

T.C. KONYA TEKNİK ÜNİVERSİTESİ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

EKSENEL KANATÇIKLI SİLİNDİRLERDEN DOĞAL TAŞINIMLA ISI TRANSFERİ

Emre GÜVENTÜRK

YÜKSEK LİSANS TEZİ

Makine Mühendisliği Anabilim Dalı

Mart-2019 KONYA Her Hakkı Saklıdır

TEZ KABUL VE ONAYI

Emre GÜVENTÜRK tarafından hazırlanan "Eksenel Kanatçıklı Silindirlerden Doğal Taşınımla Isı Transferi" adlı tez çalışması 07/03/2019 tarihinde aşağıdaki jüri tarafından oy birliği / oy çokluğu ile Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Jüri Üyeleri

Başkan Prof.Dr. Şefik BİLİR

Danışman Dr.Öğr.Üyesi Şükrü Ulaş ATMACA

Üye Dr.Öğr.Üyesi Dilek Nur ÖZEN

İmza

Yukarıdaki sonucu onaylarım.

Prof. Dr. Yakup KARA Enstitü Müdürü

TEZ BİLDİRİMİ

Bu tezdeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edildiğini ve tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

DECLARATION PAGE

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

ÜRK

07/03/2019

ÖZET

YÜKSEK LİSANS TEZİ

EKSENEL KANATÇIKLI SİLİNDİRLERDEN DOĞAL TAŞINIMLA ISI TRANSFERİ

Emre GÜVENTÜRK

Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı

Danışman: Dr.Öğr.Üyesi Şükrü Ulaş ATMACA

2019, 61

Jüri Dr.Öğr.Üyesi Şükrü Ulaş ATMACA Prof.Dr. Şefik BİLİR Dr.Öğr.Üyesi Dilek Nur ÖZEN

Taşınımla ısı transferi akışkan bir ortam ile bir yüzey arasında gerçekleşir. Isı transferinin iyileştirilmesi için üç yöntem vardır. Bunlar; ısı transfer katsayısını arttırmak, ısı transfer yüzey alanını arttırmak ve ortamlar arasındaki sıcaklık farkını arttırmak olarak sıralanabilir. Bazen ısı transfer katsayısını veya ortamlar arasındaki sıcaklık farkını arttırmak olanaklı olmayabilir. Isı transferini arttırmak için ısı transfer yüzey alanını arttırmak en çok kullanılan yöntemdir. Bu yöntem elektrik ve elektronik uygulamalarında ve ısıtma sistemlerinde sıkça karşımıza çıkmaktadır.

Doğal taşınım ile ısı transferi için Nusselt ve Rayleigh sayılarının aldığı değerlere göre yorumlar yapılır. Genellikle doğal taşınımda $Ra \le 10^8$ değeri için ısı geçişinin laminer sınır tabaka içinde gerçekleştiği, $Ra \ge 10^9$ değeri içinse sınır tabakadaki hareketin türbülanslı olduğu kabul edilir. Doğal taşınım için $10^8 \le Ra \le 10^9$ aralığı geçiş bölgesidir. Deneyler doğal taşınım bölgesinde yapılmıştır.

Bu çalışmada, yatay olarak yerleştirilen, alüminyum silindir üzerine eksenel olarak tutturulmuş dikdörtgen kesitli kanatçıklardan doğal taşınım ile ısı transferi incelenmiştir. Hesaplamalarda taşınım ile ısı transferinin yanı sıra ışınım ile ısı transferinin etkileri de dikkate alınmıştır. Deneyler farklı kanatçık boyutlarında, farklı kanatçık sayılarıyla ve farklı giriş güçlerinde tekrarlanarak ölçümler yapılmıştır. Deney sonuçları Nusselt sayısının Rayleigh sayısı ile değişimi olarak sunulmuştur. Elde edilen sonuçlara göre kanatçıkların ısı transferini önemli ölçüde artırdığı görülmüştür. Örneğin, 30 mm kanatçık yüksekliğinde 6 adet eksenel kanatçığa sahip silindirde, düz silindire göre yaklaşık 3 kat ısı transferi artmıştır. Ayrıca ışınım ile ısı transferinin taşınım ile olan ısı transferi yanında azımsanamayacak kadar önemli olduğu belirlenmiştir. Kanatçısız silindirde ışınım ile gerçekleşen ısı transferinin toplam güce oranı, düşük güç değerinde % 49 gerçekleşirken güç değeri arttıkça % 43,4'e düştüğü belirlenmiştir.

Anahtar Kelimeler: Doğal taşınılma ısı transferi, kanatçıklı silindir, pimli yüzeylerden ısı transferi,

ABSTRACT

MS THESIS

NATURAL CONVECTION HEAT TRANSFER FROM AXIALLY FINNED CYLINDERS

Emre GÜVENTÜRK

Konya Technical University Institute of Graduate Studies Department Of Mechanical Engineering

Advisor: Dr.Assist.Prof. Şükrü Ulaş ATMACA

2019, 61

Jury Dr.Assist.Prof. Şükrü Ulaş ATMACA Prof.Dr. Şefik BİLİR Dr.Assist.Prof. Dilek Nur ÖZEN

Convection heat transfer occurs between a surface and a fluid. There are three ways to enhance the heat transfer. These are; to increase the heat transfer coefficient, to enlarge the heat transfer area and to increase the temperature difference between the mediums. It may be impossible to increase the heat transfer coefficient and the temperature difference of the mediums in occasional conditions. The most preferred way to improve the heat transfer is the enlargement of the heat transfer surface area. This method is especially preferred in electrical and heating systems.

Those interprets can be made according to the values of Nusselt and Rayleigh numbers in natural convection heat transfer. It is usually accepted as the heat transfer is in laminar boundary layer if $Ra \le 10^8$ and is in turbulent boundary layer if $Ra \ge 10^9$. It is assumed as transition region for natural convection $10^8 \le Ra \le 10^9$. The experiments were handled in natural convection region.

Natural convection heat transfer are investigated by considering the effects of thermal radiation heat transfer from axially finned cylinders. The experiments were repeated for different angular positions and for various thermal power inputs. Not only the angular position, but also the thermal power input; fin dimensions and the spaces among the fins were taken as variables as well. The measurement were made for the unfinned cylinder for the same angular position and thermal power inputs and comparisons are made. It is observerd from the result of the experiments that the fin increase the heat transfer considerably when compared with the unfinned surface. For example, by flat cylinder with 6 axial fin height of 30 mm it increased approximately 3-fold heat transfer cylinder. Furthermore it appears that the radiation heat transfer is next to be underestimated the importance of heat transfer by convection. Total power ratio of actual radiation heat transfer has a flat cylinder at low power value of 49% was realized that the increased power value is determined to fall to 43,4%.

Keywords: Natural convection heat transfer, heat transfer from finned surfaces, finned cylinder

ÖNSÖZ

Bu tez çalışmam boyunca daima, bana zaman ayırmayı ihmal etmeyen, tez konum üzerinde bilgi ve tecrübesi ile farklı öneri ve yaklaşımlarda bulunarak beni yönlendiren danışman hocam Sayın; Dr.Öğr.Üyesi Şükrü Ulaş ATMACA'ya beni her zaman destekleyen, hep arkamda olan ve gösterdikleri fedakârlıklar nedeniyle eşim İmran GÜVENTÜRK'e sonsuz teşekkürlerimi bir borç bilirim.

> Emre GÜVENTÜRK KONYA-2019

ÖZETiv
ABSTRACTv
ÖNSÖZvi
İÇİNDEKİLER vii
SİMGELER VE İNDİSLERviii
1. GİRİŞ1
2. KAYNAK ARAŞTIRMASI
2.1. Giriş.22.2. Konu ile ilgili Yapılan Çalışmalar
3. MATERYAL VE METOD 10
3. MATERYAL VE METOD
3. MATERYAL VE METOD. 10 3.1. Deney Düzeneğinin Tanıtımı 12 3.2. Deneyin Yapılışı 14 3.3 Data Analizi 14 3.4. Işınım ile Isı Transferi 15 3.5. Grafiklerin Çizilmesi 18 4. ARAŞTIRMA BULGULARI VE TARTIŞMA 20 5. SONUÇLAR VE ÖNERİLER 35 5.1 Sonuçlar 35 5.2 Öneriler 36 6. KAYNAKLAR 37 7. EKLER 40

İÇİNDEKİLER

Simge	ler	Birimler
А	: Silindir yüzey alanı	m^2
$A_{\mbox{\tiny 1}\mbox{\tiny $$}\tiny$: Silindir ışınım yüzey alanı	m^2
b	: Kanatçıklar arası mesafe	m
t	: Kanatçık kalınlığı	m
F	: Işınım şekil faktörü	-
g	: Yerçekimi ivmesi	m/ s^2
h	: İsi taşınım katsayısı	$W/m^{2o}C$
Ι	: Akım	А
k	: Isı iletkenlik katsayısı	W/mºC
Nu	: Nusselt sayısı	-
Р	: Isitici gücü	W
Ra	: Rayleigh sayısı	-
Т	: Sıcaklık	⁰ C
$T_{\rm w}$: Boru cidar sıcaklığı	⁰ C
T_{∞}	: Çevre sıcaklığı	⁰ C
T_{iz}	: Yalıtım sıcaklığı	^{0}C
V	: Gerilim	V
β	: Isıl genleşme katsayısı	K ⁻¹
ΔT	: Sıcaklık farkı	^{0}C
Δx	: Yalıtım kalınlığı	m
ρ	: Yoğunluk	kg/m ³
ν	: Kinematik vizkosite	m²/sn
α	: Isıl yayılım katsayısı	m²/sn
Q	: Isı transferi	W
Qyalıtım	: Yalıtımdan kaybolan ısı	W
Qışınım	: Işınımla kaybolan ısı	W

SİMGELER VE İNDİSLER

İndisler

3	: Işınım yayımlama katsayısı
1Ş	: Işınım
iz _{iç}	: Yalıtım iç yüzeyinde
iz _{dış}	: Yalıtım dış yüzeyinde
Taş	: Taşınım
W	: Silindir yüzeyinde
∞	: Ortam
AB	: A yüzeyinden B yüzeyine gerçekleşen
AC	: A yüzeyinden C yüzeyine gerçekleşen
BC	: B yüzeyinden C yüzeyine gerçekleşen
BA	: B yüzeyinden A yüzeyine gerçekleşen
CA	: C yüzeyinden Ayüzeyine gerçekleşen
CB	: C yüzeyinden B yüzeyine gerçekleşen
1-1	: Yüzeyler arasında gerçekleşen
1-2	: Yüzey ile ortam arasında gerçekleşen

1. GİRİŞ

Endüstrideki ısıtma ve soğutma uygulamalarının kullanıldığı birçok mühendislik sistemi doğal taşınım ile ısı geçişinden yararlanmaktadır. Doğal taşınım ile ısıtılan ve soğutulan sistemlerde, yeterli ısı geçişinin sağlanabilmesi için genellikle genişletilmiş yüzeyler kullanılmaktadır. Teknolojinin özellikle elektrikli cihazların gelişmesi ile birlikte, daha fazla ısıyı daha küçük alandan atma ihtiyacı, kullanılan kanatlı yapıların daha etkin tasarlanmasını gerektirmektedir.

Doğal taşınımla ısı geçişinin olduğu yüzeylerde, yoğunluk farkı sebebiyle hareket eden akışkan, yüzey ile arasında ısıl sınır tabaka oluşturmaktadır. Yükseklik boyunca ısıl sınır tabakanın gelişmesi, ısı taşınım katsayısının azalmasına ve kanatlardan geçen ısı miktarının düşmesine sebep olmaktadır. Endüstriyel uygulamalarda ısıl sınır tabakanın dağıtılarak ısı taşınım katsayısının arttırılması kullanılan bir yöntemdir. Ancak bazen ısı transfer katsayısını ve ortamlar arasındaki sıcaklık farkını artırmak mümkün olmayabilir. Bu yüzden ısı transfer yüzey alanını artırmak en çok kullanılan yöntemdir.

Taşınımla ısı transferi bir akışkan ile bir katı yüzey arasında oluşur. Bu yolla yapılan ısı transferi değerlendirmelerinde Nusselt ve Rayleight sayılarının aldığı değerlere göre yorumlar yapılır. Genellikle doğal taşınımda $Ra \le 10^8$ değeri için ısı geçişinin laminer sınır tabaka içinde gerçekleştiği, $Ra \ge 10^9$ değeri içinse sınır tabakadaki hareketin türbülanslı olduğu kabul edilir. Doğal taşınım için $10^8 \le Ra \le 10^9$ aralığı geçiş bölgesidir.

Bu çalışmada, yatay olarak yerleştirilen, alüminyum silindir üzerine eksenel olarak tutturulmuş dikdörtgen kesitli kanatçıklardan doğal taşınım ile ısı transferi incelenmiştir. Hesaplamalarda taşınım ile ısı transferinin yanı sıra ışınım ile ısı transferinin etkileri de dikkate alınmıştır. Deneyler farklı kanatçık boyutlarında, farklı kanatçık sayılarıyla ve farklı giriş güçlerinde tekrarlanarak ölçümler yapılmıştır. Deney sonuçları Nusselt sayısının Rayleigh sayısı ile değişimi olarak sunulmuştur.

2. KAYNAK ARAŞTIRMASI

2.1. Giriş

Zorlanmış taşınım, bir fan, üfleyici bir ünite veya bir pompa vasıtasıyla akışkan hareketinin sağlanması sonucu ortaya çıkar. Doğal taşınımda ise akışkan hareketi dışarıdan bir etkenle akışkana hareket verilmesiyle gerçekleşir. Örneğin, üniform sıcaklıktaki bir akış ortamına sıcak bir plaka bırakılacak olursa ve ortamın sıcaklığı plaka sıcaklığının altında veya üzerinde ise doğal taşınılma ısı geçişi gerçekleşir. Akışkanda ki sıcaklık değişimleri yerçekimi etkisinin sebep olduğu bir yoğunluk farkının oluşmasına bu da akışkanın hareketi ile ısı transferinin oluşmasına sebep olur.

Doğal taşınımla ısı geçişinde, bilindiği üzere ısı geçişinin olduğu yüzeyle akışkan arasında ısıl sınır tabaka oluşmaktadır. Sıcak olan bir yüzeyden akışkana ısı geçtiği durum için, kanal yüzeyinde yükseklik arttıkça, ısıl sınır tabakanın kalınlığı da artmaktadır. Bunun sonucunda yerel ısı taşınım katsayısı, tam gelişmiş akış oluncaya kadar, yükseklik boyunca düşer ve kanatlardan akışkana ısı geçişi kötüleşir.

Diğer taraftan, sonlu sıcaklığa sahip olan her yüzey Stefan-Boltzmann yasasına göre birim yüzeyinden $\varepsilon \sigma T^4 y$ kadar ısı yayar. Yüzeyin gördüğü çevrenin yaydığı ısı da $\varepsilon \sigma T^4 c$ kadar ise yüzey ile çevre arasındaki ışınımla net ısı geçişi $\varepsilon \sigma (T^4 y - T^4 c)$ kadar olur. Böylece, taşınımla ısı transferi gerçekleşen yüzeylerden aynı zamanda ışınımla da ısı transferi meydana gelir. Bir yüzeyden gerçekleşen toplam ısı transferi üzerine taşınım ve ışınımla ısı transferi mekanizmalarından her birinin ayrı ayrı etkisi değişik parametrelere bağlıdır. Bu parametreler, başta yüzey ve çevre sıcaklıkları ya da bunların farkı olmak üzere ısı taşınım katsayısı ve yüzey yayma katsayısı olarak sıralanabilir. Bir yüzeyden gerçekleşen isi transferinde diğer parametreler sabit kalsa bile sıcaklığın değişmesi ile taşınım ve ışınımın toplam ısı transferine olan oransal katkısı da değişecektir.

Elektronik cihazların performanslarının soğutmaya bağlı olması, çeşitli uygulama yöntemlerinin ve sayısal analizlerin geliştirilmesini de gerekli kılmıştır. Birçok bilim adamı doğal taşınım ve zorlanmış taşınım ile ilgili farklı tasarımlı kanatçık ve farklı geometrik yüzeylerle deneysel ve sayısal çalışmalar yapmış, çeşitli ampirik bağıntılar elde etmiştir.

2.2. Konu ile ilgili Yapılan Çalışmalar

2.2.1. Silindirlerde doğal taşınım ile yapılan çalışmalar

Kanatçıklı silindirler özellikle elektronik sistemlerin soğutulmasında kullanılmaktadır. Bu konuda Wang ve ark. (1999) yayınlarında sabit sıcaklıklı yatay dairesel kanatçıklardan laminer akış doğal taşınım problemini ele almışlardır.

Isı transferinin kütle transfer denklemlerine benzerliğinden faydalanılarak yapılan çalışmalar vardır. Örneğin Chang ve ark. (2017) farklı mesafe/çap oranlarında, Prandtl ve Rayleigh sayılarını yatay yan yana iki silindirden doğal taşınım ısı transferini deneysel olarak incelemişlerdir. Isı transferinin kütle transferine benzerliği analojisinden ısı transferi kat sayıları yerine kütle transferi katsayıları bulunmuştur. Mesafe/çap oranı arttıkça alt ve üst silindirlerin Nusselt sayısı değerleri oranının arttığı belirlenmiştir. Prandtl sayısının değerinin Nusselt sayısı ile doğru orantılı olduğu makalelerinde belirtilmiştir.

Hassan ve ark. (2014) çalışmalarında, yatay ve düşey silindirlerde doğal taşınım kütle transferini elektrokimyasal yöntemle bulmuşlardır. Kanatçıklar arası mesafe, kanatçık çapı ve içinde deney yaptıkları solüsyonun fiziksel özellikleri değişken parametreler olarak belirlenmiştir. Kütle taşınım katsayısının kanatçık yüksekliği ile doğru ve kanatçıklar arası boşluk ile ters orantılı olduğu belirtilmiştir. Kanatçıklı silindirlerde kütle taşınım katsayısının kanatçıksız olanlarına göre %44 ila %96 arasında fazla olduğu görülmüştür. Kütle transferi katsayısının düşey silindirlerde yatay silindirlere göre daha yüksek olduğu belirtilmiştir.

Rayleigh sayısının 1.69x10⁸ ila 5.07x10¹⁰ arası değiştiği durumlarda bir silindirden yatay konumdan düşey konuma gelinceye kadar doğal taşını ile ısı transferi Heo ve Chung (2012) tarafından incelenmiştir. Bakır kaplanmış bir silindirde deneyler yapılmıştır. Isı ve kütle transferinin benzerliği analojisinden deneyler kütle transferi deney düzeneğinde gerçekleştirilmiştir. Silindir yatay konumda iken kütle transfer katsayısının daha yüksek olduğu ve dik konuma geldikçe kademeli olarak azaldığı belirlenmiştir.

Haldar (2004) yayınında yatay, çevresinde eksenel kanatçıklar olan bir silindirden doğal taşınım ısı transferini sayısal olarak çözmüştür. Problemi çözerken silindirin yüzey sıcaklığını ve çevre ortam sıcaklığını sabit ve üniform kabul etmiştir. Isı transferinin Grashof sayısı, kanatçık sayısı ve kanatçık boyutu ile arttığını belirtmiştir. Haldar ve ark. (2007) yayınlarında eksenleri doğrultusunda çevresine kanatçıklar takılan bir silindirde laminer akış şartlarında birleşik doğal taşınım problemini sayısal olarak çözmüşlerdir. Isı transferini etkileyen değişken içinde en önemlisinin kanatçık kalınlığı olduğunu belirlemişlerdir. Isı transferinin en fazla olacağı durum için değişkenlerin optimum değerlerini vermiştir.

Prakash ve Patankar (1981) yayınlarında düşey içten kanatçıklı borularda tam gelişmiş laminer akış problemini ve ısı transferini kaldırma etkisini de göz önüne alarak incelemişlerdir. Problemi çözerken sonlu farklar metodunu kullanmışlardır. Sonuçlar geniş bir Rayleigh sayısı aralığında farklı kanatçık boyları ve kanatçık sayıları için verilmiştir. kaldırma kuvveti etkisinin ısı transferini önemli oranda arttırdığı belirlenmiştir.

An ve ark. (2012) çevresinde düşey plakalar olan bir silindirde doğal taşınımda Nusselt sayısını belirlemek için deneysel çalışmalar yapmışlardır. Kanatçık sayısının farklı kanatçık boyutunun ve farklı plaka taban sıcaklıklarının değişken olarak alındığı deneyler sonucunda, Nusselt sayısını veren bir bağıntı verilmiştir.

2.2.2. Plaka yüzeylerde doğal taşınım ile yapılan çalışmalar

Literatürde sadece silindirik geometride cisimler değil kanatçıklı plaka biçiminde geometriler de vardır. Düşey uzun bir plakadan doğal taşınım ile ısı transferi için deneysel çalışmalar da yapılmıştır.

Kiwan (2007)'da yaptığı sayısal çalışmada düşey sabit plaka üzerine yerleştirilen poroz kanatçıklardan doğal taşınım ısı transferine, ışınım ısı transferinin etkisini belirlemiştir. Rayleigh sayısı arttıkça ışınım ısı transferinin öneminin azaldığı bulunmuştur.

Yine poroz kanatçık çalışması olarak, dikdörtgen kesitli poroz kanatçıklarda taşınım ve ışınım etkileri incelenmiştir (Gorla ve Bakier, 2011). Poroz malzeme özelliği gereği temas halinde olduğu akışkanın içinden geçmesini sağlar. Porozite parametresi, sıcaklık oranı ve ışınım parametreleri değiştirilerek yerel ısı transferi katsayısı ve kanatçıklardaki sıcaklık dağılımları belirlenmiştir.

Yu ve ark. (2010) yaptıkları çalışmada, yatay dairesel bir plaka üzerinde dikdörtgen kesitli kanatçıktan doğal taşınım ısı transferini hem deneysel hem de sayısal olarak çözümlemişlerdir. Kanatçık boyu, kanatçık yüksekliği ve kanaçtık sayısı gibi üç

değişkenin ısı transferine etkisi incelenmiştir. Çalışmada ayrıca ortalama Nusselt sayısını veren bir bağıntı da verilmiştir.

Plaka yüzeyine yerleştirilen yivli ve ondüleli kanatçıklar deneysel olarak incelenmiştir (Sikka ve ark., 2002). Plaka hem yatayda hem de düşey konumda iken deneyler tekrarlanmıştır. Sonuçlar, Nusselt sayısının Rayleigh sayısı ile değişimi olarak verilmiştr.

2.2.3. Farklı geometrik yüzeylerde doğal taşınım ile yapılan çalışmalar

Küre üzerinde kanatçıklar için de literatur çalışmaları bulunmaktadır.(Singh ve Patil, 2015; Singh ve Singh, 2015) kanatçıklı küresel cisimler üzerinde doğal taşınım ısı transferini hem laminer hem de türbülanslı akışlar için ele almışlardır. Kanatçık yüksekliği/ küre çapı, kanatçıklar arası mesafe/ küre çapı gibi değişkenlerin Nusselt sayılarına etkileri sayısal olarak çözülmüştür. Çalışmada bir değişken olarak da kanatçığın iletken olup olmaması alınmıştır. İletken kanatçıkların sayısının artması laminer akış rejiminde Nusselt sayısının değerini azaltmıştır. İletken olmayan kanatçıklarda ise Nusselt sayısı hem laminer hem de türbülanslı akışta kanatçık sayısı ile azalmıştır. Ayrıca çalışmada kanatçıklı küreler için Nusselt sayısını veren korelasyonlar geliştirilmiştir.

Vollaro ve ark. (1999) dikdörtgen kanatçıklı yüzeylerde deneysel çalışma yapmışlardır. Bu çalışmada kanatçıklı yüzeyleri doğal taşınımla soğutmak için optimum konfigürasyonu araştırmışlardır. Kanatçık boşluğunun optimum değerinin boyutlara, termal iletkenliğe, kanatçıkların soğurma katsayısına ve akışkanın termo-fiziksel özelliklerine bağlı olduğuna dair basit ifadeler geliştirmişlerdir. Sonlu uzunluktaki bir kanatçığın iletkenliğine temel etkinin optimum kanatçık aralığı olduğunu ifade etmişlerdir.

Kotcioglu ve ark. (2013) dikdörtgen kesitli düşey bir kanalda doğal ve zorlanmış taşınımla ilgili yapılan deney çalışmalarının sonuçlarını sunmuşlardır. Kanal içerisine üç farklı kanatcıklı deney elemanı yerleştirilerek deneyler yapılmıştır. Deney elemanlarına ait kanatçıklar, düzlem yüzey, silindirik ve hava akış yönüne, 60°'lik açı yapan daralan-genişleyen kanatcıklar şeklindedir. Deneysel çalışmaların sonucunda, kanal içerisine farklı şekilde yerleştirilen kanatçık tiplerine ait Nusselt sayıları arasındaki değişim incelenmiştir. Ayrıca her bir tip kanatçık modeli için kanatçık sıcaklığı incelenmiştir.

Zhang ve ark. (2017) çeşitli sıvılarla dolu (Pr = 5, 9, 25 ve 130), dikey duvarlarından birine yüzeye tamamen gömülü olarak yerleştirilmiş 3x3 dizilimli ısı kaynakları bulunan ve karşısındaki duvar tarafından soğutulan dikdörtgen kesitli bir kutudaki doğal taşınımı 3 boyutlu ve sayısal olarak incelemişlerdir. Boyutsuz temel denklemler uygun sınır koşulları kullanılarak çözülmüştür. Hesaplamalar kapalı ortam geometrik oranı 1 ve 20 arasındayken, 104 ve 108 aralığında değişen düzeltilmiş Rayleigh sayılarına göre gerçekleştirilmiştir. Düzeltilmiş Rayleigh sayısının, kapalı ortam geometri oranı ve Prandtl sayısının ısı transferine olan etkisi incelenmiştir. Ortaya çıkan sonuçlar akış alanının karmaşık ve ayrık ısıtıcılardan transfer edilen ısının uniform bir yapıda olmadığını göstermiştir.

2.2.4. Silindirlerde zorlanmış taşınım ile yapılan çalışmalar

2500-12800 Reynolds sayısı aralığında ve aynı hücum açısında dikdörtgen kanatçığa sahip bir silindir etrafındaki ısı transferi ve akış karakteristiklerini belirlemek üzere bir deneysel çalışma yapılmıştır (Igarashi ve Mayumi, 2001). Bu çalışmada silindirin genişlik/yükseklik oranı 5 seçilmiş ve hücum açısı 0-20° aralığında değiştirilmiştir. Silindirin yatay ile yaptığı açı olan $\alpha=0^{\circ}$ pozisyonunda silindir ekseni ile akış aynı hizaya getirilmiştir. $\alpha<15^{\circ}$ için yeniden birleşen akışın türbülanslı olduğu, $\alpha>15^{\circ}$ için ise akışın laminer kaldığı gözlemlenmiştir. Alt ve üst yüzeylerdeki yerel ısı transferi katsayısı ampirik formülüyle korole edilmiştir. Buradaki C katsayısının $\alpha>5^{\circ}$ için, artan α ile azaldığı bildirilmiştir. Deneyler sonucunda maksimum ortalama ısı transferinin α 'nın 0° ve 5° değerleri arasında meydana geldiğini tespit etmişlerdir.

2.2.5. Plaka yüzeylerde zorlanmış taşınım ile yapılan çalışmalar

Tahat ve ark. (1994) yatay bir taban plaka üzerine yerleştirilen iğne kanatçıklarla zorlanmış taşınım ile deneysel çalışma yapmışlardır. Bu çalışmada kararlı durumda kanatçıkların termal performanslarını, akış direncini, değişik kanatçık konfigürasyonlarını ve hava akış hızının etkilerini incelemişlerdir. Düz ve şaşırtmalı dizilimde akışa dik doğrultuda optimum kanatçık dağılımı 1mm<Sx(kanatçıklar arasındaki yatay boşluk)<3mm ve 7.6 mm<Sy(kanatçıklar arasındaki dikey boşluk)<7.8 mm olarak tespit edilmiştir.

Hava akışına dik olarak yerleştirilmiş, şaşırtmalı ve düzgün dizimli iğne kanatçıklarla deneysel çalışmalarda yapılmıştır (Tahat ve ark., 2000). Bu çalışmada kararlı haldeki ısı transferi incelenmiştir. Akışa dik yönde ve akış yönünde kanatçıklar arası optimum mesafe değerleri belirlenmiştir. Düzgün ve şaşırtmalı dizilimde de artan Reynolds sayısı ile kararlı hal ısı kaybının arttığını, akış yönünde ve akışa dik yönde artan iğne kanatçıkların aralığı ile kararlı hal ısı kaybının azaldığını ifade etmişlerdir. Ortalama ısı transferi katsayısının da artan Reynolds sayısıyla birlikte arttığı belirtilmiştir.

Zheng ve Dalton (1999) silindirik kesite sahip iğne kanatçıklardan oluşan kare blok üzerinde deneysel çalışma yapmışlardır. Bu çalışmada kare blok fan tarafından tahrik edilen havanın çarpan akışı durumunda basınç kaybı ve akış ölçümü deneyleri yapılmıştır. Soğutucu hızı oranı, kanatçık yoğunluğu ve kanatçık yüksekliklerine bağlı korelasyonlarla sonuçları değerlendirmişlerdir. Aynı deneysel parametrelerde aynı akış debisinde jet kaynaklı çarpan akış ile fan kaynaklı çarpan akış koşulları karşılaştırılmıştır. Karşılaştırma sonucunda fan ile çalışıldığı zaman daha düşük basınç kaybı ve ısı transferi olduğunu belirtmişlerdir. Ayrıca optimum kanat geometrilerinin akış dizayn kriterlerine bağlı olarak oluştuğunu ifade etmişlerdir.

2.2.6. Farklı geometrik yüzeylerde zorlanmış taşınım ile yapılan çalışmalar

Ahmed ve Yovanovich (1997) yayınlarında, farklı geometrilerdeki cisimlerde zorlanmış taşınımda ısı transferini deneysel olarak incelemişlerdir. Deneylerini rüzgar türbininde yapmışlardır. Reynolds sayısının farklı geometriler için Nusselt sayısına etkileri incelenmiştir. Zorlanmış taşınım için ampirik bir model sunulmuştur.

Zhao ve Bar-Ziv (2002) çalışmalarında mikrokanal ısı alıcı boyunca zorlanmış konveksiyonla ısı transferini analitik ve numerik olarak incelemişlerdir. İki analitik yaklaşım kullanılmıştır; gözenekli ortam ve kanatçık uygulaması. Her iki yaklaşım da göstermiştir ki, Nusselt sayısı kanal açısı arttıkça artmakta ve ısı iletim katsayısı azaldıkça artmaktadır. Fakat, ısı dağılımları konusunda bu iki yaklaşım büyük farklılıklar göstermiştir.

Dikdörtgen kanal içinde düz ve şaşırtmalı dizilmiş baklava dilimi şeklindeki kanatçıklarla deneysel olarak çalışma yapılmıştır (Tanda, 2001). Bu çalışmada ısı transferi, basınç kaybı karakteristiklerini ve kanatçık diziliminin yerel ısı transfer

katsayısına etkisi incelemiştir. Her kanatçık dizilimi için Nusselt sayısı korelasyonları Reynolds sayısının bir fonksiyonu olarak geliştirilmiştir. Bu geometrideki kanatçıkların boş dikdörtgen kanala göre aynı kütlesel debide ısı transferini 4.4 kat kadar artırdığı, eşit pompalama gücünde ise 1.65 kat artırdığı ifade edilmiştir.

Al-Jamal ve Khashashneh (1998) sabit ısı akısında üçgen ve iğne kanatçıklı ısı alıcılarında deneysel olarak çalışma yapmışlardır. Bu çalışmada ısı alıcılarının ısı transfer değerleri incelenmiştir. Her iki geometride için Nusselt Sayısı, Reynolds ve Prandtl sayılarının bir fonksiyonu olarak belirlenmiştir. Maksimum Reynolds sayısının aynı değeri için iğne kanatçıkların ısı transferi üçgen kanatçıklardan daha fazla olduğu gözlemlenmiştir.

Sara ve ark. (2001) dikdörtgen bir kanal içerisinde akışa dik ve paralel olarak dizilmiş dikdörtgen kesitli kanatçıklarda deneysel olarak çalışma yapmışlardır. Bu çalışmada diziliş parametresinin ısı transferi iyileşmesine etkisi incelenmiştir. Deneyler esnasında 80x160 mm² kesit alanına sahip bir kanal kullanılmış ve Reynolds sayısı 6670-40000 arasında değiştirilmiştir. Kanatçıkların kendi aralarındaki mesafeye, akışa paralel veya dik olmalarına ya da düzgün veya şaşırtmalı dizilişlerine göre ısı transferinin artış veya azalışı gözlemlenmiştir. Verilen sabit bir basınç kaybında, kanatçıkların akışa paralel ve şaşırtmalı olduğu diziliş geometrisinde en iyi ısı transferinin gerçekleştiği ifade edilmiştir.

Değişik kanal geometrilerinde boyuna kanatçıklarla 151 transferinin iyileştirilmesi üzerine deneysel çalışmalar gerçekleştirilmiştir (Naik ve ark., 1999). Sabit taban plaka sıcaklığında, kanatçıklardan oluşan maksimum 151 transferinin gerçekleştiği optimum kanatçık aralığının, kanatçık yüksekliğinin kanatçık boyuna oranı ve Reynolds sayısının bir fonksiyonu olduğunu gözlemlenmiş ve kanatçıklar üzerindeki boşluk miktarından etkilenmediği ifade edilmiştir. İğne kanatlı 151 değiştirici konfigürasyonu ile boyuna kanatçık konfigürasyonu karşılaştırılmıştır. Sonuç olarak boyuna kanatçık yüksekliklerinin uzunluklarına oranı 0.24'den daha büyük olduğunda bu kanatçıkların daha fazla 151 transferi gerçekleştirildiği belirlenmiştir.

Dogruoz ve ark. (2005) tarafından kare ve sıralı iğne kanatlı ısı alıcıların davranışlarını gözlemleyen analitik ve deneysel çalışmalardan bazı bulgular sunulmuştur. Deneysel çalışmada sabit yüzey 25*25 mm de ve kanat yüksekliği 12,5 mm, 17,5 mm ve 22,5 mm de çeşitli ölçülerde alüminyum ısı alıcıları kullanıldı. Temel analizlerle ısı alıcısı içindeki giriş, çıkış ve basınç kaybı korelasyonları açıklanmıştır. Basınç kaybı tahminleri; kullanılan ısı alıcısı için basınç kayıp katsayıları ölçülmüş ve

deneysel sonuçlar ile ilişkilendirilmiştir. Sürtünme faktörü, basınç kaybı ve by-pass oranı sonuçları çeşitli yüksekliklerle sıralı iğne ve kare kanatçıklı ısı alıcıları için gösterilmiştir. Deneysel ve teorik sonuçlar birbiriyle karşılaştırılmıştır. Detaylı basınç kaybı ölçümleri yapabilmek için SLA model kurulmuş ve test edilmiştir.

3. MATERYAL VE METOD

Bu bölümde deney düzeneği tanıtılarak deneyin yapılışı anlatılmakta ve deney sonuçları verilmektedir. Deney tesisatında kullanılan ekipmanın tanıtılması yapıldıktan sonra data analizi yapılmakta, ışınım ile ısı transferine değinilmekte ve örnek hesaplama yapılmaktadır. Son olarak da deney verileri, yapılan hesaplamalar ve deney verilerinden yararlanılarak sonuçlar ortaya konulmaktadır.

Çapı D, ısıtılan uzunluğu L ve yüzey sıcaklığı T_w olan bir silindirin üzerini çevreleyen hava T_{∞} sıcaklığında iken $T_w > T_{\infty}$ ise silindir yüzeyi ile temasta olan hava ısınmaya başlar. Bu nedenle havanın yoğunluğu azalır. Kaldırma kuvveti nedeniyle yukarı doğru bir akış meydana gelir. Böylece hava herhangi bir dış etki olmaksızın silindirden yukarı doğru hava akışı gerçekleşecektir. Şekil 3.1'de şematik olarak deney silindirinin resmi verilmiştir.

Şekil 3.1. Deney silindiri

Doğal taşınımdaki akış zorlanmış taşınımdaki akış hızına kıyasla çok daha küçüktür. Bu yüzden doğal taşınımla ısı geçişi zorlanmış taşınımla ısı geçişine göre çok daha azdır. Şekil 3.2'de kaldırma kuvvetine bağlı olarak sıcak düşey levhada oluşan akışkan hareketi ve hız sınır tabakası gösterilmektedir. Levha etrafında ısınan akışkan hareketsiz bölgedeki akışa katılmak suretiyle yükselir.

Şekil 3.2. Isıtılan dikey bir levha üzerinde akışkanın hareketi ve sınır tabakanın gelişimi

Bir yüzey üzerinde akış olduğunda nasıl bir hız sınır tabakası gelişirse, akışkan sıcaklığı yüzey sıcaklığından farklı olduğunda da ısıl sınır tabaka gelişir. Sabit sıcaklıkta bir düz levha üzerinde Şekil 3.3'de bulunan ısıl sınır tabakası incelendiğinde;

Şekil 3.3. Plaka üzerinde oluşan ısıl sınır tabakası (Incropera ve Dewitt 2001.)

Levha giriş ucunda sıcaklık profili düzgün dağılımlı olup T(y)=T ∞ 'dur. Bununla beraber akışkan parçacıkları levha ile temas ettiklerinde levha ile aynı sıcaklığa ulaşır. Bu parçacıkların komşu akışkan tabakası ile enerji değişimi, akışkan içinde sıcaklık farkına yol açar. Akışkanın sıcaklık farklarının oluştuğu bu bölge ısıl sınır tabakadır ve bu tabakanın kalınlığı δ_T , genellikle [(Ts-T)/(Ts-T ∞)]=0.99 oranı sağlayan y değeri olarak tanımlanır. Giriş ucundan uzaklaştıkça ısı geçişi serbest akışı daha fazla etkiler ve ısıl sınır tabaka büyür (Incropera ve ark., 2001).

Benzer şekilde, yatay dairesel bir silindir yüzeyinden doğal taşınımda oluşan sınır tabakası profili ve Nusselt sayısının silindir yüzeyinde ki dağılımı Şekil.3.4'de gösterilmiştir.

Şekil 3.4. Isıtılmış yatay silindir yüzeyinde oluşan sınır tabakası ve Nusselt sayısının dağılımı (Frank P., 1981)

3.1. Deney Düzeneğinin Tanıtımı

Deney düzeneği ayarlı bir güç kaynağı, kanatçıksız ve farklı boyut ve sayılarda siyah anot kaplama yapılmış kanatçıklı silindirik test parçaları, seçici anahtar, termokupul ve bağlantı elemanlarından oluşmaktadr. Deney düzeneğinin şematik resmi Şekil 3.5'de genel görünümü ise 3.6'de gösterilmiştir. Sıcaklıklar belirli aralıklarla kaydedilmektedir.

Şekil 3.5. Deney düzeneğinin şematik resmi

Deney silindirinin ısıtılması ve ısı transferinin gerçekleşmesi için gerekli ısı, ayarlı bir güç kaynağı vasıtasıyla silindir içerisine yerleştirilen 1200 watt lık bir direnç teline verilen akım sayesinde gerçekleşmektedir. Deney silindirleri içersinde 8 farkı noktadan termokupullar ile sıcaklık ölçümü yapılarak ortalama cidar sıcaklığı tespit edilmektedir. Sıcaklığın dış yüzeyden ölçülmemesinin sebebi ortamdaki termokupul kablolarının doğal taşınım akışını etkilemesidir. Bu yüzden silindir sıcaklığı olarak ortalama silindir iç yüzey sıcaklığı alınmıştır. Silindirin iç ve dış yüzey sıcaklıkları arasındaki fark çok küçüktür ve ihmal edilebilecek mertebededir. Silindirin her iki uc kısmından 1 cm lik cam yünü ile ısı yalıtımı yapılmış ve ısı kaybı önlenmeye çalışılmıştır. 2 termokupul ile ortam sıcaklığı ölçülmeye çalışılırken 2 termokupul ile de yalıtım sıcaklıkları ölçülerek buradan gerçekleşen kayıp ısı bulunmuştur. Varyak 220 volt şehir şebekesine bağlanmış ve çıkış gücü amper- voltaj değerleri değiştirilerek ayarlanmaktadır. Akım ve voltaj değerlerinden ısıtıcının gücü hesaplanmıştır.

Şekil 3.6. Deney düzeneğinin genel görünümü

Kanatçıklı ve kanatlıksız silindirlerin genel görünüm Şekil 3.7'de gösterilmiştir. Deney silindiri, Φ38 mm iç çapında ve Φ42 mm dış çapında 120 mm boyunda alüminyum malzemeden imal edilmiş ve yüzeyleri anot kaplama yapılmıştır. Kaplama yapılmasının sebebi alüminyumu siyah cisim kabulüne yaklaştırarak ışınım yayımlama katsayısını hesaplamalarda 1 almaktır. Siyah anot kaplanmış alüminyum plakaların emisivite değerleri 0,76-0,82 arasındadır. Bu değer kanatçıklar arasında birçok yansımadan (kavite etkisi) dolayı siyah cisim değerine yaklaşır. Hesaplamalarda bu yüzden emisivite değeri 1 alınır (Sprarrow ve Vemuri, 1985; Sprarrow ve Vemuri, 1986).

Şekil 3.7. Kanatçıksız ve kanatçıklı deney silindirinin genel görünümü (a) kanatçıksız silindir (b) kanatçıklı silindir

3.2. Deneylerin Yapılışı

Deneyler kanatçıklı ve kanatçıksız silindirlerde mukayeseli ve sistemin güvenirliği için çok sayıda tekrarlı yapılmıştır. Doğal taşınım da çevrenin ve ışınımın etkilerini minimuma indirmek için karanlık ve stabil bir deney ortamı sağlanmıştır.

Kanatçıklı silindirler ile kanatçıksız silindirler arasında kıyaslama yapılırken aynı Rayleigh sayılarında değerlendirebilmek için kanatçıksız silindirler güç değerleri 2 W ile 20 W arasında 2 watlık artışlarla yapılırken, kanatçıklı silindirlerde 5 W ile 50 W arasında 5 watlık artışlarla yapılmıştır. Kullanılan kanatçık boyutları 1.5 mm kalınlığında ve 30 mm, 60 mm ve 90 mm kanatçık yüksekliğinde olup genişliği silindir boyunca 120 mm dir. Kanatçıklı silindirlerde deneyler 6 kanatçık sayısı ile başlamış sırasıyla her bir farklı kanatçık boyu için 12 ve 18 kanatçık olacak şekilde devam etmiştir. Silindir yüzey sıcaklığı için 8 adet termokupulla ölçülen sıcaklıkların aritmetik ortalaması alınmış ortam sıcaklığı için ise 2 adet termokupul ile ölçülen sıcaklık değerlerinin artmetik ortalaması alınmıştır. EK-1'de sunulan atmosfer basıncındaki havanın termo fiziksel özellikleri tablosundan (Frank P., 1981) Film sıcaklığına (T_f) karşılık gelen değerler alınmış ve hesaplamalarda kullanılmıştır. Sistemin rejime girmesi başlangıçta 2.5-3 saat sürerken daha sonraki deneylerde 1.5-2 saate kadar düşmüştür.

3.3 Data Analizi

Deneyler esnasında her bir ısıtıcı gücü için silindir yüzey sıcaklığı, ortam sıcaklığı, yalıtım dış yüzey sıcaklığı veri olarak alınmıştır. Ölçüm sıcaklıkları hesaplamada Kelvin (K) olarak ifade edilmiştir.

Rayleigh sayısı;

$$Ra = g. \beta \Delta T.D^3 / \upsilon \alpha \tag{3.1}$$

şeklinde ifade edilmiştir. Çelik (2003), Morgan (1975)

Burada D; karekteristik çaptır ve kanatçıkların tutturulduğu silindirin dış çapıdır.

g: yer çekim ivmesi β Isıl genleşme katsayısıdır.

Hacimsel Genleşme Katsayısı;

 $\beta = 1 / T_f$ Çelik (2003), Holman (1984)

şeklinde tanımlanmıştır.

Film Sıcaklığı;

(3.2)

$T_f = (T_w + T_\infty) / 2$ Çelik (2003), Sparrow ve Chrysler (1981)	(3.3)
şeklin de tanımlanmıştır.	
ΔT : yüzey sıcaklığı ile ortam sıcaklığı arasındaki fark;	
$\Delta T = T_w - T_\infty$	(3.4)
Deney silindirinin karekteristlik çapı D'ye bağlı olarak Nusselt sayısı için	
Nu=h.D/ k	(3.5)
ve taşınım katsayısı için	
$h = Q/A (T_w - T_\infty)$	(3.6)
bağlantıları kullanılmıştır.	
Denklem 3.5 ve 3.6 birleştirilerek Nusselt ifadesi	
$Nu = Q_{taş}.D / A(T_w-T_\infty)$	(3.7)
halini alır. Taşınımla gerçekleşen ısı transferi	
$Q_{taş.} = P - Q_{1şinm} - Q_{kayip}$	(3.8)
bağıntsıyla hesaplanabilir.	
Silindirin yüzey alanı	
А= П.D.L	(3.9)
Şeklindedir.	

Kanatçıklı ve kanatçıksız silindirlerde taşınım yüzey alanı aynı alınmıştır. Bunun nedeni benzer şartlarda iki silindirin karşılaştırmasını yapabilmek içindir. Uç kısımlardan kaybolan ısı miktarı ;

$$Q_{kayıp} = Q_{kayıp1} + Q_{kayıp2}$$
(3.10)

$$\Delta T_{\text{kayıp}} = T_{\text{iz iç}} - T_{\text{iz dış}}$$
(3.11)

Deneyde izalasyon iç sıcaklığı boru iç cidar sıaklığı ile aynı kabul edilmiştir.

$$Q_{kayıp} = k.A_1. \Delta T_{kayıp} / \Delta_{x1} + k.A_2. \Delta T_{kayıp} / \Delta_{x2}$$
(3.12)

 $A_1 = A_2$ ve $L_1 = L_2$ olduğundan değerler yerine konularak $Q_{kayıp}$ hesaplanır.

3.4. Işınım ile Isı Transferi

Cisimlerin sıcaklıkları sebebiyle etraflarına yaydıkları ışınlara ısı ışını bu olaya ise ısı ışınımı denilmektedir. Doğal taşınım ile ısı transferi gerçekleşen bir sistemde ışınım ile gerçekleşen ısı transferi ihmal edilemeyecek kadar büyük boyutlardadır. Deney setinde kullanılan kanatçıklardan ısı transferi şekil faktörünü veren direkt bir ifade mevcut değildir. Bunun için sistemin önce bir tanımlanması ve buna göre bir takım kabullerin yapılması gerekir. Işınım ile geçekleşen ısı transferi;

$$Q_{i,inim} = F_{(\epsilon)}, F_{12}.\sigma.A.(T^4_w - T^4_\infty)$$
(3.13)

Şeklinde ifade edilebiliriz.

Kanatçıklı ve kanatçıksız silindir yüzeyinden ışınım ile ısı transferini hesaplayabilmek için bazı kabuller yapılmış ve bu kabuller aşağıda açıklanmıştır.

1. Silindir, kanatçıklar ve tüm yüzeyler siyah cisim kabul edilmiştir. $F_{(\epsilon)} = 1$

2. Ortamın ışınımı etkilemediği kabul edilmiştir. (Gaz ışınımı sıfır)

3. Tüm çevre yüzeyler izotermal ve sıcaklığı hava sıcaklığına eşit kabul edilmiştir.

4. Silindir ve kanatçıkların sıcaklığının aynı sıcaklıkta ve tüm yüzeylerde sıcaklığın üniform olduğu kabul edilmiştir.

 $F_{(\epsilon)} = 1$ alındığı zaman

 $Q_{i \in inim} = F_{12}.\sigma.A.(T^4_w - T^4_\infty)$

seklini alır.

Şekil 3.8'de görüldüğü gibi kanatçıklı silindirden olan ısı transferinde, ışınımın bir kısmı kendi içinde absorbe edilmekte, geriye kalan kısmı ise dış ortama transfer olmaktadır.

Şekil 3.8. Kanatçıklardan ışınımla gerçekleşen ısı transferi

Aralarında 60 derece olan ve 30 mm uzunluğundaki kanatçık modülü için şekil faktörü hesabı;

Şekil 3.9'da şekil faktörü hesabında izlenen yöntem şematik olarak ifade edilmiştir.

(3.14)

Şekil 3.9. Şekil faktörü hesabının şematik ifadesi

Şekil 3.9'da görüleceği üzere A'dan B ve C yüzeylerine F_{AB} ve F_{AC} şekil faktörü, B'den A ve C yüzeylerine F_{BA} ve F_{BC} şekil faktörü, C'den ise A yüzeyine F_{CA} ve F_{CB} şekil faktörlerinin bulunması gerekecektir.

Burada;

$$A_{A} = 3.10^{-2} x 12.10^{-2} = 3,6.10^{-3} m^{2}$$
$$A_{B} = \Pi x 0,042 x 12 x 10^{-2} / 12 = 1,32.10^{-3} m^{2}$$

A yüzeyinde B yüzeyine olan F_{AB} ; iki yüzeyin birbirine dik kabulu ile Ek-2'de sunulan ışınım şekil faktörü grafiğinden hesaplanmıştır. (Holman, 2010) ($F_{AB} = 0,15$)

A yüzeyinde C yüzeyine olan F_{AC} şekil faktörü Şekil 3.10'de şematik resmi sunulan ip germe yöntemi ile hesaplanmıştır.

 $F_{AC} = (L_3 + L_4) - (L_1 + L_2) / 2 L_A$

(3.15)

Şekil 3.10 İp germe yöntemi

 $F_{AC} = (2x34,45) \cdot (10,87+26,4) / (2x30) = 0,527$ bulunur.

A alanından çıkan ve B alanı tarafından durdurulan ışınım için;

 $F_{AB}xA_A = F_{BA}xB_A$ if a desinden

 $F_{BA} = 0,15x (3,6x10^{-3})/(1,32x10^{-3}) = 0,41 = F_{BA}$

(3.16)

Tek tarafı kapalı modül için kanatçıklı sistemin bünyesinde kalan şekil faktörünün (F_{11}) hesaplanabilmesi için aşağıdaki formül kullanılabilir.

$$\begin{split} F_{11} &= A_{A} / A_{Top} x \; (F_{AB+} \; F_{AC}) + A_{B} / \; A_{Top} x \; (F_{BA+} \; F_{BC}) + A_{C} / \; A_{Top} x \; (F_{CA+} \; F_{CB}) \quad (3.17) \\ A_{Top} &= A_{A} + A_{B} + A_{C} \quad (3.18) \\ F_{11} &= 3,6/8,52 \; x(0,15 + 0,527) + 1,32/8,52 \; (0,41 + 0,41) + 3,6/8,52 \; x(0,527 + 0,15) \\ F_{11} &= 0,286 + 0,127 + 0,286 = 0,699 \\ F_{11} + \; F_{12} &= 1 \quad (3.19) \\ F_{12} &= 1 - \; F_{11} \; 1 - 0,699 = 0,301 \; \text{hesaplanır.} \end{split}$$

Kanatçıksız silindir ve kanatçıklı silindir için örnek hesaplamalar Ek-3'de sunulmuştur. Kanatçıklı silindirler için hesaplanan şekil faktörleri çizelgesi 3.1'de verilmiştir.

Cizelge 3.1. Farklı sayı ve uzunlukta kanatçıklı silindirlerde şekil faktörü değerleri.

Kanatçık Yüksekliği (mm)	Kanatçık sayısı (Adet)	Şekil Faktörü (F1-2)
	6	0,301
30	12	0,148
	18	0,102
	6	0,278
60	12	0,126
	18	0,106
	6	0,233
90	12	0,146
	18	0,118

3.5. Grafiklerin Çizilmesi

Deneyler sonucunda hesaplanan Ra ve Nu değerleri en küçük kareler yöntemine göre grafiklendirilmişlerdir.

 $Nu = A Ra^{B}$ (3.20)

LnNu = LnA + B LnRa	(3.21)
ve $y = LnNu$	(3.22)
c = LnA	(3.23)
x = LnRa	(3.24)
Dönüşümleri ile	
$\mathbf{v} = \mathbf{B}\mathbf{x} + \mathbf{c}$	(3.25)

ifadesi yazılır. Bu ifade bir dogru denklemini gösterir ve en küçük kareler yöntemine göre, deney sayısı i= 1 den i= 10'a kadar olmak üzere 3.25 eşitliğinden elde edilen y (x_i) değerlerinin deneyden elde edilen y_i değerlerine yaklaşabilmesi için aradaki farkın karelerinin toplamı minumum olmalıdır.

$$\sum_{i=1}^{n} [y_i - y(x_i)]^2 = \min.$$
(3.26)

$$\frac{\partial}{\partial c} \sum_{i=1}^{n} [y_i - (Bx_i + c)]^2 = 0$$
(3.27)

$$\frac{\partial}{\partial B} \sum_{i=1}^{n} [y_i - (Bx_i + c)]^2 = 0$$
(3.28)

olmaldır işlem yapılırsa

$$cn + B \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$
(3.29)

$$c\sum_{i=1}^{n} x_{i} + B\sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} (x_{i}y_{i})$$
(3.30)

ifadeleri bulunur. Bu iki eşitlikten;

$$B = \frac{\sum_{i=1}^{n} (x_{i}y_{i}) - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left[\sum_{i=1}^{n} x_{i} \right]^{2}}$$

$$C = \frac{\sum_{i=1}^{n} y_{i} - B \sum_{i=1}^{n} x_{i}}{n}$$
(3.31)
(3.32)

bulunur ve $A = e^{C}$ elde edilir. Deney sonuçlarına göre hesaplanan A ve B değerleri dördüncü bölümde verilmiştir.

4. ARAŞTIRMA BULGULARI VE TARTIŞMA

Deneylerde ölçümler kanatçıksız düz silindir için 2 Watt'dan başlamak üzere 2 şer Watt artışlarla 10 farklı ısıtıcı gücünde yapılmış, kanatçıklı silindirlerde 5 Watt'dan başlamak üzere 5'er Watt artışlarla 50 Watt güc değerine kadar 10 farklı ısıtıcı gücün de yapılmıştır. Ölçümlerde silindirin konumu ekseniyle "0" derece açı yapacak şekilde sabit konumlandırılmıştır. Kanatçıklı ve kanatçıksız silindirlerde bu çalışma güç aralığının farklı olmasının nedeni aynı Rayleigh sayı aralığı ile çalışabilmektir. Çıkan sonuçlar bize doğal taşınımda ışınım ile olan ısı transferinin ihmal edilemeyecek kadar az olmadığını göstermiştir.

Deneylerden elde edilen sonuçlar ile, kanatçıksız ve kanatçıklı silindirdeki farklı güç değerleriyle Nu- Ra sayısındaki değişimin nasıl olduğu, kanatçık uzunluğunun ve sayısının ısı transferini nasıl etkilediği ve farklı güç değerlerinde ışınımla meydana gelen ısı transferindeki değişim ortaya konmuş, yapılan diğer deneysel çalışmalarla karşılaştırma yapılmıştır.

Yapılan deney sonuçlarının güvenirliğini belirlemek için düz (kanatçıksız) silindir sonuçları literatürdeki sonuçlar ile Şekil 4.1'de Steward (Çelik, 2003), 4.2'de Tsubouchi (Wang ve ark., 1999), 4.3'de Churchiil and Chu (Incropera ve ark., 2001) ve 4.4'de ise Holman (Çelik, 2003) ile karşılaştırmalı olarak verilmiştir. Şekillerden de anlaşılacağı üzere sonuçlar % 9,6- % 16,8 arasındadır. Bu değerler ve sonuçlar kabul edilebilir sınırlar içerisindedir.

Şekil 4.1. Kanatçıksız silindir deney verileri ile steward bağıntısının karşılaştırılması

Şekil 4.2. Kanatçıksız silindir deney verileri ile Tsobouchi bağıntısının karşılaştırılması

Şekil 4.3. Kanatçıksız silindir deney verileri ile Churchill ve Chu bağıntısının karşılaştırılması

Şekil 4.4. Kanatçıksız silindir deney verileri ile Holman bağıntısının karşılaştırılması

Genel olarak Ra ve Nu arasındak ilişki Nu = A Ra^B ile ifade edilmektedir. Deneyler sonucunda hesaplanan Ra ve Nu değerleri en küçük kareler yöntemine göre elde edilen A ve B değerleri çizelge 4.1'de verilmiştir.

Çizelge 4.1. Kanatçıksız ve farklı sayı ve uzunlukta kanatçıklı silindirlerde elde edilen A ve B değerleri

	Kanatçık Sayısı	Kanatçık Uzunluğu	А	В
Düz Silindir	_	_	0,41	0,283
		30 mm	2,56	0,220
	6	60 mm	20,94	0,112
		90 mm	17,66	0,147
Kanataikli	12	30 mm	8,11	0,169
Silindir		60 mm	25,53	0,124
Simer		90 mm	26,31	0,123
		30 mm	5,20	0,213
	18	60 mm	55,8	0,075
		90 mm	17,34	0,198

Şekil 4.5'de kanatçıklı (30 mm kanatçık yüksekliğinde 6 adet çevresel kanatçık sayısı) ve kanatçıksız silindir için yatay konumda Ra-Nu grafiği verilmiştir. Kanatçıklar ısı transferini artırmış, dolayısıyla silindirin cidarındaki ölçülen sıcaklığın daha düşük seviyede kalmasını sağlamıştır. Grafikten anlaşılacağı üzere iki eğrinin karektersitliği birbirine benzerlik göstermektedir. Kanatçıklı silindirin Nusselt değeri, kanatçıksız silindirin Nusselt değeri, kanatçıksız silindirin Nusselt değerinden üç kat fazla olduğu görülmüştür. Yani ısı transfer katsayısı üç kat artmıştır.

Şekil 4.5. Kanatçıksız silindir ile 30 mm kanatçık yüksekliği ve çevresel olarak 6 adet eksenel kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.6'de kanatçıksız silindirin, 60 mm kanatçık boyunda ve çevresel olarak 6 adet eksenel kanatçık sayısına sahip silindir ile Şekil 4.7'de ise 90 mm kanatçık boyunda ve çevresel olarak 6 adet eksenel kanatçık sayısına bağlı Ra-Nu değişim grafikleri verilmiştir. Grafiklerden anlaşılacağı üzere kanatçık sayısı aynı kalmakla birlikte kanatçık uzunluğunda ki değişim ciddi manada ısı transferini artırmıştır.

Şekil 4.6. Kanatçıksız silindir ile 60 mm kanatçık yüksekliğine ve çevresel 6 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.7. Kanatçıksız silindir ile 90 mm kanatçık yüksekliğine ve çevresel 6 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekill 4.8'de çevresel olarak 6 adet kanatçık sayınına sahip farklı kanatçık boylarında (30, 60 ve 90mm) kanatçıklı silindirler ile kanatçıksız silindirin karşılaştırılması yapılmıştır.

Şekil 4.8. Kanatçıksız silindir ile 6 adet kanatçığa sahip farklı kanatçık boylarında (3, 6 ve 9 cm) Ra- Nu değişimi

Şekil 4.9, 4.10, ve 4.11'de kanatçıksız silindir ile 12 adet kanatçığa sahip farklı kanatçık boylarında (30, 60 ve 90) kanatçıklı silindire ait elde edilen verilerin karşılaştırılması yapılmış 4.12'de ise bu karşılaştırmalar tek grafik halinde sunulmuştur. Şekil 4.13, 4.14 ve 4.15'de ise kanatçıksız silindir ile 18 adet kanatçığa sahip farklı kanatçık boylarında (30, 60 ve 90) kanatçıklı silindire ait elde edilen verilerin karşılaştırılması yapılmış ve 4.16'da bu karşılaştırmalar tek grafik halinde sunulmuştur.

Şekil 4.9. Kanatçıksız silindir ile 30 mm kanatçık yüksekliğine ve çevresel 12 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.10. Kanatçıksız silindir ile 60 mm kanatçık yüksekliğine ve çevresel 12 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.11. Kanatçıksız silindir ile 90 mm kanatçık yüksekliğine ve çevresel 12 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.12. Kanatçıksız silindir ile 12 adet kanatçığa sahip farklı kanatçık boylarında (3, 6 ve 9 cm) Ra- Nu değişimi

Şekil 4.13. Kanatçıksız silindir ile 30 mm kanatçık yüksekliğine ve çevresel 18 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.14. Kanatçıksız silindir ile 60 mm kanatçık yüksekliğine ve çevresel 18 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.15. Kanatçıksız silindir ile 90 mm kanatçık yüksekliğine ve çevresel 18 adet kanatçığa sahip silindirin Ra- Nu değişimi

Şekil 4.16. Kanatçıksız silindir ile 18 adet kanatçığa sahip farklı kanatçık boylarında (3, 6 ve 9 cm) Ra- Nu değişimi

Şekil 4.8, 4.12 ve 4.16 beraber değerlendirildiğinde 3 cm boylu kanatçık, düz silindire göre ısı transferini önemli ölçüde artırmıştır. Yine 6 cm boylu kanatçık ısı transferini hem düz silindire hemde 3 cm boylu kanatçığa göre ciddi oranda artırmıştır. Ancak kanatçık boyunun 6 cm den 9 cm'ye çıkması ile artış daha az olmakta veya seyrek sıklıkta (çevresel olarak 6 cm) ile bazı bölgelerde iç içe girdiği görülmektedir. Genel olarak kanatçık sayısının artması ile silindirin etrafında doğal taşınım hareketinin zorlandığı anlaşılmaktadır. Daha sık kanatçık kullanılması ile kanatçık boyunun artması ısı transfer katsayısını doğru oranda artırmamaktadır.

Şekil 4.17'de 30 mm kanatçık boyunda ve çevresel olarak farklı kanatçık sayılarına (6,12 ve 18) sahip silindir ile kanatçıksız silindirin karşılaştırılması yapılmış ve Ra-Nu grafiği verilmiştir. Kanatçık sayısındaki artışında ısı transferini artırdığı gözlemlenmektedir. 6 kanatçık ile 12 kanatçık arasında ısı transferinde büyük fark oluşurken 12 kantçık ile 18 kanatçık arasında çok büyük bir fark oluşmamıştır. Bunun sebebinin silindirimizi çevreleyen 18 kanatçık arasında ki boşlukların 12 kanatçıklı duruma göre daha küçük olması ve akışkan havanın hareketi kısıtlanmaya başlanmasıdır.

Şekil 4.17. Kanatçıksız silindir ile 30 mm kanatçık boyunda farklı kanatçık sayılarına sahip silindirin Ra- Nu değişimi

Şekil 4.18. Kanatçıksız silindir ile 60 mm kanatçık boyunda farklı kanatçık sayılarına sahip silindirin Ra- Nu değişimi

Şekil 4.19. Kanatçıksız silindir ile 90 mm kanatçık boyunda farklı kanatçık sayılarına sahip silindirin Ra- Nu değişimi

Şekil 4.17, 4.18 ve 4.19 beraber değerlendirildiğinde çevresel olarak kanatçık sayısının artmasının ısı transferini önemli ölçüde artırdığı görülmektedir. Ancak kanatçık sıklığı değerleri artmasıyla ısı transferi değerleri birbirine karışmaktadır. Özellikle Şekil 4.19'da çevresel olarak 6 ve 12 kanatçık sayıları arsındaki değerler birbirine çok yakındır.

Yukarıda yer alan grafiklerde ki değerlerin daha iyi anlaşılabilmesi için 1,5x10⁵ Rayleigh değerine karşılık gelen 30,60 ve 90 mm uzunluğundaki 6,12 ve 18 adet eksenel kanatçıklı silindir ve kanatçıksız silindire ait Nusselt sayılarının karşılaştırılması Çizelge 4.2'de verilmiştir. Çizelgeden kanatçık uzunluğundaki ve sayısındaki artışın ısı transferini büyük miktarda artırdığı görülmektedir.

Çizelge 4.2. Kanatçıksız silindir ile farklı sayıda ve uzunlukta eksenel kanatçığa sahip silindirlerde Ra = 1,5x10⁵ değerindeki Nusselt sayısı değerleri

	Kanatçık Sayısı	Kanatçık Uzunluğu	Ra	Nu
Düz Silindir	-			11,95
		30 mm		35,20
	6	60 mm		80,29
		90 mm		102,53
Kanateikli	12	30 mm	1,5x 10 ⁵	58,78
Silindir		60 mm		110,15
		90 mm		113,42
		30 mm		65,84
		60 mm		128,35
		90 mm		183,61

Doğal taşınımda ışınımın ihmal edilemeyecek mertebede olduğunu hesaplamalarda gösterilmiştir. Şekil 4.20'da kanatçıksız silindirde ışınım ile ısı transferinin toplam giriş güce oranı 4.21'de ise 30 mm uzunluğunda 6 adet kanatçığa sahip silindirdeki ışınım ile gerçekleşen ısı transferinin toplam giriş gücüne oranının Ra sayısı ile değişimi verilmiştir.

Her iki grafikten de anlaşılacağı üzere küçük giriş güçlerinde ışınım etkisini daha büyük olduğu ve güç değeri arttıkça ışınımla gerçekleşen ısı transferinin oranının azda olsa düştüğü gözlemlenmektedir. Şekil 4.20'de kanatçısız silindirde ışınım ile gerçekleşen ısı transferinin toplam güce oranı düşük güç değerinde % 49 dan güç değeri arttıkça % 43,4 düşmekte, şekil 4.21'de ise kanatçıklı silindirde ışınım ile gerçekleşen ısı transferinin toplam güce; oranı küçük güç değerinde % 21,18'dan yüksek güç değerinde % 18,4ye düşmektedir. Yani giriş gücünün artırılması ile bu oran düşmüştür.

Şekil 4.20. Kanatçıksız silindirde Q_{1şın}/P_{Gir} - Ra sayısı değişimi

Şekil 4.21. Kanatçıklı silindirde Q_{1şm}/P_{Gir} – Ra sayısı değişimi

Yapılan çalışmalarda bu oran düşük güç girişlerinde % 60 iken yüksek güç girişlerinde % 25 - % 30 değerini almıştır (Sertkaya, 1999). Bu konuda, çalışmalarında buldukları değerde % 35 ile % 50 arasında değişmektedir.

Kanatçıklı silindirde bu oranının kanatçıksız silindire göre çok daha düşük kalmasını sebebi; kanatçıkların taşınım ısı transferini artırması dolayısıyla taşınımla meydana gelen ısı transferinini değerinin ışınım ile gerçekleşen ısı transferi değerine göre çok daha fazla yükselmiş olması ve kanatçıklar tarafından bir miktar ışınım ısısının absorbe edilmesidir.

5. SONUÇLAR VE ÖNERİLER

5.1 Sonuçlar

Yapılan bu çalışmada siyah anot kaplanmış alüminyum malzemeden üretilmiş kanatçıksız silindir ile farklı uzunluk ve farklı sayılarda eksenel kanatçığa sahip deney silindiri üzerinde doğal taşınımla ısı transferi incelenmiştir. Kanatçıksız silindirde meydana gelen ısı transferi ve Ra-Nu eğrileri, literatür ile karşılaştırılmış ve birbirine yakın sonuçlar verdiği görümüştür. Kanatçıksız (düz) silindir için Ra-Nu eğrilerinde Nu değerleri % 9,6- % 16,8 arasında olduğu görülmüştür.

Genel olarak deneylerden elde edilen sonuçlara göre, kanatçık sayısının ve uzunluğunun ısı transferini büyük oranda artırdığı görülmüştür. Taşınımla ısı taransferinin artış göstermesiyle silindirin cidarındaki ölçülen sıcaklığın daha düşük seviyelerde kaldığı görülmüştür. 30 mm kanatçık yüksekliğinde 6 adet kanatçığa sahip silindirin Nusselt değerinin, kanatçıksız silindirin Nusselt değerinden üç kat fazla olduğu görülmüştür. Yani ısı transfer katsayısı üç kat artmıştır. Ancak kanatçık uzunluğunun çok fazla artması ısı transferini doğrusal olarak artırmadığı ve yüksek kanatçık boyutlarına ulaştıkça azalarak arttığı görülmüştür. Bunun nedeni, kanatçık uzunluğunun artması ile ısı transfer yüzey alanını artmış olmasına rağmen, ortam ile yüzey arasındaki sıcaklık farkı değerinin düşmesidir.

Kanatçık sayısındaki artışın ısı transferini artırdığı, fakat artışın bir oran şeklinde değilde yüksek kanatçık sayılarına ulaşıldıkça azalarak artan bir parabol oluşturduğu belirlenmiştir. Örneğin 6 kanatçık ile 12 kanatçık arasında ısı transferinde büyük fark oluşurken 12 kanatçık ile 18 kanatçık arasında aynı oranda bir fark oluşmamıştır. Bunun sebebi ise silindiri çevreleyen fazla sayıdaki kanatçıklar arasında kalan boşluğun daha küçük olması dolayısıyla, havanın hareketinin kısıtlanması ve ısı transferini zorlaştırmasıdır.

Doğal taşınım ile ısı transferinde ışınım ile ısı transferinin ihmal edilemeyecek kadar büyük olduğu özellikle kanatçıksız silindir için bu oranın düşük güç değerinde yüksek (%49) yüksek güç değerlerine doğru ise düştüğü (%43,4) görülmüştür. Kanatçıklı silindirlerde şekil faktörünün büyük önem arzettiği ışınım ile olan ısı transferinde, ışınımın bir kısmının kendi içinde absorbe edildiği, geriye kalan kısmı ise dış ortama transfer olduğu dolayısıyla kanatçık sayısındaki ve uzunluğundaki artış ile ışınım tarafından gerçekleşen ısı transfer oranın düştüğü görülmüştür.

5.2 Öneriler

Bu çalışmada farklı uzunluk ve sayıda eksenel kanatçıklı silindir ile kanatçıksız silindir üzerinden deneyler yapılmış ve doğal taşınımla ısı transferi incelenmiştir.

Ayrıca inceleme paremetrelerini çok daha fazla sayıda artırmak mümkündür. Silindirlerde kullanılan kanatçık geometrisi üçgen, kare, burgulu, delikli, çokgen vb. şeklinde bir çalışmada kullanılabilir ve kanatçıkların taşınımla gerçekleştireceği ısı transferi incelenebilir.

Radyal kanatçıklı silindirlerde kanatçık çapı ile destekleyici silindir çapı arasındaki oranın (D/d) değiştirilmesinin ısı transferine etkileri ve ideal D/d çap oranının bulunması, kanatçıklar arası mesafenin değiştirilmesi ve kanatçık kalınlığının değiştirilmesinin ısı transferine etkileri başlı başına birer inceleme konusu olarak değerlendirilebilir.

Silindir çevresine kanatçık sayısının artması ile akışkan hareketi zorlanmakta ve ısı transferi hedeflenilen oranda artmamaktadır. Akışkan hareketini zorlamak için kanatçıklar üzerinde çeşitli geometride delikler açılıp incelenebilir.

- Ahmed, G. R. ve Yovanovich, M. M., 1997, Experimental study of forced convection from isothermal circular and square cylinders and toroids, *Journal of Heat Transfer-Transactions of the Asme*, 119 (1), 70-79.
- Al-Jamal, K. ve Khashashneh, H., 1998, Experimental investigation in heat transfer of triangular and pin fin arrays, *Heat and Mass Transfer*, 34 (2-3), 159-162.
- An, B. H., Kim, H. J. ve Kim, D. K., 2012, Nusselt number correlation for natural convection from vertical cylinders with vertically oriented plate fins, *Experimental Thermal and Fluid Science*, 41, 59-66.
- Çelik, B., 2003, Dairesel kanatçıklı silindirlerden doğal taşınımla ısı transferi, Selçuk Üniversitesi, Fen Bilimleri Enstütisi, Yüksek lisans tezi.
- Chang, S. W., Wu, H. W., Guo, D. Y., Shi, J. J. ve Chen, T. H., 2017, Heat transfer enhancement of vertical dimpled fin array in natural convection, *International Journal of Heat and Mass Transfer*, 106, 781-792.
- Dogruoz, M. B., Urdaneta, M. ve Ortega, A., 2005, Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow, *International Journal of Heat and Mass Transfer*, 48 (23-24), 5058-5071.
- Frank P., I., David P., De-Witt, 1981, Fundamentals of Heat Transfer, p.
- Gorla, R. S. R. ve Bakier, A. Y., 2011, Thermal analysis of natural convection and radiation in porous fins, *International Communications in Heat and Mass Transfer*, 38 (5), 638-645.
- Haldar, S. C., 2004, Laminar free convection around a horizontal cylinder with external longitudinal fins, *Heat Transfer Engineering*, 25 (6), 45-53.
- Haldar, S. C., Kochhar, G. S., Manohar, K. ve Sahoo, R. K., 2007, Numerical study of laminar free convection about a horizontal cylinder with longitudinal fins of finite thickness, *International Journal of Thermal Sciences*, 46 (7), 692-698.
- Hassan, I., Nirdosh, I. ve Sedahmed, G., 2014, Free Convective Mass Transfer Behavior of Finned Tubes, *Chemical Engineering Communications*, 201 (3), 367-379.
- Heo, J. H. ve Chung, B. J., 2012, Natural convection heat transfer on the outer surface of inclined cylinders, *Chemical Engineering Science*, 73, 366-372.
- Holman, J. P., 2010, Heat Transfer (Tenth Edition), 758.
- Igarashi, T. ve Mayumi, Y., 2001, Fluid flow and heat transfer around a rectangular cylinder with small inclined angle (the case of a width/height ratio of a section of 5), *International Journal of Heat and Fluid Flow*, 22 (3), 279-286.

- Kiwan, S., 2007, Effect of radiative losses on the heat transfer from porous fins, *International Journal of Thermal Sciences*, 46 (10), 1046-1055.
- Kotcioglu, I., Cansiz, A. ve Khalaji, M. N., 2013, Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method, *Applied Thermal Engineering*, 50 (1), 604-613.
- Naik, S., Probert, S. D. ve Bryden, I. G., 1999, Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection, *International Journal of Heat* and Fluid Flow, 20 (4), 374-384.
- Sara, O. N., Pekdemir, T., Yapici, S. ve Yilmaz, M., 2001, Heat-transfer enhancement in a channel flow with perforated rectangular blocks, *International Journal of Heat and Fluid Flow*, 22 (5), 509-518.
- Sertkaya, A.A., 1999, Pimli yüzeylerden doğal taşınılma ısı transferi, Selçuk Üniversitesi Fen Bilim Enstütisi, Yüksek lisans tezi.
- Sikka, K. K., Torrance, K. E., Scholler, C. U. ve Salanova, P. I., 2002, Heat sinks with fluted and wavy plate fins in natural and low-velocity forced convection, *Ieee Transactions on Components and Packaging Technologies*, 25 (2), 283-292.
- Singh, P. ve Patil, A. K., 2015, Experimental investigation of heat transfer enhancement through embossed fin heat sink under natural convection, *Experimental Thermal and Fluid Science*, 61, 24-33.
- Singh, S. N. ve Singh, D. K., 2015, Study of Combined Free Convection and Surface Radiation in Closed Cavities Partially Heated from Below, *International Journal* of Heat and Technology, 33 (2), 1-8.
- Sparrow E.M., Vemuri S.B., Orientation effects on natural convection/radiation heat transfer from pin-fin arrays, *International Journal of Heat and Mass Transfer, Volume 29, Issue 3,* March 1986, Pages 359-368
- Sparrow E.M., Vemuri S.B., Natural convection/radiation heat transfer from highly populated pin fin arrays. *Journal of Heat Transfer Transactions of the ASME, volume 107, FEBRUARY 1985, 190-197*
- Steward, W.E. 1981, Expremintal free convection from an inclined cylinder, Journal of heat transfer, vol. 103, pp 817-818
- Tahat, M., Kodah, Z. H., Jarrah, B. A. ve Probert, S. D., 2000, Heat transfers from pinfin arrays experiencing forced convection, Applied Energy, 67 (4), 419-442.
- Tahat, M. A., Haq, R. F. B. ve Probert, S. D., 1994, Forced Steady-State Convections from Pin-Fin Arrays, Applied Energy, 48 (4), 335-351.

- Tanda, G., 2001, Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements, *International Journal of Heat and Mass Transfer*, 44 (18), 3529-3541.
- Vollaro, A. D., Grignaffini, S. ve Gugliermetti, F., 1999, Optimum design of vertical rectangular fin arrays, *International Journal of Thermal Sciences*, 38 (6), 525-529.
- Wang, C. S., Yovanovich, M. M. ve Culham, J. R., 1999, Modeling natural convection from horizontal isothermal annular heat sinks, *Journal of Electronic Packaging*, 121 (1), 44-49.
- Yu, S. H., Lee, K. S. ve Yook, S. J., 2010, Natural convection around a radial heat sink, *International Journal of Heat and Mass Transfer*, 53 (13-14), 2935-2938.
- Zhang, J. K., Li, B. W., Dong, H., Luo, X. H. ve Lin, H., 2017, Analysis of magnetohydrodynamics (MHD) natural convection in 2D cavity and 3D cavity with thermal radiation effects, *International Journal of Heat and Mass Transfer*, 112, 216-223.
- Zhao, B. ve Bar-Ziv, E., 2002, Further development of temperature determination for a heated micron-sized particle from forced convection, *Journal of Aerosol Science*, 33 (1), 165-180.
- Zheng, W. ve Dalton, C., 1999, Numerical prediction of force on rectangular cylinders in oscillating viscous flow, *Journal of Fluids and Structures*, 13 (2), 225-249.

7. EKLER

Sicaklik, T(K)	Yoğunluk, ρ (kg/m ³)	Özgül ısı, Cp (J/kg°C)	lsı iletim katsayısı, k (W/m°C)	Isıl yayınım katsayısı, a (m ² /s)	Dinamik vizkozite, µ (kg/ms)	Kinematik vizkozite, 9 (m²/s)	Prandtl sayısı, Pr
200	1.766	1003	0.0181	1.02x10-5	1.34x10 ⁻⁵	0.76x10 ⁻⁵	0.740
250	1.413	1003	0.0223	1.57x10-5	1.61x10 ⁻⁵	1.14x10 ⁻⁵	0.724
280	1.271	1004	0.0246	1.95x10-5	1.75x10-5	1.40x10 ⁻⁵	0.717
290	1.224	1005	0.0253	2.08x10 ⁻⁵	1.80x10 ⁻⁵	1.48x10 ⁻³	0.714
298	1.186	1005	0.0259	2.18x10 ⁻⁵	1.84x10 ⁻⁵	1.55x10 ⁻⁵	0.712
300	1.177,	1005	0.0261	2.21x10 ⁻³	1.85x10 ⁻⁵	1.57x10 ⁻⁵	0.712
310	1.143	1006	0.0268	2.35x10 ⁻⁵	1.90x10 ⁻³	1 67x10-5	0.711
320	1.110	1006	0.0275	2.49x10 ⁻⁵	1.94x10-5	1.77x10-5	0.710
330	1.076	1007	0.0283	2.64x10 ⁻³	1.99x10-5	1.86x10-5	0.708
340	1.043	1007	0.0290	2.78x10 ⁻⁵	2.03x10-3 ·	1.96x10 ⁻⁵	0.707
350	1.009	1008	0.0297	2.92x10 ⁻⁵	2.08x10-5	2.06x10 ⁻⁵	0.706
400	0.883	1013	0.0331	3.70x10 ⁻⁵	2.29x10 ⁻⁵	2.60x10 ⁻⁵	0.703
450	0.785	1020	0.0363	4.54x10 ⁻⁵	2.49x10 ⁻³	3.18x10-5	0.700
500	0.706	1029	0.0395	5.44x10 ⁻⁵	2.68x10 ⁻³	3.80x10 ⁻⁸	0.699
550	0.642	1039	0.0426	6.39x10 ⁻⁵	2.86x10 ⁻³	4.45x10-5	0.698
600	0.589	1051	0.456	7.37x10 ⁻⁵	3.03x10 ⁻³	5.15x10 ⁻⁵	0.698
700	0504	1075	0.0513	9.46x10 ⁻⁵	3.35x10 ⁻³	6.64x10 ⁻⁵	0.702
800	0.441	1099	0.0569	11.7x10 ⁻³	3.64x10 ⁻⁵	8.25x10-3	0.704
900	0.392	1120	0.0625	14.2x10-3	3.92x10 ⁻³	9.99x10 ⁻³	0.705
1000	0.353	1141	0.0672	16.7x10 ⁻⁵	4.18x10 ⁻⁵	11.8x10 ⁻⁵	0.709
1200	0.394	1175	0.0759	22.2x10 ⁻⁵	4.65x10 ⁻³	15.8x10 ⁻⁵	0.720
1400	0.252	1201	0.0835	27.6x10 ⁻³	5.09x10 ⁻⁵	20.2x10 ⁻⁵	0.732
1600	0.221	1240	0.0970	33.0x10 ⁻⁵	5.49x10 ⁻⁵	24.9x10 ⁻⁵	0.753
1800	0.196	1276	0.01032	38.3x10 ⁻³	5.87x10 ⁻⁵	29.9x10 ⁻⁵	0.772
2000	0.177	1327		44.1x10 ⁻⁵	6.23x10 ⁻⁵	35.3x10 ⁻³	0.801

EK-1: Atmosfer Basıncında Havanın Termofiziksel özellikleri

EK-2: Birbirine dik yüzeyler için ışınım şekil faktörü (J.P.Holman)

EK-3: Örnek Hesaplamalar

a. Kanatçıksız silindir

Deneyler sırasında ölçülen sıcaklıklar ortam sıcaklığı T_{∞} , ve silindir cidar sıcaklığı T_w olup tablo halinde EK-4'de verilmiştir. Ayrıca her bir T_f film sıcaklığına bağlı olarak, atmosfer basıncındaki havanın termofiziksel özellikleri tablosundan bulnan akışkan kinematik vizkozitesi, ısı iletim katsayısı ve ısı taşınım katsayısı kullanılmıştır. Örnek hesaplamada akım I= 0,63, voltaj V = 3,02 ve gücü 2,016 degeri referans alınmıştır.

P= 2,016W degeri için;

Ortam sıcaklığı $T_{\infty} = 299,7 \text{ K}$

Silindir yüzey sıcaklığı T_w = 309,5625 K

Yalıtımın iç yüzey sıcaklığı $T_{iz ic} = 309,5625 \text{ K}$

Yalıtımın dış yüzey sıcaklığı (sol kısım için) $T_{iz dış1} = 300,9 K$

Yalıtımın dış yüzey sıcaklığı (sağ kısım için) T iz dış2 = 301,5 K

Film sıcaklığı T_f = (T_w + T_{∞}) / 2 = (309,5625+299,7)/2 = 304,63 K

 $\Delta T = T_w - T_\infty = 309,56-299,7 = 9,86 \text{ K}$

 $\Delta T_{kayip1} = T_{iz ic} - T_{iz dis1} = 309,56-300,9 = 8,5625 \text{ K}$

 $\Delta T_{kay1p2} = T_{iz iç} - T_{iz diş2} = 309,56-301,5 = 8,0625 \text{ K}$

 $A_{\text{taşınım}} = \Pi.\text{D.L} = 3,1428*0,042*0,012 = 0,0158 \text{ m}^2 \text{ (1şınım ve taşınım yüzey alanı için)}$ $A_{\text{kavıp1}} = A_{\text{kavıp2}} = (\pi \text{D}^2)/4 = 3,1428*0,042^2/4 = 0,00138 \text{ m}^2$

Işınımdan kaynaklanan ısı transferi;

 $Q_{\text{isinim}} = F_{(\epsilon)}. \ F_{12}.\sigma.A.(T^4{}_{w}-T^4{}_{\infty}) = 5,67*10^8*1*0,0158*(309,56^4-299,7^4) = 0,999 \ W$

Yalıtımdan kaybolan toplan ısı;

$$Q_{kayıp top} = Q_{kayıp1} + Q_{kayıp2} = k.A_1. \Delta T_{kayıp} / \Delta_{x1} + k.A_2. \Delta T_{kayıp} / \Delta_{x2}$$

burada k; cam yünü yalıtım malzemesinin ısı iletim katsayısı ve 0,04 W/mK dir. Burada taşınımla ısı transferi;

 $Q_{tas.} = P-Q_{sinm}-Q_{kayip} = 2,016-0,999-0,092721 = 0,923$ W bulunur.

Isı taşınım katsayısı h;

 $h = Q/A (T_w-T_\infty) = 0.923/(0.0158*9.86) = 5.898 \text{ w/} m^2 \text{K}$

Nusselt Sayısı;

Nu = h.D/k = 5,898*0,042/0,02665 = 9,29

Burada k; $T_f = 304,63$ K sıcaklıkta havanını ısı iletkenlik katsayısıdır.

Rayleigh sayısı;

$$Ra = g.\beta.\Delta T.D^{3}/\upsilon \alpha = 9,81*0,00328*9,8625*0,042^{3} / (16,37*10^{-6}*23,02*10^{-6})$$

=62441,80

Burada β ısıl genleşme katsayısıdır ve 1/T_f dir. v; kinematik vizkozite, α ; ısı yayılım katsayısıdır. Kanatçıksız sililindir için hesaplanan bu değerler Ek-5'de verilmiştir.

Deney esnasında silindirin çevreye bakan yüzey sıcaklığı doğal sürkülasyona engel olmaması için doğrudan ölçülmemiştir.

b. Kanatçıklı silindir

Örnek olarak P = 5,096 watt için 30 mm uzunluğunda 1,5 mm kalınlığından ve genişliği boru malzemesi ile aynı olan(120 mm) plakadan silindir çevresine 6 adet yerleştirilmiş ve hesaplar yapılmıştır. Farklı güç değerleri ve farklı uzunluk ve farklı asayılardaki kanatçıkler için ölçülen deney paremetreleri Ek-5'de hesaplanan değerlerder ise Ek-6'da verilmiştir.

Yüzey Sıcaklığı :Tw= 311,7375 K

Ortam sıcaklığı $T_{\infty} = 299,1 \text{ K}$

İzalasyon iç yüzey sıcaklığı T _{iç iz.} = 311,7375 K

İzalasyon dış yüzey sıcaklığı $T_{iz dii1} = 303,1 \text{ K Ti}_{z diş 2} = 302,4 \text{ K}$

Otalama sıcaklık Tf = 305,4188 K

 $\Delta T = T_{w} - T_{\infty} = 12,6375 \text{ K}$

Taşınımla ve ışınımla ısı transfer yüzey alanı

 $A_{tas} = \Pi.D.L 3,1428*0,042*0,012 = 0,0158 m^2$

 $A_{i,inim} = kanatçık i,inim alanı = 60*10^{-3}*0,12+1*10^{-2}*0,12*6 = 43,92*10^{-3}$

30 mm uzunluğundaki 6 adet kanatçık modülü için Şekil Faktörü ($F_{1-2} = 0,301$) ışınım ile ısı transferi kısmında bulunmuştu.

 $Q_{\text{isinim}} = F_{(\epsilon)}, F_{12}.\sigma.A.(T^4_{w}-T^4_{\infty}) = 5,67*10^{-8}*1*0,301*43,92x10^{-3}*(311,73^4-299,17^4)$

= 1,08 watt

Isı kayıpları hesaplanırsa;

 $\begin{aligned} Q_{kayıp top} &= Q_{kayıp1} + Q_{kayıp2} = k.A_1. \ \Delta T_{kayıp} / \Delta_{x1} + k.A_2. \ \Delta T_{kayıp} / \Delta_{x2} \\ &= 0,04*0,00138*8,63/0,01 + 0,04*0,00138*9,33/0,01 \\ &= 0,0996 \ watt \end{aligned}$

 $Q_{tas.} = P-Q_{1sinm}-Q_{kayip} = 5,096-1,08-0,0996$

 $Q_{tas.} = 3,919$ Watt

Isı taşınım katsayısı;

 $h = Q/\;A\;(T_w\text{-}T_\infty)\;\; = 3{,}919\;/(0{,}0158{*}12{,}6375) = 19{,}69W\;/m^2K$

Nusselt Sayısı

karekteristlik uzunluk kanatçıksız silindirin dış çapı alınmıştır.

Nu = h.D/k

= 19,69*0,042/0,02673 = 30,9

Rayleigh Saysısı;

 $Ra = g.\beta.\Delta T.D^{3}/\upsilon \alpha = 9,81*0,003274*12,6375*0,042^{3} / (16,47*10^{-6}*23,2*10^{-6})$

=78704,72 olarak bulunur.

_			Tw(silindir)			Yalıtım1	Tçe	evre	Yalıtım2	Tw(silindir)				
No	v	Ι	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	3,2	0,63	35,9	35,4	40,4	38,4	27,9	26,7	26,7	28,5	35,7	35,9	35,4	35,4
2	4,6	0,87	43,1	42,2	52,1	47,4	29	26,8	26,8	29,8	42,7	42,9	42	42
3	5,6	1,07	50	48,8	63,1	56,3	30	26,9	27	31,1	49,5	49,9	48,5	48,6
4	6,5	1,23	56,1	54,4	72,7	64	30,6	26,7	26,8	32,4	55,5	55,9	54,3	54,4
5	7,4	1,39	62,9	60,9	83,3	72,7	31,3	26,9	27,2	33,5	62,3	62,9	60,7	60,8
6	8	1,5	68,9	66,4	91,1	79,9	32,1	27,2	27,4	34,8	68	68,6	66,1	66,2
7	8,6	1,61	73,5	70,9	98,3	85,8	32,6	26,9	27,2	35,9	72,7	73,2	70,5	70,7
8	9,3	1,72	79,5	76,6	106,2	93,1	33,5	27,1	27,5	36,7	78,5	79,2	76,1	76,3
9	9,9	1,83	84,1	80,9	112,5	98,9	33,5	26,3	26,6	36,9	83,1	83,8	80,5	80,8
10	10,3	1,89	84,8	81,3	114	100,6	30,7	23,5	23,8	34,7	83,8	84,5	81,1	81,3

EK-4: Kanatçıksız silindir için test ölçüm değerleri

Not: Ölçülen T1, T2,T3,T4,T9,T10,T11,T12 sıcaklıkları Silindir cidar sıcaklıkları. T5 ve T8 yalıtım sıcaklıkları T6 ve T7 ise çevre sıcaklıklarıdır. Sıcaklık birimi (C^0)

Nu	9,295	11,205	11,856	12,547	13,191	13,136	13,573	13,894	14,322	14,859
Ra.10- ⁵	0,624	1,048	1,400	1,703	1,960	2,186	2,312	2,547	2,713	2,932
ú.10 ⁶	23,02	23,55	24,14	24,55	25,14	25,4	26,22	26,4	26,46	26,42
v. 10 ⁶	16,37	16,7	17,13	17,44	17,9	18,1	18,40	18,405	18,89	18,6
k	0,02665	0,02689	0,02721	0,02745	0,0278	0,02792	0,02812	0,02838	0,0285	0,0284
ч	5,898	7,174	7,681	8,200	8,731	8,732	9,087	9,388	9,718	10,04 8
$\mathbf{T}_{\mathbf{f}}$	304,631	308,550	312,390	315,581	319,430	322,600	325,000	328,244	330,263	329,288
β	0,00328	0,00324	0,00320	0,00316	0,00313	0,0031	0,00308	0,00304	0,00302	0,003037
\mathbf{T}_{∞}	299,7	299,8	299,95	299,75	300,05	300,3	300,05	300,3	299,45	296,65
$\mathbf{T}_{\mathbf{w}}$	309,56	317,30	324,83	331,41	338,81	344,9	349,95	356,18	361,07	361,92
Q _{Tas} .	0,921	1,989	3,027	4,113	5,360	6,169	7,183	8,311	9,486	10,389
Q _{Top} . kayıp	0,093	0,165	0,236	0,298	0,370	0,426	0,473	0,533	0,586	0,623
Qışınım	1,00	1,84	2,729	3,5839	4,555	5,40	6,19	7,15	8,044	8,45
\mathbf{P}_{T}	2,016	4,002	5,992	7,995	10,286	12	13,846	15,996	18,117	19,46

EK-5: Kanatçıksız silindirde elde edilen deney verileri ve hesap sonuçları

EK-6: Kanatçıklı silindirler için test ölçüm değerleri

				Tw(si	lindir)		Yalıtım1	Tç	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	5,2	0,98	37,4	36,1	49,4	40,3	29,4	25,6	26,6	30,1	37	37	36,3	36,4
2	7,3	1,36	45,5	43,1	68,6	51,1	31,2	25,5	26,8	32,6	44,5	44,7	43,3	43,4
3	9,1	1,68	54	50,2	86,9	62,4	33,2	25	26,9	35,3	52,6	52,7	50,5	50,8
4	10,5	1,91	61,1	56,4	101,2	72	34,5	24,7	26,9	36,9	59,4	59,6	56,6	57,1
5	11,8	2,12	68,6	62,9	115,8	82,1	36,3	24,4	27,3	38,7	66,5	66,7	63,1	63,7
6	13,3	2,36	77,1	69,7	131,3	93,6	37,5	22,9	27,1	40,09	74,8	75,2	70,76	71,7
7	14,1	2,49	81,6	73,4	141,9	100,4	38,5	20,9	27,4	42,3	79,4	74,8	75,7	79,9
8	15,1	2,63	87,8	79,2	152,2	107,9	39,6	22,2	27,4	43,7	84,7	85,2	79,9	80,8
9	15,8	2,73	91,1	81,9	158,2	113	39,8	21,1	27,2	44,5	87,9	82,8	83,9	88,7
10	17,2	2,95	96,4	85,5	166,4	119,8	36,7	15,6	23,7	44,3	93	94,1	87,4	88,6

a. 30 mm boyunda 6 kanatçık için

b. 30 mm boyunda 12 kanatçık için

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	v	I	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	0,99	5,4	38,4	35,6	36,5	34,4	30,9	27,2	28	32,1	36,7	37	36,1	36,1
2	7,4	1,35	46,3	41	42,2	39,1	32,9	28	27,8	34,7	42,8	43,1	41,6	41,8
3	9,2	1,65	58,9	46,8	49,5	43,8	34,1	26	27,6	37,7	49,6	50,2	48,3	48
4	10,6	1,9	67	51,8	55,9	47,5	34,6	25,2	28,3	40	55,6	56,3	53,1	53,6
5	11,9	2,1	73,9	56,4	62,2	51,2	35	25,6	28,1	41,5	60,8	62	57,8	58,7
6	13,2	2,31	81,2	61,4	68	55,7	36,9	25,6	27,9	43,5	67	68,3	63,4	64,3
7	14,2	2,46	85,2	64,4	72,6	56,9	35	24,4	27,1	42,3	70,9	72,3	66,9	68
8	14,8	2,54	88,7	66	73,5	58,4	34,2	22	25,5	41,1	71,2	73,1	67,1	68,3
9	16,3	2,77	98	74,7	84,1	66,7	39,3	25,6	28,2	47,6	81,3	83,5	76,9	78
10	17,2	2,9	99,4	74,6	87,6	64,7	36,2	21,7	24,6	45,7	82,7	84,7	77,6	79

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
1	5,4	0,97	34,5	31,4	31,9	33,4	28,4	23,8	24	27,6	32,3	32,4	31,6	31,8
2	7,5	1,35	42	36,5	37,2	40,6	30,8	23,3	24	29,4	38	37,6	36,4	36,6
3	1,65	9,2	53,4	44,6	45,3	50,8	36,5	26,4	27,4	34,1	46,8	46,4	44,6	44,7
4	10,6	1,89	61	49,1	49,6	59,1	39,2	26,7	27,6	36,2	52,1	51,6	49	49,6
5	11,9	2,12	69,8	54,4	54,6	60,4	40,6	26,4	27,6	38,2	57,6	57,1	53,9	54,4
6	13	2,31	76,8	58,4	58,4	66,4	42	26,1	27,3	40,5	62,9	62,4	58,4	59,3
7	14,1	2,48	85,5	63,7	63,8	63,9	43,6	26,5	27,5	42,5	68,6	68,5	63,9	64,3
8	14,9	2,59	88,7	64,3	64,3	69,6	42,7	22,7	24	41,4	69,7	69,7	65,1	65
9	16,2	2,78	97,5	70	69,9	71,1	45,1	23,1	21,5	42,7	76	76,2	70,9	71
10	17,1	2,9	106,3	77	76,6	78,7	50,6	26,6	28	50	84,1	84,2	78,5	78,4

c. 30 mm boyunda 18 kanatçık için

ç. 60 mm boyunda 6 kanatçık için

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	5,3	0,99	30,4	29,8	31,5	30,3	28,6	24,4	24,5	28,4	30,8	32,1	30,8	30,9
2	7,4	1,33	38,8	37,6	40,7	38,5	34,9	28,9	28,4	34,7	39,1	41,1	38,8	39,2
3	9,1	1,65	43,6	41,6	46,6	42,7	37,2	28	28,1	36,9	43,8	47,3	43,5	44,1
4	10,5	1,89	48,3	45,8	52,3	47,3	39,7	28,4	28,7	39	48,5	53	48	48,9
5	2,07	11,6	51,8	48,5	56,4	50,4	40,6	28,1	28,2	40,2	52	57,5	51,5	52,5
6	13	2,31	55,6	53,1	65,9	54	43,1	27,4	28,5	42,9	57,1	60,5	56,4	57
7	14,2	2,46	60,2	56,8	71,7	58,9	45,6	27,7	28,5	45,3	61,5	65,7	60,3	61,5
8	14,8	2,56	62,1	58,8	75,1	64,1	46	27,8	28,5	45,3	63,6	68,5	62,4	63,3
9	16,2	2,75	67,8	63,9	83	66,2	47,7	28,1	28,6	47,8	69,4	75,1	68,1	69,3
10	17,2	2,9	71,5	66,9	87,7	77,5	49,6	28,4	28,7	49	73,1	79,4	71,8	73,3

_				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	5,4	0,96	29,5	29,8	30,6	30,1	29,4	24,7	24,7	29,5	29,7	29,4	29,5	29,6
2	7,6	1,31	34,7	35,4	37,2	36	34,1	26,5	26,6	34,7	35,4	34,5	34,7	34,7
3	9,4	1,61	38,3	39,3	41,9	40	37	26,8	26,7	37,4	39,2	38	38,6	38,5
4	10,8	1,85	41,5	42,7	46,6	46,7	39,4	29,8	26,7	39,4	42,6	41,1	41,6	41,6
5	12,1	2,05	44,3	45,4	50,8	46,8	39,8	26,3	26,2	41,1	45,5	43,4	44,1	44,2
6	13,2	2,22	47,1	48,1	55,4	50,6	41,5	26,2	26	43	48,6	46,3	47,2	47,3
7	14,4	2,42	52,1	52,3	67,2	54,7	44,3	26,5	26,3	45,5	52,4	49,6	50,7	50,8
8	15,5	2,58	53,6	55,8	72,9	58	46,4	27	26,8	46,8	55,9	52,5	53,8	54
9	16	2,68	55,8	57,4	75,9	59,8	47,1	26,8	26,2	47,8	57,6	54,1	55,6	55,7
10	17,3	2,87	58,8	61,8	84,9	63,3	49,2	27,8	26,6	50,5	61,9	57,9	59,5	60

d. 60 mm boyunda 12 kanatçık için

e. 60 mm boyunda 18 kanatçık için

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	5,4	0,96	27	26,2	26,3	25,8	25	22,1	23	27,4	27,2	27,6	27,1	27,8
2	7,6	1,36	31,7	30,7	31,7	30,9	23,5	25,3	26,3	33	33,3	34,2	33,2	34,5
3	9,3	1,64	35,8	34	35,2	33,5	33,9	25,3	26,2	35,9	36,5	37,7	36,3	38,2
4	10,7	1,9	38	35,6	38,1	35,3	29,4	25,7	26,1	38,2	39,4	40,9	39,2	41,8
5	2,08	11,9	40,6	37,5	40,1	37,2	29,5	24,6	26,1	40	41,8	43,8	41,5	45
6	2,28	13,1	42,8	39,2	42,3	39,6	30,3	25,4	26,3	42,2	44,6	47	44,4	48,5
7	2,47	14,4	50,8	42,4	72,6	44,2	19,8	24,5	25,9	37,8	42,6	44,2	44	50,4
8	2,67	15,8	56,7	46,5	81	47	39,1	24,2	25,6	38,9	45,5	47,1	47,4	55,4
9	2,79	16,7	59,2	48,1	87,5	49,5	39,6	26	26	39,8	47,4	49,4	49	58
10	17,5	2,9	62,3	49,7	89,9	51,3	41,2	27,8	26,1	41,1	49,1	51,3	51	60,8

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12
1	5,4	0,95	31,8	31,5	31,1	31,8	31,2	26,6	26,7	30,1	32,1	31,4	31,6	31,7
2	7,6	1,33	36,7	36,2	35,5	41,1	37,5	27,6	27,2	32,9	37,4	36,1	36,6	36,7
3	9,2	1,58	40	39,6	38,7	39,8	27,1	27,3	27,4	34,9	41,1	39,9	40,1	40,1
4	10,7	1,84	44,5	43,6	42,8	43,9	37,3	27,4	27,3	37,8	45,7	43,3	44,2	44,3
5	12,1	2,06	48,8	47,7	46,1	48,9	48,1	27,6	27,4	37,8	50,4	47,3	48,4	48,6
6	13,2	2,23	51,6	50,4	49	50,6	50,2	28,1	27,3	41	53,3	49,9	51,2	51,4
7	14,4	2,42	55,9	54,2	52,7	55,8	53,8	27,8	27,9	42,4	57,8	54	55,5	55,9
8	15,5	2,57	59,4	57,9	56,1	59	56,1	28,1	27,9	44,8	61,1	57,2	59	59,3
9	16,5	2,72	64,5	62,1	59,1	61,4	60,1	27,5	28,3	47,2	65	60,8	62,9	63,2
10	17,6	2,9	67,7	65,4	63,2	65,2	62,4	28,6	28,3	49	69,4	65,1	67,2	67,7

f. 90 mm boyunda 6 kanatçık için

g. 90 mm boyunda 12 kanatçık için

				· · · · · · · · · · · · · · · · · · ·							_			
	-			Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(si	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
1	5,3	0,94	29	29,4	30	30,8	29,2	25,2	25,2	28	29,3	28,4	29,5	28,9
2	7,6	1,33	35,3	35,4	37,9	39,4	36,4	27,2	29,9	33,6	36,7	35,1	36,7	35,8
3	9,2	1,61	38,3	38,5	42,1	44,4	38,8	27,5	28,8	35,4	40,2	37,7	40,3	39,2
4	10,7	1,86	40,8	41,3	45,2	50,6	41,6	29,1	28,9	37,2	43,7	40,1	43,8	42,1
5	12	2,09	43,4	44	49,6	63,4	43,4	28,8	29	39,8	47,4	42,9	47,8	45,3
6	13,1	2,25	45,6	46,3	52,9	67	45,7	29,2	29	39,9	49,9	44,8	50,2	47,6
7	14,2	2,41	51,8	49,4	56,7	64	48	29,4	29,2	41,9	53,5	47,6	54	50,9
8	15,1	2,57	50,7	50,9	59,2	71,5	49,3	29,5	28,7	41,5	55,2	48,9	55,7	52,7
9	16,3	2,73	53,5	55,8	64,3	69,7	51	29,3	29,1	41,4	59,5	52,2	59,7	56,4
10	17,1	2,85	58,1	56,2	66,8	72,4	52,9	27	33,1	42,5	61,6	53,9	61,5	58,5

				Tw(si	lindir)		Yalıtım1	Tçe	evre	Yalıtım2		Tw(sil	lindir)	
No	V	Ι	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
1	5,4	0,96	28,9	28,8	28,1	28,8	28,9	25,4	25,7	28,9	30,3	28,5	29,6	29
2	7,6	1,33	33,8	33,4	33,2	34,5	33	29	29,2	33,3	37,5	34,3	36,2	35
3	9,3	1,63	35,2	36,7	35,2	37,6	36,7	28,5	28,7	36,9	40,8	36,3	38,5	37,4
4	10,7	1,86	40,9	39,2	37,3	40,2	38,6	29,4	28,9	39,8	44,5	38,8	41,5	40,1
5	12,1	2,1	40	41,1	38,5	42,4	41	29,3	29,1	41,5	48,1	40,8	44,2	42,7
6	13,1	2,26	40,9	42,4	39,2	44	42,8	30,7	28,7	42,6	50,7	42,4	46	44,5
7	14,3	2,41	41,8	44,6	40,8	44,8	43,5	28,5	28,9	46,9	53,5	47,8	48,3	46,6
8	15,5	2,6	43,9	47	42,4	48	43,9	29	28,9	49	57,8	46,6	51,5	50
9	16,5	2,74	46,2	48,8	43,5	49,8	43,4	28,4	32	51,2	60,7	49	53,8	52,2
10	18,1	2,96	48,5	51,5	46,6	54	46,9	28,8	28	52,8	64,9	51,4	56,7	55,6

h. 90 mm boyunda 18 kanatçık için

Օւչոսո	 Q _{Тор} . Каунр	Q _{Taş}	$\mathbf{T}_{\mathbf{w}}$	\mathbf{T}_{∞}	$_{\beta} x 10^3$	\mathbf{T}_{f}	Ч	k	v. 10 ⁶	á.10 ⁶	Ra.10- ⁵	Nu
1,080	 0,100	3,916	311,737	299,1	3,274	305,419	19,565	0,02673	16,470	23,200	0,787	30,742
1,958	0,179	7,791	321,02	299,15	3,225	310,088	22,486	0,02704	16,890	23,820	1,274	34,926
2,958	0,258	12,072	330,51	298,95	3,177	314,731	24,148	0,0274	17,380	24,460	1,714	37,015
3,857	0,330	15,868	338,42	298,8	3,139	318,613	25,282	0,02775	17,610	24,790	2,071	38,264
4,848	0,401	19,767	346,67	298,85	3,098	322,763	26,094	0,02792	18,100	25,400	2,342	39,253
6,131	0,490	24,767	356,02	298	3,058	327,010	26,949	0,0283	18,490	26,200	2,662	39,995
6,940	0,533	27,636	361,37	297,15	3,037	329,264	27,165	0,0284	18,700	26,370	2,875	40,173
7,809	 0,588	31,316	367,71	297,8	3,005	332,756	28,279	0,02868	19,090	26,720	2,994	41,413
8,424	0,624	34,086	371,43	297,15	2,991	334,294	28,968	0,02883	19,310	27,020	3,096	42,201
9,628	 0,703	40,409	376,9	292,65	2,987	334,775	30,281	0,02889	19,380	27,020	3,493	44,022

EK-7: Kanatçıklı silindirde elde edilen deney verileri ve hesap sonuçları

a. 30 mm boyunda 6 kanatçık için

nΝ	51,855	26,595	56,811	59,555	62,097	63,892	65,711	66,087	68,857	70,547
Ra.10- ⁵	0,553	0,860	1,293	1,565	1,780	1,993	2,202	2,362	2,486	2,692
$\dot{lpha}.10^{6}$	23,020	23,550	24,000	24,350	24,660	25,140	25,170	25,170	25,900	26,220
v. 10 ⁶	16,370	16,700	17,000	17,220	17,530	17,900	17,950	17,950	18,490	18,405
k	0,0266	0,0268	0,0269	0,0272	0,0275	0,0278	0,0278	0,0278	0,0282	0,0281
h	32,903	38,155	36,413	38,640	40,673	42,291	43,573	43,822	46,265	47,233
$\mathrm{T_{f}}$	304,97	308,06	311,09	313,92	316,61	319,45	320,7	320,26	326,65	325,21
$_{\beta} x 10^3$	3,279	3,246	3,215	3,185	3,158	3,130	3,118	3,122	3,061	3,075
\mathbf{T}_{∞}	300,6	6'00£	8,962	299,75	299,85	299,75	298,75	296,75	299,9	296,15
$\mathbf{T}_{\mathbf{w}}$	309,35	315,23	322,38	328,1	333,37	339,16	342,65	343,78	353,4	354,28
$\mathrm{Q}_{\mathrm{Tas}}$	4,560	8,661	13,02	17,35	21,59	26,40	30,29	32,64	39,20	43,49
Q _{Тор} . Каур	0,054	0,093	0,149	0,197	0,245	0,288	0,344	0,367	0,410	0,447
Qışınım	0,732	1,236	2,007	2,591	3,146	3,803	4,289	4,580	5,535	5,942
\mathbf{P}_{T}	5,346	66,6	15,18	20,14	24,99	30,492	34,932	37,592	45,151	49,88

b. 30 mm boyunda 12 kanatçık için

\mathbf{P}_{T}	Qışınım	Q _{Тор} . Каур	$\mathbf{Q}_{\mathrm{Tas}}$	T_w	\mathbf{T}_{∞}	$\beta x 10^3$	$\mathbf{T}_{\mathbf{f}}$	h	k	v. 10 ⁶	á.10 ⁶	Ra.10- ⁵	Nu
5,238	0,709	0,049	4,480	305,412	296,9	3,321	301,15	33,227	0,0264	15,890	22,500	0,575	52,861
10,125	1,254	0,090	8,780	311,25	296,6	3,290	303,92	37,838	0,02665	16,370	23,020	0,930	59,631
15,180	1,834	0,131	13,21	320,075	299,9	3,226	309,98	41,355	0,02704	16,890	23,820	1,176	64,235
20,034	2,383	0,166	17,48	325,63	300,15	3,196	312,89	43,324	0,02721	17,130	24,140	1,431	66,873
25,228	2,950	0,204	22,07	330,775	300	3,171	315,38	45,284	0,02745	17,440	24,550	1,656	69,287
30,030	3,550	0,240	26,24	335,875	299,7	3,147	317,78	45,794	0,0277	17,610	24,770	1,897	69,434
34,968	4,104	0,274	30,59	340,775	300	3,121	320,38	47,363	0,02785	17,950	25,170	2,047	71,426
38,591	4,483	0,305	33,80	342,55	298	3,122	320,27	47,903	0,0278	17,900	25,000	2,259	72,371
45,036	5,289	0,348	39,39	348,325	297	3,099	322,66	48,463	0,02789	18,000	25,300	2,539	72,980
49,590	6,038	0,362	43,18	355,97	300,3	3,048	328,13	48,979	0,02838	18,405	26,400	2,538	72,484

c. 30 mm boyunda 18 kanatçık için

Nu	67,523	75,823	75,445	78,042	78,795	81,075	81,018	81,933	82,859	82,799
Ra.10- ⁵	0,432	0,647	096'0	1,170	1,354	1,586	1,786	1,884	2,093	2,168
á.10 ⁶	22,500	23,500	23,550	24,000	24,320	24,550	24,730	25,110	25,280	26,180
v. 10 ⁶	15,840	16,500	16,740	17,000	17,200	17,440	17,580	17,600	17,900	18,370
k	0,0263	0,0267	0,0269	0,0270	0,0272	0,0274	0,0276	0,0275	0,0278	0,0280
ų	42,282	48,292	48,321	50,337	51,029	52,989	53,376	53,647	54,924	55,239
$\mathbf{T_{f}}$	300,637	306,95	309,1	311,787	313,362	315,7	318,087	319,45	322,35	324,85
$_{\beta} x 10^3$	3,326	3,258	3,235	3,207	3,191	3,168	3,144	3,130	3,102	3,078
\mathbf{T}_{∞}	297,45	301,65	301,05	301,55	301,15	300,95	301,1	301,15	301,35	301,55
T_{w}	303,825	312,25	317,15	322,025	325,575	330,45	335,075	337,75	343,35	348,15
QTaş	4,270	8,108	12,323	16,325	19,742	24,760	28,724	31,101	36,539	40,773
Q _{Тор} . Каур	0,026	0,049	0,079	0,107	0,135	0,160	0,184	0,212	0,251	0,287
Օւչուտ	0,952	1,684	2,614	3,413	4,135	5,110	6,023	6,575	7,760	8,820
\mathbf{P}_{T}	5,247	9,842	15,015	19,845	24,012	30,03	34,932	37,888	44,55	49,88

ç. 60 mm boyunda 6 kanatçık için

\mathbf{P}_{T}	Qışınım	Q _{Тор} . Каур	QTaş	T	$\mathbf{r}_{_{8}}$	β X10 ³	$^{ m J}{ m L}$	h	k	v. 10 ⁶	á.10 ⁶	Ra.10- 5	Nu
5,184	0,684	0,004	4,496	302,775	297,7	3,331	300,23	55,935	0,0263	15,840	22,500	0,345	89,326
9,956	1,227	0,010	8,719	308,325	299,55	3,290	303,93	62,728	0,02665	16,370	23,020	0,557	98,858
15,13 4	1,780	0,022	13,331	312,225	299,75	3,268	305,98	67,466	0,02673	16,470	23,200	0,775	106,007
19,98	2,168	0,040	17,771	316,05	301,25	3,240	308,65	75,808	0,02693	16,780	23,620	0,879	118,230
24,80 5	2,837	0,057	21,911	318,56	299,25	3,237	308,90	71,638	0,02696	16,800	23,650	1,143	111,602
29,30 4	3,390	0,073	25,841	321,82	299,1	3,221	310,46	71,806	0,02704	16,890	23,820	1,322	111,533
34,84 8	4,182	0,098	30,569	326,72	299,4	3,194	313,06	70,639	0,0272	17,200	24,320	1,516	109,075
39,99	4,704	0,116	35,170	330,06	299,9	3,175	314,98	73,620	0,02739	17,390	24,460	1,636	112,890
42,88	5,104	0,128	37,648	331,98	299,5	3,167	315,74	73,178	0,02749	17,500	24,620	1,735	111,803
49,65 1	5,850	0,151	43,649	336,5	300,2	3,141	318,35	75,914	0,02775	17,610	24,790	1,898	114,897

d. 60 mm boyunda 12 kanatçık için

nN	104,951	135,990	131,862	141,746	139,265	145,679	127,994	128,648	131,419	136,875
Ra.10- ⁵	0,306	0,446	0,644	0,787	0,962	1,093	1,381	1,590	1,657	1,672
á.10 ⁶	22,120	22,520	23,020	23,200	23,300	23,590	23,820	24,050	24,350	24,620
v. 10 ⁶	15,620	16,100	16,370	16,470	16,500	16,500	16,890	17,100	17,220	17,500
k	0,02605	0,02645	0,02665	0,02669	0,02673	0,02679	0,02701	0,02718	0,02727	0,02749
Ч	65,094	85,642	83,669	90,076	88,632	92,923	82,312	83,254	85,328	89,588
$\mathbf{T}_{\mathbf{f}}$	297,71	302,16	303,82	305,21	306,14	307,55	310,05	312,41	314,00	315,53
_β x10 ³	3,359	3,309	3,291	3,276	3,266	3,252	3,225	3,201	3,185	3,169
\mathbf{T}_{∞}	295,55	298,8	298,75	298,9	298,35	298,55	298,2	298,5	299	299,9
$\mathbf{T}_{\mathbf{w}}$	299,87	305,52	308,9	311,53	313,93	316,55	321,9	326,32	329,01	331,17
Q_{Tas}	4,459	9,122	13,45	18,02	21,872	26,49	30,900	36,6866	40,560	44,373
QTop. Kayıp	0,007	0,047	0,011	0,052	0,069	0,081	0,223	0,159	0,181	0,189
Qışınım	0,717	1,166	1,789	2,257	2,811	3,293	4,445	5,340	5,851	6,188
\mathbf{P}_{T}	5,184	10,336	15,252	20,33	24,752	29,868	35,568	42,186	46,593	50,75

e. 60 mm boyunda 18 kanatçık için

Ra.10- ⁵ Nu	0,330 84,111		0,600 84,582	0,600 84,582 0,774 94,321	0,600 84,582 0,774 94,321 0,991 95,833	0,600 84,582 0,774 94,321 0,991 95,833 1,207 96,947	0,600 84,582 0,774 94,321 0,991 95,833 1,207 96,947 1,314 102,930	0,600 84,582 0,774 94,321 0,991 95,833 1,207 96,947 1,314 102,930 1,505 102,530	0,600 84,582 0,774 94,321 0,991 95,833 1,207 96,947 1,314 102,930 1,314 102,930 1,505 102,530 1,628 104,051	0,600 84,582 0,774 94,321 0,991 95,833 0,991 95,833 1,207 96,947 1,314 102,930 1,314 102,930 1,505 102,530 1,628 104,051 1,712 102,891
á.10 ⁶	22,520	23,200	23,300		23,620	23,620 23,820	23,620 23,820 24,050	23,620 23,820 24,050 24,400	23,620 23,820 24,050 24,400 24,600	23,620 23,820 24,050 24,400 24,400 24,790
v. 10 ⁶	16,100	16,470	16,500		16,780	16,780 16,890	16,780 16,890 17,100	16,780 16,890 17,100 17,220	16,780 16,890 17,100 17,220 17,530	16,780 16,890 17,100 17,530 17,530 17,610
k	0,02645	0,02669	0,02673		0,02693	0,02693	0,02693 0,02708 0,02718	0,02693 0,02708 0,02718 0,0273	0,02693 0,02708 0,02718 0,0273 0,02751	0,02693 0,02708 0,02718 0,0273 0,02751 0,02775
h	52,970	53,750	60,028		61,447	61,447 62,508	61,447 62,508 66,610	61,447 62,508 66,610 66,645	61,447 62,508 66,610 66,645 68,154	61,447 62,508 66,610 66,645 68,154 68,154 67,981
$\mathbf{T}_{\mathbf{f}}$	302,137	305,215	306,63		308,69	308,69 310,88	308,69 310,88 312,31	308,69 310,88 312,31 314,535	308,69 310,88 312,31 314,535 316,31	308,69 310,88 312,31 314,535 314,535 316,31 318,135
$_{\beta} x 10^3$	3,310	3,276	3,261		3,239	3,239 3,217 3,217	3,239 3,217 3,217 3,202	3,239 3,217 3,217 3,202 3,179	3,239 3,217 3,217 3,202 3,161	3,239 3,217 3,217 3,202 3,179 3,161 3,143
\mathbf{T}_{∞}	299,65	300,4	300,35		300,35	300,35 300,5	300,35 300,5 300,7	300,35 300,5 300,7 300,85	300,35 300,5 300,7 300,85 301	300,35 300,5 300,7 300,85 301,85 300,9
$\mathbf{T}_{\mathbf{w}}$	304,625	310,03	312,91		317,03	317,03 321,27	317,03 321,27 323,92	317,03 321,27 323,92 328,22	317,03 321,27 323,92 328,22 331,62	317,03 321,27 323,92 328,22 331,62 335,37
$\mathrm{Q}_{\mathrm{Tas}}$	4,174	8,199	11,942		16,235	16,235 20,564	16,235 20,564 24,499	16,235 20,564 24,499 28,893	16,235 20,564 24,499 28,893 33,055	16,235 20,564 24,499 28,893 33,055 33,055 37,117
Q _{Тор} . Каур	0,011	0,023	0,099		0,072	0,072 0,059	0,072 0,059 0,059	0,072 0,059 0,059 0,079	0,072 0,059 0,079 0,091	0,072 0,059 0,079 0,091
Qışınım	0,945	1,886	2,495		3,381	3,381 4,303	3,381 4,303 4,878	3,381 4,303 4,878 5,876	3,381 4,303 4,878 5,876 5,876 6,689	3,381 4,303 4,878 5,876 6,689 6,689
\mathbf{P}_{T}	5,13	10,108	14,536		19,688	19,688 24,926	19,688 24,926 29,436	19,688 24,926 29,436 34,848	19,688 24,926 29,436 34,848 39,835	19,688 24,926 29,436 34,848 39,835 39,835

f. 90 mm boyunda 6 kanatçık için

Νu	95,526	101,167	97,859	110,288	103,309	107,986	110,997	114,687	116,681	122,692
Ra.10- ⁵	0,286	0,497	0,725	0,862	1,087	1,211	1,330	1,418	1,560	1,624
á.10 ⁶	22,500	23,200	23,590	23,550	24,000	24,050	24,400	24,620	24,770	24,790
v. 10 ⁶	15,840	16,470	16,500	16,740	17,000	17,100	17,220	17,500	17,610	17,610
k	0,0263	0,0266	0,0267	0,0269	0,0270	0,0271	0,0273	0,0274	0,027	0,0277
Ч	59,818	64,289	62,420	70,637	66,634	69,883	72,148	75,065	76,954	81,064
\mathbf{T}_{f}	300,30	305,54	307,11	309,22	311,4	312,81	314,39	315,35	317,04	318,58
β X10³	3,330	3,273	3,256	3,234	3,211	3,197	3,181	3,171	3,154	3,139
\mathbf{T}_{s}	298,2	301,55	301,15	302	301,9	302,1	302,3	302,1	302,2	303,05
$\mathbf{T}_{\mathbf{w}}$	302,41	309,53	313,08	316,45	320,9	323,53	326,48	328,6	331,88	334,12
$\mathrm{Q}_{\mathrm{Tas}}$	3,989	8,126	11,795	16,168	20,054	23,721	27,633	31,509	36,178	39,895
Qтор. Каутр	0,009	0,017	0,033	0,045	0,070	0,086	0,095	0,113	0,141	0,149
Qışımın	0,984	1,965	2,984	3,689	4,956	5,668	6,494	7,185	8,181	8,691
\mathbf{P}_{T}	4,982	10,108	14,812	19,902	25,08	29,475	34,222	38,807	44,499	48,735

g. 90 mm boyunda 12 kanatçık için

Nu	122,899	148,809	144,881	146,209	162,236	176,817	164,101	171,631	185,489	174,403
Ra.10- ⁵	0,234	0,352	0,532	0,677	0,778	0,837	1,008	1,112	1,138	1,391
$\dot{lpha}.10^{6}$	22,500	23,120	23,300	23,590	23,580	23,550	23,820	24,000	24,150	24,400
v. 10 ⁶	15,840	16,470	16,500	16,500	16,700	16,740	16,890	17,000	17,140	17,220
k	0,0263	0,02665	0,02673	0,02679	0,02685	0,0269	0,02708	0,02709	0,0272	0,0273
h	76,958	94,423	92,207	93,261	103,715	113,247	105,806	110,702	120,126	113,362
$\mathbf{T}_{\mathbf{f}}$	300,275	304,915	305,905	307,73	308,71	309,73	310,36	311,675	313,35	314,025
$_{\beta} x 10^3$	3,330	3,280	3,269	3,250	3,239	3,229	3,222	3,208	3,191	3,184
\mathbf{T}_{∞}	298,55	302,1	301,6	302,15	302,2	302,7	301,7	301,95	303,2	301,4
$\mathbf{T}_{\mathbf{w}}$	302	307,73	310,21	313,31	315,22	316,76	319,02	321,4	323,5	326,65
QTaş	4,206	8,420	12,575	16,486	21,390	25,221	29,027	34,105	38,626	45,340
QT _{op} . Kayıp	0,001	0,018	0,005	0,012	0,011	0,012	0,014	0,027	0,042	0,042
Qışınım	0,977	1,670	2,579	3,404	4,010	4,373	5,422	6,167	6,542	8,194
\mathbf{P}_{T}	5,184	10,108	15,159	19,902	25,41	29,606	34,463	40,3	45,21	53,576

h. 90 mm boyunda 18 kanatçık için

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı:Uyruğu:Doğum Yeri ve TarihiTelefon:Fakse-mail:EĞİTİM	Emre GÜVENTÜRK T.C Kadınhanı 1984 0543 770 4141 - emreguventurk@gmail.com		
Derece Adı, İlçe	e, İl		Bitirme Yılı
Lise : Kaman L Üniversite : Kocaeli V Yüksek Lisans : Selçuk Ü Doktora :	Lisesi, Kaman, KIRŞEHİR Üniversitesi, İzmit, KOCAELİ İniversitesi, KONYA		2000 2007
İŞ DENEYİMLERİ			
Yıl Kurun	n	Görevi	i
UZMANLIK ALANI		: -	
YABANCI DİLLER		: İngilizce	
BELİRTMEK İSTEĞİN	İZ DİĞER ÖZELLİKLER	: -	

YAYINLAR

Emre GÜVENTÜRK, Ulaş ATMACA, "Eksenel Kanatçıklı Silindirlerden Doğal Taşınımla Isı Transferini İncelenmesi" ULIBTK'17 21. Ulusal Isı bilimi ve Tekniği Kongresi 13-16 Eylül 2017, ÇORUM