

As required by the 9/2 and 22/2 articles of the Graduate Education Regulation which was

published in the Official Gazette on 20.04.2016, this graduate thesis is reported as in accordance

with criteria determined by the Institute of Graduate Sttudies by using the plagiarism software

to which Istanbul University-Cerrahpasa is a subscriber.

iv

FOREWORD

I want to thank God for completion in this work first, then my family and friends, in addition

to the supervisor Assoc. Prof. Dr. Zeynep ORMAN, who helped me accomplish this task.

October 2019

 MHD KHALED AL SAWAF

v

TABLE OF CONTENTS

Page

FOREWORD ... iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

LIST OF SYMBOLS AND ABBREVIATIONS ... ix

ÖZET ... x

SUMMARY .. xi

1. INTRODUCTION ... 1

1.1 Definition of Testing ... 1

1.2 Division of testing ... 4

1.3 Web application testing ... 5

1.4 Benefits of web application testing ... 8

1.5 Problem statement ... 10

1.6 Objective of this thesis .. 10

1.7 Research question .. 10

1.8 Principles of web application testing ... 10

1.9 Literature Review .. 11

2. MATERIALS AND METHODS .. 14

2.1 MATERIALS ... 14

2.1.1 Webload .. 14

2.1.2 TestIO ... 16

2.1.3 Acunetix ... 18

2.1.4 TestingWhiz ... 19

2.1.5 HPE UFT (QTP) ... 21

2.1.6 Ranorex ... 23

2.1.7 Selenium ... 24

2.1.8 JMeter ... 26

2.1.9 TestComplete .. 26

2.1.10 Other web application testing tools .. 27

2.1.10.1 Google Pagespeed Insight .. 27

vi

2.1.10.2 GTmetrix ... 29

2.1.10.2 Pingdom .. 29

2.2 METHODOLOGY ... 30

2.2.1 Automated Software Testing tools ... 30

2.2.2 Traditional web application methodologies .. 30

2.2.3 Archival research methodology .. 31

3. RESULTS ... 33

4. DISCUSSION ... 50

5. CONCLUSION AND RECOMMENDATIONS ... 51

REFERENCES ... 53

CURRICULUM VITAE .. 58

vii

LIST OF FIGURES

Page

Figure 1.1: Illustration of testing .. 2

Figure 1.2: Methods of testing .. 3

Figure 1.3: Usability testing of a web application .. 7

Figure 2.1: WEBLOAD web application testing tool .. 16

Figure 2.2: TestIO web application tool ... 18

Figure 2.3: Acunetix web application testing tool .. 19

Figure 2.4: TestingWhiz web application testing tool .. 21

Figure 2.5: HPE unified web application functional testing tool ... 23

Figure 2.6: Ranorex web application tool .. 24

Figure 2.7: Selenium web application tool ... 25

Figure 2.8: TestComplete web application tool ... 27

Figure 2.9: Google Pagespeed Insight web application tool .. 28

Figure 3.1: Number of tools vs the type of testing ... 40

Figure 3.2: Number of open source tools vs. the licensed tool .. 40

Figure 3.3: A graph showing the average mean time for one, fifty, and one hundred users

 ... 43

Figure 3.4: University website test results with Google PageSpeed Insight 45

Figure 3.5: University website test results with Pingdom .. 45

Figure 3.6: University website test results with GTmetrix ... 46

viii

LIST OF TABLES

Page

Table 1.1: Web application testing activities ... 12

Table 3.1: A summary of comparison of web-applications (Part 1) 33

Table 3.2: A summary of comparison of web-applications (Part 2) 35

Table 3.3: Technical Support services .. 38

Table 3.4: Overview of different Web Page Location Mechanisms Components 39

Table 3.5: Results for performance testing for Selenium ... 41

Table 3.6: Automated Usability Testing Methods Comparative Analysis 44

Table 3.7: Automated Usability Testing Tools Run Speed .. 46

Table 3.8: Web application testing tools resource usage ... 47

ix

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Explanation

SSL : Secure Socket Layer

QA : Quality Assurance

IDE : Integrated Development Environment

XML : Extensible Mark-up Langauge

AJAX : Asynchronous JavaScript and XML

GB : GigaByte

AMD : Advanced Micro Devices

GUI : Graphical User Interface

HTML : Hypertext Mark-up Language

ROI : Return on Investment

SAP : System Applications and Products

JDBC : Java Database Connectivity

SMTP : Simple Mail Transfer Protocol

MAC : Media Access Control

RAM : Random Access Memory

IPv6 : Internet Protocol Version Six

XSS : Cross-site Scripting

IAST : Interactive Application Security Testing

x

ÖZET

YÜKSEK LİSANS TEZİ

MHD KHALED AL SAWAF

İstanbul Üniversitesi-Cerrahpasa

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman : Doç. Dr. Zeynep ORMAN

Yazılım ve uygulamaları test etmek yazılım ve uygulama geliştirme sürecinin önemli bir

parçasıdır. Özellikle Web uygulamaları daha yüksek kullanıcı yüküne, kullanımına maruz

kaldığı zaman bununla doğru orantılı biçimde performans gereksinimleri gibi karmaşıklık da

artmaktadır.

Bu tez çalışmasında, Web uygulama testinde var olan eğilimler araştırılmaktadır. Bu

çalışmadaki çıktılar; çeşitli otomatik test araçlarını inceleyerek, bunları karşılaştırarak,

uygulama, kullanım, sağlanan teknik destek ve bakım kriterlerinden en iyisi seçilerek elde

edilmiştir.

Ekim 2019, 69 sayfa.

Anahtar kelimeler: Yazılım test, test, web uygulaması, otomatik araçlar

WEB TABANLI OTOMATIK TEST ARAÇLARININ DEĞERLENDIRILMESI

VE KARŞILAŞTIRILMASI

xi

SUMMARY

M.Sc. THESIS

MHD KHALED AL SAWAF

Istanbul University-Cerrahpasa

Institute of Graduate Studies

Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Zeynep ORMAN

Testing software and applications is an important part of the development process. Web

applications in particular continue to grow in complexity, as do their performance requirements

as they are exposed to higher user loads.

This thesis explores current trends in Web application testing. This is achieved by surveying

various automated testing tools, comparing them, and selecting the best according to the criteria

of implementation, usage, provided technical support, and maintainability.

October 2019, 69 pages.

Keywords: Software testing, testing, web application, automated tools

Evaluation and Comparison of Web-Based Automated Testing Tools

1

1. INTRODUCTION

Anything needs to be tested before it is used. Testing is everywhere, whether it is hardware or

software everything needs to be tested before it is taken into use. English testing means

everything which can be tried out. In computer science, testing is an act of searching faults in

software. This is done by system analyst by executing parts of the software; it is the act of

testing with some predefined data. The main motivation is to prove that the program or the

software is working as required and producing the correct results. A simple testing definition is

as shown by the diagram below. Here data is given as input which is then executed with inputted

data. Testing is usually corrected done if the results are correct and when the inner state has

been changed to another state.[1]

1.1 Definition of Testing

Web testing is a name given to software testing which focusses on web applications. It is the

process of checking whether a web application has bugs before the web code is moved into a

production environment or for any potential bugs. It is a web testing where web security is

checked, the ability of the site to handle traffic, and the regular users of the site. [2]

2

Input Space

Result space

Program

The code

Inner State

X

Y

Figure 1.1: Illustration of testing

In software and applications, good testing usually includes test planning, creation of test

environments, viewing the results, and test cases. These four phases usually take half of the

resources reserved for application testing. When testing a new program such as a web

application, it starts from the beginning. The planning phase usually specifies how testing is to

be done. Testing results in mistake, bug, and language error. Error is defined as a deviation

from specifications; the application is doing something that it is not supposed to do. Also, errors

can result in a program or an application working very slowly; usually the user has trouble using

it. Jukka defines an error as a human function that causes application defects. A fault is a reason

for the failure of an application. [3]

3

There are usually four levels of testing during software or application development. This is as

shown by figure below

Figure 1.2: Methods of testing

As shown by figure, in-unit testing an individual component or a unit is tested. The major aim

of this part is to make a single module in an application or a program to work correctly. In here

unit testing is usually carried out by the unit implementer. Here testing can be done by some

Personal Computer which resembles a real application or systems. A testbed is used to simulate

the functionality of the module or the unit. [4], [5]

Acceptance Testing

System Testing

Integration Testing

Unit Testing

4

When all the modules are combined together and tested it is what is referred to as integration

testing. The major aim of integration testing is to find any errors or omissions between the

integrated units. It is at this level that makes sure that the work is done correctly. This means

that testing needs to start from a low level all the way to the upper level. [6]

System testing level usually tests the various parts of an application or the system; this usually

consists of units or modules which have been integrated into a complete system. The idea

behind this level is to make sure that the whole system complies with the predefined

requirements. In addition, this level tests both non-functional and functional requirements.

Some of the non-functional requirements tested are usability, reliability, and performance. The

results of non-functional requirements are compared with functional requirements. The person

who performs non-functional testing ought to be independent of the development of the system

people. [7]

As shown by figure system testing is then followed by acceptance testing. This level evaluates

the application against the application requirements and it assists in deciding whether the

application is ready for delivery. [8]

1.2 Division of testing

According to the way, testing is performed it can be executed by humans. The first division of

testing is manual testing which in this case involves manual tasks like setting up tests

environment and executing tested functionality, reviewing and collecting the results and

recording the found issues. The second division which has been highly exploited in this thesis

is automated testing; which is the execution of tests without human intervention. Usually,

automated testing includes the ability to run a subset of all tests, capturing the results, running

the test cases, automatic set-up and recording of environmental variables, and analysis the

processing and results in a comprehensive and clear way.

5

One of the benefits of manual testing is that the set-up time is shorter as compared to automatic

testing. One of the major drawbacks of manual testing is that it leads to incorrect or inaccurate

results. Also, the execution of test cases is slower than automated testing. One of the benefits

of automated testing is that it assists in the elimination of human errors. Second automated tests

are faster as compared to manual testing. Third automated testing can lead to cost reductions.

[9]

A basic testing method is a box-based approach. Box approach is divided into two which are

black-box testing and white box testing. These two approaches are used to describe a point of

view of the test engineer. Black box testing is where a tester does not have any information

about the internal procedure and working of a web application testing. Black box testing which

is also known as the closed box is data-driven testing that tests the functional part of a web

application. On the other hand, white box testing is structural testing or a code based type of

testing. In the white-box type of testing, one has full knowledge of the internal working of the

web application. It is also important to note that the black box type of testing is based on external

expectation as the internal behavior of a web application is unknown. On the hand in white box

testing, the internal working of a web application is fully known by the tester. Lastly, white box

testing is exhaustive and very time consuming. [10]

1.3 Web application testing

The previous section highlighted extensively what is testing, the elements of testing. This part

will focus on web testing. In addition, as highlighted there are several web applications that are

being developed on a daily basis and with each line of code being written for web applications,

potential bugs arise on a daily basis. This raises the need for web testing. Web testing is an

important part of any application development yet some developers underestimate this process.

The chance of bug appearing increased with every life of code. There are six basics of web

6

application testing; the first one is functionality testing. [11] This step is specifically used to

make sure that the web application is working correctly. Specifically, this faces checks if a

database connection is working. This is done in the early stages of development so as to build

up the whole process of app building. It usually reduces the risks towards the end of the cycle.

A typical functionality testing in web application usually includes identification of functions

that the web application is supposed to do, the analysis of the actual results, the execution of

the test cases, and data input of the test case. Usually, the tester here is supposed to simulate the

actual application and creates test conditions that are related to the user requirements. Usability

testing is the second phase which goes beyond the first test. This step combines both the user

experience and functionality testing. This step usually involves developing the testing strategy

which ensures that all functions of the application or the program are examined and included in

the content and navigation. Second, the recruits test participants either externally or internally.

Third, tests are done under the experts’ observation and lastly is analyzing the results so as to

improve the web application accordingly [12]. The process of usability testing is done as shown

by the diagram below in Figure 1.3 [13]

7

Figure 1.3: Usability testing of a web application

The next phase is interface testing; in here the web application tester checks whether or not

there an interaction between the web server and the app server. In here not all the

communication is tested but also the displaying of error messages. It is also by this phase that

the interruptions by the user and the server are handled. The next phase is compatibility testing,

which ensures that the web application is compatible with all the devices and various browsers.

There are various elements of compatibility testing; the first element is browser compatibility;

here the tester checks whether the application is compatible across various browsers. Here the

tester checks whether Ajax, authentication requests, browser notifications, and JavaScript are

working correctly. Operating system compatibility is also checked at this phase, where the tester

checks of the application run smoothly on Unixes, Linux, Windows, and macOS. Mobile

compatibility is also done at this phase; here the tester checks whether the application is running

smoothly on various mobile devices [14].

The fifth phase is performance testing; in here the tester checks whether the application is

responsive to all applications and it performs under very heavy load. This usually includes

testing under a very heavy load under different internet speeds and how the application behaves

under peak and normal loads. In addition, this phase tests application resiliency; how the web

application performs under stress and various hardware configurations. The final testing in the

web application is security testing; this makes sure that the application is protected against

unauthorized access or any form of harmful actions via malicious software and other viruses.

Usually, security testing involves four activities that are testing whether all the secured pages

can be accessed, verifying the application SSL, makings sure that the restricted files cannot be

accessed or downloaded without adequate authorization, and checking that all the open sessions

8

are closed after an ongoing user activity. Security checklist comes hand in hand on this stage

and ought to include tasks such as secure transmission, error handling, session management, an

transmission, and authorization, denial of service, specific functionality tests, and cryptography.

This means that security testing has five major goals which are identifying the web application

security needs, preparing a test plan, automated testing on top of manual testing, carrying out

the best security test cases, retesting, and fixing identifying defects [15].

From the above web testing steps, it means that web application testing is the practice of testing

web applications or websites for potential bugs. It is a complete testing of designed web

applications. The web applications need to be tested from end to end before the application goes

live for the end-users. The web application testing checklist ought to have six components

which functionality testing, usability testing, interface testing, compatibility testing,

performance testing, and security testing [16].

There are four major types of web testing which are simple static testing, dynamic testing, e-

commerce website testing, and mobile testing. In static testing few points are considered which

are testing the GUI design, checking the page web-application links, and checking the scroll

bar carefully. Dynamic web testing is where the designer checks if the user can change or update

the web application regularly [17].

1.4 Benefits of web application testing

Testing is any application development is the first step to quality assurance. The major aim of

testing is to not necessarily to verify the finished work with the initial specifications of the

contributor but to ensure that the application is user-friendly. In addition, testing does not only

ensure the finding of bugs in an application but also to control the quality of the application.

Meaning the first customer of testing is the quality assurance team [18].

9

There are various advantages of web testing. First is that it ensures complete correctness of the

web application. As highlighted previously, web application testing is carried out in layers or

levels. This means that web testing ensures completeness and correctness of the web

application. Second web testing increases confidence in the performance and functioning of the

web application before the web application is released. Third, testing reduces future risks; the

web application is tested rigorously after every sprint and iteration. Meaning that there very few

chances of risks and failure in the future. Forth, testing decreases repetitive efforts. As a web

application is tested thoroughly then it means that they are no looking back; it reduces the

chances of a breakdown. Fifth web-testing reduces costs and time via what is known as an

automation testing tool. Sixth, web application testing boosts on customer satisfaction; it is

through testing that web application quality is reached; testing here ensures that customers'

patience is not taxed with a defective web application. Seventh, web testing comes together

with profit; testing is part of profit-making. Offering a rigorously tested and quality checked a

web application [19], [20].

Other advantages of web testing are;

❖ Overcoming the blindness to issues when a designer or a project manager has been

looking at the same time

❖ Ensures high-quality web application that generates better results

❖ Alleviates the pressure of the designing team

❖ By carrying out all the steps of web application testing then comprehensive testing

is completed no matter how the designing team are busy

❖ Web application testing provides what designers refer to as the additional level of

testing by allowing testing to be carried as per the web application steps [21].

10

1.5 Problem statement

Web application testing or software testing is a very difficult task. This is because of the

peculiarities of some programs and applications. According to Giuseppe, in the last past years

there have been several issues specifically in the field of web application testing which has

resulted in many research work done; in web application testing techniques and methods of

web-application testing have been looked at widely but this is not adequate. This thesis will

look at web application testing tools. Focusing on this will assist in finding out the best web-

application tools thus making web-based testing easily.

1.6 Objective of this thesis

The major aim of this thesis is to conduct an evaluation of the best tool to be used for testing

web applications based on several criteria. To refer to the very best tool there is a lot of factors

to be considered such as browser compatibility, technical support, and integration. The

important part of this work is to compare several web application tools and suggest the best

tool.

1.7 Research question

This thesis has systematically reviewed various web application tools. The leading question can

be put like: Which is the best web application testing tool?

1.8 Principles of web application testing

There are seven principles of web application testing. First is exhaustive testing is not possible.

Instead, designers need the optimal amount to test which has to be based on risk assessment of

the web application. Second is the defect clustering principle; which states that a small number

11

of modules can contain most defects that are detected. This principle applies the Pareto principle

to web application testing. Third, is the principle of pesticide paradox; which states that

repetitive test cases can be conducted to a web application to discover any new trends; this is

done to improve the existing testing methods continually. Forth, is testing shows a presence of

defects; hence, any time designers talk of testing the never mean absence of defects. The firth

principle is the absence of error; fallacy. When testing a web application, the absence of an

error is a fallacy. Early testing is the sixth principle; this states that testing ought to start as early

as possible during web application development; so that defects can be discovered early during

web application design. Seventh is testing is context-dependent; meaning that the way you test

a web application is not the same way one tests an e-commerce site.

1.9 Literature Review

Samad Paydar (2010), have focused on the framework of web-based systems. The author has

presented an agent-based framework for testing web-based applications. According to the

author, the major design goal is to develop a flexible and effective system. The framework has

been developed in such a way that it utilizes various sources of information about what the

author referees to as automate the test processes. The resulting frameworks is a system that

consists of a set of agents. Samer (2013), has focused on the comparison of the GUI automation

tools for dynamic web applications. According to the author, automating the process of software

testing assists the designing team in releasing a quality software or an application. It also

shortens the period of application development. The author has summarized the best guidelines

and practices for GUI functional tests against web applications. To find out the best GUI

practices, the author has given an overview of HTML as it is what all the automation tools try

to access [22].

12

Samer (2013) has compared how several web application tools function in some browsers. His

comparison was based on Firefox, Internet Explorer, and Google Chrome. According to Samer,

TestComplete seems to be less compatible with web browsers especially Internet Explorer as

compared to Sahi and selenium. This is because the TestComplete tool seems to be using an

engine to access the web application or the web pages that are based on accessing Internet

Explorer [23].

Suguna and Rajya (2015) and others have given a review of automated testing tools of testing

supported by the tools led by a survey of some interesting facts by the two authors available.

[24] Sahi and selenium tools appears to be more reliable than other tools. Besides, they appear

to be more time saving and effective as compared to other tools. Running tests and recording

by using TestComplete appears to be weaker when dealing with dynamic web applications [25],

[26].

A case study has been carried out by PhotoSnack on the best web application tool, and it is

evident that Selenium is the best web application tool tester. The tool supports all the testing

activities of a web application tool listed by Table 1.1 below.

Table 1.1: Web application testing activities

Testing activity Description

Security testing This an activity specifically planned to uncover imperfections in the

security components for data framework.

Usability testing This is a type of testing with a view of viewing clients’ perception of

the web application.

Compatibility testing This type of testing activity where the test engineer checks for the

compatibility of the web application

13

Performance testing Checks the viability of the web application

Stress stressing This type of testing activity assess the conduct of the web application

It is evident that PhotoSnack performed several steps in turn with three client levels i.e, one

user, fifty clients, and one hundred clients. PhotoSnack went ahead to detail the performance

testing of selenium web application software. As one can view from the testing, the web

application was very efficient when only one user was accessing it and when performing several

tasks on it. The average time is a minimum case of one. When the number of clients is increased,

the average mean time is increased as well. It is moderate in the case of fifty users and doubled

in the case of a hundred clients. Therefore one can conclude that as the number of clients is

increased, then the performance of the application is reduced. But as far as the testing

mechanism is concerned then selenium tool proofs to be the best tool. It is best suited for testing

web applications under peal conditions. The tool can also be used to check errors in a web-

application and the performance of the web application [27], [28], [29].

It is evident that there not so many tools testing non-functional attributes of web applications

such as trustworthiness, fault tolerance, and reliability which are not readily available. Also,

there is the death of all open source tools which are using mutation techniques that can perform

automated test case execution which is based on mutation analysis while at the same time

optimizing the test suite [30].

14

2. MATERIALS AND METHODS

2.1 MATERIALS

Web testing tools usually improve reliability, increases ROI (Return on Investment), and

turnaround time. Various web testing tools assist in diverse web application testing. With web

testing, issues like web functionality, usability, accessibility, performance, and compatibility

are released in public when web testing tools are used. This chapter will critically analyze the

various web application testing tools, list their features, pro, and cons.

To start with web application testing tools are categorized into seven categories which are load,

stress, and performance testing tools, W3C Link checker, cross-browser testing tools, web

functionality and regression testing tools, link manager testing tools, and web site security

testing tools [31].

2.1.1 Webload

Webload is one of the load testing tools or what is known as a performance testing tool. This

tool combines performance, integrity, and scalability. This tool usually simulates lots of users

which makes it possible to test large loads and report any form of a bottleneck. This tool was

first launched in August 1997. Since this time there have been about 20 versions of the

Webload. After 1997, the first version of Web load was in June 2010, and the version was 8.5

which was side-by-side views and JAX based. The second version was in the same year version

8.6 which has a statistical correlation. The third version in 2012; version 9.0 which was a load

testing tool from the cloud. The tool can probe a statistical client. The other version was the

10.0 version which could support IPv6 and had a new interface. Later version 10.1, and version

10.2 were released on May 2013 and December 2014 consecutively. The tow version has the

Jenkins plug-in and web dashboard. Later version 10.3 and version the latest version 10.3.1

15

were released on October 2015 and February 2016 consecutively. The latest version could

unfreeze and freeze a test during the integration or execution of a new New Relic [32].

The current version, 10.3.1 has six major features which are IDE, Correlation, Load generation,

analytics, PMM, and web dashboard. With a web dashboard feature, the tool can analyze

performance tests results from any mobile device or browser. Second, with PMM feature, one

can collect the server-side statistics during tests runs thus able to provide the users with any

additional data for root-cause analysis. With the Load generation feature, the tool can generate

from the cloud. IDE feature one is able to record and edit load tests scripts visually. With the

analytics feature, one can set a predefined analysis report which provides performance data and

assists users with identifying bottlenecks.

Other features of webload include:

❖ Mobile load testing

❖ Technologies supported

❖ Test creation

❖ JavaScript

❖ Test execution

 One of the advantages of Webload tool is that the tester can provide a clear analysis of the web

application. Second, one can pinpoint issues and the bottlenecks which may stand on the way

of achieving one load response requirements. Also with Webload, a tester can work with cloud

providers such as Amazon to create a dry run of massive virtual user load with load generation

console on windows and Linux.

 Another benefit of Webload is that it offers a robust testing platform and flexibility. Also, one

can create efficient load testing. Lastly, the tool has offered integration with Jenkins, app

dynamics, New Relic, Amazon Web Dynamics, Selenium, and Dynatrace. Some of the cons of

16

the tool are; full functionalities for Webload is not offered for free; a trial version is provided

but later one needs to purchase the tool to one can realize full functionality of the tool

Figure 2.1: WEBLOAD web application testing tool

2.1.2 TestIO

TestIO is another web testing tool, this tool makes sure that one web application works

everywhere by crowd testing. With this tool, one can deliver the test. Some of the features of

this tool are; able to remove QA bottlenecks with flexible testing which scales up to one needs.

Test on rea; devices; this feature enables one to expand on one coverage to the hundreds of

17

platforms and devices. The device also ensures one of the professional testers have unbiased

eyes on the product.

 Other features are:

❖ Cross-device compatibility

❖ Cross-browser compatibility

❖ Parallel execution of various tasks

❖ Offers cloud-based solution

❖ Hierarchical presentation

❖ QA script reviews

Some of the advantages of the tool can integrate project management with bug tracking tools.

The tool also can offer a crowd-powered quality assurance testing platform thus achieving

enhanced efficiency and a more extensive reach among the actual web application users.

Second, with test IO tool, one can uncover any programming errors and at the same time,

provide contextual data to assist the designer in creating a more efficient web application. Third,

the tool can provide support to multiple browsers and devices. Besides, the tool is compatible

with most operating systems and is readily available. Lastly, the tool provides a holistic

platform for all various types of software, be it a web application, web sites, iOS, mobile-

optimized web software, and mobile apps.

Some of the cons of the tool are; TestIO is not provided even on trial version. The starter

version with limited capabilities is provided with 3000 dollars per month, and the professional

version is provided at the cost of 4500 dollars per month. Also, as compared with Webload

testing tool, the response time of this tool can go up to 24 hours.

18

Figure 2.2: TestIO web application tool

2.1.3 Acunetix

Acunetix is an automated fully web application testing tool that can detect and report to over

4500 web application vulnerabilities which include all the variants of XSS and SQL injection.

The tool fully supports JavaScript, authenticated applications, allowing of complex, and

supports HTML 5 [33].

There are many features with this tool, such as deep-scan technology: This feature is an

automated crawler that can crawl on complex custom HTML5 websites and web applications.

This feature also includes even client-side single-page applications. Second with this tool, one

has the ability of scanning websites with modern web technologies; this includes Javascript

frameworks such as Vue, ember, react and angular. Back-end technologies such as Asp.net,

PHP, Ruby on rails and java. Third, the tool has other features such as custom authentication

schemes, multi-factor authentication, and single sign-on authentication.

19

One advantage of the tool is that it provides interactive application testing commonly known as

IAST or what is known as gray box testing for java powered web applications. Second, it

enhances regular dynamic scan via deployment

Figure 2.3: Acunetix web application testing tool

2.1.4 TestingWhiz

This is one of web application testing tool developed by cygnet Infotech. The tool offers

automated solutions such as web testing, database testing, automation, optimization, and API

testing. Some of the features of this tool includes are; [34]

❖ Delivery in agile cycles

❖ Risk-based testing

❖ 300 testing commands which also includes an in-built JavaScript

❖ Playback test automation framework

20

❖ Object eye internal recorder: Allows the tester to archive and record web

application controls. It permits one to edit the stored objects through smart editing

features

❖ An integration with test management tools such as HP quality center

❖ Reusable methods

❖ Image comparison

❖ Dynamic test data support: This feature is used to reduce the maintenance of the

automation scripts and the test coverage

❖ Roust logs and reports

❖ Visual recorder

❖ Captcha automation

TestingWhiz tool is very easy to use for both large and small automation. The tool comes with

what software test engineers refer to as FAST engine which utilizes intelligent and reusable

recording techniques; this includes data-driven, keyboard driven and Ms –excel programming.

In addition, the tool allows one to create powerful and modular automation scripts with ease.

Also the test commands applied by the tool are usable even to those users who have no coding

skills to optimize testing workloads and to boost the efficiency on the automation projects. Also,

the web application testing tool supports various browsers which are firefox, safari, android

mobile browsers, and IE, Safari, IE and Chrome. In addition, the engine executes automation

projects with inimitable flexibility, and speed since the tool has the ability to implement various

file formats which includes DOS, .exe, and .bat file.

The tool is not provided for free; it is subscription based which is readily available on request.

Also the tool does not have the ability to fully scan a web application like Acunetix

21

Figure 2.4: TestingWhiz web application testing tool

2.1.5 HPE UFT (QTP)

This is a web application tool which provides users with interactive tools which are used for

executing and creating automated apps on web, mobile, and desktop platform. The tools are

used by software testers to allow users to execute and create automated functionality and

performance tests. Besides, the tool is specifically used to perform both regression and

functional testing via a user interface like a web interface or GUI.

Some of the features are; Manages exception handling, Supports data-driven testing,

extensibility, Complex UI objects, Extensibility, Automated documentation, Error handling

mechanism, Unique handling mechanism, and Integration with mercury quality center and

mercury business process testing. Some of the advantages of the tool support several

technologies but it depends on versions which are java, .net, SAP, Oracle, Siebel, Delphi, Power

Builder, and windows mobile. The tool has the ability to let software testers to edit and display

22

test codes that use VBScript. Lastly, the tool is designed for more advanced users where they

can edit all the test functions for the Global root actions.

Some of the advantages of the tool support several technologies but it depends on versions

which are java, .net, SAP, Oracle, Siebel, Delphi, Power Builder, and windows mobile. The

tool has the ability to let software testers to edit and display test codes that use VBScript. Lastly,

the tool is designed for more advanced users where they can edit all the test functions for the

Global root actions.

Some of the disadvantages are; available as on-premise software for both windows but it is not

readily available for free; all the interested parties are required to contact HPE for licensing and

pricing options; the free platform which available do not have all the required features. Also,

the tool runs only on Windows environments and cannot test with all browsers versions and

types; specifically, the tool supports only Opera. Third, there is no way one can run tests

independently even though remote execution is possible. The high licensing cost of the tool

indicates that it can only be used on the windows environment, but it is limited to the smaller

testing team. Lastly, the supports VB Script meaning that the tool cannot use some Visual Basic

keywords. Also, the VB script does not support inheritance and polymorphism.

23

Figure 2.5: HPE unified web application functional testing tool

2.1.6 Ranorex

Ranorex studio is one of the web application testing automation tool which covers all the

mobile, desktop and web applications. Some of the features are record and playback, GUI

recognition, reusable test code, and integration with the various tools.

The tool delivers robust object recognition for any of the web technology thus making web

application testing reliable and resilient. The tool also can identify UI elements with flexible

and powerful RanoreXPath syntax that is capable of handling dynamic elements. Third, the tool

can support web frameworks and web technologies. The test hybrid is based on open source

chromium, embedded framework, and testing of JavaScript and Test Java. Forth, the tool can

perform what testers refer to as web element identification, thus making it possible to analyze

web application and to apply predefined rules for stable identification of elements. Besides, the

tool integrates with the current solutions [35].

24

Figure 2.6: Ranorex web application tool

2.1.7 Selenium

 Selenium is a web application tool that supports test automation. Selenium was first

discovered in 2004 by Huggins as an internal application at ThoughtWorks. The tool is

composed of several components which where each of the components has a specific role in

helping in the development of web applications. One of the important components is the

selenium IDE which is a complete IDE for selenium tests. Most of the Selenium Quality

Assurance engineers focus on two or one tools that the needs of their project. Some of the

features are; Supports android testing and iPhone, runs a little faster and even server is not

required, it is very easy for a Web Driver to build a keyword, and Selenium server initializing

is not required [36].

Advantages of selenium, the test scripts can be written in any of the programming languages

like Python, c£, Perl, Java, and .net. Second selenium tests can be carried out in any of the

operating system, Linux, Mac, Windows. The tests can be carried out in Opera, Safari, Mozilla

25

Firefox, and google chrome. Forth, the tests can be carried out using JUnit and TestNG for

generating reports and managing test cases [37].

Some of the disadvantages are; Test engineers can only use selenium to test web applications

only; the test engineers can’t test desktop-based applications or any other software. Second,

when using Selenium, there is no support available for selenium. Tests engineers are required

to leverage the available customer communities. Third, test engineers cannot test images; they

need to integrate selenium with what is known as Sikuli for image-based testing. Lastly, the

tool does not offer a native reporting facility [38].

Figure 2.7: Selenium web application tool

26

2.1.8 JMeter

JMeter web application testing tool for both dynamic and static resources and dynamic web

applications. JMeter web application testing is used to simulate a heavy load on a server, object

or network, group or to analyze overall performance under load types. Some of JMeter features

are: [39]

❖ The ability to load and performance tests many different applications

✓ Database through JDBC

✓ Message-oriented middleware

✓ Mail SMTP, via JMS

✓ Shell scripts or native commands

❖ Full features test IDE which allows fast test plan

❖ A complete dynamic HTML report

❖ Offers complete compatibility with java purity

2.1.9 TestComplete

This is a web application testing tool that was developed by SmartBear Software. The tool gives

the designers or the testers the ability to create automated tests for iOS, Android operating

systems, and Microsoft. Usually, TestComplete contains three major modules which are

mobile, Web, and Desktop. Each of the modules contains its own functionality for creating

automated tests.

Some of the features are; extensions and SDK, test Visualizer: In here the tool has the ability

to capture screenshots during test recording and playback, open architecture, data-driven

testing, bug tracking integration, scripted testing: This feature shows that the tool has a built-in

code which assists the tester in writing scripts manually, keyword testing, CPOM-based.

27

Some of the supported testing types by the tool are; Keyword testing, Mobile application

testing, manual testing, data-driven testing, regression testing, GUI testing, distributed testing,

load testing for web services, and unit testing [40].

Some of the advantages of TestComplete are; Easy to use, it is reliable, it is fast, it saves one

time, it has a 24/7 supporting team, offers timely updates, trimming the cost of testing, and easy

continuous integration. On the other hand, one disadvantage of the tool is that do not support

MAC OS.

Figure 2.8: TestComplete web application tool

2.1.10 Other web application testing tools

2.1.10.1 Google Pagespeed Insight

Google Page is one of the current web application tools from Google Inc. family. The tool was

designed to assist in website performance optimization. It was first introduced at a developer

conference in 2010. The tool has four main components for this tool which are PageSpeed

insights, PageSpeed Chrome, PageSpeed Module, and PageSpeed service. All the components

28

are there to identify website compliance faults. It is also used to automate the adjustment

process. Also, the tool can measure how a web page can be improved with performance on time

to full page load.

Some of the features are; combines heads: The tool has the ability to combine several <head>

tag into one tag this prevents browser workflow, removes comments: Has the ability to delete

HTML comments, trims URLs: The tool has the ability to substitute absolute URLs with the

relative ones, and local storage cache: These features saves inline resources. Some of the

advantages of the tool offer an improved user experience, it is easy to use the tool, provides a

very detailed report of its findings, includes additional languages besides English, and it is

provided for free by Google. Some of the disadvantages of the tool are that it is not supposed

to be used by a professional developer, and the tool rules can be very difficult to interpret [41].

With Google Pagespeed one enters the web application link on the tool to test the application.

The look of the tool is as shown below in Figure 2.9

Figure 2.9: Google Pagespeed Insight web application tool

29

2.1.10.2 GTmetrix

GTmetrix is a web application tool goes into detail as it checks both Yslow and Pagespeed

matrix. This means that compare with Google page insight tool, GTmetrix can assign a website

grade from F to A. Also the tool offers free registration, where one can test a web application

from around several different locations.

Some of the features are; the ability to carefully monitor pages and run its tests weekly, daily,

or monthly, the ability to visualize performance with at least three graphs available, annotate

areas of interest, and Zooms, pans, and able to set a date range to find specific performance

history. Some of the advantages of the tool are; monitored analysis, multiple test options,

mobile analysis, alerts and digests, and page-load analysis. One of the disadvantages of the tool

is that it is not offered for free [42].

2.1.10.2 Pingdom

Pingdom is a tool that offers availability for one website, web services, and web applications.

The tool uses more than seventy global polling stations to test and verify the customer’s website.

With the tool, one has the ability of monitoring web application performance, uptime, and user

experience. The tool can analyze one website load and speed. Lastly, the tool is designed to

assist a developer in making the site faster and offering an in-depth insight into a web page

speed and performance expectations with email notifications or SMS [43].

Some of the features are offering uptime monitoring, offering real user monitoring, offering

page speed monitoring, offering Root Cause Analysis, and offers reliable alerting. Some of the

pros of the tool are; it is cost-effective, reliable, and uptime monitoring. One con for the tool is

that it is not offered for free it only 14 days day free trial with limited features.

30

2.2 METHODOLOGY

2.2.1 Automated Software Testing tools

When application designers start researching on the best software tester tool, it is essential to

first create a list of the most used software testing tools as it has been in chapter one. If we do

not have a list of the software testing tools, test engineers will be wasting a lot of time

downloading, evaluating, and installing testing tools that may only meet some of the

requirements.

There are more advantages of automated testing over manual testing; various organizations

were engaged in developing different automated testing tools. Specifically, there are two types

of test tools. These are open-source test tools and commercial test tools. The open test tools are

free for use, such as selenium, QTP, and TC.

2.2.2 Traditional web application methodologies

Different types of techniques have been employed in the past to test web applications. Some of

these methodologies are;

❖ Structural testing: This is data flow analysis on web applications which applied to

web applications to test if a web application is built dynamically

❖ Statistical testing: This is a type of web application whereby the input sequence is

generated to test the interaction between a web application based on the profile use of

a web application

❖ Mutation testing: This is a methodology of introducing faulty code which is

referred to as mutants into the source code of the web application. This is done

deliberately to predetermine the points and testing of the web application so as one can

uncover unknown errors

31

❖ GUI interaction testing: This is a traditional web application testing whereby a

web application is tested for correctness. This is done by observing the state of web

application

❖ Hierarchical strategy: This is one of the high-level operational profile which is

developed by enumerating frequency of operations

❖ Combinatory interaction testing: this is another type of traditional testing whereby

the user uses combinations of the various techniques to first design a unique input

space matrix for the web application.

❖ Invariant based technique: This is a type of web application methodology used by

crawling web pages and formally designing the state of flow of graphs with all the

possible user interaction sequence

❖ Cross-browser compatibility testing: This is a traditional type of testing which is

done across various browsers for adherence to the expected results.

❖ Invariant based technique: this is a traditional type of web application testing

which is done by crawling of web pages and formally designing of a state flow graph

with all the possible user interaction sequences.

2.2.3 Archival research methodology

To conduct this research, the researcher adopted archival research methodology. This where

data that already exists in other people's articles and to the developers of the web application

tool is used to evaluate the best web application testing tool. The types of data available online

are on the various web application tools, there features, advantages and disadvantages.

Most researchers prefer to use original data as they have more control over it but in this case,

web application testing tools information already exists. Second, with archival data, it will be

very easy, and it will take less time to evaluate and process the data. Third, archival data which

32

already exists about web application tools have already been processed by statisticians. Forth,

by adopting the archival method, the researcher will in a position to find out more than was

currently gathered about web application tools. Fifth, the researcher will be able to eliminate

the need to correct for issues or problems like improper sampling and observer bias. Sixth with

the archival method, one can make it possible for small organizations with very limited

resources to conduct thorough evaluation studies.

The organizations likely to have this information are companies such as Phonosnack who are

involved in developing applications, academia who have done much research in web

application testing and dissertations for advanced degrees related to software testing, funded

research by web such engines like Google scholar [44].

To better understand web application testing tools. This will be done by reviewing articles; this

one will get a clearer picture of software testing and help in interpreting any results which may

come on the way. Second, with the archival type of research methodology, the researcher will

be able to identify the best tool to use to test web applications along with a clear picture of why

it is best suited for use by test engineers. Also, the researcher will be able to establish the

baseline against which to measure results. Lastly, the researcher will be in a position to measure

the results of the study. Lastly, the researcher will be in a position to establish a standard of

comparison against which to measure the research effort; this can give a sense of how serious

the issue of a web application is.

33

3. RESULTS

Choosing the very best web application tool for testing is not an easy task. This usually needs

lots of consideration, such as whether a certain tool has relived of the integration. Besides, a

testing tool has to be companionable with the execution and blueprint of the web application as

well. As discussed before there are various tools which are available in the market and choose

one of the tools is an intricate task.

Tables 3.1 and 3.2 below shows a summary of a comparison of the selected web-applications

Table 3.1: A summary of comparison of web-applications (Part 1)

Parameters Selenium Webload TestIO Acunetix

License Open Source Licensed Software
Licensed

Software

Licensed

Software

Cost
The tool is provided

for free
Available on request

Available on

request
High

Software Type Set of APIs Web Application
Web

Application

Web

Application

Ease of use &

Coding

experience

It requires the tester

to have some

programming skills

to start the process

of testing

Easy to use Easy to use Easy to use

Customer

support

No professional

support is provided
Dedicated Dedicated Dedicated

Language

support

Java, C#, Ruby,

Python, PHP, Perl,

Javascript, R, etc.

JavaScript - -

Environment

support

Microsoft Windows,

Apple OS X, Linux
Windows, Linux Web-based Web-based

Browser

support
All browsers All browsers All browsers All browsers

34

Hardware

requirement

The hardware

required for this tool

is 4x Dual-core

AMD opteron

IBM-compatible PC

(x86-32) with

Pentium III 800

MHz (or higher)

microprocessor

- -

Hardware

consumption

during script

execution

Low High - -

Supported IDE
Eclipse, Intellij and

any other IDE

which supports Java

Webload IDE - -

Data driven

framework
Yes - - -

Test result

generation

It won't generate

any reports. TestNG

will generate the

report.

JUNIT, HTML,

DOC, ODT, XLS,

XLSX, RTF, PDF,

CSV, RAW

CSV, XLS PDF, HTML

Type of testing

supported

GUI Testing

Functional testing

Regression testing

Unit testing

Keyword testing

Web Testing

Data-Driven Testing

Load Testing,

Capacity Testing,

Stress Testing, Soak

Testing

Regression

Testing

Functional

Testing

Beta Testing

Usability

Testing

Exploratory

Testing

Black Box

Testing

Vulnerability

Scanner

Penetration

Testing

Software

Web

Application

Security

Website

Security

Scanner

Enterprise

Features

External

Vulnerability

Scanner

Network

Security

Scanner

WordPress

Vulnerability

Scanner

35

Integration
Can be integrated

with many paid or

free tools.

Selenium

Jenkins

Dynatrace

AppDynamics

Amazon Web

Services

Perfecto Mobile

New Relic

GitHub

REDMINE

Trello

JIRA

Software

Pivotal

Tracker

Redmine

Microsoft TFS

JIRA

GitHub

Imperva

SecureSphere

F5 BIG-IP

Application

Security

Manager

FortiWeb WAF

Jenkins

Table 3.2: A summary of comparison of web-applications (Part 2)

Parameters
Testing

Whiz
QTP Ranorex JMeter

Test

Complete

License
Licensed

Software

Licensed

Software

Licensed

Software
Open Source

Licensed

Software

Cost
Available on

request
High Low

The tool is

provided for

free

High

Software

Type

Desktop

Application

Desktop

Application

Desktop

Application

Desktop

Application

Desktop

Application

Ease of use

& Coding

experience

It requires

the tester to

have some

programmin

g skills to

start the

process of

testing

The tool is

flexible to

use and it

can easily be

used for

regression

and

functional

testing

Easy to use

It requires

the tester to

have some

programmin

g skills to

start the

process of

testing

The tool is

very easy to

use.

Customer

support
Dedicated Dedicated Dedicated

Free

Comunities
Dedicated

Language

support
-

VBS(Visual

Basic Script)

No specific

scripting

language is

used as it is

written in

.NET

language

using C hash,

JavaScript,

Python,

VBScript,

Jscript,

DelphiScript,

C#, and C+

36

Iron python,

and VB.net

Environmen

t support

Microsoft

Windows

Microsoft

Windows

Microsoft

Windows

Microsoft

Windows,

Apple OS X,

Linux

Microsoft

Windows

Browser

support
All browsers All browsers All browsers

JMeter looks

like a

browser

All browsers

Hardware

requirement

Intel

Pentium 4 or

later

1.6 Ghz or

higher

 2 GHz dual

core
-

Intel Core i5

or Intel Core

i7 (the 3rd

generation)

Hardware

consumptio

n during

script

execution

High High High Medium High

Supported

IDE

TestingWhiz

IDE
UFT IDE

Ranorex

Studio IDE

Eclipse,

Intellij and

any other

IDE which

supports

Java

TestComplet

e IDE

Data driven

framework
Yes Yes Yes Yes Yes

Test result

generation
CSV, XLS HTML HTML, XML

CSV,

HTML

JUnit

reports,

HTML,

XML, PDF

Type of

testing

supported

Web Test

Automation

Mobile

Testing

Cross-

Browser

Test

Automation

Regression

Test

Automation

Web

Services

Testing

Data-Driven

GUI Testing

API Testing

Business

Process

Testing

Quality

Assurance

Testing

Black Box

Testing

Jenkins Test

Automation

Functional

Testing

GUI Testing

Regression

Testing

Keyword-

Driven

Performance

testing

Load testing

Stress

testing

GUI Testing

Regression

testing

Unit testing

Keyword

testing

Web Testing

Mobile

application

testing

Distributed

Testing

Functional

Testing

Load testing

37

Testing

Database

Testing

Big Data

Testing

Testing

Data-Driven

Testing

of web

services

Coverage

Testing

Data-Driven

Testing

Manual

Testing

Integration
Jenkins

Bamboo

Tasktop

Sync

TestComplet

e Connector

JIRA

CollabNet

TeamForge

Hudson

Blueprint

Jama

Worksoft

Certify

VersionOne

iRise

Kovair

Automic

Calber

ServiceNow

Azure

DevOps/Tea

m Foundation

Server,

Jenkins,

Hudson,

Bamboo,

Team City

BlazaMeter

Jenkins

Meliora

TestLab

Maven

Visual

Studio

Dynatrace

JSUnit

CloudGen

Bamboo,

JIRA,

Jenkins,

Selenium,

Team

Foundation

Server,

QAComplete

Since the first question that comes to mind of any company that wants to buy or use any

software is about the after-sales service, and technical support services, it was necessary to

make some comparisons between the technical support services of the previous tools.

The Table 3.3 below shows a comparison in terms of technical support

38

Table 3.3: Technical Support services

Tool Articles Technical

personnel

Bug

tracking

Forums Documentation

Webload ✓ ✓ ✓ ✓

TestIO ✓ ✓

Acunetix ✓ ✓ ✓

TestingWhiz ✓ ✓ ✓ ✓

HPE UFT ✓ ✓ ✓ ✓

Ranorex ✓ ✓ ✓ ✓

Selenium ✓ ✓ ✓

JMeter ✓ ✓

TestComplete ✓ ✓ ✓ ✓

All tools discussed in this thesis have a record feature. Usually, the tester needs to run a web

application where a login page is displayed. The tester then goes ahead to enter a password and

username and goes ahead to click the log in page. After a successful login page, a dashboard is

displayed with grid views that show sample data. The tester then goes ahead to click on the

person link in the major navigation panel that is located on the left screen. The tool the loads

what tester engineers refer to as person search and the tester engineer goes ahead to search any

data on the web application after clicking the search button. The page is then loaded.

39

A list of different techniques for test engineers to identify web elements on a web page is shown

in the Table 3.4 below

Table 3.4: Overview of different Web Page Location Mechanisms Components

Tool Element

ID

XPath DOM Group of

attributes

Object

Recognition

Engine

Selenium ✓ ✓ ✓ ✓

TestComplete ✓ ✓ ✓ ✓

Ranorex ✓ ✓ ✓ ✓ ✓

JMeter ✓ ✓ ✓

Testing Whiz ✓ ✓ ✓ ✓

HPE UFT ✓ ✓ ✓ ✓

Webload ✓ ✓ ✓ ✓

TestIO

Acunetix

From all the tables provided on the comparison of the various tools, it means that there is a need

for indicating the health of web application testing tools. Plotting of the number of tools vs. the

type of testing supported by each tool is supported by the Figure 3.1 below.

40

Figure 3.1: Number of tools vs the type of testing

The no. of web application tools vs. open source or licensed has been plotted by the figure

shown below. The figure depicts the topmost tools which are available for web application

testing and which are commercial.

Figure 3.2: Number of open source tools vs. the licensed tool

As Selenium is the most popular tool used in automated testing processes and is the only one

available free of charge for in-depth testing among the above tools, you can view the results of

load testing for many cases from the Table 3.5 and Figure 3.3 below.

No. of Tools

Open Source Licensed

41

Table 3.5: Results for performance testing for Selenium

Test identifier Test case

description

Average Mean testing Time

 One user Fifty users 100 users

Test 1 Query on upload

of photos

4.9 9.3 11.8

Test 2 Query rate

records

11 15 13

Test 4 Query about

sign-up

3.1 8.5 7.1

Test 4 Making new

slide show

6 10 8

Test 5 Importing

pictures from

Facebook

13 24.4 31

Test 6 Importing

pictures from

Instagram

11.4 20 30

42

Test 7 Importing

pictures form

Flicker

3.8 5.8 7.5

Test 8 Saving

slideshow

8.7 9.0 29

Test 9 Query for

sharing

slideshow on

Flicker

5.4 8.4 10.2

Test 10 Query for

sharing

slideshow on

Instagram

5 9.3 11.7

Test 11 Query for

sharing

slideshow on

Facebook

3.7 8.6 9.4

Test 12 Query for

downloading

templates

5.3 7.6 6.7

43

Test 13 Query for

uploading

videos

14 23 32

Figure 3.3: A graph showing the average mean time for one, fifty, and one hundred users

Also From the previous sections, it is evident that testing plays a very important role in both

software development and web application development. Usually, web applications tend to take

faster and quicker release cycle, thus making the process of web application testing very

challenging. The major issues which have been put across by various web application

developers are bug detection efficiency and cost-efficiency.

If I divided the tools I selected in this article by type; we will find the classification as follows:

❖ Web Application Testing: Selenium, TestComplete, QTP, Ranorex and TestingWhiz

❖ Load Testing: JMeter and WebLoad

❖ Security Testing: Acunetix

44

❖ Testing as a Service: TestIO

❖ Automated Usability Testing Tools: Google Insight, GTmetrix and Pingdom

Usability is a critical variable in web application performance measurement. Table 3.6 below

shows a summary of a comparison of the selected Automated Usability Testing Tools

Table 3.6: Automated Usability Testing Methods Comparative Analysis

Feature GTmetrix PageSpeed Pingdom

Test Locations 7 test regions Test Region Unknown 7 test regions

Scores and
Recommendations

Based on
PageSpeed and

YSlow
27 PageSpeed

recommendations
18 YSlow

recommendations

Separated into
Opportunities,

Diagnostics, and
Passed Audits

20
“Audits/Opportunities”

Approx 11
recommendations
Likely based on

PageSpeed

Time to Stop Test

Fully Loaded Time
(default)

Onload time
(optional)

First Contentful Paint
and DOM Content

Loaded

Onload time (only
option)

Real Browsers vs
Headless/Emulated

Browser

Real Browsers
Firefox (default)

Chrome
Chrome (Android)

Emulated browser Real browser

Connection
throttling options

Unthrottled by
default

-
No connection

throttling options

HTTP/2 support Yes No No

Test resolutions Multiple
Unknown exact

dimensions
1024×878

Hardware provision
Consistent for

every test location
Unknown Unknown

Historical tracking Yes No No

Page Size Yes No Yes

Accordingly, Istanbul university website is tested using the above tools and the results were

different due to the different methods used in calculating the evaluation of the site as shown in

the previous table, the results were as follows in Figures 3.4, 3.5, 3.6 below

45

Figure 3.4: University website test results with Google PageSpeed Insight

Figure 3.5: University website test results with Pingdom

46

Figure 3.6: University website test results with GTmetrix

Based on the previous results, we note that the university site has received a weak assessment

in both Google and GTmetrix, but on the other hand, received a good evaluation from Pingdom

due to different policies in the assessment of priorities among these tools, for example the

biggest difference between these tools in the evaluation for size of the images compared to the

display mechanism in the space allocated to them, was evaluated by Pingdom good while each

of the other two tools were evaluated very poorly.

However, running those tests takes a while based on the algorithms they use on each website,

and on their servers response, therefore I made a small comparison between these tools test time

in seconds:

Table 3.7: Automated Usability Testing Tools Run Speed

 Google Pagespeed GTmetrix Pingdom

1st run 24.16 30.52 23.19

2nd run 16.16 35.83 18.11

3rd run 23.26 34.91 13.06

Based on the result above in Table 3.7, it seems like Pingdom did use caching while testing the

websites, or they have more available servers and internet lines to improve their results.

47

Back to the web application testing tools, while installing them, it’s noticed that there’s a huge

difference between their application size for installation files, program data files and RAM

usage in Table 3.8:

Table 3.8: Web application testing tools resource usage

 Installation File Program Files RAM Usage

Selenium 10.2 MB 15.8 MB 60 MB

Ranorex 280 MB 548 MB 192 MB

TestComplete 623 MB 1.17 GB 279 MB

Testing Whize 344 MB 476 MB 278 MB

Moreover, when comparing the code generated between the Selenium, TestComplete and

Ranorex programs, the difference between them is obvious. Selenium generates a full source

code that we can run with many available IDE’s, while the code generated by TestComplete is

only functions because this code will only run through the TestComplete IDE. This is a simple

code generated by TestComplete for browsing a website:

function Test1()
{
 //Clicks the 'BrowserWindow2' object.
 Aliases.browser.BrowserWindow2.Click(399, 74);
 //Opens the specified URL in a running instance of the specified browser.
 Browsers.Item(btChrome).Navigate("https://www.istanbul.edu.tr/tr/_");
 //Navigates to the ''https://www.istanbul.edu.tr/tr'' address.
 Aliases.browser.ToUrl("https://www.istanbul.edu.tr/tr");
 //Clicks the 'Akademik
 Aliases.browser.pageStanbulNiversitesiTarihtenGe.navHeader.ClickItem("Akademik\n");
 //Clicks an item of the 'link' drop-down control.
 Aliases.browser.pageStanbulNiversitesiTarihtenGe.link.ClickItem("Fakülteler");
 //Clicks the 'link' link.
 Aliases.browser.pageStanbulNiversitesiTarihtenGe2.link.Click();
 //Waits until the browser loads the page and is ready to accept user input.
 Aliases.browser.pageTr2.Wait();
}

48

On the other hand, this is the code generated by Selenium while executing the same test:

// Generated by Selenium IDE
import org.junit.Test;
import org.junit.Before;
import org.junit.After;
import static org.junit.Assert.*;
import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.core.IsNot.not;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.Dimension;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.Alert;
import org.openqa.selenium.Keys;
import java.util.*;
public class BrowsewebsiteTest {
 private WebDriver driver;
 private Map<String, Object> vars;
 JavascriptExecutor js;
 @Before
 public void setUp() {
 driver = new ChromeDriver();
 js = (JavascriptExecutor) driver;
 vars = new HashMap<String, Object>();
 }
 @After
 public void tearDown() {
 driver.quit();
 }
 public String waitForWindow(int timeout) {
 try {
 Thread.sleep(timeout);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 Set<String> whNow = driver.getWindowHandles();
 Set<String> whThen = (Set<String>) vars.get("window_handles");
 if (whNow.size() > whThen.size()) {
 whNow.removeAll(whThen);
 }
 return whNow.iterator().next();
 }
 @Test
 public void browsewebsite() {
 driver.get("https://www.istanbul.edu.tr/tr/_");
 driver.manage().window().setSize(new Dimension(1536, 822));
 driver.findElement(By.linkText("Akademik")).click();
 driver.findElement(By.linkText("Fakülteler")).click();
 vars.put("window_handles", driver.getWindowHandles());
 driver.findElement(By.cssSelector(".tab-pane:nth-child(1) tr:nth-child(2) >
td:nth-child(2) > a")).click();
 vars.put("win5163", waitForWindow(2000));
 driver.switchTo().window(vars.get("win5163").toString());

49

However, the code generated by Ranorex can be viewed like below, while it’s not editable, they

do provide two files, one for the recording methods and another one to call these methods if

needed:

void ITestModule.Run()
 {
 Mouse.DefaultMoveTime = 300;
 Keyboard.DefaultKeyPressTime = 20;
 Delay.SpeedFactor = 1.00;

 Init();

 Report.Log(ReportLevel.Info, "Mouse", "Mouse Left Click item
'WebAutomationAutomatedWebsiteWeb.Pane' at 358;85.",
repo.WebAutomationAutomatedWebsiteWeb.PaneInfo, new RecordItemIndex(0));
 repo.WebAutomationAutomatedWebsiteWeb.Pane.Click("358;85");
 Delay.Milliseconds(0);

 Report.Log(ReportLevel.Info, "Keyboard", "Key sequence
'istanbul.edu.tr{Return}' with focus on 'WebAutomationAutomatedWebsiteWeb1'.",
repo.WebAutomationAutomatedWebsiteWeb1.SelfInfo, new RecordItemIndex(1));
 repo.WebAutomationAutomatedWebsiteWeb1.Self.EnsureVisible();
 Keyboard.Press("istanbul.edu.tr{Return}");
 Delay.Milliseconds(0);

 Report.Log(ReportLevel.Info, "Mouse", "Mouse Left Click item
'ApplicationUnderTest.Akademik' at 148;58.", repo.ApplicationUnderTest.AkademikInfo, new
RecordItemIndex(3));
 repo.ApplicationUnderTest.Akademik.Click("148;58");
 Delay.Milliseconds(0);

 Report.Log(ReportLevel.Info, "Mouse", "Mouse Left Click item
'ApplicationUnderTest.Fakuelteler' at 100;23.",
repo.ApplicationUnderTest.FakueltelerInfo, new RecordItemIndex(4));
 repo.ApplicationUnderTest.Fakuelteler.Click("100;23");
 Delay.Milliseconds(0);

 Report.Log(ReportLevel.Info, "Mouse", "Mouse Left Click item
'NewNotification.DismissTextBlock' at 6;8.", repo.NewNotification.DismissTextBlockInfo,
new RecordItemIndex(5));
 repo.NewNotification.DismissTextBlock.Click("6;8");
 Delay.Milliseconds(0);

 }

It is also important to note that the TestComplete program needs less code to search for a

particular element because of the technique of automatic identification of elements in it using

artificial intelligence. In contrast, Selenium program is still dependent on determining the

elements by the element id or XPath.

50

4. DISCUSSION

From chapter two, it is evident that the automation tools have been there for several years.

Besides, web application testing tools work against web pages in an HTML format. Using the

web application tools, the test engineers can record a functional test and playback if needed.

There are various factors to consider when selecting a tool; first, a web application tool needs

to be reliable to have a playback feature especially when testing dynamic web applications. The

web application testing tool ought to execute the test during the test without any errors. Second

web application testing tools need to have the ability to export the resulting tests as

programmable scripts so that the test engineers can understand, refactor, and maintain the

modules. Third, a web application testing tool needs to be diverse; the diversity provided by the

tool helps in finding the elements on a web application especially the dynamic applications.

The fourth factor to consider when selecting a web application is the ability of the tool to support

cross-browser compatibility. Most of the web applications have a priority feature supported by

various browsers like Mozilla Firefox and Chrome. Forth, a web application needs to be

effective especially when it comes to waiting for the web application to load completely before

they start manipulating and accessing the web application elements. Lastly, test engineers need

to consider the technical support services of the web application testing tool. Most of the web

application has technical documentation that has been provided by the respective vendors but

without the technical support when a need arises. This results in the technical team running into

problems or issues while using the automation tool yet the major reason for using a certain web

application testing tool is saving time and speed, and the test engineers need not waste much

time in developing a solution which someone else already knows. The technical support

services besides technical documentation which need to be there are bug tracker systems,

technical support services, and forums.

51

5. CONCLUSION AND RECOMMENDATIONS

From this thesis, it is evident that the web has a very significant impact on all features of our

society. As organizations and companies rely more on the web, web-application has become

increasingly more important. On the other hand, sophisticated attacks have grown, which has

raised the need of coming up with web-applications that are secure and not prone to attacks.

This can only be achieved by using the best web-application testing tools to test the applications

before using the application.

Since we have gone through many differences between testing tools ' pros & cons, I hope we've

been successful in clearing the image of exactly what you expected. Selenium and JMeter, the

open-source tools, have several industry rivals, yet it is considered one of the best in the

business. However, if we go beyond the financial costs, we will find that TestComplete and

Webload tools will be better in terms of features in addition to technical support services, with

the possibility of multi-platform testing at the same time more easily without the need for

specialized developers. Moreover, in terms of vulnerability tests, it is necessary to use the

Acunetix, and the tests for the usability should be with the use of GTmetrix more

comprehensive among the previous tools.

Some of the limitations of this study are; first, most of these tools are not provided for free.

Therefore the study could not offer a clear analysis of these tools from the demo which was

provided from the various sources. Second, the process of testing web application tools requires

time, and also needs to create a web application or the webpage and test it using the various

tools to ascertain the listed features to get more specific results.

To do further research about software testing, I think we have to make a plan based on two

parts. First, is to expand and deepen more in the content of the current research, and the second

is to invent new technologies to remove the existing complexities in the automated testing. As

52

for the expansion and deepening of the current research content, the research categories

discussed from the performance test to usability tests, security tests, and functional tests. On

the other hand, only web-testing technologies have reviewed, while nowadays most of the

companies do create projects with cross-platform applications, therefore it is necessary to

expand in these areas, and prepare a research for each type of test listing all the tools available

and accesses its precise details to reach an accurate scientific result to choose the best tool

among these tools, and propose the optimal options to reach the best performance in each area.

As for inventing new technologies in the area of automated testing, I think it is time to enter the

artificial intelligence into this field to make it more creative. At the moment, testers or

programmers have to write or record test cases manually, even in modification, while changing

the names of options, windows or adding new windows or options, the user will have to write

new test cases or modify many previous test cases, which is stressful for large companies, it

must be replaced by artificial intelligence techniques for these systems to create automatic test

cases based on additions or modification according to certain standards, thus, companies will

shorten long hours of work and retain fewer employees, saving large amounts of costs on

companies.

53

REFERENCES

[1] S. Gojare, R. Joshi, and D. Gaigaware, “Analysis And Design Of Selenium Webdriver

Automation Testing Framework,” Procedia Comput. Sci., vol. 50, pp. 341–346, 2015.

[2] A. Petukhov and D. Kozlov, “Detecting security vulnerabilities in web applications

using dynamic analysis with penetration testing,” Appl. Secur. Conf., 2008.

[3] A. Bertolino and E. Marchetti, “A Brief Essay on Software Testing,” Area, pp. 1–14,

2003.

[4] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” FoSE

2007 Futur. Softw. Eng., no. September, pp. 85–103, 2007.

[5] S. Kundu, “Web Testing: Tool, Challenges and Methods,” Int. J. Comput. Sci. Issues,

vol. 9, no. 2, pp. 481–486, 2012.

[6] A. Hedayati, M. Ebrahimzadeh, and A. A. Sori, “Investigating into Automated Test

Patterns in Erratic Tests by Considering Complex Objects,” Int. J. Inf. Technol. Comput.

Sci., vol. 7, no. 3, pp. 54–59, 2015.

[7] B. Falah, M. Akour, and N. El Marchoum, “Testing patterns in action: Designing a test-

pattern-based suite,” Int. Rev. Comput. Softw., vol. 10, no. 5, pp. 489–494, 2015.

[8] S. Elbaum, S. Karre, and G. Rothermel, “Improving web application testing with user

session data,” Proc. - Int. Conf. Softw. Eng., pp. 49–59, 2003.

[9] S. Gupta, “Review Paper on Comparison of Automation Testing Tools Selenium and

QTP,” vol. 5, no. 2, pp. 55–57, 2015.

[10] M. Monier and M. M. El-mahdy, “Evaluation of automated web testing tools,” Int. J.

54

Comput. Appl. Technol. Res., vol. 4, no. 5, pp. 405–408, 2015.

[11] V. Rufus, AngularJS Web Application Development Blueprints. 2014.

[12] R. Angmo and M. Sharma, “Performance evaluation of web based automation testing

tools,” Proc. 5th Int. Conf. Conflu. 2014 Next Gener. Inf. Technol. Summit, pp. 731–

735, 2014.

[13] T. Parviainen, Real-time Web Application Development using Vert.x 2.0. 2013.

[14] Juraj Húska, “Automated Testing of the Component-based Web Application User

Interfaces,” 2012.

[15] G. A. Di Lucca and A. R. Fasolino, “Testing Web-based applications: The state of the

art and future trends,” Inf. Softw. Technol., vol. 48, no. 12, pp. 1172–1186, 2006.

[16] N. Antunes and M. Vieira, “Penetration testing for web services,” Computer (Long.

Beach. Calif)., vol. 47, no. 2, pp. 30–36, 2014.

[17] E. V. Sandin, N. M. Yassin, and R. Mohamad, “Comparative Evaluation of Automated

Unit Testing Tool for PHP,” Int. J. Softw. Eng. Technol., vol. 03, no. 2, pp. 7–11, 2016.

[18] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction testing: Incorporating event

context,” IEEE Trans. Softw. Eng., vol. 37, no. 4, pp. 559–574, 2011.

[19] N. Gogna, “Study of Browser Based Automated Test Tools WATIR and Selenium,”

Int. J. Inf. Educ. Technol., vol. 4, no. 4, pp. 336–339, 2014.

[20] M. Sharma and R. Angmo, “Web based Automation Testing and Tools,” Int. J. Comput.

Sci. Inf. Technol., vol. 5, no. 1, pp. 908–912, 2014.

[21] Y. F. Li, P. K. Das, and D. L. Dowe, “Two decades of Web application testing - A

55

survey of recent advances,” Inf. Syst., vol. 43, pp. 20–54, 2014.

[22] S. Paydar and M. Kahani, “An Agent-Based Framework for Automated Testing of

Web-Based Systems,” J. Softw. Eng. Appl., vol. 04, no. 02, pp. 86–94, 2011.

[23] S. Al-Zain, D. Eleyan, and Y. Hassouneh, “Comparing GUI Automation Testing Tools

for Dynamic Web Applications,” Asian J. Comput. Inf. Syst., vol. 01, no. 02, pp. 2321–

5658, 2013.

[24] D. R. Lakshmi and S. S. Mallika, “A Review on Web Application Testing and its

Current Research Directions,” Int. J. Electr. Comput. Eng., vol. 7, no. 4, pp. 2132–2141,

2017.

[25] J. Križanić, A. Grgurić, M. Mošmondor, and P. Lazarevski, “Load testing and

performance monitoring tools in use with AJAX based web applications,” in MIPRO

2010 - 33rd International Convention on Information and Communication Technology,

Electronics and Microelectronics, Proceedings, 2010.

[26] L. Dukes, X. Yuan, and F. Akowuah, “A case study on web application security testing

with tools and manual testing,” in Conference Proceedings - IEEE SOUTHEASTCON,

2013.

[27] H. Mahmood and M. Sirshar, “A Case Study of Web Based Application by Analyzing

Performance of a Testing Tool,” Int. J. Educ. Manag. Eng., vol. 7, no. 4, pp. 51–58,

2017.

[28] A. M. F. V De Castro, G. A. Macedo, E. F. Collins, and A. C. Dias-Neto, “Extension

of Selenium RC tool to perform automated testing with databases in web applications,”

56

2013 8th Int. Work. Autom. Softw. Test, AST 2013 - Proc., pp. 125–131, 2013.

[29] I. Altaf, J. A. Dar, F. U. Rashid, and M. Rafiq, “Survey on selenium tool in software

testing,” in Proceedings of the 2015 International Conference on Green Computing and

Internet of Things, ICGCIoT 2015, 2016.

[30] J. Offutt, “Quality attributes of Web software applications,” IEEE Softw., 2002.

[31] D. Chmurciak, “Automation of regression testing of web applications,” 2013.

[32] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen, “Regression Testing for Web Applications

Based on Slicing,” in Proceedings - IEEE Computer Society’s International Computer

Software and Applications Conference, 2003.

[33] Acutenix, “What is SQL Injection (SQLi) and How to Fix It,” Acutenix.com, 2015. .

[34] S. Miller and G. Pupedis, “Spatial interface design for the web - A question of

usability,” Cartography, 2002.

[35] S. Gunasekaran and V. Bargavi, “Survey on Automation Testing Tools for Mobile

Applications,” Int. J. Adv. Eng. Res. Sci., 2015.

[36] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie, “A Systematic Mapping

Study Of Web Application Testing,” Inf. Softw. Technol., vol. 55, no. 8, pp. 1374–1396,

2013.

[37] F. Wang and W. Du, “A test automation framework based on WEB,” in Proceedings -

2012 IEEE/ACIS 11th International Conference on Computer and Information Science,

ICIS 2012, 2012.

[38] Da Zhang, “End to end testing using integrated tools,” 2012.

57

[39] Sergey Uspenskiy, “A Survey And Classification Of Software Testing Tools,” 2010.

[40] N. Dubey and S. Shiwani, “Studying and Comparing Automated Testing Tools;

Ranorex and TestComplete,” Int. J. Eng. Comput. Sci., 2014.

[41] S. Kaur, K. Kaur, and P. Kaur, “An Empirical Performance Evaluation of Universities

Website,” Int. J. Comput. Appl., vol. 146, no. 15, pp. 10–16, 2016.

[42] N. Kumar, A. Kalia, and R. Kumar, “Evaluation of WebPages performance W.R.T

UI/UX developed using different frameworks,” Int. J. Eng. Adv. Technol., vol. 8, no. 6,

pp. 575–579, 2019.

[43] S. Gopinath, V. Senthooran, N. Lojenaa, and T. Kartheeswaran, “Usability and

accessibility analysis of selected government websites in Sri Lanka,” in Proceedings -

2016 IEEE Region 10 Symposium, TENSYMP 2016, 2016.

[44] J. S. R, “A Feature Model For Web Testing Tools,” 2015.

58

CURRICULUM VITAE

Educational Information

B. Sc.

University Near East University

Faculty Engineering

Department Information System Engineering

Graduation Year 09.07.2014

M. Sc.

University Istanbul University-Cerrahpasa

Institute Graduate Studies in Science and Engineering

Department Computer Engineering

Programme Computer Engineering

Personal Information

Name Surname MHD KHALED AL SAWAF

Place of Birth DAMASCUS

Date of Birth 13.08 1989

Nationality  T.C.  Other: Syria

Phone Number 05379132254

Email Khaled.sawwaf@gmail.com

Web Page

