-1-4 27 669 5 5 medium 240

G2

RC101wd25-model-16-1-1 28 672 7 8 L L 240
RC101wd25-model-16-1-2 29 796 4 7 T T 240
RC101wd25-model-16-1-3 30 695 4 8 medium 240
RC101wd25-model-16-1-4 31 694 5 7 medium 240

G3

RC101wd25-model-24-1-1 32 663 8 7 L L 240
RC101wd25-model-24-1-2 33 699 5 7 T T 240
RC101wd25-model-24-1-3 34 715 6 6 medium 240
RC101wd25-model-24-1-4 35 671 6 7 medium 240

G1

RC105wd25-model-08-1-1 36 602 7 7 L L 240
RC105wd25-model-08-1-2 37 648 4 6 T T 240
RC105wd25-model-08-1-3 38 633 4 7 medium 240
RC105wd25-model-08-1-4 39 630 5 6 medium 240

G2
RC105wd25-model-16-1-2 40 679 5 5 T T 240
RC105wd25-model-16-1-3 41 660 5 6 medium 240
RC105wd25-model-16-1-4 42 667 6 5 medium 240

G3
RC105wd25-model-24-1-2 43 701 5 6 T T 240
RC105wd25-model-24-1-3 44 701 5 7 medium 240
RC105wd25-model-24-1-4 45 687 6 6 medium 240

OFV, objective function value; #N, number of nurses; #aid, number of health aid providers;
L L, loose-loose; T T, tight-tight; CT, completion time.
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Table 4.3: Characteristics of the instances with 50 patients

Group Name ID #N # aid CT(s)

G1 R103wd50-model-08-1-1 1 10 10 230

G1 R103wd50-model-08-1-3 2 9 8 230

G1 R108wd50-model-08-1-1 3 9 9 230

G1 R108wd50-model-08-1-2 4 8 8 230

G2 R108wd50-model-16-1-1 5 10 10 230

G3 R108wd50-model-24-1-1 6 10 10 230

G1 RC201wd50-model-08-1-1 7 4 4 960

G2 RC201wd50-model-16-1-1 8 4 4 960

G3 RC201wd50-model-24-1-1 9 3 4 960

G1 RC205wd50-model-08-1-1 10 5 5 960

G2 RC205wd50-model-16-1-1 11 5 5 960

G3 RC205wd50-model-24-1-1 12 5 5 960

#N, number of nurses; #aid, number of health aid providers; CT,
completion time.

tioned in the next two columns. Finally, the completion time of each instance is demonstrated

in the last column.

In the following section, we represent and compare the results obtained from various

implementations of the branch-and-price algorithm on the generated instances.

4.2 Results and Discussion

In this section, we will evaluate the performance of the branch-and-price algorithm and the

benefit of several techniques which were introduced. The algorithm is implemented in Java

using the branch-and-price framework of Java OR Library (Jorlib). For solving restricted

master problem CPLEX 12.6.2 is utilized. All computational experimets are performed on

64-bit server with Intel Xeon E5-2640 v3 processor with a speed of 2.6 GHz and 128 GB

RAM. The time limit for instances including 25 is 1 hour and instances with 50 patients is 4

hours.

To evaluate the effect of different techniques that were introduced for solving pricing sub-

problems, we conduct several experiments. In each experiment we initiate our branch-and-
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price algorithm with different pricing solvers. The pricing solvers are the implementations

of the label setting algorithm which we discussed in Section 3.2.2. We refer to label setting

algorithm proposed by Feillet et al.[29] as GLSA, and the algorithm suggested by Boland et

al.[41] as Boland GLSA. Additionally, the heuristic approach in which we have limited the

number of labels on every node is denoted by GLSA L.

For reporting purpose, we record the CPU time in which the problem is solved, Pricing

time that is the total duration that pricing sub-problems are solved, number of columns gen-

erated and number of iterations of the column generation algorithm. Table 4.4, Table 4.5,

and Table 4.6 represent the computational results for the branch-and-price algorithm with

different pricing solvers. We categorize Solomon’s modified instances based on their service

levels, then the reported outcomes are calculated by averaging over the outcomes in each

category.

The computational results for the branch-and-price algorithm with GLSA pricing solver

is presented in Table 4.4. To enhance the performance of the algorithm, we utilize the ag-

gregation of GLSA and GLSA L as a pricing solver. Table 4.5 show the results for the later

pricing solver. It can be perceived from the tables that GLSA L assists the GLSA to solve

pricing sub-problems more efficient. It can be seen that GLSA L enhances the solution time,

pricing time, number of columns generated, and iterations of the column generation for all

instances of R103, tight instances of R108, and loose instances of RC105. Also, we can ob-

serve that GLSA L can boost the branch-and-price algorithm to solve the medium instances

of R108, medium and tight instances of RC105 in a shorter time while it increases the number

of columns and iterations. On the other hand, while GLSA L enhances the pricing solver for

some of the instances, it does not affect the RC101 instances. Comparing the results of both

solvers, number of iterations and columns remain same but by applying heuristic method

the solution time and pricing time are increased. Which means that heuristic pricing cannot

produce any column with negative reduced cost. This implies that the columns with negative

reduced cost are deleted from the heuristic approach by limiting number of labels on every

node of a network. Additionally, GLSA L cannot enhance the performance of the pricing

solver in the loose instances of R108.

By examining the tables in this section, it can be seen that Boland GLSA + GLSA L solver
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Table 4.4: Computational results for BAP with GLSA solver

ID R L CPU Time(s) Pricing Time(s) # colmns # iterations

R103

L L (3) 8.35 8.05 2056.67 1081.00

medium (6) 19.31 1219.89 4385.50 2153.00

T T (3) 5.24 14.82 3794.67 1672.33

R108

L L (3) 55.82 55.28 3113.33 1757.33

medium (5) 57.22 56.78 2670.20 1509.00

T T (3) 888.89 879.29 59971.00 33753.67

RC101

L L (3) 2.93 1.55 3676.67 2140.00

medium (6) 0.52 0.44 395.33 210.83

T T (3) 0.63 0.52 507.67 293.33

RC105

L L (1) 13.58 12.38 8307.00 5063.00

medium (6) 170.19 155.20 115103.17 63657.67

T T (3) 6.69 6.25 2783.00 1441.00

CPU Time, the duration that problem is solved; Pricing Time, the duration that pricing sub-
problems are solved; #columns, total number of columns generated; #iterations, total number
of iterations of column generation.
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Table 4.5: Computational results for BAP with GLSA+GLSA L solver

ID R L CPU Time(s) Pricing Time(s) # colmns # iterations

R103

L L (3) 3.02 2.82 1111.00 588.33

medium (6) 6.16 5.80 2283.50 1193.67

T T (3) 4.41 4.15 1609.33 785.67

R108

L L (3) 65.94 62.66 19364.33 11420.00

medium (5) 22.65 21.65 5579.80 3272.40

T T (3) 126.61 122.08 27980.67 16634.00

RC101

L L (3) 3.13 2.57 3676.67 2140.00

medium (6) 0.55 0.47 395.33 210.83

T T (3) 0.71 0.61 507.67 293.33

RC105

L L (1) 7.75 6.96 5830.00 3613.00

medium (6) 131.14 116.73 116889.67 64699.67

T T (3) 4.62 4.18 3201.00 1656.00

CPU Time, the duration that problem is solved; Pricing Time, the duration that pricing sub-
problems are solved; #columns, total number of columns generated; #iterations, total number
of iterations of column generation.

37



outperforms GLSA + GLSA L and GLSA solvers. In all of the instances, Boland GLSA +

GLSA L solver enhances the CPU time and pricing time. In some instances this enhancement

is really huge, whereas in some others it is negligible.

Table 4.6: Computational results for BAP with Boland GLSA+GLSA L solver

ID R L CPU Time(s) Pricing Time(s) # colmns # iterations

R103

L L (3) 2.75 2.56 1111.00 588.33

medium (6) 4.78 4.44 2284.17 1194.17

T T (3) 3.32 3.08 1609.33 785.67

R108

L L (3) 51.09 48.16 19364.67 11420.33

medium (5) 16.01 15.16 5579.80 3272.40

T T (3) 71.22 66.81 28070.00 16689.33

RC101

L L (3) 2.91 2.40 3676.67 2140.00

medium (6) 0.52 0.45 395.33 210.83

T T (3) 0.68 0.59 507.67 293.33

RC105

L L (1) 7.46 6.74 5830.00 3613.00

medium (6) 115.93 103.04 117075.50 64799.00

T T (3) 4.10 3.67 3201.00 1656.00

CPU Time, the duration that problem is solved; Pricing Time, the duration that pricing sub-
problems are solved; #columns, total number of columns generated; #iterations, total number
of iterations of column generation.

In addition to the analyzing the effects of different pricing solvers, we examine the ef-

ficacy of different initial solutions. To this end, we used two distinguished initial solutions

that are discussed in Section 3.2.1. To evaluate the performance of the branch-and-price al-

gorithm in two settings, we solve the instances including 25 patients using GLSA as pricing

solver. The detail results of using different initial solutions can be found in Section 6.

From the results, we observe that in general Artificial Identity outperforms Artificial Sin-

gle in terms of solution time, number of iterations of column generation, number of columns

generated through column generation, and the number of nodes of search tree. Particularly,

Artificial Identity solves 77.77% of the instances faster and 88.88% of them with less iter-

ations. Also, it outdoes in 86.66% of the instances by producing less columns during the
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column generation algorithm. In terms of the number of nodes in the search tree, in 48.88%

of the instances the results are same for both of the artificial initial solutions. Artificial Iden-

tity and Artificial Single surpasses the other one in 31.11% and 20.00% of the instances,

respectively.

Finally, to be able to evaluate the performance of the branch-and-price algorithm, we

solve the instances using CPLEX 12.6.2. The best incumbent solution, the best lower bound

on the objective function value, CPU time, and integrality gap are recorded for CPLEX. Then,

we implement the enhanced version of the branch-and-price (BAP) algorithm, in which the

initial solution is an artificial identity matrix described in Section 3.2.1; also, Boland’s GLSA

along with heuristic pricing, mentioned in Section 3.2.2, solves the pricing sub-problems in

every iteration of the column generation algorithm.

For reporting the results, the instances are categorized based on their service levels and the

outcomes are averaged in each category. Table 4.7 presents the result for the instances with 25

patients which are solved within 1 hour. In the table, computational time and integrality gap,

if the instance is not solved within the time limit, are presented for CPLEX and the enhanced

branch-and-price (BAP); also, the number of nodes in the search tree are represented for BAP.

From Table 4.7, it can be observed that BAP solves all the instances optimally, while

CPLEX is not able to solve most of the instances in R103 and R108 categories. Particularly,

the performance of BAP exceeds CPLEX in solving the instances with medium and tight

resource levels. Although the average CPU time of BAP for RC101 type instances is slightly

more than that of CPLEX, it can be perceived BAP solves R103, R108, and RC105 more

efficient than CPLEX. The detail information regarding the computational time and optimal

objective function value can be found in Section 6.

Note that, for the instances which are not solved within the time limit, the BAP Gap

is calculated a ratio (z∗IP − z∗LP ) \ z∗IP , where z∗IP is objective value of the best incumbent

solution and z∗LP is the objective value of the LP-relaxation solve by column generation in

the root node. Also, CPLEX Gap is the same as the gap reported by CPLEX.

In addition to the instances including 25 patients, we solve the instances including 50

patients. Table 4.8 illustrates the results of the enhanced branch-and-price (BAP) algorithm

and CPLEX. We set 4 hours limit to the solvers to solve the instances. From the table, it
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Table 4.7: Comparing the outcomes of BAP and CPLEX for the instances with 25 patients

CPLEX BAP

ID R L Time(s) GAP(%) Time(s) # N Gap(%)

R103

L L (3) 80.52 0.00 2.75 9.67 0.00

medium (6) 1869.42 3.19 4.78 19.00 0.00

T T (3) 3603.08 8.19 3.32 13.00 0.00

Average 1855.61 3.64 3.91 15.17 0.00

R108

L L (3) 216.52 0.00 51.09 164.33 0.00

medium (5) 1086.99 3.21 16.01 48.20 0.00

T T (3) 2578.69 5.95 71.22 209.00 0.00

Average 1256.42 3.08 40.63 123.73 0.00

RC101

L L (3) 0.76 0.00 2.91 45.67 0.00

medium (6) 0.56 0.00 0.52 4.67 0.00

T T (3) 0.31 0.00 0.68 6.33 0.00

Average 0.54 0.00 1.16 15.33 0.00

RC105

L L (1) 54.24 0.00 7.46 69.00 0.00

medium (6) 129.35 0.00 115.93 1521.67 0.00

T T (3) 69.21 0.00 4.10 33.00 0.00

Average 825.17 0.00 71.54 929.80 0.00

R L, Resource level; BAP Time, branch-and-price CPU time; # N, number of nodes
in the search tree of BAP.
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can be observe that BAP is able to solve 6 of the instances optimally, while CPLEX solves

4 instances among them to optimally. In two instances that CPLEX could not solve them,

BAP outperforms and solves them in a short duration. Additionally, there are 3 instances that

CPLEX is not able to solve them within the time limit (we mark them with dashes). The BAP

algorithm outperforms in these instances and could find an incumbent solution for each of

them. Also, there are instances (1,2,3) that the best solution found by BAP surpass the ones

found by CPLEX. Which also means that the integrality gap of BAP is less than the that of

CPLEX.

To recapitulate, in this section, we evaluate the performance of the proposed branch-and-

price algorithm (BAP) by comparing its outcomes with the results of the CPLEX. It has been

observed that in most of the cases performance of BAP excels CPLEX. Then we examined

the efficacy of proposed techniques for boosting the branch-and-price algorithm. To this

end, we implement the algorithm using three different algorithms as pricing solvers; GLSA,

GLSA+ GLSA L, and Boland GLSA + GLSA L. Among the solvers, in most of the cases

Boland GLSA + GLSA L surpass the others in terms solution time, number of columns and

iterations of column generation algorithm. Second, we investigate the effects of initial so-

lutions. For this purpose, we implement the branch-and-price algorithm using two different

artificial initial solutions; Artificial Identity, and Artificial Single. In this case, the perfor-

mance of the algorithm is better when we use Artificial Identity columns.
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5 Conclusions and Future Research Directions

Dealing with home health care routing problems is one of the most innovative ways to reduce

the transportation costs and raise the satisfaction of the patient by serving them on time.

In real word examples, the structure of the problem is complicated. Therefore, finding novel

ways to simplify and model the problem in order to make them tractable is so valuable. Using

effective methods to solve the problems exactly is another crucial aspect that assist service

provider companies to systematically use the resource and serve the patients. To this end, we

developed an efficient branch-and-price algorithm to solve the problems up to 50 patients.

In this thesis, we examined the efficacy of different techniques for improving the algo-

rithm. We observe that solving the pricing sub-problem efficiently is one of the factors that

affects the overall performance of the branch-and-price algorithm. Also, the results illustrates

that initial solution is another key to boost the algorithm. Therefore, implementing more effi-

cient pricing solver and utilizing more appropriate initial solutions will be the considerations

of our future work.

In current work, we assume deterministic demand, travel time, service time, and time

windows. They are strong assumptions and in real cases there might be stochastic demands

and corresponding time windows. Also, the travel times of a part of a route might depends on

the congestion hours. Therefore, stochastic demand and travel times are valid considerations

which can be another opportunity for the future works.

Furthermore, this problem can be generalized to the cases where more that two types of

service providers exist. In this case, the major consideration will be how we can group the

service providers and patients in order to cover all of the demands and minimize/maximize

the considered objective function. This problem is a bit challenging. However, a novel idea

and mathematical formulation can simplify the problem. Proposing a general mathematical

43



formulation for handling this problem and exact or heuristic solution methods afterwards, can

provide new opportunities for companies to enhance their service providing systems.
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6 APPENDIX A: RESULTS OF ALL INSTANCES FOR

DIFFERENT BAP IMPLEMENTATIONS

In this section we present the results for each of the instances in detail. Table 6.1 and 6.2

include the OFV*, optimal objective function value, and Time, duration that instances are

solved, for CPLEX and the enhanced branch-and-price (BAP) algorithm. The performance

of the branch-and-price algorithm in two different settings where the initial solutions are

different are also demonstrated. Table 6.3 and Table 6.4 provide the results for every instance

while implementing Artificial Identity and Artificial Single as initial solutions. The tables

give detail information about the solution time, number of iterations and columns of column

generation, and number of nodes in the search tree.
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Table 6.1: The results of BAP and CPLEX for instances including 25 patients

CPLEX BAP
ID OFV* Time(s) OFV* Time(s)
1 501 34.913 501 5.04
2 556 3602.61 556 7.15
3 536 1445.71 536 8.8
4 531 613.396 531 2.7
5 553 72.774 553 0.776
6 612 3603.94 607 2.18
7 604 3601.94 604 4.667
8 585 1110.18 585 6.2
9 569 133.88 569 2.43

10 605 3602.69 605 0.615
11 580 845.151 580 4.18
12 605 3600.16 601 2.16
13 443 137.733 443 6.74
14 456 3604.26 456 1.45
15 451 442.497 451 8.36
16 474 3602.91 456 1.35
17 479 401.968 479 0.91
18 480 528.063 480 0.96
19 480 648.48 480 0.96
20 479 385.026 479 1.00
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Table 6.2: The results of BAP and CPLEX for instances including 25 patients (cont’d)

CPLEX BAP
ID OFV* Time(s) OFV* Time(s)
21 470 109.856 470 145.61
22 490 3603.76 490 211.25
23 470 356.041 470 68.37
24 598 1.341 598 3.1
25 684 0.406 684 0.21
26 630 1.232 630 0.2
27 669 0.421 669 0.17
28 672 0.468 672 3.44
29 796 0.094 796 0.45
30 695 0.421 695 0.14
31 694 0.515 694 1.5
32 663 0.468 663 2.19
33 699 0.421 699 1.38
34 715 0.296 715 0.64
35 671 0.453 671 0.48
36 602 54.242 602 7.46
37 648 160.416 648 4.21
38 633 144.348 633 2.68
39 630 165.47 630 25.66
40 679 23.634 679 3.75
41 660 101.666 660 78.05
42 667 26.333 667 20.21
43 701 23.588 701 4.34
44 701 317.789 701 401.91
45 687 20.498 687 167.09

52



Table 6.3: The results of the branch-and-price algorithm with Artificial Identity initial solu-
tion and GLSA pricing solver

ID Time(s) # iterations # columns # nodes
1 1.58 1049 2045 21
2 21.15 1295 3046 43
3 42.14 4002 8386 99
4 5.33 283 604 7
5 1.06 54 92 1
6 4.95 264 577 7
7 13.15 686 1411 17
8 39.37 3205 6440 85
9 3.16 245 431 5
10 1.11 32 75 1
11 9.1 563 1100 13
12 4.04 159 357 5
13 44.61 389 762 7
14 10.94 56 111 1
15 119.15 707 1436 11
16 9.7 45 100 1
17 2.81 67 116 1
18 2.82 59 107 1
19 2.92 59 107 1
20 2.75 67 116 1
21 335.72 8311 14519 139
22 2339.62 62670 110652 1147
23 328.56 8312 14517 139
24 4.68 3209 5206 81
25 0.2 32 63 1
26 0.23 38 71 1
27 0.19 30 62 1
28 1.46 850 1396 27
29 0.35 89 185 3
30 0.15 33 61 1
31 1.18 596 1077 17
32 2.06 1289 1960 33
33 1.09 521 925 15
34 0.52 162 317 5
35 0.39 115 190 3
36 22.92 7815 12030 185
37 4.99 1126 2114 33
38 3.03 537 938 13
39 45.06 11991 21935 323
40 4.64 673 1501 27
41 102.11 31220 62370 1101
42 19.94 4734 10309 183
43 5.79 1144 2155 31
44 285.22 114235 206751 3907
45 246.8 93304 180843 3715
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Table 6.4: Results of the branch-and-price algorithm with Artificial Single initial solution
and GLSA pricing solver

ID Time(s) # iterations # columns # nodes
1 17.12 2095 4085 35
2 46.89 4644 10601 117
3 43.74 4717 9843 89
4 15.26 1021 2189 19
5 0.95 67 121 1
6 5.46 370 771 7
7 16.3 1092 2147 19
8 13.37 1322 2561 25
9 10.8 1126 2045 21
10 1.23 46 106 1
11 8.8 721 1450 13
12 4.16 237 512 5
13 52.81 818 1593 11
14 9 63 139 1
15 125.92 969 1936 13
16 6.13 71 140 1
17 2.86 74 133 1
18 2.87 75 134 1
19 3.1 75 134 1
20 2.85 74 133 1
21 139.83 4769 8395 67
22 3332.97 101159 179725 1461
23 217.21 6432 11147 99
24 3.1 2288 4043 45
25 0.31 49 106 1
26 0.37 63 115 1
27 0.32 52 107 1
28 3.43 2688 4638 61
29 0.39 140 300 3
30 0.27 57 107 1
31 1.44 813 1580 17
32 2.13 1485 2425 31
33 1.6 755 1238 15
34 0.64 240 427 5
35 0.85 376 626 7
36 13.17 5074 8326 103
37 7.14 1755 3300 33
38 3.19 724 1265 13
39 48.41 15502 28312 329
40 5.4 1006 2113 23
41 136.71 62361 118039 1491
42 45.44 14166 28385 347
43 6.96 1615 3.35 31
44 518.83 182344 320588 4239
45 241.4 113490 207115 2825
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