

ISTANBUL-

M.Sc. THESIS

A HIGH-SPEED MIXED SIGNAL EMBEDDED SYSTEM DESIGN

FOR SAW BASED BIOSENSORS

Selma UÇAR AKDENİZ

Electrical and Electronic Engineering Programme

Department of Electrical and Electronic Engineering

SUPERVISOR

Assist. Prof. Dr. Koray GÜRKAN

June, 2019

T.C.

ISTANBUL UNIVERSITY-CERRAHPASA

INSTITUTE OF GRADUATE STUDIES

As required by the 9/2 and 22/2 articles of the Graduate Education Regulation which was

published in the Official Gazette on 20.04.2016, this graduate thesis is reported as in accordance

with criteria determined by the Institute of Graduate Sttudies by using the plagiarism software

to which Istanbul University-Cerrahpasa is a subscriber.

iv

FOREWORD

This thesis is dedicated to all the people who have helped me throughout the research. I would

like to thank İstanbul University-Cerrahpaşa for facilities provided and opportunities.

I express sincere appreciation to my supervisor Assist. Prof. Dr. Koray GÜRKAN for his

guidance throughout the research project. His invaluable feedback and support helped me to

structure and improve this thesis.

I would also like to thank to TÜBİTAK BIDEB 2210-A National Scholarship Program for MsC

Students for their financial support during my master study.

I am thankful to my family Aydın, Raziye, Hasan Ali and Tarık UÇAR for their encouragement

and patience. Special thanks go to my husband Mustafa AKDENİZ for his motivation,

understanding and support.

I would like to express my gratitude towards Erhan SARIOĞLU for his contribution. Lastly, I

am thankful to all my friends who made my stay at the university a memorable and valuable

experience.

June 2019

 Selma UÇAR AKDENİZ

v

TABLE OF CONTENTS

Page

FOREWORD ... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. x

LIST OF SYMBOLS AND ABBREVIATIONS ... xi

ÖZET ... xiii

SUMMARY .. xiv

1. INTRODUCTION ... 1

1.1. METASTABILITY ... 7

1.1.1. Clock and Synchronization.. 7

1.1.1.1. Clock Distribution Network ... 8

1.1.1.2. Timing Analysis with Clock Skew ... 10

1.1.1.3. Negative Clock Skew .. 11

1.1.1.4. Positive Clock Skew ... 12

1.1.2. Multiple Clock System .. 12

1.1.2.1. System with Derived Clock Signal ... 13

1.1.2.2. GALS System .. 13

1.1.3 Metastability Occurrence .. 14

1.1.3.1. MTBF ... 16

1.1.4. Synchronizer .. 16

1.1.5. Crossing Clock Domain .. 20

1.1.5.1 Single Enable Signal ... 20

1.1.5.2. Handshaking Protocol ... 21

1.1.6. Data Transfer .. 22

1.1.6.1. Four-Phase Data Transfer .. 22

1.1.7. Synthesis of A Multiple-Clock System .. 22

1.2. FIFO BUFFER .. 23

1.2.1. FIFO Types .. 25

vi

1.2.2. FIFO Architecture ... 26

1.2.2.1 Circular FIFO .. 26

1.2.3. Synchronous FIFO... 32

1.2.4. Asynchronous FIFO .. 33

1.2.4.1. FIFO Control Circuit with a Non-binary Counter .. 33

1.3. UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER 37

1.3.1. Communication of Devices With RS-232 Port ... 38

1.3.2. UART Settings .. 38

1.3.2.1. Baud Rate ... 38

1.3.2.2. Data Bit .. 38

1.3.2.3. Parity ... 39

1.3.2.4. Stop Bit ... 39

2. MATERIALS AND METHODS .. 40

2.1. COMMUNICATION PACKET PROTOCOL ... 40

2.1.1. Packet Protocol .. 41

2.1.1.1. Status Byte ... 41

2.1.1.2. Function Byte ... 42

2.1.1.3. Byte Count ... 42

2.1.1.4. Argument Bytes .. 43

2.1.1.5. CRC Byte ... 43

2.1.2. Command List ... 43

2.2. HARDWARE AND VERIFICATION TOOLS ... 45

2.2.1. Spartan-3 FPGA Board.. 47

2.2.2. Docklight RS232 Terminal.. 48

2.2.3. Logic Analyzer Interface ... 49

2.3. DIGITAL DESIGN ... 49

2.3.1. DDS – Sine Wave .. 49

2.3.2. UART Communication Protocol ... 51

2.3.3. DCM Core Generator .. 52

2.3.4. FIFO Buffer ... 53

2.3.4.1. FIFO Buffer Core Generator ... 53

2.3.4.2. FIFO Usage and Control ... 54

2.3.5 Synchronizer ... 55

3. RESULTS ... 59

vii

4. DISCUSSION ... 61

5. CONCLUSION AND RECOMMENDATIONS ... 63

REFERENCES ... 65

CURRICULUM VITAE .. 67

viii

LIST OF FIGURES

Page

Figure 1.1: SAW sensor design including input/output signals and IDTs. 1

Figure 1.2: The architecture of an FPGA. ... 2

Figure 1.3: The block diagram of the target system. ... 6

Figure 1.4: Conceptual clock distribution network. .. 8

Figure 1.5: Idealized routing of a clock distribution network. .. 9

Figure 1.6: Clock to setup path.. 10

Figure 1.7: Clock to pad path. ... 10

Figure 1.8: Negative clock skew. .. 11

Figure 1.9: Positive clock skew. .. 12

Figure 1.10: Timing diagrams of a D flip-flop. ... 14

Figure 1.11: Synchronization of the external signal. ... 15

Figure 1.12: Metastability represent. ... 16

Figure 1.13: Synchronizer types. ... 17

Figure 1.14: Signals of FIFO with one flip-flop synchronizer. ... 19

Figure 1.15: Signals of FIFO with three flip-flop synchronizer. ... 19

Figure 1.16: Regeneration of a narrow enable signal. ... 20

Figure 1.17: Timing diagrams of the four-phase handshaking protocol. 21

Figure 1.18: System with two clock domains. .. 23

Figure 1.19: Conceptual diagram of a FIFO buffer. .. 24

Figure 1.20: Circular FIFO with two pointers. .. 27

Figure 1.21: Block diagram of FIFO with static memory. .. 27

Figure 1.22: Circular FIFO buffer. .. 28

ix

Figure 1.23: Block diagram of a register-based FIFO buffer. ... 29

Figure 1.24: Block diagram of an augmented-binary-counter FIFO control circuit. 30

Figure 1.25: Connections of a synchronous FIFO. ... 32

Figure 1.26: Connections of an asynchronous FIFO. .. 33

Figure 1.27: Timing diagram for asynchronous FIFO of length 4. 34

Figure 1.28: Asynchronism when resetting full signal. ... 35

Figure 1.29: Block diagram of two-level synchronization. ... 36

Figure 1.30: Timing diagram for two-level synchronization. ... 36

Figure 1.31: Serial transmission waveform. .. 38

Figure 2.1: Block diagram of the test bed. .. 46

Figure 2.2: Connections of the test bed. .. 46

Figure 2.3: Block diagram of Spartan-3 Starter Kit Board. .. 48

Figure 2.4: Docklight RS232 Terminal. .. 49

Figure 2.5: DDS Compiler of Xilinx. .. 50

Figure 2.6: Block diagram of UART module. ... 52

Figure 2.7: DCM core generator of Xilinx. ... 53

Figure 2.8: FIFO buffer core generator of Xilinx. .. 54

Figure 2.9: Mapping and placement constraints.. 56

Figure 2.10: Block diagram of FIFO module. ... 56

Figure 2.11: Block diagram of the top module.. 57

Figure 2.12: List of all modules. ... 58

Figure 3.1: The graph of sine wave signal generated by Basys-2 FPGA board. 59

Figure 3.2: The graph of data read from FIFO buffer. .. 59

Figure 3.3: The graph of data sent directly at division =1. ... 60

Figure 3.4: The graph of data sent directly at division =10 .. 60

x

LIST OF TABLES

Page

Table 1.1: Circulation pattern of 4-bit and 3-bit Gray counters. ... 34

Table 1.2: Calculating the parity bit. ... 39

Table 2.1: Port Settings. .. 41

Table 2.2: Packet protocol bytes. ... 41

Table 2.3: Status byte. ... 42

Table 2.4: Function bytes. ... 42

Table 2.5: Command List. ... 44

xi

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol Explanation

Tclk : clock period

Fclk : clock frequency

Fout : output frequency

Fin : input frequency

Msps : mega sample per second

Mbps : mega bit per second

MHz : mega hertz

Tcq : clock to q time

Tnext : change time of next register

Tsetup : setup time of the flip-flop

Tskew : skew time

Tr : resolution time

Fr : resolution frequency

FF : Flip-Flop

Tcomb : propagation delay of the combinatorial circuit

Rmeta : the average rate of the flip-flop goes into metastable state

P(Tr) : the probability of flip-flop cannot solve metastability in given time

AF : average number of synchronization failure

& : the phase increment value

$: the decay time constant

B : the number of bits employed in the phase accumulator

V : Volt

bps : bit per second

kB : kilo Byte

w : the period

td : critical time window length

xii

Abbreviation Explanation

ADC : Analog to Digital Converter

ARM : Advanced RISC Machine

ASIC : Application-Specific Integrated Circuit

CPU : Central Processing Unit

CRC : Cyclic Redundancy Code

DCM : Digital Clock Management

DDS : Direct Digital Synthesizer

FIFO : First-in First-out Buffer

FPGA : Field Programmable Gate Array

FSM : Finite State Machine

GALS : Globally Asynchronous Locally Synchronous

IDT : Interdigital Transducers

IP : Intellectual Property

JTAG : Joint Test Action Group

LIFO : Last-in First-out Buffer

LSB : Least Significant Bit

MEMS : Microelectromechanical Systems

MSB : Most Significant Bit

MTBF : Mean Time Between Failure

PC : Personel Computer

RAM : Random Access Memory

SAW : Surface Acoustic Wave

SRAM : Static Random Access Memory

UART : Universal Asynchronous Receiver Transmitter

USB : Universal Serial Bus

VLSI : Very Large-Scale Integration

xiii

ÖZET

YÜKSEK LİSANS TEZİ

Selma UÇAR AKDENİZ

İstanbul Üniversitesi-Cerrahpasa

Lisansüstü Eğitim Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman : Dr. Öğr. Üyesi Koray GÜRKAN

Teknolojinin gelişmesiyle elektronik sistemlerde tek bir merkezi birim bulunması yerine birçok

bağımsız birimden oluşmaktadır ve bu birimlerden bazıları daha yüksek saat hızlarına (clock

speed) ihtiyaç duymaktadır. Birçok sistemde, yüksek hızlı birimlerle düşük hızlı birimler

arasında veri aktarımı gerekmektedir. Bu veri aktarımını doğru şekilde gerçekleştirebilmenin

en iyi yolu, farklı hızdaki birimler arasına çift saatli arabellek (dual-clock buffer) kurmaktır. En

yaygın ve kullanışlı arabellek türü FIFO (first in – first out, ilk giren ilk çıkar) arabellektir. Bu

tezin amacı FPGA (Field programmable gate array, Sahada programlanabilir kapı dizileri)

üzerinde farklı saat hızlarında çalışan birimlerin haberleşmesi için bir çift saatli FIFO arabellek

kurmak ve bu arabelleğin kontrolü için bir paket protokolü tasarlamaktır. Öncelikle FIFO

mimarileri araştırılıp, FPGA üzerinde FIFO arabellek kuruldu. Farklı saat hızlarından dolayı

senkronizasyon hataları oluşabileceğinden, FIFO arabelleğin giriş sinyalleri iki D flip-flop

senkronizör tarafından senkronize edildi. Sistemin kapsamlı kontrolünü sağlamak için güçlü bir

haberleşme paket protokolü oluşturuldu. Sistemin giriş çıkış sinyalleri incelenerek yapılan

çalışma doğrulandı.

Haziran 2019, 81 sayfa.

Anahtar kelimeler: FPGA, FIFO, UART, Metastabilite, Saat Domeni Geçişi

SAW BİYOSENSÖRLER İÇİN YÜKSEK HIZLI ÇOKLU SİNYAL GÖMÜLÜ

SİSTEM TASARIMI

xiv

SUMMARY

M.Sc. THESIS

Selma UÇAR AKDENİZ

Istanbul University-Cerrahpasa

Institute of Graduate Studies

Department of Electrical and Electronic Engineering

Supervisor : Assist. Prof. Dr. Koray GÜRKAN

With the development of technology, electronic systems consist of many independent units

instead of single central unit and some of these units need higher clock speeds. In many systems,

data transfer between high-speed units and low-speed units is required. The best way to

implement this data transfer correctly is to construct a dual-clock buffer between units at

different speeds. The most common and useful buffer type is FIFO buffer (first in first out).

The purpose of this thesis is to build FPGA (Field programmable gate array) based a dual-clock

FIFO buffer for communicating units operating at different clock speeds and to design a packet

protocol for controlling this buffer. First of all, the FIFO architectures were searched, and a

FIFO buffer was constructed on the FPGA. Since synchronization errors can occur due to

different clock speeds, input signals of the FIFO buffer were synchronized by the two D flip-

flop synchronizers. A strong communication packet protocol was designed to provide

comprehensive control of the system. The input and output signals of the system were analyzed,

and the study was verified.

June 2019, 81 pages.

Keywords: FPGA, FIFO, UART, Metastability, Clock Domain Crossing

A HIGH-SPEED MIXED SIGNAL EMBEDDED SYSTEM DESIGN FOR

SAW BASED BIOSENSORS

1

1. INTRODUCTION

Surface acoustic wave sensors have demonstrated useful in several fields as mostly mass

sensitive devices capable of replying to small environmental disturbances. Acoustic wave

devices have praiseworthy qualities that make them valuable in sensoring systems including for

medical diagnostics. These sensors can be configured for a wide range of applications and are

highly mobile with high sensitivity.

Surface acoustic wave sensors are a type of microelectromechanical systems (MEMS) which

depend on the modulation of surface acoustic waves to sense ultra-low concentrations of certain

biochemical. The sensor converts an input electrical signal into a mechanical signal which,

dissimilar to an electrical signal, can be easily affected by physical phenomena. This interaction

can be in the form of delay or phase shift, attenuation, multiple reflections, or more complex

nonlinear effects. A SAW biosensor also converts this transduced mechanical signal back to an

electrical signal, which can be digitized and processed.

The main SAW device as shown in Figure 1.1 consists of a delay path with the piezoelectric

substrate for the acoustic wave to spread, and two IDTs for input and output transduction. This

region is named the delay line because of the signal, which is a mechanical signal at this point,

propagates much slower than its electromagnetic form, thus causing a detectable effect

amplitude and phase.

Figure 1.1: SAW sensor design including input/output signals and IDTs.

2

Embedded systems are designed for a specific purpose and perform this purpose as fast as

possible with low power consumption. Designing and testing an embedded system has become

much easier with the result of inventing FPGAs. It was invented by Ross Freeman who is one

of the founders of the Xilinx Company in 1984. Because of flexible and rapid prototyping

capability of FPGA, to work on it has many advantages as an integrated circuit (IC) platform

for verification and prototyping [1].

The Field Programmable Gate Array consists of three main parts, configurable logic blocks in

the matrix structure, input-output blocks surrounding this block array and interconnections

between these block arrays. The configuration of the programmable logic blocks and the

communication between these blocks takes place through the interconnections.

Interconnections of logic cells take place with matrix-shaped data paths and programmable

switches (according to the program loaded into the FPGA). The FPGA design determines the

function that each logic cell will perform and the state of the programmable switches (on / off).

The input and output blocks perform the connection between the interconnections and the pins

of the integrated circuit. FPGAs can be easily programmed for any application, the same FPGA

reprogrammed for another application. The architecture of an FPGA is theoretically given in

Figure 1.2.

Figure 1.2: The architecture of an FPGA.

3

Today, as the processing capability expectation of embedded systems is increasing, many

systems are passing to FPGAs, becoming more important in the designing of a digital circuit,

instead of embedded CPUs which process functions conventionally [2]. To use FPGA makes

system flexible and reliable and reduces power consumption. FPGAs can be utilized not only

to implement simple circuit but also to build complex state machines to satisfy different system

needs [3].

FPGAs have become very popular with the industry thanks to their flexible architecture and

reprogramming features and are now preferred in many application areas that especially

demand flexibility with high performance such as automotive, telecommunication, defense

industry, and space applications [4]. Xilinx and Altera are the two largest companies in the

world. These companies produce a variety of FPGA families for different needs.

Because of increasing both size and complexity of systems, timing requirements of VLSI

systems are becoming complex. In order to satisfy these strict timing requirements, traditional

digital circuit design methods must be improved. The best way to cope with this stringent timing

requirements is to design an asynchronous circuit [5]. However, the risk and cost of moving

away from the design approach that has been successful in the past, prevents a major transition

to this advanced design approach. For this reason, even present-day synchronous design

approach is predominant method of implementation in digital electronics design [6].

The global clock must supply to all areas of the circuit at almost the same time to be able to

construct accurate system. Clock frequencies have been increasing and transistor sizes have

been shrinking. Because of these improvements new systems are working at high speed and are

becoming more complex. The most difficult problem of digital system design is global clock

signal distribution circuit which needs a lot of time and effort [7]. As integrated circuit

technologies are improving, the circuit scale is increasing rapidly and the system clock is being

needed more often. The system may behave like an asynchronous system because the size

increase of circuit might lead to clock skew [8]. Due to the clock skew of a large circuit, the

best approach to constitute a reliable system is to divide the system to subsystems. However,

sometimes to determine the relationship between the clock signals of subsystems is not possible.

These subsystems are considered as independent clock domains.

4

Additionally, multiple clocks may be essential in some cases. For instance, digital systems often

need to interact with external systems like peripheral devices. These external systems may be

working at different clock frequencies. Since the interaction between the system and the

external system includes two different clocks, this system works asynchronously [9].

To create systems with synchronous and asynchronous design method together is an alternative

technique. This technique is called as a Globally Asynchronous Locally Synchronous (GALS)

system. In this approach, local blocks are based on synchronous design techniques, but these

synchronous blocks do not share global clock signal and are asynchronous to each other.

Advance timing and synchronization techniques improve the result of traditional design

techniques [10].

The difficulty of creating GALS system is data transfer between two clock domains. Due to the

fact that one domain of the system does not know about the clock information of other domain,

the signal may be changed at the sampling edge of the clock of other domain. Then setup and

hold time violation occur. This violation causes flip-flops to go to metastable state. Then flip-

flops behave unpredictably [11]. If the system has an asynchronous element, metastability is

unavoidable. For this reason, we must reduce the probability of occurring metastability in

design process [3]. The advantage of synchronous design is to be able to avoid the system going

to timing violation. However, since the timing violation is unavoidable in domain crossing, it

is important what we will do after the violation occurs [9]. In fact, The FF will finally turn into

a stable state. The solution is to let the system resolve this problem, providing enough time. The

best way of providing time is to accommodate two flip-flops to make the signal synchronous

[12].

It is an important task to perform a GALS system without data loss or corruption and to dissipate

energy to this system without a lot of power consumption. Phase control method and double

jump technology are some of the solutions of this asynchronous problem. But these solutions

are not efficient [8]. The best well-suited approach of this task is to construct first in first out

(FIFO) memory buffer. As indicated by its name, the first data accommodating in the buffer

will be the first data that retrieves from the buffer. In this way, a FIFO that perform with two

independent clock inputs can be built. The data which is written with one clock edge can be

read another clocks sampling edge. So data can be safely passed from one clock domain to

another clock domain [13].

5

FIFOs are frequently used to data caching and storing especially different clock frequency or

phase. FIFOs provide quickly, safely and more flexible data transfer between clock domains

and is used in the standard interface [3]. Additionally, High performance and high complexity

digital systems frequently require data transfer between different even unrelated clock domains.

Thus, FIFOs are often used data transfer between processing blocks [14]. Asynchronous FIFOs

have two clock domains. The data stored in one clock domain is retrieved by another clock

domain [15]. Since clocks are completely independent, the probability of data loss cannot be

zero.

FIFO is a circular array which consists of identical cells. It includes full and empty flags and

control logic for write and read operation. Flags observe FIFO state and decide whether FIFO

full or empty. Control logic controls the write and read counters. A written data does not move

as long as the reading request comes. As FIFOs have low latency, the data can be read

immediately as soon as it is written [16]. Asynchronous FIFO clocks are running at a different

time because of clocking with two different domains [17]. The most difficult part of designing

an asynchronous FIFO is to design empty and full flags. Because the write and read counters

are equal both empty and full status of FIFO. The status must be distinguished on another.

Adding an extra bit to counters is one solution. Although other bits are equal in empty and full

status, these extra bits are equal in empty status, unequal in full status [8]. In addition, it is hard

to synchronize binary count value from one clock domain to another. Because many bits may

change at the same time, metastability occurrence ratio increases. For instance, when four-bit

counter move from 7 (0111) to 8 (1000) all bits change [17]. It is a good way to use Gray code

instead of binary for counters. Every next value differs only one bit from the previous [3]. It is

a common approach to construct to write and read counters with Gray code. Due to this

technique, counters can be compared and status flags can be set asynchronously [18].

Asynchronous FIFO behaved as a data bridge between high-speed Analog to Digital Converter

(ADC) and ARM processor. It provides for flowing and storing data. If high-speed data is sent

to ARM processor directly, ARM processor has difficulty processing these data. FPGA can

cope with this problem to creating asynchronous FIFO [19]. Due to the features of FPGAs such

as excellent control logic, low power consumption, high reliability, reconfigurability, and low

development cost, it is very advantageous to constitute a high-speed asynchronous FIFO on

FPGA [8].

6

This thesis aim is to calculate the delay time between the input and the output signals of SAW

biosensors. For this purpose, we need to sample two high frequencies signal (input, output). To

understand the time delay between two signals, we will implement some signal processing

algorithm tools. In this project, the data will be processed using an ARM processor and the

signals will be sampled using a Dual-ADC; 12-bit, 80 Msps, 1.8 V.

There will be data loss while transferring high-speed signals from ADC to ARM due to their

difference of speed in data processing. The best solution, proposed by the commercial product,

is to place a FIFO buffer between the ADC and the ARM. So, we will design multi-clock FIFO

buffer on FPGA. This FIFO buffer will save the 50 Msps data from ADC and send it at low

speed to the ARM processor.

ARM processor will control the ADC and FPGA card will communicate to ARM processor via

UART. Our main objective is to make an FSM design containing FIFO and UART modules.

To take this thesis to the next step, we will implement all the ARM processing tools into FPGA;

then the final data will be sent to PC. The block diagram of this system is given in Figure 1.3.

Figure 1.3: The block diagram of the target system.

7

There are three main objectives for this project. The first is to research synchronization

strategies and asynchronous design. The second is to design a FIFO and to transport data

between two unrelated clock domains. The last one is to develop a communication packet

protocol to control this FIFO efficiently and easily.

This thesis is organized as follows. In chapter 1 some brief information about SAW biosensors

and FPGAs are summarized. This chapter also includes the purpose of the thesis, some

knowledge about related work and target system. Purpose of the thesis is to design dual-clock

FIFO then the necessary background information for understanding the problems are explained.

Chapter 1.1 discusses metastability and synchronization background and focuses on the transfer

of data between completely unrelated clock domains. Chapter 1.2 introduces structure and

parameters for all styles of FIFO buffers. To be able to understand the dual-clock FIFO structure

firstly single-clock FIFO structure is explained. Afterwards, problems of dual-clock FIFOs are

described.

In chapter 1.3 some brief information about UART communication protocol which is used to

communicate between FPGA and external device in this project are mentioned briefly. In

chapter 2.1 the packet protocol which is created by us for this thesis is described in detailed. In

chapter 2.2, some tools used in this thesis to make experiment easily are explained. Chapter 2.3

describes the hardware implementation of the dual-clock FIFO and our packet protocol. This

chapter also explains IP cores and our modules. Chapter 3 includes result of the experiments by

graph. In chapter 4 is discussion part. Finally, chapter 5 summarizes the work presented and

proposes future related work. Furthermore, the Verilog codes and datasheet of our packet

protocol are added to the appendix.

1.1. METASTABILITY

1.1.1. Clock and Synchronization

In an ideal situation, the entire digital system is driven by the same clock signal. The sampling

edge of this clock signal arrives all registers of the system at the same time. However, it is not

possible in reality. Thus, the non-ideal clock signal must be considered when a digital system

is designed. Clock skews must be considered, insomuch as, if it needs, large system must divide

to subsystems.

8

1.1.1.1. Clock Distribution Network

Clock distribution network drives all flip-flop of the system. This distribution network is

designed at transistor level because it is not a logic function. Also, the reset signal connects to

all flip-flop of the system. So, the construction of reset signal is similar to the construction of

clock signal. However, implementation of the reset signal is easier and less critical than clock

signal because it does not have strict timing constraints.

Figure 1.4: Conceptual clock distribution network.

In a conceptual clock distribution network given in Figure 1.4, each buffer drives four parts.

So, the propagation delays of each flip-flop are different. In a recursive H-shaped network given

in Figure 1.5, the wire lengths from the clock source to the input port of flip-flops are nearly

equal. Thus, the propagation delays from the clock source to the input port of flip-flops are

nearly identical. So, the sampling edge of the clock signal arrives to the input port of the flip-

flop at almost same time.

9

Figure 1.5: Idealized routing of a clock distribution network.

Propagation delay may be variable because of different buffering and routing. Clock skew is

the difference between the arrival time of sampling edge. According to the worst-case scenario,

if the system has a great number of the register, clock skew is considered as the difference

between the latest and earliest arrival times.

As the number of flip-flop increase in the circuit, the clock distribution network becomes large

and more complex. So, it causes to increase arrival times, that is clock skew. As a result, as the

size of circuit increases, clock skew increases. The clock distribution network is modified

according to the size of circuit and clock rate. In a small circuit, the sampling edge of the clock

arrives to all flip-flops nearly same time because the propagation delay is small and almost

identical. Clock skew can be ignored in these systems. Moderately- sized systems can be

thought such as ideal synchronous system because their clock skew is a few percent of the clock

skew. However, this small skew causes to decrease the system performance. Today’s

technology provides for ignoring this skew up to 50000 gates. But, in high-speed and large-

scale systems, clock skew might even come up to the clock period. Thus, this skew cannot be

ignored any more in these systems. One of the solutions of this problem is to divide this system

to several subsystems. Each subsystem is driven by the independent clock, the interface

between subsystems is asynchronous. Asynchronous interface causes timing violation. Special

schemes and protocols are necessary to be sure that data and control signals transfer correctly

between subsystems.

10

1.1.1.2. Timing Analysis with Clock Skew

Clock skew is the difference between arrival times of clock signal’s sampling edge to the input

port of flip-flops in the system. Clock skew effects especially sequential circuit a lot. Also, it

gets the system performance reduced and causes tighter hold time constraint.

Clock to setup: a clock to setup path given in Figure 1.6, starts at the clock input of a flip-flop

and ends at register input of the next flip-flop. It passes the q output of flip-flop firstly, then any

number of levels of combinatorial logic. This delay is sum of the clock to q delay of the flip-

flop, the path delay from that flip-flop to next flip-flop and, the setup delay of next flip-flop. If

first and next flip-flops are driven by different clock signals, the clock period of first flip-flop

must be greater than path delay.

Figure 1.6: Clock to setup path.

Clock to pad: a clock to pad delay given in Figure 1.7, starts at the clock input of flip-flop and

ends at output pad. It passes the q output of flip-flop firstly, then any number of levels of

combinatorial logic. This delay is sum of the clock to q delay of the flip-flop, the path delay

from that flip-flop to the chip output and, output delay.

Figure 1.7: Clock to pad path.

Pad to pad: a pad to pad path starts at clock input pad, passes any number of levels of

combinatorial logic and, ends at output pad.

Pad to setup: a pad to setup path starts at clock input pad of the chip and ends at d input of the

flip-flop.

11

Paths ending at clock pin of the flip-flop: a path ending at clock pin of flip-flop delay starts at

chip input and ends at the clock input of the first flip-flop. It passes the chip input firstly, then

any number of levels of combinatorial logic. This delay is sum of the input delay and, the path

delay from input to clock flip-flop.

Setup to clock at the pad: a setup to clock at the pad delay starts at input pad and ends at d input

of the flip-flop. It passes the input pad firstly, then any number of levels of combinatorial logic.

Clock pad to output pad: a clock pad to output pad delay starts at clock input pad, passes clock

input of flip-flop and, ends at output pad.

1.1.1.3. Negative Clock Skew

If the sampling edge of the clock signal arrives destination before the source, negative clock

skew occurs as seen in Figure 1.8. In this situation, the clock period must be greater than the

sum of the path delay and the clock skew between flip-flop.

Figure 1.8: Negative clock skew.

12

1.1.1.4. Positive Clock Skew

If the sampling edge of the clock signal arrives source before the destination, positive clock

skew occurs as seen in Figure 1.9. In this situation, the clock period must be minimum the

difference between path delay and the clock skew.

Figure 1.9: Positive clock skew.

As negative clock skew increases clock period, positive clock skew decreases. However, it is

difficult to take advantage of this positive clock skew in reality. Because there are many

feedback paths in large systems. A system must be designed according to the worst-case

scenario. Thus, clock period must be at least;

Tcq + Tnext + Tsetup + Tskew (1.1)

1.1.2. Multiple Clock System

In synchronous design methodology, all flip-flops are controlled by a single global clock. It is

difficult or even impossible to implement this methodology as the system becomes large and

complex. In some situations, multiple clock becomes obligatory.

• The most digital system must work with external systems. These external systems may not

share the same clock.

13

• As the circuit size becomes large, clock skew increases. Thus, it is necessary to divide the

system to subsystems, and these subsystems are driven by different clocks.

• If an external system works at 100MHz even system works at low-speed, it is needed to use

100MHz clock to synchronize this system. So, other externals and the core are worked at

100MHz. This causes to increase the complexity of the system. Dividing this system to

subsystems makes the design simple.

• Like the above item, driving a system at 100MHz increases power consumption. Dividing

the system to subsystems saves power.

In multiple clock systems, subsystems are synchronous in themselves. A particular interface is

designed subsystems to communicate. Subsystems are driven by a derived clock signal or

independent clock signal in multiple clock systems. One of the most difficult parts in multiple

clock system design is to decide the number of clocks and to route clocks [20].

1.1.2.1. System with Derived Clock Signal

Different frequency and phase clock signals are derived from original clock signal owing to a

particular circuit. Moreover, these clock signals route to subsystems. The subsystems route this

clock signal to register with its distribution network. Even doing this is easy in theory, clock

skew occurs between original and derived clock because of the clock to q delay in reality.

Besides, the skew between derived clocks cannot be calculated due to unknown wiring delay

and variant clock to q delay.

1.1.2.2. GALS System

Subsystems of a large system are designed synchronous, the interface between these subsystems

is designed asynchronous. This approach is called GALS, Globally Asynchronous Locally

Synchronous. If convenient asynchronous interface develops, subsystems are thought as

synchronous and designed easily. The difficulty of GALS system is how to transfer data

between two clock domain. A subsystem may change the signal at sampling edge of the other

clock because the subsystem does not know about the other clock. So, this causes setup-hold

time violation. It is inevitable at domain crossing. Thus, what to do after the violation is more

important.

14

1.1.3 Metastability Occurrence

The synchronizing problem of two systems which work at different frequency is common. In

GALS systems, for instance, data may change at any time even at decision window. This causes

time violation. The most basic time constraint of a circuit is a setup-hold time of flip-flops. This

means that an input of flip-flop must not change at decision window of sampling edge of the

clock. An input must be stable shortly before (setup time) and shortly after (hold time) the

sampling edge of the clock to be sure that a flip-flop performs correctly as seen in Figure 1.10.

Figure 1.10: Timing diagrams of a D flip-flop.

Synchronization problem between the local clock and the external signal is solved by a flip-

flop as seen in Figure 1.11. If setup and hold time of device at data sheet is violated, flip-flop

goes into metastable state. It is possible for flip-flop to maintain these operating conditions with

the synchronous circuit. Nevertheless, violation is inevitable. The external asynchronous signal

must be performed by an internal synchronous signal in two systems which work

asynchronously to one another.

15

Figure 1.11: Synchronization of the external signal.

Setup and hold time must be kept in D type flip-flop. Reset and set input must not pass from

active to inactive at the same time in RS type flip-flop. Otherwise, flip-flop goes into metastable

state. In both, flip-flop adopts an undefined and unstable. Q output is unknown. Flip-flop goes

into one of the two stable states soon. However, it is impossible to estimate which state be

performed.

If input changes at a convenient time according to timing constraint, this data propagates after

clock to q delay. If input changes at decision window, three different situations may occur; 0,1

and, metastable (in between voltage). The first one of odds is correct one; any trouble does not

occur. The second one means that flip-flop holds the old value. It returns to normal value at the

next sampling edge. So, it is not a huge problem. But, the third one is a huge problem. If a flip-

flop goes into metastable state, the output voltage is between high and low, and it cannot be

interpreted as 1 or 0. If the output of this flip-flop effects continuation of the circuit, as

downstream all logic cells pass to unknown state.

In fact, tiny force can make the flip-flop stable again as seen in Figure 1.12. Namely, the flip-

flop can reach to the stable state itself. Researches show that metastability is unavoidable in

bistable systems. If enough time is provided to the device, it reaches to stable state. This enough

time is called resolution time (Tr). It cannot be calculated, but it can be characterized with the

aid of probability distribution function. Decay time ($) constant depends an electrical

characteristic of flip-flop.

P(Tr) = e – (Tr/ $) (1.2)

Because decay time is a fraction of a nanosecond in today’s technology, flip-flop maintains

metastable state Tr time after the clock edge.

16

Figure 1.12: Metastability represent.

1.1.3.1. MTBF

Setup and hold time cannot be 0 because of the physical structure of flip-flop. Thus, there is not

faultlessly working synchronizing circuit. It is essential to prevent in-between value formed at

the output of the flip-flop to spread because timing violation occurs at the asynchronous circuit.

If the flip-flop cannot solve metastability in given time, this is called synchronization failure.

MTBF is used to explain the quality of synchronization circuit and the reliability of the design.

Mean time between failure is the average time between two synchronization failure. This is

calculated with the frequency of the signal (fin), the clock frequency of synchronization circuit

(fclk) and, critical time window length (td).

Rmeta = w ∗ fclk ∗ fin (1.3)

AF(Tr) = Rmeta ∗ P(Tr) = w ∗ fclk ∗ fin ∗ e(−Tr/$) (1.4)

MTBF (Tr) = 1 / AF(Tr) = e(Tr/$) / (w ∗ fclk ∗ fin) (1.5)

1.1.4. Synchronizer

If an asynchronous input causes time violation, flip-flop becomes metastable, and in-between

voltage is observed in the output of the flip-flop. This in-between voltage spreads to all circuit

if it does not prevent. As the name implies, synchronizer makes asynchronous input

synchronous with the system clock. Because there is any chance to prevent metastability in the

bistable device, synchronizers can only prevent in-between value to spread all circuit.

Synchronizer provides enough time to flip-flop to fix metastability itself. Some type of solution

for asynchronous signal is explained below and given in Figure 1.13.

17

Figure 1.13: Synchronizer types.

18

1. No synchronizer: if asynchronous signal causes timing violation, register goes into

metastable state. If enough time is not provided to fix itself, in-between value spreads

to all system.

2. One flip-flop synchronizer: according to the path from synchronizer’s D flip-flop to

system’s D flip-flop, synchronizer provides one clock period to flip-flop to solve

metastability.

Tr = Tclk – (Tsetup + Tcomb) (1.6)

As we are known, tiny change of Tr extremely increases MTBF. Reducing slight Tcomb

increases MTBF a lot because Tr is depended on Tcomb. Tcomb can be decreased by

modification of combinatorial circuit.

3. Two flip-flop synchronizer: as we are known, Tcomb must be 0 to obtain maximum Tr.

If two flip-flop is used, Tcomb before system flip-flop is 0. Then Tr = Tc – Tsetup. So,

MTBF extremely increases. If these two flip-flops accommodate away from each other,

wiring delay causes problem. Thus, these two flip-flops must be placed as close as

possible. This approach is more common than other due to their robustness and applying

easily.

Many ASIC technology libraries have specialized D flip-flop cells. They are designed

to reduce w, $ and, Tsetup then MTBF increases. Because these cells are several times

larger than normal D flip-flop, they are not often used.

4. Three flip-flop synchronizer: the probability of reaching stable state increases when one

cascade D flip-flop adds to two D flip-flop synchronizer. Resolution time becomes

2*(Tclk - Tsetup) from (Tclk - Tsetup) in two D flip-flop synchronizer. This gets MTBF

increased a lot. Despite this advantage, it postpones the input signal one clock period

more (from two periods to three periods). Because two D flip-flop synchronizers get

MTBF increased sufficiently, three D flip-flop synchronizers are not needed.

19

Figure 1.14: Signals of FIFO with one flip-flop synchronizer.

Figure 1.15: Signals of FIFO with three flip-flop synchronizer.

The figures shown above, represent the result of one and three flip-flop synchronizer circuit at

metastable state. In one flip-flop synchronizer as seen in Figure 1.14, flip-flop sometimes

decides 0, sometimes 1 at first clock edge. It takes much more time than normal. At the second

clock edge, output reaches stable again in both situations. In three flip-flop synchronizer as seen

in Figure 1.15, sometimes empty signal delays one clock cycle. However, metastability is not

observed.

20

1.1.5. Crossing Clock Domain

In GALS systems, clock domains use an independent clock signal. Subsystem might have to

work with much faster or much slower subsystem. Synchronizers only prevent the system to go

into the metastable state. Also, the control circuit is needed to transfer data between two clock

domains.

1.1.5.1 Single Enable Signal

Edge detection scheme: most digital systems include enable signal to start an operation. This

signal must be sampled only one time not much. If enable signal comes from the slower domain,

it is seen during several clock cycle at a current domain like a very wide pulse. Sampling this

enable signal correctly is possible with edge detection. If enable signal comes from the faster

domain, the sampling edge of the synchronizer D flip-flop might miss this narrow pulse.

Figure 1.16: Regeneration of a narrow enable signal.

As seen in Figure 1.16, the stretch circuit is needed. The enable signal which comes to the

stretcher’s D flip-flop behaves like clock signal and sends 1 to output. When the output of

synchronizer becomes 1, stretcher D flip-flop is reset. This enable signal is seen during one or

two clock period due to the synchronizer. So, edge detection is needed again.

21

1.1.5.2. Handshaking Protocol

If the subsystem from which enable signal comes too faster than current subsystem, missing

data is possible. Two systems must communicate to each other to avoid this data missing and

construct more robust systems. In this protocol, receiving subsystem sends feedback to another

subsystem, and this subsystem regulates the enable signal.

Four-Phase Technique: the most common technique to communicate two clock domain. These

two subsystems never pay attention to the clock rate of each other. Thus, this approach can be

used in many implementations. Two subsystems are talker and listener. Talker sends req signal

to the listener, listener sends ack signal to the talker. These req and ack signals need

synchronizers because they are generated from different clock domain. These four phases as

seen in Figure 1.17:

- Talker makes req signal as 1.

- Listener makes ack signal as 1 when it recognizes req signal is 1.

- Talker makes req signal as 0 when it recognizes ack signal is 1.

- Listener makes ack signal as 0 when it recognizes req signal is 0, and they return to

initial state.

Figure 1.17: Timing diagrams of the four-phase handshaking protocol.

Two-Phase Technique: in four-phase technique, signals are activated at first term then they are

deactivated at second term to be sure to return to initial. Two-phase can be used to improve

efficiency. These req and ack signals need synchronizers again. Phases:

- Talker makes req signal as 1.

- Listener makes ack signal as 1 when it recognizes req signal is 1.

- Handshaking is over when talker recognizes ack signal is 1. At the next enable,

respectively req and ack signals are deactivated and return to initial state.

22

1.1.6. Data Transfer

In synchronous systems, data transfer consists of only data passing, and it takes only one clock

cycle. The interface between domains includes commands signals, data lines and, address lines

in many implementations. The best approach is to bundle data and to coordinate with enable

signal. Thus, it is enough to focus the synchronization of enable signal instead of all signals.

However, it is not enough to solve the synchronization problems to transfer data reliably.

Preventing data losses or duplicates is necessary.

1.1.6.1. Four-Phase Data Transfer

Highest overhead but most robust. At writing operation, talker makes req signal 1 and puts the

data on the data line. When the listener recognizes req signal is 1, it retrieves the data from the

data line and makes ack signal 1. When the talker recognizes ack signal is 1, it takes the data

from the bus and makes req signal 0. Then, listener makes ack signal 0. At reading operation,

talker makes req signal 1. When the listener recognizes req signal is 1, it puts the data on the

data line and makes ack signal 1. When the talker recognizes ack signal is 1, it retrieves the data

from the bus and makes req signal 0. Then, listener makes ack signal 0. In this technique, the

synchronizer is needed. If two D flip-flop synchronizers are used, only one writing operation

takes 7Tct + 6Tcl, too much.

1.1.7. Synthesis of A Multiple-Clock System

Designing multiple-clock system takes advantage of synchronous methodology. The most

important point is to satisfy the timing constraints in synchronous methodology. The purpose

is to prevent timing violation. An interface is needed when the multiple-clock system is divided

into synchronous subsystems. Additionally, we can think as a regular synchronous system

during design part because subsystems use the same clock within themselves. Crossing domain

interface must include synchronization circuit and data transfer protocol. Designing this

interface is more difficult than synchronous system design. The best method is to think as if

synchronization circuit and data transfer interface are different modules.

23

Figure 1.18: System with two clock domains.

Handshaking method is not efficient especially in large systems although it is reliable. Two

different subsystems which write and read data via buffer are needed instead of direct transfer.

Asynchronous memory or shared memory can be used for this purpose. These methods cannot

prevent metastability, but it can reduce this. In this thesis, asynchronous FIFO buffer is used to

provide data exchange between two different clock domains. In the next part, FIFO buffer

architecture is covered primarily; then asynchronous FIFO buffer is covered. Two flip-flop

synchronizers mentioned in this part, are used to prevent metastability in these asynchronous

FIFO buffer as seen in Figure 1.18. Asynchronous FIFO buffer is used instead of crossing

domain interface.

1.2. FIFO BUFFER

As we know, data transfer is often used in most of the today’s digital systems. If data transfer

at a higher speed than the speed of our system some problems occur such as data loss.

Additionally, system processes data irregularly or batch data transfer causes some similar

problems. In this situation, it is necessary to construct buffer and storage. Similar approaches

are observed in our daily life. For instance, bank counters work slowly and continuously. The

number of the incoming customers is irregular and variable. The customer who comes to the

bank take row number. Thus the customer who comes first is served first.

This type of buffers is also advisable for the interface between systems which run at different

speeds. In this system, the slowest component determines the all system speed including data

transfer. For example, in a compact-disk player, the speed of the disk’s rotation determines the

data rate. The data rate of the ADC is controlled by a quartz crystal to take advantage of the

24

speed independent of repeated audio fluctuations. The different data rates are compensated by

buffering. Thus, the sound fluctuations are highly independent of speed of the disks’ rotation

[21].

It is a common way to use FIFO to transfer multi-bit data from one clock domain to another

safely. Also, it is used to control the data flow between two systems working in the same clock

domain [15]. Using this type of buffers became common because they are versatile. Thus FIFOs

progressed from most basic logic functions to high-speed buffers such as SRAM.

FIFO is a special buffer type. FIFO means first in first out so the data which is written to the

buffer first come out from the buffer first given in Figure 1.19. Another buffer type is shared or

stack memory in other words LIFO. It means last in first out so the data which is written to the

buffer last come out from buffer first. Which type of buffer we must choose is depends on the

application.

Figure 1.19: Conceptual diagram of a FIFO buffer.

It is possible to construct software or hardware FIFO. According to application and desired

features hardware or software construct of FIFO is chosen. Because of flexible structure of

software FIFO to modify FIFO is rather easy. It is enough for this to revise the code. However,

in hardware construct, it is necessary to make new board layout. The advantage of hardware

FIFO is to be able to run at higher speed than software FIFO.

25

1.2.1. FIFO Types

FIFO has had three different types throughout their development though they are not used

today.

1. Shift Register: Most basic FIFO type. They can store an invariable number of data.

When one data is written to this type of FIFO, one data must be read. Thus, write and

read operations must be synchronous.

2. Exclusive Read / Write: Slightly more advanced type of FIFO. Although they can store

variable number of data, write and read operations must be synchronous due to their

internal structure.

3. Concurrent Read / Write: The most advanced type of FIFO. They can store a variable

number of data. Also, read and write operations can be asynchronous.

Shift registers are not used to store data because their structure is first in first out by nature.

Instead of this type, other type architectures, which can store an invariable number of data, are

preferred. If write and read operations have a specific time condition, it is necessary to be

synchronism between two systems such as exclusive read / write FIFO. If there is not any time

constraint, it means write and read operations can be out of synchronism, concurrent read / write

FIFO is preferred.

Writing data cannot be independent of reading data in the exclusive read / write FIFO. There is

time relation between write clock and read clock. It is needed to add external synchronization

circuit to use this FIFO type for two systems which work asynchronously to one another.

However, these circuits considerably reduce the data rate. Writing data and reading data are

independent of each other in concurrent read / write FIFO. It is possible to be overlapping or

sequential reading/writing. So read and write systems can work at different frequencies. Taking

care of synchronization between two systems is necessary. The control of this type of FIFO is

performed by writing and reading clock signals. This FIFO fall into two types as synchronous

and asynchronous. Exclusive read / write FIFO came out on the market first because it is rather

easy to perform them. Today, concurrent FIFO is used in most implementations. Concurrent

FIFO can be used in synchronous systems without any difficulty. Also, concurrent FIFO can

exchange data between systems at different frequencies. It is enough to construct an internal

synchronization circuit to achieve this.

26

1.2.2. FIFO Architecture

There are many different hardware architecture types of FIFO. Traditional FIFO architecture

improved continually. They have fall-through architecture at first. Nowadays, they work such

as SRAM which can store a great number of the word at high-speed. FIFO can be constructed

both hardware and software.

Fall-through FIFOs are first generation architecture. It can be thought of like people waiting in

line. So when the first person goes, everybody proceeds one unit. The time duration to shift

data from input to output is called fall-through time. This time increases according to FIFO

length. For instance, in 16x5 fall-through FIFO, the time duration from real clock to full signal

can be 400 ns. This type of FIFO is not used for large length FIFO today because the time

duration of shifting all data is really high. Besides, fall-through architecture has high latency,

low power efficiency and, low memory density. Thus, this can be used only for very small

FIFO.

1.2.2.1 Circular FIFO

The problems of fall-through architecture are solved by building circular FIFO and using two

pointers as write and read as seen in Figure 1.20. This method is more efficient than fall-

through. Nowadays, this architecture is always used. Data can be written or read from the array

arbitrarily. Circular FIFO provides low latency, high energy efficiencies by the nature of

random access. One of the most important features is that this design does not get difficult

according to length. In circular FIFO, fall-through time is totally independent of length, unlike

fall-through FIFO. So, it is possible to build fast and long FIFO with them. It is enough to revise

the control logic circuit and to expand write and read pointers to increase the length. Also, this

FIFO must keep track three things. These are empty and full flags and data occupancy between

empty and full status.

27

Figure 1.20: Circular FIFO with two pointers.

Hardware implementation of circular FIFO needs dual-port SRAM to store data. Write and read

pointers keep memory addresses of SRAM as a binary counter. The number of the memory

location of SRAM is 2^n, for instance, it is enough to use n-bit read / write pointers. It is a great

advantage to be low bit number pointers even long SRAM given in Figure 1.21.

Figure 1.21: Block diagram of FIFO with static memory.

In a circular FIFO, also known as parallel FIFO, write pointer keeps incoming data addresses,

read pointer keeps addresses of data written to FIFO. So, write pointer keeps location which

will be written next, read pointer keeps location which will be read currently. If the buffer is

not full and write signal is asserted in the rising edge of the clock, input data is stored and write

28

pointer indicates the next memory location. Similarly, if the buffer is not empty and read signal

is asserted in the rising edge of the clock, read pointer indicates the next memory location and

release the read slot to future write. After incrementing and routing delay time, the read data

appears on the output port. Read signal works as “remove signal”. Both pointers indicate same

memory location when the reset signal is asserted. Read pointer follows write pointer

consistently. If read pointer catches up with write pointer, FIFO is empty. Similarly, if write

pointer catches up with read pointer, FIFO is full.

Figure 1.22: Circular FIFO buffer.

29

As seen in Figure 1.22, both write and read pointers indicate 0th address at the beginning. At

that moment, reading cannot be operated because FIFO is empty. When one writing operates,

incoming data is placed to 0th address and pointer starts to indicate the next location. When one

reading operates, the data in the 0th address is sent to output and read pointer start to indicate

the next location. If many writings operate without any reading, FIFO goes to full status. Any

more writing cannot be operated. If many readings operate without any writing, FIFO goes to

empty status again. Any more reading cannot be operated.

Figure 1.23: Block diagram of a register-based FIFO buffer.

Read address is generated by read pointer, write address is generated by the write pointer. Full

and empty flags are generated by different flag logics. In addition to, some FIFOs have half

full, almost full and, almost empty flags. Pointers and status logics of static memory FIFOs

must be initialized as seen in Figure 1.23. If external system attempt to write data when FIFO

is full, overflow occurs. Similarly, if external system attempt to read data when FIFO is empty,

underflow occurs.

FIFO buffer must include empty and full status signal to be sure that the system works correctly.

In the correctly designed system, external system must control the status signal before

attempting to access to FIFO. It is necessary to have some security measure to be sure that data

cannot be written to full FIFO and read from empty FIFO. Also in these erroneous attempting

to access situations, full and empty status signals and read and write pointers must not change,

must keep the previous value.

30

The difficult part of the control circuit is to differentiate two particular cases of FIFO buffer as

empty and full status. If read and write pointer are equal, it means empty status in ordinary

FIFO. When circular FIFO is empty, write and read pointers are equal. However, when circular

FIFO is full, write and read pointers are equal again. Thus, empty or full status of FIFO cannot

be determined only according to write and read pointers. It can be distinguished by which

pointer causes the equality. If reset or read pointer cause the equality, the buffer is empty. If

write pointer causes it, the buffer is full. There are many status signals generate schemes which

include additional circuit and flip-flops. Two of them is explained.

FIFO control circuit with augmented binary counters: In this approach, write and read pointers

are 1-bit augmented binary counters shown in Figure 1.24. Full and empty conditions are

determined by comparing the MSB of these counters. We think that there is a FIFO which can

be stored 8 words. Write and read pointers are 4-bit counters. 3-bit LSB of counters keep

addresses. These 3-bits are equal in empty and full conditions. MSB of these counters is used

to differentiate empty and full status. These two MSBs are equal in empty status. After 8 writing

operations, write MSB is opposite to read MSB. It means FIFO is full. After 8 reading

operations, write and read MSBs are equal again. It means FIFO is empty again.

Figure 1.24: Block diagram of an augmented-binary-counter FIFO control circuit.

31

FIFO control circuit with status Flip-flops: Another approach to design the control circuit of

FIFO’s empty and full state is to store empty and full status signal with a flip-flop. New

conditions can be determined by read, write signals and these stored status data. This scheme

does not need augmented counters, but it needs two extra flip-flops to record empty and full

status. The full status flip-flop is set as 0; empty status flip-flop is set as 1 at the beginning.

After that, on every rising edge of the clock, write and read signals are analyzed, and pointers

and status flip-flops are modified.

 If write and read signals are 0, there is not any operation, and flip-flop remains.

 If write and read signals are 1, write and read operates same time. Then pointers are

increased 1 but flip-flops remain because buffer size does not change.

 If write signal is 1 and read signal is 0, only write performs. Firstly, buffer status is

controlled. If the buffer is not full, write pointer is increased 1 and the empty flip-flop

is deasserted. If the buffer is full after increasing write pointer, full flip-flop set as 1.

 If write signal is 0 and read signal is 1, only read performs. Firstly, buffer status is

controlled. If the buffer is not empty, read pointer is increased 1 and the full flip-flop is

deasserted. If the buffer is empty after increasing read pointer, empty flip-flop set as 1.

In the first approach, counters enlarge 1-bit to determine FIFO status. This approach cannot

work with non-binary counters. In the second approach, status signals rely on the successive

value of the counters. It is often preferred because it can be performed with all counter types

such as gray code counter.

It becomes increasingly important to use FIFO in high-speed systems. It is common way to use

FIFO especially in data exchange between asynchronous clock domains. Asynchronous

systems also called as unsynchronous system, don’t have match clock phase and frequency.

This mismatch occurs intentionally or unintentionally. For example, in SoC with multiple clock

domain systems, the mismatch is intentional. However, the mismatch causes of high clock

skews in unintentionally in large clock distribution network.

One of the most common techniques of transferring data between clock domains is to design a

FIFO [12]. FIFO can be used for transferring data in parallel or serial communication [3].

Storing data into the buffer with one clock signal and retrieving data from the buffer with

another clock signal seems like an ideal and easy way to transferring data between different

32

clock domains. However, designing the control circuit of empty and full status can be

challenging [12]. ASIC designer has difficulty in constructing dual-clock FIFO [22].

Asynchronous FIFO is also known as dual-clock FIFO or mixed clock FIFO. Asynchronous

meaning is thought as if lack of clock, in fact, it is term of FIFO with two clocks. It is good to

understand synchronous FIFO before asynchronous FIFO. Because many concepts of both

architectures are same. The most difficult part of designing dual-clock FIFO comparing to

single clock FIFO is which information must be transferred between clock domains and how

they are transferred. Otherwise, counter parts of both architectures are very similar.

1.2.3. Synchronous FIFO

All digital processors work synchronously with the system-wide clock. There is always a

system clock even if anything is executed. Enable signal, also called as a chip-select signal, is

activated by write and read operations.

Figure 1.25: Connections of a synchronous FIFO.

The clock free-running from writing and reading systems is needed. The writing system is

controlled by a write-enable signal synchronized with the write clock. The full status signal is

synchronized with write clock by free-running clock. In an analogous manner, read enable

signal is synchronized with read clock signal. The empty status signal is synchronized with read

clock by free-running clock. Synchronous FIFO as seen in Figure 1.25, can be integrated easily

into many processor architectures because full and empty signals are fully synchronized with

the free-running clock.

33

1.2.4. Asynchronous FIFO

Synchronous FIFO design techniques help to design asynchronous FIFO shown in Figure 1.26.

There are two difficult problems which cannot be ignored while asynchronous FIFO is being

designed. One of them is to determine full and empty status according to read and write pointer.

Another one is to synchronize the asynchronous domains without any metastability.

Figure 1.26: Connections of an asynchronous FIFO.

It is good to examine empty and full status at first. There is only one counter in synchronous

design. This counter is increased one in every write operations and decreased one in every read

operations. If both write and read operates in same clock edge, these counter holds. So, if the

counter is 0, FIFO is empty, or if the counter is maximum value, FIFO is full. It is impossible

to use only one counter in asynchronous FIFO because the counter is controlled by two different

and asynchronous clock signal. So, it is necessary to use two counters for write and read

operations. These two counters must be compared to determine full and empty status. The

difficulty of circular FIFO is that pointers are equal both empty and full conditions. Gray code

counters are useful for FIFO counters because Gray code only allows one bit to change for each

clock edge [17].

1.2.4.1. FIFO Control Circuit with a Non-binary Counter

Write and read pointers can be binary in synchronous FIFO. Instead of n-bit counters (n+1)-bit

counters can be used to determine empty and full status. But, multiple bits may change at the

same clock edge in these counters. For example, when 3-bit binary counter wraps around from

‘111’ to ‘000’, 3 bits change at the same clock edge. This situation, which does not cause any

34

problem. In synchronous FIFO, is huge problem in asynchronous FIFO. In multiple-clock

systems, if multi-bits of the data, which is transferred between domains, change, errors occur.

The best way to solve this problem to use (n+1)-bit Gray code counter as seen in table 1.1

instead of (n+1)-bit binary counter. N LSBs of the (n+1)-bit indicate write and read address,

(n+1)th bit provides to distinguish empty and full status.

Table 1.1: Circulation pattern of 4-bit and 3-bit Gray counters.

4-Bit Gray counter 3 LSBs of 4-Bit Gray counter 3-Bit Gray counter

0000 000 000

0001 001 001

0011 011 011

0010 010 010

0110 110 110

0111 111 111

0101 101 101

0100 100 100

1100 100 000

1101 101 001

1111 111 011

1110 110 010

1010 010 110

1011 011 111

1001 001 101

1000 000 100

Figure 1.27: Timing diagram for asynchronous FIFO of length 4.

35

The full status signal is controlled before attempting to write to asynchronous FIFO. If FIFO

has some free space, input data is stored at the sampling edge of the write clock. Analogously,

the empty status signal is controlled before attempting to read from asynchronous FIFO. If FIFO

has data, the data is retrieved at the sampling edge of the read clock. A timing diagram of an

asynchronous FIFO with 4 slots is in Figure 1.27. As it is seen, empty and full signals are reset

at first. Empty signal changes after one data is written. Full signal changes after one data is read

and 4 data are written. Full signal returns to normal after one data is read. Also, the empty signal

returns to normal after three more data are read.

Figure 1.28: Asynchronism when resetting full signal.

The Figure 1.28 represents how time violation occurs in asynchronous FIFO. If FIFO has only

one empty slot, full status is set at sampling edge of the write clock. Read clock resets full signal

when a data retrieves. Full signal is connected to input port of a D flip-flop which is driven by

another clock signal. Thus, the full signal can be reset at the setup-hold time of the D flip-flop.

So, timing violation occurs and flip-flop goes into a metastable state. The same is true for empty

36

status. The empty signal must be synchronized with the reading system and reset by writing

system. Full status must be the opposite. Synchronization of these signals must be done

externally.

As a result, the best solution is to use synchronizer for an asynchronous FIFO not to go into

metastable state as it was mentioned in metastability part. Again, as it was mentioned in

synchronizer section of metastability part, synchronizer can include 1,2 or, 3 flip-flops. One

flip-flop synchronizer is not enough for advanced systems. Three flip-flop synchronizer is not

preferred because it decreases the speed of systems. Two flip-flop synchronizer technique is

the most common approach as seen in Figure 1.29.

Figure 1.29: Block diagram of two-level synchronization.

Figure 1.30: Timing diagram for two-level synchronization.

37

The Figure 1.29 represents a circuit of two flip-flop synchronizer, and the Figure 1.30 represents

timing diagram of two flip-flop synchronizer. As seen above, the second flip-flop may go into

metastable state, if the first flip-flop is in the metastable state already for a while. Moreover, if

the signal period of the clock is greater than sum of the delay of the first flip-flop and setup

time of the second flip-flop, the second flip-flop will never go into the metastable state.

However, especially in high-speed systems, it is not possible. So, the second flip-flop cannot

prevent metastability failure but can decrease appreciably.

1.3. UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER

UART (Universal Asynchronous Receiver Transmitter) is a physical interface that sends a bit

of parallel data in or out at each time, which is used to send over a serial communication

network. Throughout the history of personal computers, data transfer between devices and

computers has often been achieved via serial ports. The mouse, keyboard, and other peripherals

are also connected to the computer in this way. Interfaces such as Ethernet, FireWire, and USB

also send the data as a serial stream.

The serial communication protocol term is generally used for the RS232 standard. In RS232

standard, -12V is interpreted as 0 (low), +12V is interpreted as 1 (high). The RS232 TxD is in

the idle position at -12V. However, the devices that we send data via RS232 do not usually

work in this voltage range. Therefore, we need to add a converter between the external device

and RS232 port. The advantages of serial data transfer compared to parallel data transfer are:

- Serial cables can be longer than parallel cables. In serial port, '1' is represented from -3

to -25 V and '0' is represented from + 3 to +25 V. In parallel port, '0' is represented as 0

V, and '1' is represented as 5 V. For this reason, the voltage drop in the cable at the serial

port is not as much of a problem at the parallel port.

- Cables as many as parallel transmission are not needed. Using 3 wires is cheaper than

using 19 or 25 wires as in parallel transmission if the device needs to be installed at a

distance from the computer.

- The use of microcontrollers has also increased. Many of these have Serial

Communication Interface units. Serial communication reduces the number of pins in

these microcontrollers. Although 8 pins are used for 8-bit parallel transmission, only

two pins are used for serial transmission.

38

1.3.1. Communication of Devices With RS-232 Port

RS232 communication is asynchronous. It means that clock signal is not sent with the data.

Therefore, it is necessary to synchronize the received data with the sent data. Start bit, stop bit,

parity, number of data bits and baud rate are the important items for RS232 communication and

the receiver device must know them. The receiver device must know the baud rate. It will

sample the signal according to baud rate information.

Figure 1.31: Serial transmission waveform.

The Figure 1.31 shows the expected waveform from the UART when the 8N1 form is used.

8N1 infers 8 data bits, No Parity, and 1 Stop bit. Logic '1' means that RS232 line is idle.

Transmission starts with a start bit as 0. The LSB (Least Significant Bit) bit is sent first. Finally,

the transmission is completed by sending a stop bit as 1. The data sent in this way is called as

"framed data". That is, the data is framed between the start bit and the stop bit.

1.3.2. UART Settings

1.3.2.1. Baud Rate

Baud rate is measured in units of bits per second (bps) that determine how long a bit is to be

sent and received. The baud rate parameter can be 300, 1200, 2400, 4800, 9600, 19200, 115200.

The baud rate of the sender and receiver must be same so that the send data can be received

correctly on the receiver side. Some devices can automatically determine the baud rate.

Although the RS232 standard is officially limited to 20,000 bps, the serial ports used in PCs

can be set to 115,000 bps. Since the speed also includes the frame bits, the effective data rate is

lower than the bit rate. For example, in 8N1 form, only 80% of the bits can be used for data.

1.3.2.2. Data Bit

The number of data bits can be 5, 6, 7, 8(most common) or 9. In newer implementations, 8 data

bits are used almost universally. 5 or 7 bits usually work with relatively older devices. Most

serial communication designs send bits in bytes, with the LSB (least significant bit) being the

first to send. This standard is also called "little endian". There is also a "big endian" standard

that is rarely used, in other words, MSB (most significant bit) is the first to send.

39

1.3.2.3. Parity

Parity is a method of detecting errors that occur during transmission. An extra bit is sent along

with the data bits. This bit is set so that the number of 1 bits in each character is always odd or

always even, including the parity bit as seen in table 1.2. If the parity is false, it means that this

byte is corrupted. If the parity is true, there is no error, or there is an even-numbered error. It is

obtained by xor (exclusive or) each bit. Odd parity if the result is 1, even parity if the result is

0. The even parity is calculated by not operating after the Xor operation of all the bits of the

data. Single parity, all bits of the data Xor operating. The odd parity is more frequent than the

even parity, since at least one state transition occurs, which makes it more reliable.

Table 1.2: Calculating the parity bit.

7 bits of Data Count of 1-bits
8 bits including parity

Even Odd

0000000 0 00000000 00000001

1010001 3 10100011 10100010

1101001 4 11010010 11010011

1111111 7 11111111 11111110

1.3.2.4. Stop Bit

At the end of each transmitted byte, stop bits are sent so that the receiver can be synchronized

again. Electronic devices usually use a single stop bit. Rarely, when slow devices are used one

and a half or two stop bits are required.

40

2. MATERIALS AND METHODS

2.1. COMMUNICATION PACKET PROTOCOL

As known, we purpose to transfer the acquired samples from the high-speed ADC to the low-

speed external device in this thesis. To achieve this purpose, a FIFO buffer which can work

with the dual clock was built on FPGA. Additionally, this system can transfer the specific rate

data to the external device without writing to FIFO. It was needed to give some settings and

commands to this system to improve usability. External device must send some message to set

the system either to write FIFO or to transfer directly. These settings:

- sample_num: the number of samples needed, max: 224-1.

- div_num: the rate of the sample, max: 224-1.

- bit_num: the bit number of samples, max: 8. Although we aimed to use 10-bit ADC in

this project, we had to choose 8-bit FIFO word length on Spartan-3. For this reason, the

maximum value of this setting is 8. If setting value greater than 8 is sent, an error

message is received, and the setting value must be sent again.

Besides when the user wants to change the settings they can be cleared. Above all, any operation

cannot happen before all settings are done. The system sends success message when settings

are done successfully. Then the data can be written to FIFO, can be read from FIFO and be sent

directly to the external device. The user can stop all these operations at any moment. Data can

be written to FIFO and be read from FIFO at the same time, but data cannot be sent directly

when the FIFO is busy. We consider necessarily having an option which gets to know about

FPGA status to provide convenience to users when working with these constraints. We decided

that it is useful for the system to send success or error message to the user during these

operations. It is needed to have a systematic and strong communication packet protocol for this

useful messaging. For this reason, we decided to construct own protocol. We analyzed some

professional device’s data sheets. We decided what was needed. As we mentioned earlier, we

prefer UART, which is one of the most common communication protocols, to communicate

between FPGA and external device. So, users can use this system with many devices which

support UART communication. The UART settings of the serial communication interface are

selected as seen in table 2.1;

41

Table 2.1: Port Settings.

Parameter Value

Baud rate 9600

Data bits 8

Parity Even

Start bits 1

Stop bits 1

Flow control None

Bit order Least Significant First (after start bit)

The serial communication has two channel, master-slave interface between an external device

and the FPGA. The external device is “master, ” and it initiates all communications. The FPGA

is “slave” and generates a reply to each received message. For this document “received”

messages mention to those from the master device to the FPGA, and “reply” messages refer to

those from the FPGA to the master device. Additionally, FPGA can send “error” and “success

messages without master’s permission.

2.1.1. Packet Protocol

First of all, we added process code to the first byte and stop code to last byte. The second byte

is status code. External must send this byte as 0x00. FPGA edit this byte and send back in case

of any packet error. Third-byte mention command. The fourth byte indicates the number of

arguments. Next argument bytes are sent. Later CRC byte is sent. Finally, the packet, shown in

table 2.2, is finished with a stop code.

Table 2.2: Packet protocol bytes.

Byte # Upper Byte Comments

1 Process Code Set to 0x02 on all valid incoming and reply messages

2 Status Byte See 3.2.1

3 Function Byte See 3.2.2

4 Byte Count Byte See 3.2.3

N Argument Bytes See 3.2.4

N+1 CRC Byte See 3.2.5

N+2 Stop Code Set to 0x03 on all valid incoming and reply messages

2.1.1.1. Status Byte

External must send status byte as 0x00. If the packet is received correctly, the status byte of the

reply message from FPGA is 0x00 (same as original packet). Otherwise, the packet has an error.

42

FPGA edits each bit of status byte according to these errors as seen in table 2.3. If status byte

is received different from 0x00 then 0th bit, if command byte is invalid then 1st bit, if the

argument count byte is incompatible with command then 2nd bit, if the CRC (checksum) byte

is false then 3rd bit, if stop byte is different from 0x03 then 4th bit, and if timeout occurs (stop

code is not received 20 ms after process code is received) then 5th bit is edited. This obtained

status byte is sent back to the external device.

Table 2.3: Status byte.

Bit Number Error Code

Status[0] Check the incoming status byte is zero

Status[1] Check the function byte is valid

Status[2] Check the byte count is valid

Status[3] Check the CRC is matching

Status[4] Check the stop code is 0x03

Status[5] Timeout occurred (20ms)

2.1.1.2. Function Byte

The function-code byte specifies the function of incoming message. For all reply messages, the

FPGA will echo back the function-code byte. A full list of function bytes shown in table 2.4.

Table 2.4: Function bytes.

Function Code Command

0x11 Set_Sample_Num

0x22 Set_Division_Num

0x33 Set_Bit_Num

0x66 Send_Data_Direct

0x99 Stop

0xCC Clear_Settings

0xFF FIFO_Write

0xFD FIFO_Read

0xAA Get_FPGA_Status

0xBB Success_Message

0xEE Error_Message

2.1.1.3. Byte Count

The byte-count byte is used to specify the number of argument bytes in the message (not total

number of bytes in the message). See Function Code Table for the expected byte count

associated with each function-code byte.

43

2.1.1.4. Argument Bytes

The argument bytes encode the argument of message packet. See Function Code Table for

argument definition for each message. Little-endian ordering is employed: Byte 2, Byte 1, Byte

0.

2.1.1.5. CRC Byte

On all incoming and outgoing messages, a CRC byte is calculated by bitwise XOR operation.

CRC byte is calculated for first N byte except for process code (0x02).

2.1.2. Command List

0x11: the number of samples needed, have 3-byte argument so maximum value can be 2^24-1.

0x22: the rate of samples, have 3-byte argument then the maximum value can be 2^24-1. This

value must be 1 when all samples are wanted.

0x33: the bit number of samples, have a 3-byte argument, the maximum value can be 8.

0x66: direct send, to transfer data to output without writing FIFO, have no argument, when

transfer the requested number of data finish success message is sent.

0x99: stop command, have a 1-byte argument. If the argument is 0x55 then sending directly, if

the argument is 0xEE then writing FIFO, if the argument is 0xDD then reading from FIFO

operation, if the argument is 0xAA then what operation is working is stopped. If FPGA has no

operation, then an error message is sent to external. Furthermore, the operation is stopped by

stop command cannot send success message because requested number of data are not sent yet.

0xCC: this command clears the settings. Have no argument. If any operation is working,

settings cannot be cleared.

0xFF: to write the requested number of data to FIFO. Have no argument. If FIFO is full, data

is overwritten. It sends success message when the writing operation is finished.

0xFD: to read the requested number of data from FIFO and transfer them to output. Have no

argument. If FIFO is empty, an error message is sent. It sends success message when the reading

operation is finished.

44

0xAA: to get the status of FPGA, have 1-byte argument this query can be sent at any moment,

the user must send this argument as 0x00. FPGA edits this byte according to status in the reply

message. If FPGA is idle, the status byte will be 0x00. If settings are not finished yet, the status

byte will be 0x01. If FPGA is sending directly, the status byte will be 0x02. If FPGA is writing

to FIFO, the status byte will be 0x03. If FPGA is reading from FIFO, the status byte will be

0x04. If FPGA is both writing to FIFO and reading from FIFO, the status byte will be 0x05.

0xBB: unidirectional message, to inform the external about some success situation, have a 1-

byte argument. This argument means which operation is completed successfully. If all settings

are completed, this byte will be 0xAA. If direct send is completed this byte will be 0x55. If

writing to FIFO operation is completed this byte will be 0xEE. If reading from FIFO operation

is completed this byte will be 0xDD.

0xEE: unidirectional message, to inform the external about some error situation, have a 1-byte

argument. This argument means what error occurred. If bit number is greater than 8, this byte

will be 0xBB. If the reading request is received when FIFO is empty, this byte will be 0x11. If

any operation request is received when writing or reading operate, this byte will be 0x22. If any

operation request is received when sending direct operate, this byte will be 0x33. If any

operation request is received before all settings are completed, this byte will be 0x44. If a stop

request is received when FPGA is idle, this byte will be 0x66.

Table 2.5: Command List.

Function

Code

Command Byte

Count

Argument Note

0x11 Set_Sample_Num 3 1…(2^24-1) Sets the sample number

0x22 Set_Division_Num 3 1…(2^24-1) Sets the division number

0x33 Set_Bit_Num 3 1…8 Sets the output bit number

0x66 Send_Data_Direct 0 -

Commands FPGA to send

input data directly to output

pins

0x99 Stop 1 Cmd:

0x55 STOP_SEND_DIRECT

0xEE STOP_FIFO_WRITE

0xDD STOP_FIFO_READ

0xAA STOP_ALL

Stop all operations

0xCC Clear_Settings 0 - Clear current settings

0xFF FIFO_Write 0 - Write input data to FIFO

buffer

0xFD FIFO_Read 0 - Write output data from FIFO

buffer

0xAA Get_FPGA_Status 1 Cmd:0x00

Reply:

Get current working status.

Another use of this command

45

0x00 IDLE

0x01 SETTINGS

0x02 SEND_DIRECT

0x03 FIFO_WRITE

0x04 FIFO_READ

0x05 FIFO_WRITE&READ

is to verify proper

communication

0xBB Success_Message 1 Reply:

0xAA SETTINGS_FINISHED

0x55 SEND_DIRECT_FINISHED

0xEE FIFO_WRITE_FINISHED

0xDD FIFO_READ_FINISHED

FPGA sends this message

after successfully completed

the operation

0xEE Error_Message 1 Reply:

0xBB WRONG_BIT_NUMBER

0x11 FIFO_EMPTY

0x22 PROCESS_BUSY_FIFO

0x33 PROCESS_BUSY_DIRECT

0x44 SETTINGS_NOT_FINISHED

0x66 UNEXPECTED_STOP

FPGA sends this message

after if any error occurred

Only error and success command are unidirectional from FPGA to external as seen in table 2.5.

Other commands are sent from external to FPGA and FPGA send a reply message to external

absolutely. If FPGA receives packet correctly, the reply message is same as the incoming

message. Otherwise, FPGA edits the status byte.

2.2. HARDWARE AND VERIFICATION TOOLS

In this part, all devices and methods used for verification and the obtained results are explained.

As it is known, this thesis aims to determine the delay between input and output signals of the

biosensor. This delay is minimal. Thus, these signals must be sampled at high frequency. It is

not possible to transfer data of high-speed ADC to PC or an ordinary microprocessor. It is

needed to add a buffer between ADC and PC to make this possible. The purpose of this thesis

is to construct this buffer and to create the communication between buffer and PC.

The best way to implement a high-speed buffer is to utilize FPGA. A dual-clock FIFO is

constructed in this thesis. Optional direct transfer without FIFO is also provided. A

communication packet protocol which includes some options and commands which provides

easy usage during these operations is developed. So, this system can be used not only biosensors

but also projects which need to transfer high-speed data.

46

FPGA (Spartan3)

FIFO
Module

FSM Controller
Module

UART Module

FPGA (Basys2)

PC

Digital Signal

RS232

Parallel Data Logic Analyzer

Sine Wave
Generator

Module

Figure 2.1: Block diagram of the test bed.

Figure 2.2: Connections of the test bed.

47

The block diagram and connections of test bed used during experiments is given Figure 2.1 and

2.2 respectively. 1 MHz sine wave signal generated by Basys-2 board is transferred

continuously to Spartan-3 board via the 8-bit parallel port. Spartan-3 board communicates to

PC via UART. According to incoming commands, Spartan-3 board write or read sine signal to

FIFO or send directly at a specific rate. Many settings about these operations are sent from PC.

The sine wave signal from Basys-2 board and the output signal of the Spartan-3 board are

transferred to 500 MHz logic analyzer. Analyzing signals with this logic analyzer is possible.

Data can be exported from the logic port program at any time. Also, data can be transferred to

PC via another UART port. This part is explained at the continuation of this section.

2.2.1. Spartan-3 FPGA Board

During this thesis, Digilent’s Spartan-3 Starter Kit which includes Xilinx’s XC3S200FT256

chip is used as seen in Figure 2.3. This kit provides easy-to-use and low-cost development

environment [23]. The board is preferred owing to clock rate and containing RS232 port.

Additionally, it allows to construct IP FIFO. Key features of this board especially used in this

project is given below:

• 200,000-gate and 4,320 logic cell equivalents

• Twelve 18K-bit block RAMs (216K bits)

• 50 MHz crystal oscillator clock source

• Four Digital Clock Managers (DCMs)

• RS-232 transceiver and 9 pin RS232 port

• Three 40-pin expansion connectors

• JTAG port for download cable

48

Figure 2.3: Block diagram of Spartan-3 Starter Kit Board.

2.2.2. Docklight RS232 Terminal

Docklight is the tool used during thesis for testing and simulation of RS232 serial

communication protocol [24]. This interface makes testing easy throughout the project.

Docklight can send sequences according to the defined packet protocol and it can respond to

incoming sequences. This feature allows us to simulate the behavior of the system. It is useful

especially to construct own communication packet protocol thanks to sending sequence feature.

This tool also provides an option for logging all serial communication data. It can keep a huge

amount of data which can be copied to a text file and can be used for plotting a graph. RS232

settings can be chosen as seen in Figure 2.4.

49

Figure 2.4: Docklight RS232 Terminal.

2.2.3. Logic Analyzer Interface

The LogicPort logic analyzer, which is used during the experiment, has 34 channels and works

up to 500 MHz [25]. So, it provides us to examine both 1 MHz sine wave signal generated by

Basys-2 and the output signal of the Spartan-3 board. We can easily examine the data because

of exporting data feature. Data can be plotted by the aid of MATLAB. The logic analyzer's

hardware is powered and controlled via USB port. Some of the key features are selectable

setup/hold time window and adjustable threshold.

2.3. DIGITAL DESIGN

2.3.1. DDS – Sine Wave

In many digital systems, Direct digital synthesizers (DDS) are one of the key components. The

DDS IP core used in many applications to create sinusoidal waveforms [28]. The IP core

contains two parts, which are available combined or individually, a SIN/COS Lookup Table

and a Phase Generator. A typical technique for generating complex sinusoid is the lookup table

scheme. The lookup table keeps samples of a sinusoid.

A sine wave is used for testing throughout development. This sine wave signal is constructed

in Basys-2 FPGA board. Xilinx has an IP core to construct sine wave. 1 MHz sine wave is

generated with using this IP core as seen in Figure 2.5 and is transferred to Spartan-3 board at

50 Msps thanks to 50 MHz clock of Basys-2 board.

50

The output frequency of the DDS waveform is a function of the phase increment value &, the

phase width (number of bits) in the phase accumulator and the system clock frequency. The

phase increment values in the range 0 to 2N-1 describes the range [0,360)°. The output

frequency can be determined using:

fout = (fclk ∗ &) /2^B (2.1)

For example, to obtain 1 MHz sine wave:

fout = (50MHz ∗ 1310) / 2^16 ~ = 1MHz (2.2)

The frequency resolution of the synthesizer is a function of the number of bits B and the clock

frequency. The frequency resolution is defined by:

fr = fclk / 2^B = 50MHz / 2^16 = 763 (2.3)

Figure 2.5: DDS Compiler of Xilinx.

51

2.3.2. UART Communication Protocol

UART communication protocol is preferred for this thesis because it is common and reliable

protocol. UART transmit and receive modules are designed at 9600 baud rate, 8 bits data, 1

stop bit, even parity [29]. Packet protocol, which is detailed exploration at protocol section, is

developed. This protocol provides ease and flexibility to the user of the system. Number of

samples, sample rate and, bit number of samples are chosen with this protocol. These choices

can be changed. Data can be sent directly or write/read FIFO. The user can stop all operations

or request the status at any time.

Also, some message is received during these operations. Each packet of this protocol contains

start code, error, command, length (N), arguments (N-byte), checksum and, stop code. An FSM

module read these bytes respectively with receiver module. This module also controls the

correctness and timeout. When reading packet complete, another FSM module sends answer

packet. If there is no error, the same packet is sent. If there is an error, error byte of the packet

is edited according to error type and is sent. Answering packet is always same as packet except

for status request packet. Answer of the status request packet is filled the empty byte with status

information.

The answer is sent for all packet. This FSM module transmits bytes respectively with

transmitter module as seen in Figure 2.6. This module also sends some message about

successful or unsuccessful situations. In the situations of completing settings, finishing direct

send or write/read FIFO, this module sends success message. In some situations such as trying

to read when FIFO is empty, trying to operate before settings are not done, sending meaningless

stop command and sending another request during direct send or write/read FIFO it sends

unsuccess message. If there is any error the module, which gets packets, transfers the command

and settings bytes to top FSM module to perform the operation requested.

Receiver and transmitter FSM modules receive and transmit start bit, 8 bits data, parity and stop

bit. As receiver module transfers incoming 8 data bits to the top module, transmitter module

transmits 8 data bits which it gets from top module one by one. Besides, a mod counter module

is constructed to regulate the baud rate of this receiver and transmitter modules.

52

Figure 2.6: Block diagram of UART module.

2.3.3. DCM Core Generator

FPGA has a global clock distribution network to decrease the clock skew. DCMs are integrated

directly into this clocking network [26]. As a result of that, DCMs solve many typical clocking

problems, especially in high-frequency implementations:

• Decrease the clock skew and clock distribution delays

• Multiply or divide an input clock source

• Output clock with a 50% duty cycle

• Create a new frequency with a combined division and multiplication

Our system works at the default clock of Spartan-3 board, that is 50 MHz. Digital Clock

Management IP core generator of Xilinx is used to reduce the clock rate of reading port of FIFO

53

buffer. Read clock reduced to 25 MHz. The minimum clock rate of this DCM IP core generator

is 18 MHz, as seen in Figure 2.7.

.

Figure 2.7: DCM core generator of Xilinx.

2.3.4. FIFO Buffer

The best way to transfer high-speed data to low-speed devices is to construct buffer. The main

purpose of this dissertation is to implement a buffer on FPGA. Today’s, the most common and

advanced buffer type is FIFO buffer. For this purpose, we took advantage of dual-clock FIFO

IP core generator of Xilinx. Furthermore, modules which control write and read port of this IP

core FIFO are designed. Two D flip-flop synchronizers are placed to synchronize the input

signal of this FIFO buffer. Also, DCM IP core generator of Xilinx is used for reading clock of

FIFO buffer. In continuation of this section, these modules are explained in detail.

2.3.4.1. FIFO Buffer Core Generator

FIFO buffer core generator provided by Xilinx is used to obtain a more optimized FIFO buffer.

At first, brief information about this core generator explained. The core supports maximum

performance (up to 500 MHz) and also provides minimum resource usage [27].

The Native interface FIFO can be modified to build high-performance, area-optimized FPGA

designs. Native FIFO key features:

• FIFO data widths from 1 to 1024 bits

• Selectable reset signal as asynchronous or synchronous

• Three options for memory type (block RAM, distributed RAM or built-in FIFO)

54

• Full, Empty, Almost Full and Almost Empty flags are available

• Programmable Full and Empty flags can be configured as constants

Independent Clocks feature lets us to choose block RAM or distributed RAM and provides

independent clocks for write and read domains. Read data operations are synchronous to the

read clock domain and write data operations are synchronous to the write clock domain.

2.3.4.2. FIFO Usage and Control

Write Operation: If write enable signal is set, data is appended to the FIFO from the input port.

But write operations are only available if the FIFO is not full. If there is a new write operation

request while the FIFO is full, the request is discarded and the overflow flag is asserted. The

full flag shows that no more writes can be operated until read operation performed. The full

status flag is synchronous with the write clock domain.

Read Operation: If read enable signal is set, data is transferred to the output port from the FIFO.

But read operations are only available if the FIFO is not empty. If there is a new read operation

request while the FIFO is empty, the request is discarded and the underflow flag is asserted.

The empty flag shows that no more reads can be operated until write operation performed. The

empty status flag is synchronous with the read clock domain.

Figure 2.8: FIFO buffer core generator of Xilinx.

55

In FIFO part, FIFO types, architecture construct problems and solutions are expressed in detail.

For this project, a standard dual-clock FIFO which has 8 bit write/read word width and 16384

depth (Spartan-3 board could support maximum this depth) is constructed shown in Figure 2.8.

Write and read clock rate of FIFO buffer are different from each other. Furthermore, empty and

full flags are enabled to achieve more reliable system.

2.3.5 Synchronizer

In metastability section, constructing synchronizer is explained exhaustively. The most efficient

way is the signal to pass to D flip-flop. Thus, MTBF of the system considerably increases. In

this project, a module gets each bit of asynchronous signal passed through two D flip-flops to

synchronize the signal. The most important point mentioned before is to accommodate this two

flip-flop next to each other on the FPGA chip. Otherwise, clock skew may occur between these

two flip-flops. There are some mapping and placement constraints as seen in Figure 2.9 to

accommodate these two flip-flops next to each other. Some information about these constraints

is below:

• ASYNC_REG: Provides timing constraint improvements in simulation for

asynchronous data. It deactivates 'X' propagation throughout timing simulation. When

timing violation occurs, the previous value is preserved on the output instead of going

unknown state.

• IOB: It is a primary synthesis and mapping constraint. It specifies which latches and

flip-flops accommodate into the IOB. This constraint tells the mapper to move the

instance into an IOB type component if applicable. Where; TRUE indicates the latch or

flip-flop to be moved into an IOB and FALSE indicates vice versa.

• HU_SET: This constraint, used for advanced mapping, is described by the design

hierarchy. On the other hand, it allows us to define a set name, so we can define different

HU_SET sets by defining set names.

• RLOC: Relative location is a primary placement, synthesis and mapping constraint.

RLOC constraints group elements and allow us to specify the position of an element

within the other element in the same set, regardless of final placement in the total design.

56

Figure 2.9: Mapping and placement constraints.

In controlling FIFO module as seen in Figure 2.10, firstly incoming asynchronous data is

synchronized. This synchronous data is written to FIFO buffer when the write signal is enabled.

Analogously, when the read signal is enabled, data is read and transferred to the parallel output

port. Two modules are designed to control these write and read enable signals. Write control

module performs the intended number of data to write to FIFO. When writing operations

complete, this module asserts write success message signal. Similarly, read control module

performs the intended number of data to read from FIFO and when reading operations complete

asserts read success message signal. If FIFO is empty, it asserts read unsuccess message signal.

Figure 2.10: Block diagram of FIFO module.

57

Submodules of this project given in Figure 2.12 are explained in detail by now. The top module

shown in Figure 2.11, performs the operations according to command and argument bytes

received from an external device via UART. Settings are inferred at first, then according to

intended operation sending direct, writing or reading FIFO is performed. Additionally, these

operations can be stopped at any time. The data which are transferred to the logic analyzer via

a parallel output port, are also transferred to PC via another UART port.

Figure 2.11: Block diagram of the top module.

58

Figure 2.12: List of all modules.

59

3. RESULTS

As mentioned earlier, sine wave signal generated by Basys-2 FPGA board has been used as a

high-speed input signal. The graph of this sine wave sampled by the high-speed logic analyzer

is given in Figure 3.1.

Figure 3.1: The graph of sine wave signal generated by Basys-2 FPGA board.

Sine wave signal generated by Basys-2 FPGA board is written to FIFO and read from FIFO.

The graph of this output data of FIFO buffer sampled by the logic analyzer is given in Figure

3.2. This graph demonstrates the accuracy of our system.

Figure 3.2: The graph of data read from FIFO buffer.

60

Sine wave signal generated by Basys-2 FPGA board can be sent directly at different division

value to an external device via parallel port. The graph of this output data at the division as 1

sampled by the logic analyzer is given in Figure 3.3. This graph also demonstrates the accuracy

of our system.

Figure 3.3: The graph of data sent directly at division =1.

The graph of another output data at the division as 10 sampled by the logic analyzer is given in

Figure 3.4.

Figure 3.4: The graph of data sent directly at division =10

61

4. DISCUSSION

This system transfers data from the high-speed device to low-speed device. As it was mentioned

in introduction chapter, this system is required for a project which purposes to calculate the

delay time between input and output signals of SAW biosensors. These signals are sampled by

high-speed ADC. There will be data loss while transferring data from high-speed ADC to low-

speed devices like PC, ARM processor because of their differences of clock speed.

We have analyzed many products which transfer data from high-speed to low-speed, on the

marketplace. The common solution we have observed in this research is to construct FIFO

buffer. Since one side of this dual-clock FIFO buffer must work at high-speed, it is a good way

to construct this on FPGA. So, we designed multi-clock FIFO buffer on FPGA. This FIFO

buffer saves data at 50 MSPS from an external device and sends it at low speed to PC. Although

the system is designed for this project, it also can be used for any project which needs to transfer

data from high-speed to low-speed.

System Features:

• 16 kB FIFO depth with an 8-bit word width

• Works with single channel ADC

• Parallel input at 50 Msps

• Simple UART interface

• Based on Spartan-3 FPGA

On the market, there are comparatively better products whose FIFO depth that reaches to MBs

or parallel input speed that reaches at GSPSs. Using Spartan-3 board during experiments has

restricted the development of our project. Since Spartan-3 board has 50 MHz clock source,

parallel input of our system works at 50 MSPS.

Similarly, because this board has 200K system gates, FIFO depth of our system is 16 kB with

8-bit width. For instance, if we had used Spartan-6 board, we would have had a system with

parallel input at 100 MSPS or higher FIFO depth owing to 1M system gates of this board. These

features could have been considerably improved by especially Virtex-7 FPGA families which

have 200 MHz system clock and 2M system gates.

62

If our system had worked with multi-channel ADCs, but FIFO depth would not have reached

even to 16kB. Therefore, we decided that single-channel was sufficient. Besides, UART was

chosen for communication between FPGA and PC. This communication became more reliable

thanks to packet protocol created by us. A comprehensive interface was built. Thus, the user

can make settings (sample number, division rate or bit number), send command (send data,

write to FIFO, read from FIFO, stop operations, clear settings) or request status. Owing to the

interface, using this system became easy and efficient.

63

5. CONCLUSION AND RECOMMENDATIONS

Metastability and synchronization problems are explained in detail at first in this dissertation.

Then a comprehensive exploration of first-in first-out buffer and dual-clock FIFO buffer

approaches are covered. Afterwards, Universal Asynchronous Receiver Transmitter serial

communication protocol, which provides to communicate between FPGA and PC, and the

packet protocol, which is created by us – used during this communication are briefly mentioned.

In hardware and verification section, all techniques, environments, and devices used throughout

this thesis are expressed.

Purpose of this thesis is to transfer the input and output signal of a biosensor sampled by high-

speed analog to digital converter to PC at low-speed. However, this system can be used as an

interface to transmission between different clock domains. In this interface, the users can

choose number of samples, sample rate and bit number of samples.

In this dissertation, the issue of data transmission from high-speed domain to low-speed domain

is solved by a dual-clock FIFO buffer. However, data transmission via this FIFO buffer or

sending directly without FIFO buffer are optional. Some features such as requesting status,

stopping operation are provided to make the system more reliable. For obtaining more effective

results, IP core generators of Xilinx are used for constructing FIFO and digital clock

management modules.

The communication protocol is chosen as Universal Asynchronous Receiver Transmitter to

provide convenience to users. Additionally, a strong packet protocol is created to understand

system requests correctly, to make sure that data transfer is reliable and to infer errors easily

with error and status flags.

High-speed sine wave signal generated by another FPGA board has been used as high-speed

data throughout experiments. This sine wave signal as input signal and the output signal of our

system are analyzed with a logic analyzer. Then these recorded data of input and output signals

are plotted graphics with MATLAB. So, the correctness of our digital design system is

demonstrated obviously.

64

In the future, the work in this dissertation can be extended in some aspects;

 If FPGA boards with sufficient features are provided, the system can be used for

transferring data at much higher speeds.

 According to the purpose of projects, data can be processed on FPGA board instead of

transferring to the external device. So, only FPGA board can realize all issue.

 As a microprocessor is constructed on FPGA board, data can be processed in this

microprocessor instead of PC. Since processing data in FPGA is difficult, the

microprocessor makes it easier.

65

REFERENCES

[1] Shaochun G., 2011, Realization of Replicated Streaming Applications on Multi-Clocked

FPGAs, Thesis (M.Sc.), School of Information and Communication Technology, Royal

Institute of Technology.

[2] Roth F., 2011, Using Low Cost FPGAs for Realtime Video Processing, Thesis (M.Sc.),

Masaryk Unıversity, Faculty of Informatics.

[3] Yu S., Yi L., Chen W., Wen Z., 2007, Implementation of a Multi-channel UART Controller

Based on FIFO Technique and FPGA, Second IEEE Conference on Industrial Electronics

and Applications, 2007, China.

[4] Yağlıkçı A. G., 2014, FPGA Tabanlı Sayısal Sinyal İşleme Algoritmalarına Özelleştirilmiş

Yardımcı İşlemci Tasarımı, Thesis (M.Sc.), Institute of Science, TOBB University.

[5] Semeraro G., Magklis G., Balasubramonian R., Albonesi D. H., Dwarkadas S., Scott M.

L., 2002, Energy-efficient Processor Design Using Multiple Clock Domains with

Dynamic Voltage and Frequency Scaling, International Symposium on High-

Performance Computer Architecture, 2002 New York, USA.

[6] Rabaey J. M., Chandrakasan A., Nikolic B., 2003, Digital Integrated Circuits a Design

Perspective, Semiconductor Memories.

[7] Ho R., Mai K., Horowitz M., 2001, The Future of Wires, Proceedings of the IEEE.

[8] Zhang Y., Yi C., Wang J., 2011, Asynchronous FIFO implementation using FPGA,

International Conference on Electronics and Optoelectronics (ICEOE), 2011 China.

[9] Chu P. P., 2008, FPGA Prototyping by Verilog Examples, John Wiley & Sons, Inc., New

Jersey, USA.

[10] Taskin B., 2005, Advanced Timing and Synchronization Methodologies for Digital VLSI

Integrated Curciuts, Thesis (PhD), School of Engıneering, University of Pittsburgh.

[11] Kulmala A., Hämäläinen T. D., Hännikäinen M., 2006, Reliable GALS Implementation of

MPEG-4 Encoder with Mixed Clock FIFO on Standard FPGA, Tampere University of

Technology, Institute of Digital and Computer Systems, Tampere, Finland.

[12] Cummings C. E., 2005, Synthesis and Scripting Techniques for Designing Multi

Asynchronous Clock Designs, SNUG-2001 San Jose.

[13] Apperson R. W., Yu Z., Meeuwsen M. J., Mohsenin T., Baas B. M., 2007, A Scalable

Dual-Clock FIFO for Data Transfers Between Arbitrary and Haltable Clock Domains,

IEEE Transactions on VLSI Systems.

[14] Apperson R. W., 2002, A Dual-Clock FIFO for the Reliable Transfer of High-Throughput

Data Between Unrelated Clock Domains, Thesis (M.Sc.), University of Washington.

66

[15] Haritha, Raju D. P., 2015, Implementation of multichannel UART with FIFO, International

Journal of Advanced Research in Science and Technology.

[16] Chelcea T., Nowick S. M., 2000, A Low–Latency FIFO for Mixed–Clock Systems,

Department of Computer Science Columbia University.

[17] Cummings C. E., 2005, Simulation and Synthesis Techniques for Asynchronous FIFO

Design, SNUG-2002 San Jose.

[18] Cummings C. E., Alfke P., 2005, Simulation and Synthesis Techniques for Asynchronous

FIFO Design with Asynchronous Pointer Comparisons, SNUG-2002 San Jose.

[19] Xiao L., Chen X., Lin B., 2013, Design and Realization of Strain Measurement System

Based on FPGA and ARM, Fourth International Conference on Intelligent Control and

Information Processing (ICICIP), 2013 China.

[20] Budzin G., 2011, Programmable Logic Design, Wroclaw University of Technology.

[21] Forstner P., 1999, FIFO Architecture, Functions, and Applications, Texas Instruments.

[22] Nebhrajani V. A., 2009, Asynchronous FIFO Architectures.

[23] Xilinx Inc., 2013, Spartan-3 FPGA Family Data Sheet,

https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf, [3 May 2019].

[24]. Flachmann und Heggelbacher GbR, 2016, Docklight V2.2 User Manual,

https://docklight.de/pdf/docklight_manual.pdf , [3 May 2019].

[25]. Intronix Test Instruments Inc., 2015

http://www.pctestinstruments.com/downloads/la1034_brochure_en.pdf, [3 May 2019].

[26]. Xilinx Inc., 2009, Digital Clock Manager (DCM) Module,

https://www.xilinx.com/support/documentation/ip_documentation/dcm_module.pdf, [3

May 2019].

[27]. Xilinx Inc., 2011, LogiCORE IP FIFO Generator v8.1 User Guide,

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug17

5.pdf, [3 May 2019].

[28]. Xilinx Inc., 2011, LogiCORE IP DDS Compiler v4.0,

https://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf, [3

May 2019].

[29]. https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter, [3 May

2019].

http://www.pctestinstruments.com/downloads/la1034_brochure_en.pdf

67

CURRICULUM VITAE

Educational Information

B. Sc.

University Fatih University

Faculty Faculty of Engineering

Department Department of Electrical and Electronic Engineering

Graduation Year 18.06.2013

M. Sc.

University Istanbul University-Cerrahpasa

Institute Institute of Graduate Studies

Department Department of Electrical and Electronic Engineering

Programme Electrical and Electronic Engineering Programme

Personal Information

Name Surname Selma UÇAR AKDENİZ

Place of Birth Adana

Date of Birth 02.01 1991

Nationality T.C. Other:

Phone Number 0532 697 9426

Email selma@ucarakdeniz.com

Web Page

