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ABSTRACT 

 

 

 

MULTISCALE MODELLING OF SQUID INSPIRED TANDEM REPEAT 

PROTEINS 

 

 

 

OĞUZHAN ÇOLAK 

 

MATERIALS SCIENCE & NANO ENGINEERING M.S. THESIS, MAY 2020 

 

Supervisor: Prof. Canan ATILGAN 

 

 

Keywords: Molecular dynamics, Dissipative particle dynamics, Tandem repeat protein, 

Self-assembly 

Squid ring teeth (SRT) proteins are structural proteins with repetitive amino acid 
sequences. They comprise two regions which are crystal forming and tie-chain regions. 
The mechanical properties of the protein known however the exact mechanism for the 
aggregation of the protein between the previously mentioned segments are still unknown. 
SRT proteins have unknown folding behavior and the size of those synthesized to date 
vary between 140 to 875 for a single chain. Considering these factors, we used Dissipative 
Particle Dynamics (DPD) simulations as our primary method of simulations rather than 
only using Molecular Dynamics (MD) simulations since MD simulations would be 
computationally expensive. So, in this study, we propose a method, which was previously 
used in polymers, of parameterizing the SRT proteins via multiscale simulations. To 
parameterize the system, we initially used binary MD simulations of each bead pair in the 
system at the atomistic detail. Then, we coarse-grained all the molecules into beads, and 
using the cohesive energy density values from the MD simulations, we constructed Flory-
Huggins interaction parameters for all pairs in our system. We used four varying sizes of 
SRT proteins, n4, n7, n11, and n25 and two different solvents which were the good 
solvent HFIP and the hypothetical poor solvent P. Radial distribution function and 
structure factor calculations were used to characterize the structure of the SRT proteins 
in specified solvents. The results show that the SRT proteins swell in HFIP and they have 
no long-range order, but they cluster and form ordered structures in solvent P which show 
that the computational results agree with the experimental data. 
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ÖZET 

 

 

 

AKDENİZ KALAMARINDAN ESİNLENİLMİŞ TEKRAR EDEN PROTEİNLERIN 

ÇOK ÖLÇEKLİ MODELLENMESİ 

 

 

 

OĞUZHAN ÇOLAK 

 

PROGRAM ADI YÜKSEK LİSANS TEZİ, MAYIS 2020 

 

Tez Danışmanı: Prof. Canan ATILGAN 

 

 

Anahtar Kelimeler:  Moleküler dinamik, Dağılıcı parçacık dinamiği, Tekrar eden 

protein 

 

Akdeniz kalamarı yüzük dişleri (AKYD) proteinleri tekrar eden amino asit dizilerinden 
oluşan yapı proteinleridir. Kristal yapı ve düzensiz-bağ zincirleri olmak üzere iki alt 
bölgeden oluşurlar. AKYD proteinlerinin mekanik özellikleri bilinse de alt bölgelerin 
topaklanma mekanizması hala bilinmemektedir. AKYD proteinlerinin katlanma 
davranışı da bilinmemekte ve bugüne dek sentezlenmiş protein zincirlerinin boyları 140 
ile 875 amino asit uzunluğu arasında değişmektedir. Bu etmenler göz önüne alındığında, 
Moleküler Dinamik (MD) benzetimi, bilgisayar zamanı açısından pahalı bir yöntem 
olduğundan, benzetimlerde Dağılıcı Parçacık Dinamiği (DPD) metodu kullanıldı. Bu 
çalışmada, öncesinde polimerlerde kullanılan bir yöntemi, AKYD proteinlerinin 
benzetim değişkenlerini hesaplamak için kullanılmasını sunuyoruz. Sistem benzetim 
değişkenleri hesaplamak için, öncelikle her parçacık çifti için ikili MD benzetimlerini 
atomistik detayda koşturduk. Ardından, MD benzetimlerimdeki kohezif enerji yoğunluğu 
değerlerini kullanarak ve tüm molekülleri kürecikler halinde kaba modele dönüştürerek, 
sistemdeki tüm parçacık çiftleri için Flory-Huggins etkileşim değişkenlerini hesapladık. 
AKYD proteinlerinin n4, n7, n11 ve n25 olmak üzere dört farklı boyutunu, iyi çözücü 
HFIP ve yetersiz çözücü P olmak üzere iki ayrı çözücüde benzetimlerini koşturduk. 
AKYD proteinlerinin bu çözücülerdeki davranışını irdelemek için radyal dağılım 
fonksiyonu ve yapı çarpanı analizleri kullanıldı. Sonuçlar gösterdi ki, AKYD proteinleri 
HFIP içinde şişer ve uzun mesafe düzen olmamasına rağmen topaklanır; çözücü P’de ise, 
deneysel verilerle örtüşen düzenli yapılar oluştururlar.  
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1. INTRODUCTION 

 
 
 
Structural proteins have repetitive amino acid sequences that provide stability and 

mechanical strength to the proteins. The general name given to such proteins is tandem 

repeat (TR) proteins.  For example, spider silk[1] is a TR protein that comprises repetitive 

[AAAAAAAA] sequence surrounded by glycine-rich regions which form crosslinked 

fibers. The alanine sequence increases the rigidity of the fiber whereas the glycine-rich 

regions increase the toughness of the spider silk. Another example would be elastin[2] 

which has repetitive [VGVPG] and [VGGVG] sequences that increase the elasticity of 

the protein.  Similar to spider silk, squid ring teeth (SRT) proteins also have two distinct 

regions, one AVSTH-rich (crystal-forming) and one glycine-rich (amorphous). Native 

SRT proteins[3] were shown to change their various properties, e.g. mechanical, and 

thermal, depending on their chain lengths. However, for native SRT proteins, the chain 

length was non-uniform so the structural control of the properties was limited and the 

crystal-forming and tie-chain regions had inconsistent amino acid sequences among 

native SRT proteins. So, we used a synthetic form of the SRT proteins in this study which 

have been synthesized to have a predetermined sequence which is then repeated to create 

various chain lengths of the SRT protein. The repeat number of the SRT proteins used in 

this study are 4, 7, 11, and 25 to compare our results with the experimental findings [4] 

for the corresponding proteins.  

 

The main assumption of this study is the similarities between polymer and protein 

structures. Both proteins and polymers have smaller building blocks and specifically, the 

structure of the SRT protein resembles a block copolymer with soft and hard segments. 

So, we used the Flory-Huggins (FH) theory of polymers combined with DPD simulations 

to parameterize and characterize the protein-solvent systems. Another reason for this 

choice is the computational cost of MD simulations compared to DPD simulations. MD 
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simulations are atomistic and the step size is on the order of femtoseconds, so a system 

with a solvent and multiple proteins would be computationally expensive to simulate. The 

method we use to parameterize the proteins in this study has been used in previous 

work[5, 6] to simulate polymer solutions. In one of the studies[5] (Avaz, 2017), 

poly(ethylene oxide) based poly(urethane-urea) copolymers were parameterized using 

similar methodology to understand the structure-property behavior of the polymer in 

binary solvent (THF and DMF) systems. The study concludes that the DPD simulations 

allowed for longer simulations with a higher number of chains of polymers at a lower 

computational cost compared to other methods while providing excellent agreement with 

experimentally observed morphologies.  

 

In this study, our objective is to parameterize and characterize the SRT proteins in two 

different solvents, HFIP, and the hypothetical solvent P. HFIP is a known good solvent 

and the experimental results for the SRT proteins in HFIP is readily available to compare 

our computational results. Solvent P is based on the water which is a known poor solvent 

for the SRT proteins. We use solvent P to promote the clustering of the SRT proteins to 

observe their nanostructure. The parameterization starts by using MD simulations to 

calculate cohesive energy densities (CED) using binary MD simulations for all pairwise 

interactions in our system. After the MD simulations, we construct a forcefield for DPD 

simulations and use that to simulate our protein-solvent systems. Then, we use radial 

distribution function (RDF), structure factor, and contact map analysis to characterize the 

simulations.  
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2. THEORY AND METHODS 

 

 

 

  Molecular Dynamics (MD) Simulations  

 
 
MD simulations solve Newton’s 2nd law of motion over a specified period to simulate the 

trajectories of atoms. Definition of force in MD simulations can be written as, 

 

                   𝐹𝐹𝑖𝑖(𝑡𝑡) = 𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖(𝑡𝑡) (1) 

 

where 𝐹𝐹𝑖𝑖 is the force exerted on the particle i, 𝑡𝑡 is the time 𝑚𝑚𝑖𝑖 is its mass and 𝑎𝑎𝑖𝑖 is its 

acceleration. The second derivative of the position with respect to time provides the 

acceleration of a particle at a given point in time. Initial positions of the particles are 

assigned randomly which may not be at a realistic starting point. All non-bonded 

interactions between pairs of particles are treated by the Lennard-Jones potential energy 

function (Figure 2.1),  

 

 𝐸𝐸𝐿𝐿𝐿𝐿�𝑟𝑟𝑖𝑖𝑖𝑖� = 4𝜀𝜀[�
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

] (2) 

 

In equation 2, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between atoms i and j, 𝜎𝜎𝑖𝑖𝑖𝑖 is the distance between atoms 

i and j at which the attractive and repulsive interactions cancel and 𝜀𝜀 is the energy 

minimum. Both 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀 depend on material properties of atoms i and j. In addition to 

the nonbonded interactions, depending on the geometry of the molecules to be 

investigated, additional terms are included in the force field. For example, bonded atoms 

are treated with a harmonic potential.   
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Before a simulation, minimization algorithms such as steepest descent or Newton-

Raphson are used to eliminate possible clashes between atoms due to the random 

distribution of the particles; overlapping atoms cause unreasonably high energies in the 

system which in return lead to extremely large velocities of atoms in the MD simulations. 

During an MD simulation, the Verlet algorithm[7] is used to calculate velocity and 

acceleration from the initial position of the system for all the atoms in the system. 

Afterward, these initial values are iterated for number of times to calculate the positions 

and velocities in subsequent time points. Therefore, MD simulations are deterministic 

once the initial values and positions of the atoms are set following the minimization 

process. Forcefields determine the interactions of the particles in the system. In these 

forcefields, interactions due to quantum effects are approximated or ignored entirely 

depending on the forcefield. This is due to the difficulty of calculating these effects for 

every single atom and also the fact that MD simulations are used to analyze a system’s 

bulk properties[8] (Density, Young’s Modulus, Radial Distribution Function, etc.) which 

is determined using statistical mechanics whereby quantum effects are averaged out.  

 

 

  Binary MD Simulations for amino acid and solvent parametrization 

 
 
Binary systems of amino acids and solvents were put into simulation boxes (Figure 3.1) 

using the Amorphous Cell module of Materials Studio 2018 (MS’18) [9] to ensure the 

data set is large enough to mimic realistic interaction parameters. The density of the 

E L
J 

(k
J/

m
ol

)

r (Å)

σij ε

Figure 2.1 Representation of Lennard-Jones potential energy function 
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simulation boxes was fixed to 1.0 g/cm3. Ewald summation technique was used for the 

computation of long-range interactions in the periodic system, and cut-off value for 

intermolecular interactions was set to 12.5 Å. As forcefield, widely used COMPASS[10] 

(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies), 

COMPASS27[5], and COMPASS II[11] forcefields were considered. Using several short 

simulations, we determined COMPASS II as the most suitable to use for our systems. 

COMPASS II builds on COMPASS and COMPASS27 forcefields which have been 

widely used to study conformational properties of polymers and were parameterized for 

a significant number of drugs in addition to the already existing chemicals. This results 

in COMPASS II being better suited for studying structures containing amino acids. The 

temperature of the simulation was regulated using Andersen[12] thermostat with a 

collision ratio of 1.0. To equilibrate the system, Geometry Optimization feature of the 

Forcite module was used, followed by 50 ps canonical ensemble (NVT) simulations. The 

calculation of cohesive energy density is done using the Forcite module.  Cohesive energy 

density (CED) is the energy needed to separate a unit volume of a material to infinite 

distance from a solution. However, in theory, the equation used to calculate the cohesive 

energy is, 

 
 𝐸𝐸𝑐𝑐𝑐𝑐ℎ,𝑖𝑖 = ∆𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣,𝑖𝑖 − 𝑅𝑅𝑅𝑅 (3) 

 

where ∆𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣 is the enthalpy of vaporization of molecule i, 𝐸𝐸𝑐𝑐𝑐𝑐ℎ is it's cohesive, R is the 

gas constant and T is the temperature of the system. CED is the cohesive energy of a 

system per unit volume area given by,  

 

 𝐶𝐶𝐸𝐸𝐶𝐶𝑖𝑖 =
𝐸𝐸𝑐𝑐𝑐𝑐ℎ,𝑖𝑖

𝑉𝑉𝑚𝑚,𝑖𝑖
 (4) 

 

where 𝑉𝑉𝑚𝑚,𝑖𝑖 is the molar volume of molecule i. To find the molar volume of each amino 

acid and solvent molecules, ACD/Labs Chem Sketch[13] freeware was used. We build 

all molecules using the software and optimize its geometry to calculate the molar volume 

of the molecule. Using the CED values obtained from MD simulations for all possible 

pairs of molecules in the study, we moved on to Dissipative Particle Dynamics (DPD) to 

construct and simulate the systems. 
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  DPD Simulations 

 

 

DPD simulations are governed by Newton’s laws of motion (1), similar to MD 

simulations. The force on bead i due to all interactions with neighboring beads j is defined 

by[14], 

 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 = �(𝐹𝐹𝑖𝑖𝑖𝑖𝐶𝐶 + 𝐹𝐹𝑖𝑖𝑖𝑖𝐷𝐷 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑆𝑆) (5) 

 

where 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖 is the total force acting on bead i in a DPD simulation, 𝐹𝐹𝑖𝑖𝑖𝑖𝐶𝐶 is the conservative 

force acting on bead i due to the neighboring beads j, 𝐹𝐹𝑖𝑖𝑖𝑖𝐷𝐷 is the dissipative force acting 

on bead i, 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅 is the random force acting on bead i and 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅 is the spring force for covalently 

bonded beads, i, and j in a coarse-grained molecule/polymer. The conservative force, 𝐹𝐹𝑖𝑖𝑖𝑖𝐶𝐶, 

is given by[14], 

 𝐹𝐹𝑖𝑖𝑖𝑖𝐶𝐶(𝑟𝑟𝑖𝑖𝑖𝑖) = �
𝑎𝑎𝑖𝑖𝑖𝑖 �1 −

𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

� �̂�𝑟𝑖𝑖𝑖𝑖           𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

0                                       𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

 (6) 

   

where �̂�𝑟𝑖𝑖𝑖𝑖 is the unit vector indicating the direction of the conservative force, 𝑎𝑎𝑖𝑖𝑖𝑖 is the 

interaction between beads i and j in DPD units, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between beads i and j 

and 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖  is the cutoff distance. Conservative forces are the only form of force in DPD 

simulations to be related to material properties through the parameter 𝑎𝑎𝑖𝑖𝑖𝑖. 𝑎𝑎𝑖𝑖𝑖𝑖 is in DPD 

units and is always positive. This property of 𝑎𝑎𝑖𝑖𝑖𝑖 leads to conservative forces being always 

positive, since �1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

� part equation 6 is always positive for  𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖. Therefore, 

conservative forces are always positive and repulsive, so the only interaction between any 

given pair of beads is repulsive and there is no attraction in DPD simulations. The 

equation for 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖 is given by, 
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 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖� = �
𝑎𝑎
2
�1 −

𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

�
2

       𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

0                                𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

 (7) 

 

The intermolecular interaction energy, 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖, in DPD simulations, is always positive 

similar to the conservative force. Comparing Figure 2.1 to Figure 2.2, it is clear that there 

are no energy minima in DPD simulations, unlike Lennard-Jones potentials.  

 

 

 

As for the other types of forces, the equations for the dissipative force, 𝐹𝐹𝑖𝑖𝑖𝑖𝐷𝐷, and the random 

force, 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅(𝑟𝑟𝑖𝑖𝑖𝑖), are[14], 

 

 𝐹𝐹𝑖𝑖𝑖𝑖𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖) = −μω𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖)(�̂�𝑟𝑖𝑖𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖)�̂�𝑟𝑖𝑖𝑖𝑖 (8) 

   

 𝐹𝐹𝑖𝑖𝑖𝑖𝑅𝑅(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝜎𝜎ω𝑅𝑅(𝑟𝑟𝑖𝑖𝑖𝑖)𝜉𝜉∆𝑡𝑡−1 2⁄ �̂�𝑟𝑖𝑖𝑖𝑖 (9) 

   

where 𝜇𝜇 is the friction coefficient, 𝜎𝜎 is the amplitude of the random force, 𝑣𝑣𝑖𝑖𝑖𝑖 is the 

velocity of the beads i and j relative to each other, 𝜉𝜉 is a randomly generated number with 

mean zero and range [-1,1], ∆𝑡𝑡 is the time step of the simulation and ω𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖) and ω𝑅𝑅(𝑟𝑟𝑖𝑖𝑖𝑖) 

are the weight functions for the dissipative force and the random force, respectively; they 

depend on the distance between beads i and j. 𝜎𝜎 is given by[14], 

Figure 2.2 Representative graph of the intermolecular interaction energy in DPD 
simulations 
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 𝜎𝜎 = �2μ𝑘𝑘𝐵𝐵𝑅𝑅 (10) 

   

where 𝑘𝑘𝐵𝐵 is the Boltzmann constant. We also relate two weight functions, ω𝐷𝐷(𝑟𝑟𝑖𝑖𝑖𝑖) and 

ω𝑅𝑅(𝑟𝑟𝑖𝑖𝑖𝑖),  defined in the relations (8) and (9) by the expression[14], 

 

 ω𝐷𝐷�𝑟𝑟𝑖𝑖𝑖𝑖� = [ω𝑅𝑅�𝑟𝑟𝑖𝑖𝑖𝑖�]2 = ��1 −
𝑟𝑟𝑖𝑖𝑖𝑖
𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

�
2

    𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

0                      𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖

 (8) 

 

The role of the random and dissipative forces in DPD simulations is to correct the 

equilibrium of the system and keep the system in the canonical ensemble (NVT). The 

fourth component of the relation (5) is the spring force, 𝐹𝐹𝑖𝑖𝑖𝑖𝑆𝑆(𝑟𝑟𝑖𝑖𝑖𝑖), defined by the 

expression[14], 

 

 𝐹𝐹𝑖𝑖𝑖𝑖𝑆𝑆�𝑟𝑟𝑖𝑖𝑖𝑖� = �𝐶𝐶𝑟𝑟𝑖𝑖𝑖𝑖 (9) 

   

where C is a spring constant defined in DPD units which is the same value for all the 

beads in the system. Other units of measurements are also taken in DPD units for 

simplicity and DPD units are unitless for calculation purposes. The values for 𝑟𝑟𝑐𝑐,𝑖𝑖𝑖𝑖 and 

mass m of a bead is taken as 1 DPD unit. Energy is in units of 𝑘𝑘𝐵𝐵𝑅𝑅 which has a value of 

1 DPD unit. Density ρ is a free variable in the DPD systems. Groot&Warren (1997) 

defined the relation of dimensionless compressibility, (κ-1), to density and 𝑎𝑎𝑖𝑖𝑖𝑖 by[14],  

 

 κ−1 ≈ 1 +
0.2𝑎𝑎𝑖𝑖𝑖𝑖ρ

k𝐵𝐵𝑅𝑅
 (10) 

 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is the interaction parameter of bead i with other beads of the same type. Note 

that this relation is a good approximation if ρ>2 holds[14]. To find the interaction 

parameter for the bead with itself, we evaluate the equation above with a known material 

and a suitable density value. The lowest possible density value that can be chosen while 

keeping the approximation good was found to be 3[14]. As for the κ-1 value, we chose 

water which has dimensionless compressibility of 16. Plugging the values chosen into 
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relation (13), we get [14], 

 

 𝑎𝑎𝑖𝑖𝑖𝑖 = 25𝑘𝑘𝐵𝐵𝑅𝑅 = 25 (14) 

 

So, for ρ=3, DPD systems have a self-interaction parameter of 25.  

 

 

  Flory-Huggins Theory of Polymers 

 

 

Flory-Huggins (FH) theory[15] is a model that expresses the energy for a given polymer-

solvent system and predicts the behavior of that mixture. The Helmholtz free energy is 

suitable for defining the free energy of the mixture since our simulations are at constant 

volume and temperature, 

 

 ∆𝐹𝐹𝐹𝐹𝐹𝐹 = ∆𝑈𝑈𝐹𝐹𝐹𝐹 − 𝑅𝑅∆𝑆𝑆𝐹𝐹𝐹𝐹 (15) 

 

where ∆𝐹𝐹𝐹𝐹𝐹𝐹 is the Helmholtz free energy of mixing for a system, ∆𝐻𝐻𝐹𝐹𝐹𝐹 is the enthalpy of 

mixing and ∆𝑆𝑆𝐹𝐹𝐹𝐹 is the entropy of mixing. There are several assumptions to consider for 

the FH Theory: 

• The system is defined as a lattice with an equal volume of lattice units as seen in  

Figure 2.3. 

• Each lattice point may only be occupied by a monomer or a solvent molecule. 

• Monomers and solvent molecules are assumed to be hard spheres so there is no 

overlapping allowed between the lattice units. 

• Only the configurational entropy is considered when calculating the entropy of 

the system.  



21 
 

 
 
 

Figure 2.3 Visual representation of a polymer-solvent system defined by FH 
theory model  

 

 
2.4.1. The entropy of Mixing for Polymer-Solvent systems 

 

Entropy is related to the number of ways a system may be arranged, 

 

 𝑆𝑆 = 𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙(𝑊𝑊) (16) 

 

Here S is the absolute entropy and 𝑊𝑊 is the number of ways monomers/molecules can be 

arranged on the lattice. For a given molecule, 𝑊𝑊 is the same as the number of all lattice 

sites, 𝑙𝑙𝑙𝑙. If we consider a mixture of two types of species, solvent A and polymer P, then 

their change in entropy per lattice site is[16], 

 

 

∆𝑆𝑆𝐴𝐴 = 𝑘𝑘𝐵𝐵 ln(𝑙𝑙𝑙𝑙) − 𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙�𝑙𝑙𝑙𝑙𝑉𝑉𝑓𝑓,𝐴𝐴� = −𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙(𝑉𝑉𝑓𝑓,𝐴𝐴) 

 

∆𝑆𝑆𝐷𝐷 = 𝑘𝑘𝐵𝐵 ln(𝑙𝑙𝑙𝑙) − 𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙�𝑙𝑙𝑙𝑙𝑉𝑉𝑓𝑓,𝐷𝐷� = −𝑘𝑘𝐵𝐵𝑙𝑙𝑙𝑙(𝑉𝑉𝑓𝑓,𝐷𝐷) 

(17) 

 

where 𝑉𝑉𝑓𝑓,𝐴𝐴 and 𝑉𝑉𝑓𝑓,𝐷𝐷 are the volume fractions of the solvent molecule and the polymer, 
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respectively. We can construct the equation for the entropy of mixing per lattice site using 

the relations in (17)[16],  

 

 ∆𝑆𝑆𝐹𝐹𝐹𝐹 = −𝑘𝑘𝐵𝐵(𝑉𝑉𝑓𝑓,𝐴𝐴𝑙𝑙𝑙𝑙�𝑉𝑉𝑓𝑓,𝐴𝐴� +
𝑉𝑉𝑓𝑓,𝐷𝐷

𝑁𝑁𝐷𝐷
𝑙𝑙𝑙𝑙�𝑉𝑉𝑓𝑓,𝐷𝐷�) (18) 

 

where 𝑁𝑁𝐷𝐷 is the degree of polymerization for polymer P. Relation (18) shows that the 

entropy of mixing is directly dependent on the length of the polymer and the volume 

fractions of both the solvent and the polymer.   

 

 

2.4.2. Free Energy of Mixing for Polymer-Solvent Systems 

 

The enthalpy of mixing is the energy term which is the result of all the interactions in the 

mixture. When defining the free energy (equation 18), we did not include enthalpy 

directly into the equation. This is because enthalpy change is equivalent to the internal 

energy change for the Helmholtz free energy definition. We can prove it by writing the 

general expression for enthalpy change in a system, 

 

 ∆𝐻𝐻𝐹𝐹𝐹𝐹 = ∆𝑈𝑈𝐹𝐹𝐹𝐹 − 𝑃𝑃∆𝑉𝑉 (11) 

 

where ∆𝐻𝐻𝐹𝐹𝐹𝐹 is the enthalpy change of the system, ∆𝑉𝑉 is the volume change of the system, 

and P is the pressure of the system. Since we assumed the lattice units would have no 

volume change, 𝑃𝑃∆𝑉𝑉 term is 0. So, for our system, enthalpy and internal energy is 

equivalent. The internal energy of a polymer-solvent mixture per lattice site is defined 

as[16], 

 

 ∆𝑈𝑈𝐹𝐹𝐹𝐹 = 𝜒𝜒𝑖𝑖𝑖𝑖  𝑉𝑉𝑓𝑓,𝐴𝐴𝑉𝑉𝑓𝑓,𝐷𝐷 𝑘𝑘𝐵𝐵𝑅𝑅 (20) 

 

where  𝜒𝜒𝑖𝑖𝑖𝑖 is the Flory-Huggins interaction parameter defined as[16], 

 

 𝜒𝜒𝑖𝑖𝑖𝑖 =
𝑧𝑧
2

(2𝜔𝜔𝐴𝐴𝐷𝐷 − (𝜔𝜔𝐴𝐴𝐴𝐴 + 𝜔𝜔𝐷𝐷𝐷𝐷)) (21) 
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where z is the coordination number in the system (lattice), 𝜔𝜔𝐴𝐴𝐴𝐴, 𝜔𝜔𝐷𝐷𝐷𝐷 and  𝜔𝜔𝐴𝐴𝐷𝐷 are the 

interaction parameters for the solvent with itself, the polymer with itself and, between the 

solvent and the polymer, respectively. Combining equations (18) and (20) to construct 

the free energy of mixing per lattice for the polymer-solvent mixture, we arrive at the 

following expression[16], 

 

 ∆𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑘𝑘𝐵𝐵𝑅𝑅(𝑉𝑉𝑓𝑓,𝐴𝐴𝑙𝑙𝑙𝑙�𝑉𝑉𝑓𝑓,𝐴𝐴� +
𝑉𝑉𝑓𝑓,𝐷𝐷

𝑁𝑁𝐷𝐷
𝑙𝑙𝑙𝑙�𝑉𝑉𝑓𝑓,𝐷𝐷� + 𝜒𝜒𝑖𝑖𝑖𝑖  𝑉𝑉𝑓𝑓,𝐴𝐴𝑉𝑉𝑓𝑓,𝐷𝐷 ) (22) 

 

 

2.4.3. Good, Poor, and Theta Solvent Behavior  

 
The main attribute of a good solvent is the unfolding of the chain for our systems. In a 

good solvent, repulsive interactions are too weak to cause a phase separation between 

the chains and the solvent. So, the chains will swell and expand into the solution.  FH 

theory quantifies the solvent behavior with 𝜒𝜒𝑖𝑖𝑖𝑖 parameter. If the value of 𝜒𝜒𝑖𝑖𝑖𝑖 is between 

0 and 0.5[17] where i  is the solvent and j is the bead of a chain, then that solvent is 

assumed to be a good solvent. As the value of 𝜒𝜒𝑖𝑖𝑖𝑖 decreases, the interaction parameter 

between protein beads and the solvent beads become more alike since similar beads are 

assumed to have 0 as their 𝜒𝜒𝑖𝑖𝑖𝑖 parameter[17]. In poor solvents, the solvent beads and the 

protein beads separate into two phases which are polymer-rich and solvent-rich. This is 

due to the strong repulsion between protein and solvent beads. The border between 

good and poor solvents are at 𝜒𝜒𝑖𝑖𝑖𝑖=0.5[17] which is defined as the theta solvent. For 𝜒𝜒𝑖𝑖𝑖𝑖 

greater than 0.5[17], the solvent is assumed to be poor and segregation of the protein 

will be observed in the system. However, in a theta solvent, the repulsion between the 

solvent beads and the protein beads are stronger than good solvent but not enough to 

cause a phase separation.   
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  Coarse Graining 

 
 
Coarse graining, in this thesis, is transforming a molecule into a hard sphere (bead). While 

we lose details at the atomic scale, the general behavior of the system does not change. 

We coarse-grained the amino acids according to a study[18] on the subject and depending 

on the sizes of the amino acids, we used either a single bead or two beads. We coarse-

grained the solvent, HFIP, into a single bead since its relative size difference to the amino 

acids was negligible (see Figure 2.4 for an example).  

 

 

 

 

 

 

  

 

 

  

A B 

Figure 2.4 HFIP Molecule with its bead(A). Histidine with its beads(B). 
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  Interaction Parameter Calculation 

 
 
As defined in equation 14, the self-interaction parameter in DPD simulations is 25. Bead-

bead interactions are defined as deviations from this self-interaction parameter and given 

by the following expression, 

 

 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 + ∆𝑎𝑎𝑖𝑖𝑖𝑖 (23) 

 

where 𝑎𝑎𝑖𝑖𝑖𝑖 is the interaction between beads i and j, and ∆𝑎𝑎𝑖𝑖𝑖𝑖 is the deviation from the self-

interaction due to bead-bead interactions. The studies of Groot&Warren (1997) has 

shown that ∆𝑎𝑎𝑖𝑖𝑖𝑖 parameter is directly related to the FH interaction parameter with the 

following relation[14], 

 
∆𝑎𝑎𝑖𝑖𝑖𝑖 =

𝜒𝜒𝑖𝑖𝑖𝑖𝑘𝑘𝐵𝐵𝑅𝑅
0.306

 (24) 

 

Substituting equation 24 into equation 23, we arrive at the relation between DPD 

interaction parameter and the FH interaction parameter,  

 

 𝑎𝑎𝑖𝑖𝑖𝑖 = 25 + 3.27𝜒𝜒𝑖𝑖𝑖𝑖 (25) 

 

In equation 25, 𝑎𝑎𝑖𝑖𝑖𝑖 is the interaction parameter between the beads i and j. To find the 

interaction parameters between the beads, we needed to define the FH interaction 

parameter for our system.  To find the energy of mixing of the system, we used CED 

values obtained from the MD simulations discussed in section 2.2. CED is also the square 

of the Hildebrand solubility parameter, 𝛿𝛿,[19] which is used to quantify the solubility of 

systems containing polymers. The energy of mixing, ∆𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖𝑖𝑖, is related to the CED of 

the beads, for both pure and mixed state, with the following relations [6], 

 

 ∆𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖𝑖𝑖 = Ф𝑖𝑖𝐶𝐶𝐸𝐸𝐶𝐶𝑖𝑖 + Ф𝑖𝑖𝐶𝐶𝐸𝐸𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐸𝐸𝐶𝐶𝑖𝑖𝑖𝑖 (26) 
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where Ф𝑖𝑖 is the volume fraction of amino acids or solvent molecules, i, in the MD 

simulations. The relation between the FH interaction parameter, 𝜒𝜒𝑖𝑖𝑖𝑖, and the energy of 

mixing as follows[6, 20], 

 

 𝜒𝜒𝑖𝑖𝑖𝑖 = �
∆𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅 �𝑉𝑉𝑏𝑏𝑏𝑏𝑣𝑣𝑏𝑏 (27) 

 

where 𝑉𝑉𝑏𝑏𝑏𝑏𝑣𝑣𝑏𝑏 is the average volume of beads i and j. Flory-Huggins interaction parameters 

may be obtained experimentally, or they may be related to a material’s solubility 

parameter. ∆𝐸𝐸𝑚𝑚𝑖𝑖𝑚𝑚,𝑖𝑖𝑖𝑖 is calculated using solubility parameter δ = �(𝐶𝐶𝐸𝐸𝐶𝐶). By combining 

equations 26 and 27, we find the FH parameter for all pairs in the system. Then, using 

equation 25, we construct the DPD interaction parameters for all the beads in the system. 
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  Radial Distribution Function (RDF) 

 
 
RDF measures how atoms are distributed in a system with reference to a particle. To 

calculate RDF for the whole system, shells with a fixed width are used. RDF is given by 

the following relation[21], 

 𝑔𝑔(𝑟𝑟) =
𝑑𝑑𝑙𝑙𝑟𝑟

𝜌𝜌(𝑟𝑟)𝑑𝑑𝑉𝑉𝑠𝑠ℎ𝑏𝑏𝑙𝑙𝑙𝑙
 (28) 

  

where 𝜌𝜌(𝑟𝑟) is the density of the material within the specified radius, 𝑑𝑑𝑉𝑉𝑠𝑠ℎ𝑏𝑏𝑙𝑙𝑙𝑙 = 4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 

is the volume of the spherical shell and 𝑑𝑑𝑙𝑙𝑟𝑟 is the number of atoms in the spherical shell 

[22]. 

 

 

As schematically shown in Figure 2.5, the labeled atoms are the only ones that are in the 

shell, so they are counted as being in the shell with the thickness of dr. The value for dr 

is arbitrary but it should be chosen according to the system size to account for the noise 

and the desired level of details. The long-range value of the RDF converges to one in 

amorphous systems. Thus, the main benefit of the RDF analysis is the local structural 

information it can provide for a system. Especially, the crystal structure of a material has 

considerably higher intensity in its RDF values compared to amorphous regions.   

Figure 2.5 Visualization of RDF shells  
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  Structure Factor Analysis 

 

 

Structure factor, 𝐼𝐼(𝑠𝑠), is experimentally obtained using methods such as x-ray scattering. 

In the case of small-angle x-ray scattering (SAXS), it is used to characterize the overall 

structure of materials. In computational studies, the structure factor may be related to the 

coordinates of the atoms in a simulation since it is the Fourier transform of the RDF. The 

relation between RDF and structure factor is given by the following relation[23], 

 

  𝑔𝑔(𝑟𝑟) =
𝑟𝑟2

2𝜋𝜋2
� 𝑠𝑠2𝐼𝐼(𝑠𝑠)

sin (𝑠𝑠𝑟𝑟)
𝑠𝑠𝑟𝑟

𝑑𝑑𝑠𝑠
∞

0
 (29) 

   

where 𝑠𝑠 is related to the diffraction angle θ and the wavelength of the incoming light 𝜆𝜆 

through,  

 

     𝑠𝑠 =
4𝜋𝜋 sinθ

𝜆𝜆
Å−1 (29) 

                                            

While 𝑟𝑟 in RDF analysis gives information on the short-range structure of the material, 

since 𝑠𝑠 has the inverse units of 𝑟𝑟, structure factor analysis gives information about the 

structure of the overall system rather than the local details. Smaller 𝑠𝑠 values such as 

0.01 Å−1 corresponds to distances on the order of 100 Å and can describe the interaction 

between large nanoscale assemblies at such distances, as well as the size and shape of 

those nanostructıres.  
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  Contact Map Analysis 

 

 

Contact Maps[24, 25] are used to visualize the close contacts in a structure, for pairs of 

selected particles residing at distances below a preselected threshold. This information is 

arranged into a symmetric matrix; e.g. to disclose local structural organizations such as 

alpha helices or beta sheets formed by amino acid arrangements in folded proteins. For a 

system of N amino acids, this information is arranged in a N 𝑥𝑥 N matrix. If the distance 

between amino acids i and j is lower than the threshold value, the value of (i,j) is 1 or 

otherwise, it is 0. Using this simple method, it is possible to identify secondary structures 

of proteins and other trends emerging from the packing of amino acids in specific orders.  

 

 

 

 

 

 

 

Figure 2.6 Contact Map analysis of a single chain Squid Ring Teeth protein in Poor 
Solvent 
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An example contact map is shown in Figure 2.6. To quantify our findings with the contact 

map analysis, we counted and classified how many beads are clustered together for a 

given system. The exact method of finding and counting clusters is given by the following 

pseudo codes: 

 Cluster_Finder.m (Appendix A-1) 
1. Input: Contact Map as an upper-diagonal binary matrix 

2. Check two elements at a time until both are 1 and record the pointer 
position 

3. If found, put them into an array, check other elements along the diagonal 

4. Repeat until all the neighboring elements are checked and recorded into 
the array at Step 3 

5. When no other elements are found in the group, record all their indices 
(vertical and horizontal separately) as arrays and erase them from the 
original array 

6. Move the pointer one element forward 

7. Return to Step 2  

8. Run the script until all the matrix has been checked 

9. Output: Indices as arrays from Step 5 

  
 Cluster_Counter.m (Appendix A-2) 

1. Input: Indices as arrays (V-H Arrays) from the first script 

2. Two empty (Temp) arrays are used to store elements from the arrays of 
Step 1 

3. If any two elements have consecutive indices, they are added to Temp 
arrays created in Step 2 

4. All the elements that are added to Temp arrays in Step 3 are deleted from 
V-H arrays from Step 1   

5. Repeat steps 2-4 until all the consecutive indices are found for a single 
group 

6. After all the elements for a group is found, the size of Temp arrays is 
recorded in an array (Out) and then Temp arrays are emptied 

7. Repeat from Step 1 using the updated V-H arrays until they are empty 

8. Output: Out array with the cluster sizes of every group counted 

  

To generate the contact map matrices, R[26] freeware was used with Bio3D[27] package. 

Then, using MATLAB R2020a[28] Software, the scripts mentioned above were used to 

process the contact map matrices.  
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3. RESULTS AND DISCUSSION 

 

 

 

Two different solvents were used in the study which is HFIP and a hypothetical poor 

solvent denoted P. The decision to use these HFIP came from the experimental 

results[29]. HFIP is known to be a good solvent for the SRT proteins regardless of their 

sizes. This enabled us to compare our computational results to the experimental results. 

However, to examine the secondary structure formation of the system, a poor solvent was 

needed for the SRT proteins. To that end, solvent P was arbitrarily parametrized to have 

high FH interaction parameters with all the amino acids in the SRT proteins. 

 

 

We examined four SRT proteins in this study which were named n4, n7, n11, and n25. 

The difference between the SRT proteins is the repeat number of the same sequence of 

amino acids. Repeat units represent the number of times the sequence of the SRT proteins 

is repeated for a given chain. Thus, the repeat units for the SRT proteins are 4, 7, 11, and 

25 for SRT proteins n4, n7, n11, and n25, respectively. These segments are made up of 

(Ala), glycine (Gly), histidine (His), leucine (Leu), proline (Pro), serine (Ser), valine 

A 

B C 

Figure 3.1 Alanine/HFIP Molecular Dynamics Box(A). Alanine as a molecule and a 
bead(B). Hexafluoro-2-propanol as a molecule and a bead(C) 
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(Val), and tyrosine (Tyr) amino acids. The amino acid sequence for the segments is as 

follows[30], 

 

(STGTLSGYGGYGGLGYGGLGYGGLGGYG)1P(AAASVSTVGHGH)2P 

 

where the parentheses indicate regions numbered one and two which are the tie-chain, 

and the crystal forming regions, respectively (Figure 3.2). The tie-chain region is shown 

to be amorphous[30] and the crystal forming region is rigid. However, the exact 

secondary structure of the protein is unknown. 

 

 

To parametrize amino acids, we assigned a single bead to all of them except tyrosine and 

histidine. Histidine and tyrosine were divided into two beads[18], one for their backbone 

and another for their side chain. Their backbone beads were assumed to interact similarly 

to glycine so the interaction parameter for glycine is assigned to the backbone beads. The 

side chain beads were parameterized separately. Each distinct amino acid and solvent 

structure were constructed using MS’18 sketch atom feature. To equilibrate the 

structures, we used the geometry optimization feature of the Forcite module of MS’18 

with a maximum of 50000 iterations each. These are followed by MD simulations as 

described in section 2.2 

 

 

 

 

 

 

 

 

 

 

Tie-chain region Crystal Forming Region 

Figure 3.2 Coarse grained SRT protein with four repeat units (n4). Blue labeled region is 
the crystal forming region and red labeled region is the tie-chain region 
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  Comparison of Two Solvents and DPD Interaction Parameters  

 
 
To compare HFIP and solvent P systems, we kept the concentration of the systems at 2 

wt.% of the solvent. The last snapshot of the simulation in Figure 3.3 shows the SRT-n4 

proteins as swollen in HFIP which indicates that the solvent beads have attractive or weak 

repulsive interactions with the amino acid beads. Similarly, experimental results indicate 

that HFIP is a good solvent for SRT protein systems since it is a hydrogen bond-forming 

polar solvent[29]. However, the SRT-n4 proteins cluster together in solvent P. The 

repulsion of the solvent P beads and the amino acid beads are strong enough to separate 

the system into two distinct phases so solvent P is a poor solvent for SRT-n4 proteins. 

Additionally, we simulated identical systems with SRT-n7, SRT-n11, and SRT-n25 

proteins with HFIP and solvent P. The results of those simulations mirror the findings 

from the SRT-n4 proteins and solvent systems, and their last snapshots are displayed in 

Appendix B-1 and B-2.  

 

 

 

All pairwise interactions between the amino acid and solvent molecules are displayed in 

Table 3.1. The most notable interactions between amino acids include the side chain of 

histidine. The most attractive interactions in the system are between leucine and histidine,

A B 
Figure 3.3 Last Snapshots of the HFIP-SRT-n4 (A) and Dilute Solvent P-SRT-n4 (B) 
DPD simulations 
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* The values for Histidine and Tyrosine are for the side chain beads, not the whole amino acid.  

followed by tyrosine and histidine. The common property of tyrosine and leucine is their 

hydrophobicity. Adding to this, the reactivity of histidine and tyrosine might have 

increased by the removal of their backbone. Other amino acid-amino acid interactions are 

either weak repulsions or attractions. The interaction parameters between HFIP and 

amino acids clearly show that HFIP is a good solvent for the system. Aside from leucine-

HFIP pair, all other FH interaction parameters are below 0.5. These values also agree with 

the observations made in DPD simulations from Figure 3.3. Solvent P was parameterized 

using water molecules and amino acids in binary MD simulations. However, when 

calculating the FH interaction parameter, we did not account for the volume difference 

between water molecules and amino acids molecule to have a solvent which repels all 

amino acids strongly. So, the final FH parameters for solvent P are based on water, which 

is a known poor solvent for SRT proteins, but the values of the parameters are not 

representative of water molecules with the amino acids in the study. The value for the FH 

interaction parameter is over 5 for all interactions between the amino acids and solvent P 

which is an order of magnitude higher than the poor solvent interaction parameter limit.

Table 3.1 The FH Interaction Parameters, 𝜒𝜒𝜒𝜒𝜒𝜒, are in bold and in the upper diagonal part 

of the table whereas DPD Interaction Parameters, aij, are in the lower diagonal part of the 

table. Colored borders indicate those beads that are only found in a specific region in the 

SRT, red for tie-chain region and blue for crystal forming region 

 

 

 

 Ala Ser Thr Gly Leu Tyr Pro Val His HFIP Solvent P 

Ala 25/0 0.25 0.05 0.19 -0.03 -0.31 0.11 0.11 -0.07 0.02 5.13 

Ser 25.82 25/0 -0.17 0.08 -0.03 0.02 0.15 0.26 0.03 0.39 5.21 

Thr 25.17 24.44 25/0 -0.06 -0.17 -0.24 0.37 0.19 -0.26 0.34 6.19 

Gly 25.62 25.25 24.79 25/0 -0.37 -0.27 0.05 0.05 0.00 0.19 4.90 

Leu 24.91 24.89 24.44 23.80 25/0 -0.07 0.35 0.37 -1.27 0.85 7.82 

Tyr 24.00 25.08 24.21 24.11 24.77 25/0 -0.06 -0.03 -0.52 -0.01 6.62 

Pro 25.35 25.48 26.21 25.17 26.15 24.79 25/0 0.38 -0.04 0.22 6.22 

Val 25.34 25.84 25.63 25.17 26.20 24.89 26.24 25/0 -0.09 0.45 6.59 

His 24.76 25.09 24.15 24.99 20.86 23.30 24.86 24.71 25/0 -0.49 5.32 

HFIP 25.08 26.26 26.11 25.62 27.76 24.97 25.72 26.48 23.39 25/0 - 

Solvent P 41.79 42.04 45.24 41.04 50.58 46.65 45.34 46.56 42.41 - 25/0 

* 

* 

* * 
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  Effect of Solvent Type on the Organization of the TR proteins 

 

 

Radial distribution function gives valuable information on the short-range order in a 

molecular system. For our protein, the interactions between crystal and tie-chain parts are 

essential in understanding the nanostructure of the protein. To analyze our systems, we 

used the Mesocite Analysis module of MS’18 Software. Our cutoff distance was 20 Å 

and our interval 𝑑𝑑𝑟𝑟 (Section 2.6) for all RDF results was 0.05 Å.  
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Figure 3.4 RDF Analysis of SRT-n4 Protein in Good (A) and Dilute Poor (B) Solvent.  

 

In Figure 3.4, we display the results for the SRT-n4 as a representative system. The RDF 

results are almost identical for SRT-n7, SRT-n11, and SRT-n25 proteins in both solvents, 

and are not displayed separately. Good solvent and dilute poor solvent refer to HFIP and 

solvent P, respectively. The main RDF peak for both systems is around 7 Å which is 

almost twice the length of virtual bonds connecting the beads that are 4 Å. The intensities 

of the curves show that the beads in the crystal-forming region and tie-chain region prefer 

to interact with similar beads since the least interaction is between the tie-chain regions 

and crystal-forming regions. Crystal forming region and tie-chain region peaks are at the 

same distance; however, the intensity for the crystal forming region’s peak is higher than 

that of the tie-chain. Experimentally[4], the crystal-forming region is denser compared to 

the amorphous tie-chain region. Therefore, the computational results agree with the 
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experimental observations.  

 

Comparing the solvents, solvent P has higher peaks compared to HFIP. Since the RDF 

results are indicative of short-range interactions, they show that solvent P has more short-

range interactions. Solvent P is a poor solvent and the SRT proteins cluster in this solvent 

as shown in Figure 3.3. Therefore, the higher number of short-range interactions are 

consistent with the properties of the solvent P. Short-range interactions are lower in HFIP 

because HFIP is a good solvent and the SRT proteins swell in good solvents. The overall 

distance between the amino acids increases as the protein swells and, as a result, the 

number of interactions between regions in the SRT proteins decreases. 

 
Figure 3.5 shows the total system, intrachain, and interchain RDF results for the SRT proteins in 

a good solvent. The total RDF results show that the intensity of the crystal forming region’s RDF 

peak is higher than the tie-chain region’s RDF peak for all SRT protein systems. Intrachain RDF 

results are identical to the total RDF results for both crystal-forming region and the tie-chain 

region which indicate that the system is dominated by the intrachain interactions. Interchain RDF 

results also support this claim since the intensity of the RDF results is more than an order of 

magnitude lower than the intrachain RDF results. These results are consistent with the previous 

findings since in a good solvent, the protein chains are swollen and the interaction between the 

chains is minimal. Figure 3.6 shows the total system, intrachain, and interchain RDF results for 

the SRT proteins in a dilute poor solvent. The total RDF, the intrachain RDF, and the interchain 

RDF results show that the crystal-forming regions have a higher intensity peak compared to the 

tie-chain regions. The SRT protein size difference between the systems only affects intrachain 

and interchain RDF results, not total RDF results. Both intramolecular RDF results, crystal-

forming region, and tie-chain region, has higher peaks for longer chains of the SRT proteins in 

the systems. So, the longer chains interact with themselves more than the shorter chains interact 

with themselves. The interchain RDF results show the opposite trend compared to the intrachain 

RDF results. Longer chains have lower intensities in the interchain RDF results, so the shorter 

chains interact with other chains more than longer chains interact with others. Since the total RDF 

results of the systems is a combination of the interchain and the intrachain RDF results, the size 

dependency of the interchain and the intrachain RDF results cancel each other in the total RDF 

results.  
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Figure 3.5 SRT Proteins in HFIP. Total System RDF Analysis of Crystal region (A) and 
Tie-chain region (B); Intrachain RDF Analysis of Crystal region (C) and Tie-chain region 
(D); Interchain RDF Analysis of Crystal region (E) and Tie-chain region (F). 
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Figure 3.6 SRT Proteins in Dilute Poor Solvent Total System RDF Analysis of Crystal 
region (A) and Tie-chain region (B); Intrachain RDF Analysis of Crystal region (C) and 
Tie-chain region (D); Interchain RDF Analysis of Crystal region (E) and Tie-chain region 
(F). 
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The RDF results for both the good solvent and the dilute poor solvent show that the crystal 

forming region’s beads are more clustered than the tie-chain region’s beads. The 

interaction within a chain is high in both solvents, however, interchain interactions are 

only present in the dilute poor solvent. Also, the size of the SRT proteins change the 

interaction amount in the dilute poor solvent, but do not have any effect in the good 

solvent.  
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Figure 3.7 Structure Factor calculation of SRT Proteins of 1. Crystal region in Good (A) 
and Dilute Poor (B) Solvent 2. Tie-chain region Good (A) and Dilute Poor (B) Solvent. 

 

Figure 3.7 shows the structure factor calculation results of the SRT proteins in the good 

solvent and the dilute poor solvent. The structure factor graphs for the crystal-forming 

region and the tie-chain region are identical for the SRT proteins in both solvents. The 

structure factor calculations of the systems containing SRT proteins and the good solvent 

have a limited amount of detail. The lack of long-range order is consistent with the 

established characteristics of SRT proteins in a good solvent. In contrast, the structure 
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factor calculations for the SRT proteins in dilute poor solvent point to a long-range order 

in the systems. However, the number of chains in the simulations were too few to 

understand the nanostructure of the systems.  

 

 

  Effect of Solvent Concentration on the Morphology of the TR Proteins 

in a Poor Solvent  

 

 

We simulated the concentrated poor solvent systems with the same parameters as the 

good solvent and the dilute poor solvent parameter, except for the concentration of the 

solvent in the simulations. To find the optimal concentration, we simulated six systems 

that had 5wt.%, 10wt.%, 15wt.%, 20wt.%, 25wt.%, and 30wt.% poor solvent in SRT-n4 

protein. The last snapshots of the simulations are in Appendix C. We observed that the 

morphology of the systems significantly changed after 25wt.% and the SRT proteins 

formed cylindrical continuous structures rather than forming clusters due to 

oversaturation. So, we increased the solvent concentration from 2wt.% to 20wt.% for the 

concentrated poor solvent simulations since the main purpose of these simulations over 

the dilute poor solvent simulations was to provide additional information on the 

nanostructure of the SRT protein systems. 

 

Figure 3.8 shows the final morphologies of the SRT proteins in the concentrated poor 

solvent. All the SRT systems have simple cubic structures, but the connectivity of the 

spherical clusters changes as the number of repeats is increased from SRT-n4 to SRT-

n25. The SRT-n4 system has a 1-D necklace-type morphology. The proteins form many 

spheres in the simulation box and the spheres connect in one direction only. The SRT-n7 

system adds one more dimension to its morphology compared to the SRT-n4 system and 

forms a grid with the spheres and their connections. The SRT-n11 adds another dimension 

to the SRT-n7 system and creates a 3-D cubic structure. The chains stack around the edges 

of the cube to form spherical clusters and the clusters are connected via swollen chains. 

The SRT-n25 system’s morphology is similar to the SRT-n11 system since they are both 

3-D cubic structures. However, the SRT-n25 has additional connections along the main 

diagonal of the cube.  
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Figure 3.8 Last Snapshots of the HFIP-SRT n4 (A), n7 (B), n11 (C), and n25 (D) 

in concentrated poor solvent DPD simulations  

 

C 
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Figure 3.9 RDF Analysis of SRT-n4 Protein in Concentrated (A) and Dilute Poor (B) 
Solvent. 

 

In Figure 3.9, we used SRT-n4 in concentrated and dilute solvents to observe the 

difference between the systems. The crystal forming and tie-chain region trends are 

similar between the systems, however, the RDF peaks are sharper for the dilute poor 

solvent system. Also, the peak of the RDF results shifts from 7 Å to 6 Å between the 

dilute poor solvent and the concentrated poor solvent. The concentrated poor solvent 

system has considerably more SRT protein chains than the dilute solvent system and the 

SRT proteins cluster in the poor solvent so the shift and broadening of the peaks in RDF 

results is the formation of bigger clusters in a concentrated poor solvent. As the cluster 

size increases, the number of interacting beads in proximity also increases. This increase 

forces both crystal forming and tie-chain region to interact within themselves and with 

one another more and it is the reason for the decrease in the difference between the RDF 

results of separate regions in SRT proteins. 

 

Figure 3.10 shows the RDF results of the SRT proteins in concentrated solvent for the 

total system, intrachain interactions, and interchain interactions. The interactions of the 

crystal forming region and the tie-chain region are identical for the intrachain and the 

interchain RDF results. The chains interact with themselves until around 10 Å; however, 

after that point, the interaction within the chain starts to converge to zero. The interchain 

interactions peak around 6 Å, similarly to intrachain interactions, but as we move away 

from 6 Å, the RDF value stays constant.  So, the interchain interactions are more 
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pronounced at higher distances of the RDF graphs. The size of the chains does not affect 

the RDF results of the systems. 
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Figure 3.10 SRT Proteins in Concentrated Poor Solvent. Total System RDF Analysis of 
Crystal region (A) and Tie-chain region (B); Intrachain RDF Analysis of Crystal region 
(C) and Tie-chain region (D); Interchain RDF Analysis of Crystal region (E) and Tie-
chain region (F) 
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Figure 3.11 Structure Factor calculation of SRT Proteins of 1. Crystal region in 
Concentrated (A) and Dilute (B) Poor Solvent 2. Tie-chain region Concentrated (A) and 
Dilute (B) Poor Solvent. 

 

In Figure 3.11, we compare the structure factors of the dilute and the concentrated poor 

solvent systems. The structure factor graphs indicate that the crystal forming region and 

the tie-chain region are identical for both poor solvent systems. The dilute poor solvent 

system’s structure factor graphs have similar features to the corresponding graphs from 

the concentrated poor solvent; however, many of the details are missing. The 

concentration increase enabled us to study the system in a more detailed manner. The 

structure factor calculation results of the concentrated poor solvent show that there is an 

order in the system[23]. 
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Figure 3.12 shows the contact maps of single-chain SRT proteins in a concentrated poor 

solvent. Since the entire system contact map matrices are too large to plot and visually 

examine, the single chain contact maps are displayed. All the chains have multiple 

interaction regions between their amino acid beads as indicated by the clustered points in 

the plots. To quantify how the clusters form, we have resorted to counting the number 

and type of residues in the clusters as outlined in section 2.8. 

Figure 3.12 Contact Map Analysis of Single Chain SRT n4 (A), n7 (B), n11 (C), n25 (D) 
in concentrated poor solvent  

D C 

B A 
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Figure 3.13 Analysis of the Contact Map of the SRT proteins in a concentrated poor 
solvent. Average strands per bundle in SRT n4, n7, n11, and n25 are 3.01, 3.01, 3.06, and 
3.05, respectively.  

 
 

Based on the experimental findings, the proposed nanostructure of the SRT proteins is 

ordered clusters that are on the order of 3-4 nm which are formed by the crystal forming 

regions and connected via tie-chain regions of the SRT proteins. [3] Figure 3.13 displays 

the number of strands per bundle residing in the computational morphologies. 

Experimentally, the number of strands per bundle is unknown, but it is known that the 

number is constant between all SRT proteins. So, the computational analysis of the 

bundles partially agrees with the experimental results, but the answer is not yet 

conclusive.  
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4. CONCLUSIONS 

 

 

 

In this study, we used multiscale simulations to parameterize and model the SRT protein 

systems. The initial part of the study the parametrization of the amino acid and solvent 

molecules. We used HFIP and SRT protein system as a reference to check our simulations 

against the experimental data[3]. The swelling of the proteins, RDF results given in 

Figure 3.5, and the lack of long-range order shown by the structure factor results in Figure 

3.7 clearly show that HFIP parameters that we calculated imitate the real-life interactions 

between HFIP and SRT proteins.  

 

We used solvent P to characterize SRT proteins in a highly repulsive solvent. The first 

set of simulations we did with solvent P was the 2wt.% concentration solvent simulations 

in which we observed the clustering of the SRT proteins. However, the concentration was 

too low to get detailed information on the possible secondary structure formation of the 

SRT proteins. So, we increased the concentration of solvent P in our simulations from 2 

wt.% to 20 wt.% after a concentration sweep study detailed in section 3.3. The second set 

of simulations we did with solvent P was the 20 wt.% solvent simulations. The SRT 

proteins clustered in these simulations and the long-range order of the system was more 

apparent compared to the 2wt.% solvent simulations as seen in Figure 3.3. Later stages 

of the study focused on the characterization of the clusters in a concentrated poor solvent. 

We used two MATLAB scripts on the contact map analysis results of the SRT protein 

systems to count all the β-sheet-like structures inside the clusters and classify them 

according to their sizes which are shown in Figure 3.13. These results point to ordered 

structures inside the clusters. However, the exact properties of these ordered structures 

are unknown currently. 

 

Overall, the novel multiscale modeling process in this study is shown to be a good 
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approximation in the parameterization and prediction of the behavior of the SRT proteins 

in different solvents. This process is valuable for systems without proper databases in the 

literature which was the case for the SRT proteins. The forcefield parameterization and 

the MD simulations are computationally expensive compared to the parameterization 

process in this study. One advantage of the SRT proteins used in this study is that it 

contains 9 of the 20 naturally occurring amino acids, and that they do not contain charged 

residues, as modeling of charges in DPD simulations have additional difficulties that we 

did not need to address in this thesis. 

 

This thesis is a first step towards building an efficient scheme for modeling SRT proteins 

in various solvents. As future work, modeling the proteins in a solvent that realistically 

represents water and DMSO will be the first goal. This will enable comparing the 

morphologies obtained in HFIP, DMSO and water. While the mechanical properties of 

proteins obtained in these different solvents differ, it has not yet been possible to delineate 

the origin of these differences[31]. To gain information at the atomistic detail, in 

particular the identification of the secondary structure of SRT proteins, the morphologies 

of the coarse-grained equilibrated structures may be reverse-mapped as exemplified in 

the literature for obtaining helical structures of PIPOX chains[6]. Our ultimate goal is to 

relate SRT morphologies to various material properties to develop SRT-based advanced 

technology materials.  
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APPENDIX A 

 
 
 
Cluster_Finder.m 
 
n = length(m); 
  
data1 = []; 
data2 = []; 
  
countloopP_data = []; 
countloopPbreadata = []; 
count = 0; 
countLoop = 0; 
countLoopDummy = 0; 
countLoopBreak = 0; 
  
for k = 1:n 
    for i = 1:n 
  
        if i > n || i + k + 3 > n 
  
  
            break 
        end 
  
  
        if m(i, i+1+k) == 1 && m(i+1, i+k+2) == 1 && i ~= i + 1 + k 
  
  
            if countLoop == 0 
                countLoop = 2; 
                if m(i+2, i+3+k) == 1 
                    data1 = [data1; i]; 
                    data2 = [data2; i + 1 + k]; 
  
                end 
  
            else 
  
  
                data1 = [data1; i]; 
                data2 = [data2; i + 1 + k]; 
                countLoop = countLoop + 1; 
  
            end 
  
        else 
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            if (countLoop ~= 0) 
                countLoopDummy = countLoop; 
                data1 = [data1; i]; 
                data2 = [data2; i + 1 + k]; 
                data1 = [data1; 0]; 
                data2 = [data2; 0]; 
                countloopP_data = [countloopP_data; countLoopDummy]; 
            end 
            countLoop = 0; 
  
        end 
  
  
    end 
  
end 
  
  
for i = 1:length(data1) - 1 
    if data1(i+1) - data1(i) ~= 1 && data1(i+1) ~= 0 && data1(i) ~= 0 
        data1(i+1) = data1(i) + 1; 
        data2(i+1) = data2(i) + 1; 
    end 
  
  
end 
  
  
for i = 1:length(data1) - 2 
  
    if data1(i) == 0 && data1(i+2) == 0 
        data1(i+1) = 0; 
        data2(i+1) = 0; 
  
    end 
  
end 
  
i = 1; 
while true 
  
    if data1(i) == 0 && data1(i+1) == 0 
        data1(i) = []; 
        data2(i) = []; 
        i = i - 2; 
  
    end 
    i = i + 1; 
end 
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Cluster_Counter.m 
 
i = 1; 
dataB1 = []; 
dataB1i = []; 
dataB1j = []; 
matDati = {}; 
matDatj = {}; 
dataB2i = []; 
dataB2j = []; 
countBA = []; 
  
  
while true 
    i = 1; 
    while data1(i) ~= 0 
        a = data1(i); 
        b = data2(i); 
  
        dataB1i = [dataB1i; a]; 
        dataB1j = [dataB1j; b]; 
  
  
        i = i + 1; 
  
    end 
  
    temp = (false); 
    matDati = {dataB1i}; 
    matDatj = {dataB1j}; 
    data1(1:i) = []; 
    data2(1:i) = []; 
    i = 1; 
    while temp == 0 
  
        while data1(i) ~= 0 
            a = data1(i); 
            b = data2(i); 
  
            dataB2i = [dataB2i; a]; 
            dataB2j = [dataB2j; b]; 
  
  
            i = i + 1; 
  
        end 
  
  
        if length(dataB1i) + length(dataB2i) ~= length(union(dataB1i, dataB2i)) 
            i = i + 1; 
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            if length(dataB1j) + length(dataB2j) == length(union(dataB1j, dataB2j)) 
  
                matDati{end+1} = dataB2j; 
                g = 1; 
                while data1(g) ~= 0 
                    g = g + 1; 
                end 
                data1(1:g) = []; 
                data2(1:g) = []; 
                dataB1i = dataB2i; 
                dataB1j = dataB2j; 
                dataB2i = []; 
                dataB2j = []; 
                i = 1; 
  
  
            end 
  
  
        elseif length(dataB1i) + length(dataB2j) ~= length(union(dataB1i, dataB2j)) 
            i = i + 1; 
  
            if length(dataB1j) + length(dataB2i) == length(union(dataB1j, dataB2i)) 
  
  
                matDati{end+1} = dataB2i; 
                g = 1; 
                while data1(g) ~= 0 
                    g = g + 1; 
                end 
                data1(1:g) = []; 
                data2(1:g) = []; 
                dataB1i = dataB2i; 
                dataB1j = dataB2j; 
                dataB2i = []; 
                dataB2j = []; 
                i = 1; 
  
            end 
  
  
        elseif length(dataB1j) + length(dataB2i) ~= length(union(dataB1j, dataB2i)) 
            i = i + 1; 
  
            if length(dataB1i) + length(dataB2j) == length(union(dataB1i, dataB2j)) 
  
  
                matDatj{end+1} = dataB2j; 
                g = 1; 
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                while data1(g) ~= 0 
                    g = g + 1; 
                end 
                data1(1:g) = []; 
                data2(1:g) = []; 
                dataB1i = dataB2i; 
                dataB1j = dataB2j; 
                dataB2i = []; 
                dataB2j = []; 
                i = 1; 
  
            end 
  
  
        elseif length(dataB1j) + length(dataB2j) ~= length(union(dataB1j, dataB2j)) 
            i = i + 1; 
  
            if length(dataB1i) + length(dataB2i) == length(union(dataB1i, dataB2i)) 
  
  
                matDatj{end+1} = dataB2i; 
                g = 1; 
                while data1(g) ~= 0 
                    g = g + 1; 
                end 
                data1(1:g) = []; 
                data2(1:g) = []; 
                dataB1i = dataB2i; 
                dataB1j = dataB2j; 
                dataB2i = []; 
                dataB2j = []; 
                i = 1; 
  
            end 
  
        else 
  
            i = i + 1; 
            dataB2i = []; 
            dataB2j = []; 
  
        end 
  
  
        if isempty(data1) == 1 || i > length(data1) 
            temp = (true); 
        end 
  
    end 
    [a, b] = size(matDati); 
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    [x, y] = size(matDatj); 
    countBundle = b + y; 
    countBA = [countBA; countBundle]; 
    matDati = []; 
    matDatj = []; 
    dataB1i = []; 
    dataB1j = []; 
    dataB2i = []; 
    dataB2j = []; 
  
  
    if isempty(data1) == 1 
        break 
    end 
  
  
end 
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B-1 Last Snapshots of the HFIP-SRT n4 (A), n7 (B), n11 (C), and n25 (D) 

DPD simulations 
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Appendix B-2 Last Snapshots of the Dilute Solvent-SRT n4 (A), n7 (B), n11 (C), and 

n25 (D) DPD simulations 
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APPENDIX C 

 

 

Appendix C Last snapshots of the concentration sweep of SRT-n4 protein in 5wt.% (A), 

10wt.% (B), 15wt.% (C), 20wt.% (D), 25wt.% (E), 30wt.% (F) solvent P  
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F E 
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