

T.C. İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

DOKTORA TEZİ

DURABİLİTE ORTAMLARINDA KÜRLENEN MİNERAL KATKILI HARÇLARIN POROZİTE ÖZELLİKLERİ

Özlem ÜSTÜNDAĞ

DANIŞMAN Doç. Dr. Özlem SOLA

İnşaat Mühendisliği Anabilim Dalı 🛛

İnşaat Mühendisliği Programı

İSTANBUL-2020

Bu çalışma, 28.05.2020 tarihinde aşağıdaki jüri tarafından İnşaat Mühendisliği Anabilim Dalı, İnşaat Mühendisliği Programında Doktora tezi olarak kabul edilmiştir.

Tez Jürisi

Doç. Dr. Özlem SOLA(Danışman) İstanbul Üniversitesi-Cerrahpaşa Mühendislik Fakültesi

Prof. Dr. Cengiz Duran ATİŞ Erciyes Üniversitesi Mühendislik Fakültesi Prof. Dr. Namık Kemal ÖZTORUN İstanbul Üniversitesi-Cerrahpaşa Mühendislik Fakültesi

Prof. Dr. Mehmet Fatih ALTAN İstanbul Aydın Üniversitesi Mühendislik Fakültesi Doç. Dr. Savaş ERDEM İstanbul Üniversitesi-Cerrahpaşa Mühendislik Fakültesi

20.04.2016 tarihli Resmi Gazete'de yayımlanan Lisansüstü Eğitim ve Öğretim Yönetmeliğinin 9/2 ve 22/2 maddeleri gereğince; Bu Lisansüstü teze, İstanbul Üniversitesi-Cerrahpaşa'nın abonesi olduğu intihal yazılım programı kullanılarak Lisansüstü Eğitim Enstitüsü'nün belirlemiş olduğu ölçütlere uygun rapor alınmıştır.

Bu tez, İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin 33536 numaralı projesi ile desteklenmiştir.

Bu tez, 33536 numaralı Doktora Tez (DKT) projesi ile desteklenmiştir.

ÖNSÖZ

Tez çalışmalarım sırasında engin bilgilerini esirgemeyen ve her konuda destek olan kıymetli hocam Doç. Dr. Özlem SOLA' ya teşekkürlerimi ve saygılarımı sunarım.

Bu süreci benim için kolaylaştıran ve destek olan diğer tüm öğretim üyelerine ve mesai arkadaşlarıma da teşekkür ederim.

Tez çalışması sırasında desteklerini esirgemeyen Limak Çimento Yenibosna Beton Tesisi'ne teşekkürlerimi sunuyorum.

Bugüne dek gösterdikleri teşvik, sabır ve manevi destek için sevgili aileme minnet ve şükranlarımı sunarım

May1s 2020

Özlem ÜSTÜNDAĞ

İÇİNDEKİLER

ÖNSÖZiv
İÇİNDEKİLERv
ŞEKİL LİSTESİ viii
TABLO LİSTESİxi
SİMGE VE KISALTMA LİSTESİ xii
ÖZETxiv
SUMMARYxvi
1. GİRİŞ1
2. GENEL KISIMLAR
2.1. SİLİS DUMANI
2.1.1. Silis Dumanının Kimyasal ve Mineralojik Özellikleri2
2.1.2. Silis Dumanının Fiziksel Özellikleri
2.1.3. Silis Dumanının Dayanıma Etkileri
2.2. UÇUCU KÜL
2.2.1. Uçucu Küllerin Sınıflandırılması4
2.2.2. Uçucu Küllerin Kimyasal, Mineralojik ve Morfolojik Özellikleri5
2.2.3. Uçucu Küllerin Fiziksel Özellikleri5
2.2.4. Uçucu Külün Dayanıma Etkileri6
2.3. ÇİMENTO
2.3.1. Çimento Hamurunun Prizi ve Hidratasyon Reaksiyonları9
2.3.2. Çimento Harçlarının Basınç ve Eğilme Dayanımı10
2.3.3. Çimento Harçlarında Dayanıklılık11
2.3.3.1. Sülfat Etkisi ile Harçların Dayanıklılığı11
2.3.3.2. Islanma - Kuruma Döngüsü ile Harçların Dayanıklılığı11
2.3.3.2. Donma-Çözülme Döngüsü ile Harçların Dayanıklılığı12
2.3.4. Çimento Harçlarında Termal İletkenlik14
3. MALZEME VE YÖNTEM21
3.1. KULLANILAN MALZEMELER

3.1.1. Portland Çimentosu	21
3.1.2. Uçucu Kül	22
3.1.3. Silis Dumanı	23
3.1.4. Kum	23
3.1.5. Aerojel	24
3.1.6. Lityum Karbonat	24
3.2. KULLANILAN KARIŞIM ORANLARI VE HARÇ ÜRETİMİ	24
3.2.1. Uçucu Kül ve Silis Dumanı İlaveli Çimento Pastalarında Kullanılan Karışım Oranları	24
3.2.2. Uçucu Kül ve Silis Dumanı İlaveli Harçlarda Kullanılan Karışım Oranları	25
3.2.3. Uçucu Kül ve Silis Dumanı İlaveli Harç Üretimi	27
3.3. DENEYSEL ÇALIŞMALAR	28
3.3.1. Çimento Hamurunda Priz Süresi Tayini	29
3.3.2. Çimento Harçlarında Dayanım Deneyleri	29
3.3.2.1. Basınç Dayanımı Deneyleri	29
3.3.2.2. Eğilmede Çekme Dayanımı Deneyleri	29
3.3.3. Çimento Harçlarında Dayanıklılık Deneyleri	29
3.3.3.1. MgSO4 Çözeltisi - Etüv Döngüsü Dayanıklılık Deneyleri	29
3.3.3.2. Suda Islanma - Havada Kuruma Döngüsü Dayanıklılık Deneyleri	30
3.3.4. Civa Porozimetresi Cihazı ile Porozimetre Analizi	30
3.3.5. Termal İletkenlik Analizi	31
4. BULGULAR	32
4.1. PRİZ SÜRELERİNE AİT DENEY SONUÇLARI	32
4.2. DAYANIM DENEY SONUÇLARI	35
4.2.1. Basınç Dayanımı Deney Sonuçları	35
4.2.2. Eğilmede Çekme Dayanımı Deney Sonuçları	40
4.3. TERMAL İLETKENLİK ANALİZ SONUÇLARI	45
4.4. CİVA POROZİMETRESİ ANALİZ SONUÇLARI	51
4.4.1. Civa Porozimetresi Por Çapı - Kümülatif Por Hacmi - Termal İletkenlik İlişkisi	51
4.4.2. Civa Porozimetresi Por Türü - Kür Ortamı İlişkisi	65
4.4.2.1. Silis Dumanı İlaveli Harçların Por Türü - Kür Ortamı İlişkisi	65
4.4.2.2. Uçucu Kül ilaveli Harçların Por Türü - Kür Ortamı İlişkisi	67
4.4.3. Civa Porozimetresi Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi	68

4.4.3.1. Silis Dumanı İlaveli Harçlarda Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi	68
4.4.3.2. Uçucu Kül İlaveli Harçlarda Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi	73
5. TARTIŞMA VE SONUÇ	85
5.1. PRİZ SÜRESİ SONUÇLARININ DEĞERLENDİRİLMESİ	85
5.2. BASINÇ DAYANIMI DENEY SONUÇLARININ DEĞERLENDİRİLMESİ	86
5.3. EĞİLMEDE ÇEKME DAYANIMI DENEY SONUÇLARININ DEĞERLENDİRİLMESİ	87
5.4. TERMAL İLETKENLİK ANALİZ SONUÇLARININ DEĞERLENDİRİLMESİ	88
5.5. CİVA POROZİMETRESİ ANALİZ SONUÇLARININ DEĞERLENDİRİLMESİ	89
5.5.1. Civa Porozimetresi Por Çapı - Kümülatif Por Hacmi - Termal İletkenlik İlişkisinin Değerlendirilmesi	89
5.5.2. Civa Porozimetresi Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi	90
5.5.2.1.Silis Dumanı İlaveli Harçlarda Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi	90
5.5.2.2. Uçucu Kül İlaveli Harçlarda Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi	91
KAYNAKLAR	94
EKLER	98
EK - 1 TERMAL İLETKENLİK ANALİZ SONUÇLARI	98
EK - 2 POROZİMETRE ANALİZ SONUÇLARI	.114
ÖZGEÇMİŞ	.138

ŞEKİL LİSTESİ

Sayfa No

Şekil 2.1: Silis dumanının x-ışın difraktogramı
Şekil 3.1: Deney programı
Şekil 3.2: Civa porozimetresi cihazı
Şekil 3.3: Termal iletkenlik cihazı
Şekil 4.1: Silis dumanı ilaveli pastaların priz süreleri
Şekil 4.2: Uçucu kül ilaveli pastaların priz süreleri34
Şekil 4.3: Silis dumanı ilaveli harçlarda aerojel katkı oranı - basınç dayanımı ilişkisi37
Şekil 4.4: Uçucu kül ilaveli harçlarda aerojel katkı oranı - basınç dayanımı ilişkisi
Şekil 4.5: Silis dumanı ilaveli harçlarda aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi41
Şekil 4.6: Uçucu kül ilaveli harçlarda aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi
Şekil 4.7: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen harçların aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi43
Şekil 4.8: Uçucu kül ilaveli MgSO4 ortamında kürlenen harçların aerojel katkı oranı - eğilme dayanımı ilişkisi44
Şekil 4.9: Uçucu kül ilaveli suda kürlenen harçların aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi44
Şekil 4.10: Silis dumanı ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi46
Şekil 4.11: Uçucu kül ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi47
Şekil 4.12: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi
Şekil 4.13: Uçucu kül ilaveli MgSO4 ortamında kürlenen numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi49

Şekil 4.14: Uçucu kül ilaveli suda kürlenen numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi.	50
Şekil 4.15: Silis dumanı ilaveli ıslanma - kuruma ortamında kürlenen numunelerin por çapı - kümülatif por hacmi ilişkisi	51
Şekil 4.16: Silis dumanı ilaveli MgSO ₄ ortamında kürlenen numunelerin por çapı- kümülatif por hacmi ilişkisi	52
Şekil 4.17: Silis dumanlı numunelerin suda kürlenen por çapı - kümülatif por hacmi ilişkisi.	53
Şekil 4.18: Uçucu kül ilaveli ıslanma - kuruma grubu numunelerin por çapı - kümülatif por hacmi ilişkisi.	54
Şekil 4.19: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen aerojel katkısız numunelerin por çapı - kümülatif por hacmi ilişkisi.	55
Şekil 4.20: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen % 0.25 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi	56
Şekil 4.21: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi	57
Şekil 4.22: Uçucu kül ilaveli MgSO4 ortamında kürlenen numunelerin por çapı - kümülatif por hacmi ilişkisi	58
Şekil 4.23: Uçucu kül ilaveli MgSO4 ortamında kürlenen aerojel katkısız numunelerin por çapı - kümülatif por hacmi ilişkisi.	59
Şekil 4.24: Uçucu kül ilaveli MgSO4 ortamında kürlenen % 0.25 aerojel katkılı numunelerin por çapı -kümülatif por hacmi ilişkisi.	60
Şekil 4.25: Uçucu kül ilaveli MgSO4 ortamında kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi.	61
Şekil 4.26: Uçucu kül ilaveli suda kürlenen numunelerin por çapı - kümülatif por hacmi ilişkisi	62
Şekil 4.27: Uçucu kül ilaveli suda kürlenen aerojel katkısız numunelerin por çapı - kümülatif hacmi ilişkisi	63
Şekil 4.28: Uçucu kül ilaveli suda kürlenen % 0.25 aerojel katkılı numunelerin por çapı - kümülatif hacmi ilişkisi.	64
Şekil 4.29: Uçucu kül ilaveli suda kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif hacmi ilişkisi.	65
Şekil 4.30: Silis dumanı ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi	69
Şekil 4.31: Silis dumanı ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi	71

Şekil 4.32: Silis dumanı ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi	72
Şekil 4.33: Uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi	73
Şekil 4.34: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi	74
Şekil 4.35: MgSO4 ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.	75
Şekil 4.36: Suda kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.	76
Şekil 4.37: Uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi	77
Şekil 4.38: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi	78
Şekil 4.39: MgSO4 ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.	79
Şekil 4.40: Suda kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi	80
Şekil 4.41: Uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi	81
Şekil 4.42: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi	82
Şekil 4.43: MgSO4 ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi	83
Şekil 4.44: Suda kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi	84

TABLO LÍSTESÍ

Sayfa No

Tablo 2.1: Silis dumanının kimyasal analizi (Çelik, 2004).	2
Tablo 2.2: Çimento türleri.	9
Tablo 3.1: CEM I 42.5 R tipi Portland çimentosu kimyasal bileşimi	21
Tablo 3.2: CEM I 42.5 R tipi Portland çimentosu bazı fiziksel özellikleri	22
Tablo 3.3: Uçucu külün kimyasal özellikleri	22
Tablo 3.4: Silis dumanının kimyasal özellikleri.	23
Tablo 3.5: Rilem kumu elek analizi	23
Tablo 3.6: Deneylerde kullanılan aerojelin özellikleri.	24
Tablo 3.7: Çimento pasta bileşenlerine ait karışım oranları (% ağırlıkça).	25
Tablo 3.8: Çimento pasta bileşenleri ve su için kullanılan miktarlar (g)	25
Tablo 3.9: Çimento harçlarına ait karışım oranları (% ağırlıkça)	26
Tablo 3.10: Çimento harçlarına ait karışım miktarları (g)	26
Tablo 4.1: Çimento hamurlarının bazı fiziksel özellikleri	
Tablo 4.2: Çimento harçlarına ait basınç dayanımları	35
Tablo 4.3: Çimento harçlarına ait eğilmede çekme dayanımları.	40
Tablo 4.4: Çimento harçlarına ait termal iletkenlik katsayısı sonuçları.	45
Tablo 4.5: Silis dumanı ilaveli harçların jel por seviyeleri (%)	66
Tablo 4.6: Silis dumanı ilaveli harçların kapiler por seviyeleri (%)	66
Tablo 4.7: Silis dumanı ilaveli harçların makro por seviyeleri (%).	66
Tablo 4.8: Uçucu kül ilaveli harçların jel por seviyeleri (%).	67
Tablo 4.9: Uçucu kül ilaveli harçların kapiler por seviyeleri (%).	67
Tablo 4.10: Uçucu kül ilaveli harçların makro por seviyeleri (%).	68

SİMGE VE KISALTMA LİSTESİ

Simgeler	Açıklama									
Al	: Alüminyum									
Al ₂ O ₃	: Alüminyum oksit									
CaSO ₄ .2H ₂ O	: Alçıtaşı									
Ca	: Kalsiyum									
CaO	: Kalsiyum oksit									
Ca(OH) ₂	: Kalsiyum hidroksit									
C_2S	: Dikalsiyum silikat									
C ₃ S	: Trikalsiyum silikat									
C ₃ A	: Trikalsiyum alüminat									
C4AF	: Tetra kalsiyum alümino ferrit									
Fe	: Demir									
FeO	: Demir oksit									
Fe ₂ O ₃	: Demir trioksit									
Li ₂ CO ₃	: Lityum karbonat									
K ₂ O	: Potasyum oksit									
Na	: Sodyum									
Na ₂ O	: Sodyum oksit									
Mg	: Magnezyum									
MgSO ₄	: Magnezyum sülfat									
P2O5	: Fosfor pentaoksit									
Si	: Silisyum									
SO ₃	: Sülfit									
TiO ₂	: Titanyum dioksit									

Kısaltmalar	Açıklama							
ASTM	: Amerikan Test ve Malzeme Topluluğu							
TS EN	: Türk Standartları Enstitüsü							
PÇ	: Portland çimentosu							
С - Ѕ - Н	: Kalsiyum silikat hidrat							

ÖZET

DURABİLİTE ORTAMLARINDA KÜRLENEN MİNERAL KATKILI HARÇLARIN POROZİTE ÖZELLİKLERİ

DOKTORA TEZİ

Özlem ÜSTÜNDAĞ

İstanbul Üniversitesi-Cerrahpaşa

Lisansüstü Eğitim Enstitüsü

İnşaat Mühendisliği Anabilim Dalı

Danışman : Doç. Dr. Özlem SOLA

Bu çalışmada silika bazlı aerojel kullanılarak üretilen harç numunelerinde termal yalıtkanlık sağlanmaya çalışılmıştır. Bu amaçla, çimento karışımlarına % 0.25 ve % 0.50 oranlarında aerojel ilave edilmiştir. Endüstriyel atık malzeme olan silis dumanı, çimento karışımlarına %10 sabit oranında katılmıştır. Diğer endüstriyel atık olan uçucu kül ise, %30, 40 ve 50 oranlarında çimento karışımlarına ilave edilmiştir. Uçucu külün yüksek oranlarda kullanılması nedeniyle, çimento karışımlarına Li₂CO₃ aktivatör olarak katılmış ve kullanım oranı % 0,07 olarak sabit tutulmuştur. Bu karışım oranları kullanılarak 15 farklı karışım oranına sahip ve 4x4x16cm boyutunda olan numuneler üretilmiştir. Üretilen çimento harç numuneleri, suda kürlemenin dışında MgSO₄ çözeltisinde ve ıslanma - kuruma döngüleri kullanılarak da kürlenmiştir.

Çimento harç numunelerinin kürleme işlemleri; su, MgSO₄ ve ıslanma - kuruma ortamlarında 112 gün sonunda tamamlanmıştır. MgSO₄ çözeltisinde kürleme işlemi; 1 hafta çözeltide bekletme - 1 hafta etüvde kurutma süreçlerini kapsamaktadır. Islanma- kuruma çevrimleri ise; 1 hafta suda bekletme - 1 hafta havada kurutma olarak gerçekleştirilmiştir. Kürleme işleminin tamamlanmasından sonraki süreçte numunelere basınç dayanımı ve eğilmede çekme dayanımı deneyleri ile termal iletkenlik katsayısı analizi ve civa porozimetresi analizleri uygulanmıştır. Elde edilen sonuçlar hem kendi deneysel kategorilerinde hem de diğer deneysel sonuçlarla detaylı olarak tartışılmıştır. Porozite-termal iletkenlik ilişkisinden öne çıkan sonuçlar dikkate alınarak en düşük termal iletkenlik değerlerine karşılık gelen porozite aralıkları net olarak sunulmuştur.

Mayıs 2020, 138 sayfa.

Anahtar kelimeler: silis dumanı, uçucu kül, aerojel, termal iletkenlik, porozite

SUMMARY

POROSITY PROPERTIES OF CEMENT MORTARS WITH MINERAL ADDITIVE CURED IN DURABIL MEDIUM

Ph.D. THESIS

Özlem ÜSTÜNDAĞ

Istanbul University-Cerrahpasa

Institute of Graduate Studies

Department of Civil Engineering

Supervisor : Assoc. Prof. Dr. Özlem SOLA

In this study, thermal insulation was tried to be achieved in mortar samples produced using silica-based aerogel. For this purpose, aerogel at the rates of 0.25% and 0.50% was added to cement mixtures. Silica fume, an industrial waste material, was added to cement mixtures at a constant rate of 10%. Fly ash, another industrial waste, was added to cement mixtures at the rates of 30, 40 and 50%. Due to the high utilization of fly ash, cement mixtures were supplemented with Li_2CO_3 as an activator and its usage rate was kept constant at 0.07%. Using these mixing ratios, samples having 15 different mixing ratios measuring 4x4x16cm were produced. Cement mortar samples produced were cured in MgSO₄ solution and using wetting-drying cycles in addition to curing in water.

Curing processes of cement mortar samples, soaking in water and in MgSO₄ solution, and subjecting to wetting-drying cycles, have been completed after 112 days. Curing process in MgSO₄ solution includes soaking samples in solution for one week and drying in the oven for one week. Wetting-drying cycles were carried out by soaking samples in water for one week and air drying for one week. Following the completion of the curing processes, compressive strength and flexural strength tests along with thermal conductivity coefficient and mercury

porosimetry analyses were applied to the samples. The results obtained were discussed in detail both in their own experimental categories and with other experimental categories. Taking into account the results that stand out from the porosity-thermal conductivity relationship, porosity range corresponding to the lowest thermal conductivity values have been presented in a clear well-defined form.

May 2020, 138 pages.

Keywords: silica fume, fly ash, aerogel, thermal conductivity, porosity

1. GİRİŞ

İnşaat sektöründeki gelişmelerin hızlanmasıyla rekabet ortamının üzerindeki baskı giderek artmaktadır. Bu durum yapıların daha sürdürülebilir, çevresel koşullara daha dayanıklı ve maliyet açısından da daha tasarrufu sağlamaya yönelik adımların atılması zorunluluğunu ortaya çıkarmıştır. Bu zorunluluklara ilaveten, dünyadaki doğal kaynak rezervlerinin durdurulamaz bir hızla tüketiminin devam etmesi ise yapılarda hem üretim hem de ısıtma aşamalarında doğal kaynak kullanımının kısıtlanması gerekliliğini de açıkça ortaya çıkarmış bulunmaktadır. Ayrıca, küresel ısınma nedeniyle artan CO₂ emisyonunun düşürülmesi ihtiyacı, yapılarda fosil yakıt kullanımının sınırlandırılması gerekliliğini de açıkça ortaya koymaktadır. Bu konu ile ilgili çalışmalar mevcuttur.

Yapıların ısıtılması ile elde edilen ısının ve yılın her mevsimindeki termal yalıtkanlığın korunabilmesi önem arz etmektedir. Bu durumdan hareketle, geleneksel yöntemlere alternatif olarak; çimento içeriği endüstriyel atık malzemeler ile ikame edilmiş, termal yalıtkanlığı yüksek, çevreye dost, ısıtma ve malzeme maliyetleri normal harçlara göre düşük olan çimento harcı üretilmiştir. Çalışmada kullanılan endüstriyel atık malzemeler, Yumurtalık İlçesi Sugözü Köyü termik santrali kaynaklı uçucu kül ile Antalya Ferrokrom tesislerinden temin edilen silis dumanıdır.

Kullanılan mineral kökenli endüstriyel atıklar sayesinde hem doğal kaynak rezervlerinden %50'ye varan oranlarda tasarruf sağlanması öngörülmüş hem de kullanılan Li₂CO₃ aktivatörü ile harçların mekanik dayanımlarındaki düşüşün önüne geçilmeye çalışılmıştır. Çalışmanın en özgün kısmı ise üretilen harç numunelerinin farklı ortamlarda kürlenerek elde edilen sonuçlar üzerinden termal iletkenlik ve porozite özellikleri aralarındaki ilişkilerin kurulması olmuştur. Bu sayede hangi termal iletkenlik değerleri hedefleniyorsa, üretilecek harçların hangi porozite özelliklerine sahip olması gereklilikleri ortaya açık olarak konulmaktadır.

2. GENEL KISIMLAR

2.1. SİLİS DUMANI

Silis dumanı, silisyum veya ferrosilisyum alaşımlarının üretiminde kullanılan elektrik ark fırınlarından elde edilen yan üründür. Üretim sırasında çıkan gazın hızlıca soğuyarak yoğunlaştırılması sonucunda elde edilmektedir ve % 85 - 98 aralığında yoğunlaşmış SiO₂ içermektedir. Alaşımın silisyum içeriği değiştikçe silis dumanındaki SiO₂ miktarı da değişmektedir (Yeğinobalı, 2009; Erdoğan, 2003).

Çok ince taneli bir yapıya sahip olan silis dumanı ayrıca oldukça yüksek puzolonik aktiviteye de sahiptir, kalsiyum hidroksitle hidratasyon reaksiyonu gerçekleştirerek hidrolik bağlayıcılık özelliği de göstermektedir (Baradan ve diğ., 2012).

2.1.1. Silis Dumanının Kimyasal ve Mineralojik Özellikleri

Silis dumanı adından da anlaşıldığı gibi esas içeriği SiO₂ olan malzemedir. Bileşiminde düşük oranlarda Fe₂O₃ ve Al₂O₃ mevcuttur. İçeriğinde MgO, S ve Alkali oksit oranları çok az bulunduğu için genellikle betonda genleşme problemine neden olmazlar. Silis dumanı içeriğindeki C oranı ve kızdırma kaybı değerleri birbirine genellikle yakındır (Erdoğan, 2003). Silis dumanına ait örnek oluşturabilecek kimyasal analiz değerleri Tablo 2.1' de sunulmuştur.

Kimyasal Özellik	% Bileşen
SiO ₂	90.02
Al ₂ O ₃	-
Fe ₂ O ₃	0.30
CaO	0.33
MgO	2.36
SO ₃	0.85
Na ₂ O	0.29
K ₂ O	3.72
TiO ₂	-
P ₂ O ₅	-

Tablo 2.1: Silis dumanının kimyasal analizi (Çelik, 2004).

Silis dumanı morfolojik olarak amorf yapıya sahip bir malzemedir. Mineralojik yapısı X-ışın difraktamı ile incelendiğinde bu durum açıkça ortaya çıkmaktadır (Sola ve dig, 2017).

2.1.2. Silis Dumanının Fiziksel Özellikleri

Silis dumanın rengi açık gri ile koyu gri arasında değişmektedir. Renginin koyulaşması içeriğindeki karbon miktarının yükseldiğine işaret etmektedir. Silis dumanı, çoğunluğunun boyutu 0.1-0.2 µm olan çok ince tanecikler içermektedir. Bu nedenle özgül alanı Blaine cihazı ile ölçülememektedir. BET (azot adsorpsiyon) yöntemi ile tespit edilebilmektedir (Yeğinobalı, 2009). Teknolojinin ilerlemesiyle lazerli ölçüm yöntemleri de özgül yüzey alanı ölçümlerinde kullanılmaktadır.

2.1.3. Silis Dumanının Dayanıma Etkileri

Silis dumanı içeriğindeki yüksek silis nedeniyle harç dayanımlarını artırır. Bu konu ile ilgili oldukça fazla sayıda çalışma mevcuttur. Bazı çalışmalar şu şekilde sıralanabilir:

Beycioğlu ve diğ (2010) ile Çağatay ve Özdemir (2009) tarafından yapılan çalışmalarda; % 5, 10, 15 ve 20 silis dumanı ilave oranlar kullanılarak üretilen pomza agregalı hafif betonların basınç dayanımlarının %20 karışım oranı haricinde arttığı tespit edilmiştir. Şimşek, (2020) tarafından yapılan ve lifli betonlarda optimum silis dumanı kullanımı üzerine yapılan bir çalışmada 120 günün sonunda %7,5 silis dumanı katkısının basınç dayanımlarında en yüksek değeri verdiği tespit edilmiştir. Benli ve Karataş (2019) tarafından yapılan bir çalışmada;

kendiliğinden yerleşen harçlarda, 90 günlük kürlemenin ardından uçucu kül ve silis dumanının birlikte kullanıldığı karışımlardan elde edilen eğilmede çekme dayanımı değerinin % 20 uçucu kül ve % 10 silis dumanı ilaveli harçlardan % 18.9 MPa olarak elde edildiği belirtilmiştir. Çalışmada ayrıca basınç dayanım sonuçlarının en yüksek tespit edildiği karışım oranının ise % 19.9 artış oranı ile % 20 uçucu kül ve % 6 silis dumanı ilaveli karışımlar olduğunu belirtmişlerdir. Demirel ve Yazıoğlu (2007); silis dumanının fiber takviyeli hafif betonun mekanik özellikleri üzerine yaptıkları bir çalışmada, karbon fiber ilavesinin mineral katkısız serilerde eğilmede çekme dayanımın % 21.91 artırdığını; silis dumanı ilaveli serilerde ise % 32.07 artırdığını ifade etmişlerdir. Silis dumanı ilavesinin fiberli serilerde basınç dayanımın % 31.12 artırdığını buna ilaveten eğilmede çekme dayanımını ise % 23.14 arttırdığını ifade etmişlerdir.

2.2. UÇUCU KÜL

Ülkemizdeki termik santraller elektrik enerjisi üretiminde kullanılmakdadır. Bu santrallerde yakıt olarak linyit kömürü kullanılmaktadır. Kömürün yakılması ile elektrik üretimi gerçekleştirilirken baca gazları ile taşınan ve elektro filtreler yardımıyla santralde tutularak atmosfere çıkışı önlenen mikron boyutunda kül tanecikleri meydana gelmektedir. Endüstriyel bir atık olan bu küllere uçucu kül denmektedir Günümüzde artan enerji ihtiyacına bağlı olarak kömür tüketimi de artmakta ve sonuç olarak elde edilen kül miktarı da orantılı olarak artmaktadır.

Uçucu külün oluşmasında bazı parametreler etkilidir. Bunlar; kömürün türü ile fiziksel ve kimyasal yapısı, termik santralin elektrik üretim yöntemi ve şekli, kömürün yakılma türü etkin rol oynamaktadır.

2.2.1. Uçucu Küllerin Sınıflandırılması

Uçucu küller ASTM C 618 (2019) ve TS EN 197-1 (2012) standardları esas alınarak sınıflandırılırlar.

ASTM C 618 standardına göre uçucu küller F ve C sınıfı olmak üzere 2 gruba ayrılırlar:

I. F Sınıfı: Bitümlü kömürden üretilen ve (SiO₂+Al₂O₃+Fe₂O₃) oksitlerinin yüzdesi %70
 'den fazla olan uçucu küller F sınıfı olarak nitelendirilirler. Bu kül grubu, puzolanik

özelliğe sahip olmasının yanı sıra, CaO yüzdesinin % 10'un altında olması sebebiyle de düşük kireçli olarak nitelendirilirler.

II. C Sınıfı: Linyit veya yarı-bitümlü kömürden elde edilen ve toplam SiO₂+Al₂O₃+Fe₂O₃ yüzdesi % 50'den fazla olan küller bu gruba girmektedir. Bu kül grubu, puzolanik özelliğine ilaveten bağlayıcılık özelliği de bulunmaktadır. Aynı zamanda bu küllerde CaO yüzdesi % 10'dan fazla olduğu için bu küllere yüksek kireçli uçucu kül de denir (ASTM, 2015).

2.2.2. Uçucu Küllerin Kimyasal, Mineralojik ve Morfolojik Özellikleri

Uçucu küllere ait kimyasal bileşimler; uçucu külün elde edildiği kömürün bileşenleri ve jeolojik özellikleri arasında oldukça yakın bir ilişki vardır.

Uçucu küllerin kimyasal yapılarında Si, Al, Fe, Ca, Mg, Na, ve S bulunur. Bu elementler yanma işleminden kaynaklı olarak oksit bileşenleri olarak da elde edilebilirler: SiO₂, Fe₂O₃, Al₂O₃ bu bileşenlere örnek olarak verilebilir.

Uçucu külün minerolojik bileşimi, kömürde bulunan minerallere ve işlem koşullarına bağlıdır. Uçucu külün minerolojik yapısı, külün tipine göre değişen dağılımda olmak üzere, camsı (kristalsiz) ve kristal yapılı bileşenlerden meydana gelmektedir (Türker ve diğ., 2009).

Uçucu külün morfolojik yapısı ile ilgili olarak şunlar ifade edilebilir: C ve F tipi uçucu küllerin şekilsel özellikleri de birbirinden ayrılmaktadır. Örneğin F tipi uçucu küllerin süngerimsi bir yapısı mevcut iken C sınıfı uçucu küllerde daha pürüzsüz ve küresel yapılar söz konusu olmaktadır (Celik, 2004).

2.2.3. Uçucu Küllerin Fiziksel Özellikleri

Uçucu külün fiziksel özellikleri, genel olarak termik santralde kulllanılan kömürün özelliklerine ve yanma sistemine bağlıdır. Uçucu kül koyu griden kahverengiye değişen bir renk skalasına sahip bir malzemedir. Külün içindeki yanmamış karbon miktarı uçucu külün rengini koyu griye dönüştürmektedir. İyi bir yanma işlemi sonucu oluşan uçucu külün rengi daha açıktır (Gani, 1997; Güler ve diğ., 2005).

Uçucu külün inceliği fiziksel özellikler açısından önemli bir parametredir. İncelikleri 6000 cm^2/g 'dan daha yüksek olabilmektedir. Uçucu külün tane şekli genellikle yuvarlaktır, yoğunluğu ise 2.2 - 2.4 gr/cm³ civarındadır (Celik, 2004).

2.2.4. Uçucu Külün Dayanıma Etkileri

Çimento harçları için vazgeçilmez ikame malzemelerinden biri olan uçucu külün harçlardaki basınç ve eğilme dayanımları için çok sayıda çalışma mevcuttur. Çok geniş literatüre sahip olan bu konu belirli sayıda çalışma ile sunulmuştur. Çünkü çalışmaların sonuçları birbirlerine birçok benzerlik göstermektedir.

Uçucu kül ve Portland çimentosu ile üretilen harçlarda basınç dayanımının düştüğü, yüksek oranlarda uçucu kül kullanıldığında priz sürelerinde gecikme olduğu ve büzülme oranının arttığı yapılan bir çalışma sonucunda ifade edilmektedir (Turanlı ve diğ., 1997).

F ve C sınıfı uçucu küllerle yapılan detaylı çalışmalarda C sınıfına ait uçucu küllerin F sınıfına göre daha yüksek basınç dayanımları verdiği tespit edilmiştir. Ancak genel anlamda uçucu kül katkısının kontrol numunesine göre basınç dayanımlarının daha düşük olduğu bulunmuştur (Celik, 2004). Hatungimana ve diğ. (2019) yaptıkları çalışmada da % 15' e varan uçucu kül katkısının basınç dayanımını düşürdüğünü belirtmişlerdir.

Sugözü uçucu külü kullanılarak yapılan çalışmada, araştırmacılar uçucu kül ilavesinin % 30'a kadar olan oranlarda basınç dayanımlarının 90. ve 365. günlerde kontrol beton numune dayanımına göre düşük olmakla birlikte kıyaslanabilir seviyede olduğunu belirtmişlerdir. Yine aynı çalışmada elde edilen eğilme dayanımı sonuçlarına göre uçucu kül katkısı % 30 ve 45 oranında kullanıldığında kontrol betonun eğilme dayanımının yaklaşık olarak % 80 ve üzerinde bir değere ulaştıkları tespit edilmiştir (Karahan ve Atiş, 2007). Delikurt ve Sevim (2015) yılında yaptıkları çalışmada % 30 ve 40 oranında kullanılan Sugözü uçucu külünün betondaki basınç ve eğilme dayanımlarını nispeten düşürdüğünü tespit etmişlerdir.

Kılınçarslan ve Tuzlak (2018) tarafından yapılan bir çalışmada araştırmacılar, uçucu kül katkılı köpük betonlarda dayanım ve ısıl iletkenlik özelliklerini incelemişlerdir. Uçucu kül kullanımının köpük betonların basınç dayanımları üzerine olumlu bir etki yaptığını tespit etmişlerdir. Basınç dayanımı en yüksek uçucu kül ilaveli numuneden elde edilen değerin 1,18MPa olduğunu aynı numuneden ölçülen ısıl iletkenlik değerinin ise 0.15 W/mK'nin

üzerinde olduğunu ifade etmişlerdir. Gezmen ve Türkel (2017) bor içeren kolemanit minerali ve uçucu kül ilaveli harçların mekanik özellikleri ile sülfata karşı dayanıklılıklarını incelemişlerdir. Sonuçlara göre; hem eğilme hem de basınç dayanımları açısından % 2 ve % 4 kolemanit katkı oranının çimentoya ilave edilebileceği önerilmektedir. İlerleyen yaşlarda en yüksek basınç dayanımına sahip olan numune % 10 uçucu kül içeren numune olduğu ifade edilmiştir. Eğilme dayanımları açısından da tek başına ve %2 0 uçucu kül ilaveli örneğin ilerleyen yaşlarda kontrol numunesine göre daha yüksek sonuçlar verdiği ifade edilmişitr. Tulga ve Kılınç (2018) tarafından yapılan bir çalışmada; uçucu kül kullanımının farklı dayanım sınıflarındaki betonların mekanik ve durabilite özellikleri üzerindeki etkisi araştırılmıştır. Yapılan çalışma sonucunda C30/37 ve C35/45 sınıfı betonlardaki erken dayanım sonuçları için; uçucu külün erken dayanımları artırmadığı ifade edilmiştir. Uçucu kül kullanımının yarmada çekme dayanımlarını artırdığı tespit edilmiştir. Farklı dayanım sınıflarındaki betonlarda ve kendiliğinden yerleşen betonda uçucu kül kullanımının donmaçözünme direncini artırdığını da ilave etmişlerdir. Turgut 2016 yılında yaptığı bir çalışmada; C sınıfı uçucu kül, kireç ve cam tozu karışımları kullanarak blok üretimini araştırmıştır. Ayrıca uçucu kül tek başına da kullanılmıştır. Üretilen bloklar 70°C'de 24, 48, 72 ve 96 gün boyunca kürlenmişlerdir. Elde edilen sonuçlara göre en yüksek basınç dayanım sonucunun 72 saat boyunca kürlenen UK10K1C4 kodlu numuneden elde edildiği gösterilmiştir. Bu numunede uçucu kül ve kireç miktarı en düşük, cam tozu ise en yüksek miktardaki karışım olduğu tespit edilmiştir. Çavuş ve Ağaoğlu (2019) yaptıkları bir çalışmada Kangal Termik Santral uçucu külünü kullanarak üretilen harçların fiziksel ve mekanik özelliklerini araştırmışlardır. Çalışmada ayrıca çeşitli aktivatörler de kullanılmıştır. Araştırma sonuçlarına göre en yüksek basınç dyanım değerlerini sodyum silikat kullanarak elde etmişlerdir. Akın, 2019 yılında yaptığı bir çalışmada mekanik ve durabilite özellikleri açısından tercih edilmesi gereken uçucu kül sınınfının F sınıfı olduğunu ifade etmiştir. Atiş (2001) tarafından yapılan çalışmada %50 uçucu kül kullanımında normal betonun dayanımına eşdeğer olan dayanım geliştirilebileceği ifade edilmiştir. Aghabaglou ve diğ (2020) tarafından yapılan bir incelemede, yapılan çalışmalar sonucunda uçucu kül kullanımının silindirle sıkıştırılmış betonların mekanik ve durabilite özelliklerini iyileştirdiğini, Mehta ve Monteiro (2006)'nun uçucu külün çimento hidratasyonu ile açığa çıkan sodyum hidroksit ile birleşerek boşluk doldurduğunu ifade ettiğini belirtmiştir. Servatmand ve Şimşek (2018) tarafından yapılan bir çalışmada ise; yüksek performanslı harç üretimi için optimum nanomalzeme oranlarının belirlenmesinde %1 nano silikat kullanımı ile en yüksek basınç dayanım sonuçları verdiğini tespit etmişlerdir. Bu değerin elde edilmesi için kullanılan uçucu kül miktarı ise 635kg/m³ olarak sunulmuştur.

2.3. ÇİMENTO

Çimento, bağlayıcılık özelliği sayesinde beton bileşenlerinin birarada bulunmasını ve beton yapısının oluşmasını sağlayan en önemli malzemedir. Çimento genel adıyla bilinen Portland çimentosunun üretiminde hammadde kaynağı olarak kalkerli malzemeler grubundan kireçtaşı ve marn, killi malzemeler grubundan ise kil, şeyl ve şist kullanılmaktadır. Portland çimentosunun üretim aşamasında malzemeler öncelikle konkasör ünitesinde kırılarak belli boyutlara indirgenir. Daha sonra ince boyutlara öğütülür ve belli oranlarda karıştırılarak döner fırına beslenirler ve döner fırında sonuç reaksiyonları 1350-1450°C 'de gerçekleşir. Kalker yapısından gelen CaO ile kil yapısından gelen SiO₂ (silis) Al₂O₃ (alümin) ve Fe₂O₃'in (demir oksit) birleşmeleri sonucunda çimentoya mekanik özellikler kazandıran silikat ve alüminatlar oluşur (Mills ve diğ, 1955; By, 1983). Genel olarak karma oksit bileşenleri de denilen bu yapılar aşağıdaki formüllerle ifade edilirler:

C₂S : Dikalsiyum silikat

- C₃S : Trikalsiyum silikat
- C₃A : Trikalsiyum alüminat
- C₄AF : Tetrakalsiyum alüminoferrit

Büyük çoğunluğu karma oksit bileşenlerini içeren ve döner firin reaksiyonları sonrasında oluşan ve klinker adı verilen bu ürün ani olarak soğutulur ve depolama alanında toplanır. 1-25 mm topaklanmış tane boyut aralığına sahip, gri siyah renkli ve oldukça sert olan klinker % 3 - 6 oranında alçıtaşı (CaSO₄.2H₂O) ile birlikte çimento değirmeninde öğütülerek çimento boyutuna getirilir. Bu nihai ürün çimento adını alır (Erdoğan, 2003). Çimentonun TS EN 197-1 (2012) standardına göre türleri Tablo 2.2' de sunulmuştur.

e	Genel Çimento Tipleri		Bileşim (kütlece ¹) % olarak										
a Tip			Ana Bileşenler									Minör ilave	
An			K	S	D ²⁾	Р	Q	v	W	Т	L	LL	Bileşenler
CEMI	Portlant Çimentosu	CEMI	95-100	-	-	-	-	-	-	-			0-5
	Portlant-Curuflu Çimento	CEM II/A-S	80-94	6-20									0-5
		CEM II/B-S	65-79	21-35									0-5
	Portlant-Silis Dumanlı Çimento	CEM II/A-D	90-94	-	6-10								0-5
		CEM II/A-P	80-94			6-20							0-5
	Portlant-	CEM II/B-P	65-79			21-35							0-5
	Çimento	CEM II/A-Q	80-94				6-20						0-5
EMI		CEM II/B-Q	65-79				21-35						0-5
0		CEM II/A-V	80-94					6-20					0-5
	Portlant House	CEM II/B-V	65-79					21-35					0-5
	Küllü Cimento	CEM II/A-W	80-94						6-20				0-5
	,	CEM II/B-W	65-79						21-35				0-5
	Portlant-Pişmiş Şistli Çimento	CEM II/A-T	80-94							6-20			0-5
		CEM II/B-T	65-79							21-35			0-5
	Portlant-	CEM II/A-M	80-94	6-20 0-5								0-5	
	Kompoze Çimento ³⁾	CEM II/B-M	65-79	21-35 0-5							0-5		
=		CEM III/A	35-64	36-65	0-5								0-5
M	Yüksek Fırın Cüruflu Çimento	CEM III/B	20-34		66-80								0-5
0		CEM III/C	5-19		81-95								0-5
≥	Puzolanik Çimento ³⁾	CEM IV/A	65-89		-	11-35							0-5
CEV		CEM IV/B	45-64		-	36-55							0-5
2	Puzolanik Çimento ³⁾	CEM V/A	40-64		18-30	-		18	-30				0-5
E		CEM V/B	20-38		31-50			31	-50				0-5
1) Çizelgedeki değerler ana ve minör ilave bileşenlerin toplamı ile ilgilidir.													
2) Silis dumanının oranı %10'la sınırlandırılmıştır.													
 Portland kompoze çimento CEM II/A-M ve CEM II/B-M'de, Puzolanik ÇimentCEM IV/A ve CEM IV/B'de, Kompoze Çimento CEM V/A ve CEM V/B'de klinkerin yanındaki diğer ana bileşenler ana bileşenler çimentoya ait işaretler çimentoya ait işaretle beyan edilmelidir. 													
K: Kılınker, S: Yüksek Fırın curufu, D: Silis dumanı, P: Doğal puzolan, Q: Doğal kalsine edilmiş puzolan, V: Silisli uçucu kül, W: Kalkerli uçucu kül, T: Pişmiş Şist, L: Toplam organik karbon içeriği kütlece %0.50 aşmayan kalker, LL: Toplam organik karbon içeriği kütlece %0.20 aşmayan kalker.													

Tablo 2.2: Çimento türleri.

2.3.1. Çimento Hamurunun Prizi ve Hidratasyon Reaksiyonları

Çimentonun su ile tepkimesi sonucunda hidratasyon reaksiyonları meydana gelir. Çimento ve suyun birleşmesiyle oluşan çimento hamuru başlangıçta plastik bir durumdadır ve hidratasyonun devam etmesiyle birlikte hamur zamanla daha viskoz bir hal alarak sertleşmektedir (Erdoğan, 2003; Postacıoğlu, 1975).

Hidratasyon reaksiyonlarının ilerlemesi sonucunda çimento hamurunun plastiklik özelliğinde azalma, viskozitesinde ise artış gözlenir. Çimentonun su ile temas ettiği ilk an ile plastiklik özelliğini kaybettiği bu süreye "priz alma süresi" denir. Bu süre priz başlangıç ve priz bitiş

süreleri olarak ifade edilir. Priz başlangıcı çimento ve suyun temas ettiği ilk an ile çimento hamurunun sertleşmeye başladığı an arasındaki süredir. Priz bitiş süresi suyla ilk temastan çimento hamurunun tamamen katılaştığı ana kadar geçen süredir.

2.3.2. Çimento Harçlarının Basınç ve Eğilme Dayanımı

Hidrate çimentonun dayanım kazanmasını açıklamak için öne sürülen teoriler içinde en kabul göreni; çimento hidratasyon ürünü olarak oluşan kristalitlerin bir doku oluşturarak dayanım sağladığı görüşüdür. Hidratasyonun ilerlemesiyle kristaller büyümekte ve belli noktalarda birbirlerine değmektedirler. Bu noktalarda gelişen fiziksel ve kimyasal olayların etkisiyle birbirleriyle birleşerek ya da kaynayarak bu dokuyu oluşturmaktadırlar. Hidratasyon ürünlerinin birbirlerine etkileşme olasılığı aşağıdaki koşullara bağlı olarak gelişir;

- Doygunluk derecesi
- Kristalitlerin temas süreleri
- Tanecikler arası uygulanan kuvvet

Ayrıca kristalit oluşumundan kaynaklanan bazı iç gerilmeler vardır. Bu gerilmeler dayanımı bazen arttırıcı bazen de azaltıcı yönde etki etmektedir.

Hidrastasyon reaksiyonlarının zamana bağlı olarak sürmesi ve bunu sonucunda kristalitlerin büyümesinin önemli sonuçları aşağıdaki şekildedir.

- 1. Hidratasyon ürünlerinin temas noktalarının sayısındaki artış
- 2. Serbest suyun adsorbe su haline geçerek boşluğun azalması

Bu iki önemli faktörün sonucunda çimento harçlarının dayanımı zamanla artmaktadır. Çimentonun türüne, kür koşullarına ve kimyasal bileşimine bağlı olarak bu malzemelerdeki dayanım artışı uzun yıllar sürebilir (Baradan ve diğ., 2012; Neville, 1997).

Çimento harçlarının mekanik deneyleri için temel olarak basınç ve eğilme deneyleri uygulanır. TS-EN 196-1 (2016) standardında deneyler ayrıntılı olarak açıklanmaktadır.

2.3.3. Çimento Harçlarında Dayanıklılık

2.3.3.1. Sülfat Etkisi ile Harçların Dayanıklılığı

Sülfat ortamları yapıları gereği korozif koşullardır. Çimento harçlarının sülfat ortamlarında bulunması sonucunda yapılarının bu ortamlardan olumsuz yönde etkileneceği açıktır.

Çimento karma oksit bileşiklerinden olan C_3A (tri kalsiyum alüminat) çimentonun hidratasyon reaksiyonları sırasında ortamdaki alçı taşının da hidrate olarak reaksiyona eklenmesi sonucunda reaksiyon, önce monosülfoalüminat sonrasında etrenjit teşekkülü şeklinde ilerler. Etrenjit oldukça yüksek hacim içeren bir tuzdur. Bu durum, bünyesinde içerdiği 32 mol su bileşiğinden kaynaklanmaktadır. Bu yüksek hacimli molekül nedeniyle taze betonda hacim artışı kaçınılmazdır. Etrenjit oluşum reaksiyonu aşağıdaki gibidir:

Kalsiyum sülfat dışındaki sülfatlarla örneğin sodyum sülfat ile, sertleşmiş çimento fazındaki kalsiyum hidroksit reaksiyonlar oluşturabilir. Alçıtaşı oluşumu nedeniyle hacim artışı ve çimento pastasında sertlik ve mukavemet kaybı ile bozunma artar.

• $Ca(OH)_2 + Na_2SO_4.10H_2O \rightarrow 3CaSO.2H_2O + 2NaOH + 8H_2O$

Magnezyum sülfat ile benzer reaksiyonlar gerçekleşir. Ancak, oluşan magnezyum hidroksitin, göreceli olarak çözünmeyen ve zayıf alkali bir yapısı vardır. Sülfat atağının şiddeti sülfat atağının türüne bağlıdır. Magnezyum sülfat sodyum sülfattan, sodyum sülfat ise kalsiyum sülfattan daha zararlıdır.

$$3CaO.2SiO_2.3H_2O + 3(MgSO_4.7H_2O) \rightarrow 3(CaSO_4.2H_2O) + 3(Mg(OH)_2) + 2SiO_{2.aq}$$

2.3.3.2. Islanma - Kuruma Döngüsü ile Harçların Dayanıklılığı

Betonun ıslanma kuruma ortamları su ve zararlı ortamlar olarak ifade edilebilir. Bu bağlamda; fiziksel etki olarak sadece su ortamı ve etüv ortamlarını içeren döngülerle yapılan çalışmalarda; ıslanma - kuruma döngüsü ile kürlenen atık asfalt ve atık lastik katkılı harçların basınç dayanımlarının, suda kürlenen aynı karışım oranlarına sahip olan harçlarla %5 katkı

oranı için yakın basınç dayanım değerleri verdiği tespit edilmiştir (Sola and Ozyazgan (2016); Sola and Ozyazgan (2016)).

2.3.3.2. Donma-Çözülme Döngüsü ile Harçların Dayanıklılığı

Beton servis ömrü boyunca fiziksel, kimyasal, mekanik ya da fiziko-kimyasal etkilerle hasara uğrayabilmektedir. Bu çevresel etkiler betonun performansının zamanla azalmasına, servis süresinden önce işlevini ve dayanıklılığını tamamen yitirmesine yol açabilmektedir. Betonun tekrarlı donma - çözülme etkisinde kalması bu fiziksel etkilerden birisidir (Şahmaran ve Li, 2009). Bu tekrarlı etkilerin sonucunda betonun içindeki suyun beton yapısını hasara uğratarak mukavemet kayıplarına yol açtığı bilinen bir gerçektir. Tekrar sayılarının artmasıyla hasar etkisinin arttığı da açıktır.

Soğuk iklimlerde, don etkisi, yeterli önlemler alınmadığında betona zararın temel bir nedenidir. Kendisinden daha geniş boşluklarda bulunan serbest su donduğunda yaklaşık olarak %9 oranında genişler. Betonda bu genişlemeyi karşılamak için yeterli yer yoksa, o zaman potansiyel olarak hasar veren bir iç basınç ortaya çıkacaktır. Ardışık donma-çözülme döngüleri, başlangıçta beton yüzeyinde çatlama ve parçalanma şeklini alırken daha sonra kümülatif hasara neden olabilir. Hava sürüklenerek daha geniş olan kılcal boşluklardaki su ise daha kritik etkiye sahiptir. Çok daha küçük boyutlu olan jel boşluklarındaki su, CSH yüzeylerine adsorbe edilir ve sıcaklık yaklaşık -78 ° C'ye düşene kadar donmaz. Bununla birlikte, kılcal su donduktan sonra, hala sıvı jel sudan daha düşük bir termodinamik enerjiye sahiptir, bu nedenle kılcal suyu takviye etme eğilimi gösterir, böylece bozulmayı arttırır. İç basınç veren basınç ozmotik basınç ile de artar. Gözeneklerdeki su saf değildir, ancak kalsiyum hidroksit ve diğer alkalilerden oluşan bir çözeltidir. İç basıncın büyüklüğü; kılcal gözenekliliğe bağlıdır. Bu basıncın azaltılması aşağıdaki faktörlere bağlıdır:

- Malzeme geçirimliliği
- Buzun oluşma hızı
- Buz oluşum noktasından kaçış sınırına olan mesafe

Çimento pastası veya betonun kapiler boşluğu nedeniyle don atağına olan hassasiyeti, su/çimento oranının azaltılması ve hidratasyonun düzgün şekilde kürleme yapılarak sağlanması sayesinde ancak kontrol altına alınabilir. Hava sürükleyici kullanılarak üretilmiş bir betonun su/çimento oranı - çevrim sayısı etkileşimi şekilde gösterilmiştir. Don etkisine

duyarlı belirli agregalar vardır, dayanıklı bir beton elde edilecekse kullanımlarından kaçınılmalıdır. Donma-çözülme etkisine karşı hassas olan agregalar bazı kireçtaşları ile gözenekli kum taşlarını içerir. Bunlar genellikle yüksek su emme özelliğine sahiptirler. Ancak diğer yüksek su emme özelliği olan kayalar donma-çözülme etkisine duyarlı değillerdir. Yaklaşık 4 ila 5 mikrometrelik gözeneklerin kritik olduğu bulunmuştur, çünkü bunlar suyun girmesine izin verecek kadar büyük, ancak hasar veren iç basıncın dağılmasına izin verecek kadar büyük değildir. Agrega boyutu da bir faktördür, daha küçük parçacıklar daha az bozulmaya neden olur, çünkü agrega yüzeyindeki bir kaçış sınırına ortalama mesafe daha

azdır.

Tekrarlı çevrimlerle yapılan çalışmalardan bazıları ve bunlara ilişkin çalışma sonuçları şu şekilde sıralanabilir: Guo ve diğ., (2019) tarafından yapılan bir çalışmada, sülfat hızlandırıcı erozyon altında betonun kurutma-ıslatma döngüsü test yöntemini keşfetmek için kuru-ıslak zaman oranının beton sülfat erozyonu üzerindeki etkisi araştırılmıştır. Bir döngü için 7 gün koşulu altında, beş farklı kuru-ıslak zaman oranı tasarlanmıştır: 1: 3, 1: 1, 3: 1, 5: 1 ve 10: 1. Betonun basınç dayanımı, yarılma çekme dayanımı ve dinamik elastik modülü gibi temel özellikler test edilmiştir. Erozyondan önce ve sonra betonun mikro yapısını analiz etmek için taramalı elektron mikroskobu (SEM) kullanılmıştır. Test sonuçları, sülfat kurutma-ıslatma döngüsü erozyonu ortamında betonun mekanik özelliklerindeki değişimin üç aşamaya ayrıldığını göstermektedir: yükselen dönem, dalgalanma süresi ve hızlı inen dönem. Beton, ilk hasarın periyodik hasar işlemine tabi tutulur, ardından sırayla sıkıştırma sıkıştırma, çatlama, daha fazla doldurma ve tekrar çatlama gerçekleşir. Kuru - ıslak oranın beton sülfat saldırısı ile bozulma derecesi önce artar ve sonra azalır. Kuruıslak oran 5: 1 olduğunda, bozulma en etkilidir.

Abualgasem ve diğ. (2015) tarafından sülfat saldırısı nedeniyle betonun bozulmasına ilişkin kontroller üzerine yapılan bir çalışmada; portland çimentosu CEM-I ile yapılan harçlar (50 mm küpler ve $40 \times 40 \times 160$ mm prizmalar) ve % 90 CEM-I + % 10 kireçtaşı harmanlanmıştır. Üretilen numuneler, 5 ° C'de 18 ay süreyle ıslatma ve kurutma döngüleri altında magnezyum sülfat (MgS0₄.7H₂0) içerikli BREDS4 sülfat çözeltisine maruz bırakılmışlardır. Bu döngülerin taumasit oluşumu üzerindeki etkisi incelenmiş ve aynı çözeltilere sürekli olarak daldırılmış numunelerle karşılaştırılmıştır. Harçların bozulmasını

değerlendirmek için görsel gözlemler, kütle ve uzunluk değişiklikleri ile birlikte bozulma ürünlerinin mineralojisini belirlemek için kullanılan X-ışını kırınımı ve kızılötesi spektroskopisi kullanılmıştır. 5 ° C'de, ıslatma ve kurutma döngülerinin, kontrol örneklerine kıyasla taumasit oluşumunu önemli ölçüde geciktirdiği bulunmuştur.

Hewaydeve diğ. (2020) tarafından yapılan bir araştırmada, doğal kaba agreganın yerine magnezyum ve sodyum sülfat saldırılarına karşı çeşitli seviyelerde geri dönüştürülmüş agregaya sahip beton karışımlarının direnci araştırılmıştır. % 0, % 25, % 50, % 75 ve % 100 geri dönüştürülmüş agrega ile yapılan beş karışım kısmen % 2.5, % 4.5 ve % 6.5 konsantrasyonlara sahip magnezyum ve sodyum sülfat çözeltilerine konulmuştur ve 10 hafta boyunca ıslanma - kuruma döngülerine tabi tutulmuştur. Sülfat çözeltilerinin saldırısı ve kurutma-ıslatma döngülerinin etkisi nedeniyle beton örneklerin kütle kayıpları haftalık olarak kaydedilmiştir. Sonuçlar, geri dönüştürülmüş agreganın dahil edilmesinin, betonun 7 ve 28 günlük yaşlarda basınç dayanımını azalttığı belirtilmiştir. Basınç mukavemetindeki azalma, değiştirme yüzdesi % 50'yi aştığında daha yüksek seviyede olduğu tespit edilmiştir. Geri dönüştürülmüş agrega seviyesi arttıkça beton numunelerinin kütle kayıpları artmıştır. % 100 geri dönüştürülmüş agregaya sahip beton numunelerinin kütle kayıpları % 2.5, % 4.5 ve % 6.5 konsantrasyonlardaki magnezyum sülfat çözeltilerine 10 haftalık kısmi bekletme nedeniyle % 0 geri dönüştürülmüş agregaya sahip beton örneklerinin kütle kayıplarının yaklaşık iki katı olduğu tespit edilmiştir. Sonuçlarda ayrıca basınç dayanımındaki azalmanın 0.937 R değerinin doğrusal bir denklemini takiben kütle kaybı ile doğru orantılı olduğu bulunmuştur.

2.3.4. Çimento Harçlarında Termal İletkenlik

Sürdürülebilir yapı tasarımlarının artması, enerji maliyetlerinin çok yükselmesi ve bunun etkilerinin de inşaat sektöründe çok hissediliyor olması bu konu ile ilgili olarak çalışmaların artmasına sebebiyet vermiştir.

Serina ve dig.(2016) tarafından yapılan bir çalışmada; ultra yüksek performanslı beton (UHPC) üretimi için formüle edilmiş aerojel katkılı harç (AIM) numunelerinin depolanması ve kürlenmesi sırasında yüksek sıcaklığın etkisi araştırılmıştır. Optimize edilmiş depolama ve priz koşulları altında uygun termal ve mekanik özelliklere sahip AIM numuneleri üretmek için toplam hacminin% 60'ı kadar etkili bir aerojel katkısının mümkün olduğu bulunmuştur. Yaklaşık 19 MPa'a kadar basınç mukavemetine sahip AIM numuneleri elde edilmiştir ve bu

basınca karşılık gelen termal iletkenlik 0.4 W/(m.K) olarak ölçülmüştür. Daha fazla yalıtım betonu için hacimce % 70 aerojel gerekliliği tespit edilmiştir ve termal iletkenliği 0.1 W/mK kadar düşük olan AIM numuneleri dökülmüştür. Genel olarak, 0.1 ila 0.2 W/mK arasında termal iletkenlik istendiğinde 5 MPa'ya kadar mukavemete sahip AIM numuneleri elde edilebildiği ifade edilmiştir.

Hanif ve diğ. (2016) tarafından yapılan bir çalışmada; hem mükemmel mekanik hem de termal yalıtım özelliklerine sahip ultra hafif çimentolu bir kompozitin geliştirilmesini hedeflenmiştir. Uçucu kül (FAC) ve silikadan yapılan nanoyapılı yüksek gözenekli bir malzeme olan aerojel, hafif agrega olarak kullanılmıştır. Çimentolu kompozitin mekanik davranışını geliştirmek için polivinil alkol fiberleri kullanılmıştır. Deney sonuçları, elde edilen kompozitlerin geleneksel hafif malzemelere kıyasla daha yüksek mukavemet (18 kPa) gösterdiğini ortaya koymuştur. FAC ve aerojel miktarına bağlı olarak, çimentolu kompozitin basınç ve eğilme mukavemetleri sırasıyla 23.54-18.63 MPa ve 4.94-3.666 MPa olarak bulunurken, ısıl iletkenlik 0.3197 W/mK'ye düşürülmüştür. Ayrıca, FAC / aerojel modifiyeli çimentolu kompozitin hidrasyon ürünleri ve mikroyapıları, SEM- (EDS) ile araştırılmıştır. Prizini alan matrisin termal kararlılığı termo-gravimetrik analizler kullanılarak incelenmiş ve kompozitlerin yüksek bir sıcaklık aralığında oldukça kararlı olduğu ortaya çıkarılmıştır. Ağırlık kaybı artan aerojel içeriğine göre değişmektedir. Sonuç olarak, hem FAC'nin hem de aerojelin mekanik üretim için mükemmel malzemeler olduğu ifade edilmiştir.

Maria de Fátima ve diğ.(2016) tarafından yapılan bir çalışmada; hafif agregaların çimentolu aerojel bazlı sıvaların higrotermal ve mekanik performansı üzerindeki rolü açıklanmıştır. Hafif agregalar, 1: 4'lük bir bağlayıcı: agrega hacim oranı ile tamamen silis kumu yerine katılmıştır. Çimento-uçucu kül (ağırlıkça % 50) bağlayıcı, hacimce % 60 subkritik silika esaslı aerojel, hacimce% 20 granül genleştirilmiş mantar, hacimce% 15 genleşmiş kil ve hacimce % 5 perlit kullanılarak, düşük birim ağırlıklı (652 kg/m³), termal iletkenliği 0.084 W/mK olan, kabul edilebilir mekanik mukavemet ve iyi deformasyon kapasitesi sağlayan termal renderler üretilmiştir. Bu renderörlerin özelliklerinin agregaların moleküler ve gözenek yapısı ile korelasyonunun, genel performanslarını iyileştirmek için son derece yararlı olduğu kanıtlanmıştır.

Gao ve diğ. (2014) tarafından yapılan bir çalışmada; silika aerojel partiküllerini beton matrisine dahil edilerek, düşük yoğunluklu ve ısı yalıtımlı bir beton malzeme hazırlanmıştır.

Aerojel katkılı beton, çalışmada (AIC) terimi ile ifade edilmektedir. AIC, 1.0 g/cm³ yoğunluğa, yaklaşık 0.26 W/mK ısıl iletkenliğe ve %60 aerojel içeriğinde yaklaşık 8.3 MPa basınç dayanımına sahiptir. Ayrıca, AIC'nin yoğunluğu, termal iletkenliği ve mekanik özellikleri aerojel içeriği değiştilerek kontrol edilir. Taramalı elektron mikroskobu gözlemleri, çimentolu malzemelerin hidrasyonu sırasında aerojel parçacıklarının stabil olduğunu ortaya çıkarmıştır.

Gomes ve diğ. (2017) tarafından yapılan bir çalışmada; 17 adet harç karışımı üzerinde termal iletkenlik-nem etkisi arasındaki ilişki deneysel olarak araştırılmıştır. Sonuçlar, termal iletkenliğin nem içeriğine önemli ölçüde bağlı olduğunu göstermiştir. Bununla birlikte, bina standartlarının çoğu normalleştirilmiş koşullar için sabit iletkenlik değerleri kullanır. Bu nedenle, termal harçların termal iletkenliği üzerindeki ilgili etki faktörlerinin tartışılması, tasarımcıların ve profesyonellerin, gerçek maruz kalma koşullarına maruz kaldıklarında, hizmet içi bina cephelerinin termal harçlarla higrotermal performansını değerlendirmelerine yardımcı olabilir.

Serina ve diğ. (2015) tarafından yapılan bir çalışmada; hacimce % 50 aerojel içeriğinde AIM (aerojel katkılı harç) örneği 20 MPa basınç dayanımına ve 0.55 W/mK termal iletkenliğe sahip olduğu tespit edilmiştir. Aerojel içeriği hacimce % 70'e yükseltildiğinde bu dayanımda neredeyse 4 - 5.8 MPa'lık bir kayıp yaşanmıştır ve termal iletkenlikte ise % 20'lik bir iyileşme elde edildiği tespit edilmiştir.

Bostancı, 2020 tarafından yapılan bir çalışmada; kumun belli bir kısmı yerine (ağırlıkça % 0, % 10 ve % 15) petrokok içeren ve çimento katkısı olarak çimento ağırlığının % 0.35, % 0.7 ve % 1.0'i oranlarında silika aerojel ilavesi kullanılarak hazırlanmış karışımların mekanik, por yapısı, termal iletkenlik özellikleri ve mikroyapı özelliklerini karşılaştırmalı olarak sunulmaktadır. Sonuçlar, daha yüksek basınç, eğilme mukavemetleri ve tokluk kapasiteleri ile % 0.35'lik aerojel içeriğinin kullanılmasıyla, % 21.83'lük bir termal iletkenlik azalmasının belirlendiğini ifade edilmiştir. Ayrıca, petrokok içeren numunelerde % 15 ikame seviyesinde % 33'e kadar yalıtım artışı olduğu da belirtilmiştir. Bununla birlikte, eşdeğer termal iletkenlik durumunda, aerojel katkılı karışımların tokluk ve pik sonrası tokluk kapasiteleri, petrokok katkılı karışımlara kıyasla sırasıyla % 20 ve % 17'ye varan oranlarda daha yüksek olduğu tespit edilmiştir. Araştırma, silika aerojel tozu ve petrol koku içeren hibrit çimento harçlarının

tasarımında mekanik-ısı yalıtım özelliklerinin optimizasyonu ile yeni bir bakış açısı sunması açısından da önemlidir.

Bostancı, 2020, tarafından yapılan bir çalışmada; eşsiz yalıtım özellikleri nedeniyle silika aerojelin, çimento teknolojisinde diğer geleneksel yalıtım malzemelerine kıyasla çekici bir akıllı malzeme olduğunu ifade edilmiştir. Bununla birlikte, silika aerojelin yüksek üretim maliyeti, inşaat endüstrisindeki uygulamasını sınırladığı da belirtilmektedir. Çalışmada, alkali aktif cüruf (AAS) harçlarına silika aerojel (bağlayıcı ağırlığının % 0, % 0.3 ve % 0.6 oranlarında) ve atık kauçuğu (bağlayıcı ağırlığının % 0, % 1.5 ve % 3.0 oranlarında) ilavesinin kombine etkisi araştırılmıştır. Karışımlara az miktarda silika aerojel ve atık kauçuk eklenmesi, geliştirilmiş ısı yalıtımı ile mekanik özelliklerde azalmaları en aza indirmek amacıyla analiz edilmiştir. Deneysel sonuçlar, % 0.3 aerojel içerik oranında % 3.0 hurda kauçuk ilavesi durumunda, % 33'e kadar ısı yalıtımı açısından dikkate değer bir sinerjistik etkinin gözlenebileceğini gösterilmiştir.

2.3.5. Çimento Harçlarında Porozite – Termal İletkenlik İlişkisi

Çimento hamuru içine katılan silika aerojelin geçirim gözenekliliğini arttırdığını gösterilmiştir Khamidi ve diğ (2014). Geçirim gözenekliliğindeki artış, çimento referans hamuru ile karşılaştırıldığında; silika aerojelinin daha düşük geçirim gözenekliliğinden kaynaklanmaktadır. Ölçülen en yüksek geçirim gözenekliliği % 25.6' dir. Bu sonuç en yüksek silika aerojel içeriğine sahip M20 örneğinden ile elde edilmiştir.

Hanif ve diğ. (2016) tarafından yapılan bir çalışmada (civa porozimetresi) MIP sonuçları şu şekilde açıklanmıştır: Üretilen kompozit numunelerin (harç) gözenekliklik içeriğinin referans numunede en az olduğu tespit edilmiştir. Aerojel içeriğinin artmasıyla gözenekliliğin arttığı bulunmuştur. Aerojel parçacıklarının açık (şeffaf) boşluklu yapılı içeriği ile porozite arasında doğrudan bir işbirliği olduğu ortaya koyulmuştur. Aerojel içeriğinin % 4 - 5 olduğu durumlarda porozitede bir artış mevcut olmakla birlikte bu artış çok yüksek değildir ve bunun parçacıkların bir araya toplanmasından kaynaklı olduğu düşünülmektedir. Bu porların aerojel ilavesiyle doğrudan arttığı tespit edilmesine rağmen bunların genellikle birbirleriyle bağlantılı olmadığı düşünülmektedir ve bunun porlar arasında bariyer yapan aerojel parçacıklarından kaynaklandığı düşünülmektedir. Sözü edilen porlar; 2nm'den küçük olan mikro porlar ve 2 - 50nm aralığındaki mezoporlardır.

Bostancı ve Sola, 2018 tarafından yapılan bir çalışmada aerojel katkılı, alkali aktive edilmiş cüruf harçlarının basınç dayanımı, termal iletkenlik katsayısı ve porozimetre özellikleri deneysel olarak incelenmiştir. Bu amaçla % 0.75 ve % 1.0, aerogel katkı oranlarında cüruf harcı karışımları hazırlanmış ve oluşturulan harç karışımları % 0.03 ve % 1.50 dozajlarında lityum karbonat (Li₂CO₃) ile aktive edilmiştir. Harç numuneleri 2, 7 ve 28 gün boyunca suda kür işlemine tabi tutulmuş ve kür süresini tamamlayan numuneler basınç dayanımı testine tabi tutulmuştur. Basınç dayanımı testini takiben 28 günlük numuneler üzerinden MIP porozimetre analizi ve termal iletkenlik katsayısı ölçümü gerçekleştirilmiştir. Karışımlarda değişen aerojel katkı oranı ve Li₂CO₃ dozajının harç numunelerinin jel, kapiler ve makro por dağılımlarında meydana getirdiği değişiklikler ve değişen porozimetrik özelliklerin harcın basınç dayanımları ile termal iletkenlik katsayısı üzerindeki etkisi detaylı olarak analiz edilmiştir. Deneysel çalışmalar kapsamında alkali aktive edilmiş cüruf harçlarında optimum % 0,75 aerojel katkı oranı ve % 0.03 Li₂CO₃ aktivasyonu ile 34.1 MPa basınç dayanımı ve 1.32 W/mK termal iletkenlik katsayısına ulaşılmıştır. Aerojel katkı oranı 2 günlük dayanımlarda maksimum %5 dayanım kaybına sebep olurken 7 ve 28 günlük dayanımlarda aerojel katkısı ile kısmi dayanım artışı sağlanmaktadır. Çalışmada poroziteye ait sonuçlar aşağıdaki şekilde belirtilmiştir; Toplam porozite yüzdeleri neredeyse eşit olan numunelerde termal iletkenlik katsayıları arasındaki farklılıklar, maksimum kapiler pore çapları kontrolünde değişmektedir. M2 numunesinde olduğu gibi maksimum kapiler por çapı büyük olan numunenin termal iletkenlik katsayısı daha düşüktür. Jel boşlukları ve termal iletkenlik katasyısı arasındaki ilişki, maksimum kapiler por çapları arasındaki ilişki ile paralellik göstermiştir. Termal iletkenlik katsayısı değeri en düşük olan M2, M4 ve M5 numaralı numunelerin basınç dayanımları birbirine çok yakın olup sırasıyla 32.2 MPa, 34.1 MPa ve 31.5 MPa'dır. Ancak, basınç dayanımları arasında nispi farklılıklar olmasına rağmen M2 kapiler, diğerleri ise makro boşluklara sahiptir.

Bostancı ve diğ., (2018) tarafından yapılan bir çalışmada farklı kür koşulları altındaki atık lastik katkılı harçların mekanik, termal ve porozite özellikleri deneysel olarak incelenmiştir. Bu amaçla % 0, % 1, % 5, % 10 ve % 18 atık lastik katkı oranları ilavesiyle çimento harçları hazırlanmış ve oluşturulan harçlar 14 hafta boyunca ıslanma - kuruma etkisi, MgSO₄ etkisi ve suda kürleme koşullarına tabi tutulmuştur. Kürlenen numunelerin mekanik dayanımları ölçüldükten sonra porozimetre analizi ve termal iletkenlik katsayısı ölçümleri gerçekleştirilmiştir. Farklı kür ortamlarının; artan atık lastik katkısına bağlı olarak harçların

jel, kapiler ve makro por dağılımları ve çapları üzerindeki etkileri araştırılmıştır. Farklı kür koşullarından kaynaklanan porozimetrik değerlerin termal iletkenlik katsayısı ve mekanik dayanımlar üzerindeki etkisi detaylı olarak analiz edilmiştir. En düşük termal iletkenlik değerleri suda ve ıslanma - kuruma kürleme ile % 18 katkılı numunelerden 1.09 ve 1.14 W/mK olarak elde edilmiştir. Mekanik dayanım sonuçlarında ise basınç dayanımı olarak katkısız numuneden ıslanma - kuruma kürlemesinden 61.5 MPa en yüksek sonuç olarak elde edilirken; eğilmede çekme dayanımları için ise ıslanma - kuruma kür koşullarında kürlenen katkısız ve % 1 katkılı numunelerden sırasıyla 8.91 ve 8.27 MPa olarak tespit edilmiştir. Çalışmaya ait MIP cihaz analiz sonuçları irdelendiğinde şu sonuçlar ortaya çıkmıştır; İslanma kuruma etkisi altında harç por yapısında artan katkı oranına bağlı olarak jel por oluşumu azalmaktadır. MgSO4 kürleme için % 0 - 5 katkı oranı aralığında artan katkı oranına bağlı olarak jel por oluşumu giderek azalmakta ve devamındaki katkı oranı artışından etkilenmemektedir. Farklı kür koşulları altında harç por yapısında en yüksek kapiler por ve en düşük makro por miktarı % 1 atık lastik katkı oranında gözlemlenmektedir. Bu sebeple % 0 -18 katkı oranı çalışma aralığında suda kürleme ve MgSO₄ kürlemesi için % 1 atık lastik katkı oranında termal iletkenlik katsayısı en yüksek değerine ulaşmaktadır. Yapılan bu çalışmada; atık lastik katkı oranının % 18 olarak kullanılması ile; termal iletkenlik değerinde kendi kür koşullarındaki kontrol numunesine kıyasla çok önemli bir etki tespit edilmiştir. Bu etki MgSO₄ kürleme için % 33.5, suda kürleme için % 34.3 ve ıslanma - kuruma kürlemesi için % 47.2 düşüş oranları olarak tespit edilmiştir.

Bostancı ve diğ, 2018 tarafından yapılan bir diğer çalışmada, ıslanma - kuruma, magnezyum sülfat ve suda kürlenen aerojel katkılı harçların termal, porozite ve mekanik özellikleri araştırılmıştır. En yüksek basınç dayanımı % 0.5 aerojel katkılı ve ıslanma - kuruma ve MgSO4 koşullarına maruz bırakılan numunelerden basınç dayanımları 60.8 MPa ve 44.3 MPa olarak elde edilmiştir. Çalışmada porlara ait elde edilen sonuçlara ilişkin yorumlar ise şu şekildedir. Islanma - kuruma kür grubunda 0.7 aerojel katkı oranında diğer katkı oranlarından farklı olarak yüksek seviyede jel por oluşumu gözlemlenmiştir. Yüksek düzeydeki jel por oluşumu etkisiyle kür grubunun minimum seviyesine inen en düşük toplam porozite değeri (% 12.17) ve en düşük ortalama hacimsel por çapı (47 nm) vasıtasıyla kür grubunun en yüksek basınç dayanımı (60.6 MPa) tespit edilebilmiştir. Suda kürleme grubunda ise jel por oluşumun en yüksek seviyede olduğu numuneden kür grubunun en yüksek basınç dayanımı 57 MPa tespit edilebilmiştir. Suda kürlenen numune grubunda maksimum kapiler por (% 85)
oluşumunun gözlemlendiği % 0.5 aerojel katkılı numunede oluşan en düşük toplam porozite değeri (% 2.4) ve en yüksek termal iletkenlik katsayısı (2.13 W/mK) tespit edilmiştir. Bu kür grubu içerisinde % 0.5 ve % 0.7 aerojel katkılı numunelerde mekanik dayanımları benzer olmasına karşılık kapiler por oluşum miktarları termal iletkenlik katsayısı üzerinde belirleyici rol üstlenmiştir. Islanma - kuruma etkisi altında kürlenen numune grubunda minimum kapiler por oluşumu %0,7 aerojel katkılı numunede tespit edilmiştir. Bu numunede gözlemlenen kür grubunun en düşük toplam porozite değeri (% 12.17) ve en düşük hacimsel ortalama por çapı (47.2 nm) vasıtasıyla maksimum eğilme dayanımına (7.5 MPa) ve yüksek basınç dayanımına (60.6 MPa) ulaşılmıştır. MgSO₄ etkisi altında kür işlemi gerçekleştirilen aerojel katkılı harç numunelerinde artan aerojel katkısına bağlı olarak hacimce kapiler por oluşumu sınırlı değişim aralığında gelişmekte olup bu sebeple hacimsel ortalama por çap değişimleri ve basınç dayanımları değişimi katkı oranı artışına karşı hassas değildir. Tüm kür ortamlarında numunelerin kendi kür ortamlarında en yüksek hacimsel ortalama por çapları ile hacimce makro por oluşumu en yüksek olan numunelerde yüksek korelasyon mevcuttur. Suda kür ortamında 10000 nm ve üzerindeki çap dağılımları incelendiğinde en yüksek kümulatif por hacim davranışını sergileyen % 0.3 ve % 0.7 aerojel katkılı numuneler ilgili kür ortamının en düşük termal iletkenlik katsayısına (1.56 W/mK) ve (1.70 W/mK) sahiptirler.

3. MALZEME VE YÖNTEM

3.1. KULLANILAN MALZEMELER

Deneylerde kullanılmak üzere üretilen harç numuneleri TS EN 197-1 (2012) standardına göre Rilem standart kumu, çimento ve su içermektedir. Harçlarda mineral katkı malzemesi olarak uçucu kül ve silis dumanı kullanılmıştır. Harç numunelerinin termal iletkenlik davranışını izleyebilmek amacıyla hidrofilik silika bazlı aerojel ilave edilmiştir. Mineral katkı ile harç aktivasyonunun sağlanabilmesi için de Li₂CO₃ kullanılmıştır.

3.1.1. Portland Çimentosu

Deneysel çalışmalar sürecinde TS EN 197-1 (2012) standardına uygun olarak üretilmiş Limak Çimento Yenibosna Tesisleri'nde üretilen CEM I 42.5 R tipi Portland çimentosu kullanılmıştır. Tablo 3.1'de deneylerde kullanılan çimentonun kimyasal bileşimi, Tablo 3.2' de ise bazı fiziksel özellikleri gösterilmiştir.

Bileşenler	Ağırlıkça (%)
SiO ₂	19.19
Al_2O_3	4.71
Fe ₂ O ₃	3.03
CaO	62.31
MgO	2.41
SO ₃	2.98
K ₂ O	0.66
Na ₂ O	0.19
Cl	0.0095
Kızdırma kaybı	3.65
Çözünmeyen kalıntı	0.33
Toplam alkali	0.53
C ₃ A	7.29

Tablo 3.1: CEM I 42.5 R tipi Portland çimentosu kimyasal bileşimi.

Bu çalışmada toplam 15 adet karışım oranı kullanılmıştır. Bu karışımlarda çimento oranı % 0 - 50 arasında değişmektedir. Kullanılan çimentonun TS EN 197-1 (2012) uyarınca kapsadığı basınç dayanım değerleri (MPa);

2 günlük > 10.0

28 günlük > 42.5 ve < 62.5

Priz başlangıç süresi (dk.) > 60 olarak verilmiştir.

Tablo 3.2: CEM I 42.5 R tipi Portland çimentosu bazı fiziksel özellikleri.

Priz Süresi (dk.)		Özgül Ağırlık (g/cm3)	Özgül Yüzey Alanı (cm²/g)	
Başlangıç	Bitiș	2.02	3755	
141	198	3.03		

3.1.2. Uçucu Kül

Deneysel çalışmaların tamamında Yumurtalık İlçesi Sugözü Köyü termik santralinden temin edilen uçucu kül kullanılmıştır. ASTM C-618 (2019) standardına göre F sınıfı uçucu kül olarak sınıflandırılmıştır. Kullanılan uçucu külün kimyasal özellikleri Tablo 3.3' de sunulmuştur.

Bileşenler	(% Ağırlıkça)
SiO ₂	54.60
Al ₂ O ₃	23.80
Fe ₂ O ₃	5.45
CaO	7.66
MgO	2.60
SO ₃	0.22
K ₂ O	0.97
Na ₂ O	0.47
Cl	0.002
Kızdırma kaybı	3.40
Özgül ağırlık (g/cm ³)	2.27
Özgül yüzey alanı (cm²/g)	2870

Tablo 3.3: Uçucu külün kimyasal özellikleri.

3.1.3. Silis Dumanı

Antalya-Etibank Ferrokrom Tesisi yan ürünü olarak elde edilen silis dumanı deneysel çalışmalarda kullanılmıştır. Özgül ağırlığı 2.29 kg/m³ olan silis dumanına ait kimyasal özellikler Tablo 3.4'te sunulmuştur.

Bileşenler	(% Ağırlıkça)
SiO ₂	87.63
Al ₂ O ₃	0.72
Fe ₂ O ₃	0.29
CaO	0.75
MgO	3.95
SO ₃	0.60
K ₂ O	
Na ₂ O	-
Cl	
Kızdırma kaybı	2.59

Tablo 3.4: Silis dumanının kimyasal özellikleri.

3.1.4. Kum

Bu çalışmada Limak Çimento Yenibosna Tesisleri'nden temin edilen TS EN 197-1 (2012) standartına uygun Rilem kumu kullanılmıştır. Deneysel çalışmalarda kullanılan kumun elek analizi sonuçları Tablo 3.5'te verilmiştir.

Elek açıklığı (mm)	Elek üzeri (%)
0,08	98 ±2
0,16	87 ± 2
0,5	67 ± 2
1,0	33 ± 2
1,6	9 ± 2
2,0	0

Tablo 3.5: Rilem kumu elek analizi.

3.1.5. Aerojel

Tez çalışmasında kullanılan silika bazlı aerojel, karışımlara % 0.25 ve 0.50 oranlarında katılmıştır. Malzeme, Alison Aerojel Hong Kong firmasından satın alma yoluyla temin edilmiştir. Firma, tarafımızdan talep edilen özellikler doğrultusunda malzemeyi üretmiştir. Aerojele ait özellikler Tablo 3.6' da sunulmuştır.

Özellik	Değer Aralığı
Yüzey alanı (m ² /g)	750-850
Gözenek çapı (nm)	8-10
Porozite (%)	> 95
Görünür Yoğunluk (kg/m³)	90-100
Yüzey grupları	OH-

Tablo 3.6: Deneylerde kullanılan aerojelin özellikleri.

3.1.6. Lityum Karbonat

Deneysel çalışmalarda aktivatör olarak birim ağırlığı 0.85 - 0.90 g/cm³ ve kimyasal bileşimi minimum % 99 olan lityum karbonat (Li₂CO₃) kullanılmıştır. Kontrol ve silis dumanlı karışımlar hariç deneysel programın tamamında lityum karbonat (Li₂CO₃), % 0.07 sabit oranında kullanılmıştır. Bu ürün Sorel Sanayi Ürünleri Tic. Ltd. Şti.'den satın alma yoluyla temin edilmiştir.

3.2. KULLANILAN KARIŞIM ORANLARI VE HARÇ ÜRETİMİ

Bu çalışma kapsamında; kum hariç tutularak üretilen çimento pastalarının priz süreleri, alkali ile aktive edilmiş ve edilmemiş, normal ve durabil kür ortamlarında kürlenen harçlardaki basınç dayanımı, eğilme dayanımı, termal iletkenlik ve porozite özelliklerinin tespit edilmesi amacıyla 15 farklı bileşime sahip karışım oranları hazırlanmıştır.

3.2.1. Uçucu Kül ve Silis Dumanı İlaveli Çimento Pastalarında Kullanılan Karışım Oranları

Deneysel programın yürütülmesi aşamasında öncelikle priz deneylerini gerçekleştirmek amacıyla çimento pastaları için karışım oranları belirlenmiştir. Çimento bileşenlerine ait karışım oranları Tablo 3.7'de % ağırlıkça, Tablo 3.8'de gram cinsinden sunulmuştur.

Karışım	Aerojel	Li ₂ CO ₃	Uçucu Kül	Silis Dumanı	Çimento	Su (% hac.)
1	-	-	-	-	100	30.6
2	-	-	-	10	90	31.6
3	-	0.07	30	-	70	31.6
4	-	0.07	40	-	60	31.6
5	-	0.07	50	-	50	32.0
6	0.25	-	-	-	100	32.2
7	0.25	-	-	10	90	31.0
8	0.25	0.07	30	-	70	32.0
9	0.25	0.07	40	-	60	32.2
10	0.25	0.07	50	-	50	32.6
11	0.50	-	-	-	100	33.4
12	0.50	-		10	90	32.0
13	0.50	0.07	30	- / /	70	32.6
14	0.50	0.07	40	- / .	60	33.0
15	0.50	0.07	50	-	50	33.4

Tablo 3.7: Çimento pasta bileşenlerine ait karışım oranları (% ağırlıkça).

Tablo 3.8: Çimento pasta bileşenleri ve su için kullanılan miktarlar (g).

Karışım	Aerojel	Li ₂ CO ₃	Uçucu Kül	Silis Dumanı	Çimento	Su (ml)
1	-	-	-	-	500	153
2	-	-	-	50	450	158
3	-	0.35	150	-	350	158
4	-	0.35	200	-	300	158
5	-	0.35	250	-	250	160
6	1.25	-	-	-	500	161
7	1.25	-	-	50	450	155
8	1.25	0.35	150	-	350	160
9	1.25	0.35	200	-	300	161
10	1.25	0.35	250	-	250	163
11	2.50	-	-	-	500	167
12	2.50	-	-	50	450	160
13	2.50	0.35	150	-	350	163
14	2.50	0.35	200	-	300	165
15	2.50	0.35	250	-	250	167

3.2.2. Uçucu Kül ve Silis Dumanı İlaveli Harçlarda Kullanılan Karışım Oranları

Çimento harç üretimi için gereken karışım oranları Tablo 3.9'da, karışım miktarları ise Tablo 3.10'da verilmiştir. Harç üretimleri TS EN 197-1 (2012) standardına göre 4x4x16 cm numune boyutlarında gerçekleştirilmiştir.

Karışım	Aerojel	Li ₂ CO ₃	Uçucu Kül	Silis Dumanı	Çimento	Su (% hac.)
1	-	-	-	-	100	50
2	-	-	-	10	90	50
3	-	0.07	30	-	70	50
4	-	0.07	40	-	60	50
5	-	0.07	50	-	50	50
6	0.25	-	-	-	100	50
7	0.25	-	-	10	90	50
8	0.25	0.07	30	-	70	50
9	0.25	0.07	40	-	60	50
10	0.25	0.07	50	-	50	50
11	0.50	-			100	50
12	0.50	-	-	10	90	50
13	0.50	0.07	30		70	50
14	0.50	0.07	40		60	50
15	0.50	0.07	50		50	50

Tablo 3.9: Çimento harçlarına ait karışım oranları (% ağırlıkça).

 Tablo 3.10: Çimento harçlarına ait karışım miktarları (g).

Karışım	Aerojel	Li ₂ CO ₃	Uçucu Kül	Silis Dumanı	Çimento	Kum	Su (ml)
1	-	-	-	-	450	1350	225
2	-	-	-	45	405	1350	225
3	-	0.32	135	-	315	1350	225
4	-	0.32	180	-	270	1350	225
5	-	0.32	225	-	225	1350	225
6	1.13	-	-	-	450	1350	225
7	1.13	-	-	45	405	1350	225
8	1.13	0.32	135	-	315	1350	225
9	1.13	0.32	180	-	270	1350	225
10	1.13	0.32	225	-	225	1350	225
11	2.25	-	-	-	450	1350	225
12	2.25	-	-	45	405	1350	225
13	2.25	0.32	135	-	315	1350	225
14	2.25	0.32	180	-	270	1350	225
15	2.25	0.32	225	-	225	1350	225

3.2.3. Uçucu Kül ve Silis Dumanı İlaveli Harç Üretimi

Basınç dayanımı, eğilme dayanımı, termal iletkenlik ve porozite deneylerinde kullanılmak üzere TS EN 197-1 (2012) standardına uygun olarak 15 farklı karışım oranında harç numuneleri üretilmiştir. Harçların termal iletkenlik katsayılarındaki değişimleri izlemek için harçlara % 0.25 ve 0.50 oranlarında silika aerojel ilave edilmiştir. Harçlarda alkali aktivasyonunun gerçekleşmesi için kullanılan lityum karbonat (Li₂CO₃) % 0.07 sabit oranında kullanılmıştır ve sadece uçucu kül içeren harçlara katılmıştır. Silis dumanının % 10 oranında harçlara ilave edilmesi nedeniyle bu harçlara aktivatör eklenmesine gerek görülmemiştir. Mineral katkı malzemesi olarak kullanılan uçucu kül, % 30, 40 ve 50 oranlarında harçlara ilave edilmiştir. Kullanılan diğer mineral katkı malzemesi olan silis dumanı ise % 10 sabit oranında harçlara katılmıştır. Kullanılan çimento bileşenlerinin toplamı 450 g'dır. Kullanılan harç karma suyu ise 225 ml sabit miktarında tutulmuştur.

Şekil 3.1: Deney programı.

3.3.1. Çimento Hamurunda Priz Süresi Tayini

Limak Çimento Yenibosna Tesisleri'nde bulunan laboratuvardaki Vicat cihazı kullanılarak çimento hamurlarının prize başlama ve sona erme süreleri tespit edilmiştir. Priz deneyleri TS EN 196-3 (2010) standardına uygun olarak yapılmışlardır. Vicat cihazı kullanılarak priz sürelerinin tayin edilebilmesi ve çimento hamurlarının normal kıvamının elde edilebilmesi için gereken su miktarı tespit edilir. Priz süreleri tayin edilirken deney 10 dakikalık aralıklarda tekrar edilir. Cihazın çalışma prensibi; cihazın batma iğnesi ile taban plakasının arasındaki mesafe 4±1 mm oluncaya kadar ki geçen sürenin ilk tespit anının priz başlangıcı, iğnenin 0,05 mm kadar çimento hamuruna batma süresinin priz sonu olarak ölçümüne dayanmaktadır.

3.3.2. Çimento Harçlarında Dayanım Deneyleri

3.3.2.1. Basınç Dayanımı Deneyleri

Üretilen çimento harç numunelerinin kür süreleri 112 gün olarak belirlenmiştir ve bu süre sonunda basınç dayanım testleri yapılmıştır. Testler TS EN 196-1 (2016) standardına uygun olarak yapılmıştır. Deneyler Sakarya Uygulamalı Bilimler Üniversitesi, Teknoloji Fakültesi İnşaat Mühendisliği Bölümü Yapı Malzemesi Laboratuvarındaki basınç cihazı kullanılarak yapılmıştır. Basınç dayanım cihazının numune ölçümlerinde kullanılan düşey yükleme hızı 2400±100 N/s 'dir.

3.3.2.2. Eğilmede Çekme Dayanımı Deneyleri

Üretilen çimento harç numunelerinin 112 günlük kür sürelerinin dolmasının ardından numuneler 3 noktalı eğilmede çekme dayanımı deneyine tabi tutulmuşlardır. Testler TS EN 196-1 (2016) standardına uygun şekilde yapılmıştır. Deneyler Sakarya Uygulamalı Bilimler Üniversitesi, Teknoloji Fakültesi İnşaat Mühendisliği Bölümü Yapı Malzemesi Laboratuvarındaki eğilme cihazı kullanılarak yapılmıştır. Eğilme dayanım cihazının numune ölçümlerinde 50±10 N/s yükleme hızı uygulanmıştır.

3.3.3. Çimento Harçlarında Dayanıklılık Deneyleri

3.3.3.1. MgSO4 Çözeltisi - Etüv Döngüsü Dayanıklılık Deneyleri

Üretilen çimento harç numuneleri dayanıklılık deney planının ilk aşaması olan MgSO₄ çözeltisinde kürleme işlemine tabi tutulmuşlardır. Bunun için prosedürel olarak ağırlıkça %13 MgSO₄ içeren çözelti kullanılmıştır. Deneyler TS EN 1367-2 (2010) standardına uygun olarak yapılmıştır. Numuneler çözelti içinde bir hafta bekletildikten sonra etüvde 105° C'de bir hafta süreyle tutulmuştur. Bu birer haftalık süreçlerin toplamı bir çevrim olarak kabul edilmiştir ve çevrim sayısı 8 olarak uygulanmıştır.

3.3.3.2. Suda Islanma - Havada Kuruma Döngüsü Dayanıklılık Deneyleri

Islanma - kuruma deneyleri için üretilen harç numuneleri bir hafta suda bekletildikten sonra bir hafta süreyle de laboratuvarda havada kurutulmuştur. Toplamda iki haftalık olan bu süreç bir çevrim olarak kabul edilmiştir ve çevrim sayısı 8 olarak uygulanmıştır.

3.3.4. Civa Porozimetresi Cihazı ile Porozimetre Analizi

Civa porozimetresi cihazı harç numunelerinin por dağılımlarını tespit etmek amacıyla kullanılmaktadır. Ölçüm yapılırken belli bir basınçta civa gibi reaksiyona girmeyen ve ıslatma niteliği olmayan bir sıvının porlardan geçişi hedeflenir. Por boyutlarının hesaplanması basıncın bir fonksiyonudur. Por analizlerinin tamamı Şekil 3.2'de gösterilen Micromeritics marka cihaz kullanılarak Afyonkarahisar'da bulunan Teknoloji Uygulama ve Araştırma Merkezi'nde (TUAM) gerçekleştirilmiştir Cihazın teknik özellikleri; düşük basınçta 50 psia, yüksek basınçta 60000 psia ile çalışılır, ayrıca cihaz 3nm - 360 mikro metre aralığındaki iç gözenekleri ölçebilir.

Şekil 3.2: Civa porozimetresi cihazı.

3.3.5. Termal İletkenlik Analizi

Termal iletkenlik cihazı termal iletkenlik katsayısının λ (W/mK) ölçümünde kullanılır. Bu cihaz katı yapıya sahip cisimler için uygundur. Cihazda ölçüm yapılabilmesi için numune boyutunun en kısa boyutunun 3 cm ve pürüzsüz bir yüzeyde olması yeterlidir. Deney cihazı Şekil 3.3'te gösterilmiştir. Ölçümü yapılacak malzemenin pürüzsüz olan yüzeyi cihaz sensörüne temas ettirilir, numunenin termal iletkenlik geçişinin ölçülmesi ile katsayı tespit edilmesi prensibine dayalı ölçüm yapılır. Termal iletkenlik analizlerinin tamamı Şekil 3.3.'de gösterilen C-Therm/ Tci marka termal iletkenlik cihazı kullanılarak Afyonkarahisar'da bulunan Teknoloji Uygulama ve Araştırma Merkezi'nde (TUAM) gerçekleştirilmiştir.

Şekil 3.3: Termal iletkenlik cihazı.

4. BULGULAR

4.1. PRİZ SÜRELERİNE AİT DENEY SONUÇLARI

Deneysel çalışmaların ilk aşaması olan fiziksel deney sonuçlarına ait değerler Tablo 4.1.'de verilmiştir. Çimento hamurlarının üretilmesi ile tespit edilen su ve priz değerleri, kullanılan katkı oranlarına bağlı olarak farklılık göstermiştir.

	No	Priz Başlangıç Süresi (dk.)	Priz Sona Erme Süresi (dk.)
	1	130	220
	2	180	260
	3	230	370
	4	250	380
	5	270	410
	6	130	230
	7	170	220
	8	200	300
	9	220	310
	10	220	340
	11	130	220
	12	160	230
	13	210	310
	14	210	320
_	15	230	320

Tablo 4.1: Çimento hamurlarının bazı fiziksel özellikleri.

Prize en erken başlayan numuneler sırasıyla 1, 6 ve 11 numaralı numunelerdir. Üç numunenin de priz başlangıç süresi 130 dakikadır. Bu numunelerin priz sona erme süreleri ise sırasıyla 220 dk., 230 dk. ve 220 dk.'dır.

Silis dumanı ilaveli numunelerin aerojel katkı oranı ile priz süreleri arasındaki ilişki Şekil 4.1.'de sunulmuştur. Silis dumanı katkılı 2, 7 ve 12 numaralı numuneler incelendiğinde, aerojel katkı oranının artmasıyla priz başlangıç süreleri sırasıyla 180, 170 ve 160 dk. olarak 10'ar dk. azalmaktadır. Aerojel katkısız 2 numaralı numune ile aerojel katkılı 7 ve 12

numaralı numunelerin referans numunesine göre prize başlama süreleri sırasıyla 50, 40 ve 30 dakika daha yüksektir. Aynı numunelerin priz sona erme süreleri sırasıyla 260, 220 ve 230 dk.'dır. Aerojel katkılı 7 ve 12 numaralı numunelerden, 12 numaralı numunenin priz sona erme süresi referans numunesinden 10 dk. daha uzundur. 7 numaralı numunenin priz sona erme süresi referans numunesi ile eşittir. Aerojel katkısız silis dumanı ilaveli 2 numaralı numunenin priz sona erme süresi ise referans numuneye göre 40 dk. daha uzundur. Silis dumanı ilaveli numunelerde, silis dumanı referans numunesine göre, priz başlangıç süresini uzatma yönünde bir etki yaparken numunelerdeki aerojel katkı oranının artmasıyla bu etki azalma eğilimi göstermiştir.

Şekil 4.1: Silis dumanı ilaveli pastaların priz süreleri.

Uçucu kül ilaveli numunelerin aerojel katkı oranı ile priz süreleri arasındaki ilişki Şekil 4.2.'de sunulmuştur. Uçucu küllü numunelerden 3, 4, 5 numaralı numuneler dikkate alındığında priz başlangıç süreleri 20 dk.'lık düzenli artış sergilemiştir. Uçucu kül ilavesinin artmasıyla ise priz sonlanma süreleri düzenli olmamakla birlikte artış göstermiştir. Priz sona erme süreleri sırasıyla 370, 380 ve 410 dk. olarak tespit edilmiştir. 8, 9, 10 numaralı numuneler dikkate alındığında; priz başlangıç süreleri 3, 4, 5 numaralı numunelere göre düşük seyretmiştir. Bu süreler sırasıyla 200, 220 ve 220 dk.'dır. Priz başlangıç sürelerine aerojel katkısının süreyi azaltma yönünde bir etkisi olduğu bu grupta gözlenmektedir. Priz sonlanma süreleri için de benzer durum söz konusudur. Uçucu kül katkısının artmasıyla priz süreleri uzamakla beraber 3, 4, 5 numaralı numunelere göre daha düşük priz sonlanma sürelerine

sahiptirler. Bu değerlendirmeden yola çıkarak priz sonlanma sürelerine de aerojel katkısının etkisi olduğu söylenebilir. Priz sonlanma değerleri sırasıyla 300, 310 ve 340 dk'dır. 13 - 15 numaralı numuneler dikkate alındığında 8 - 10 numunelerden elde edilen priz başlangıç ve sonuç değerleri ile yakın sonuçlar verdiği görülmüştür. Bu noktada aerojel oranının 0.25' den 0.50' ye yükseltilmesinin priz süreleri üzerinde önemli bir etkisinin olmadığı söylenebilir. Uçucu küllü numunelerde aktivasyon için kullanılan Li₂O₃ katkısının 0,07 olarak sabit tutulması nedeniyle priz süreleri üzerindeki etkisi dikkate alınmamıştır.

Şekil 4.2: Uçucu kül ilaveli pastaların priz süreleri.

4.2. DAYANIM DENEY SONUÇLARI

4.2.1. Basınç Dayanımı Deney Sonuçları

Harç numunelerinden tespit edilen basınç dayanım değerleri Tablo 4.2' de verilmiştir.

Basınç Dayanımı Deney Sonuçları (112 Gün)						
	Islanma	Islanma - Kuruma		gSO ₄	Suda l	Kürleme
Numune - No	Max Gerilme (MPa)	% Değişim	Max Gerilme (MPa)	% Değişim	Max Gerilme (MPa)	% Değişim
1	69.3	0.0	52.9	0.0	58.1	0.0
2	71.6	3.3	62.2	17.6	56.6	-2.6
3	56.4	-18.6	43.9	-17.0	47.8	-17.7
4	48.8	-29.6	38.4	-27.4	42.1	-27.5
5	40.1	-42.1	34.6	-34.6	34.0	-41.5
6	69.6	0.4	56.0	5.9	54.3	-6.5
7	71.5	3.2	65.9	24.6	57.8	-0.5
8	58.5	-15.6	45.1	-14.7	46.6	-19.8
9	49.8	-28.1	26.5	-49.9	39.5	-32.0
10	42.8	-38.2	34.3	-35.2	34.2	-41.1
11	70.4	1.6	53.8	1.7	59.7	2.8
12	74.5	7.5	65.7	24.2	40.4	-30.5
13	63.6	-8.2	43.6	-17.6	50.0	-13.9
14	34.8	-49.8	34.5	-34.8	40.4	-30.5
15	43.0	-38.0	30.9	-41.6	36.9	-36.5

Tablo 4.2: Çimento harçlarına ait basınç dayanımları.

Çimento harçlarından tespit edilen basınç dayanım sonuçları incelendiğinde; ilk olarak silis dumanı ilaveli 2, 7 ve 12 numaralı numuneler için, ıslanma - kuruma grubu numunelerdeki basınç dayanım değerlerinin tamamı referans değerinin (69.3 MPa) üstünde olduğu görülmektedir. Aerojel katkısının % 0.25'den % 0.50' ye çıkmasıyla basınç dayanımlarındaki artış % 7.5 olarak hesaplanmıştır. Bu artış % 0.50 aerojel katkılı ve silis dumanı ilaveli 12 numaralı numuneden elde edilmiştir. Bunun nedeni; silis dumanının boşluk doldurma yeteneğinin yüksek olmasının yanı sıra aerojel katkısının artmasıyla da oluşan yeni boşluklara, silis dumanının puzolanik reaksiyon ürünlerinin girişindeki artış olarak da ifade edilebilir.

Silis dumanı ilaveli 2, 7 ve 12 numaralı numuneler için, MgSO₄ ortamı incelendiğinde; katkısız % 0.25 ve 0.50 aerojel katkılı numuneler, referans numuneye göre sırasıyla % 17.6, % 24.6 ve % 24.2 basınç dayanım artışı göstermişlerdir. Burada aerojel katkı oranının % 0.25'ten 0.50' ye yükseltilmesinin basınç dayanımları üzerindeki etkisinin neredeyse olmadığı söylenebilir.

Silis dumanı katkılı numuneler irdelendiğinde; son olarak suda kürlenen numuneler için aerojel katkısız 2 numaralı numunenin basınç dayanımının 56.6 MPa olduğu bulunmuştur. Aerojel oranı % 0.25'den % 0.50' ye yükseldiğinde basınç dayanımları 57.8 MPa'dan 40.4 MPa'a düştüğü tespit edilmiştir. Bu gruptaki en yüksek değer aerojel ve silis dumanının bulunmadığı referans numunesinden (1 numaralı numune) elde edilmiştir. Silis dumanı ilaveli numunelerden 2 numaralı numunenin basınç dayanımı ise referansa göre % 2.6 oranında bir düşüş hesaplanmıştır. En belirgin düşüş ise % 30.5 oranı ile 12 numaralı numuneden elde edilmiştir. Bunun nedeni olarak aerojel katkısının numune içerisinde boşluk oluşturması söylenebilir.

Basınç dayanımlarını etkileyen parametreler irdelendiğinde, bunların silis dumanı ilavesi, Li₂CO₃ katkı oranı ve aerojel katkı oranıdır. Ancak silis dumanı ve Li₂CO₃ karışımlara sabit oranda katıldıkları için arojel katkı oranının numunelerin basınç dayanımlarına etkisi incelenmiştir. Silis dumanı ilaveli numunelerin basınç dayanımlarının aerojel içeriği ile değişimini gösteren grafik Şekil 4.3'de sunulmuştur.

Şekil 4.3 incelendiğinde silis dumanı ilaveli numunelerde suda kürleme hariç kendi içinde nispi artışlar göstererek lineer davranış sergilemiştir.

Şekil 4.3: Silis dumanı ilaveli harçlarda aerojel katkı oranı - basınç dayanımı ilişkisi.

Uçucu kül katkılı numuneler incelendiğinde; ilk olarak ıslanma - kuruma numunelerinde aerojel katkısız numuneler için basınç dayanımlarının 56.4 MPa'dan 40.1 MPa'a düştüğü anlaşılmaktadır. Buradaki 3, 4 ve 5 numaralı numunelerin basınç dayanımları referans numuneye göre sırasıyla % 18.6, 29.6 ve 42.1 oranında azaldığı hesaplanmıştır. Aerojel katkısız olan bu grupta uçucu kül yüzdesi arttıkça basınç dayanımlarının önemli oranda düştüğü belirlenmiştir. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) basınç dayanımlarının 58.5 MPa'dan 42.8 MPa'a düştüğü gözlenmiştir. Bu gruptaki basınç dayanım değerleri yine referans numuneye göre sırasıyla % 15.6, 28.1 ve 38.2 oranında azalmıştır. Aerojel katkısız gruba göre basınç dayanımlarındaki azalma daha azdır. Aerojel katkı oranı % 0.5 olan grupta (13, 14, 15 numaralı numuneler) basınç dayanımlarının 63.6 MPa'dan 43.0 MPa'a düştüğü belirlenmiştir. Bu gruptaki azalma değerleri sırasıyla % 8.2, 49.8, ve 38.0 olarak hesaplanmıştır. Genel anlamda ıslanma - kuruma grubu numuneler için uçucu kül ilavesinin % 30'dan % 50'ye arttırılmasıyla basınç dayanımlarında beklenen bir düşüş gerçekleştiği söylenebilir. Bu durum 14 numaralı numunede farklılık göstermiştir. Aerojel katkı oranının artmasıyla ıslanma - kuruma grubu numnunelerde yine 14 numaralı numune hariç basınç dayanımlarının arttığı söylenebilir.

İkinci olarak uçucu kül katkılı numunelerde MgSO₄ çözeltili ortamlarında kürlenen numunelerde aerojel katkısız numuneler için basınç dayanımlarının 43.9 MPa'dan 34.6 MPa'a düştüğü görülmüştür. Buradaki 3, 4 ve 5 numaralı numuneler için azalma değerleri % 17.0, 27.4 ve 34.6 olarak hesaplanmıştır. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) basınç dayanımlarının 45.1 MPa'dan 34.3 MPa'a düştüğü gözlenmiştir. Bu gruptaki azalma değerleri sırasıyla % 14.7, 49.9 ve 35.2 olarak hesaplanmıştır. Aerojel katkısız gruba göre basınç dayanımlarındaki azalma % 30 UK ilaveli numune hariç daha azdır. Aerojel katkı oranı % 0.50 olan grupta (13, 14, 15 numaralı numuneler) basınç dayanımlarının 43.6 MPa'dan 30.9 MPa'a düşüş göstermiştir. Bu gruptaki azalma değerleri sırasıyla % 17.6, 34.8 ve 41.6 olarak belirlenmiştir. % 0.50 aerojel katkılı gruptaki numunelerin (13, 14, 15 numaralı numuneler) basınç dayanım değerlerinde diğer gruplara göre 9 numaralı numune hariç daha fazla düştüğü tespit edilmiştir. MgSO₄ ortamındaki numuneler diğer kür ortamındaki numunelere göre daha dengesiz basınç dayanımı düşüşlerine sahip olduğu görülmüştür. En zararlı ortamda kürlenen numuneler olmaları nedeniyle basınç dayanım sonuçlarında düzensizlik tespit edilmesinin olağan olduğu sonucuna varılmıştır.

Uçucu kül katkılı numuneler irdelendiğinde; son olarak suda kürlenen numunelerde aerojel katkısız numuneler için basınç dayanımlarının 47.8 MPa'dan 34.0 MPa'a düştüğü görülmektedir. Buradaki 3, 4 ve 5 numaralı numuneler için azalma değerleri % 17.7, 27.5 ve 41.5 olarak hesaplanmıştır. Aerojel katkısız olan bu grupta uçucu kül yüzdesi arttıkça basınç dayanımlarının önemli oranda düştüğü tespit edilmiştir. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) basınç dayanımlarının 46.6 MPa'dan 34.2 MPa'a düştüğü tespit edilmiştir. Bu gruptaki azalma değerleri sırasıyla % 19.8, 32.0 ve 41.1 olarak hesaplanmıştır. Aerojel katkı oranı % 0.25 olan numunelerin için aerojel katkısız gruba göre basınç dayanımı değerlerinde azalma mevcuttur. Uçucu kül ilavesi % 50 olan 5 ve 10 numaralı numuneler) basınç dayanımlarının 50.0 MPa'dan 36.9 MPa'a düştüğü belirlenmiştir. Bu gruptaki azalma değerleri sırasıyla % 13.9, 30.5 ve 36.5 olarak hesaplanmıştır. Aerojel katkı oranının % 0.50 olduğu grupta; aerojel katkısız ve % 0.25 aerojel katkılı gruba göre basınç dayanım değerlerindeki azalman değerlerindeki azalmanın daha düşük olduğu görülmüştür. Diğer bir ifadeyle basınç dayanımlarının daha yüksek olduğu söylenebilir.

Referans numunenin kür ortamları incelendiğinde; en düşük basınç dayanım değerinin MgSO₄ ortamında kürlenen numuneden elde edildiği anlaşılmaktadır (52.9 MPa). Bütün gruplar içinde en düşük basınç dayanım değeri % 49.9 azalma ile MgSO₄ ortamında kürlenen 9 numaralı numuneden elde edilmiştir.

Gruplar içinde ise en düşük basınç dayanım değerleri MgSO₄ ortamında kürlenen numunelerden tespit edilmiştir. En yüksek değerler ise ıslanma - kuruma grubundan elde edilmiştir.

Uçucu kül ilaveli numunelerin basınç dayanımlarının aerojel içeriği ile değişimini gösteren grafik Şekil 4.4'de sunulmuştur. Şekil 4.4 incelendiğinde basınç dayanım değerleri, ıslanma - kuruma grubu numunelerde daha yüksek seyretmişken, MgSO₄ ve suda kürlenen numunelerde birbirine daha yakın olduğu görülmüştür.

Uçucu kül ilaveli numunelerde, Li₂CO₃ sabit oranda tutulduğu için numunelerin basınç dayanımını etkileyen parametreler uçucu kül ilave oranı ve aerojel katkı oranı üzerinden değerlendirilmiştir.

Şekil 4.4: Uçucu kül ilaveli harçlarda aerojel katkı oranı - basınç dayanımı ilişkisi.

4.2.2. Eğilmede Çekme Dayanımı Deney Sonuçları

Bütün harç numunelerinden tespit edilen eğilmede çekme dayanımı değerleri Tablo 4.3' de verilmiştir. İlk olarak; referans ve silis dumanı ilaveli numuneler (1, 2, 7, 12 numaralı numuneler) incelendiğinde; ıslanma - kuruma grubu numunelerdeki eğilmede çekme dayanımı değerlerinin tamamı 2 nolu numune hariç referans değerinin (MPa) altında olduğu görülmektedir. Aerojel katkısının % 0.25' den % 0.50' ye çıkmasıyla çekme dayanımları referans numunesine göre sırasıyla % 5.3 ve % 36.3 oranlarında azaldığı belirlenmiştir. Islanma - kuruma numunelerinde aerojel katkısındaki artış, numunelerin çekme dayanım değerlerinde düşüşe sebep olmuştur. MgSO4 ortamında kürlenen referans ve silis dumanı ilaveli numuneler (1, 2, 7, 12 numaralı numuneler) incelendiğinde; aerojel katkısız ve % 0.25 aerojel katkılı 2 ve 7 numaralı numuneler referans numunenin eğilmede çekme dayanımı değeri ile eşdeğer sonuçlar verirken, % 0.50 aerojel katkılı 12 numaralı numune ise % 35 oranında azalma göstermiştir.

Eğilmede Çekme Dayanımı Deney Sonuçları (112 Gün)										
Numune - No	Islanma - Kuruma		MgSO ₄		Suda Kürleme					
	Max Gerilme (MPa)	% Değişim	Max Gerilme (MPa)	% Değişim	Max Gerilme (MPa)	% Değişim				
1	11.3	0.0	10.0	0.0	7.0	0.0				
2	11.3	0.0	10.0	0.0	6.9	-1.4				
3	10.7	-5.3	9.1	-9.0	6.7	-4.3				
4	8.4	-25.7	7.7	-23.0	6.5	-7.1				
5	8.2	-27.4	7.3	-27.0	5.7	-18.6				
6	9.2	-18.6	7.7	-23.0	5.7	-18.6				
7	10.7	-5.3	10.1	1.0	5.6	-20.0				
8	10.8	-4.4	9.5	-5.0	7.3	4.3				
9	10.1	-10.6	9.5	-5.0	6.9	-1.4				
10	7.2	-36.3	7.4	-26.0	6.8	-2.9				
11	9.0	-20.4	7.4	-26.0	7.5	7.1				
12	7.2	-36.3	6.5	-35.0	7.5	7.1				
13	8.4	-25.7	8.2	-18.0	7.5	7.1				
14	8.5	-24.8	7.7	-23.0	7.8	11.4				
15	8.5	-24.8	7.4	-26.0	7.8	11.4				

Tablo 4.3: Çimento harçlarına ait eğilmede çekme dayanımları.

Son olarak; suda kürlenen referans ve silis dumanı ilaveli numuneler (1, 2, 7, 12 numaralı numuneler) için, aerojel katkısız numunelerden ölçülen eğilme dayanımının 6.9 MPa olduğu bulunmuştur ve referans numunenin eğilmede çekme dayanım değeri ile çok yakın bir değere sahiptir. Aerojel oranı % 0.25'de ise eğilme dayanım kaybı % 20 olarak tespit edilmiştir. Aerojel oranı % 0.50'ye yükseldiğinde ise eğilme dayanım değeri referans numunenin değerine göre % 7.1 oranında bir yükselme görülmüştür. Bu gruptaki en yüksek değer aerojel katkı oranının % 0.50 olduğu 12 numaralı numuneden elde edilmiştir.

Şekil 4.5: Silis dumanı ilaveli harçlarda aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi.

Uçucu kül katkılı numuneler incelendiğinde; ilk olarak ıslanma - kuruma numunelerinde aerojel katkısız numuneler için uçucu kül oranı arttıkçe çekme dayanımlarının 10.7 MPa'dan 8.2 MPa'a düştüğü görülmektedir. Buradaki 3, 4 ve 5 numaralı numuneler için azalma değerleri % 5.3, 25.7 ve 27.4 olarak hesaplanmıştır. Aerojel katkısız olan bu grupta uçucu kül yüzdesi arttıkça eğilme dayanımlarının düştüğü belirlenmiştir. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) yine uçucu kül oranının artmasıyla çekme dayanımlarının 10.8 MPa'dan 7.2 MPa'a düştüğü gözlenmiştir. Bu gruptaki azalma değerleri sırasıyla % 4.4, 10.6 ve 36.3 olarak hesaplanmıştır. Aerojel katkı oranı % 0.50 olan grupta (13, 14, 15 numaralı numuneler) çekme dayanımları birbirlerine çok yakın olup 8.4 - 8.5 MPa

aralığındadır. Bu numuneler için referans numuneye göre eğilmede çekme dayanımlarındaki azalma oranları % 25.7, 24.8 ve 24.8'dir.

İkinci olarak uçucu kül katkılı numunelerde MgSO₄ çözeltili ortamlarında kürlenen numuneler incelendiğinde, aerojel katkısız numuneler için (3, 4, 5 numaralı numuneler) çekme dayanımlarının sırasıyla 9.1 MPa, 7.7 MPa ve 7.3 MPa olduğu görülmüştür. Aynı numuneler için çekme dayanımlarındaki azalma değerleri % 9, % 23 ve % 27 olarak hesaplanmıştır. Aerojel katkısız olan bu grupta uçucu kül yüzdesi arttıkça çekme dayanımlarının düştüğü belirlenmiştir. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) çekme dayanımlarının 9.5 MPa'dan 7.4 MPa'a düştüğü gözlenmiştir. Bu gruptaki azalma değerleri sırasıyla % 5.5 ve 26 olarak hesaplanmıştır. Aerojel katkı oranı % 0.5 olan grupta ise (13, 14, 15 numaralı numuneler) çekme dayanımları 8.2 MPa'dan 7.4 MPa'a düşmüştür. Bu gruptaki azalma değerleri sırasıyla % 18, % 23 ve % 26 olarak hesaplanmıştır. Bu sonuçlardan hareketle bu grupta aerojel katkı oranının artmasıyla eğilmede çekme dayanımlarında azalmalar olduğu anlaşılmaktadır. MgSO₄ ortamında kürlenen bütün numunelerin çekme dayanım değerleri referans numunesinin altında kalmıştır.

Şekil 4.6: Uçucu kül ilaveli harçlarda aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi.

Uçucu kül katkılı numuneler irdelendiğinde; son olarak suda kürlenen numunelerde aerojel katkısız numuneler için (3, 4, 5) eğilmede çekme dayanımlarının 6.7 MPa'dan 5.7 MPa'a düştüğü görülmüştür. Yine aynı numuneler için referans numunesine göre azalma değerleri % 4.3, 7.1 ve 18.6 olarak hesaplanmıştır. Aerojel katkısız olan bu grupta uçucu kül yüzdesi arttıkça çekme dayanımlarının azaldığı belirlenmiştir. Aerojel katkı oranı % 0.25 olan grupta (8, 9, 10 numaralı numuneler) çekme dayanımlarının 7.3 MPa'dan 6.8 MPa'a düştüğü gözlenmiştir. 8 numaralı numunenin çekme dayanım değeri referans numunenin % 4.3 üzerindedir. Bu gruptaki 9 ve 10 numaralı numuneler için azalma değerleri sırasıyla % 1.4 ve 2.9 olarak bulunmuştur. Bu grupta da uçucu kül miktarı arttıkça çekme dayanımlarında nispi azalmalar meydana geldiği anlaşılmaktadır. Aerojel katkı oranı % 0.5 olan gruptaki 13, 14, 15 numaralı numunelerin çekme dayanımları referans numunesinin üzerindedir. Çekme dayanımlarındaki bu artışlar sırasıyla % 7.1, 11.4 ve 11.4 olarak hesaplanmıştır. Uçucu kül katkılı harçlardan elde edilen eğilmede çekme dayanımı sonuçları bu üç kür grubu için değerlendirildiğinde; referans numunesine göre artış değerleri sağlandığı grup % 0.50 aerojel katkı oranına sahip suda kürlenen numune grubu olduğu tespit edilmiştir.

Şekil 4.7: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen harçların aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi.

Şekil 4.8: Uçucu kül ilaveli MgSO4 ortamında kürlenen harçların aerojel katkı oranı - eğilme dayanımı ilişkisi.

Şekil 4.9: Uçucu kül ilaveli suda kürlenen harçların aerojel katkı oranı - eğilmede çekme dayanımı ilişkisi.

4.3. TERMAL İLETKENLİK ANALİZ SONUÇLARI

Islanma - kuruma, MgSO₄ çözeltisi ve su ortamlarında kürlenen aerojel katkılı ve katkısız, silis dumanı ve uçucu kül ilaveli numunelerin termal iletkenlik katsayılarına ait sonuçlar Tablo 4.4'de sunulmuştur. Silis dumanı ilaveli numunelerin aerojel katkı oranı- termal iletkenlik katsayısı ilişkisini gösteren grafik Şekil 4.10'da, uçucu kül ilaveli numunelerin bütün kür ortamları için aerojel katkı oranı, termal iletkenlik ilişkisini gösteren grafik ise Şekil 4.11'de sunulmuştur.

Termal İletkenlik Katsayısı Sonuçları λ (W/mK)										
Numune No	Islanma - Kuruma		MgSO ₄		Suda Kürleme					
	λ	% Değişim	λ	% Değişim	λ	% Değişim				
1	1.880	0.0	1.572	0.0	2.518	0.0				
2	1.458	-22.4	1.492	-5.1	1.953	-22.4				
3	1.965	4.5	1.340	-14.8	2.070	-17.8				
4	1.758	-6.5	1.572	0.0	2.179	-13.5				
5	1.769	-5.9	1.451	-7.7	2.128	-15.5				
6	2.289	21.8	1.609	2.4	1.736	-31.1				
7	1.923	2.3	1.458	-7.3	1.733	-31.2				
8	1.569	-16.5	1.330	-15.4	1.654	-34.3				
9	1.500	-20.2	1.268	-19.3	1.433	-43.1				
10	1.456	-22.6	1.340	-14.8	1.726	-31.5				
11	2.088	11.1	1.486	-5.5	2.104	-16.4				
12	1.868	-0.6	1.458	-7.3	2.080	-17.4				
13	2.053	9.2	1.638	4.2	1.577	-37.4				
14	1.379	-26.6	1.567	-0.3	1.408	-44.1				
15	1.372	-27.0	1.529	-2.7	1.493	-40.7				

Tablo 4.4: Çimento harçlarına ait termal iletkenlik katsayısı sonuçları.

İlk olarak, referans ve silis dumanı ilaveli numuneler (1,2,7,12) irdelendiğinde; Islanma kuruma grubu için; aerojel katkısız 2 numaralı numune % 22,4 oranı ile en düşük termal iletkenlik katsayısı değerine (1,458 W/mK) sahiptir. 0.25 aerojel katkılı 7 numaralı numuneden elde edilen değer referans numunenin %2,3 üzerindedir. Islanma - kuruma grubunda aerojel katkısının silis dumanı ilaveli harçlarda önemli bir termal iletkenlik azalmasına neden olduğu söylenemez. Silis dumanının basınç dayanımı üzerindeki olumlu etkisi burada dikkate alınarak; dayanım artışı nedeniyle termal iletkenliklerdeki düşüşlerin önemli oranlarda olmasının beklenmediği söylenebilir.

İkinci olarak, MgSO₄ ortamında kürlenen referans ve silis dumanı ilaveli numuneler incelendiğinde bütün termal iletkenlik sonuçlarının referans numunenin altında kaldığı tespit edilmiştir. En fazla düşüş % 0.25 ve 0.50 aerojel katkılı numunelerden % 7.3 olarak ölçülmüştür. Bu grup için aerojel katkı oranının, termal iletkenlik üzerinde önemli bir azaltıcı etkisinin olmadığı söylenebilir. Silis dumanının basınç dayanımı üzerindeki olumlu etkisi burada da kendini göstermektedir.

Şekil 4.10: Silis dumanı ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi.

Son olarak, suda kürlenen referans ve silis dumanlı numuneler dikkate alındığında en fazla düşüş % 31.2 oranı ile 0.25 aerojel katkılı 7 numaralı numuneden tespit edilmiştir. Durabil ortamlarda silis dumanının basınç dayanım deney sonuçları, su ortamına göre daha yüksektir. Buradan hareketle, suda kürlenen silis dumanı ilaveli numunelerden elde edilen termal iletkenlik düşüşlerinin çok daha belirgin olması beklenen bir durumdur. Aerojel katkı oranı % 0.25 olan 7 numaralı numune için bu durum gerçekleşirken, % 0.50 aerojel katkı oranına sahip 12 numaralı numune için farklılık göstermiştir.

Şekil 4.11: Uçucu kül ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi.

Islanma - kuruma ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranı termal iletkenlik katsayısı ilişkisi Şekil 4.12'de sunulmuştur. Referans ve uçucu kül ilave edilmiş numuneler, ıslanma - kuruma kür ortamı için dikkate alınarak incelendiğinde; aerojel katkısız gruptaki (1, 3, 4, 5 numaralı numuneler) en fazla termal iletkenlik düşüşü % 40 uçucu kül ilaveli 4 numaralı numuneden % 6,5 olarak ölçülmüştür. Bununla birlikte, % 50 uçucu kül ilaveli numuneden tespit edilen düşüş de % 5,9 olarak tespit edilmiştir. % 0.25 aerojel katkılı grupta (8, 9, 10 numaralı numuneler) en fazla düşüş % 50 uçucu kül ilavesi içeren numuneden % 22.6 olarak ölçülmüştür. % 0.50 aerojel içeren grupta ise (13, 14, 15) en fazla düşüş % 50 uçucu kül içeren numuneden % 27 olarak ölçülmüştür. Bu değer, ıslanma - kuruma grubundaki en düşük termal iletkenlik katsayısı değeri sahip 15 numaralı numuneden ölçülmüştür (λ =1.372 W/mK). Islanma - kuruma grubu numunelerde, % 0.25 ve 0.50 aerojel katkılı uçucu kül içermeyen numuneler (6 ve 11) referans numunesine göre sırasıyla % 21.8 ve % 11.1 oranında artış göstermişlerdir. Bu artışların uçucu kül ilavesiz numunelerden tespit edildiği göz önüne alındığında; uçucu kül ilavesinin artmasıyla termal iletkenliklerdeki bu artışların baskılandığı ve çok düştüğü ifade edilebilir. Ayrıca ıslanma - kuruma grubu uçucu kül ilaveli numuneler için, aerojel katkılı numunelerin aerojel katkısız numunelere göre daha düşük termal iletkenlik katsayısı sonuçları verdiği açıktır.

Şekil 4.12: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi.

MgSO₄ ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi Şekil 4.13'de sunulmuştur. Referans ve uçucu kül ilave edilmiş numuneler; MgSO₄ ortamı için incelendiğinde; aerojel katkısız gruptaki (1, 3, 4, 5 numaralı numuneler) en fazla termal iletkenlik düşüşü % 14.8 ile % 30 uçucu kül ilaveli 3 numaralı numuneden ölçülmüştür. % 0.25 aerojel katkılı grupta (8, 9, 10) en fazla düşüş % 40 uçucu kül katkısı içeren 9 numaralı numuneden % 19.3 olarak ölçülmüştür. % 0.50 aerojel içeren grupta ise (13, 14, 15) en fazla düşüş % 50 uçucu kül içeren numuneden % 2.7 olarak ölçülmüştür. MgSO₄ grubundaki en fazla düşüş % 0.25 aerojel katkı oranında ve % 40 uçucu kül içeren 9 numaralı numuneden tespit edilmiştir (λ =1.268 W/mK). MgSO₄ grubu için en düşük termak iletkenlik katsayısı değerleri % 0.25 aerojel katkılı numunelerden elde edilmiştir.

Şekil 4.13: Uçucu kül ilaveli MgSO4 ortamında kürlenen numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi.

Suda kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranı - termal iletkenlik ilişkisi Şekil 4.14'de sunulmuştur. Referans ve uçucu kül ilave edilmiş numuneler; suda kürleme ortamı için incelendiğinde; aerojel katkısız gruptaki (1, 3, 4, 5 numaralı numuneler) en fazla termal iletkenlik düşüşü % 0.50 aerojel grubundaki % 40 uçucu kül ilaveli 14 numaralı numuneden % 44.1 olarak belirlenmiştir. Bu değer λ =1.408 W/mK'dir. Termal iletkenliklerdeki ikinci en düşük değer % 0.25 aerojel katkılı ve % 40 uçucu kül ilaveli 9 numaralı numuneden ölçülmüştür. Bütün kür grupları içinde en düşük termal iletkenlik değerleri su grubu numunelerden elde edilmiştir. Termal iletkenliğin en düşük olduğu gruplar sırasıyla % 0.50 aerojel, % 0.25 aerojel ve % 0 aerojel katkılı gruplar olduğu görülmektedir.

4.4. CİVA POROZİMETRESİ ANALİZ SONUÇLARI

4.4.1. Civa Porozimetresi Por Çapı - Kümülatif Por Hacmi - Termal İletkenlik İlişkisi

Silis dumanı ilaveli harçlarda; ıslanma - kuruma grubu numuneler için por çapı - kümülatif por hacmi ilişkisini gösteren eğriler Şekil 4.15'de sunulmuştur. Islanma - kuruma grubu numuneler içinde kümülatif por hacim değerleri en düşük olan 2 numaralı numuneye ait termal iletkenlik katsayısı bu gruptaki en düşük değerdir (1.458 W/mK). 7 ve 12 numaralı numunelere ait kümülatif por hacim eğrileri yakın seyretmekte olup termal iletkenlik katsayısı sonuçları da (1.923 ve 1.868 W/mK) birbirine yakındır. Referans numunesi ise 10nm civarında en düşük termal iletkenlik katsayısı değerine sahip 2 numaralı numune eğrisi ile çok yakın bir davranış sergilemişken 100 nm den sonraki por çaplarında daha yüksek por hacim sonuçları vermiştir.

Şekil 4.15: Silis dumanı ilaveli ıslanma - kuruma ortamında kürlenen numunelerin por çapı - kümülatif por hacmi ilişkisi.

Silis dumanı ilaveli harçlarda; MgSO₄ grubu numuneler için por çapı - kümülatif por hacmi ilişkisi Şekil 4.16'da sunulmuştur. MgSO₄ grubu numunelerden termal iletkenlik katsayısı değerleri birbiri ile aynı olan 7 ve 12 numaralı numuneler (1.458W/mK) birbirine yakın eğrisel davranış sergilerken 2 numaralı numunenin de termal iletkenlik katsayısı (1.492 W/mK) diğer silis dumanı ilaveli numunelere çok yakın olması nedeniyle benzer bir davranış sergilemiştir.

Şekil 4.16: Silis dumanı ilaveli MgSO₄ ortamında kürlenen numunelerin por çapı-kümülatif por hacmi ilişkisi.

Silis dumanı ilaveli harçlarda; suda kürlenen numuneler için por çapı-kümülatif por hacmi ilişkisini gösteren eğriler Şekil 4.17'de sunulmuştur. Suda kürlenen numuneler için termal iletkenlik katsayısı en düşük olarak tespit edilen 7 numaralı numune (1.733 W/mK) kümülatif por dağılım eğrisinin 10 nm ye kadar olan bölümünde en yüksek por hacim bölgesine sahiptir. 10-100 nm aralığında da bu durum sürmektedir. Eğrinin geri kalan bölümünde ise genel olarak yine termal iletkenlik katsayısı en yüksek olan 1 numaralı referans numunesinin (2.518 W/mK) en düşük kümülatif por hacim değerlerine sahip olduğu söylenebilir. Diğer iki numune olan 2 ve 12 numaralı numunelere ait termal iletkenlik katsayısı değerleri (1.953 ve

2.080 W/mK) birbirine yakın olup eğrisel davranışlarının da birbirine çok yakın olduğu görülmektedir.

Şekil 4.17: Silis dumanlı numunelerin suda kürlenen por çapı - kümülatif por hacmi ilişkisi.

Uçucu kül ilaveli harçlarda; ıslanma - kuruma grubu numuneler için por çapı-kümülatif por hacmi ilişkisini gösteren grafikler Şekil 4.18'de sunulmuştur. Şekil 4.19'da aerojel katkısız 1, 3, 4 ve 5 numaralı numunelere ait por çapı - kümülatif por hacmi ilişkisi; Şekil 4.20' da % 0.25 aerojel katkılı 6, 8, 9 ve 10 numaralı numunelere ait por çapı-kümülatif por hacmi ilişkisi; Şekil 4.21'de % 0.50 aerojel katkılı 11, 13, 14 ve 15 numaralı numunelere ait por çapı -kümülatif por çapı -kümülatif por hacmi ilişkisini gösteren eğriler verilmiştir.

Şekil 4.18: Uçucu kül ilaveli ıslanma - kuruma grubu numunelerin por çapı - kümülatif por hacmi ilişkisi.

Aerojel katkısız numunelerde 3 ve 4 numaralı numuneler çok benzer davranış sergilemiş iken 5 numaralı numune farklı davranış göstermiştir. Bu numunelerin termal iletkenlik katsayısı değerleri sırasıyla 1.965 W/mK, 1.758 W/mK ve 1.769 W/mK'dır. Burada, 5 numaralı numune en fazla uçucu kül ilavesine sahip numune olup kümülatif por hacminin diğer numunelerden yüksek olması beklenen bir durum olup grafikten de anlaşılmaktadır.

Şekil 4.19: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen aerojel katkısız numunelerin por çapı - kümülatif por hacmi ilişkisi.

Islanma - kuruma grubu numuneler içinde % 0.25 aerojel katkılı 8, 9, 10 numaralı numunelerin uçucu kül ilavesi arttıkça termal iletkenlik değerlerinde düşme tespit edilmiştir. Bu numunelerin termal iletkenlik katsayısı değerleri sırasıyla 1.569 W/mK, 1.500 W/mK ve 1.456 W/mK olarak ölçülmüştür. Eğrisel davranış bakımından da bu durum desteklenmektedir. Aerojel katkı oranının artmasıyla termal iletkenlikte meydana gelen düşüş eğilimi % 0.50 aerojel katkılı grupta da aynıdır.

Şekil 4.20: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen % 0.25 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi.

Islanma - kuruma grubu numuneler içinde % 0.50 aerojel katkılı 13, 14 ve 15 numaralı numuneler 0 - 10 nm ye kadar uçucu kül katkısının artmasıyla kümülatif por hacim değerleri de artmıştır. 100 nm de ise bütün numuneler birbirlerine çok yakın kümülatif por hacim değerleri vermişlerdir. Bu numunelerin termal iletkenlik katsayıları sırasıyla 2.053 W/mK, 1.379 W/mK ve 1.372 W/mK'tir. 13 numaralı numunenin termal iletkenlik değerinin 14 ve 15 numralı numunelerden yüksek olmasının sebebi, 0 - 100 nm aralığındaki % 0.50 aerojel katkılı numuneler için por hacmi düştükçe termal iletkenliğin artması olarak açıklanabilir.

Şekil 4.21: Uçucu kül ilaveli ıslanma - kuruma ortamında kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi.

Uçucu kül ilavesiz 1, 6 ve 11 numaralı numuneler dikkate alındığında, aerojel katkılı 6 ve 11 numaralı numunelerin eğrisel davranışlarının çok benzer olduğu ifade edilebilir. 0 - 100 nm aralığında % 0.25 ve 0.50 aerojel katkılı 6 ve 11 numaralı numuneler, 1 numaralı referans numunesinin üzerinde seyrederken, 100 nm'den sonra ise altında seyretmektedir.

Uçucu kül ilaveli harçlarda; MgSO₄ ortamında kürlenen numune grubu için por çapıkümülatif por hacmi ilişkisini gösteren eğriler Şekil 4.22'de sunulmuştur. Şekil 4.23'de aerojel katkısız 1, 3, 4 ve 5 numaralı numunelere ait por çapı - kümülatif por hacmi ilişkisi; Şekil 4.24' de % 0.25 aerojel katkılı 6, 8, 9 ve 10 numaralı numunelere ait por çapı-kümülatif por hacmi ilişkisi; Şekil 4.25'de % 0.50 aerojel katkılı 11, 13, 14 ve 15 numaralı numunelere ait por çapı-kümülatif por hacmi ilişkisini gösteren eğriler verilmiştir.

MgSO₄ ortamında kürlenen numuneler için Şekil 4.22'de görülen kümülatif por hacim eğrilerinde 6 numaralı numune dışında bir ayrışma tespit edilememiştir.

Şekil 4.22: Uçucu kül ilaveli MgSO4 ortamında kürlenen numunelerin por çapı - kümülatif por hacmi ilişkisi.

MgSO₄ ortamında kürlenen uçucu küllü aerojel katkısız harçların Şekil 4.23'deki por çapıkümülatif hacim ilişkisi incelendiğinde; 4 ve 5 numaralı numuneler 1000 nm' ye kadar hemen hemen birlikte hareket ederken 1000 nm'den sonra kısmen farklı davranış sergilemişlerdir. 3 numaralı numune ise diğer uçucu kül ilaveli 4 ve 5 numaralı numunelere göre beklenildiği gibi daha düşük kümülatif por hacmine sahiptir.

Şekil 4.23: Uçucu kül ilaveli MgSO4 ortamında kürlenen aerojel katkısız numunelerin por çapı - kümülatif por hacmi ilişkisi.

MgSO₄ ortamında kürlenen uçucu küllü % 0.25 aerojel katkılı harçların Şekil 4.24'deki por çapı - kümülatif hacim ilişkisi değerlendirildiğinde; uçucu kül ilavesinin artmasıyla, genel anlamda 8, 9 ve 10 numaralı numunelerin kümülatif por hacim değerlerinin artmış olduğu söylenebilir. MgSO₄ ortamında kürlenen numunelerde termal iletkenlik değişimlerinin en yüksek olduğu numuneler, % 0.25 aerojel katkı oranına sahip olan numuneler olduğu görülmüştür. Diğer bir ifadeyle 8, 9, 10 numaralı numunelerden ölçülen termal iletkenlik değerleri de bu numunelerin kümülatif por hacimlerinin orantılı olarak artmasıyla yine orantılı olarak düşmektedir.

Şekil 4.24: Uçucu kül ilaveli MgSO4 ortamında kürlenen % 0.25 aerojel katkılı numunelerin por çapı kümülatif por hacmi ilişkisi.

MgSO₄ ortamında kürlenen uçucu küllü % 0.50 aerojel katkılı harçların Şekil 4.25'deki por çapı - kümülatif hacim ilişkisi değerlendirildiğinde; uçucu kül ilavesinin artmasıyla, genel anlamda 13, 14 ve 15 numaralı numunelerin kümülatif por hacim değerlerinin artmış olduğu söylenebilir.

MgSO₄ ortamında kürlenen 1, 6, 11 numaralı numuneler incelendiğinde; % 0.25 aerojel katkısının % 0.50'ye yükseltilmesi ile 0 - 10nm ve 10 - 100 nm aralığında kümülatif por hacminin de arttığı görülmektedir. Aerojel katkı oranının % 0'dan % 0.50' ye arttırılmasıyla numunelerin kümülatif por hacimlerinin de orantılı olarak artması beklenirken, MgSO₄ ortamı durabil bir ortam olması sebebiyle bu durum tam anlamıyla gerçekleşememektedir. Diğer bir ifadeyle, numunelerdeki aerojel katkı oranının artmasıyla 1, 6 ve 11 numaralı numnunelerde kümülatif por hacim değerleri aynı oranda artmamıştır. Bu durum MgSO₄ ortamının numunelerde düzensizlik oluşturması ile açıklanabilir.

Şekil 4.25: Uçucu kül ilaveli MgSO₄ ortamında kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif por hacmi ilişkisi.

Uçucu kül ilaveli harçlarda; suda kürlenen numuneler için kümülatif por hacim eğrileri Şekil 4.26'da sunulmuştur. Şekil 4.27'de aerojel katkısız 1, 3, 4 ve 5 numaralı numunelere ait por çapı - kümülatif por hacmi ilişkisi; Şekil 4.28' de % 0.25 aerojel katkılı 1, 6, 8, 9 ve 10 numaralı numunelere ait por çapı - kümülatif por hacmi ilişkisi; Şekil 4.29'da % 0.50 aerojel katkılı 1, 11, 13, 14 ve 15 numaralı numunelere ait por çapı - kümülatif por çapı - kümülatif por hacmi ilişkisini gösteren eğriler verilmiştir.

Suda kürlenen uçucu küllü aerojel katkısız harçların Şekil 4.27'deki por çapı - kümülatif hacim ilişkisi incelendiğinde; 3, 4, 5 numaralı numunelerin kümülatif por hacim eğrilerinin davranışlarının çok yakın olduğu grafikten görülmektedir. Bu sonuçla orantılı olarak termal iletkenlik değerlerinin de aerojel katkısız bu grup için de çok yakın olduğu tespit edilmiştir.

Şekil 4.27: Uçucu kül ilaveli suda kürlenen aerojel katkısız numunelerin por çapı - kümülatif hacmi ilişkisi.

Suda kürlenen uçucu küllü % 0.25 aerojel içeren harçların Şekil 4.28'deki por çapı - kümülatif hacim ilişkisi incelendiğinde; 8, 9, 10 numaralı numunelerin kümülatif por hacim eğrilerinin davranışlarının çok yakın olduğu yine grafikten görülmektedir. Bu sonuçla orantılı olarak termal iletkenlik değerlerinin de % 0.25 aerojel katkılı bu grup için de yakın olduğu tespit edilmiştir.

Şekil 4.28: Uçucu kül ilaveli suda kürlenen % 0.25 aerojel katkılı numunelerin por çapı - kümülatif hacmi ilişkisi.

Suda kürlenen uçucu küllü % 0.50 aerojel içeren harçların Şekil 4.29'daki por çapı - kümülatif hacim ilişkisi incelendiğinde; 13 numaralı numunenin 0 - 100 nm aralığında 14 ve 15 numaralı numunelerden kümülatif por davranışı açısından ayrılmakla birlikte yine de çok benzerdir. 14 ve 15 numaralı numuneler ise birbiriyle tamamen uyumlu eğrisel davranış sergilemişlerdir. Bu sonuçlarla orantılı olarak termal iletkenlik değerlerinin de % 0.50 aerojel katkılı bu grup için de çok yakın olduğu belirlenmiştir.

Şekil 4.29: Uçucu kül ilaveli suda kürlenen % 0.50 aerojel katkılı numunelerin por çapı - kümülatif hacmi ilişkisi.

Suda kürlenen uçucu kül ilavesiz 1, 6 ve 11 numaralı numuneler dikkate alındığında, aerojel katkılı 6 ve 11 numaralı numunelerin eğrisel davranışlarının çok benzer olduğu ifade edilebilir. 1 numaralı referans numunesi ise aerojel katkısı olmaması nedeniyle kümülatif por dağılımı açısından beklenildiği gibi daha düşük seyrettiği söylenebilir. Bu durum termal iletkenlik değerlerine de yansımıştır. Diğer bir deyişle; 1 numaralı referans numunesinden en düşük kümülatif por hacim değeri tespit edilirken aynı numuneden en yüksek termal iletkenlik değeri elde edilmiştir.

4.4.2. Civa Porozimetresi Por Türü - Kür Ortamı İlişkisi

Tez çalışmasında üç grup por türü kullanılmıştır. Bunlar; jel por, kapiler por ve makro porlardır. Jel por < 10 nm aralığı, kapiler por 10 - 10000 nm aralığı, makro por ise 10000 nm üzeri olarak ifade edilmektedir (Cho,2012).

4.4.2.1. Silis Dumanı İlaveli Harçların Por Türü - Kür Ortamı İlişkisi

Silis dumanı ilaveli harçların kür ortamlarına göre por seviyeleri; jel por, kapiler por ve makro por seviyelerinde sırasıyla Tablo 4.5, 4.6 ve 4.7' de sunulmuştur.

Numune No	Islanma - Kuruma	MgSO ₄	Su
1	12.17	3.46	5.77
2	18.95	13.25	11.06
7	15.20	11.97	23.90
12	15.52	12.87	16.64

Tablo 4.5: Silis dumanı ilaveli harçların jel por seviyeleri (%).

Tablo 4.6: Silis dumanı ilaveli harçların kapiler por seviyeleri (%).

Numune No	Islanma - Kuruma	MgSO ₄	Su
1	64.93	86.03	81.86
2	71.49	77.80	74.88
7	74.10	78.86	62.64
12	74.51	76.07	70.14

Tablo 4.7: Silis dumanı ilaveli harçların makro por seviyeleri (%).

Numune No	Islanma - Kuruma	MgSO ₄	Su	
1	22.91	10.51	12.37	
2	9.56	8.95	14.06	
7	10.70	9.18	13.46	
12	9.97	11.06	13.22	

4.4.2.2. Uçucu Kül ilaveli Harçların Por Türü - Kür Ortamı İlişkisi

Uçucu kül ilaveli harçların kür ortamlarına göre por seviyeleri; jel por, kapiler por ve makro por seviyelerinde sırasıyla Tablo 4.8, 4.9 ve 4.10' da verilmiştir.

Numune No	Islanma - Kuruma	MgSO ₄	Su
1	12.17	3.46	5.77
3	10.29	7.92	17.80
4	9.57	9.45	21.92
5	7.62	8.91	24.48
6	4.94	5.90	4.60
8	12.07	10.47	12.78
9	11.97	13.69	21.42
10	10.08	10.94	23.01
11	6.77	2.68	6.11
13	8.10	9.16	11.24
14	12.10	7.75	21.15
15	6.11	10.03	24.24

Tablo 4.8: Uçucu kül ilaveli harçların jel por seviyeleri (%).

Tablo 4.9: Uçucu kül ilaveli harçların kapiler por seviyeleri (%).

Numune No	Islanma - Kuruma	MgSO ₄	Su
1	64.93	86.03	81.86
3	78.15	84.36	70.39
4	82.50	77.92	68.49
5	79.17	83.27	66.33
6	83.12	79.53	83.50
8	79.79	81.25	74.06
9	73.81	77.50	68.70
10	82.22	80.15	68.97
11	80.07	83.50	81.92
13	80.02	80.99	80.22
14	77.65	84.58	68.21
15	83.30	79.86	67.82

Numune No	Islanma - Kuruma	MgSO ₄	Su
1	22.91	10.51	12.37
3	11.56	7.72	11.82
4	7.93	12.63	9.59
5	13.21	7.82	9.19
6	11.94	14.57	11.90
8	8.15	8.28	13.16
9	14.23	8.81	9.88
10	7.70	8.91	8.02
11	13.16	13.82	11.96
13	11.88	9.84	8.54
14	10.25	7.67	9.64
15	10.60	10.11	7.94

Tablo 4.10: Uçucu kül ilaveli harçların makro por seviyeleri (%).

4.4.3. Civa Porozimetresi Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi

Civa porozimetresi deney sonuçları aerojel içeriği ve por türü ilişkilendirilerek değerlendirilmiştir. Tez çalışması kapsamında kullanılan silis dumanı ve uçucu kül ilaveli harçlardaki aerojel içeriği ile por türü ilişkileri ayrı başlıklar altında sunulmuştur.

4.4.3.1. Silis Dumanı İlaveli Harçlarda Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi

Bütün kür koşulları için aerojel oranları ile jel por hacim dağılımları arasındaki ilişki Şekil 4.30'da sunulmuştur. Aerojel katkı oranı ile ilişkilendirilen jel por, kapiler por ve makro por seviyeleri sunulan grafiklerde % olarak ifade edilmiştir. Numunelerin por seviyeleri arasındaki değişimler de aynı şekilde % olarak verilmiştir.

Kür ortamlarına göre jel por seviyeleri irdelendiğinde; ıslanma - kuruma grubundaki numunelerde; 1 numaralı referans numunesi ile silis dumanı ilaveli aerojel katkısız 2 numaralı numune arasındaki jel por farkının % 6.8 arttığı tespit edilmiştir. Islanma - kuruma grubundaki en yüksek jel por seviyesine 2 numaralı numune sahiptir ve en düşük termal iletkenlik katsayısı değeri de bu numuneden ölçülmüştür (1.458 W/mK). % 0.25 aerojel katkı oranına sahip 7 numaralı numunenin jel por farkı, 2 nolu numuneye göre % 3.8 düşerken %

0.50 aerojel içeren 12 numaralı numune için bu değer 2 numaralı numuneye göre % 3.4 azalmıştır.

MgSO₄ ortamında kürlenen numunelerin jel por hacim dağılımları incelendiğinde; 2 numaralı numunenin jel por farkının 1 numaralı numuneye göre % 9.8 arttığı görülmüştür. Bu kür ortamında tespit edilen en düşük iki termal iletkenlik katsayısı değerleri 2 ve 7 numaralı numunelerden sırasıyla 1.492 ve 1.458 W/mK olarak elde edilmiştir. Bu iki numunenin jel por seviyeleri de birbirine oldukça yakındır. % 0.25 aerojel katkılı 7 numaralı numunenin jel por seviyesi 2 numaralı numuneye göre % 1.3 düşmüştür. % 0.50 aerojel katkı oranı için ise 12 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numunenin jel por seviyesi 2 numaralı numuneye göre % 0.4 düşmüştür. 7 ve 12 numaralı numunelerin termal iletkenlik katsayısı değerleri (1.458 W/mK) aynı olup jel por seviyeleri de birbirine çok yakındır.

Şekil 4.30: Silis dumanı ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.

Suda kürlenen numunelerin aerojel oranlarına göre jel por hacim değişimleri incelendiğinde; silis dumanı ilave edilmesiyle 2 numaralı numunenin referans numunesine göre jel por farkı % 5.3 yükselmiştir. Aerojel ilavesi ile % 0.25 aerojel katkı oranı için 7 numaralı numunenin jel por seviyesi 2 numaralı numuneye göre % 12.8 yükselmiştir. Bu katkı oranı için 7 numaralı numunenin termal iletkenlik katsayısı suda kürlenen numuneler için en düşük seviyededir (1.733 W/mK). Katkı oranı % 0.50 ye yükseltilince 12 numaralı numunenin jelpor farkı da 2 numaralı numuneye göre % 7.3 yükselmiştir. Silis dumanı ilaveli numunelerde genel olarak jel por seviyelerinin 1 numaralı referans numuneye göre arttğı belirlenmiştir.

Harç numunelerinin bütün kür koşulları için aerojel oranları ile kapiler por hacim dağılımları arasındaki ilişki Şekil 4.31'de gösterilmiştir. Islanma - kuruma grubu numuneler incelendiğinde ise elde edilen bulgular şu şekildedir: 2 numaralı numunenin 1 numaralı referans numunesine göre kapiler por farkının % 6.6 arttığı tespit edilmiştir. Bu grupta, silis dumanı ilaveli numuneler içinde en düşük kapiler por seviyesine sahip olan 2 numaralı numunedir ve en düşük termal iletkenlik katsayısı değeri (1.458 W/mK) de bu numuneden ölçülmüştür. % 0.25 aerojel katkılı 7 numaralı numunenin kapiler por değişimi, 2 numaralı numuneye göre % 2.6 yükselirken % 0.50 aerojel oranı için (12 numaralı numune) bu artış 2 numaralı numuneye göre % 3 olmuştur. 7 ve 12 numaralı numunelerin termal iletkenlik değerleri (1.923 ve 1.868 W/mK) çok yakın olup kapiler por seviyeleri arasındaki fark da çok azdır (% 0.4).

MgSO₄ ortamında kürlenen numunelerin kapiler por değişimleri incelendiğinde; 2 numaralı numunenin referans numunesine göre kapiler por değeri % 8.2 azalmıştır. Bu kür ortamında tespit edilen en düşük iki termal iletkenlik katsayısı ölçümleri 7 ve 12 numaralı numunelerden 1.458 W/mK olarak elde edilmiştir. Bu iki numunenin kapiler por değerleri de birbirine çok yakındır. % 0.25 aerojel katkılı 7 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numunenin kapiler por değeri 2 numaralı numuneye göre % 1.7 azalmıştır. Bu gruptaki 2, 7 ve 12 numaralı numunelerin kapiler por değerleri birbirine çok yakın olup termal iletkenlik katsayısı değerleri de aynı şekilde birbirine çok yakındır.

Şekil 4.31: Silis dumanı ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.

Suda kürlenen numunelerin aerojel oranlarına göre % kapiler por değişimleri incelendiğinde; silis dumanı ilave edilmesiyle 2 numaralı numunenin kapiler por değeri referans numunesine göre % 7 azalmıştır. % 0.25 aerojel katkı oranına sahip 7 numaralı numunenin kapiler por seviyesi 2 numaralı numuneye göre % 12.2 azalmıştır. 7 numaralı numunenin termal iletkenlik değeri suda kürlenen numuneler arasında en düşük termal iletkenlik katsayısına (1.733 W/mK) sahiptir. Aerojel katkı oranı % 0.50 ye yükseltilince 12 numaralı numunenin kapiler por seviyesi 2 numaralı numuneye göre % 4.7 azalmıştır. Suda kürlenen 7 ve 12 numaralı numunelerin termal iletkenlik değerleri ve kapiler por dağılımları beklenilen değerlerin biraz dışında gerçekleşmiştir. Örneğin 7 numaralı numunenin aerojel katkılı olması sebebiyle 2 numaralı numuneden daha yüksek kapiler por değerine sahip olması gerekirdi. Bu durum termal iletkenlik sonuçlarına da yansımıştır, ancak termal iletkenlik değeri düşük olan 7 numaralı numunenin kapiler por değerinin de düşük olması numune hazırlanma hatasından kaynaklanmış olabilir.

Harç numunelerinin bütün kür koşulları için aerojel oranları ile makro por hacim dağılımları arasındaki ilişki Şekil 4.32'de gösterilmiştir.

Şekil 4.32: Silis dumanı ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi.

Islanma - kuruma grubu numuneler incelendiğinde karışımlara silis dumanı ilave edilmesiyle, 2 numaralı numune makro por seviyesinin 1 numaralı referans numunesine göre % 13.4 azaldığı tespit edilmiştir. Termal iletkenlik katsayısının en düşük ölçüldüğü numune de 2 numaralı numunedir (1.458W/mK). 7 numaralı numune ve 12 numaralı numunenin 2 numaralı numuneye kıyasla makro por seviyelerinde kısmi bir artışa sahip oldukları anlaşılmaktadır. Makro por boşlukları birbirine yakın olan 7 ve 12 numaralı aerojel katkılı numunelerin termal iletkenlik katsayıları (1.923 ve 1.868 W/mK) da birbirine oldukça yakındır.

MgSO₄ ortamında kürlenen numunelerin makro por dağılımları incelendiğinde; 2 numaralı numunenin 1 numaralı referans numunesine göre makro por seviyesi % 1.6 oranında azalmıştır. 7 ve 12 numaralı numunelerin aerojel katkısız 2 numaralı numuneye göre makro por seviyeleri sırasıyla % 0.23 ve % 2.11 oranında azalmıştır. Bu gruptaki numunelerde aerojel katkı oranının artmasıyla makro por seviyeleri de artmış olup termal iletkenlik seviyeleri de buna bağlı olarak kısmi düşme eğilimleri göstermiştir.

Suda kürlenen numuneler incelendiğinde; 2 numaralı numunenin 1 numaralı referans numunesine göre makro por seviyesi % 1.7 artmıştır. Aerojel ilavesi ile % 0.25 aerojel katkı oranı için (7 numaralı numune) makro por seviyesi 2 numaralı numuneye göre % 0,6 azalmıştır. 7 numaralı numunenin termal iletkenlik katsayısı su grubu için en düşük seviyededir (1.733 W/mK). Aerojel katkı oranı % 0.50 ye yükseltilince 12 numaralı numune makro por oranı 2 numaralı numuneye göre % 0.9 azalmıştır. Su grubu içindeki makro por seviyelerinde pek önemli bir fark olmadığı açıktır. Suda kürlenen numunelerde aerojel oranı % 0.25'ten % 0.50'ye yükseltildiğinde termal iletkenlik katsayısı değerinde de 1.733 W/mK' den 2.080 W/mK' a varan bir artış olmuştur.

Şekil 4.30, Şekil 4.31 ve Şekil 4.32' de gösterilen jel por, kapiler por ve makro por seviyeleri ile kür ortamları arasındaki ilişki incelendiğinde, durabil ortamlar olan ıslanma - kuruma ve MgSO₄ ortamlarında kürlenen numunelerin benzer davranış sergilediği, suda kürlenen numunelerin ise farklı bir davranış gösterdiği tespit edilmiştir.

4.4.3.2. Uçucu Kül İlaveli Harçlarda Aerojel Katkı Oranı - Por Türü - Termal İletkenlik İlişkisi

Bütün kür koşulları için aerojel katkı oranları ile jel por dağılımları arasındaki ilişki Şekil 4.33'de sunulmuştur.

Şekil 4.33: Uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.

Islanma - kuruma ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile jel por hacim dağılımları arasındaki ilişki Şekil 4.34'de sunulmuştur. Islanma - kuruma grubundaki aerojel katkısız (3, 4, 5 numaralı) ve % 0.25 aerojel katkılı (8, 9, 10 numaralı) numunelerde uçucu kül ilave oranı arttıkça jel por seviyesi düştüğü görülmektedir. Aerojel katkısı % 0.50 olduğunda ise, 14 numaralı numune hariç jel por seviyesi düşmektedir. Bu numunede jel por seviyesinin yüksek olduğu görülmüştür. Bu numune ıslanma - kuruma grubundaki 15 numaralı numuneyle birlikte en düşük termal iletkenlik katsayısına sahip iki numuneden biridir (1.379 W/mK, 1.372 W/mK). Ayrıca 14 numaralı numune % 44.1 oranı ile bütün kür grubu numuneler içinde en yüksek termal iletkenlik düşüşüne sahip olan numune iken 15 numaralı numunenin termal iletkenlik değerindeki azalma ise % 40.7'dir.

Şekil 4.34: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.

MgSO₄ ortamında kürlenen numunelerin aerojel katkı oranları ile jel por hacim dağılımları arasındaki ilişki Şekil 4.35'de verilmiştir. MgSO₄ ortamında kürlenen numunelerin jelpor seviyeleri incelendiğinde elde edilen bulgular şu şekildedir: Uçucu kül ilavesinin artmasıyla tüm aerojel gruplarında referans numunesine göre jel por hacminde artış meydana gelmiştir. Ancak aerojel katkı oranının % 0.25 seviyesinde kullanılmasıyla jel por seviyesi de maksimum düzeye ulaşmıştır. En düşlük termal iletkenlik katsayıları da % 0.25 aerojel katkı oranına sahip bu numunelerden elde edilmiştir (9 numaralı numune, 1.268 W/mK). MgSO4 ortamında en yüksek jel por seviyesi (9 numaralı numune), en düşük termal iletkenlik değerini işaret etmektedir.

Şekil 4.35: MgSO₄ ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - jel por hacmi ilişkisi.

Suda kürlenen numunelerin aerojel katkı oranları ile jel por dağılımları arasındaki ilişki Şekil 4.36'da sunulmuştur. Suda kürlenen numunelerin aerojel oranlarına göre jel por değişimleri incelendiğinde şu bulgulara ulaşılmıştır: Aerojel katkısız 3, 4, 5 numaralı numuneler, aerojel katkı oranı % 0.25 olan 8, 9, 10 numaralı numuneler ve % 0.50 aerojel katkılı 13, 14, 15 numaralı numuneler kendi grupları içinde incelendiğinde; uçucu kül ilave oranı arttıkça jelpor seviyelerinin de arttığı tespit edilmiştir. Bu durum suda kürlenen numunelerde diğer kür ortamlarında kürlenen numunelere göre daha düzenli seyretmiştir. Suda kürlenen numunelerde % 0.25 ve % 0.50 aerojel katkılı numuneler için % 40 uçucu kül ilave edilen 9 ve 14 numaralı numunelerde termal iletkenlik değerlerindeki azalmanın dikkat çekici olduğu söylenebilir.

Uçucu kül katkısız olan 1, 6 ve 11 numaralı numuneler incelendiğinde; ıslanma - kuruma ve suda kürlenen numunelerin davranışlarının benzer olduğu tespit edilmiştir. Islanma - kuruma ortamında ve suda kürlenen % 0.25 aerojel katkılı 6 numaralı numunelerde 1 numaralı referans numunesine göre bir düşüş tespit edilirken, aerojel oranının % 0.50'e yükseltilmesi ile 11 numaralı numunelerin jel por seviyelerinde ise yükselme tespit edilmiştir. MgSO₄ ortamında kürlenen numunelerde ise durum, su ve ıslanma - kuruma grubu numunelere göre tam tersi seyretmiştir. Yine aynı kür ortamındaki % 0.25 aerojel katkılı 6 numaralı numunenin jel por seviyesi 1 numaralı numuneye göre yüksek seyretmiştir.

Uçucu kül ilaveli, nıumunelerin bütün kür koşulları için aerojel oranları ile kapiler por dağılımları arasındaki ilişki Şekil 4.37'de sunulmuştur.

Şekil 4.37: Uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.

Islanma - kuruma ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile kapiler por hacmi dağılımları arasındaki ilişki Şekil 4.38'de sunulmuştur. Islanma - kuruma grubundaki aerojel katkısız (3, 4, 5 numaralı) numunelerde uçucu kül ilavesinin artmasıyla kapiler boşluk seviyelerinde düzenli bir artış gözlenmemiştir. % 40 uçucu kül ilaveli 4 numaralı numunenin kapiler boşluk seviyesinin 3 ve 5 numaralı numunelerin kapiler boşluk seviyelerinden daha yüksek olduğu tespit edilmiştir. Durabil ortam olmasına rağmen 4 numaralı numune, beklenildiği şekilde en düşük termal iletkenlik değerine (1.758 W/mK) sahiptir.

Aerojel katkı oranı % 0.25 olan 8, 9, 10 numaralı numuneler incelendiğinde; uçucu kül ilavesinin artmasıyla kapiler boşluk seviyelerinde düzenli bir artış olmamıştır. Bununla birlikte; % 0.25 aerojel katkı oranı için % 50 uçucu kül ilaveli 10 numaralı numune en yüksek kapiler boşluk seviyesine sahiptir ve en düşük termal iletkenlik değeri de yine bu numuneden ölçülmüştür (1.456 W/mK). Aerojel katkı oranı % 0.50 olan 13, 14, 15 numaralı numuneler için de benzer durum söz konusudur. En yüksek kapiler por seviyesi % 50 uçucu kül ilaveli

15 numaralı numuneden elde edilmiş olup, en düşük termal iletkenlik değeri 1.372 W/mK olarak yine aynı numuneden ölçülmüştür.

Islanma - kuruma grubu numunelerin aerojel katkı oranı arttıkça uçucu kül ilavesinin aynı olduğu numunelerde kapiler por seviyesinin arttığı söylenebilir. Buna bağlı olarak termal iletkenlik değelerinin de azaldığı ifade edilebilir.

Şekil 4.38: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.

MgSO₄ ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile kapiler por hacim dağılımları arasındaki ilişki Şekil 4.39'da verilmiştir. Herhangi bir gruptaki kapiler por seviyelerinin daha yüksek olduğu net olarak söylenemez. MgSO₄ ortamının zararlı ortam oluşu göz önüne alındığında elde edilen por seviyeleri ve termal iletkenlik değerlerinin çok düzenli olması beklenemez. Bununla birlikte, aerojel katkı oranının % 0.25'ten % 0.50'ye arttırılması durumunda por seviyelerinde nispi bir artış tespit edilmiştir. Bu artışa rağmen aerojel katkı oranı % 0.50 olan grupta termal iletkenlik değerleri daha yüksektir. Bunun nedeni, MgSO₄'ün harç yapısını aşındırarak aerojeli ortam dışına sürüklemesi ve açığa çıkan boşlukların aerojel katkısız gibi davranması ile açıklanabilir.

Şekil 4.39: MgSO₄ ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.

Suda kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile kapiler por hacim dağılımları arasındaki ilişki Şekil 4.40'da sunulmuştur. Suda kürlenen numunelerin aerojel katkı oranlarına göre kapiler por değişimleri incelendiğinde; aerojel katkı oranının artmasıyla % 30 uçucu kül ilaveli 3, 8, 13 numaralı numuneler için kapiler por seviyelerinin arttığı tespit edilmiştir. Ancak % 0.25 ve % 0.50 aerojel katkılı numunelerde uçucu kül ilavesinin % 40'dan % 50' ye yükseltilmesi ile % kapiler por seviyelerindeki değişimin lineere yakın olduğu belirlenmiştir. Termal iletkenlik seviyelerindeki azalmalar incelendiğinde aerojel katkı oranının artmasıyla termal iletkenlik ler düşüş olduğu tespit edilmiştir. En belirgin termal iletkenlik ler düşüş olduğu tespit edilmiştir. En belirgin termal iletkenlik düşüşü % 0.25 aeojel katkılı grup için % 40 uçucu kül ilaveli 9 numaralı numunede % 43.1 olarak bulunmuştur. Aerojel katkı oranı % 0.50 olan grup için ise en belirgin düşüşler % 40 ve % 50 uçucu kül ilaveli 14 ve 15 numaralı numunelerden sırasıyla % 44.1 ve % 40.7 olarak hesaplanmıştır. Bu düşüşler % kapiler por seviyesi olarak % 67 - 69 aralığına tekabül etmektedir.

Suda kürlenen numunelerden elde edilen kapiler boşluk seviyeleri ve termal iletkenlik değerleri arasındaki ilişki irdelendiğinde, net olarak şu sonuca varılabilir. % 40 ve % 50 uçucu

kül ilaveli numunelerde kapiler por seviyeleri bütün aerojel katkı oranları (% 0, % 0.25, % 0.50) için birbirine çok yakındır. Aerojel katkılı numunelerde boşluklardaki ısı izolasyonu, aerojel katkısız numunelere göre daha net ve yüksektir. Diğer bir deyişle, aerojelli boşluktaki izolasyon seviyesi aerojelsiz eşdeğer boşluktaki izolasyon seviyesine göre daha üstündür.

Şekil 4.40: Suda kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - kapiler por hacmi ilişkisi.

Bütün kür koşulları için aerojel katkı oranları ile makro por hacim dağılımları arasındaki ilişki Şekil 4.41'de sunulmuştur.

Şekil 4.41: Uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi.

Islanma - kuruma ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile makro por hacim dağılımları arasındaki ilişki Şekil 4.42'de sunulmuştur. Islanma - kuruma grubu numunelerde aerojel katkısız 3, 4, 5 numaralı numunelerde uçucu kül ilavesinin artmasıyla makro por seviyeleri düzenli bir artış sergilememiştir. Bununla birlikte, % 30 ve % 50 uçucu kül ilavesi arasında makro por artışıyla termal iletkenliğin düştüğü ifade edilebilir. % 0.25 aerojel katkı oranı için uçucu kül ilavesinin artmasıyla makro por seviyelerinde tam bir düzensizlik söz konusudur. Bununla birlikte, termal iletkenlik değerlerinde düzenli bir düşüş sergilemiştir. Burada da aerojelin ısıyı hapsetme etkisi ortaya çıkmaktadır. Aerojel katkı oranı % 0.50 olan numuneler için; uçucu kül ilavesiyle birlikte makro por seviyelerinde önemli bir azalma görülmemiştir. Ancak % 40 ve % 50 uçukül ilave oranına sahip 14 ve 15 numaralı numunelerin termal iletkenlik katsayıları birbirlerine çok yakın olup sırasıyla 1.379 W/mK ve 1.372 W/mK'dır. Bu iki numunenin % makro por seviyeleri de % 10.3 ve % 10.6 olması dikkat çekicidir.

Şekil 4.42: Islanma - kuruma ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi.

MgSO₄ ortamında kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile makro por dağılımları arasındaki ilişki Şekil 4.43'de sunulmuştur. MgSO₄ grubu numunelerde makro por seviyeleri incelendiğinde elde edilen bulgular şu şekildedir: Aerojel katkısız 3, 4, 5 numaralı numunelerde makro por seviyeleri uçucu kül ilavesiyle düzensiz seyretmiştir. MgSO₄ ortamında kürlenen numuneler içinde, termal iletkenlik değerlerinin en düşük olduğu numuneler, % 0.25 aerojel katkılı ve uçucu kül ilaveli 8, 9, 10 numaralı numunelerdir. Bu numunelerin makro por seviyeleri de birbirlerine oldukça yakındır. Aerojel katkı oranı % 0.50 olan numunelerin termal iletkenlik değerleri diğer numunelerin üzerindedir. Bu durum, MgSO₄ ortamının zararlı olması ve harç yapısını bozarak kütle ve aerojel kaybına sebep olması ile açıklanabilir.

Şekil 4.43: MgSO₄ ortamında kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi.

Suda kürlenen uçucu kül ilaveli numunelerin aerojel katkı oranları ile makro por hacim dağılımları arasındaki ilişki Şekil 4.44'de sunulmuştur. Suda kürlenen numunelerin aerojel katkı oranlarına göre makro por seviyeleri incelendiğinde; aerojel katkı oranları % 0.25 ve 0.50 olan 9 ve 14 numaralı numunelerin makro por seviyelerinin sırasıyla % 9.9 ve % 9.6 olduğu bulunmuştur. Bu iki numunenin termal iletkenlik katsayıları da birbirlerine yakın olup 1.433 ve 1.408 W/mK'dır ve bu gruptaki en düşük termal iletkenlik değerleridir. Bu numunelerin termal iletkenlik değerlerindeki azalma ise referans numunesine göre sırasıyla % 43.1 ve % 44.1 olarak hesaplanmıştır. Bu sonuçlardan hareketle, suda kürlenen numuneler içinde en düşük termal iletkenlik değerlerinin % 40 uçucu kül ilaveli 9 ve 14 numaralı numunelerden elde edilmiştir. Genel anlamda uçucu kül ilavesiyle makro por seviyelerinin bütün numuneler için düzenli olarak değişmediği ifade edilebilir. Makro por seviyelerinin artmasıyla termal iletkenlik değerlerinin düşmesi üzerine bir korelasyon kurulamamıştır. Ancak aerojel oranının % 0.50 olduğu gruptaki 13, 14, 15 numaralı numunelerin termal iletkenlik değerlerinin düşmesi üzerine bir korelasyon kurulamamıştır.

Referans numunesinin ıslanma - kuruma, MgSO₄ ve suda olmak üzere bütün kür ortamları değerlendirildiğinde; termal iletkenlik katsayıları 1.880, 1.572 ve 2.518 W/mK olarak sırasıyla ölçülmüştür. En düşük termal iletkenlik katsayısı MgSO₄ ortamında kürlenen referans numunesinden elde edilmiştir.

Şekil 4.44: Suda kürlenen uçucu kül ilaveli harçların aerojel katkı oranı - makro por hacmi ilişkisi.

5. TARTIŞMA VE SONUÇ

Tez çalışması süresince elde edilen bulguların değerlendirilmesi sonucunda aşağıdaki sonuçlara ulaşılmıştır.

5.1. PRİZ SÜRESİ SONUÇLARININ DEĞERLENDİRİLMESİ

Farklı karışım oranları kullanılarak üretilen çimento hamurlarından tespit edilen priz başlangıç ve sona erme süreleri farklı sonuçlar sergilemiştir.

En erken priz başlangıç süresini veren numuneler 130 dk. ile 1, 6 ve 11 numaralı olanlardır. Aynı numunelerin priz sona erme süreleri sırasıyla 220 dk., 230 dk. ve 220 dk.'dır.

Aerojel katkısız 1, 6 ve 11 numaralı numunelerin priz başlangıç sürelerinde aerojel katkı oranı artışı ile herhangi bir değişim tespit edilememiştir. Priz sona erme sürelerinde ise % 0.50 aerojel katkı oranı için 11 numaralı numunede 10 dk.'lık bir artış tespit edilmiştir.

Silis dumanı ilaveli 2, 7, 12 numaralı numuneler dikkate alındığında, aerojel katkı oranının artmasıyla priz başlangıç süreleri sırasıyla 180, 170 ve 160 dk. olarak 10'ar dk. düşmektedir. 7 ve 12 numaralı numuneler arasındaki fark aerojel katkı oranının % 0.25'ten % 0.50'ye arttırılmasıyla 220 dk.'den 230 dk.'ya yükselmiştir. Aerojel katkısız 2 numaralı numunenin priz sona erme süresi aerojel katkılı numunelerden daha yüksektir.

Aerojel katkısız uçucu kül ilaveli 3, 4, 5 numaralı numuneler dikkate alındığında; uçucu kül ilavesinin artmasıyla priz başlangıç sürelerinin sırasıyla 230, 250, 270 dk. olduğu ve 20'şer dk. düzenli olarak uzadığı görülmektedir. % 0.25 aerojel katkılı 8, 9, 10 numaralı numunelerde uçucu kül ilavesinin artmasıyla priz başlangıç sürelerinin sırasıyla 200, 220 ve 220 dk. olarak ölçülmüştür. % 0.50 aerojel katkılı 13, 14, 15 numaralı numunelerde uçucu kül ilavesinin artmasıyla numuneler 20 dk.'lık priz artışı söz konusu olmaktadır.

Uçucu kül ilaveli numunelerin priz sona erme süreleri irdelendiğinde, aerojel katkısız numunelerin uçucu kül ilavesinin artmasıyla priz sona erme sürelerinin uzadığı görülmektedir.

3, 4, 5 numaralı numunelerin priz sona erme süreleri sırasıyla 370, 380, 410 dk. olarak ölçülmüştür ve bu numuneler arasındaki priz artışı birbirlerine göre sırasıyla 10 ve 30 dk.'dır. % 0.25 aerojel katkılı 8, 9, 10 numaralı numunelerin priz sona erme sürelerindeki artış yine birbirlerine göre sırasıyla 10 ve 30 dk. olarak tespit edilmiştir. % 0.50 aerojel katkılı 13, 14, 15 numaralı numunelerde ise 13 numaralı numuneye göre sadece 10 dk.'lık bir priz artışı söz konusu olmuştur.

5.2. BASINÇ DAYANIMI DENEY SONUÇLARININ DEĞERLENDİRİLMESİ

Üretilen harç numunelerinin basınç dayanım deney sonuçları incelendiğinde; ıslanma - kuruma grubu numunelerde aerojel katkısız ve % 0.25 aerojel katkılı ve silis dumanı ilaveli 2 ile 7 numaralı numunelerden elde edilen basınç dayanım sonuçlarının birbirine çok yakın olduğu görülmektedir. Bu değerler sırasıyla 71.6 ve 71.5 MPa'dır. Aerojel katkı oranı % 0.50' ye yükseltildiğinde silis dumanı ilaveli 12 numaralı numunenin basınç dayanımı da 74.5 MPa' a yükselmiştir. Bu sonuç ıslanma - kuruma grubu numunelerde referans numuneye göre elde edilen en yüksek sonuçtur ve % 7.5 oranında bir artışa tekabül etmektedir. Numunelerin basınç dayanımlarının değişim oranları, her kür ortamının 1 numaralı referans numunesi esas alınarak hesaplanmıştır.

MgSO₄ ortamında kürlenen numunelerde % 0.25 ve % 0.50 aerojel katkılı silis dumanı ilaveli 7 ile 12 numaralı numunelerin basınç dayanım sonuçları birbirine çok yakın olup bu sonuçlar sırasıyla 65.9 ve 65.7 MPa'dır. Aerojel katkısız olan 2 numaralı silis dumanı ilaveli numunenin basınç dayanımı ise aerojel katkılı numunelere göre daha düşüktür.

Suda kürlenen numunelerde aerojel katkısız ve % 0.25 aerojel katkılı silis dumanı ilaveli 2 ve 7 numaralı numunelerin basınç dayanımlarındaki azalma sırasıyla % 2.6 ve % 0.5'dir. % 0.50 aerojel katkı oranına sahip silis dumanı ilaveli 12 numaralı numunedeki basınç dayanımındaki azalma % 30.5 değeri ile, bütün silis dumanı ilaveli numuneler içinde en düşük değere sahiptir.

Islanma - kuruma grubu numunelerden uçucu kül ilaveli ve aerojel katkısız 3, 4, 5 numaralı numunelerin uçucu kül oranının % 30'dan % 50'ye kademeli olarak yükseltilmesiyle, basınç dayanım değerlerinin % 18.6' dan % 42.1'e varan değerlere kadar düştüğü tespit edilmiştir. % 0.25 aerojel katkılı 8, 9, 10 numaralı numunelerin basınç dayanım değerlerindeki azalma aralığı % 15.6 - 38.2 olup, aerojel katkısız gruba göre daha azdır. % 0.50 aerojel katkılı 13, 14, 15 numaralı numunelerin basınç dayanım değerlerindeki azalma % 0.25 aerojel katkılı gruba göre daha düşük olmakla birlikte 14 numaralı numunede bu durum farklılık göstermiştir. Bu numunenin basınç dayanım değerindeki azalma, % 49.8 oranı ile basınç dayanım deney sonuçları arasındaki en düşük ikinci değer olarak tespit edilmiştir.

MgSO₄ ortamında kürlenen uçucu kül ilaveli 3, 4, 5 numaralı numunelerin basınç dayanımlarındaki azalma % 17 - 34.6 aralığındadır. % 0.25 aerojel katkılı gruptaki uçucu kül ilaveli 8, 9, 10 numaralı numunelerin basınç dayanımlarındaki azalma düzensiz olup maksimum azalma % 40 uçucu kül ilaveli 9 numaralı numuneden % 49.9 olarak tespit edilmiştir. Bu değer bütün basınç dayanımı değerleri arasındaki en düşük değerdir. % 0.50 aerojel katkılı ve uçucu kül ilaveli 13, 14, 15 numaralı numunelerin basınç dayanımlarındaki azalma % 17.6 - 41.6 aralığındadır.

Suda kürlenen uçucu kül ilaveli grupta ise aerojel katkısız 3, 4, 5 numaralı numunelerin basınç dayanımlarındaki azalma % 17.7 - 41.5 aralığındadır. % 0.25 aerojel katkılı ve uçucu kül ilaveli numunelerin basınç dayanımlarındaki azalma % 19.8 - 41.1 aralığındadır. % 0.50 arrojel katkılı ve uçucu kül ilaveli 13, 14, 15 numaralı numunelerin basınç dayanımlarındaki azalma ise % 13.9 - 36.5 aralığındadır.

5.3. EĞİLMEDE ÇEKME DAYANIMI DENEY SONUÇLARININ DEĞERLENDİRİLMESİ

Üretilen harç numunelerinin eğilmede çekme dayanımı değerleri 1 numaralı referans numunesi ve silis dumanı ilaveli 2, 7, 12 numaralı numuneler incelendiğinde; ıslanma kuruma grubu numunelerdeki çekme dayanımı değerlerinin tamamı 2 nolu numune hariç referans değerinin (MPa) altında olduğu görülmektedir. Aerojel katkısının % 0.25'den % 0.50'ye çıkmasıyla çekme dayanımlarındaki düşüş % 5.3'den % 36.3'e kadar yükseldiği belirlenmiştir. Islanma - kuruma numunelerinde aerojel katkısındaki artış, numunelerin çekme dayanımı değerlerinde düşüşe sebep olmuştur.

MgSO₄ ortamında kürlenen numunelerde ise; 2 numaralı numune referans numunesi ile aynı çekme dayanımı değerine sahiptir. % 0.25 aerojel katkılı 7 numaralı numunede ise referans numunesine göre sadece % 1 oranında bir artış gözlenmiştir. % 0.50 aerojel katkılı 12 numaralı numunenin eğilme dayanımının ise referans numuneden % 35 oranında düşük olduğu tespit edilmiştir.

Suda kürlenen numunelerde ise; aerojel katkısız 2 numaralı numunenin eğilme dayanımı değerinin referans numunesinin çekme dayanımı ile çok yakın sonuç vermiştir. Aerojel katkı oranı % 0.25 olan 7 numaralı numunenin çekme dayanımı değeri referans numunesinden % 20 oranında daha düşüktür. % 0.50 aerojel katkılı 12 numaralı numunenin çekme dayanımı ise referans numuneye göre % 7.1 artmıştır.

Uçucu kül ilaveli, ıslanma - kuruma grubu numuneler incelendiğinde bütün numunelerin çekme dayanımı değerleri referans numunenin altında kalmıştır.

MgSO4 ortamında kürlenen numunelerde de bütün numunelerin çekme dayanımı değerleri referans numunenin altında kalmıştır.

Suda kürlenen numunelerde aerojel katkı oranı arttıkça çekme dayanım değerleri yükselmiştir. Hatta % 0.50 aerojel katkı grubu için çekme dayanımı değerleri % 11.4' e varan oranlarda referans değerinin üzerine çıkmıştır.

5.4. TERMAL İLETKENLİK ANALİZ SONUÇLARININ DEĞERLENDİRİLMESİ

Yapılardaki ısıtma amaçlı enerji maliyetlerinin azaltılmasına yönelik olarak ısıl iletkenliği düşük harç üretilmesi uygulama için de oldukça önemlidir. Bu çalışma kapsamında; termal iletkenlik katsayısının düşürülmesine yönelik ilk grup çalışmları harç karışımlarına silis dumanı ilave edilerek yapılmıştır. Bu noktadan hareketle öncelikle, silis dumanı ilaveli numuneler incelendiğinde; ıslanma - kuruma grubu numunelerde aerojel katkısız 2 numaralı numune en düşük termal iletkenlik katsayısı değerini (1.458 W/mK) verdiği tespit edilmiştir. MgSO₄ ortamında kürlenen numunelerde en düşük termal iletkenlik katsayısı aerojel katkılı numunelerden elde edilmiştir (1.458 W/mK). Suda kürlenen numunelerde ise en düşük termal iletkenlik değeri % 31.2 oranıyla % 0.25 aerojel katkılı 7 numaralı numuneden elde edilmiştir.

Uçucu kül ilaveli numuneler dikkate alındığında; ıslanma - kuruma grubu numunelerde en düşük termal iletkenlik katsayıları % 0.50 aerojel katkı grubundan 14 ve 15 numaralı numunelerden sırasıyla 1.379 ve 1.372 W/mK olarak elde edilmiştir. MgSO₄ grubu numunelerde en düşük termal iletkenlik katsayıları % 0.25 aerojel katkılı 8, 9, 10 numaralı

numuneler arasında % 40 uçucu kül ilaveli 9 numaralı numuneden 1.268 W/mK olarak elde edilmiştir. Suda kürlenen numuneler incelendiğinde, aerojel katkı oranı arttıkça termal iletkenliğin düştüğü net olarak anlaşılmaktadır. En düşük termal iletkenlik katsayısı ise % 40 uçucu kül ilaveli 14 numaralı numuneden 1.408 W/mK olarak ve % 44.1 düşüş oranı ile tespit edilmiştir.

Silis dumanı ve uçucu kül ilaveli numunelerden elde edilen termal iletkenlik sonuçları kıyaslandığında; ıslanma - kuruma grubu numuneler için, aerojel katkısız, silis dumanı ilaveli 2 numaralı numuneden elde edilen % 22.4 oranında termal iletkenlik düşüşü ile, % 0.25 aerojel katkılı, % 50 uçucu kül ilaveli 10 numaralı numuneden elde edilen % 22.6 oranındaki termal iletkenlik düşüşünün birbirlerine çok yakın sonuçlarının olduğu açıkça görülmektedir. Buradaki tercih numunelerin karışım oranları dikkate alınarak yapılabilir. MgSO4 grubu numunelerde % 0.50 aerojel katkılı grup hariç genel olarak uçucu kül katkılı numunelerden hesaplanan termal iletkenlik düşüşleri, silis dumanı ilaveli numunelere göre daha yüksektir. Suda kürlenen numunelerde aerojel katkısız grup hariç bütün uçucu kül ilaveli numunelerden hesaplanan termal iletkenlik düşüşleri, silis dumanı ilaveli numunelere göre daha yüksektir.

5.5. CİVA POROZİMETRESİ ANALİZ SONUÇLARININ DEĞERLENDİRİLMESİ

5.5.1. Civa Porozimetresi Por Çapı - Kümülatif Por Hacmi - Termal İletkenlik İlişkisinin Değerlendirilmesi

Silis dumanı ilaveli harçlarda, ıslanma - kuruma grubu numuneler içinde kümülatif por hacim değerleri en düşük olan 2 numaralı numunenin termal iletkenlik değeri bu gruptaki en düşük sonuçtur. Referans numunesi ise 100 nm civarında en düşük termal iletkenlik değerine sahip 2 numaralı numune eğrisi ile çok yakın bir davranış sergilemiştir ve 100 nm den sonraki por çaplarında daha yüksek por hacim sonuçları vermiştir. Silis dumanı ilaveli harçlarda; MgSO₄ grubu numunelerden termal iletkenlik değerleri birbiri ile aynı olan 7 ve 12 numaralı numuneler (1.458 W/mK) birbirine yakın eğrisel davranış sergilemiştir. Silis dumanı ilaveli harçlarda; numuneler için termal iletkenlik katsayısı en düşük olarak tespit edilen 7 numaralı numunenin (1.733 W/mK) kümülatif por dağılım eğrisinin 100 nm ye kadar olan bölümünde en düşük por hacim bölgesine sahip olduğu anlaşılmaktadır. 2 ve 12

numaralı numunelerin termal iletkenlik katsayıları (1.953 ve 2.080 W/mK) birbirine yakın olup eğrisel davranışlarının da birbirine yakın olduğu görülmektedir.

Uçucu kül ilaveli harçlarda; Islanma - kuruma grubu numuneler içinde 14 ve 15 numaralı numunelerin termal iletkenlik katsayıları (1.379 ve 1.372 W/mK) birbirlerinin hemen hemen aynıdır. Bu numunelerin 0 - 100 nm aralığı dışındaki eğrisel davranışı da çok yakındır. 8 ,9, 10 numaralı numunelerin uçucu kül katkı oranı arttıkça termal iletkenlik değerlerinde azalma tespit edilmiştir. Eğrisel davranış bakımından da bu durum paraleldir. Uçucu kül ilaveli harçlarda; MgSO4 ortamında kürlenen numuneler içinde termal iletkenlik değerleri en düşük olan numuneler 8, 9, 10 numaralı numunelerdir. 100 nm'ye kadar olan bölgedeki eğrilerin kümülatif por hacimleri arasındaki fark % 0.50' ye göre daha fazladır. MgSO4 ortamı için en düşük termal iletkenlik değerleri yine bu gruptan elde edilmiştir. Uçucu kül ilaveli harçlarda; suda kürlenen numuneler içinde 13, 14, 15 numaralı numunelerin termal iletkenlik değerleri birbirlerine benzerlik göstermektedir. 8, 9, 10 numaralı numunelerin eğrisel davranışları da birbirlerine yakın olup 14, 15 numaralı numunelerin termal iletkenlik değerleri birbirlerine yakın olup 14, 15 numaralı numunelerin termal iletkenlik değerleri birbirlerine yakın olup eğrisel davranışları da benzerlik sergilemektedir.

5.5.2. Civa Porozimetresi Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi

5.5.2.1.Silis Dumanı İlaveli Harçlarda Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi

Harç numunelerindeki por değişimlerini belirlemek amacıyla aralarındaki fark değerleri esas alınmıştır. Islanma - kuruma grubundaki numunelerde jel por değişimleri dikkate alınarak yapılan değerlendirmeler şu şekildedir; en yüksek jel por seviyesine 2 numaralı numune sahiptir ve en düşük termal iletkenlik katsayısı da bu numuneden ölçülmüştür (1.458 W/mK). MgSO₄ ortamında kürlenen numunelerin jel por dağılımları için, bu kür ortamında tespit edilen en düşük iki termal iletkenlik katsayısı değerleri 2 ve 7 numaralı numunelerden sırasıyla 1.492 ve 1.444 W/mK olarak ölçülmüştür. Bu iki numunenin jelpor seviyelerinin de birbirine çok yakın olduğu anlaşılmaktadır. Suda kürlenen numunelerin aerojel oranlarına göre jelpor değişimleri incelendiğinde şu bulgulara ulaşılmıştır: Aerojel katkısı arttıkça numuneler arası jelpor farkının 2 numaralı numuneye göre yükseldiği görülmüştür.

Islanma - kuruma grubu numuneler incelendiğinde ise kapiler por değişimleri dikkate alınarak yapılan değerlendirmeler şu şekildedir: Bu grupta, silis dumanı ilaveli numuneler içinde 2 numaralı numune en düşük kapiler por seviyesine sahiptir ve en düşük termal iletkenlik katsayısı değeri (1.458 W/mK) de bu numuneden ölçülmüştür. MgSO4 ortamında tespit edilen en düşük iki termal iletkenlik ölçümleri 2 ve 7 numaralı numunelerden sırasıyla 1.492 ve 1.444 W/mK olarak ölçülmüştür. Bu iki numunenin % kapiler por değerleri de birbirine çok yakın olarak tespit edilmiştir. Suda kürlenen numuneler için; aerojel katkı oranı % 0.25'den % 0.50'ye yükseltildiğinde kapiler por seviyesi 2 numaralı numuneye göre azalmaktadır.

Islanma - kuruma grubu numuneler incelendiğinde makro por değişimleri dikkate alınarak yapılan değerlendirmeler şu şekildedir: 7 ve 12 numaralı numunenin 2 numaralı numuneye kıyasla makro por seviyelerindeki artışın çok az olduğu anlaşılmaktadır. En düşük termal iletkenlik katsayısı da 2 numaralı numuneden 1.458 W/mK olarak ölçülmüştür. MgSO4 ortamında kürlenen numunelerin makro por seviyelerinde nispi değişimler söz konusu olmuştur. Suda kürlenen numunelerin makro por seviyelerinde ise önemli bir fark olmadığı anlaşılmaktadır. Referans numunesine ait por dağılımları ile silis dumanı ve aerojel katkılı numunelerin por dağılımları arasında bir korelasyon tespit edilememiştir.

5.5.2.2. Uçucu Kül İlaveli Harçlarda Por Türü - Kür Ortamı - Termal İletkenlik İlişkisinin Değerlendirilmesi

Islanma - kuruma grubundaki numunelerde jel por değişimleri dikkate alınarak yapılan değerlendirmeler şu şekildedir; ıslanma - kuruma grubundaki numunelerde uçucu kül ilave oranı arttıkça, her aerojel katkı grubu için, 14 numaralı numune hariç jel por seviyesi düşmektedir. Jel por seviyesinin düşmesi kapiler veya makro boşlukların artması anlamına gelmektedir. 14 numaralı numunede ise jel por seviyesinin yüksek olduğu görülmüştür. Bu numune ıslanma - kuruma grubundaki 15 numaralı numune gibi en düşük termal iletkenlik katsayısına sahip iki numuneden biridir (1.379 W/mK, 1.372 W/mK).

MgSO₄ ortamında kürlenen numunelerin jel por seviyeleri incelendiğinde ise; aerojel seviyesi % 0.50 olduğunda, % 40 uçucu kül katkılı numune diğerlerine göre düşük seyretmiştir. MgSO₄ ortamındaki en yüksek jel por seviyeleri % 0.25 aerojel katkılı 8, 9, 10 numaralı numunelerden elde edilmiştir. Bununla bağlantılı olarak termal iletkenlik seviyeleri en düşük olan grup yine bu gruptur.
Suda kürlenen numuneler için; uçucu kül ilave oranı arttıkça % jel por seviyelerinin de arttığı tespit edilmiştir. Aerojel katkı oranının artmasıyla aynı uçucu kül yüzdesine sahip numunelerin jel por seviyelerinde belirgin bir değişiklik olmamıştır. Bununla birlikte aerojel katkı oranı % 0.25 ve % 0.50 olan numunelerdeki termal iletkenlik değerlerindeki azalma aerojel katkısız 3, 4, 5 numaralı numunelere göre çok yüksektir. % 40 uçucu kül ilave edilen 9 ve 14 numaralı numunelerde termal iletkenlik değerlerindeki azalma % 43 - 44 mertebesine ulaşmıştır.

En yüksek jel por seviyesi bütün aerojel katkı oranları için suda kürlenen numunelerden tespit edilmiştir. % 0.25 aerojel katkı oranına sahip MgSO₄ ortamında kürlenen numunelerin jel por seviyelerinin ıslanma - kuruma grubu numunelerden daha yüksek seyrettiği, % 0.50 aerojel katkı oranına sahip numunelerde ise bu durumun tersine geliştiği söylenebilir.

Islanma - kuruma grubu numuneler incelendiğinde ise kapiler por değişimleri dikkate alındığında; uçucu kül ilaveli numunelerin kapiler por seviyelerinin birbirine yakın olduğu görülmüştür. Aerojel katkısız 3, 4, 5 numaralı numunelerin termal iletkenlik katsayılarının, % 0.25 ve 0.50 aerojel katkılı numunelere kıyasla, 13 numaralı numune hariç daha yüksek olduğu söylenebilir. Aerojel katkı oranı % 0.25'ten % 0.50' ye arttırılmasıyla aynı uçucu kül ilave oranlarına sahip numunelerde kapiler por seviyelerinin nispi olarak arttığı ifade edilebilir. Aerojel katkı artmasıyla aynı zamanda termal iletkenlik seviyelerinin 13 numaralı numune hariç azaldığı söylenebilir.

MgSO₄ grubu numunelerde kapiler por seviyeleri incelendiğinde; bütün numunelerin por seviyelerinin birbirlerine yakın olduğu görülmektedir. MgSO₄ ortamının zararlı ortam oluşu göz önüne alındığında elde edilen por seviyeleri ve termal iletkenlik değerlerinin çok düzenli olması beklenemez. Ancak % 0.25 aerojel katkı oranına sahip numunelerin en düşük termal iletkenlik değerlerine sahip olduğu ifade edilmelidir.

Suda kürlenen numunelerin aerojel katkı oranlarına göre kapiler por değişimleri incelendiğinde; aerojel katkı oranının artmasıyla % 30 uçucu kül ilaveli 3, 8, 13 numaralı numunelerdeki kapiler por seviyelerinin de arttığı söylenebilir. Ancak % 0.25 ve % 0.50 aerojel katkı oranına sahip numunelerde uçucu kül ilavesinin % 40'dan % 50' ye yükseltilmesi ile % kapiler por seviyelerinin birbirine yakın sonuçlar verdiği görülmüştür. Aerojel katkı oranı arttıkça % 40 ve % 50 uçucu kül ilaveli, birbirine çok yakın kapiler

seviyelerine sahip numunelerin termal iletkenlik değerleri azalmaktadır. Bütün numuneler arasında termal iletkenlik değerlerindeki an fazla azalma % 67 - 69 kapiler por seviyesi aralığına tekabül etmektedir.

Bütün kür koşulları birlikte değerlendirildiğinde, en düşük kapiler por seviyelerinin suda kürlenen numunelerden tespit edildiği ifade edilebilir. Islanma kuruma ve MgSO₄ grubuna ait kapiler por seviyelerinin ise birbirine yakın seyrettiği ifade edilebilir.

Islanma - kuruma grubundaki numunelerde makro por değişimleri incelendiğinde; aerojel katkı oranının artmasıyla numunelerin makro por seviyelerinde düzenli bir değişim tespit edilememiştir. Ancak ıslanma - kuruma grubundaki bütün makro por seviyeleri dikkate alındığında % 0.50 aerojel katkılı 14 ve 15 numaralı numunelerin makro por seviyeleri ve termal iletkenlik değerlerinin birbirlerine çok yakın olduğu söylenebilir. Bu numunelerin makro por seviyeleri di sırasıyla 1.379 ve 1.372 W/mK'dir.

MgSO₄ ortamında kürlenen % 0.25 aerojel katkı oranına sahip 8, 9, 10 numaralı numunelerin makro por seviyeleri birbirine çok yakın olup, % 8.3 - 8.9 aralığındadır. Aynı numuneler, MgSO₄ kürleme ortamı için en düşük termal iletkenlik değerlerine sahiptir.

Suda kürlenen numuneler için aerojel katkı oranı arttıkça makro por seviyelerinin azaldığı söylenebilir. Makro por seviyeleri azaldıkça numunelerin termal iletkenlik değerleri de azalmaktadır. Suda kürlenen uçucu kül ilaveli numuneler içinde 9 ve 14 numaralı numunelerin makro por seviyelerinin sırasıyla % 9.9 ve % 9.6 olduğu hesaplanmıştır. Bu iki numunenin termal iletkenlik seviyelerindeki azalma ise çok belirgin olup sırasıyla % 43.1 ve % 44.1 olarak hesaplanmıştır. Bu sonuçlardan hareketle, suda kürlenen numuneler içinde en düşük termal iletkenlik değerlerinin % 40 uçucu kül ilaveli 9 ve 14 numaralı numunelerden elde edildiği ifade edilebilir.

Bütün kür koşulları birlikte değerlendirildiğinde, aerojel katkı oranının numunelerin makro por seviyelerinde önemli bir değişime yol açmadığı söylenebilir.

KAYNAKLAR

- Abualgasem, J.M., Cripps, J.C. ve Lynsdale, C.J., 2015, Effect of wetting drying cycles on thaumasite formation in cement mortars, *Journal of Materials in Civil engineering*, 27 (7), 1-6.
- Aghabaglou, A.M., Bayqra, S.H., Özen, S., Faqiri, Z.A. ve Ramyar, K., 2020, Silindirle sıkıştırılmış beton karışımlarında kullanılan malzemelerin özellikleri, *Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi*, 12 (1), 61-72.
- Arife, A., 2019, Nano silika kür uygulamasının çimento bağlayıcılı kompozitlerin donmaçözülme direnci üzerine etkisinin araltırılması, Ömer Halisdemir Üni. Müh. Bilimleri Dergisi, 8 (2), 1032-1040.
- Atiş, C.D., 2001, Uçucu kül içeren, silindirle sıkıştırılabilen betonların özellikleri, *Turkish Journal of Engineering and Environmental Sciences*, 25 (5), 503-515.
- ASTM (American Society for Testing and Materials), C618-15, 2015, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA,
- Baradan, B., Yazıcı, H. ve Aydın, S., 2012, *Beton*, Dokuz Eylül Üni. Müh. Fak. Yayınları, İzmir, 978-975-441-361-8.
- Benli, A. ve Karataş, M., 2019, Uçucu kül ve silis dumanı ikameli üçlü karışımlardan üretilen kendiliğinden yerleşen harçların durabilite ve dayanım özellikleri, DÜMF Mühendislik Dergisi, 10:1 (2019), 335-345.
- Beycioğlu, A., Başyiğit, C. ve Kılınçarslan, Ş., 2010, Pomza Agregalı hafif beton özelliklerine silis dumanının etkisi, *Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 14-2 (2010), 200-205.
- Bostancı, L. ve Sola, O., 2018, Mechanical properties and thermal conductivity of aerogel incorparated – alkali activated slag mortars, *Hindawi*, Volume 2018, 1-9.
- Bostancı, L., Ustundag, O., Sola, O. ve Uysal, M., 2019, Effect of various curing methods and addition of silica aerogel on properties of mortars, *Gradevinar*, 71 (8), 651-661.
- Bostancı, L., Ustundag, O., Sola, O. ve Uysal, M., 2019, Effect of various curing methods and scrap tyre addition on properties of mortars, *Gradevinar*, 71, 765-775.
- Bostanci, L., 2020, A comparative study of petroleum coke and silica aerogel inclusion on mechanical, pore structure, thermal conductivity and microstructure properties of hybrid mortars, *Journal of Building Engineering*, 31 (2020), 1-16.

- Bostancı, L., 2020, Synergistic effect of a small amount of silica aerogel powder and scrap rubber addition on properties of alkali-activated slag mortars, *Construction and Building Materias*, 250 (2020), 1-17.
- By, G,C,, 1983, Portland Cement, Permagon Press, Oxford.
- Cho, S.W., 2012, Using mercuryintrusion porosimetry to study the interfacial properties of cement-based materials, *Journal of Marine Science and Technology*, Vol. 20, No. 3, 269-273.
- Çavuş, M. ve Ağaoğlu, M.N., 2019, Farklı alkalilerle aktifleştirilenuçucu kül esaslı harçların bazı mekanik ve fiziksel özelliklerinin incelenmesi, *Journal of New Results in Engineering and Natural Science*, 9, 11-19.
- Çelik, Ö., 2004, Endütriyel Atıkların İnşaat Sektöründe Değerlendirilmesi, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü.
- Delikurt, B.C. ve Sevim, U.K., 2015, Sugözü uçucu külünün betonun mekanik ve durabilite özelliklerine etkisi, *Niğde Üniversitesi Mühendislik Bilimleri Dergisi*, Cilt 4, Sayı 1, 47-58.
- Demirel, B. ve Yazıcıoğlu, S., 2007, Silis dumanının karbon fiber takviyeli hafif betonun mekanil Özelliklerine Etkisi, *Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 11-1 (2007), 103-109.
- Erdoğan, T, Y,, 2003, Beton, ODTÜ Geliştirme Vakfı ve Yayıncılık A,Ş,, Ankara.
- Gao, T., Jelle, B.P., Gustavsen, A. ve Jacobsen, S., 2014, Aerojel-incorporated concrete: An experimental study, *Construction and Building Materials*, 52, 130-136.
- Gezmen, T. ve Türkel, S., 2017, Bor minerali ve uçucu kül içeren harçların mekanik özelliklerinin ve sülfata dayanıklılığının incelenmesi, *Dokuz Eylül Üni. Müh. Fak. Fen ve Müh. Dergisi*, 19 (57), 757-778.
- Gomes, M.G., Flores-Colen, I., Manga, L.M., Soares, A. ve Brito, J., 2017, The influence of moisture content on the thermal conductivity of external thermal mortars, *Construction and Building Materials*, 135 (2017), 279-286.
- Guo, J., Wang, K., Guo, T., Yang, Z. ve Zang, P., 2019, Effect of dry-wet ratio on properties of concrete under sulfate attack, *Materials*, 12 (17), 1-15.
- Hanif, A., Diao, S., Lu, Z., Fan, T. ve Li, Z., 2016, Green lightweight cementitous composite incorporating aerogels and fly ash cenospheres – mechanical and thermal insulating properties, *Construction and Building Materials*, 116 (2016), 422-430.
- Hatungimana, D., Taskopru, C., Ichedef, M., Sac, M.M. ve Yazici, S., 2019, Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar, *Journal of Building Engineering*, 23, 369-376.

- Hewayde, E., Pachenari, A. ve Al-Eleaj, H., 2020, Resistance of recycled aggregate concrete (RAC) subjected to drying-wetting cycles to attack of magnesium and sodium sulfates, *Hindawi*, 220 (5), 1-9.
- Illston, J.M. ve Domone, P.L.J., 2001, Construction Materials, Their nature and behaviour, Third edition, Spon press, London and New York.
- Julio, M.F., Soares, A., Ilharco, L.M., Colen, I.F. ve Brito, J., 2016, Aerojel-based renders with lightweight, *Construction and Building Materials*, 124 (2016), 485-495.
- Karahan, O. ve Atis, C.D., 2007, Sugözü Uçucu Külünün Beton Katkısı Olarak Kullanılabilirliği, 7. Ulusal Beton Kongresi, 405-415.
- Khamidi, M.F., Glover, C., Farhan, S.A., Puad, N.H.A., Nuruddin, M.F., 2014, Effect of silica aerogel on the thermal conductivity of cement paste for the construction of concrete buildings in sustainable cities, *Wit Transactions On The Built Environment*, 137, 665-664.
- Kılınçarslan, Ş. ve Tuzlak, F., 2018, Uçucu kül katkılı köpük betonların dayanım ve ısı ısı iletlenlik özelliklerinin iyileştirilmesi, *Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi*, 1 (2), 1-5.
- Mehta, P.K., ve Monteiro, P.J.M., 2006, *Concrete Microstructure, Properties, and Materials*, Third editon, McGraw-Hill, 659p.
- Mills, A.P., Hayward, H.W. ve Rade, L.F., 1955, *Materials of Construction*, John Wiley and Sons Inc., NewYork.
- Neville, A.M., 1997, Properties of concrete, Addison Wesley Longman Ltd., England.
- Ng, S., Jelle, B.P., Z., Y. ve W., O.H., 2016, Effect of storage and curing conditions at elevated temperatures on aerojel-incorporated mortar samples based on UHPC recipe, *Construction and Building Materials*, 106, 640–649.
- Ng, S., Jelle, B.P., Sandberg, L.I.C., Gao, T., W. ve W., O.H., 2015, Experimental investigations of aerojel-incorporated ultra-high performance concrete, *Construction and Building Materials*, 77, 307–316.
- Özdemir, E. ve Çağatay, İ.H., 2009, PÇ ve silis dumanı mineral katkısının içeren harç numunelerinin bazı özelliklerinin incelenmesi, *Çukurova Üni. Müh. Mim. Fak. Dergisi*, 24 (1), 65-75.
- Postacıoğlu, B., 1975, Yapı malzemesi problemleri, Çağlayan Kitabevi.
- Sahmaran, M. ve Li, V.C., 2009, Durability properties of micro-cracked ECC containing high volumes fly ash, *Cement and Concrete Research*, 39 (11), 1033-1043.

- Servatmand, A. ve Şimşek, O., 2018, Yüksek performanslı harç üretiminde optimum nano malzeme oranlarının belirlenmesi, *Politeknik Dergisi*, 21 (2), 327-332.
- Sola, C., O., Sayin, B., Ozyazgan, C. ve Bostancı, L., 2017, Effect of silica fume and solid borax waste on compressive strength of fired briquettes, *Revista de la Construcción*, 16 (2), 355-360.
- Sola, O. ve Ozyazgan C., 2016, Evalution of the mwchanical, durability microstructural and mineralogical properties of cement composites treated with waste rubber, *Indian Journal of Engineering and Materials Science*, 23, 312-320.
- Sola, O. ve Ozyazgan C., 2017, Mechanical properties of mortar containing recycled asphalt, *Gradevinar*, 69, 933-940.
- Şimşek, O., 2010, Lifli betonlarda optimum silis dumanı ikame oranının belirlenmesi, *Politeknik Dergisi*, 23.
- Tulga, İ. ve Kılınç, K., 2018, Uçucu kül kullanımının farklı dayanım sınıflarındaki betonların mekanik ve durabilite özellikleri üzerindeki etkisi, *Kırklareli Uni. Journal of Science*, 4 (2), 212-236.
- Turanlı, L., Erdoğan, T. ve Karaer, K., 1997, Çayırhan uçucu külünün portland çimentosuuçucu külü hamur ve harçlarının özelliklerine etkileri, *Endüstriyel Atıkların İnşaat Sektöründe Kullanılması Semp. 3 Bildiri Kitabı*, Eskişehir, 283-293.
- Turgut, P., 2018, Uçucu kül, kireç ve cam tozu kullanarak blok üretimi, *Pamukkale Üni. Müh. Bilimleri Dergisi*, 24 (3), 413-418.
- Türker, P., Erdoğan, B., Katnaş, F. ve Yeğinobalı, A., 2009, *Türkiye'deki Uçucu Küllerin Sınıflandırılması ve Özellikleri*, TÇMB, Ankara.
- TS EN 196-1, 2016, çimento deney metotları Bölüm 1: Dayanım tayini.
- TS EN 196-3, 2010, Çimento deney metotları Bölüm 3: Priz süreleri ve hacim genleşme tayini.
- TS EN 197-1, 2012, Çimento Bölüm 1: Genel çimentolar-bileşim, özellikler ve uygunluk kriterleri.
- TS EN 1367-2, 2010, Agregaların termal ve bozunma özellikleri için deneyler Bölüm 2: Magnezyum sülfat deneyi.

Yeğinobalı, A., 2009, Silis dumanı ve çimento ile betonda kullanımı, TÇMB, Ankara.

EKLER

EK - 1 TERMAL İLETKENLİK ANALİZ SONUÇLARI

Islanma - Kuruma Grubu Analiz Sonuçları

C- Ther	mal Cond	IERI uctivity Ana	M T(Ci™	Test Report Report Generated on: 04-Mar-2019 10:51:50				
lns Test	Test ID: strument: Method:	TCI-PC-182 TH89-05-00 Ceramics	5 283		Software Version: 2.4.4.13 Test started on: 04-Mar-2019 Performed by: Administrator				
Mat	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz 1-1	neleri zemesi			User ID. Adving			
#	Repeat	Sensor ID	Start Time	Effusivity W*1(s) (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	10:47:18	1,896	1.850	22.7437	0.5302	2,348.384	
2	1	T447	10:48:24	1,918	1.890	22.7362	0.5283	2,347.141	
3	1	T447	10:49:29	1,925	1.900	23.7816	0.5281	2,344.961	
4	1	T447	10:50:34	1,911	1.880	23.2863	0.5300	2,345.811	
Notes: Last Edited By: Last Edited On:									
ADMIN 04-Mar-2019 10:51 ORTALAMA 1.881W/mK									

C- Therr	mal Cond	IERI uctivity Ana	M T(Test Rep Report Ger	oort nerated on: 05-M	lar-2019 9:2	9:38
Ins Test	Test ID: strument: Method:	TCI-PC-182 TH89-05-00 Ceramics	6 1283		Software Test sta Perfor	Version: 2.4.4.13 arted on: 05-Mar med by: Admini-	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 2-2	neleri zemesi			USET ID. ADMIN		
#	# Repeat Sensor ID Start Time Effusivity <u>₩*√(s)</u>				Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:25:05	1,664	1.440	22.9798	0.5774	2,360.43(
2	1	T447	9:26:10	1,669	1.450	23.5482	0.5755	2,359.10{
3	1	T447	9:27:16	1,680	1.470	23.6656	0.5763	2,359.614
4	4 1 T447 9:28:22 1,677				1.470	22.5927	0.5744	2,362.59
Notes: Last Edited By: Last Edited On: ADMIN 05-Mar-2019 9:29 ORTALAMA 1.459W/mK								

C- Ther	-T mal Cond	IER uctivity An	M T(Ci™	Test Rep Report Ger	oort herated on: 06-M	1ar-2019 9:2	3:57	
In: Test	Test ID: strument: Method:	TCI-PC-183 TH89-05-00 Ceramics	0)283		Software Version: 2.4.4.13 Test started on: 06-Mar-2019 Performed by: Administrator Liser Up: ADMIN				
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 3	meleri zemesi			USETID. ADMIN			
# Repeat		Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	9:19:19	1,945	1.940	24.3595	0.5168	2,352.967	
2	1	T447	9:20:24	1,954	1.950	24.5048	0.5142	2,352.756	
3	1	T447	9:21:30	1,969	1.980	24.6466	0.5138	2,352.60(
4	1	T447	9:22:36	1,968	1.980	24.6342	0.5127	2,352.74(
Note	es:			_					
Last Edited By: Last Ed			Last Edited	Last Edited On:					
ADMIN 06-Mar-2019 9:23 ORTALAMA 1.965W/mK									

Ther	mal Cond	IERI uctivity Ana	alyzer T	CIM	Test Rep Report Ger	oort nerated on: 05-M	lar-2019 9:5	8:10
In: Test	Test ID: strument: Method: Project: Material: terial Lot	TCI-PC-1828 TH89-05-00283 Ceramics Yapi Malzemeleri Yalitim Malzemesi 4			Software Version: 2.4.4.13 Test started on: 05-Mar-2019 Performed by: Administrator User ID: ADMIN			
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:52:03	1,817	1.710	24.4041	0.5455	2,358.86
2	1	T447	9:53:09	1,825	1.720	23.3192	0.5437	2,361.36
3	1	T447	9:54:14	1,844	1.760	23.8830	0.5423	2,360.33
4	1	T447	9:55:20	1,853	1.770	23.3071	0.5367	2,361.70
5	1	T447 9:56:25 1,862	1,862	1.790	23.3326	0.5350	2,361.63	
6	5 1 1447 6 1 T447		9:57:31	1,861	1.790	23.4355	0.5365	2,360.64
Notes: Last Edited On: Last Edited By: 05-Mar-2019 9:57 ORTALAMA 1.758W/mK 0 0				On: 9 9:57				

Ins Test Mat	Test ID: atrument: Method: Project: Material: erial Lot:	THPC-1831 TH89-05-00283 Ceramics Yapi Malzemeleri Yalitim Malzemesi 5-5			Software Version: 2.4.4.13 Test started on: 06-Mar-2019 Performed by: Administrator User ID: ADMIN			
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (m
#				(11 2) 11				
1	1	T447	9:27:07	1,826	1.730	24.9404	0.5392	2,353
1 2	1 1	T447 T447	9:27:07 9:28:13	1,826 1,842	1.730 1.760	24.9404 23.7939	0.5392 0.5357	2,353 2,356
1 2 3	1 1 1	T447 T447 T447	9:27:07 9:28:13 9:29:18	1,826 1,842 1,849	1.730 1.760 1.770	24.9404 23.7939 24.3896	0.5392 0.5357 0.5322	2,353 2,356 2,355
1 2 3 4	1 1 1 1	T447 T447 T447 T447	9:27:07 9:28:13 9:29:18 9:30:24	1,826 1,842 1,849 1,868	1.730 1.760 1.770 1.800	24.9404 23.7939 24.3896 24.4221	0.5392 0.5357 0.5322 0.5308	2,353 2,356 2,355 2,354

Ther In: Test	mal Cond Test ID: strument: Method:	ILCL-PC-183 TH89-05-00 Ceramics	alyzer T		Test Rej Report Ger Software Test sta Perfor	Dort Derated on: 06-M Version: 2.4.4.1 arted on: 06-Mar rmed by: Admini User ID: ADMIN	1ar-2019 10:4 3 2019 strator	12:43	
Ma	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 6	meleri zemesi						
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	10:36:16	2,132	2.280	25.3257	0.4869	2,353.58	
2	1	T447	10:37:21	2,127	2.270	25.2924	0.4869	2,354.41	
з	1	T447	10:38:27	2,142	2.300 25.9493 0.4856 2,				
4	1	T447	10:39:32	2,138	2.290	25.9496	0.4874	2,352.91	
5	1	T447	10:40:38	2,137	2.290	24.8834	0.4847	2,355.87	
6	1	T447	10:41:43	2,138	2.290	26.0776	0.4861	2,352.74	
Note Last	Notes: Last Edited By: Last Edited On:								
ADN	ADMIN 06-Mar-2019 10:42 ORTALAMA 2.289W/mK								

C- Therr	nal Cond	IERI uctivity Ana		CI™	Test Rep Report Ger	oort nerated on: 05-M	1ar-2019 9:4	8:07			
Ins Test Mat	Test ID: strument: Method: Project: Material: erial Lot:	TCI-PC-1827 TH89-05-00283 Ceramics Yapi Malzemeleri Yalitim Malzemesi 7-7			Software Version: 2.4.4.13 Test started on: 05-Mar-2019 Performed by: Administrator User ID: ADMIN						
#	# Repeat Sensor ID		Start Time	Effusivity W*√(s) (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	 V0 (mV)			
1	1	T447	9:43:56	1,938	1.930	23,9611	0.5210	2,357.82			
2	1	T447	9:45:02	1,933	1.920	23.4899	0.5205	2,358.88			
3	1	T447	9:46:07	1,933	1.920	24.0866	0.5202	2,357.54			
4	1	T447	9:47:13	1,936	1.920	24.2029	0.5220	2,357.80			
Notes: Last Edited By: Last Edited ADMIN 05-Mar-2019 ORTALAMA 1.921W/mK				On: 9 9:47							

Therr Ins Test	mal Cond Test ID: strument: Method:	uctivity Ana TCI-PC-1833 TH89-05-00 Ceramics	Alyzer T(Ci™	Test Rep Report Ger Software Test sta Perfor	Dort Derated on: 06-N Version: 2.4.4.1 Arted on: 06-Mar med by: Admini User ID: ADMIN	lar-2019 9:5 3 -2019 strator	0:30
Mat	Project: Material: erial Lot:	Yapi Malzen Yalitim Malz 8	releri emesi					
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:42:36	1,726	1.550	24.0930	0.5634	2,355.69
2	1	T447	9:43:41	1,730	1.560	25.2638	0.5635	2,353.39
3	1	T447	9:44:47	1,738	1.570	24.7965	0.5625	2,354.32
4	1	T447	9:45:52	1,731	1.560	25.3317	0.5609	2,353.56
5	1	T447	9:46:58	1,741	1.580	24.8523	0.5614	2,355.05
6	1	T447	9:48:03	1,740	1.580	24.3079	0.5602	2,356.46
Note Last ADM	es: Edited By: IIN	AMA 1 769V	Last Edited 06-Mar-2019	On: 9 9:50				

Ther	mal Cond	UCTIVITY And		Ci™	Test Report Report Generated on: 06-Mar-2019 10:31:43			
In Test	strument: Method:	TH89-05-00 Ceramics	283		Test started on: 06-Mar-2019 Performed by: Administrator			
Ма	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 9	neleri emesi			USET ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:24:26	1,685	1.480	25.7340	0.5719	2,351.929
2	1	T447	10:25:32	1,696	1.500	25.8089	0.5692	2,352.34
3	1	T447	10:26:37	1,695	1.500	25.3059	0.5675	2,353.815
4	1	T447	10:27:43	1,698	1.500	24.7017	0.5691	2,356.528
5	1	T447	10:28:48	1,703	1.510	24.7162	0.5680	2,355.287
6	1	T447	10:29:54	1,702	1.510	25.8489	0.5671	2,352.939
Note Last ADN	es: Edited By: /IN ORTAI	_AMA 1.500V	Last Edited 06-Mar-2019 V/mK	On: 9 10:31				

Test ID: TCI-PC-1835 Instrument: TH89-05-00283 Ceramics Software Version: 2.4.13 Test started on: 06-Mar-2019 Performed by: Administrator User ID: ADMIN Project: Material: Yapi Malzemeleri Material: Yalitim Malzemesi Conductivity(W/mK) Ambient T (°C) Delta T (°C) Vol # Repeat Sensor ID Start Time Effusivity (m^v/s) (m^2)*K Conductivity(W/mK) Ambient T (°C) DeltaT (°C) V0 1 1 T447 10:46:05 1,666 1.450 25.9450 0.5745 2, 2 1 T447 10:47:11 1,673 1.460 25.4791 0.5722 2, 3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes: Lent Edited Dr Lent Edited Or;	C- Therr	-T -	IERI uctivity Ana	alyzer T	Ci™	Test Report Report Generated on: 06-Mar-2019 10:49:08			
Project: Yapi Malzemeleri Material: Yalitim Malzemesi Material: Yalitim Malzemesi # Repeat Sensor ID Start Time Effusivity (m*2)*K Conductivity(W/mK) Ambient T (°C) DeltaT (°C) V0 1 1 T447 10:46:05 1,666 1.450 25.9450 0.5745 2, 2 1 T447 10:47:11 1,673 1.460 25.4791 0.5722 2, 3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes: Leat Edited Dr Leat Edited Ori Leat Edited Dr <td< th=""><th>Ins Test</th><th>Test ID: strument: Method:</th><th>TCI-PC-183 TH89-05-00 Ceramics</th><th>5 1283</th><th></th><th colspan="4">Software Version: 2.4.4.13 Test started on: 06-Mar-2019 Performed by: Administrator User ID: ADMIN</th></td<>	Ins Test	Test ID: strument: Method:	TCI-PC-183 TH89-05-00 Ceramics	5 1283		Software Version: 2.4.4.13 Test started on: 06-Mar-2019 Performed by: Administrator User ID: ADMIN			
# Repeat Sensor ID Start Time Effusivity W ^{-√} (s) (m ² 2) [*] K Conductivity(W/mK) Ambient T (°C) Delta T (°C) V0 1 1 T447 10:46:05 1,666 1.450 25.9450 0.5745 2, 2 1 T447 10:47:11 1,673 1.460 25.4791 0.5722 2, 3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes: Lest Edited Op: Lest Edited Op: Lest Edited Op: Lest Edited Op:	Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 10	neleri zemesi			USETID. ADMIN		
1 1 T447 10:46:05 1,666 1.450 25.9450 0.5745 2, 2 1 T447 10:47:11 1,673 1.460 25.4791 0.5722 2, 3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes:	#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
2 1 T447 10:47:11 1,673 1.460 25.4791 0.5722 2, 3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes: Lost Edited On:	1	1	T447	10:46:05	1,666	1.450	25.9450	0.5745	2,352.572
3 1 T447 10:48:16 1,673 1.460 25.4141 0.5720 2, Notes:	2	1	T447	10:47:11	1,673	1.460	25.4791	0.5722	2,353.969
Notes:	3	3 1 T447 10:48:16 1,673				1.460	25.4141	0.5720	2,354.570
ADMIN 06-Mar-2019 10:48	Notes: Last Edited On: ADMIN 06-Mar-2019 10:48								

Ther	— T mal Cond	IERI uctivity Ana	Jyzer T(CI™	Test Report Report Generated on: 06-Mar-2019 10:55:30			
In: Test	Test ID: strument: Method:	TCI-PC-1830 TH89-05-00 Ceramics	6 283		Software Version: 2.4.4.13 Test started on: 06-Mar-2019 Performed by: Administrator			
Mat	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz 11	neleri emesi			USET ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (∘C)	V0 (mV)
1	1	T447	10:52:00	2,016	2.070	24.8742	0.5060	2,356.382
2	1	T447	10:53:05	2,032	2.100	24.8615	0.5036	2,355.793
3	3 1 T447 10:55:05 2,052 3 1 T447 10:54:11 2,033			2,033	2.100	25.5060	0.5052	2,353.798
Notes: Last Edited On: Last Edited By: Last Edited On: ADMIN 06-Mar-2019 10:55 ORTALAMA 2.088W/mK ORTALAMA 2.088W/mK ORTALAMA 2.088W/mK								

C Ther	mal Cond	IERI luctivity An	Malyzer T	Ci™	Test Report Report Generated on: 07-Mar-2019 12:21:09				
In Test	Test ID: strument: t Method:	TCI-PC-183 TH89-05-00 Ceramics	8 1283		Software Version: 2.4.4.13 Test started on: 07-Mar-2019 Performed by: Administrator User ID: ADMIN				
Ма	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 12	neleri zemesi						
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	12:15:30	1,901	1.860	24.7947	0.5300	2,356.55	
2	1	T447	12:16:36	1,900	1.860	23.6734	0.5292	2,358.68	
3	1	T447	12:17:42	1,910	1.880	24.7926	0.5284	2,356.20	
4	1	T447	12:18:47	1,908	1.870	24.2828	0.5280	2,357.14	
5	1	T447	12:19:53	1,906	1.870	24.8438	0.5293	2,355.65	
Not	es:								
Last	Edited By	:	Last Edited	On:					
ADN	ADMIN 07-Mar-2019 12:20								
	ORTALAMA 1.868W/mK								

				TM	Test Rei	oort		
Ther	rmal Cond	uctivity Ana	alyzer	1	Report Ger	nerated on: 07-M	1ar-2019 12:1	2:16
In Tes	Test ID: strument: t Method:	TCI-PC-183 TH89-05-00 Ceramics	7 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 07-Mar med by: Admini	3 2019 strator	
Ма	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 13	neleri zemesi			USETID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>₩*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	12:09:05	2,009	2.060	24.7714	0.5100	2,355.59
2	1	T447	12:10:11	2,002	2.040	24.7774	0.5128	2,356.374
3	1	T447	12:11:16	2,011	2.060	23.6317	0.5082	2,358.51
Not Last ADN	es: t Edited By: MIN ORTAI	LAMA 2.053V	Last Edited 07-Mar-2019 V/mK	On: 9 12:11				

Ins Test Mat	Test ID: trument: Method: Project: Material: erial Lot:	TCI-PC-1839 TH89-05-00 Ceramics Yapi Malzen Yalitim Malz 14	9 283 neleri emesi		Software Test sta Perfor	Version: 2.4.4.1 Inted on: 07-Mar med by: Admini User ID: ADMIN	3 -2019 strator	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
		T447	12:44:17	1.613	1.360	24 7579	0.5869	2,355.6
1	1	1447	12.44.17	.,				
1 2	1	T447 T447	12:45:22	1,626	1.380	24.7650	0.5839	2,355.6
1 2 3	1 1 1	T447 T447 T447	12:45:22 12:46:28	1,626 1,629	1.380 1.380	24.7650 24.8318	0.5839 0.5835	2,355.6 2,356.1
1 2 3 4	1 1 1 1	T447 T447 T447 T447	12:45:22 12:46:28 12:47:33	1,626 1,629 1,633	1.380 1.380 1.390	24.7650 24.8318 24.2881	0.5839 0.5835 0.5833	2,355.6 2,356.1 2,357.0

C- Ther	-T -		alyzer T	Ci™	Test Rep Report Ger	oort nerated on: 07-№	1ar-2019 12:5	i9:55
In: Test	Test ID: strument: Method:	TCI-PC-1840 TH89-05-00 Ceramics	0 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 07-Mar med by: Admini	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz 15	neleri zemesi			User ID. Admin		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	12:53:12	1,608	1.350	24.8506	0.5871	2,356.558
2	1	T447	12:54:17	1,621	1.370	23.6751	0.5855	2,359.63
3	1	T447	12:55:22	1,629	1.380	23.7006	0.5831	2,359.67
4	1	T447	12:56:28	1,629	1.380	23.7349	0.5836	2,358.84
Note	as:							
Last	Edited By:	1	Last Edited	On:				
ADM	IIN ORTAL	I AMA 1 372V	07-Mar-2019	9 12:59				

MgSO4 Grubu Analiz Sonuçları

MgS	O4 Gri	ubu Ana	liz Sonuç	ları				
C Ther	mal Cond				Test Rep Report Ger	oort herated on: 04-M	1ar-2019 10:3	35:16
In: Test	Test ID: strument: t Method:	TCI-PC-1823 TH89-05-00 Ceramics	3 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar med by: Admini	3 2019 strator	
Ma	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz M1	neleri :emesi			User ID: ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:29:49	1,718	1.540	22.5075	0.5592	2,347.46
2	1	T447	10:30:55	1,734	1.570	23.6684	0.5579	2,344.84
3	1	T447	10:32:01	1,738	1.570	23.0759	0.5575	2,345.66
4	1	T447	10:33:06	1,747	1.590	23.5963	0.5544	2,344.20
5	1	T447	10:34:11	1,746	1.590	23.6525	0.5557	2,344.75
Note Last	es: t Edited By:	:	Last Edited	On:				
ADIV	JIN .		04-Mar-2019	9 10:35				

Ther	mal Cond	IERI uctivity Ana	alyzer T	Ci	Test Rep Report Ger	oort nerated on: 04-M	1ar-2019 10:0	16:29
In: Test	Test ID: strument: Method:	TCFPC-182 TH89-05-00 Ceramics	0)283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Man med by: Admini	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M2	meleri zemesi			User ID: ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:01:28	1,682	1.470	22.8349	0.5706	2,344.376
2	1	T447	10:02:34	1,688	1.490	21.7298	0.5703	2,346.680
3	1	T447	10:03:39	1,692	1.490	22.3138	0.5676	2,345.24
4	1	T447	10:04:44	1,698	1.500	21.7383	0.5685	2,346.654
5	1	T447	10:05:50	1,703	1.510	21.7411	0.5673	2,345.840
Note	es:							
Last	Edited By:		Last Edited	On:				
ADN	OMIN 04-M ORTALAMA 1.494W/mK		04-Mar-201 V/mK	9 10:06				

C- Therr	nal Cond	IERI uctivity Ana	M T(Ci	Test Rep Report Ger	oort nerated on: 04-M	1ar-2019 10:4	13:41
Ins Test	Test ID: strument: Method:	TCI-PC-182 TH89-05-00 Ceramics	4 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar med by: Admini	3 2019 strator	
Mat	Project: Material: erial Lot:	Yapi Malzer Yalitim Malz M3	meleri zemesi			USET ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:39:45	1,593	1.320	23.9339	0.5913	2,345.454
2	1	T447	10:40:50	1,604	1.340	23.3503	0.5875	2,345.958
3	1	T447	10:41:55	1,608	1.350	23.8399	0.5855	2,345.174
4	1	T447	10:43:01	1,608	1.350	23.2962	0.5843	2,346.019
Note Last	es: Edited By:		Last Edited	On:				
ADM	IIN ORTAI	LAMA 1.340V	04-Mar-2019 V/mK	9 10:43				

C Ther	-T -	IERI uctivity Ana	alyzer T	CI	Test Rep Report Ger	oort nerated on: 04-M	1ar-2019 10:1	8:38
In: Test	Test ID: strument: Method:	TCFPC-182 TH89-05-00 Ceramics	1 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar med by: Admini	3 -2019 strator	
Ma	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M4	neleri emesi			User ID: ADMIN	I	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:11:45	1,722	1.540	21.9663	0.5614	2,347.333
2	1	T447	10:12:51	1,730	1.560	22.5368	0.5605	2,345.507
3	1	T447	10:13:56	1,739	1.570	21.9790	0.5593	2,346.872
4	1	T447	10:15:01	1,739	1.570	21.9617	0.5578	2,346.962
5	1	T447	10:16:07	1,749	1.590	21.4106	0.5548	2,348.537
6	1	T447	10:17:12	1,750	1.590	22.6468	0.5555	2,345.115
Note Last	es: Edited By:	:	Last Edited	On:				
	1IN ORTAI	LAMA 1.572V	04-Mar-201 V/mK	9 10:18				

C- Ther	mal Cond	IERI uctivity Ana	alyzer T	Ci™	Test Rep Report Ger	oort nerated on: 04-M	1ar-2019 9:5	7:13
Ins Test	Test ID: strument: Method:	TCI-PC-181 TH89-05-00 Ceramics	9 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar med by: Admini	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 5M	neleri zemesi			User ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:51:58	1,655	1.430	21.9087	0.5758	2,344.556
2	1	T447	9:53:04	1,663	1.440	22.4669	0.5748	2,343.52
3	1	T447	9:54:10	1,667	1.450	20.8962	0.5731	2,347.082
4	1	T447	9:55:15	1,678	1.470	22.4485	0.5721	2,343.004
5	1	T447	9:56:21	1,677	1.470	21.9829	0.5746	2,344.27
Note Last	es: Edited By:		Last Edited	On:				
ADN		_AMA 1.451V	04-Mar-201 V/mK	9 9:57				

C- Therr	nal Cond	IERI uctivity Ana	Jalyzer T(CI	Test Rep Report Ger	o ort herated on: 04-M	1ar-2019 10:2	26: 1 3
Ins Test	Test ID: strument: Method:	TCFPC-1822 TH89-05-00 Ceramics	2 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar med by: Admini	3 2019 strator	
Mat	Project: Material: erial Lot:	Yapi Malzen Yalitim Malz M6	neleri emesi			USET ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:22:45	1,748	1.590	22.9052	0.5575	2,345.359
2	1	T447	10:23:51	1,764	1.620	23.5072	0.5532	2,344.116
3	1	T447	10:24:56	1,764	1.620	22.9066	0.5540	2,345.538
Note Last ADM	es: Edited By: IIN		Last Edited 04-Mar-2019	On: 9 10:26				
	ORTAL	AMA 1.609V	V/mK					

C Ther	mal Cond	LERI uctivity Ana	alyzer T(Ci	Test Rep Report Ger	port nerated on: 04-M	1ar-2019 9:4	7:46
In: Test	Test ID: strument: Method:	TCFPC-181 TH89-05-00 Ceramics	8 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 04-Mar rmed by: Admini	3 2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz 7M	neleri temesi			Oser ID. ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:42:10	1,644	1.410	22.2007	0.5800	2,343.68
2	1	T447	9:43:15	1,663	1.440	21.5534	0.5746	2,344.48
3	1	T447	9:44:21	1,663	1.440	21.4760	0.5740	2,343.48
4	1	T447	9:45:28	1,680	1.470	21.8959	0.5728	2,342.26
5	1	T447	9:46:33	1,672	1.460	21.3597	0.5727	2,343.31
Note Last	es: Edited By:		Last Edited	On:				
ADM	1IN ORTAL	_AMA 1.445V	04-Mar-2019 V/mK	9 9:47				

Ins Test Mat	Test ID: strument: Method: Project: Material: erial Lot:	TCI-PC-181 TH89-05-00 Ceramics Yapi Malzen Yalitim Malz 8M	7 283 neleri temesi		Software ' Test sta Perfor	Version: 2.4.4.1: arted on: 04-Mar med by: Admini User ID: ADMIN	3 2019 strator	
		Senser ID	Start Time	Effusivity W*V(s)	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
#	Repeat	Sensorid	otart mile	(m^2)^R	, (
# 1	Repeat 1	T447	9:33:44	1,585	1.310	20.2861	0.5958	2,340.9
# 1 2	Repeat 1 1	T447 T447	9:33:44 9:34:50	1,585 1,600	1.310 1.330	20.2861 20.4236	0.5958	2,340.9 2,340.6
# 1 2 3	Repeat 1 1 1	T447 T447 T447	9:33:44 9:34:50 9:35:55	1,585 1,600 1,599	1.310 1.330 1.330	20.2861 20.4236 19.8350	0.5958 0.5925 0.5931	2,340.9 2,340.6 2,341.9

Ther	mal Cond	IER uctivity An	Malyzer T(Ci™	Test Rep Report Ger	oort nerated on: 11-M	1ar-2019 10:4	17:58
In: Test	Test ID: strument: Method:	TCI-PC-184 TH89-05-00 Ceramics	7)283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator	
Ma	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M9	meleri zemesi			User ID: ADMIN	I	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	10:41:25	1,534	1.220	26.2699	0.6109	2,357.982
2	1	T447	10:42:30	1,551	1.250	25.6700	0.6040	2,359.218
3	1	T447	10:43:36	1,562	1.270	26.2727	0.6020	2,357.650
4	1	T447	10:44:42	1,567	1.280	26.2618	0.6038	2,358.028
5	1	T447	10:45:48	1,574	1.290	25.6905	0.6003	2,358.793
6	1	T447	10:46:53	1,575	1.290	26.8592	0.5991	2,356.222
Note Last	Notes: .ast Edited By: Last Edited On:							
ADN	ADMIN 11-Mar-2019 10:47 ORTALAMA 1.268W/mK							

C- Ther	mal Cond	uctivity Ana	Malyzer T(Ci™	Test Report Report Generated on: 11-Mar-2019 11:48:27				
In: Test	Test ID: strument: Method:	TCFPC-184 TH89-05-00 Ceramics	8 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator		
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M10	meleri zemesi			User ID: ADMIN	I		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	11:41:08	1,574	1.290	26.0832	0.5933	2,357.889	
2	1	T447	11:42:14	1,595	1.330	25.5523	0.5885	2,358.762	
3	1	T447	11:43:20	1,606	1.340	25.4805	0.5864	2,359.388	
4	1	T447	11:44:27	1,614	1.360	26.1914	0.5838	2,357.055	
5	1	T447	11:45:32	1,614	1.360	26.1985	0.5865	2,356.997	
6	1	T447	11:46:38	1,615	1.360	26.1624	0.5888	2,357.600	
7	1	T447	11:47:43	1,605	1.340	25.7333	0.5843	2,358.300	
Note Last	es: Edited By:		Last Edited	On:					
ADN	1IN ORTAI	LAMA 1.340V	11-Mar-2019 V/mK	9 11:48					

Ins Test Mat	Test ID: strument: Method: Project: Material: erial Lot:	TCFPC-1849 TH89-05-00 Ceramics Yapi Malzen Yalitim Malz M11	9 283 neleri :emesi		Software ' Test sta Perfor	Version: 2.4.4.1: arted on: 11-Mar med by: Admini User ID: ADMIN	3 -2019 strator	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	11:52:08	1,664	1.440	25.9104	0.5744	2,358.11
		T447	11:53:14	1,682	1.480	26.3887	0.5751	2,357.32
2	1							
2 3	1	T447	11:54:20	1,695	1.500	25.9143	0.5715	2,358.91
2 3 4	1 1 1	T447 T447	11:54:20 11:55:25	1,695 1,701	1.500 1.510	25.9143 25.3137	0.5715 0.5672	2,358.91 2,359.73

C- Ther	mal Cond	LERI uctivity Ana	alyzer T	Ci	Test Report Report Generated on: 11-Mar-2019 10:28:15				
In: Test	Test ID: strument: Method:	TCFPC-184 TH89-05-00 Ceramics	5 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 2019 strator		
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M12	meleri zemesi			User ID. ADMIN	•		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	10:07:21	1,775	1.640	25.4218	0.5481	2,359.17	
2	1	T447	10:08:26	1,810	1.700	26.0016	0.5445	2,357.134	
3	1	T447	10:09:32	1,819	1.710	26.5025	0.5426	2,355.724	
4	1	T447	10:10:37	1,824	1.720	26.5958	0.5392	2,355.889	
5	1	T447	10:11:43	1,822	1.720	25.4183	0.5399	2,358.829	
6	1	T447	10:12:49	1,837	1.750	26.5548	0.5383	2,355.370	
7	1	T447	10:13:54	1,833	1.740	25.9305	0.5386	2,357.715	
Note Last	es: Edited By:		Last Edited	On:					
ADM	IIN ORTAI	AMA 1.711V	11-Mar-2019 V/mK	9 10:28					

					Test Rep Report Ger	oort nerated on: 11-M	1ar-2019 9:4	9:32
Ins Test	Test ID: strument: Method:	TCI-PC-184 TH89-05-00 Ceramics	3 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz M13	neleri zemesi			User ID: ADMIN	I	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:46:05	1,772	1.630	26.3505	0.5524	2,356.29
2	1	T447	9:47:11	1,779	1.640	26.2872	0.5533	2,356.84
3	1	T447	9:48:17	1,776	1.640	25.2122	0.5506	2,360.11
Note Last ADN	es: Edited By:	ANA 4 620V	Last Edited	On: 9 9:49				

C	mal Cond	IERI uctivity Ana	Jalyzer T(Test Rep Report Ger	oort erated on: 11-M	lar-2019 10:0)3:08
In Test	Test ID: strument: t Method:	TCI-PC-1844 TH89-05-00 Ceramics	4 283		Software Test sta Perfor	Version: 2.4.4.1 inted on: 11-Mar med by: Adminis User ID: ADMIN	3 -2019 strator	
Ma	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz M14	neleri emesi					
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	9:53:26	1,727	1.550	25.8103	0.5598	2,358.294
2	1	T447	9:54:32	1,740	1.580	24.7251	0.5610	2,361.493
3	1	T447	9:55:37	1,739	1.570	25.2935	0.5583	2,358.69(
Not Last	es: Edited By:		Last Edited	On:				
ADN	ЛIN		11-Mar-2019	9 10:02				
	ORTAI	_AMA 1.567V	V/mK					

C- Ther	mal Cond	IERI uctivity Ana	alyzer T	Ci	Test Report Report Generated on: 11-Mar-2019 9:40:31				
Ins Test	Test ID: strument: Method:	TCI-PC-184 TH89-05-00 Ceramics	2 283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator		
Mat	Project: Yapi Malze Material: Yalitim Ma Material Lot: M15 t Repeat Sensor ID		neleri temesi			User ID. ADMIN			
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	9:30:27	1,673	1.460	24.8007	0.5689	2,360.248	
2	1	T447	9:31:32	1,702	1.510	25.4190	0.5636	2,359.233	
3	1	T447	9:32:38	1,715	1.530	25.4674	0.5599	2,358.644	
4	1	T447	9:33:43	1,723	1.550	25.4374	0.5597	2,358.75	
5	1	T447	9:34:49	1,721	1.540	25.4777	0.5549	2,358.130	
6	1	T447	9:35:55	1,729	1.560	25.9708	0.5575	2,357.33	
7	1	T447	9:37:00	1,727	1.550	25.5767	0.5588	2,358.68	
Note Last ADM	es: Edited By:		Last Edited 11-Mar-201	On: 9 9:39					

Su Grubu Analiz Sonuçları

C		r c						
	rubu A		nuçları		Test Rej	port		
Thern In Test	mal Cond Test ID: strument: t Method:	uctivity Ana TCI-PC-1852 TH89-05-00 Ceramics	alyzer	1	Report Gen Software Test sta Perfo	Version: 2.4.4.1 arted on: 11-Mar rmed by: Admini	1ar-2019 12:3 3 r-2019 istrator	51:28
Ма	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz S1	neleri :emesi			User ID: ADMIN	1	
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	12:25:08	2,263	2.530	26.1787	0.4699	2,356.85
2	1	T447	12:26:14	2,256	2.520	26.7390	0.4705	2,355.91
3	1	T447	12:27:20	2,241	2.490	25.6908	0.4700	2,358.65
4	1	T447	12:28:25	2,265	2.530	26.7984	0.4687	2,355.28
5	1	T447	12:29:30	2,259	2.520	26.1819	0.4701	2,357.42
6	1	T447	12:30:36	2,257	2.520	26.1713	0.4703	2,357.34
Note Last	es: t Edited By	:	Last Edited	On:				
ADN			11-Mar-2019	9 12:31				

C- Ther	mal Cond	IERI uctivity Ana			Test Rep Report Ger	oort nerated on: 11-M	1ar-2019 12:0	08:37
In: Test	Test ID: strument: Method:	TCFPC-185 TH89-05-00 Ceramics	0 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S2	neleri zemesi			User ID: ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	12:00:10	1,950	1.950	26.4307	0.5219	2,357.054
2	1	T447	12:01:16	1,947	1.940	25.4183	0.5170	2,358.973
3	1	T447	12:02:22	1,952	1.950	26.5789	0.5178	2,356.65
4	1	T447	12:03:27	1,963	1.970	25.3391	0.5181	2,359.762
5	1	T447	12:04:33	1,955	1.960	26.5523	0.5189	2,357.08
6	1	T447	12:05:38	1,950	1.950	24.8569	0.5210	2,361.574
7	1	T447	12:06:43	1,955	1.960	26.0804	0.5152	2,358.37
8	1	T447	12:07:49	1,948	1.940	25.4964	0.5177	2,359.49
Note Last ADN	es: Edited By: 1IN	AMA 1 953V	Last Edited 11-Mar-201	On: 9 12:08				

C- Therr	-T -		alyzer T(Sim	Test Rep Report Ger	oort herated on: 11-M	1ar-2019 12:1	17:05
Ins Test	Test ID: strument: Method:	TCI-PC-1857 TH89-05-00 Ceramics	1 /283		Software V Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator	
Mat	Project: Material: erial Lot:	Yapi Malzen Yalitim Malz S3	neleri :emesi			User ID: ADwind		
#	Repeat	Sensor ID	Start Time	Effusivity W*√(s) (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	12:11:52	1,996	2.030	25.4551	0.5091	2,358.93
2	1	T447	12:12:57	2,019	2.070	26.0355	0.5069	2,357.30
3	1	T447	12:14:03	2,027	2.090	26.0196	0.5035	2,357.22
4	1	T447	12:15:08	2,026	2.090	25.9920	0.5055	2,357.49
Note	s:			-				
Last	Edited By:		Last Edited	On:				
ADM			11-Mar-2019					

C- Ther	mal Cond	IER uctivity Ana	Jalyzer T		Test Rep Report Ger	port nerated on: 11-M	1ar-2019 13:0)8:06
In: Test	Test ID: strument: Method:	TCI-PC-1854 TH89-05-00 Ceramics	4 283		Software Test sta Perfor	Version: 2.4.4.13 arted on: 11-Mar med by: Admini	3 -2019 strator	
Mat	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz S4	neleri :emesi			User ID: ADMIN		
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	13:00:08	2,038	2.110	25.7775	0.5041	2,358.22
2	1	T447	13:01:14	2,071	2.170	26.9154	0.4991	2,355.25
3	1	T447	13:02:20	2,075	2.180	26.8631	0.4985	2,355.77
4	1	T447	13:03:25	2,090	2.200	26.3862	0.4960	2,356.44
5	1	T447	13:04:31	2,084	2.190	26.9614	0.4959	2,354.95
6	1	T447	13:05:36	2,091	2.210	26.8949	0.4951	2,355.13
7	1	T447	13:06:42	2,084	2.190	26.8977	0.4953	2,355.53
Note Last	edited By:	·	Last Edited	On: 9 13:07				

Ther	mal Cond	IERI uctivity An	alyzer T	CI	Test Report Report Generated on: 11-Mar-2019 12:56:35				
In Test	Test ID: strument: Method:	TCI-PC-185 TH89-05-00 Ceramics	3 1283		Software Test sta Perfor	Version: 2.4.4.1 arted on: 11-Mar med by: Admini	3 -2019 strator		
Ма	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S5	meleri zemesi		User ID: ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)	
1	1	T447	12:44:09	2,029	2.090	26.8086	0.5059	2,355.174	
2	1	T447	12:45:15	2,038	2.110	26.8373	0.5047	2,355.87	
3	1	T447	12:46:20	2,041	2.110	25.6700	0.5007	2,358.56	
4	1	T447	12:47:26	2,057	2.140	26.3378	0.4995	2,356.953	
5	1	T447	12:48:31	2,059	2.150	25.7517	0.5000	2,357.77	
6	1	T447	12:49:37	2,053	2.140	26.8440	0.4993	2,355.31	
7	1	T447	12:50:42	2,063	2.160	26.2922	0.4967	2,356.80	
Note Last ADM	es: Edited By: //IN		Last Edited	On: 9 12:56					

C- Ther	-T -	IERI uctivity An	M T	Ci	Test Rep Report Ger	oort nerated on: 11-M	lar-2019 13:1	6:41
Ins Test Mat	Test ID: strument: Method: Project: Material: terial Lot:	TCI-PC-185 TH89-05-00 Ceramics Yapi Malzer Yalitim Malz S6	5 i283 neleri zemesi	Software Version: 2.4.4.13 Test started on: 11-Mar-2019 Performed by: Administrator User ID: ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)
1	1	T447	13:12:21	1,833	1.740	26.9437	0.5503	2,355.884
2	1	T447	13:13:26	1,834	1.740	25.8344	0.5530	2,358.76
3	1	T447	13:14:32	1,829	1.730	26.9819	0.5508	2,355.929
4	1	T447	13:15:37	1,830	1.730	26.5082	0.5485	2,356.657
Note Last ADM	es: Edited By: /IN		Last Edited 11-Mar-201	On: 9 13:16				

Ther	mal Cond	UCTIVITY Ana TCLPC-1850	alyzer T	SI	Report Generated on: 11-Mar-2019 13:28:32 Software Version: 2.4.4.13						
Test	Method:	Ceramics	200		Performed by: Administrator						
Ma	Project: Material: terial Lot:	Yapi Malzen Yalitim Malz S7	neleri temesi			User ID: ADMIN					
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)			
1	1	T447	13:20:48	1,824	1.720	25.7548	0.5526	2,359.09			
2	1	T447	13:21:54	1,830	1.730	26.9932	0.5478	2,355.45			
3	1	T447	13:22:59	1,827	1.730	26.8443	0.5499	2,355.83			
4	1	T447	13:24:05	1,832	1.740	27.0321	0.5477	2,355.93			
5	1	T447	13:25:10	1,833	1.740	26.4848	0.5489	2,357.38			
6	1	T447	13:26:16	1,831	1.740	26.5849	0.5456	2,357.18			
7	1	T447	13:27:21	1,826	1.730	26.4428	0.5507	2,357.84			
Note Last	Notes: Last Edited By: Last Edited On: OPMNN 41 Mer 2010, 42:28			On:							

C- Ther	mal Cond	IERI uctivity Ana	Alyzer T(Test Report Report Generated on: 12-Mar-2019 8:37:33					
In: Test	Test ID: strument: Method: Project:	TCI-PC-1854 TH89-05-00 Ceramics Yapi Malzer	8 283 neleri		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator User ID: ADMIN					
Mat	Material: erial Lot:	Yalitim Malz S8	emesi							
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)		
1	1	T447	8:33:55	1,787	1.660	24.5635	0.5544	2,362.49		
2	1	T447	8:35:01	1,784	1.650	23.5147	0.5549	2,365.22		
3	1	T447	8:36:06	1,784	1.650	23.5139	0.5544	2,365.00		
Note Last	Notes: Last Edited By: Last Edited On:									
ADN	IIN ORTAL	_AMA 1.654V	12-Mar-201 V/mK	9 8:37						

C- Ther	-T mal Cond	IERI uctivity Ana	alyzer T (Ci	Test Report Report Generated on: 12-Mar-2019 8:30:41						
Ins Test	Test ID: strument: Method:	TCI-PC-185 TH89-05-00 Ceramics	7 1283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator						
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S9	meleri zemesi			USET D. ADMIN					
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)			
1	1	T447	8:26:28	1,656	1.430	23.1650	0.5831	2,365.496			
2	1	T447	8:27:33	1,656	1.430	23.7243	0.5838	2,363.598			
3	1	T447	8:28:39	1,662	1.440	24.3938	0.5795	2,361.925			
4	1	T447	8:29:44	1,657	1.430	24.4663	0.5820	2,362.280			
Note Last	Notes: Last Edited By: Last Edited On:										
ADM	IIN ORTAI	_AMA 1.433V	12-Mar-201 V/mK	9 8:30							

C-	mal Cond	IERI uctivity Ana		Ci™	Test Report Report Generated on: 12-Mar-2019 9:05:41					
In: Test	Test ID: strument: Method:	TCFPC-186 TH89-05-00 Ceramics	1 283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator					
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S10	neleri emesi			User ID. ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)		
1	1	T447	8:58:27	1,813	1.700	24.1973	0.5473	2,363.384		
2	1	T447	8:59:33	1,818	1.710	25.3119	0.5461	2,361.457		
3	1	T447	9:00:38	1,826	1.730	24.1697	0.5453	2,363.620		
4	1	T447	9:01:44	1,833	1.740	25.3433	0.5420	2,360.545		
5	1	T447	9:02:49	1,831	1.740	25.3960	0.5434	2,361.241		
6	1	T447	9:03:55	1,824	1.720	24.1934	0.5435	2,364.070		
7	1	T447	9:05:00	1,835	1.740	24.9230	0.5447	2,361.710		
Notes: Last Edited By: Last Edited On:										
ADMIN 12-Mar-2019 9:05 ORTALAMA 1.726W/mK										

C- Therr	nal Cond	IERI uctivity Ana	Alyzer T(Ci	Test Report Report Generated on: 12-Mar-2019 8:55:24					
Ins Test	Test ID: trument: Method:	TCI-PC-1860 TH89-05-00 Ceramics	0 283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator					
Mat	Project: Material: erial Lot:	Yapi Malzer Yalitim Malz S11	neleri cemesi			USETID. ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)		
1	1	T447	8:50:13	2,028	2.090	25.0892	0.5103	2,360.342		
2	1	T447	8:51:19	2,028	2.090	25.1464	0.5098	2,360.337		
3	1	T447	8:52:25	2,042	2.120	25.0807	0.5070	2,360.599		
4	1	T447	8:53:30	2,044	2.120	25.0934	0.5054	2,360.614		
Notes: Last Edited By: Last Edited On:										
ADM		LAMA 2.104V	12-Mar-2019 V/mK	9 8:54						

C- Ther	-T - mal Cond	IERI uctivity Ana	alyzer T (Ci™	Test Report Report Generated on: 12-Mar-2019 8:45:27						
In: Test	Test ID: strument: Method:	TCFPC-185 TH89-05-00 Ceramics	9 283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator						
Mat	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S12	neleri zemesi			USETID. ADMIN					
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)			
1	1	T447	8:40:47	2,024	2.080	24.9269	0.5088	2,361.022			
2	1	T447	8:41:52	2,019	2.070	24.9046	0.5091	2,361.277			
3	1	T447	8:42:57	2,026	2.090	24.9513	0.5111	2,362.045			
4	1	T447	8:44:03	2,025	2.080	23.8279	0.5102	2,364.351			
Note Last	es: Edited By:	:	Last Edited	On:							
ADMIN 12-Mar-2019 8:45 ORTALAMA 2.083W/mK											

Ther In: Test	mal Cond Test ID: strument: Method:	uctivity An: TCI-PC-186 TH89-05-00 Ceramics	alyzer T	51	I EST REPORT Report Generated on: 12-Mar-2019 9:33:0 Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator					
Ma	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S13	neleri zemesi			User ID: ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)		
1	1	T447	9:25:48	1,721	1.540	24.5540	0.5676	2,362.96		
2	1	T447	9:26:54	1,738	1.570	25.7343	0.5648	2,359.92		
з	1	T447	9:27:59	1,741	1.580	25.7135	0.5661	2,360.14		
4	1	T447	9:29:05	1,747	1.590	25.6682	0.5630	2,360.34		
5	1	T447	9:30:11	1,746	1.590	25.7156	0.5643	2,360.11		
6	1	T447	9:31:16	1,753	1.600	25.7619	0.5619	2,360.59		
7	1	T447	9:32:21	1,738	1.570	25.1563	0.5678	2,362.53		
Note Last	Notes: Last Edited By: Last Edited On: ADMIN 12-Mar-2019 9:32									

C- Therr	nal Cond		Jalyzer T(Test Report Report Generated on: 12-Mar-2019 9:13:38					
Ins Test	Test ID: strument: Method:	TCI-PC-1863 TH89-05-00 Ceramics	2 283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator					
Mat	Project: Material: erial Lot:	Yapi Malzen Yalitim Malz S14	neleri emesi			USERID. ADMIN				
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)		
1	1	T447	9:08:47	1,633	1.390	24.2910	0.5885	2,363.88		
2	1	T447	9:09:53	1,637	1.400	24.2758	0.5901	2,363.629		
3	1	T447	9:10:58	1,651	1.420	24.9273	0.5841	2,362.12		
4	1	T447	9:12:04	1,651	1.420	24.9799	0.5862	2,361.624		
Note Last	Notes: Last Edited By: Last Edited On:									
ADM	IIN ORTAL	AMA 1.408V	12-Mar-2019 V/mK	9 9:13						

C Ther	— T I — mal Cond	IERI uctivity Ana		Ci™	Test Report Report Generated on: 12-Mar-2019 9:22:12						
In: Test	Test ID: strument: Method:	TCFPC-186 TH89-05-00 Ceramics	3 283		Software Version: 2.4.4.13 Test started on: 12-Mar-2019 Performed by: Administrator						
Ma	Project: Material: terial Lot:	Yapi Malzer Yalitim Malz S15	neleri zemesi	USER ID. ADMIN							
#	Repeat	Sensor ID	Start Time	Effusivity <u>W*√(s)</u> (m^2)*K	Conductivity(W/mK)	Ambient T (°C)	DeltaT (°C)	V0 (mV)			
1	1	T447	9:16:58	1,691	1.490	25.0146	0.5836	2,360.724			
2	1	T447	9:18:04	1,692	1.490	25.5540	0.5805	2,359.492			
3	1	T447	9:19:09	1,698	1.500	25.5367	0.5795	2,359.573			
4	1	T447	9:20:15	1,693	1.490	25.4282	0.5812	2,359.71			
5	1	T447	9:21:20	1,688	1.490	25.4848	0.5838	2,360.400			
Note Last	es: Edited By: 1IN		Last Edited	On: 9 9:21							

]	l		2	2		3	6		4	Ļ
Pore	Pore		Pore	Pore		Pore	Pore		Pore	Pore
diameter	volume		diameter	volume		diameter	volume		diameter	volume
(nm)	(ml/g)		(nm)	(ml/g)		(nm)	(ml/g)		(nm)	(ml/g)
345707	0		344707	0		345696,1	0		346138,1	0
90875,1	0,005		90684,5	0,0031		90768,5	0,006		91202,2	0,0035
60429,4	0,0058		60412	0,0036		60266,4	0,0067		60402,3	0,004
45254,8	0,0066		45272,8	0,0039		45356,6	0,0069		45284,8	0,0042
32953,2	0,0075		32978,8	0,0041	1	32892,9	0,0071		32931,1	0,0045
30177,9	0,0076		30199,3	0,0042		30175,4	0,0072		30187,3	0,0046
24167,7	0,0082		24175,3	0,0044		24156,8	0,0073		24153,8	0,0047
21311,7	0,0087		21303,9	0,0045		21303,4	0,0074		21312,3	0,0049
17265,2	0,0091		17269,2	0,0047		17272,4	0,0075		17262,4	0,005
13947,6	0,01		13945,6	0,0048		13938,9	0,0078		13951	0,0052
11336,8	0,0106		11339,1	0,005		11326,3	0,008		11328,8	0,0055
9048,1	0,0112		9048,5	0,005		9043,4	0,0084		9042,4	0,0057
8404,3	0,0112		6694,9	0,005		8281,3	0,0084		7775,4	0,0058
6031,7	0,0114	_	4530,4	0,005		5746,6	0,0085		6748,8	0,0059
4931,9	0,0119		3596,3	0,005		4811,2	0,0086		4947,4	0,0061
3884,3	0,0123		2697,3	0,005		3625,7	0,009		3865,5	0,0063
3092,7	0,0129		2582,9	0,0051		3100,7	0,0093		2936,4	0,0066
2494,8	0,0138		2107	0,0054		2390,4	0,0099		2388	0,0068
2063,9	0,0143		1639,5	0,006		2096,4	0,0101		1997,8	0,0073
1631,2	0,015		1282,6	0,0067		1607,9	0,0107		1630,8	0,0076
1290,8	0,0157		1051,2	0,0078		1293,2	0,0112		1336,1	0,0081
1050,1	0,0163		828,3	0,0093		1048,5	0,0119		1021,7	0,0088
835,1	0,0169		678,8	0,0107		831,1	0,0128		830	0,0097
678,4	0,0175		548,7	0,0116		680,7	0,014		677,3	0,0105
555,3	0,018		431	0,0128		552,1	0,0147		556,1	0,0114
432	0,0185		350,2	0,0147		432,5	0,016		434	0,0129
349,6	0,0192		284,2	0,0165		349,3	0,0173		349,5	0,0143
283,5	0,0199		226,9	0,0186		283,9	0,0191		284,6	0,0158
226,7	0,0206		183	0,0203		227	0,0211		226,7	0,018
183	0,0213		151	0,0215		183,4	0,0235]	183,3	0,0199
151,1	0,0219		120,8	0,0228		150,9	0,0258]	151	0,0216
120,8	0,0229		95,3	0,0243		120,6	0,0286]	120,9	0,0236
95,2	0,0243		77,1	0,0259		95,3	0,0321]	95,4	0,0258
77,1	0,0258		62,5	0,0278		77,1	0,0356]	77,1	0,0281

EK - 2 POROZİMETRE ANALİZ SONUÇLARI

Islanma - Kuruma Grubu Analiz Sonuçları

62,5	0,0272		50,3	0,0299		62,4	0,0393	ĺ	62,5	0,0312
50,3	0,0287		40,3	0,0321		50,3	0,0429	1	50,3	0,0351
40,3	0,0305		32,4	0,0338		40,2	0,0472		40,2	0,0406
32,4	0,0318		26,3	0,0357		32,4	0,0511		32,4	0,046
26,3	0,0334		21,1	0,037		26,3	0,0544		26,3	0,0506
21,1	0,0352		17,1	0,0386		21,1	0,0577		21,1	0,055
17,1	0,0373		13,7	0,0403		17,1	0,0602		17,1	0,0583
13,7	0,0393		12,2	0,0414		13,7	0,062		13,7	0,0613
12,2	0,0404		11	0,0416		12,2	0,0627		12,2	0,0624
11	0,0413		9,1	0,0431		11	0,0634		11	0,0635
9,1	0,0426		8	0,0438		9,1	0,0643		9,1	0,0645
8	0,0426		7,2	0,0444		8	0,0651		8	0,0653
7,2	0,0428		6,6	0,045		7,2	0,0659		7,2	0,0659
6,6	0,0436		6	0,0456	×	6,6	0,066		6,6	0,0662
6	0,0442		5,6	0,0462		6	0,0663		6	0,0664
5,6	0,0444		5,2	0,0465		5,6	0,0663		5,6	0,067
5,2	0,0444		4,8	0,0467		5,2	0,0667		5,2	0,0674
4,8	0,045		4,5	0,048		4,8	0,0675		4,8	0,0676
4,5	0,0455		4,3	0,0488		4,5	0,0678		4,5	0,0682
4,3	0,0458		4	0,0488		4,3	0,0681		4,3	0,069
4	0,046	× .	3,8	0,0488		4	0,0687		4	0,0708
3,8	0,0466		3,6	0,0494		3,8	0,0689		3,8	0,0708
3,6	0,0472		3,4	0,0503		3,6	0,0694		3,6	0,0708
3,4	0,0476		3,3	0,051		3,4	0,0705		3,4	0,0708
3,3	0,0478		3,1	0,0518		3,3	0,0712		3,3	0,0708
3,1	0,0478		3	0,0523		3,1	0,0712		3,1	0,0708
3	0,0478					3	0,0712		3	0,0708

5	i		6		7				8	
Pore	Pore		Pore	Pore		Pore	Pore		Pore	Pore
diameter	volume		diameter	volume		diameter	volume		diameter	volume
345918,2	0		344823,7	0		345/33,4	0		346109,1	0
90699,4	0,0067		90663,7	0,0032	-	90657,2	0,0035	-	90878	0,0032
60433	0,0077		60485,4	0,0035	-	60395,5	0,0042	-	60471,7	0,0037
45280,2	0,0084		45260,5	0,0037		45302,8	0,0046		45321,9	0,0045
32947,6	0,009		32925,2	0,0051		32945,6	0,0048		32951,5	0,0048
30184,4	0,0092		30226,4	0,0052		30183,9	0,0049		30204,5	0,0048
24170,5	0,0096		24138,4	0,0053	-	24159,6	0,0052	-	24169,3	0,005
21314,6	0,01		21316	0,0054	-	21310,8	0,0053	-	21326,1	0,0051
17267,8	0,0104		17285,4	0,0055		17261,3	0,0055		17266,3	0,0053
13936,2	0,0109		13952,1	0,0057		13946,4	0,0057		13948,9	0,0055
11299,8	0,0112		11333,7	0,0059		11337	0,0061		11332,2	0,0057
9047,9	0,0118		9047,6	0,0061		9046	0,0063		9047,6	0,0059
7574,2	0,0119		8202,2	0,0061		8138,7	0,0063	-	7075,2	0,0059
5709,8	0,0121		6929	0,0062		6665,4	0,0063	-	4155,2	0,0062
4281,5	0,0132		4682,5	0,0063		4371,1	0,0064		3893,7	0,0063
3593,7	0,0138		3877,6	0,0065		3387,9	0,0068		2955,9	0,0067
2933,1	0,0147		3187,2	0,0068		3245,2	0,0068		2517,3	0,0072
2334,8	0,0155		2483,2	0,0074		2385,9	0,0074		2082,9	0,0079
1975,1	0,0164		2107,6	0,0078		2113,1	0,0077		1619,5	0,0092
1611,2	0,0176		1615,2	0,008		1630,8	0,0085		1322,6	0,0102
1318,9	0,0188		1319,2	0,0084		1292,6	0,0095		1046,6	0,0114
1046,1	0,02		1053	0,0089		1036,7	0,0108		834,1	0,0127
825,5	0,0215		835,6	0,0094		839,3	0,0122		676,6	0,0143
677,8	0,024		679,8	0,0099		668	0,0137		554,1	0,0152
552,9	0,0258		554,3	0,0105		549,5	0,0155		432,2	0,0172
435,6	0,0284		433,8	0,0111		432,7	0,0175		350,9	0,0186
350,8	0,0312		349,8	0,0121		349,2	0,0191		283,9	0,0203
283,6	0,0336		283,9	0,0131		284,6	0,0206		226,6	0,0223
227	0,0361		226,5	0,0143		226,6	0,0222		182,9	0,0246
183,3	0,0386		183,4	0,0159		183,3	0,0241		151,1	0,0268
151,3	0,0407		151,2	0,0191		150,9	0,0259		120,9	0,0292
120,8	0,0433		120,7	0,0236		120,8	0,0281		95,4	0,0321
95,2	0,0462		95,4	0,028		95,3	0,031		77,1	0,0352
77,1	0,0491		77,1	0,0348		77,1	0,0345		62,4	0,0387
62,4	0,0523		62,4	0,0381]	62,5	0,0377]	50,3	0,042
50,3	0,0562	1	50,3	0,0404	1	50,3	0,0402	1	40,3	0,0458
40,3	0,0614		40,3	0,0425	1	40,3	0,0424	1	32,4	0,049
32,4	0,0659		32,4	0,044	1	32,4	0,044	1	26,3	0,052
26,3	0,0699		26,3	0,0451]	26,3	0,0452]	21,1	0,0553

21,1	0,0736	21,1	0,046	21,1	0,0462	17,1	0,0576
17,1	0,0757	17,1	0,0466	17,1	0,0468	13,7	0,0601
13,7	0,0782	13,7	0,0472	13,7	0,048	12,2	0,0611
12,2	0,079	12,2	0,0474	12,2	0,0484	11	0,0621
11	0,08	11	0,0477	11	0,0489	9,1	0,0634
9,1	0,0814	9,1	0,0481	9,1	0,0496	8	0,0641
8	0,0816	8	0,0483	8	0,0501	7,2	0,0648
7,2	0,0823	7,2	0,0486	7,2	0,0505	6,6	0,0649
6,6	0,0828	6,6	0,0488	6,6	0,0512	6	0,0653
6	0,0835	6	0,0493	6	0,0514	5,6	0,0658
5,6	0,084	5,6	0,0493	5,6	0,0519	5,2	0,0663
5,2	0,0846	5,2	0,0498	5,2	0,0527	4,8	0,067
4,8	0,0849	4,8	0,0501	4,8	0,0531	4,5	0,0672
4,5	0,085	4,5	0,0501	4,5	0,0532	4,3	0,0673
4,3	0,0856	4,3	0,0503	4,3	0,0533	4	0,0678
4	0,086	4	0,0503	4	0,054	3,8	0,0683
3,8	0,0862	3,8	0,0503	3,8	0,0549	3,6	0,069
3,6	0,0865	3,6	0,0504	3,6	0,0565	3,4	0,0694
3,4	0,0866	3,4	0,0504	3,4	0,0565	3,3	0,0696
3,3	0,0867	3,3	0,0504	3,3	0,0565	3,1	0,0697
3,1	0,0871	3,1	0,0504	3,1	0,0569	3	0,0714
3	0,0874	3	0,0504	3	0,0581		

					7	r		1 1		
9)		1	0		1	1		12	2
Pore	Pore		Pore	Pore		Pore	Pore		Pore	Pore
diameter	volume		diameter	volume		diameter	volume		diameter	volume
346461,3	0		345966,1	0		347326,4	0		346482,9	0
90695,3	0,0066		90573,8	0,0035		90937,4	0,0031		90515,8	0,0034
60601,3	0,0072		60363,5	0,004		60549,2	0,0042		60492	0,0038
45279,8	0,0078		45280,7	0,0044		45344,2	0,0049		45301,5	0,0041
32927,6	0,0083		32948,4	0,0048		32932,5	0,0054		32901,8	0,0044
30183,8	0,0086		30174,2	0,0048		30197,5	0,0056		30201,2	0,0045
24162	0,0089		24165,8	0,005		24164,5	0,0058		24171	0,0047
21334	0,009		21308,2	0,0051		21324,6	0,006		21316,7	0,0048
17267,3	0,0092		17275,2	0,0053		17269	0,0061		17267,2	0,0051
13958,6	0,0095		13953,4	0,0055		13952	0,0064		13946	0,0053
11308,8	0,0097		11337,4	0,0058		11339	0,0068		11337,3	0,0057
9042,7	0,01		9047,8	0,0062		9040,6	0,0071		9050,9	0,0057
8343,8	0,0103		7254,4	0,0063		7297,8	0,0072		6396,9	0,0057
5965,2	0,0103		7206,7	0,0063		6296,8	0,0073		4874,6	0,0059
4390,8	0,0106		4908,6	0,0065		4845,3	0,0074		3822,1	0,006
3902,9	0,0107		3882,1	0,0065		3979,7	0,0075		3248,3	0,0066
3061,1	0,011	× .	3199	0,0066		2740,5	0,0085		2466	0,008
2340,7	0,0113		2504,8	0,0069		2523,3	0,0085		1938	0,0084
2089,3	0,0117	_	1987,9	0,0071		2053	0,0087		1577,1	0,009
1595,8	0,0126		1636,6	0,0075		1565,2	0,0092		1295,3	0,0097
1315,3	0,0132		1330,4	0,0078		1321	0,0097		1034,6	0,0106
1043,5	0,0139		1055,5	0,0081		1036,2	0,0104		838,7	0,0124
834	0,0147		838,4	0,0085		825,9	0,0113		673,1	0,0135
678,9	0,0155		678	0,009		680	0,0121		554	0,0149
553,6	0,0163		554,3	0,0096		552,3	0,0127		430,9	0,0171
432,8	0,0175		432,2	0,0104		432,7	0,0135		346,6	0,0189
348,9	0,0189		349,5	0,011		350,3	0,0145		283,7	0,0205
283,7	0,0202		283,6	0,0117		283,6	0,0158		226,8	0,0221
226,9	0,0219		226,5	0,0127		227	0,0172		183,3	0,0238
183,4	0,0236		182,9	0,0136		183,2	0,0192		150,9	0,0252
151	0,0255		151,2	0,0146		151,2	0,0221		120,8	0,0272
120,8	0,0277		120,8	0,016		120,7	0,0269		95,3	0,0305
95,4	0,0307		95,4	0,018		95,3	0,0323		77,1	0,0341
77,1	0,034		77	0,0209		77,1	0,0361		62,4	0,037
62,4	0,0378		62,4	0,0256		62,4	0,0388		50,3	0,0392
50,3	0,0416		50,3	0,0327		50,3	0,0412		40,3	0,0412
40,3	0,0459		40,3	0,0435		40,3	0,0435		32,4	0,0428
32,4	0,0493		32,4	0,0511		32,4	0,0451		26,3	0,0441
26,3	0,0522		26,3	0,0564		26,3	0,0464		21,1	0,0452

21,1	0,0546	21,1	0,0607	21,1	0,0474	17,1	0,0462
17,1	0,0567	17,1	0,0644	17,1	0,0481	13,7	0,0469
13,7	0,0584	13,7	0,0672	13,7	0,0487	12,2	0,0473
12,2	0,0591	12,2	0,0685	12,2	0,049	11	0,0479
11	0,0602	11	0,0696	11	0,0492	9,1	0,0487
9,1	0,0619	9,1	0,0713	9,1	0,0496	8	0,0492
8	0,063	8	0,0721	8	0,0499	7,2	0,0497
7,2	0,0638	7,2	0,0728	7,2	0,05	6,6	0,0498
6,6	0,0648	6,6	0,0739	6,6	0,05	6	0,0499
6	0,0656	6	0,0748	6	0,05	5,6	0,0503
5,6	0,0659	5,6	0,0756	5,6	0,0501	5,2	0,0506
5,2	0,0661	5,2	0,0756	5,2	0,0501	4,8	0,0511
4,8	0,0662	4,8	0,0757	4,8	0,0504	4,5	0,0515
4,5	0,0665	4,5	0,0758	4,5	0,0507	4,3	0,0516
4,3	0,0676	4,3	0,076	4,3	0,051	4	0,052
4	0,0683	4	0,076	4	0,0514	3,8	0,0524
3,8	0,0683	3,8	0,076	3,8	0,0517	3,6	0,0524
3,6	0,0683	3,6	0,0768	3,6	0,0517	3,4	0,0524
3,4	0,0687	3,4	0,0776	3,4	0,052	3,3	0,0524
3,3	0,069	3,3	0,0784	3,3	0,0523	3,1	0,053
3,1	0,0691	3,1	0,0784	3,1	0,0525	3	0,0572
3	0,0694	3	0,0784	3	0,053		

1	3	
Pore	Pore	F
diameter	volume	dia
345960,9	0	345
91084,1	0,0038	90
60599,6	0,0047	60
45211	0,0051	45
32915,7	0,0057	32
30171,1	0,0062	30
24157,4	0,0066	24
21308,6	0,0068	2
17265,1	0,007	17
13948,6	0,0072	13
11333,5	0,0075	11
9046	0,0078	9
8522,4	0,0079	6
6901,6	0,0079	47
4321,3	0,0083	36
3866,8	0,0091	30
3172	0,0102	24
2408,6	0,0108	19
2116,4	0,011	16
1602,7	0,0117	13
1320	0,0129	10
1059	0,0139	8
839,6	0,0147	(
670,4	0,0152	5
552,5	0,0161	4
434,3	0,0171	3
349,9	0,018	2
282,7	0,0191	2
226,9	0,0204	
183	0,0223	1
151	0,0244	1
120,8	0,0277	9
95,4	0,0318	7
77	0,0358	6
62,4	0,0394	5
50,3	0,0428	4
40,3	0,0463	3
32,4	0,0493	2
26.3	0.0518	2

14	4
Pore	Pore
iameter	volume
45256,3	0
0638,1	0,005
60342	0,0054
5269,9	0,0057
2946,7	0,006
0186,1	0,0061
4163,6	0,0063
21321	0,0066
7257,2	0,0068
3941,7	0,0071
1335,2	0,0075
9054	0,0078
6812	0,0078
4739,4	0,008
3662,6	0,0082
3007,8	0,0086
2456,1	0,0091
1999,6	0,0096
1628,7	0,01
1339,4	0,0107
1049,9	0,0117
829	0,0127
676	0,0135
552,7	0,0143
432,8	0,0155
349,7	0,0168
283,7	0,0183
226,5	0,0202
183	0,0223
150,9	0,0246
120,8	0,0273
95,3	0,0304
77,1	0,0337
62,5	0,0372
50,3	0,0415
40,3	0,0461
32,4	0,0503
26,3	0,0541
21,1	0,0575

	15
Pore	Pore
diameter	volume
347976,8	0
90926,4	0,0051
60482,6	0,006
45315,1	0,0066
32935,7	0,0071
30181,3	0,0072
24172,8	0,0075
21316,1	0,0078
17262,1	0,0082
13955,1	0,0085
11335	0,0089
9044,5	0,0093
7553,5	0,0094
6761,5	0,0094
4043,8	0,0101
3449,7	0,0103
3013,8	0,0107
2412	0,0113
1886,7	0,012
1618,8	0,0125
1309,4	0,013
1052,8	0,0137
823	0,0147
673,7	0,0156
549	0,0167
434,1	0,0182
347,2	0,0198
284,4	0,0217
226,2	0,0239
182,9	0,026
151,2	0,0279
120,8	0,0302
95,4	0,033
77,1	0,0361
62,4	0,0405
50,3	0,0458
40,3	0,0534
32,4	0,0602
26,3	0,066

		_		-	
21,1	0,0542	17,1	0,0608	21,1	0,0719
17,1	0,0562	13,7	0,0635	17,1	0,0758
13,7	0,0575	12,2	0,064	13,7	0,0783
12,2	0,0582	11	0,0651	12,2	0,0794
11	0,059	9,1	0,0665	11	0,0802
9,1	0,0597	8	0,0675	9,1	0,0816
8	0,0601	7,2	0,068	8	0,0825
7,2	0,0612	6,6	0,0689	7,2	0,083
6,6	0,0616	6	0,0695	6,6	0,0831
6	0,0616	5,6	0,0698	6	0,0834
5,6	0,062	5,2	0,0699	5,6	0,084
5,2	0,0622	4,8	0,0701	5,2	0,0844
4,8	0,0622	4,5	0,0706	4,8	0,0848
4,5	0,0623	4,3	0,0712	4,5	0,085
4,3	0,0623	4	0,0715	4,3	0,0855
4	0,0623	3,8	0,0715	4	0,0857
3,8	0,0626	3,6	0,0716	3,8	0,0858
3,6	0,0635	3,4	0,0724	3,6	0,0858
3,4	0,0637	3,3	0,0736	3,4	0,0858
3,3	0,0638	3,1	0,0749	3,3	0,0858
3,1	0,0642	3	0,0749	3,1	0,0859
3	0,0646			3	0,0862

1		2		3	3	4	Ļ
Pore diameter	Pore volume	Pore diameter	Pore volume	Pore diameter	Pore volume	Pore diameter	Pore volume
346732,2	0	347812.9	0	346168.8	0	345075.8	0
90821,2	0,0042	90923.6	0.0035	90776.7	0.0031	90636.1	0.0056
60388,9	0,0047	60508,3	0,0039	60273	0,0035	60458,1	0,0067
45237,8	0,0051	45327,6	0,0043	45198,5	0,0038	45304,7	0,0074
32930,1	0,0054	32944,1	0,0046	32862,8	0,0041	32945,1	0,0079
30171,1	0,0054	30177,6	0,0047	30205,7	0,0042	30178,9	0,008
24176,6	0,0057	24171,8	0,0049	24141,7	0,0044	24160,1	0,0084
21311,8	0,0058	21311,2	0,0051	21314,3	0,0047	21308,4	0,009
17254,1	0,006	17249	0,0053	17265,7	0,0048	17261,8	0,0094
13946,4	0,0062	13945,4	0,0055	13955,8	0,005	13939,5	0,0099
11334	0,0065	11334,7	0,0056	11333,7	0,0052	11330,5	0,0103
9044	0,007	9050,8	0,0058	9043,7	0,0055	9046,3	0,0107
7243,4	0,0072	7594,2	0,0058	6710,3	0,0055	7124,6	0,0107
5644,6	0,0073	6219,9	0,0058	4259,1	0,0058	5614,1	0,0108
4787	0,0075	4844,1	0,0059	3569,2	0,0062	4887,1	0,0108
3588,3	0,008	3676	0,0062	2973,2	0,0065	3955,1	0,0112
2970	0,0087	3194,3	0,0066	2457,7	0,0072	2940,8	0,0123
2395,1	0,0099	2390,3	0,0073	1926	0,0084	2372,3	0,0134
1990,6	0,0111	2007,9	0,0076	1617,9	0,0093	2043,6	0,0148
1617,5	0,0127	1639,4	0,0083	1315,6	0,0104	1595	0,0166
1322	0,0148	1319,6	0,0096	1055,8	0,0124	1272,9	0,0185
1063,6	0,0167	1050,7	0,0109	830,4	0,014	1052,4	0,0205
827,9	0,018	827,2	0,013	673,7	0,0163	827,6	0,023
673,7	0,019	679,3	0,0152	550,9	0,018	681	0,0251
547,5	0,0208	549,8	0,0181	431,6	0,02	554,9	0,0276
429,8	0,0221	435	0,0212	349,8	0,0225	433,8	0,0312
349,6	0,0233	350,7	0,0234	282,7	0,0252	349,3	0,0345
284	0,0251	283,7	0,0252	226,8	0,0288	284	0,0376
227,2	0,0277	226,9	0,027	183	0,0335	226,7	0,0413
183,3	0,0317	183,3	0,0286	151	0,0374	183,3	0,0448
151	0,0365	151,1	0,0301	120,7	0,0415	150,9	0,0476
120,8	0,0423	120,8	0,032	95,3	0,0449	120,7	0,0504
95,3	0,0472	95,3	0,0345	77,1	0,0474	95,4	0,0528
77,1	0,0506	77,1	0,0376	62,5	0,0493	77,1	0,0549
62,5	0,0534	62,4	0,0409	50,3	0,0516	62,5	0,0569
50,3	0,0558	50,3	0,0436	40,1	0,0537	50,3	0,0589
40,1	0,0579	40,2	0,046	32,4	0,0552	40,1	0,0613

MgSO4 Grubu Analiz Sonuçları

			_			-				
32,4	0,0589		32,4	0,0474		26,3	0,0563		32,4	0,0632
26,3	0,0597		26,3	0,0485		21,1	0,0575		26,3	0,065
21,1	0,0602		21,1	0,0495		17,1	0,0595		21,1	0,0674
17,1	0,061		17,1	0,0508		13,7	0,0617] [17,1	0,0701
13,7	0,0615		13,7	0,053		12,2	0,0629		13,7	0,0728
12,2	0,0618		12,2	0,0541		11	0,0633] [12,2	0,0741
11	0,0621		11	0,0548		9,1	0,0648] [11	0,0752
9,1	0,0626		9,1	0,056		8	0,0653		9,1	0,0758
8	0,0627		8	0,0567		7,2	0,066		8	0,0768
7,2	0,063		7,2	0,0574		6,6	0,0665		7,2	0,078
6,6	0,0635		6,6	0,0582		6	0,067		6,6	0,0787
6	0,0639		6	0,0587		5,6	0,0672] [6	0,0791
5,6	0,0641		5,6	0,0595		5,2	0,0679		5,6	0,0798
5,2	0,0642		5,2	0,0608		4,8	0,0686		5,2	0,0805
4,8	0,0644		4,8	0,0614		4,5	0,0688		4,8	0,0807
4,5	0,0644		4,5	0,0616		4,3	0,069		4,5	0,0809
4,3	0,0646		4,3	0,0616		4	0,069		4,3	0,0809
4	0,0646		4	0,0617		3,8	0,069		4	0,0809
3,8	0,0646		3,8	0,0617		3,6	0,069		3,8	0,0809
3,6	0,0646		3,6	0,0617		3,4	0,069		3,6	0,0811
3,4	0,0646		3,4	0,0617		3,3	0,069		3,4	0,0827
3,3	0,0646		3,3	0,0621		3,1	0,0696		3,3	0,0834
3,1	0,0646		3,1	0,0635		3	0,0696		3,1	0,0834
3	0,0646		3	0,0639				-	3	0,0834
		-			-			-		

5	5		6	j		7	7		8	}
Pore	Pore		Pore	Pore		Pore	Pore		Pore	Pore
diameter	volume		diameter	volume		diameter	volume		diameter	volume
346441,1	0		345423,9	0		345290,8	0		345462,4	0
90664,1	0,0036		90722,9	0,0056		90729,6	0,003		90821,7	0,0036
60296,4	0,0043		60444,7	0,006		60414,4	0,0033		60451	0,004
45267,9	0,0047		45290,1	0,0063		45259,9	0,0036		45313,6	0,0043
32930,7	0,0051		32951,6	0,0066		32917,2	0,0038		32916,4	0,0046
30176,2	0,0052		30191,9	0,0066		30168,5	0,0039		30173,7	0,0047
24156,9	0,0054		24172,5	0,0068		24155,5	0,0041		24169,5	0,0049
21316,7	0,0055		21323,6	0,0068		21318,6	0,0042		21316	0,005
17263,8	0,0058		17260,7	0,007		17266,9	0,0044		17262,9	0,0052
13948,7	0,006		13948,2	0,0071		13950	0,005		13941,1	0,0055
11333,9	0,0063		11333,9	0,0073		11334,2	0,0053		11334,3	0,0058
9047,4	0,0065		9047	0,0074		9045,7	0,0057		9049,5	0,0064
6580,9	0,0069		6835,3	0,0074		8291,8	0,0057		7365,4	0,0064
4576,4	0,0081		6798,4	0,0075		5894,2	0,0057		5880	0,0065
3922,7	0,0084		4738,1	0,0076		4703,7	0,0059		4965,6	0,0069
3147,3	0,0089		3663,4	0,0078		3433,9	0,0063		4003,9	0,0074
2373,9	0,0099		3004,1	0,0084		3169,1	0,0068		3060,3	0,0084
1998,7	0,011		2523,7	0,009		2471,7	0,0075		2454,7	0,0097
1565,5	0,013		2083,2	0,0097		2082,3	0,0082		2012,2	0,0114
1297,8	0,0154		1600,2	0,0114		1607,4	0,0091		1637,2	0,0136
1059,6	0,0182		1305,1	0,0125		1327,2	0,0103		1299	0,0151
831,5	0,022		1036,6	0,0137		1055,7	0,0117		1052,4	0,0166
676,2	0,0253		838,7	0,0148		828	0,0137		828,1	0,0185
551,6	0,0284		670	0,0157		676,5	0,0162		672,9	0,0198
433,9	0,0321	-	550,1	0,0168	-	553,4	0,0186	-	555,1	0,0216
349,6	0,0355	-	435,6	0,018	-	433,2	0,0214	-	434,7	0,0234
282,6	0,0387	-	350,1	0,0196	-	349,4	0,0233	-	350,3	0,0253
226,7	0,0423		283,6	0,0208		283,8	0,0248		283,8	0,0283
183,4	0,0456		227,2	0,0222		227,3	0,0265		226	0,0334
151,1	0,0483		183,1	0,024		182,9	0,0279		183,3	0,039
120,8	0,0509		150,5	0,0262		150,9	0,0294		151,1	0,0435
95,4	0,0534		120,8	0,0291		120,7	0,0312		120,8	0,0475
77,1	0,0555		95,4	0,0321		95,4	0,0335		95,4	0,0506
62,4	0,0574		77,1	0,0344		77,1	0,0358		77,1	0,0529
50,3	0,0595		62,4	0,0361		62,5	0,038		62,4	0,0548
40,1	0,062		50,3	0,0376		50,3	0,0398		50,3	0,0565
32,4	0,064	-	40,3	0,0388	-	40,3	0,0419	-	40,2	0,0582
26,3	0,0658		32,4	0,0396		32,4	0,0435		32,4	0,0595
21,1	0,0679]	26,3	0,0403	J	26,3	0,0447	J	26,3	0,0605

17,1	0,0701		21,1	0,0412	21,1	0,0458	21,1	0,0617
13,7	0,0724		17,1	0,0429	17,1	0,0472	17,1	0,0631
12,2	0,0734		13,7	0,0453	13,7	0,05	13,7	0,0646
11	0,0741		12,2	0,0464	12,2	0,0514	12,2	0,0654
9,1	0,0754		11	0,0471	11	0,0524	11	0,0661
8	0,0764		9,1	0,0479	9,1	0,0537	9,1	0,0669
7,2	0,0772		8	0,0483	8	0,0538	8	0,0676
6,6	0,0778		7,2	0,0487	7,2	0,0546	7,2	0,0688
6	0,0786		6,6	0,049	6,6	0,0552	6,6	0,0689
5,6	0,0789		6	0,0491	6	0,0558	6	0,0695
5,2	0,0793		5,6	0,0497	5,6	0,0561	5,6	0,0701
4,8	0,0797		5,2	0,0498	5,2	0,0567	5,2	0,0701
4,5	0,0799		4,8	0,05	4,8	0,0569	4,8	0,0702
4,3	0,0799		4,5	0,0501	4,5	0,0574	4,5	0,0702
4	0,0799		4,3	0,0501	4,3	0,0579	4,3	0,0707
3,8	0,0799		4	0,0501	4	0,059	4	0,0715
3,6	0,0808		3,8	0,0501	3,8	0,0597	3,8	0,0722
3,4	0,0815		3,6	0,0501	3,6	0,0597	3,6	0,0725
3,3	0,0818		3,4	0,0501	3,4	0,0597	3,4	0,0728
3,1	0,0819		3,3	0,0501	3,3	0,0597	3,3	0,0732
3	0,0821		3,1	0,0501	3,1	0,0597	3,1	0,0738
		4	3	0,0505	3	0,0603	3	0,0743

		1			1					
9)		10	0		1	1		12	2
Pore	Pore		Pore	Pore		Pore	Pore		Pore	Pore
diameter	volume		diameter	volume		diameter	volume		diameter	volume
346438,7	0		346409,8	0		346485	0		346338,2	0
90789,1	0,0041		90720,8	0,0042		90791,9	0,0045		90908,5	0,0034
60423	0,0047		60430,6	0,0055		60469,9	0,0051		60458,5	0,0041
45275,2	0,0052		45298,9	0,0061		45310,2	0,0059		45288,9	0,0046
32943,3	0,0057		32929,8	0,0067		32940,7	0,0067		32943,8	0,0056
30189,8	0,0058		30184	0,0068		30187	0,0068		30192	0,0058
24152,3	0,0062		24164,7	0,0071		24168	0,0073		24158,1	0,0063
21310,7	0,0064		21310,4	0,0073		21311,7	0,0075		21312,8	0,0065
17263,1	0,0067		17261,2	0,0075		17261,1	0,008		17266,7	0,0069
13947,6	0,007		13948,5	0,0077		13948,7	0,0085		13951,9	0,0072
11336	0,0073		11333,9	0,008		11331,8	0,009		11301,7	0,0075
9048,5	0,0076		9048,9	0,0084		9048,9	0,0094	/	9049,6	0,0078
7919,6	0,0076		7015,8	0,0085		5966,7	0,0097		8467,8	0,0079
6712,2	0,0077		6320,8	0,0086		4517,4	0,0101		6520,7	0,0079
4396,7	0,008		4351,6	0,0091		3996,6	0,0104		5109,2	0,0081
3865,9	0,0083		3843,6	0,0095		3165	0,011		3843,1	0,0083
3156,9	0,0088		3194	0,0104		2452,7	0,0118		3203,9	0,0087
2550,6	0,0096		2498,5	0,0119		1995,6	0,0128		2496,8	0,0092
2066,9	0,0104		2051,1	0,0133		1627,4	0,014		2077,9	0,01
1627,5	0,0121		1635,5	0,0151		1325,7	0,0153		1597,7	0,0111
1335	0,0141		1331,7	0,0174		1047,1	0,0171		1290,5	0,0121
1048,3	0,0164		1058,9	0,0204		831,5	0,0187		1048,1	0,0135
834,8	0,0188		822,2	0,023		676	0,0213		832,7	0,0157
674,9	0,0212		671	0,0263		551,6	0,0233		676,5	0,018
549,9	0,0239		553,1	0,0291		433,9	0,0249		552,9	0,0206
432,4	0,0267		433	0,0335		348,8	0,0265		433,2	0,0234
349,2	0,0299		348,3	0,0374		283,5	0,0283		350,3	0,0252
283,8	0,0353		283,5	0,0412		226,8	0,031		283,4	0,0267
227,1	0,0414		226,5	0,0448		183,1	0,0349		227,1	0,0286
182,8	0,0468		183,2	0,0479		151,1	0,0392		183,3	0,0306
151,1	0,0508		150,9	0,0503		120,8	0,0461		151	0,0327
120,8	0,0542		120,7	0,0526		95,4	0,0509		120,9	0,0358
95,4	0,0571		95,3	0,0546		77	0,054		95,4	0,0391
77,1	0,0594		77,1	0,0563		62,4	0,057		77,1	0,0423
62,4	0,0615		62,4	0,0578		50,3	0,0592		62,4	0,0459
50,3	0,0634		50,3	0,0594		40,3	0,0612		50,3	0,0489
40,3	0,0652		40,2	0,0611		32,4	0,0623		40,3	0,0527
32,4	0,0664		32,4	0,0626		26,3	0,0631		32,4	0,0548
26,3	0,0674		26,3	0,0645		21,1	0,0637		26,3	0,0562

1		1 1		1	Î.	I	1	1 1		
21,1	0,0698		21,1	0,0681		17,1	0,0642	4	21,1	0,0575
17,1	0,071		17,1	0,0752		13,7	0,0645		17,1	0,0584
13,7	0,072		13,7	0,0778		12,2	0,0647		13,7	0,0593
12,2	0,0724		12,2	0,0791		11	0,0648		12,2	0,0598
11	0,0728		11	0,0815		9,1	0,0652		11	0,0601
9,1	0,0737		9,1	0,083		8	0,0654		9,1	0,0608
8	0,0742		8	0,0836		7,2	0,0656		8	0,0611
7,2	0,0747		7,2	0,084		6,6	0,0656		7,2	0,0616
6,6	0,0753		6,6	0,0842		6	0,0657		6,6	0,062
6	0,0757		6	0,0845		5,6	0,0659		6	0,0624
5,6	0,0762		5,6	0,0847		5,2	0,0659		5,6	0,0627
5,2	0,0767		5,2	0,085		4,8	0,066		5,2	0,0631
4,8	0,077		4,8	0,085		4,5	0,0661		4,8	0,0634
4,5	0,0794		4,5	0,0851		4,3	0,0661		4,5	0,0635
4,3	0,0804		4,3	0,0852		4	0,0661		4,3	0,0636
4	0,0811		4	0,0853		3,8	0,0661		4	0,0636
3,8	0,0818		3,8	0,0853		3,6	0,0661		3,8	0,0638
3,6	0,0826		3,6	0,0853		3,4	0,0662		3,6	0,0642
3,4	0,0832		3,4	0,0855		3,3	0,0665		3,4	0,0648
3,3	0,0837		3,3	0,0874		3,1	0,0666		3,3	0,0649
3,1	0,0844		3,1	0,0912		3	0,0668		3,1	0,069
3	0,0849		3	0,0924					3	0,0694
1.	.3		14	4	1:	5				
----------	--------	--	----------	--------	----------	--------				
Pore	Pore		Pore	Pore	Pore	Pore				
diameter	volume		diameter	volume	diameter	volume				
346112,7	0		346104,2	0	347252,9	0				
90707,3	0,0035		90711,5	0,0035	90948,8	0,0054				
60464,4	0,0043		60473,6	0,004	60235,5	0,006				
45296,6	0,005		45339,7	0,0043	45248,5	0,0064				
32944,3	0,0055		32931,9	0,0046	32995,9	0,0067				
30180,7	0,0056		30183,7	0,0046	30177,7	0,0068				
24148,2	0,0059		24158,9	0,0049	24141,7	0,0071				
21311,6	0,0061		21321,1	0,005	21311,9	0,0073				
17262,6	0,0065		17267,6	0,0051	17263,1	0,0075				
13951,9	0,0068		13948	0,0053	13953,2	0,0079				
11335,3	0,0071		11300,2	0,0055	11333,5	0,0083				
9048,4	0,0075		9047,3	0,0057	9046,5	0,0087				
8431,3	0,0076		6983,2	0,0058	6277,1	0,0088				
6861,9	0,0077		5753,3	0,0058	4445,3	0,0092				
4871,8	0,0079		4293,9	0,0061	3572,8	0,0103				
3824,3	0,0082		3929	0,0063	2854,8	0,0107				
3090,5	0,0085		2999	0,0069	2413,4	0,0114				
2555,4	0,0094		2268	0,0079	1980,2	0,0126				
1960	0,0104		2004,9	0,0086	1487,8	0,0142				
1627,4	0,0116		1631,6	0,0107	1299,6	0,0159				
1325,6	0,0131		1264	0,0132	1050,5	0,019				
1058,7	0,0148		1038,2	0,0163	828,7	0,0219				
833,6	0,0162		815,3	0,0192	668,1	0,0246				
676,2	0,0173		679,7	0,0212	547,9	0,0271				
555,8	0,0184		549,5	0,0227	433,2	0,0308				
434,4	0,02		435	0,0246	350,2	0,0349				
350	0,0217		350,8	0,0268	284	0,0389				
284	0,0242		282,5	0,0298	226,6	0,043				
226,4	0,0283		227	0,0342	183,3	0,0462				
183,1	0,0348		182,5	0,0387	151,2	0,0488				
151	0,0396		151,1	0,0421	120,9	0,0514				
120,8	0,044		120,9	0,0455	95,4	0,0538				
95,4	0,0476		95,4	0,0482	77,1	0,0557				
77,1	0,0503		77,1	0,0501	62,4	0,0575				
62,5	0,0526		62,5	0,0518	50,3	0,0592				
50,3	0,0548		50,3	0,0532	40,3	0,0609				
40,3	0,0567		40,3	0,0547	32,4	0,0625				
32,4	0,0581		32,4	0,0559	26,3	0,0643				
26,3	0,0592		26,3	0,0574	21,1	0,0671				

21,1	0,0606	21,1	0,0595	17,1	0,0706
17,1	0,0632	17,1	0,0627	13,7	0,0734
13,7	0,0657	13,7	0,0652	12,2	0,0742
12,2	0,0665	12,2	0,0661	11	0,0752
11	0,0672	11	0,067	9,1	0,0766
9,1	0,0681	9,1	0,068	8	0,0773
8	0,0685	8	0,0686	7,2	0,0785
7,2	0,0689	7,2	0,0692	6,6	0,0787
6,6	0,0692	6,6	0,0696	6	0,0793
6	0,0694	6	0,0702	5,6	0,0795
5,6	0,0697	5,6	0,0703	5,2	0,0795
5,2	0,0701	5,2	0,0705	4,8	0,0803
4,8	0,0705	4,8	0,0711	4,5	0,0809
4,5	0,0707	4,5	0,0714	4,3	0,0811
4,3	0,0713	4,3	0,0718	4	0,0818
4	0,0716	4	0,0721	3,8	0,0821
3,8	0,072	3,8	0,0725	3,6	0,0823
3,6	0,0724	3,6	0,0725	3,4	0,0829
3,4	0,0727	3,4	0,0725	3,3	0,0844
3,3	0,0733	3,3	0,0727	3,1	0,0844
3,1	0,0741	3,1	0,073	3	0,0844
3	0,0745	3	0,0732		

Su Grubu Analiz Sonuçları

1		2		3	3		4	
Pore	Pore	Pore	Pore	Pore	Pore		Pore	Pore
diameter	volume	diameter	volume	diameter	volume		diameter	volume
348687,7	0	346639,3	0	348357	0		346130,2	0
90983	0,0036	90690,3	0,0047	90790,3	0,0057		90759,5	0,0045
60394,9	0,0042	60439,6	0,0056	60343,5	0,0064		60427,1	0,0052
45287,2	0,0047	45304,2	0,0062	45303,1	0,007		45276,4	0,0058
32942,7	0,0052	32941,3	0,0066	32972,7	0,0077		32939,6	0,0063
30182,8	0,0054	30196,5	0,0068	30211	0,0078		30175,6	0,0065
24148,1	0,0059	24162,9	0,0071	24147,3	0,0082		24163,4	0,0068
21336,8	0,0061	21314,1	0,0073	21301,5	0,0084		21307	0,0069
17269,7	0,0065	17267,7	0,0076	17258,3	0,0087		17262	0,0072
13951,6	0,0069	13952,1	0,0081	13943,8	0,0091	× .	13948,6	0,0075
11337,4	0,007	11334	0,0085	11338,4	0,0096		11337,3	0,0077
9047,9	0,0073	9047,9	0,0089	9053,7	0,0101		9048,9	0,008
6583,8	0,0073	7149,5	0,009	6257,3	0,0101		6575,2	0,0081
4962,9	0,0074	6916,8	0,009	4465,3	0,0106		4379,4	0,0084
3684,3	0,0077	4413,6	0,0092	3933	0,0108		3849,3	0,0087
3031,5	0,0081	3787,8	0,0095	3094,7	0,0113		2957	0,009
2303,4	0,0086	3218	0,0098	2433,1	0,0119		2522,2	0,0092
1966,2	0,0089	2537	0,0103	1971,8	0,0129		2024,7	0,0097
1643,4	0,0095	2052,9	0,0108	1579,4	0,0137		1615,6	0,01
1305,7	0,0101	1620,7	0,0116	1327,3	0,0141		1266,2	0,0103
1033,9	0,0109	1326,3	0,0124	1045,7	0,0146		1054,1	0,0107
837,6	0,0116	1045,2	0,0135	831,1	0,0151		835,6	0,0112
671,5	0,0121	833,5	0,0144	679,5	0,0156		674,5	0,0117
551,1	0,0127	679,2	0,0159	546,1	0,0164		550,3	0,0121
433,5	0,0135	552,2	0,0172	433,6	0,0173		432,8	0,0126
349,5	0,0142	433	0,0185	348,7	0,0183		349,1	0,0132
282,8	0,015	350,5	0,0197	283,6	0,0193		283,3	0,0139
227	0,0161	283,6	0,0211	226,6	0,0204		226,8	0,0147
183,2	0,0174	226,6	0,0223	183,2	0,0216		183,1	0,0156
151,1	0,0192	183,1	0,0235	151,1	0,023		151	0,0165
120,9	0,0232	151,1	0,0246	120,7	0,0251		120,9	0,018
95,4	0,029	120,6	0,0262	95,4	0,0305		95,3	0,0208
77,1	0,0341	95,4	0,0288	77,1	0,0374		77,1	0,0254
62,5	0,0381	77,1	0,032	62,4	0,0436		62,4	0,0311
50,3	0,0413	62,5	0,0353	50,3	0,0483		50,3	0,0365
40,1	0,0445	50,3	0,0385	40,3	0,053		40,2	0,042
32,4	0,0467	40,3	0,0419	32,4	0,0562		32,4	0,0459

-	-			-		_				
26,3	0,0486		32,4	0,0447		26,3	0,059		26,3	0,0494
21,1	0,0506		26,3	0,0474		21,1	0,0615] [21,1	0,0529
17,1	0,0522		21,1	0,0499		17,1	0,0637] [17,1	0,0561
13,7	0,0534		17,1	0,0518		13,7	0,0657	1	13,7	0,0595
12,2	0,0541		13,7	0,0534		12,2	0,0667		12,2	0,0613
11	0,0546		12,2	0,054		11	0,0677		11	0,063
9,1	0,0547		11	0,0546		9,1	0,0698] [9,1	0,0651
8	0,0552		9,1	0,0558		8	0,0707] [8	0,0682
7,2	0,0559		8	0,0565		7,2	0,0722		7,2	0,0698
6,6	0,0563		7,2	0,0568		6,6	0,0736] [6,6	0,0712
6	0,0565		6,6	0,0572		6	0,0745		6	0,0724
5,6	0,0566		6	0,0577		5,6	0,0755] [5,6	0,0737
5,2	0,0567		5,6	0,0582		5,2	0,0763		5,2	0,0747
4,8	0,0568		5,2	0,0585		4,8	0,0772		4,8	0,0756
4,5	0,057		4,8	0,0588		4,5	0,0778		4,5	0,0766
4,3	0,0572		4,5	0,0592		4,3	0,0787		4,3	0,0776
4	0,0574		4,3	0,0598		4	0,0793] [4	0,0782
3,8	0,0575		4	0,0599		3,8	0,08		3,8	0,079
3,6	0,0577		3,8	0,0602		3,6	0,0808		3,6	0,0797
3,4	0,0577		3,6	0,0609		3,4	0,0813		3,4	0,0803
3,3	0,0577		3,4	0,0611		3,3	0,0823		3,3	0,0812
3,1	0,0579		3,3	0,0615		3,1	0,0828		3,1	0,0814
3	0,058		3,1	0,0617		3	0,0837		3	0,0821
		-	3	0,0621]			_ •		

5	5		6	ō	7	7		8	
Pore	Pore		Pore	Pore	Pore	Pore		Pore	Pore
diameter	volume		diameter	volume	diameter	volume		diameter	volume
348141,6	0		346667,4	0	344571,5	0		347624,5	0
90687,6	0,0044		90517,3	0,004	91005,3	0,0046		90897,4	0,0052
60452,1	0,0056		60462,8	0,0046	60442,7	0,0051		60511,6	0,006
45394,8	0,0061		45268,4	0,005	45249	0,0054		45342,3	0,0066
32956	0,0067		32907,3	0,0055	32923,4	0,0061		33005	0,0074
30200,6	0,0068		30151,9	0,0057	30155,8	0,0062		30191,2	0,0076
24145	0,0072		24141,9	0,006	24170,5	0,0065		24157,3	0,0082
21321	0,0074		21322,7	0,0062	21303,9	0,0066		21314,4	0,0084
17263,6	0,0078		17256,5	0,0064	17261,2	0,007		17263,7	0,0089
13950,2	0,0081		13943,1	0,0068	13942	0,0073		13948,2	0,0094
11334,4	0,0086		11337,5	0,0072	11331,8	0,0076		11334,5	0,0099
9049,1	0,009		9044,7	0,0074	9047,1	0,008		9044,6	0,0105
7154,5	0,0091		6924,2	0,0075	7632,2	0,008		7096,2	0,0107
6472,1	0,0092		4360,8	0,008	6569,8	0,0082		7008,6	0,0107
4288,2	0,0095		3907,4	0,0082	4709,9	0,0084		4301,8	0,0114
3806,3	0,0098		2941	0,0088	3897,3	0,0087		3913,6	0,0117
3170	0,0101		2403,3	0,0091	3126,2	0,0091		3161,5	0,0123
2493	0,0105		1961	0,0097	2455,6	0,0094		2372,1	0,0131
2035,5	0,0111		1591,5	0,0104	2093,3	0,0099		2105,7	0,0135
1596,5	0,0116		1314	0,0113	1613,3	0,0108		1618,5	0,0143
1302,8	0,012		1054,7	0,0123	1321,3	0,0115		1329,3	0,015
1045,8	0,0123		838,3	0,0133	1057,2	0,0122		1054,1	0,0159
833,1	0,0128		677,7	0,014	831,4	0,0132		834,3	0,0166
676,9	0,0132		553,6	0,0145	675,2	0,0143		675,9	0,0172
550,9	0,0137	-	433,5	0,0154	553,1	0,0156	-	545,3	0,0179
433,9	0,0143		350,6	0,0163	433,4	0,0171		434,6	0,019
349,3	0,0149		283,8	0,0173	348,9	0,018		349,9	0,0201
284,3	0,0155		226,7	0,0185	283,5	0,0196		283,7	0,0213
226,5	0,0163		183,4	0,0199	226,8	0,0208		226,7	0,0228
183,5	0,0172		151	0,0222	183,4	0,0219		182,9	0,0245
151,1	0,0182		120,7	0,0284	151,2	0,0227		150,9	0,0265
120,8	0,0197		95,4	0,0357	120,8	0,0235		120,8	0,0297
95,4	0,0221		77	0,0403	95,3	0,0246		95,3	0,0345
77,1	0,0258		62,5	0,0439	77,1	0,0261		77,1	0,0408
62,4	0,031		50,3	0,0467	62,4	0,0281		62,4	0,0455
50,3	0,0369		40,1	0,0495	50,3	0,0303		50,3	0,0494
40,3	0,0432		32,4	0,0511	40,3	0,0326		40,1	0,0547
32,4	0,0491		26,3	0,0528	32,4	0,0347		32,4	0,0574
26,3	0,054		21,1	0,0538	26,3	0,0364		26,3	0,0597

21,1	0,0583	17,1	0,0554	21,1	0,0382	21,1	0,0618
17,1	0,0621	13,7	0,0568	17,1	0,0398	17,1	0,0638
13,7	0,066	12,2	0,0576	13,7	0,0417	13,7	0,0654
12,2	0,0678	11	0,0583	12,2	0,0426	12,2	0,0663
11	0,07	9,1	0,059	11	0,0435	11	0,0671
9,1	0,0749	8	0,0594	9,1	0,045	9,1	0,0687
8	0,0762	7,2	0,0597	8	0,0459	8	0,0696
7,2	0,0762	6,6	0,0599	7,2	0,0472	7,2	0,0703
6,6	0,0804	6	0,0601	6,6	0,049	6,6	0,0709
6	0,0819	5,6	0,0603	6	0,0495	6	0,0714
5,6	0,083	5,2	0,0605	5,6	0,0503	5,6	0,0721
5,2	0,0844	4,8	0,0606	5,2	0,0509	5,2	0,0727
4,8	0,0855	4,5	0,0607	4,8	0,0514	4,8	0,0733
4,5	0,0866	4,3	0,0609	4,5	0,0544	4,5	0,0744
4,3	0,0874	4	0,061	4,3	0,0554	4,3	0,0744
4	0,0881	3,8	0,061	4	0,0558	4	0,0744
3,8	0,0889	3,6	0,0611	3,8	0,0558	3,8	0,0747
3,6	0,0916	3,4	0,0612	3,6	0,0562	3,6	0,0749
3,4	0,096	3,3	0,0613	3,4	0,0567	3,4	0,0775
3,3	0,0961	3,1	0,0615	3,3	0,0571	3,3	0,0775
3,1	0,0961	3	0,0615	3,1	0,0577	3,1	0,0775
3	0,0961			3	0,0582	3	0,0779

9)	10	0	1	1	12	2
Pore	Pore	Pore	Pore	Pore	Pore	Pore	Pore
diameter	volume	diameter	volume	diameter	volume	diameter	volume
344563,7	0	347102,6	0	344764	0	346913,1	0
90596,3	0,0036	91020,4	0,0044	90796,6	0,0037	90475,9	0,0042
60226,5	0,0041	60322,2	0,005	60352,2	0,0042	60377,5	0,0048
45269,7	0,0054	45194,4	0,0053	45237,2	0,0047	45372,8	0,0054
32946,1	0,0064	32889	0,0058	32927,7	0,0054	32923,7	0,0063
30173,1	0,0065	30188,8	0,0059	30180	0,0055	30231,6	0,0065
24180,9	0,0069	24139,1	0,0063	24158,1	0,0059	24152,6	0,007
21312,8	0,007	21308,1	0,0064	21305,6	0,0061	21334,8	0,0072
17273,9	0,0073	17261,1	0,0067	17263,9	0,0065	17275,5	0,0075
13945,9	0,0078	13951,6	0,007	13939,3	0,0069	13943,6	0,0078
11301	0,0083	11337,1	0,0074	11338,7	0,0071	11330,5	0,0082
9047,5	0,0088	9050,9	0,0077	9046,9	0,0076	9048,7	0,0086
6740,3	0,0089	6599	0,0078	6117,7	0,0077	6704,6	0,0087
4101,1	0,0095	4293,9	0,0083	4417,7	0,008	4745,4	0,0089
3916,9	0,0096	3784	0,0085	3976,4	0,0084	3845,2	0,0092
3001,3	0,0101	2969,9	0,0091	3247,5	0,0088	2944,3	0,0099
2433,2	0,0106	2504,8	0,0095	2500,3	0,0097	2381,6	0,0104
2029,1	0,011	2005,9	0,0101	2063,1	0,0101	2090,5	0,0108
1587,1	0,0115	1638,3	0,0106	1584,7	0,0106	1543,6	0,0118
1320,8	0,0122	1310,3	0,0112	1302,4	0,0113	1306	0,0125
1053,7	0,0127	1058,9	0,0116	1033,1	0,0121	1042,8	0,0133
827,9	0,0132	837,3	0,0124	823,1	0,0127	834,3	0,0144
679,2	0,0137	678	0,013	670,5	0,0138	680,5	0,0153
552	0,0142	552,1	0,0137	549,5	0,0147	552,2	0,0164
433,1	0,015	434,1	0,0146	433,9	0,0157	432,8	0,0178
349,4	0,0156	349,8	0,0154	349,9	0,0165	350,7	0,019
283	0,0165	283,8	0,0162	283,7	0,0173	284,2	0,0201
226,7	0,0173	226,9	0,0173	227,2	0,0184	227,1	0,0212
183,2	0,0183	182,9	0,0185	183,4	0,0196	183	0,0222
151	0,0195	151	0,02	151,1	0,0212	151,2	0,0231
120,7	0,0213	120,8	0,0222	120,8	0,0263	120,9	0,0244
95,2	0,0262	95,4	0,0255	95,4	0,0345	95,3	0,0266
77,1	0,0321	77,1	0,0315	77,1	0,0403	77,1	0,0295
62,4	0,0378	62,4	0,0388	62,4	0,0445	62,5	0,0329
50,3	0,0426	50,3	0,0444	50,3	0,0474	50,3	0,0359
40,3	0,0471	40,2	0,0508	40,2	0,0498	40,3	0,0396
32,4	0,0505	32,4	0,0555	32,4	0,0514	32,4	0,0424
26,3	0,0534	26,3	0,0589	26,3	0,053	26,3	0,0447
21,1	0,0568	21,1	0,062	21,1	0,0544	21,1	0,0471

17,1	0,0593	17,1	0,0645	17,1	0,0554	17,1	0,0491
13,7	0,0615	13,7	0,067	13,7	0,0565	13,7	0,0509
12,2	0,0648	12,2	0,0705	12,2	0,0571	12,2	0,0517
11	0,0666	11	0,0717	11	0,0576	11	0,0525
9,1	0,0698	9,1	0,0737	9,1	0,0584	9,1	0,0538
8	0,0715	8	0,0757	8	0,0588	8	0,0555
7,2	0,073	7,2	0,077	7,2	0,0592	7,2	0,0556
6,6	0,0745	6,6	0,0775	6,6	0,0596	6,6	0,0564
6	0,0759	6	0,0792	6	0,0599	6	0,0572
5,6	0,0773	5,6	0,0801	5,6	0,0602	5,6	0,0572
5,2	0,0784	5,2	0,0803	5,2	0,0603	5,2	0,0573
4,8	0,0795	4,8	0,081	4,8	0,0605	4,8	0,0574
4,5	0,0803	4,5	0,0818	4,5	0,0606	4,5	0,0577
4,3	0,0814	4,3	0,0827	4,3	0,0609	4,3	0,0577
4	0,0824	4	0,0881	4	0,061	4	0,0577
3,8	0,083	3,8	0,0899	3,8	0,0612	3,8	0,0577
3,6	0,084	3,6	0,0904	3,6	0,0612	3,6	0,0619
3,4	0,0846	3,4	0,0914	3,4	0,0613	3,4	0,0627
3,3	0,0855	3,3	0,0926	3,3	0,0614	3,3	0,0632
3,1	0,0864	3,1	0,0931	3,1	0,0616	3,1	0,0636
3	0,0869	3	0,0945	3	0,0618	3	0,0638

Pore volume

0

0,0039 0,0044 0,005

0,0056 0,0057

0,0063

0,0065 0,0068

0,0072 0,0075 0,0078 0,0079 0,0079 0,0081 0,0084 0,0088 0,0095 0,0099 0,0105 0,011 0,0118 0,0123 0,0132 0,0139 0,0149 0,0158 0,0167 0,018 0,0192 0,0204 0,0223 0,0249 0,0297 0,0386 0,0447 0,0515 0,054 0,0588

1	3		14	4		1	5
Pore	Pore		Pore	Pore		Pore	
diameter	volume		diameter	volume		diameter	
345505,9	0		346354,7	0		345874,2	
90592	0,0037		90824,1	0,0045		90661,8	
60447,7	0,0041		60380,4	0,0053		60469	
45292,5	0,0044		45321,8	0,0059		45272	
32927,9	0,0048		32944,4	0,0067		33011,2	
30163,8	0,0049		30183,5	0,0069		30221	
24133	0,0051		24165	0,0072		24134,9	
21307,7	0,0052		21323,1	0,0074		21294,8	
17266	0,0054		17268	0,0077		17260,1	
13933,7	0,0057		13950,8	0,008		13944,2	
11329,2	0,006		11334,4	0,0083		11301,6	
9048,2	0,0063		9047,4	0,0085		9045,6	
6417,1	0,0063		6610,4	0,0086		8518,2	
5013,9	0,0064		4180,4	0,0089		6864,1	
3784,6	0,0067		3884,5	0,0091		4905,1	ſ
3019,9	0,0072		3219,6	0,0094		3862,8	
2401,3	0,0078		2527,6	0,0099		3170,5	
2094,2	0,008		2080,4	0,0103		2483,8	
1559,3	0,0086		1616,9	0,0109		2049	
1297,6	0,0091		1326,9	0,0115		1624,2	
1050,9	0,0097		1041,6	0,012		1309,8	
838,9	0,0103		830,7	0,0125		1048,6	
674,3	0,0109		676,6	0,013		829,8	
552,4	0,0114		553	0,0136		673,3	
429,5	0,0124		432,7	0,0142		555	
350,3	0,0135		348,5	0,0149		431,8	
283,9	0,015		283,3	0,0156		349	
227,3	0,0167		226,9	0,0164		284,1	
183,2	0,0189		183,1	0,0176		226,2	
151	0,0214		151,1	0,0195		183,1	
120,9	0,0259		120,8	0,0223		151,1	
95,4	0,0319		95,3	0,0261		120,9	
77,1	0,0387		77,1	0,0329		95,2	
62,4	0,0448		62,5	0,0399		77,1	
50,3	0,0491		50,3	0,045		62,5	
40,1	0,0539		40,2	0,0505		50,3	
32,4	0,0567		32,4	0,0534		40,3	
26,3	0,0587		26,3	0,0573		32,4	
21,1	0,0604		21,1	0,0594		26,3	
		-			-		_

17,1	0,0616	17,1	0,0629		21,1	0,0615
13,7	0,0627	13,7	0,0643		17,1	0,0642
12,2	0,0632	12,2	0,0664		13,7	0,0689
11	0,0637	11	0,0671		12,2	0,0699
9,1	0,0646	9,1	0,0704		11	0,0715
8	0,0651	8	0,0715		9,1	0,0747
7,2	0,0657	7,2	0,0725		8	0,0754
6,6	0,0662	6,6	0,0743		7,2	0,0779
6	0,0665	6	0,0755		6,6	0,0792
5,6	0,0669	5,6	0,0769		6	0,0806
5,2	0,0672	5,2	0,0777		5,6	0,0818
4,8	0,0676	4,8	0,0784		5,2	0,0834
4,5	0,0681	4,5	0,0798		4,8	0,0847
4,3	0,0684	4,3	0,0808		4,5	0,0856
4	0,0687	4	0,0819		4,3	0,0872
3,8	0,0693	3,8	0,0826		4	0,0887
3,6	0,0693	3,6	0,0836	· .	3,8	0,0901
3,4	0,0706	3,4	0,0843		3,6	0,0915
3,3	0,0721	3,3	0,0855		3,4	0,0929
3,1	0,0723	3,1	0,0862		3,3	0,0943
3	0,0723	3	0,0873		3,1	0,0954
					3	0,0966

ÖZGEÇMİŞ

	Kişisel Bilgiler	
Adı Soyadı	Özlem Üstündağ	
Doğum Yeri	Bornova	
Doğum Tarihi	10.09.1977	(2)
Uyruğu	☑ T.C. □ Diğer:	
Telefon	0533 427 05 74	
E-Posta Adresi	oustundag@hotmail.com	
Web Adresi		

Eğitim Bilgileri						
Lisans						
Üniversite	İstanbul Teknik Üniversitesi					
Fakülte	İnşaat Fakültesi					
Bölümü	İnşaat Mühendisliği					
Mezuniyet Yılı	2000					

Yüksek Lisans	
Üniversite	İstanbul Teknik Üniversitesi
Enstitü Adı	Fen Bilimleri Enstitüsü
Anabilim Dalı	İnşaat Mühendisliği Anabilim Dalı
Programı	İnşaat Mühendisliği Programı

Makale ve Bildiriler

Bostanci, L., Ustundag, O., Sola, O. ve Uysal, M., 2019, Effect of various curing methods and addition of silica aerogel on properties of mortars, *Gradevinar*, 71 (8), 651-661.

Bostancı, L., Ustundag, O., Sola, O. ve Uysal, M., 2019, Effect of various curing methods and scrap tyre addition on properties of mortars, *Gradevinar*, 71, 765-775.

)