

T.C.

SELÇUK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

AUTOMATED ANALYSIS APPROACH FOR

THE DETECTION OF HIGH SURVIVABLE

RANSOMWARES

Yahye Abukar AHMED

Ph.D. THESIS

COMPUTER ENGINEERING DEPARTMENT

APRIL-2020

KONYA

All Rights Reserved

iii

1. ÖZET

DOKTORA TEZİ

SİNSİ FİDYE YAZILIMLARININ TESPİTİ İÇİN OTOMATİK ANALİZ

YAKLAŞIMI

Yahye Abukar AHMED

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Barış KOÇER

Üniversite Dişi Danışman: Dr. Shamsul HUDA

2020, 216 Sayfa

Jüri

Prof. Dr. Sabri KOÇER

Doç. Dr. Barış KOÇER

Doç. Dr. Mustafa Servet KIRAN
Doç. Dr. Mehmet HACIBEYOĞLU

Dr. Öğr. Üyesi Hasan Ali AKYÜREK

Ransomware, kullanıcı ile ilgili dosyaları ve verileri şifreleyen ve onları fidye olarak tutan kötü amaçlı

bir yazılımdır. Bu tür saldırılar hem bireyler hem de iş organizasyonları için ciddi tehdit oluşturan en yaygın

kötü amaçlı yazılımlardan biri haline gelmiştir. Bu yıkıcı zararlı program, son yıllarda siber suçlulara çok daha

büyük fidye talepleri ödeyerek birçok kuruluşun büyük gelir kaybetmesine neden olmuştur. Fidye yazılımının

hızlıca büyümesini sağlayan araçlar olarak; sosyal mühendislik, e-posta eki, zip dosyası indirmesi, kötü amaçlı

siteye göz atma, virüslü arama motoru gibi büyük enfeksiyon yayılma yolları olarak gösterilebilir. Ayrıca

kolayca kullanılabilen şifreleme araçları, Ransomware As a Service (RaaS), bulut depolama ve kendi kendine

fidye yazılımı araç kitleri bu tür kötü amaçlı yazılımların geliştirilmesini kolaylaştırmıştır. Virüs yayılmasını

kolaylaştıran enfeksiyon kitleri ve mevcut geliştirme araçları fidye yazılımlarını son derece büyütmekle

kalmamış, aynı zamanda yeni varyantları da daha gizlenmiş, şifrelenmiş ve değişen desenler haline getirmiştir.

Bu yıkıcı zararlı programa karşı, dinamik analiz yaklaşımı böyle bir saldırıyı tespit etmek için en popüler

yaklaşımdır. Dinamik analizlerin çoğu, sistem çağrılarına dayanmaktadır, çünkü bunlar işletim sisteminden

hizmet talep eden programlar için bir arabirim sağlar. Bununla birlikte, virüs yazarının çalıştırılabilir dosyaya

enjekte ettiği fazlalık ve ilgisiz sistem çağrıları, fidye yazılımı tespit edilmesini olumsuz yönde etkileyen yüksek

iv

gürültülü bir davranış dizisi oluşturmaktadır. Bu yüzden de algılama motorları ransomware'in yeni varyantlarını

tespit edememektedir. Bu araştırma hem denetimli hem de yarı denetimli makine öğrenme tekniklerini

kullanarak etkili Windows API çağrı dizileri üzerinden imzasız bir algılama yaklaşımı önermiştir. Bu hedefe

ulaşmak için, gürültülü özellikleri kaldırmak, fidye yazılımının gerçek davranışını karakterize etmek ve en

alakalı özellik alt kümesini seçmek için Gelişmiş Maksimum Alaka Düzeyi ve Minimum Yedeklilik (EmRmR)

filtre yöntemi önerilmiştir. Orijinal mRmR'den farklı olarak, EmRmR az sayıda değerlendirmeyle orijinal

mRmR algoritmalarına özgü gereksiz hesaplamaları önler. Buna ek olarak, bu çalışmada, fidye yazılımının kritik

davranışını açıklamak için anlamlı olmayan Windows API çağrılarını kaldırarak programın çağrı izlerinin

boyutunu azaltmak için bir arıtma işlemi geliştirilmiştir. Rafine edilmiş sistem çağrılarını kullanarak birkaç

sınıflandırıcı algoritması geliştirilmiş ve saldırının erken aşamalarında fidye yazılımını tespit etmek için daha

düşük yanlış pozitif oranla yüksek doğruluk elde edilmiştir. Buna ek olarak, bu araştırma geleneksel denetimli

algılama motorunun sınırlamalarına değinmekte ve ayrıca derin öğrenme yaklaşımlarını kullanarak yeni

varyantlardaki değişken örüntülerin doğal gizli kaynaklarını denetimsiz bir şekilde hesaplamak için yarı

denetimli bir çerçeve önermektedir. Önerilen çerçeve, yaklaşan kötü amaçlı çalıştırılabilir dosyaları barındırmak

için ölçeklenebilir olan vahşi ortamdan elde edilen etiketlenmemiş fidye yazılımlarından farklı desenlerdeki

doğal özellikleri ayıklar. Kapsamlı deneysel sonuçlarımız ve tartışmamız, önerilen uyarlanabilir çerçevenin,

fidye yazılımının farklı varyantlarının davranışlarını başarıyla ayırt edebildiğini ve mevcut denetimli

yaklaşımlardan daha yüksek performans elde edebildiğini göstermektedir.

Anahtar Kelimeler: Fidye yazılımı, Sistem çağrısı, Terim Frekans-Ters Belge Frekansı, Maksimum Alaka

Düzeyi ve Minimum Artıklık, N-Gram, Dijital gasp, derin öğrenme, uyarlanabilir yaklaşımlar.

v

ABSTRACT

Ph.D. THESIS

AUTOMATED ANALYSIS APPROACH FOR THE DETECTION OF HIGH

SURVIVABLE RANSOMWARES

Yahye Abukar AHMED

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF

SELÇUK UNIVERSITY

THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER ENGINEERING

Advisor: Assoc. Prof. Dr. Barış KOCER

External Advisor: Dr. Shamsul HUDA

2020, 216 Pages

Jury

Prof. Dr. Sabri KOÇER

Assoc. Prof. Dr. Barış KOCER

Assoc. Prof. Dr. Mustafa Servet KIRAN
Assoc. Prof. Dr. Mehmet HACIBEYOĞLU

Dr. Hasan Ali AKYÜREK

Ransomware is malicious software that encrypts the user-related files and data and holds them to

ransom. Such attacks have become one of the most widespread malwares that poses serious threat to both

individuals and business organizations. This destructive malicious program has caused many organizations to

lose huge revenue by paying much bigger ransom demands to the cyber criminals in recent years. Explosive

growth of ransomware is due to the existing large infection vector such as social engineering, email attachment,

zip file download, browsing malicious site, infected search engine which are boosted dramatically by easily

available cryptographic tools, Ransomware As a Service (RaaS), increased cloud storage and off-the-self

ransomware toolkits. The large infection vector and available toolkits not only grew ransomware extremely, but

vi

also made them more obfuscated, encrypted and varying patterns in the new variants. Against this destructive

malicious program, the dynamic analysis approach is the most popular approach for detecting such an attack.

The majority of dynamic analysis relies on the system calls as these provide an interface for programs to request

service from the operating system. However, the redundancy and the irrelevant system calls that the ransomware

authors inject in the actual execution flow of suspicious binaries generate a high noisy behavioral sequence that

adversely impacts in the induction of the supervised classifiers. This, in turn, caused the conventional supervised

analysis and detection engine to fail to detect the new variants of ransomware. This research proposed a non-

signature-based detection approach on the effective windows API call sequences using both supervised and

semi-supervised machine learning techniques. To achieve this objective, we proposed an Enhanced Maximum-

Relevance and Minimum-Redundancy (EmRmR) filter method to remove the noisy features and select the most

relevant subset of features to characterize the real behavior of the ransomware. Unlike the original mRmR, the

EmRmR avoids unnecessary computations intrinsic in the original mRmR algorithms with small number of

evaluations. In addition, this research has introduced a refinement process to reduce the size of the program’s

call traces by removing those windows API calls that do not have strong indication for describing the critical

behavior of the ransomware. We developed several classifiers algorithms using refined system calls and achieves

high accuracy with a lower false-positive rate for detecting ransomware in the early phases of the attack. In

addition, this research addresses the limitations of conventional supervised detection engine and also proposed

a semi-supervised framework to compute the inherent latent sources of the varying patterns in the new variants

in an unsupervised way using deep learning approaches. The Proposed framework extracts the inherent

characteristics in the varying patterns from the unlabeled ransomware obtained from the wild which is scalable

to accommodate upcoming malicious executables. After accomplishing Our extensive experimental results and

discussion demonstrate that the proposed adaptive framework can successfully discriminate the behavior of

different variants of ransomware and achieve higher performance than existing supervised approaches.

Key Words: Ransomware, System call, Term Frequency-Inverse Document Frequency, Maximum

Relevance and Minimum Redundancy, N-Grams, Digital extortion, deep learning, adaptive approaches.

vii

PREFACE

“Ransomware is unique among cybercrime because in order for the attack to be successful, it requires the

victim to become a willing accomplice after the fact”

-James Scott, Institute for Critical Infrastructure Technology, 2018

The most prevalent and potentially devastating form of malware, ransomware encrypts the

user’s related files and hard drive, and demands payment of a ransom before a deadline. A

famous global ransomware attack of this variety occurred in 2017, when the Wannacry

ransomware targeted thousands of computers around the world and spread itself within

corporate networks. The frequency of ransomware attacks increased by three times in 2017

over 2016: an attack occurred every 40 seconds. For example, WannaCry cyber-attack has

been reported in 99 countries and over 75,000 attacks have been carried out on machines

running the Windows operating system. The losses due to ransom was calculated as 200

million USD per year extorted by the criminal gangs. Due to this significant economic loss,

severity of disruption in sensitive business organizations, and the explosive growth of

ransomware, the detection of ransomware has been an important research field which gives us

the motivation of this thesis. Against this destructive malicious program, the dynamic

analysis approach is the most popular and reliable approach for detecting such an attack. The

majority of dynamic analysis relies on the system calls as these provide an interface for

programs to request service from the operating system. However, the redundancy and the

irrelevant system calls that the ransomware authors inject in the actual execution flow of

suspicious binaries generate a high noisy behavioral sequence that adversely impacts in the

induction of the supervised classifiers. The propose of this thesis is to describe and monitor

the valuable features of ransomware dynamically by conducting a behavioral-based analysis

of ransomware within sandbox in an isolated environment, and to developed detection models

for ransomware utilizing supervised machine learning algorithms, and adaptive detection

engine using deep learning based semi-supervised model.

Yahye Abukar AHMED

KOYNA- 2020

viii

ACKNOWLEDGMENT

First and foremost, I would like to express heartfelt gratitude and my sincere

appreciation to both my supervisor Assoc. Prof. Dr. Barış KOÇER and Dr. Shamsul Huda

for their constant support, encouragement, guidance and friendship. They inspired me greatly

to work in this thesis. Their willingness to motivate me contributed tremendously to our thesis.

I have learned a lot from them. This thesis would not have been possible without their

exceptional guidance, creative suggestions, patience, motivation and support. I am fortunate

to have they’re as my mentor and supervisor. Besides my supervisors, I am deeply grateful to

the rest of my thesis jury: Prof. Dr. Sabir KOÇER, Assoc. Prof. Dr. Mustafa Servet

KIRAN, Assoc.Prof. Dr. Mehmet HACIBEYOĞLU, Dr. Hasan Ali AKYÜREK for their

wholehearted cooperation, identifying the weaknesses, helpful suggestions and insightful

comments for my thesis.

My sincere thanks go to the authority of Selçuk University for providing me with a

good environment and facilities such as Computer laboratory to complete this thesis and

software that I needed during the process. I also extend my sincere gratitude to the Turkish

Scholarships (Türkiye Bursları) for granting me the opportunity to study in Turkey with full

scholarship. Moreover, I extremely acknowledge the Turkish people for their warm and

generous hospitality throughout my graduate school journey in Turkey. I also like to thank

my sponsor Simad University for the financial support and the endless effort they provide

me during my leave study.

My heartful thanks go to my beloved dear wife Layla Mohamud Nageye and my

lovely daughters Yusra, Yasmin, Yildiz and Yara for their support, love, encouragement,

advice, and brightening my world. I would like to show deep gratitude to my family- mother,

brothers and sisters, for supporting me spiritually and financially throughout writing this

thesis and my life in general. Finally, my worm thanks to my friends for always being there

whenever I need them in matters to do with my research.

 Yahye Abukar Ahmed

April 21, 2020

Konya, Turkey

ix

LIST OF TABLES

Table 2.1: Ransomware Families .. 40

Table 2.2: Summary of Strengths and Weakness of the above Classifiers 85

Table 2.3: Summary of Related Research on Ransomware Detection. 93

Table 3.1: Distribution of Malicious and Benign Files... 100

Table 4.1: Number of Extracted Features ... 115

Table 4.2: Weights of Selected Feature Classes Using TF-IDF Algorithm 125

Table 4.3: List of notations used in this paper .. 127

Table 4.4: Architecture1, Architecture2 and Architecture3.. 132

Table 5.1: Selected parameters value of SVM kernels ... 135

Table 5.2: Selected ANN user defined parameter values ... 136

Table 5.3: Result of the train-test splitting method... 140

Table 5.4: Result of the 10-fold cross validation method ... 141

Table 5.5: FPR, TPR, AUC and accuracy with different subset features 142

Table 5.6: The accuracy of the Tran-test splitting method ... 144

Table 5.7: The accuracy of N-gram with the 10-fold cross-validation 147

Table 5.8: The accuracy of the classifiers with k feature dimensions 149

Table 5.9: Precision, Recall, F1-measure and FPR with k feature dimensions 150

Table 5.10 (A): Performance Details Using Global Set of Features 153

Table 5.10 (B): Performance Details Using Global Set of Features 153

Table 5.11 (A): Performance Details Using FastICA with 40 Features 154

Table 5.11 (B): Performance Details Using FastICA with 40 Features 154

Table 5.12 (A): Performance Details Using FastICA with 50 Features 155

Table 5.12 (B): Performance Details Using FastICA with 50 Features 155

Table 5.13 (A): Performance Details Using FastICA with 80 Features 156

Table 5.13 (B): Performance Details Using FastICA with 80 Features 156

Table 5.14 (A): Performance Details Using FastICA with 100 Features 156

Table 5.14 (B): Performance Details Using FastICA with 100 Features 157

Table 5.15: Comparison of the Experiment One Method with other Classifiers 159

Table 5.16: The performance of SVM, Random Forest and Multi-Class classifiers 161

Table 5.17: Comparison with other Classifiers in Experiment Three 161

Table 5.18: Comparing the Experiment One proposed approach with earlier work 162

x

Table 5.19: Comparing the Experiment Two proposed approach with earlier work........ 164

Table 5.20: Comparison of mRmR and the proposed EmRmR method........................... 166

Table 5.21: Comparing mRmR and EmRmR based on the number of calculations and run

Time on different datasets.. 168

Table 5.22: Comparison of our proposed approach with AVs ... 169

xi

LIST OF FIGURES

 Figure 2.1: Ransomware Categorizations .. 16

 Figure 2.2: The Phases of the Windows-based Ransomware .. 17

 Figure 2.3: Fake message from Reveton ransomware ... 23

 Figure 2.4: Crypto-locker Ransom note .. 25

 Figure 2.5: TeslaCrypt Ransom Splash Screen ... 27

 Figure 2.6: Spam email with invoice Attachment ... 29

 Figure 2.7: Locky Ransomware Note .. 30

 Figure 2.8: PGpcoder Ransom Splash Screen ... 32

 Figure 2.9: Zcryptor Ransom Not .. 33

 Figure 2.10: Fake CHDISK Screen ... 34

 Figure 2.11: Text File Displayed by the Cerber Ransom Not. .. 37

 Figure 2.12: The Fake attachment of the RAA ransomware ... 38

 Figure 2.13: Wannacry Splash Screen ... 39

 Figure 2.14: Ransom not Through Bitcoins .. 42

 Figure 2.15: The amount of ransom demanded by the ransomware variants 43

 Figure 2.16: The distribution of spam emails in 2016 to 2018 .. 48

 Figure 2.17: The Social Engineering Cycle Attack ... 49

 Figure 2.18: Exploit kit Drive-by-download Method .. 51

 Figure 2.19: The architecture of Mal-advertisement flow ... 52

 Figure 2.20: Ransomware infection vector using dropper installer 53

 Figure 2.21: DLL Injection .. 54

 Figure 2.22: Running Multiple Operating Systems Simultaneously 60

 Figure 2.23: Anubis Sandbox Environment .. 63

 Figure 2.24: Ransomware Detection and Their Sub-classes ... 65

 Figure 2.25: Signature-based Detection Approach .. 66

 Figure 2.26: The Process of Training Phase .. 73

 Figure 2.27: The Process of Testing Phase .. 73

 Figure 2.28: ML Classifiers Taxonomy for Malware Detection 75

 Figure 2.29: Types and Subtype of Feature Selection Methods .. 76

 Figure 3.1: The Environmental setup for the behavior-based Ransomware detection. 99

 Figure 3.2: The Proposed Framework Architecture .. 101

xii

 Figure 3.3: The Architecture of Dynamic Behavior-based Ransomware Detection 102

 Figure 3.4: Ransomware Detection System Using Deep Learning 104

 Figure 4.1: PE File Structure ... 109

 Figure 4.2: The Architecture of the Sandbox .. 110

 Figure 4.3: The Generated JSON Format .. 111

 Figure 4.4: A Snippet of Extracted Key Elements from The JSON File 113

 Figure 4.5: An Example of System Call Trace .. 117

 Figure 4.6: Log of Critical Cryptographic API Calls .. 118

 Figure 4.7: Number of Extracted and Selected Features ... 125

 Figure 5.1: Architecture 1 with Equal Nodes in L1 and L2 .. 137

 Figure 5.2: Architecture3 With More Nodes in L1 and Less Nodes in L2 138

 Figure 5.3: RBM Layers with Input and Hidden Layer Nodes 138

 Figure 5.4: ROC Curve of the Classifiers on Train-test Splitting Method 140

 Figure 5.5: ROC Curve of the Classifiers on the 10-Fold Validation Method 141

 Figure 5.6: Comparison of SVM and ANN Accuracy with Subset Features 143

 Figure 5.7: The Classifier’s Accuracy on N-gram with Train-Test Splitting Method 145

 Figure 5.8: ROC Curve of the Classifiers on N-grams with train-test splitting method . 146

 Figure 5.9: ROC Curve of the Classifiers on N-grams with 10-fold cross-validation 148

 Figure 5.10: The Classifier’s Accuracy on N-Gram with 10-Fold Cross Validation 149

 Figure 5.11: ROC Curve of the Classifiers with different on k features 151

 Figure 5.12: Accuracy VS epoch number and Loss VS epoch number for L1024_L1024

with global set of features .. 158

 Figure 5.13: Accuracy VS epoch number and Loss VS epoch number for L512_L512 with

50 selected features using FastICA .. 158

 Figure 5.14: ROC Comparison of the Experiment One Method with other classifiers ... 160

 Figure 5.15: Comparison of the Experiment One method with other classifiers 163

 Figure 5.16: Compares the number of evaluations both mRmR and EmRmR method .. 164

 Figure 5.17: Time-complexity for mRmR and the Proposed EmRmR Method 166

 Figure 5.18: Comparison of the proposed method to VirusTotal 168

xiii

LIST OF BOXES

 Box 2.1: Registry activities made by the Cyrpto-Wall during execution. 17

 Box 2.2: List of Extension Files Encrypted by the Crypto-locker. 24

 Box 2.3: TeslaCrypt Encrypts these list of Extension Files ... 26

 Box 2.4: List of File Extensions for Pgpcoder Ransomware ... 32

 Box 2.5: Petya Encryption file extensions.. 35

 Box 4.1: A Snippet of 3-Gram System Call Sequences ... 120

 Box 4.2: A Snippet of Redundancy API Calls ... 122

xiv

LIST OFABBREVIATIONS

ACC: Accuracy Rate

AES: Advanced Encryption Standard

AIDS: Aids Information Disk

ANN: Artificial Neural Network

API: Application Program Interface

AUC: Area Under Curve

BSOD: Blue Screen of Death

C&C: Command-and-Control

CIA: Confidentiality Integrity and Availability

DT: Decision Tree

HTTP: Hypertext Transfer Protocol

IoT: Internet of Things

IRP: I/O Request Packets

JSON: JavaScript Object Notation

kNN: K-Nearest Neighbor

LR: Logistic Regression

M2M: Machine-to-Machine

MBR: Master Boot Record

MD5: Message Digest-algorithm 5

MFT: Master File Table

MID: Mutual Information Difference

xv

ML: Machine Learning

MLP: multilayer perceptron

MRI: Magnetic Resonance Imaging

MRMR: Minimum-Redundancy Maximum-Relevance

OS: Operating System

PCA: Principal Component Analysis

PE: Portable Executable

PEOHF: Portable Executable Optional Header Fields

QEMU: Quick Emulator

RaaS: Ransomware-as-a-Service

RBF: Radial basis function

RF: Random Forest

ROC: Receiver Operating Characteristic

RSA: Rivest–Shamir–Adleman

SHA-256: Secure Hashing Algorithm, 256-Bits

SMB: Server Message Block

SME: Small Medium Enterprises

SVM: Support Vector Machine

TF-IDF: Term Frequency-Inverse document frequency

URL: Uniform Resource Locator

VBR: Volume Boot Record

VMM: Virtual Machine Monitor

xvi

TABLE OF CONTENTS

DECLARATON ... ii

ÖZET ... iii

ABSTRACT .. v

PREFACE... vii

ACKNOWLEDGMENT .. viii

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF BOXES .. xiii

LIST OF ABBREVIATIONS .. xiv

1. INTRODUCTION ... 1

1.1 Problem Background ... 3

1.2 Problem Statement .. 5

1.3 The Research Questions .. 7

1.4 Objectives of the Research .. 7

1.5 Scope of the Research ... 8

1.6 Significance of the Study .. 8

1.7 Organization of the Research .. 9

2. LITERATURE REVIEW ... 10

2.1 Overview of Ransomware ... 10

2.2. Ransomware Attack Phases .. 12

2.2.1. Infection Phase ... 12

2.2.2. Spoliation of The Back up Phase ... 12

2.2.3. Encyption Phase ... 12

2.2.4. Notification Phase .. 12

2.3. Ransomware Categorization ... 13

2.3.1. Ransomware Threat Type Classification ... 13

2.3.1.1. Fake Ransomware ... 13

2.3.1.2. Real Ransomware ... 14

2.3.2. Ransomware Platform Classification... 16

2.3.2.1. Personal Computer Ransomware .. 16

2.3.2.2. Mobile Ransomware ... 18

2.3.2.3. Internet of Things (IoT) Ransomware .. 19

xvii

2.3.3. Ransomware Target Classification .. 20

2.3.3.1. Individual .. 20

2.3.3.2. Business .. 20

2.3.3.3. Public Institutions ... 21

2.4. Types of Ransomware ... 21

2.4.1. Reveton .. 22

2.4.2. Cryptlocker .. 23

2.4.3. Teslacrypt... 25

2.4.4. Locky ... 27

2.4.5. Cryptowall ... 30

2.4.6. Pgpcoder .. 31

2.4.7. Zcryptor ... 33

2.4.8. Petya... 34

2.4.9. Cerber... 36

2.4.10. RAA (JS / Ransom-DLL) .. 37

2.4.11. Wannacry ... 39

2.5. Ransomware Payment Using Bitcoin.. 41

2.5.1. The Technical Aspects of Bitcoin .. 44

2.5.2. The Advantages of Using a Digital Currency .. 46

2.6. Ransomware Infection Vectors ... 47

2.6.1. Spam Emails .. 47

2.6.2. Social Engineering ... 48

2.6.3. Exploit Kits .. 50

2.6.4. Malvertising: Exploiting web advertising.. 51

2.6.5. Dropper .. 52

2.7. Ransomware Evasion Techniques... 53

2.7.1. Code Injection Technique .. 53

2.7.2. Obfuscation Technique .. 55

2.8. Ransomware Analysis Techniques ... 56

2.8.1. Static Analysis Technique ... 57

2.8.2. Dynamic Analysis Technique .. 57

2.8.3. Virtualization ... 58

2.8.3.1. VirtualBox .. 60

xviii

2.8.3.2. VMware Player ... 61

2.8.3.3. QEMU ... 61

2.8.4. Sandbox Environment.. 61

2.8.4.1. Cuckoo Sandbox ... 62

2.8.4.2. Anubis Sandbox .. 62

2.8.4.3. Comodo Automated Analysis System .. 63

2.9. Ransomware Detection Methods .. 64

2.9.1. Signature-Based Detection .. 65

2.9.2. Behavioral-Based Detection .. 66

2.9.3. Anomaly-Based Detection ... 67

2.9.4. Event-based Detection ... 68

2.9.5. File-based Detection .. 69

2.10. Machine Learning-Based Detection .. 70

2.10.1. Supervised Learning .. 70

2.10.1.1. Regression ... 71

2.10.1.2. Time Series ... 71

2.10.1.3. Classification .. 71

2.10.1.4. Executable File Representation .. 74

2.10.1.5. Feature Selection Methods.. 75

2.10.1.6. Classification Algorithms ... 80

2.10.1.7. Ensemble Methods in Machine Learning ... 84

2.10.2. Unsupervised Learning .. 86

2.10.2.1. Density Estimation .. 86

2.10.2.2. Partitioning.. 86

2.10.2.3. Dimensionality Reduction .. 86

2.10.2.4. Deep Learning... 87

2.11. Gab Analysis and Directions ... 88

2.12. Summary ... 95

3. RESEARCH METHODOLOGY ... 97

3.1 The Proposed Methods .. 97

3.1.1. Method One ... 98

3.1.1.1. Experimental Setup ... 98

3.1.1.2. Dataset Description ... 99

xix

3.1.2. Method Two ... 102

3.1.3. Method Three ... 103

3.2. Performance Criteria ... 105

3.3. Summary ... 106

4. ANALYSIS AND DATA PREPROCESSING .. 107

4.1. Executable file format ... 108

4.2. Analysis of executable files .. 109

4.3. Feature Engineering .. 112

4.3.1. Feature Extraction .. 112

4.3.1.1. Extracting Integrated Features .. 112

4.3.1.2. Extracting System Calls .. 115

4.3.2. System Call Refinement Process ... 120

4.3.2.1. The Problem of noise Features ... 121

4.3.2.2. Refining Model ... 122

4.3.3. Feature Selection.. 123

4.3.3.1. Term Frequency-Inverse Document Frequency 124

4.3.3.2. Enhanced Maximum Relevance and Minimum Redundancy............. 126

4.3.3.3. Feature Selection Using FastICA ... 130

4.4. Summary ... 132

5. RESULST AND DISCUSSIONS .. 134

5.1. Setting Experimental Parameters .. 135

5.2. Experimental Results .. 139

5.2.1. Experiment One ... 139

5.2.1.1. Train-test Splitting Method ... 139

5.2.1.2. Cross-validation Method... 140

5.2.1.3. Testing with Selected Subset Features.. 142

5.2.2. Experiment Two .. 143

5.2.2.1. Windows System Call with N-gram Features..................................... 144

5.2.2.2. Windows System Call on N-gram with Cross-validation Method 146

5.2.2.3. Windows System Call on k-features ... 149

5.2.3. Experiment Three .. 151

5.3. Comparisons .. 159

5.3.1. Comparing with the other Classifiers .. 159

xx

5.3.1.1. Scenario One ... 159

5.3.1.2. Scenario Two .. 160

5.3.2. Comparing with the previous work ... 162

5.3.2.1. Scenario One ... 162

5.3.2.2. Scenario Two .. 163

5.3.3. Comparing mRmR with the proposed EmRmR method 165

5.3.4. Comparison with AV Scanners.. 167

5.4. Discussions .. 169

5.4.1. Automated dynamic behavioral detection framework 170

5.4.2. A System Call Based EmRmR Method for Ransomware Detection 171

5.4.3. Avoiding Ransomware Using Deep Learning Based Adaptive Approache 172

5.5. Summary ... 174

REFERENCES... 175

APPENDIXA .. 183

CURRICULUM VITAE ... 193

1

1. INTRODUCTION

The most devastated and fast-spreading computer world attack is ransomware that

can encrypt the assets in the victim’s machine, make it unavailable to the users and pose a

serious threat to achieving the CIA Triad (Al-rimy, Maarof, & Shaid, 2019) security goals

such as availability. The term ransomware is originally derived from two combined words

ransom and malware. After encrypting the victim’s assets ransomware author demands a

ransom for the restoration of the assets (user’s data) into their original states (ur Rehman,

Yafi, Nazir, & Mustafa, 2018). If the victim paid the ransom to the attacker through the

anonymous currency mechanisms like Bitcoin (Kalaimannan, John, DuBose, & Pinto,

2017) , the access to the encrypted assets is made available again. The malware encrypts

the most important user’s files on the hard drives, removable drives and mapped network

shares for extortion. Once ransomware reaches to the victim’s machine through the

infection vehicle, it starts the reconnaissance phase in which it searches for OS version,

installed applications, user’s files and folders, accessibility functions, backup files and

folders, credential information in the victim’s machine, and thereby identifies the most

important resources and files (Scaife, Carter, Traynor, & Butler, 2016). After the

encryption, the ransomware displays a message that requires payment to restore the

captured user’s data. The next step is to register the decryption key with a particular user

and make available when the ransom is paid; therefore, ransomware uses the command-

and-control (C&C) server to establish communication with its creator (Ahmadian,

Shahriari, & Ghaffarian, 2015).

Although the revolution of ransomware appeared at the end of the 1980s (Shukla,

Mondal, & Lodha, 2016)when the PC CYBORG also known as Aids Info Disk (AIDS)

Trojan starts to calculate the number of times the machine has booted until a criterion

number (90) reached. After that, the Trojan AIDS locks the critical user’s files, hides all

directory and encrypts the labels of the files on the drive C: (Shukla et al., 2016). This

ransomware targeted the healthcare industry, after 28 years, the healthcare industry

remains a top target for ransomware attacks. However, the sequence of successful attacks

of ransomware has resulted in increasing many new ransomware variants in the last few

years; for instance, the WannaCry cyber threat has been reported in 99 countries, and over

75,000 attacks have been carried out on machines running the Windows operating system

(Al-rimy, Maarof, & Shaid, 2018).

2

The motivation is the significant revenue of the extortion, for example, effective

ransomware like CryptoWall version 3.0 earned an estimated $325 Million as extortion in

the USA alone (Moore, 2016). A report released by FBI just in 2016 estimated that the

losses of $1 billion caused by ransomware. The victims of ransomware are not only limited

to home users or individuals but also targets government networks, businesses and health

services. It causes damage to financial losses or sensitive information that can lead to the

disruption of daily operations (Da-Yu, HSIAO, & Raylin, 2019).

Availability of cryptographic tools and easy anonymous financial transaction

methods such as cryptocurrencies, off-the-shelf ransomware development kit such as eda2,

angler exploit kit, Neutrino exploit kit, Ransomware-as-a-Service (RaaS), increased usage

of cloud-based file sharing are the primary reasons for explosive growth of ransomware

which encourages ransomware attacker to develop new ransomware variants in the last

few years (Mansfield-Devine, 2017) .

On other hand, machine learning (ML), a broad branch of artificial intelligence, is

computational methods using regularities, induced patterns and previous experience to

improve accurate predictions and performance. Machine learning is the science of getting

computers to act without being explicitly programmed. It is designed to develop the

efficiency of computer algorithms to solve with large-scale of data. In machine learning

classifier is used to recognize contents inside executable code files to classify new files

from normal files (Menahem, Shabtai, Rokach, & Elovici, 2009). The classifier is a set of

rules that is applied to a specified training of malicious executables and normal files.

Generally, classifiers are trained to recognize unseen malicious executables as

maliciousness, and complex patterns recognition that lead to intelligent decisions based on

the training data. In machine learning algorithms track the sequences generated by the

system calls and addressed as the characteristics of the program. The programs interact

with the operating system through system calls. Therefore, the input of machine learning

algorithm depends on the feature extraction which generates new features that are

extracted from the original one, while the selection methods keep the subset of the original

features. The extracted features including API calls (Takeuchi, Sakai, & Fukumoto, 2018).

The remaining of this section is organized as follows; the first subsection will

discuss problem background. The second subsection problem statement is described in

detail. The scope of the thesis will also be highlighted in subsection three. The rest are the

objectivities of the research is also discussed in the fourth subsection. Finally, the

significance of the study will be illustrated.

3

2. Problem Background

Recently, ransomware has become one of the most widespread malware threats

that internet users experience (Ahmadian et al., 2015). Normally, victims of ransomware

are not limited to home users or individuals, but also targets government networks,

businesses, national health service hospital and causes permanent or temporary loss of

proprietary or sensitive information, disruption to regular operations and financial losses.

This threat has become a major cyber risk for many organizations; small-medium

enterprises (SME) to large enterprises business and individual entrepreneurs (Al-rimy et

al., 2018).

For example, the courier companies FedEx and TNT, Maerx, WPP (the world’s

largest advertising agency), pharmaceutical company Reckitt Benckiser and Kingdom’s

National Health Service (Mansfield-Devine, 2017). These attacks caused severe financial

losses, e.g. an estimated damage by the WannaCry alone was 5 billion dollars

approximately. The leading courier company of the world, FedEx, acquired $300million

financial loss resulting from disrupted operations, legal and reputational cost caused by

ransomware attacks (Al-rimy et al., 2018). The world leader of shipping and logistic

business, Maresk lost $200 million to $300 million due to catastrophic ransomware attacks

which caused it to shut down its 76 terminal ports (Yaqoob et al., 2017). In 2016, the

Hollywood Presbyterian Medical Center (HPMC) computer network was down for more

than a week as the Southern California hospital worked to recover from a ransomware

attack, after a ransom of 40 Bitcoins — approximately $17,000 — was paid, the hospital’s

computer systems were released. A report released by FBI just in 2016 estimated that

losses of $1 billion caused by ransomware. A report released by McAfee, demonstrates

ransomwares have grown since 2014 (Al-rimy et al., 2018).

In January 2017, a hotel in Austria named Seehotel Jagerwirt was affected by a

ransomware attack that took over the systems of the hotel and tampered the room key cards

and guest check-ins (Mansfield-Devine, 2017). As part of the ransom to release the hotel’s

computers, hackers required that the hotel pays 2 Bitcoin or roughly 1,500 euro or $1,600.

The hotel agreed to this payment because it was faster and cheaper than trying to fight it.

May 15, 2017, new ransomware, called WannaCry emerged, which is a kind of

ransomware that targets all kinds of files including PDF files, word documents, excel

sheets, etc, and encrypts them in the form of .wcry extension. WannaCry causes crises

4

across the world and infecting vulnerable systems globally. WannaCry cyber-attack has

been reported in 99 countries and over 75,000 attacks have been carried out on machines

running the Windows operating system (Da-Yu et al., 2019).

The explosive growth of ransomware happened due to enormous availability of

easy cryptographic tools for applying encryption techniques such as single key (symmetric

key mechanism), dual key (public-private key) or hybrid to produce ransomware (Yaqoob

et al., 2017), easily available financial transaction methods with anonymity such as P2P

cryptocurrencies which influence ransomware authors to feel safe (not being caught by

law enforcement agencies), availability of off-the self-ransomware development kit such

as eda2, angler exploit kit, Neutrino exploit kit, Ransomware- as-a-Service (RaaS) based

on the cloud platform which enable a novice to create ransomware and spread. Increased

usage of cloud-based file sharing such as OneDrive, Google drive has also accelerated

ransomware distribution for large business organizations. Often ransomware authors not

only demand the ransom, but the installed ransomware also create mass disruption in the

system, for example, WannaCry locked out the health professionals from the electronic

medical recording system (EMRS), computerized tomography (CT), magnetic resonance

imaging (MRI) scanners, blood test service systems of UK’s national health services (Zhao

et al., 2018).

Detection of the ransomware is commonly performed by tools such as anti-virus

programs based on the analysis of the signature recognition. Ransomware analysis

approaches are widely classified into static and dynamic analyses. In the static analysis

approach, there is no need to execute the ransomware samples. When a new malicious

sample is explored, the static detection needs to catch its binary signature through

analyzing the executable instructions (Sgandurra, Muñoz-González, Mohsen, & Lupu,

2016). Ransomware detection program searches the virus signature database to find if

there are matched signatures. If a match is found, the file under test will be identified as a

malicious executable. This approach has proved to be effective when the malware is

known beforehand in the database, and the accuracy is totally dependent on the signature

database of the system. However, this signature-based detection method is hampered by

the avoidance techniques that ransomware employs such as obfuscation and/or packing.

Such an approach is unreliable for detecting to the zero-day ransomware, as it suffers

several shortcomings such as frequently updated signature repository, and the need for

expert intervention to analyse and extract attack signatures (Fukushima, Sakai, Hori, &

Sakurai, 2010).

5

In the dynamic analysis, on the other hand, ransomware samples are executed in a

controlled environment such as sandbox to reveal the runtime behaviour of the samples.

Certain dynamic behavioural features are extracted from the malicious file and used for

classification and detection purposes. The most promising approaches to detect and

characterize the malware behaviour are system calls as they provide a valuable information

and attack patterns that help in the detection of such attacks. To execute the suspicious

payload, ransomware needs to request services from the operating system through

Windows API calls. These system calls can represent the essential characteristics of the

ransomware. However, significant growth of ransomware through a huge infection vector,

changes the patterns of infection very rapidly. This requires a sophisticated detection

engine which is based on the runtime feature of ransomware and requires as less supervised

knowledge as possible (Vinod & Viswalakshmi, 2018).

2.2 Problem Statement

Ransomware is malicious software that encrypts the user-related files and data and

holds them to ransom. Such attacks have become one of the serious threats to cyberspace.

The avoidance techniques that ransomware employs such as obfuscation and/or packing

makes it difficult to analyse such programs statically. Although many ransomware

detections studies have been conducted, they are limited to a small portion of the attack's

characteristics. In the dynamic analysis, several current studies rely on system calls as they

are effective for distinguishing between the behaviour of malicious and benign programs.

A system call is a way for programs to interact with the operating system. A computer

program makes a system call when it makes a request to the operating system’s kernel.

System call provides the services of the operating system to the user programs via

Application Program Interface (API). It provides an interface between a process and

operating system to allow user-level processes to request services of the operating system.

System calls are the only entry points into the kernel system. (Al-rimy, Maarof, & Shaid,

2017).

Authors Hampton et al. employed windows API call features for identifying the

salient feature of the ransomware. For the detection purpose, the frequency of the system

calls for the ransomware and baseline applications were compared to measure the

similarity between them (Hampton, Baig, & Zeadally, 2018). Amamra et al. introduced a

filtering and abstraction process to eliminate the irrelevant and redundancy system calls

6

for anomaly-based malware detection. This process has also combined the same system

calls to reduce the size of the traces (Amamra, Robert, & Talhi, 2015). However, the

redundant and irrelevant system calls that are injected by the malware authors in the actual

execution flow of suspicious binaries can easily defeat these detection approaches.

Moreover, the size of the system call traces is commonly very large that generates

a high noisy behavioural sequence (Chou, Yen, & Luo, 2008). This has adversely impact

on the induction of machine learning classifiers such as the increase in training time, more

storage requirement and the difficult analysis of real malicious behaviour that can lead

overhead and poor prediction ability (Xiao, Xia, Yang, Huang, & Wang, 2015).

To address this issue, dimensionality reduction approaches such as filters and

wrappers have been proposed to handle the noisy problem and select the optimal features

to improve the performance of the classifiers. Wrappers select features based on

predetermined learning algorithms, but this method tends to be computationally expensive

and has overfitting problems (Acid, De Campos, & Fernández, 2011). Unlike wrapper

methods, filters select the subsets of the features by finding the correlation to the target

class without involving any learning algorithm.

Filters are less computational than wrapper approaches. Among the widely-used

filter methods, the Minimum-Redundancy Maximum-Relevance (mRmR) method has

been successfully employed in the malware detection applications in the past few years.

Several studies have employed such approach as this provides a relevant feature

for discriminating the behaviour of the malware and benign files (Sedano et al., 2015).

However, the original mRmR method has a limitation of unnecessary computations due to

the mutual information calculations among feature sets. In the mRmR, to find the most

relevant subset feature, the mutual information between a specific feature and the class

target is quantified. The redundancy of the features is penalized based on mutual

information within features (Darshan & Jaidhar, 2018). This process continues until the

subset features are equal to the selected features, and the algorithm calculates the same

mutual information values more than one time that leads to duplications.

Therefore, the original mRMR method is not suitable for the detection of

ransomware because it is computationally expensive due to the large number of system

call features generated by n-gram. Therefore, we need a lighter version of mRmR to

overcome this difficulty.

7

2.3 The Research Questions

There are important questions which arise:

1. Feature extraction is a key to apply machine learning to successfully detect

malicious executables, which feature extraction approach can propose significant

features that can represent the real behavior of the ransomware?

2. The most promising approaches to detect and characterize the ransomware

behaviour are system calls as they provide valuable information and attack

patterns. Windows API calls are suffering a massive amount of irrelevant and

redundant system calls invoked by the malicious executables during its execution,

how to reduce the size of the system call traces?

3. How supervised machine learning implemented using an integrated number of

features?

4. How to develop an adaptive detection engine using deep learning-based semi-

supervised model on an integrated number of features?

5. How to evaluate the efficiency of supervised machine and semi-supervised in

detecting of the ransomware.

2.4 Objectives of the Research

The following are the objectives of the research:

1. We proposed a framework for describing dynamically monitored valuable

features of ransomware by conducting a behavioral-based analysis of ransomware

within a sandbox in an isolated environment, through the Term Frequency-Inverse

document frequency (TF-IDF), Enhanced Minimum-Redundancy and Maximum-

Relevance (EmRmR) and FastICA methods, we have extracted the most relevant

features that provide the best performance in detecting new ransomware on

windows platforms.

8

2. We have developed detection models for ransomware utilizing supervised

machine learning algorithms, and adaptive detection engine using deep learning

based semi-supervised model. The proposed method achieves high accuracy and

less false positive rate for detecting ransomware in the early phases of the attack.

3. We have empirically validated the method with an extensive experimental

evaluation to show the effectiveness of the proposed models.

2.5 Scope of the Research

The scope of this research will be the following:

1. Focus on ransomware that exists in Microsoft Windows platform, due to a large

number of the ransomware attack occurs; there are more Windows-based

computers than any other type of OS. Ransomware attackers often use exploit kits

software in Microsoft based machines to get access on victims’ machines.

2. For analysis purposes, the samples are executed in Cuckoo sandbox installed in

Ubuntu 16.04 LTS Desktop fully updated, with WindowsXp_server_Pack3 32bit

installed as a guest machine due to its weaker security protections that enable us

to observe more ransomware behavior. To perform the analysis in a secure,

Virtual box machine was used with controlled access to the Internet.

3. In this research, Supervised Machine learning and semi-supervised techniques

were focused as they provide the real characteristic of ransomware during

execution, because they perform statistical comparisons on specific datasets to

examine the accuracies of the algorithms.

4. Four common performance metric was used, so evaluate the performance of

ensemble machine learning technique are True Positive (TP), False Positive (FP),

True Negative (TN), and finally False Negative (FN).

2.6 Significance of the Study

Regarding cyber-attacks caused by the malware, the most wide-spread and

sophisticated destructive is the one motivated by the ransomware. Ransomware is one of

9

the most discussed cyber security threats and constitutes a hot topic in the cybercriminals

in present time. The number of infected ransomware victims has dramatically increased

now days from the perspective of small individuals, businesses, enterprise and some

hospitals. The losses due to ransom was calculated as 200 million USD per year extorted

by the criminal gangs. Due to the significant economic loss and severity of disruption in

sensitive business organizations, the detection of ransomware has been an important

research problem.

Therefore, an efficient of ransomware detection can save sensitive data,

organization integrity and financial loss, it provides computer home user and

organizations confidence in the security field. The expected outcome of this study is to

detect malicious executable files with better accuracy in comparison to other detection

methods. This proposed scheme can be used in real-life situations such as business and

organization network. The supervised machine learning and semi-supervised techniques

is expected to have higher performance while maintaining low false positives. This study

will be beneficial to the antivirus researches through effective machine learning

algorithms, and provide recommendations on how to evaluate the performance of a

certain ML algorithms in accordance to ransomware detection.

2.7 Organization of the Research

This study consists of six sections. Section 1 is about introduction of the study,

Problem background, objectives, scope and significance of the project. Section 2 provides

the literature reviews on ransomware, the categorization and the types of the ransomware.

Analysis of the ransomware based on the static and dynamic approach. In this section the

detection methods including machine learning algorithms will be illustrated. The

framework of methodology and data set used to detect new executable malicious files will

be discussed in the Section 3. Section 4 analysis and data pre-processing steps, feature

extraction and feature selection, developing models, parameter settings are also discussed.

Finally, result and discussions of the proposed methods and their extensive experiments,

and comparing the proposed method based on the accuracy of the algorithms are

discussed in Section 5.

10

2. LITERATURE REVIEW

This section reviews the literature of ransomware and its detection based on the

different aspects. It begins the overview of the ransomware in terms of the its revolution

and the phases of the ransomware attack. The category of the ransomware based on the

threat type of view, whether the fake ransomware that scares the user to extort it or the

real ransomware is focused in this section. In this section, two types of real ransomware,

those lock the victim’s screen while other variant encrypts the user’s related files called

crypto-ransomware are also classified. In addition, in this section, the digital extortion

that becomes a major cyber risk for many organizations; small-medium enterprises (SME)

to large enterprises business and individual entrepreneurs, followed by the various

popular type of the ransomware families are discussed, these families are based on the

behaviours of the ransomware including the type of the algorithm used, the encryption

approach, the amount of the extortion, and the threatening messages are classified.

Analysing of ransomware, both static and dynamic approaches are also briefly explained.

This section defines ransomware analysis as the action taking malware apart to study it

in order to determine the impact and sophisticated level of ransomware. It also concluded

the detection of ransomware including signature, anomaly and emulation-based detection.

The remaining subsections are discussed the avoidance techniques used by the

ransomware writers to evade the detection such as encryption, compression data and

obfuscation techniques. This subsection addresses detection mechanisms of unseen nasty

code through data mining techniques based on the extraction of static malicious features

from binary files. Finally, the machine learning classifier algorithms to identify new files

as benign or malicious is focused.

2.1 Overview of Ransomware

The expansion of the Internet and its importance is increasing at an amazing rate

in recent years, not only the size but also the services offered; along with this particular

importance and benefits, the number of complex attacks has also grown especially, in the

wide use of the Internet. In recent years, the malicious code has posed a serious security

threat to business and commercial companies, computer network system and

governments. Therefore, the level of the security in malicious code has reached a peak,

in (Reddy & Pujari, 2006), ranked the impact of viruses and worms as top serious security

11

threats. Moreover, as the number of the unknown virus rises, the rate of detection

complexity also increases. Due to the significant increase of the available tools and the

extortions encouraged to increase the attack of malicious programs like the newly

emerged malicious executable called ransomware.

In recent years, ransomware has been making headlines around the world, but this

kind of software is not new. The first type of ransomware appeared in 1989 (Shukla et al.,

2016). It was the Trojan AIDS also known as PC Cyborg. At that time, AIDS was one of

the newspapers in the whole world. After that, Doctor Joseph Popp took advantage of the

situation and distributed around 20,000 floppy disks to patients, individuals and also

medical institutions. This diskette contains an AIDS information program (Da-Yu et al.,

2019). But it also contained ransomware, which after a few days encrypted computer files

and then demanded a ransom of $ 189 to recover the encrypted files.

The first attack was the PC cyborg in 1989; the ransomware attacks remained

unnoticed until the mid-2000s. One reason is that hackers wrote their own encryption

code, which was quite simple to decrypt and, therefore, easy to counter. But everything

changed when they started to rely on encryption libraries that are almost impossible to

decrypt without the decryption key (Hampton et al., 2018). The first ransomware to use

encryption techniques arrived in 2005 (for example Gpcod used RSA1024 bit

encryption). GPCoder infected Windows systems and targeted files with a variety of

extensions. There are two types of ransomware: Encrypting ransomware and blocker as

we will discuss in the following sections, but in simple way, the encrypting ransomware

encrypts files and folders on the computer while blocker ransomware locks the devices.

Both ask for a ransom to allow the victim to regain control of their data or device(Gazet,

2010).

Ransomware has taken on a whole new dimension and it all started with the

popularization of Bitcoin, which allows hackers to be very difficult to trace. In addition,

encryption algorithms have become more and more complex, which makes them almost

impossible to decipher without knowing the key.

Some even decrypt a file to show the victim that the key actually works. This

pushes victims to pay the ransom since they are confident that hackers can unlock the

files. For businesses, paying the ransom is often the cheapest option. So, if companies are

sure they will find their files for a fee, they will not hesitate. Because of all these elements

that make ransomware viable and very attractive in financial terms, their number is simply

exploded, as the graph indicates (Kalaimannan et al., 2017).

12

2.2 Ransomware Attack Phases

To encrypt the user’s related files, ransomware requires to carry out attack phases,

this will lead the ransomware successfully spread and infect the machine. The following

are the most prominent phases of ransomware:

2.2.1 Infection phase

Ransomware can attack a computer, a smartphone or a Tablet, using different

techniques: phishing, adware or malicious applications as we will discuss in the following

infection vector section. Once the malicious payload is hosted in the machine, the

"Ransomware" can be triggered either remotely by the hacker, or at a date and time

previously defined or when the user performs a specific action (Dada, Bassi, Chiroma,

Adetunmbi, & Ajibuwa, 2019).

2.2.2 Spoliation of the backup phase

Once the malicious file is executed, the Ransomware can locate and remove the

backup files to prevent the user from performing a restore (Dada et al., 2019).

2.2.3 Encryption phase

At the heart of crypto ransomware, main objective is its ability to transform mass

amounts of data from a usable state to an unusable state. Typically, ransomware data

transformation function is employed through encryption by opening the original file and

directly overwrites its content with its encrypted data. Depending on its category,

ransomware can encrypt files, display a permanent threat message (overlay) and even

change the password of a terminal. In any case, the user can no longer use his device

(Dada et al., 2019).

2.2.4 Notification phase

The user is informed that his files are being held and that he must pay a ransom to

recover them. Often, victims have a few days to pay, otherwise the ransom amount

increases. The files are eventually permanently deleted once the authorized time is

reached (Palisse, Le Bouder, Lanet, Le Guernic, & Legay, 2016).

13

2.3 Ransomware Categorization

The categorization of the ransomware is based on the several factors that

determine the layout of ransomware such as:

1. The type of threat Classification,

2. The targeted approach that infects the victims

3. The nature of infecting the systems.

2.3.1 Ransomware threat type classification

We classified the ransomware according to the type of threat to the infected

machine. This threat varies based on the different factors, the purpose of the attack and

the type of victim. So, from this threat type point of view, ransomware is classified as

scareware and Real ransomware.

2.3.1.1 Fake ransomware

This type of ransomware does not compromise the user’s files, but they only scare

the users that they have encrypted the files. Fake ransomware criminals tackle the fear of

ransomware threats instead of creating the real ransomware, they only use a simple

encryption tool. The purpose of the fake ransomware is extortion by persuading the victim

to pay, this kind of ransomware employ social engineering as an attack vector by showing

an encrypted page so that the victim can think his/her data can be recovered(Pathak &

Nanded, 2016). Another purpose of fake ransomware is to divert the attention of the users

from the real attack which is another ransomware.

To infect the user’s machine, fake ransomware uses a social engineering technique

to convince the users that their computer systems are compromised and they are offering

free antivirus downloads to scan for the ransomware (Rajab, Ballard, Marvrommatis,

Provos, & Zhao, 2010). The fake antivirus plays on the security fears and calls for the

user to take actions in self-preservation. For instance, Personal Shield Pro is a rogue

antivirus program that infects the system and takes over the control of the compromised

computer. This program pretends to be the updates of some programs such as Shockwave,

Flash, or codecs. When the Windows boots, the Personal Shield Pro performs a fake scan

to infect the machine. Personal Shield Pro is capable of infecting Windows 9x, 2000, XP,

Vista, and Windows 7.

14

2.3.1.2 Real ransomware

In contrast to the fake ransomware, the real ransomware is a harmful program that

uses various system utilities to escalate the extortion. We can divide this type of

ransomware into two main categories, locker ransomware and crypto-ransomware (Cabaj

& Mazurczyk, 2016).

A. Screen-locker ransomware

Screen- Locker ransomware is a malicious program that locks the screen of the

victim when the computer is compromised. and emails victims into thinking their

computer is locked. After the affection, the ransomware blocks the victim's desktop,

computer input devices for end users or mobile devices or input interface devices such as

the keyboard and mouse by denying access to the device owner (Pathak & Nanded, 2016).

The ransomware displays a message on the screen and allows limited access to some

functions such as moving the mouse or keeping the keys on the numeric keypad activated

so that the victim can enter the ransom and pay a ransom before the normal access is

restored(Aurangzeb, Aleem, Iqbal, & Islam, 2017).

The Screen-Locker ransomware accuses the victims accessing un illegitimate

websites or doing a prohibited activity. The Screen-Locker ransomware imitates a police

officer that is going to punish the computer users for employing pirated software. The

Screen-Locker Ransomware displays a message for ransom but does not include any

detailed instructions about how to make the payments (Aurangzeb et al., 2017).

This Locker-ransomware keeps the system and the files intact and can be removed

through various system restoration techniques such as restoring the system to its safe

Mode in order to find the original data that ransomware locked (Bhardwaj, Avasthi,

Sastry, & Subrahmanyam, 2016). Un updated anti-malware software can also be removed

from the malicious payload associated with the screen-locker ransomware. The following

are some Screen-Locker ransomwares:

 Kovter

 Winlock

 Reveton

 LockScreen

 BlueScreen

15

B. Crypto-ransomware

Crypto-Ransomware is malicious software that encrypts the user-related files and

data and holds them to ransom. User’s data access is permitted again if the victim paid

the requested ransom using the anonymous currency mechanisms like Bitcoin.

Ransomware that employs the encryption algorithms is known as crypto ransomware.

The revolution of the crypto-ransomware begun in 2013 when Crypto-Locker appeared

(McIntosh, Jang-Jaccard, & Watters, 2018). The aim of the crypto-ransomware is to

breach the availability of the data by encrypting a victim’s files, or rendering them

inaccessible as shown in Figure 2.1.

The ransomware encrypts the most important user’s files on the hard drives,

removable drives and mapped network shares for extortion (Kharraz & Kirda, 2017).

After the encryption occurs, the ransomware shows a message that requires payment to

restore the captured user’s data (Ahmadian et al., 2015). The next step is to register the

decryption key with a particular user and make available when the ransom is paid;

therefore, ransomware uses the command- and- control(C&C) server to establish

communication with its creator (Brewer, 2016). The Crypto-ransomware contacts C&C

server through multiple proxy servers which are typically legitimate but hacked machines

to request a public encryption key. The amount of ransom is vary depending on the

specific ransomware variant, and the payment is often only in Bitcoins, or a similar digital

cryptocurrency. Specific instructions are also provided

Unlike the locker-ransomware, the effect of a crypto-ransomware attack is

irreversible; to encrypt the victim’s files, the crypto-ransomware employs cryptography

functions. In the first quarter of 2016, the increase of the crypto-ransomware becomes

high as reported in (Gostev, Unuchek, Garnaeva, Makrushin, & Ivanov, 2016), due to its

ability to exhibit massive damage and tangible extortion against victims.

The Crypto-ransomware spread is changing dramatically. In 2018, Sophos

discovered that half (54%) of the organizations that they investigated had been the victim

of ransomware in the past year. The main target was government networks, businesses,

and national health service hospitals. The impact crypto-ransomware showed that India

had the highest level of infection, followed by Mexico, the United States and Canada. A

Report released by the FBI just in 2016 estimated that losses of $1 billion caused by

ransomware (Moore, 2016).

16

Figure 2.1: Ransomware Categorizations (Kok, Abdullah, Jhanjhi, & Supramaniam,

2019)

2.3.2 Ransomware platform classification

Ransomware variants can be classified based on the targeted environment. The

target platform includes Personal computers (PC), internet of things (IoT) or mobile

environment. The detailed description about the environmental-based ransomwares

classification are provided below:

2.3.2.1 Personal computer ransomware

The personal Computer ransomware as the name implies, this type ransomware is

a malicious program that infects only the personal data or user’s multiple files on the

individual computers. The PC ransomware spread to other computers when the

attachment is sent via email or carried by users on physical media such as USB drives, an

external hard disk, or floppy disks. According to the McAfee and Symantec reported that

the number of ransomwares that attack PCs is growing dramatically. Attacks of this type

are not only limited to the windows-based computer, but also other PC-based systems

such as Mac OS and Linux.

 The PC ransomware prevents the victim from accessing their data, the attack

phases of the Windows based ransomware is shown in Figure 2.2. There are several ways

to do this, such as encrypting data or blocking computer access as we mentioned in the

previous subsections. These methods are intended to obtain the payment of a ransom.

Once paid, the victim will be able to access their data (Al-rimy et al., 2018).

17

Figure 2.2: The Phases of the windows-based ransomware (Zavarsky & Lindskog,

2016).

In window-based ransomware, after delivering and installing the malicious

payload on the system, some significant changes are observed. These changes can be

described as File system activities, registry activities, and network communications

(Zavarsky & Lindskog, 2016).

 File System Activities: during the attack of the windows-based ransomware,

several files are modified, opened, deleted and created. The constantly muddied

files include a.txt files that the ransomware employed for threatening the victim

after the encryption carried out, for contacting PIPE\lsarpc is used with the Local

Security Authority subsystem. For resistance purpose, the Cryptowall

ransomware changed the system.pif available under the Start Menu. Not to

recover the encrypted files, window-based ransomware employed vssadmin tool

to deletes the shadow using the command Delete Shadows/All/Quietcommand

(Zavarsky & Lindskog, 2016).

 Registry Activities: after the execution of the samples, most of the windows-

based ransomware modified the registry key values. Here, the most observed

changed register keys like Crypto-Wall do as presented in the box 1.

 Box 2.1: Registry activities made by the Crypto-Wall during execution

Then, the Crypto-Wal changes the AppData value to C:\Documents and

Settings\Administrator\Application Data, cache value to C:\Documents and

Settings\Administrator\Local Settings\Temporary Internet Files. Some variants

modified the registery key values of the computer name. for instance, the

following are:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\

ComputerName\ActiveComputerName and HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon. Some keys

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curr

entVersion\Run, HKU\S-1-5-21-842925246-1425521274-308236825-

500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell

18

like HKLM\System\CurrentControlSet\Control\Terminal Server checks if

Terminal Server user is enabled or not. It makes sure that Language Hotkey and

Layout Hotkey are also enabled(Chen & Bridges, 2017).

 Network Activity: The windows-based ransomware contacting the Command

and Control server by starting communication with a Client Hello using TLSV1

with the response. The server then sent through a certified message to victim’s

machine. After establishing the communication between the server and the

victim’s machine Client key exchange are performed in the victim’s system.

Also Encrypted Handshake message is completed to obtain the encryption keys

and other messages (Zavarsky & Lindskog, 2016).

2.3.2.2 Mobile ransomware

The market for smartphones has boomed considerably in recent years. These

phones have exceeded their primary functionality of voice communication and are now

real mini-computers, with their own operating system which allows the user to install all

kinds of applications. Although the number of phone models are significantly used, two

operating systems largely dominate the market: Apple's iOS and Google's Android. The

latter allows any user with some programming knowledge to create and publish their own

applications on the Google Play site, where other users can download them. On the one

hand, malicious applications (ransomware) are regularly found in this market. The newly

emerged malicious program include ransomware as it becomes aware of such

contamination, Google reacts by removing suspicious applications from the market.

However, the time required for this reaction leaves time for many users to become

infected (Zavarsky & Lindskog, 2016). These markets are not controlled and are therefore

infested with malware: it is crucial for these users to be able to detect them in order to

limit the risks. The following are some of the mobile ransomware during the attack:

 Privilege Escalation: when the application is delivered to user’s mobile, after

that, the application needs to open, so that, it has to request for administrator

rights. To take the privileges of the application users are required to activate the

button by clicking it., and this causes the malicious application to be removed

from the device. The newly emerged ransomware variant, the activation window,

is covered with a malicious window imitating to be an update patch installation.

19

So, in some way, the program attempts to find the administrator privileges to lock

the victim’s device.

 Information Collection: during the attack, the ransomware collects the important

information about the International Mobile Equipment Identity (IMEI) number,

call logs, contacts, profile, history bookmarks, SMS, the list of accounts in account

service, phone state, GPS location of the phone, and IP address. Some of the

ransomware even check the tasks running on the device.

 Permissions Used: All programs that are installed by normal users ’needs

authorizations and permission to be given to role properly. Nonetheless, the

ransomware requests for permissions that is not intended for the working of the

program. All the permission requests which don’t appear to be in agreement with

application functions can be taken threat and may not be granted (Nicoló

Andronio, Zanero, & Maggi, 2015).

2.3.2.3 Internet of Things (IoT) ransomware

Today, the Internet is gradually transforming into a Hyper Network, like a network

formed by multitudes of connections between Artefacts (physical, documentary), actors

(biological, algorithmic), scripts and concepts (linked data, metadata, ontologies ,

folksonomies), called "Internet of Things (IoT) Internet of Things (IoT)", connecting

billions of human beings, but also billions of objects. It becomes the most powerful tool

ever invented by humans to create, modify, and share information. This transformation

shows the evolution of the Internet network: from a network of computers to a network

of personal computers, and then to a nomad network integrating communications

technologies. Developments in Machine-to-Machine (M2M) technologies for remote

machine control and also the appearance in the year 2000 of IP (Internet Protocol) on

mobile cellular networks have accelerated the evolution of M2M towards 'IoT (Yaqoob

et al., 2017).

The Internet of Things must be designed for easy use and secure handling to avoid

potential threats and risks, while masking the underlying technological complexity. The

Internet of Things become potential target of ransomware attacks. Even though these

devices are intended to save the personal or organizational documents and files, locker-

ransomware attacks become the most serious threat to the IoT devices by disrupting the

normal flow of the work and deactivate the access to the surveillance systems. This kind

20

of ransomware causes a power outage, or imposing a disturbing break of the

manufacturing processes. For instance, the Android.Lockdroid.E is considered to be the

IoT-based ransomware that locks smart TVs and disables the users to access (Richet,

2016).

2.3.3 Ransomware target classification

In this section, we will discuss the effect of the ransomware based on the targeted

victim. The classification of this kind of ransomware can be divided on the three main

part as explained in the following section as detail.

2.3.3.1 Individual

The best targets for ransomware are individuals, businesses or even public

institutions. Anyone can be the target of an attack. But hackers have learned to target their

attacks better. There are many reasons for hackers to attack individuals:

 Individuals almost never back up their data. They lack computer security

knowledge which makes them easy to handle (for example they do not pay

attention to what they will click).

 They do not keep their software up to date. They use free antivirus which are

less efficient; they think that antivirus protection against all threats. Basic

protections are not implemented (proxy, firewall, etc.).

All of these elements make individuals vulnerable to a ransomware attack. Of

course, It is obvious that these criticisms do not apply to everyone and luckily elsewhere.

But users should be aware of that a single mistake can allow the ransomware to infect

their machine (Palisse et al., 2016).

2.3.3.2 Business

For businesses, the reasons for attacks are also numerous. First, businesses have

money and a ransomware attack causes a lot of trouble for the business. There is also the

human factor which is still undervalued, hackers use social engineering techniques to

deceive the collaborators of the company. Hackers can use malware to attack computers,

servers, and even files on sharing systems. Small businesses are not prepared to deal with

21

ransomware attacks. In addition, companies prefer not to report a ransomware infection

for fear of the consequences of the image of the company. Indeed, such an incident can

have serious consequences for a company. These can be financial but it can also break

the trust that customers, suppliers or partners have with the company (Corrigan, 2017).

 As the researcher stated that 70% of companies pay the ransom which is a huge

percentage, but as we said above, it is impossible for a company to work without its data.

So, if they don't have a backup plan, they are forced to pay in the hope of recovering the

data. The biggest risk is the data that employees save in unprotected locations. Ensure

that users are aware of and follow best practices for recording data so that it is stored

securely. If this is not the case, do not hesitate to organize training or simulation sessions.

Saving important data to suitably protected storage will help reduce the risks (Corrigan,

2017).

2.3.3.3 Public institutions

Public institutions also have employees who are rarely aware of the risks of social

engineering which is used with skill by hackers. Hackers can see successfully attacking a

media-known target as personal achievement. But the biggest problem remains that public

institutions generally use outdated software and hardware, so their computer systems have

flaws that have not been patched up. As we can see, hackers can attack anyone. It all

depends on the resources and motivations of the hacker (Kendzierskyj & Jahankhani,

2019).

2.4 Types of Ransomware

There are different types of ransomware families as shown in Table 2.1, those who

block the computer screen, those who encrypt the data, those who block the start-up of

the system and those which target the mobiles. The first versions of ransomware were

those lock the computer screen until the victim paid the ransom. There was no data

encryption. So, the victim has to find a way to remove the ransomware from the computer

to recover the data (Hampton et al., 2018). After that, ransomware has evolved and

become a more serious threat to the world. One of the evolutions of ransomware is

encrypting ransomware. This method works only after installing data from network

drives, computers or servers. There are some who even look for connected USB sticks.

22

Encrypting ransomware is effective because the private data is often important to the

users. Once, the file is encrypted, it is impossible for the victim to recover with a simple

reset of the operating system(Al-rimy et al., 2018). To encrypt, there are two ways.

 The symmetrical way that uses the same key to encrypt and decrypt. So, this way

is easier to break since it uses the same key. The victim only needs to find the key

used to recover their data.

 The asymmetric way, in this method there is a public key which is shared and

which allows the data to be encrypted. There is also a private key, which it is not

shared and is used to decrypt the data. The private key will only be released once

the ransom has been paid.

Once the data has been encrypted, a screen message will appear showing the

amount of the ransom that the victim has to pay if they want to recover their data.

Generally, the victim is asked to pay in bitcoin (cryptocurrency), since it is very difficult

to identify who owns the bitcoin addresses. The following are the famous ransomware

types:

2.4.1 Reveton

The Reveton - is also known as Police Ransomware- is a computer infection

program that locks the victim’s computer unless the demanded ransom is paid to the

ransomware developer. Reveton is identified as one of the most famous Screen Lockers,

which appeared in August 2012, and it infected many windows operating systems. The

distribution of Reveton ransomware is Blackhole Exploit kit, after delivering the

exploitation on the victim computer, it downloads Citadel malware.

The Citadel malware also downloads the Reveton payload. Citadel was malware

that is very similar to the associate of Zeus malware. The characteristics of the Citadel

stealer is to steal the credentials of the users that are stored in password managers such as

password safe and KeepPass. Reveton usually displays a lock screen when you log in to

Windows that pretends to be from a law enforcement agency based on the geographical

(Hampton & Baig, 2015). For example, FBI message pops up if you are in the United

States of America. A message from Metropolitan Police if you are in the United Kingdom.

23

Figure 2.3: Fake message from Reveton ransomware

In order to access your computer, you must submit a MoneyPak voucher, or other

payment coupons, to the malware developers and they will then unlock your computer so

you can access your Windows desktop again. The displayed message is written like the

victim’s computer was detected as having broken various laws regarding pornographic

material, download copyrighted programs, or the distribution of copyrighted programs as

shown in Figure 2.3. For example, messages usually are in the form of long lines

announcement states “You have browsed illegal materials and must pay a fine”. To access

the computer victim, you need to pay a fine or the government will prosecute you or will

be jailed. In order to pay a fine, you will typically need to purchase a MoneyPak voucher

and submit the voucher identification number into the lock screen (Bhardwaj et al.,

2016).

2.4.2 Cryptlocker

Appeared on September 5, 2013, a variant of ransomware that encrypts the user’s

files on a victim's machine and demands a ransom to be paid to the malware authors. The

decryption keys will be provided by threat authors via MoneyPak or Bitcoin within 72

hours, after that limited time the decryption keys will be destroyed and the user’s files

will be almost impossible to recover (Scaife et al., 2016). The files are encrypted using

AES with a random key which is then encrypted to a 2048-bits RSA public key. The

Crypto-locker encrypts important widely used user’s related files such as word extension

files, PDF files and excel files as shown in Box 2.2. Crypto-Locker spread in two

24

methods. In the first version release, Crypto-Locker attackers focus on the on companies,

business professionals through spam emails pretending as a customer complaining the

organization’s products. The malicious payload files are distributed as ZIP archives,

which destructively encrypt all the user’s files on a system if it is open (Kyurkchiev, Iliev,

Rahnev, & Terzieva, 2019).

Later versions of Crypto-Locker that appeared on October 7, 2013, spread through

Game over Zeus, a peer-to-peer botnet who have used the Cutwail spam network to send

huge amounts of spam emails that occur as established online retailers and financial

institutions. These emails are usually forged invoices, order urgent confirmations or

unpaid balances to lure victims to follow the malicious links that have redirected to

Crypto-Locker to operate the kits.

Box 2.2: List of extension files encrypted by the Crypto-locker.

Crypto-locker employs a dual key (public/private) encryption method, which

means that decrypting the files is impossible without the private key. This is where the

ransom part comes into play: after Crypto-locker executed and infected the machine, a

message displays demanding a ransom within a limited time in 72 hours. The average of

Crypto-locker ransom is about $300 to $2,000. The payment is required to be in Bitcoin

form, which is an untraceable electronic monetary system. If the victims fail to pay the

ransom within mentioned above time, the ransomware will not appear from the victim’s

system leaving your important files still encrypted – and unusable. The ransom notice

may appear to come from the government or the police, but this is not the case. Paying

the ransom may – or may not – remove the malware and there is no guarantee it will not

re-infect your system in the future (Liao, Zhao, Doupé, & Ahn, 2016).

*.jpe, *.jpg, *.3fr, *.accdb, *.ai, *.arw, *.bay, *.cdr, *.cer, *.cr2, *.crt,

*.crw, *.dbf, *.dcr, *.der, *.dng, *.doc, *.docm, *.docx, *.dwg, *.dxf,

*.dxg, *.eps, *.erf, *.indd, *.kdc, *.mdb, *.mdf, *.mef, *.mrw, *.nef,

*.nrw, *.odb, *.odc, *.odm, *.odp, *.ods, *.odt, *.orf, *.p7b, *.p7c,

*.p12, *.pdd, *.pef, *.pem, *.pfx, *.ppt, *.pptm, *.pptx, *.psd, *.pst,

*.ptx, *.r3d, *.raf, *.raw, *.rtf, *.rw2, *.rwl, *.sr2, *.srf, *.srw, *.wb2,

*.wpd, *.wps, *.x3f, *.xlk, *.xls, *.xlsb, *.xlsm, *.xlsx, img_*.jpg

25

Figure 2.4: Crypto-locker ransom note.

According to the above Figure 2.4, the ransom message states that the personal

files, photos and videos of the victim has been encrypted with strong encryption algorithm

that nobody will never be able to restore the files. This kind of threat is displayed to the

victim and only a certain amount of time is given to the normal users to pay a ransom and

recover the access to their files. Crypto-locker leaves the so-called ransom note like the

one shown above.

2.4.3 Teslacrypt

TeslaCrypt was discovered in February 2015, which encrypts the files and spread

through websites that convey victims to an exploit kit. Unlike other ransomware, during

the attack, TeslaCrypt saves the encryption keys on the user’s hard disk. This kind of

ransomware is considered to be the first ransomware that attacks specifically on files used

by video games. Similar to the CryptoLocker, the encryption is performed with the stream

cipher. The infection vector of TeslaCrypt was through compromised websites that

redirect the victims to an exploit kit (drive-by-download).

Angler is considered to be the carrier who uses Adobe Flash. The encryption

process takes place independently of communication with the C&C, but their concept of

cryptosystems differs somewhat (Wyke & Ajjan, 2015). TeslaCrypt includes a public

ECC key in its binary code, shared among many examples, which is used to calculate a

shared secret involved in generating an AES session key. The system has an ECC master

private key.

26

TeslaCrypt focuses many of the file extensions that commonly used on the

system for general-purpose. It does not encrypt the music and video file formats such

as MP3s and MP4s, as well as many file extensions associated with common business-

class applications. It encrypts the file formats from efficiency suites such as Open Office

and Microsoft Office, as well as formats associated with video games as shown in Box

2.3 (Pascariu & Barbu, 2015). To encrypt the user’s files, TeslaCrypt employs

the Advanced Encryption Standard (AES) algorithm, but the ransomware perverts its file

encryption in two main methods:

1. The encrypted files have been renamed with an "ecc" extension files, which

suggests the use of an Elliptic Curve Cryptographic (ECC) algorithm. The

ransomware employs the algorithm when generating Bitcoin addresses, but not

to encrypt files.

2. Splash screen messages and files left on compromised systems claim to use the

RSA-2048 encryption algorithm.

Box 2.3: TeslaCrypt encrypts this list of extension files.

The encryption process begins with the malware using the

GetLogicalDriveStrings() API function to enumerate storage on the system's lettered

drives (e.g., C:\). The GetDriveType() API call then selectively targets DRIVE_FIXED

drives (e.g., hard disks, solid-state drives (SSDs)) and DRIVE_REMOTE drives (e.g.,

mapped network shares). TeslaCrypt does not attack removable (e.g., USB) storage or

scan connected networks for open shares. The ransomware recursively scans the drives

for files with targeted extensions, and then opens, reads, and encrypts each file. The

encrypted data is written into the original file, which reduces the likelihood that forensic

tools can recover the original data (O'Kane, Sezer, & Carlin, 2018).

.7z, .map, .m2, .rb, .jpg, .cdr, .png, .mcmeta, .wmo, .rar,.indd, .jpeg, .vfs0, .itm, .m4a,

.ai, .txt, .mpqge, .sb, .wma, .eps, .p7c, .kdb, .fos, .avi, .pdf, .p7b, .db0, .mcgame,

.wmv, .pdd, .p12, .DayZProfile, .vdf, .csv, .d3dbsp, .psd, .pfx, .rofl, .ztmp, .sc2save,

.sis, .hkx, .sie, .sid, .bar, .pem, .crt, .dbfv, .mdf, .wb2, .cer, .sum, .ncf, .upk, .rtf,

.ibank, .t13, .t12, .qdf, .gdb.tax, .pkpass, .bc6, .bc7, .bkp, .qic, .bkf, .sidn, .sidd,

.mddata, .itl, .itdb, .icxs, .fsh, .w3x, .unity3d, .big, .menu, .das, .der, .layout, .dmp,

.blob, .esm, .001, .vtf, .dazip, .fpk, .mlx, .kf, .iwd, .vpk, .tor, .psk, .rim, .ntl, .hvpl,

.hplg, .hkdb, .mdbackup, .syncdb, .gho, .svg, .cas, .lrf, .css, .jpe, .odt, .ods, .dng, .js,

.vpp_pc, .ff, .odp, .pak, .3fr, .flv, .odm, .m3u, .cfr, .arw, .odc, .srf, .py, .snx, .lvl,

.odb, .desc, .sr2, .doc, .bay, .crw, .cr2, .dcr, .xxx, .arch00, .wotreplay, .docx, .docm,

.wps, .xls, .kdc, .xlsx, .xlsm, .mef, .epk, .erf, .rgss3a, .bik, .xlsb, .nrw, .mrwref, .slm,

.orf, .xlk, .lbf, .ppt, .pptx, .pptm, .mdb, .accdb, .pst, .sav, .raf, .raw, .re4, .apk, .rwl,

.rw2, .bsa, .ltx, .r3d, .ptx, .pef, .srw, .x3f, .litemod, .iwi, .asset, .forge, .dwg, .xf, .dxg,

.wpd.

27

Figure 2.5: TeslaCrypt ransom splash screen.

TeslaCrypt creates a "HELP_RESTORE_FILES.txt" file that contains ransom

payment details. Many hundreds or thousands of these files can be found on

compromised systems. A ransom message (see Figure 2.5) is saved as

"HeLP_ReSTORe_FILeS.bmp" on the desktop and becomes the desktop's background

image. Some older versions used the filenames "HELP_TO_SAVE_YOUR_FILES"

and "HELP_TO_DECRYPT_YOUR_FILES".

The ransom splash screen is displayed states that the victim’s files have been

encrypted, show encrypted files button can be seen the list of the encrypted files (Pathak

& Nanded, 2016). If the victim attempts to remove or corrupt the software their files

will be lost.

2.4.4 Locky

Locky ransomware is a malicious program that encrypts the user’s files on

Windows and holds them hostage for ransom. This ransomware is identified as an

instance of crypto-locker ransomware. Locky ransomware was discovered at the

beginning of 2016 and immediately became one of the most serious ransomware threats.

The Locky ransomware spreads more than 100 countries worldwide. The United States

28

and France are the most infected countries, authors concentrate the best of the previous

ransomware to achieve a highly skilled threat (Almashhadani, Kaiiali, Sezer, & O’Kane,

2019). Locky was spread through spam email campaigns and exploit kits. There are some

famous Locky ransomware variants such as:

 Locky Decryptor is a variant of locky ransomware that pretends to be a decrypt

tool for Locky.

 AutoLocy the impact of this variant, is not more as the original. This variant

spreads through spam emails.

 Zepto appreaed in June 2016 with malicious email campaigns distribution. This

variant encrypts the user’s files using AES-128 and RSA-2048 cipher that make

it very hard to crack it.

 Hucky is an abbreviation of Hungarian Locky that encrypts the with desktop

picture in Hungarian.

The infection vector starts with a social engineered (SE) email. Ransomware

developers send spam email imitating as invoice payment with purchase ordered

references as shown in Figure 2.6. The red highlighted section shows the structure of the

Locky URL that is needed to be clicked. All of the affected emails consist of an archive

(7zip, rar, zip) which has an embedded in VBscript file. After the victim opens the

attached document, it’ll prompt the victim to enable the Word macros so that its contents

can be displayed properly. A macro is somewhat like a shortcut that performs some sort

of automated function. When executed, the script connects to command and control

(C&C) servers to download the Locky Ransomware, which then encrypts the users’ data

locally as well as the files on network shares.

The Necurs botnet is identified as another main distributor that spreads the Locky

payload infections, usually as a result of a specially-crafted Microsoft Office Word or

Excel file with malicious macros, and then enabled. To inspire the victim to enable the

macros, a distorted message is displayed with “the data encoding is not correct, please

permit macro to be updated” (Prakash, Nafis, & Biswas, 2017). The macro is then

downloaded by the Word document and the Locky code starts to encrypts the files on the

user’s directories and simultaneously renames the all file names and changes the file

extension to .locky.

29

Figure 2.6: Spam email with invoice attackmen

For distribution of the malware, the first versions employed hiding techniques by

injecting itself into the windows explorer process, but it was easily identified by some

registry keys. Here are some registry keys created:

 Id: to keep the victim’s identity id key is employed

 Pubkey: for encryption, the Locky needs to store the key in the RSA publicly.

 Paytext: in the ransom note usually is stored in the registry

 Completed: if the encryption process is successfully carried out this registery key

is used.

Once the malicious payload is delivered into the system, some steps are followed:

 Locky pretends like normal windows executable, it renames itself to svchost.exe

to avoid the detection.

 The renamed Locky file starts to delete the backup files and prevent a system from

restoring.

 Locky begins to communicate the command and control servers to find the he

RSA public key

 Locky generates a unique ID of the victim and saved on the command and control

server.

30

When Locky has finished encrypting the victim’s files, it will remove the

downloaded executable and then display a ransom note through instructions in Bitcoin as

shown in Figure 2.7, it requires ~0.5 Bitcoin, that is equal to ~$400-500, where the value

of Bitcoin was around $900-1000, but in 2017 some variants demanded $900, ransom

also went up to $1000.

Figure 2.7: Locky Ransomware Note

2.4.5 Cryptowall

CryptoWall -is also known as Cropto- was discovered in early 2014 and encrypted

the user’s files using RSA and employed Onion Router Tor to obfuscate communications

with the command and control server. The CyptoWall user interface was quite similar to

CryptoLocker. Unlike other ransomware families, the CryptoWall followed a proper

software development life cycle. Due to this development, their versions were given

version numbers. The infection vector of CryptoWall employed email spams that sent

through email and are contained within spam attachments. The email attachment contains

a JavaScript code that will download the executable JPG files to harm the victim. It will

also generate a new instance of EXPLORER.EXE AND SVCHOST.EXE to make

communication with their server. In addition to, to encrypt the victim’s files, first, it will

delete the volume shadow copies and installs spyware that steals passwords and

BITCOIN wallets. This kind of ransomware has equipped with different types of spyware

involved in it (Cabaj, Gawkowski, Grochowski, & Osojca, 2015). To execute and infect

31

the machine, the Cryptowall hide itself by injecting into a legitimate Windows process

such as svchost. Several versions of Cryptowall have the capability of identifying the

sandbox environment by employing self-protection mechanisms. There is some new

version of CryptoWall as describe below:

 Cryptowall 2.0. This variant is almost similar to the original Cryptowal. It

encrypts the victim’s files with RSA-2048 encryption algorithm and seeks to make

it victim pay either $500 USD, 500 EUR or 1.22 Bitcoin. Unlike Cryptowall 1.0

version which cannot delete the files, this variant had the ability to securely delete

files. To collect and track the victim’s payment, Cryptowall 2.0 generated a unique

bitcoin address for each of its victims, which was not available in

CryptoLocker1.0 (Aurangzeb et al., 2017).

 Cryptowall 3.0. to infect the system, this version distributes through Magnitude

and Fiesta exploit kits, which is easier than its previous examples. This Version

3.0 employed an RSA 2048-bit public key, that downloaded from the Common

and Control domain. For encryption purposes, Cryptowall 3.0 upgraded to AES

symmetric encryption with Cipher Block Chaining (CBC) mode which is applied

via the Invisible Internet Project (I2P) network.

 Cryptowall 4.0 -is known as Help Your Files ransomware- was seen first in

November 2015. It has a unique characteristic that has not been seen in the

previous version of this ransomware. The infection vector of this ransomware was

employed via email attachments. Some exploit kits, such as Angler, also

distributed it. The subject of these emails was mainly related to job vacancies.

This Cryptowall version demands to pay $700 in exchange for the decryption key

(Cabaj & Mazurczyk, 2016).

2.4.6 Pgpcoder

PGPCODER was first appeared in Russia, and it is the oldest ransomware that

discovered in 2005. PGPCODER is considered to be the first ransomware that was seen

by enforcement. PGPCODER encrypts the files with extension of Vnimanie_.txt in which

means Attention in Russian. The early versions of Gpcoder employed a symmetric key

that was simply breakable. Because of this, many antivirus engines recovered the victim’s

files by decrypting the hostage files. This ransomware was distributed through infected

32

websites by the drive-by-download technique. Later in 2010, another updated version of

this ransomware was discovered (Jones Jr & Muhammad).

The Initial versions of PGpcoder employed a symmetric key and were easily

breakable. Many antivirus vendors could decrypt the encrypted files. But later, the

encryption algorithms got stronger and very tough to crack. Some of the encryption

algorithms used were RSA1024, AES256, and so on. Ransomware would change the file

extension of the original file to something else. This version searches the files with the

following extensions, as shown in the following Box 2.4. Gpcoder obtains these

extensions to encrypt the file. It starts by reading the contents of the file into memory.

Then the ransomware encrypts the contents and writes it into a new file. The new file has

a different extension from the original file. The original file is deleted (Tailor & Patel,

2017).

Box 2.4: List of file extensions for Pgpcoder ransomware

Victims received an alert to send an email for instructions on how to decrypt

the files after payment. This was pretty much the same situation as the 1989 version.

It would take files, archive them, and then put a password over the files, but a security

researcher cracked the code, and then gave that code to anyone who had encrypted

files. The failure in this version was that the ransomware could be removed from the

computer's safe mode where one could uninstall, or delete it. "It didn’t tamper with

files on the disc, but criminals became more aggressive with trying to get you to pay

(Zavarsky & Lindskog, 2016). The average of the payment ranging from $100 -$200,

the ransom pop up message states that the victim’s files are encrypted with the RSA-

1024 algorithm as shown in Figure 2.8. To access the files the victim needs to by the

decryptor tool through normal email like yahoo.

Figure 2.8: PGpcoder ransom splash screen.

.asc,.db,.db1,.db2,.dbf,.doc,.htm,.html,.jpg, .pgp,.rar,.rtf,.txt,.xls,.zip, .omg, .encoded

33

2.4.7 Zcryptor

 Zcryptor is a classic ransomware that encrypts the user’s file like the other

ransomware. However, it has a special feature that should not be overlooked. This

ransomware is also spread via USB keys and hard drives. Once it has infected a computer

via traditional means (social engineering, email, spam, ...), it starts to execute the payload

by using the masquerading as an installer of the program. It detects whether there are any

computer media (USB keys, hard drives) that are connected to the computer. If it finds

one, it will copy the files and make them invisible to the user. Then, as soon as the device

is connected to a new computer(O'Kane et al., 2018). The ransomware will infect it.

Once the payload is delivered on the system and executed it. The ransomware

creates a registry key that make sure that it could run at start-up, then it drops the

autorun.inf on removable drives, along with a zycrypt.lnk in the start-up folder. After that,

the ransomware generates a hidden copy of itself under the system folder of the registry

(Roberts, 2018). as Drive:\system.exe and %appdata%\zcrypt.exe.

Figure 2.9: Zcryptor ransom not

After the encryption, Zcryptor displays a message that looks like a normal HTML

page stating that their files are encrypted and demanded a ransom ranging 1.2 bitcoins

(average of $650) as shown in Figure 2.9. If the victim did not pay the required money in

four days, the ransom increases to 5 bitcoins (more than $2,500).

34

2.4.8 Petya

The Petya was first discovered in May 2016 that encrypts the Master Boot Record

(MBR) of the windows. After execution, Petya encrypts the user’s files by overwriting

the Master Boot Record with a malicious payload and then boot the windows system with

extensions as shown in Box 2.5. then the victim has redirected the boot screen that

demands a ransom. It also encrypts the Master File Table (MFT) system drive that causes

the system to reboot and displays the blue screen of death (BSOD). After restarting the

machine, Petya generates a fake CHDISK screen as shown in Figure 2.10. This is made

by the boot-loader that has replaced the original MBR (Aidan, Verma, & Awasthi, 2017).

This boot-loader further encrypts MFT in the background while the CHKDISK screen is

shown to the victim.

Figure 2.10: fake CHDISK screen

When the computer is on, the first program to run the is the Basic Input Output

System (BIOS). This BIOS performs the Power on Self (POST) test and reads the Master

Boot Record (MBR). POST checks whether all hardware devices are connected to the

system for the proper functioning of the system. The BIOS then reads the MBR. MBR

refers to the first sector of a partition known as the volume boot record (VBR). VBR

contains a lot of information, such as partition size and partition type (Aurangzeb et al.,

2017). If the partition type is NTFS (New Technology File System is the file system used

by Windows), VBR contains information about the Master File Table (MFT). The space

of the MFT is the kept by the NTFS file system, where all information about a file,

including its size, time and date, permissions, and data content, is stored in MFT entries,

35

or in a space outside the MFT described. through MFT inputs. Because of the MFT is

encrypted, Windows cannot identify the file system and therefore it cannot load the rest

of the operating system components.

Box 2.5: Petya Encryption file extensions

Petya uses an EternalBlue and SMB as propagation methods to spread within an

infected network. Another infection method was spread via spam emails that show as a

resume with the malicious attachment (Richardson & North, 2017). There are some

updated versions of Petya ransomware such as Petya-Mischa and goldeneye Petya.

 RED-PETYA is a new version of the original Petya that has all functions mentioned

above. The RED-Petya is identified to be the first version that employs Salsa20,

asymmetrical key algorithm, to encrypt the MFT and make the drives unavailable.

However, the execution of the algorithm is not implemented correctly, resulting in an

unintended error that enables to decrypt of the infected files, although the bugs of the

later version of the Red-Petya has been fixed.

 PETYA-MISCHA also is known as GREEN-PETYA, was first discovered in

September 2016. This Petya-Mischa consists of two components, the Petya and the

MISCHA. To execute the payload, the Petya needs administrator rights to run;

otherwise, it fails. If the Petya-Mischa failed to encrypts MF, MISCHA encrypts the

victim’s personal files, and displays a splash green screen; this version was therefore

called GREEN-PETYA.

 PETYA-GOLDENEYE is a later version of Petya that spread in Germany in

December 2016. GoldenEye is discovered to be the next version of Petya-Mischa.

Unlike the Petya-Mischa, Goldeneye encrypts the files in the file on the hard disk

first, then encodes the MFT. After encoding the files, GoldenEye adds a string that

consists of eight random characters to the end of every file name. The distribution of

the Petya- GoldenEye through the spam emails that seemed to be legitimate emails.

Unlike the Petya-Mischa that requires the administrator rights for encryption of the

MFT, the GoldenEye acquired the administrator rights (Zakaria, Abdollah, Mohd, &

Ariffin, 2017).

.3ds, .asp, .bak, .cpp, .disk, .7z, .aspx, .accdb, .avhd, .c, .cfg, .cs, .ctl, .djvu, .zip, .work,

.vmsd, .xls, .vmx, .xlsx, .vsdx, .vfd, .vbox, .rtf, .pvi, .pmf, .vdi, .tar, .rar, .pst, .php,

.ost, .mdb, .ova, .msg, .vmc, .vbs, .sln, .py, .ppt, .ovf, .hdd, .nrg, .kdbx, .fdb, .dwg, .h,

.eml, .doc, .ai, .back, .conf, .dbf, .docx, .gz, .mail, .ora, .pdf, .pptx

, .pyc, .sql, .xvd, .vcb, .vmdk, .vsv.

36

2.4.9 Cerber

Cerber is a ransomware infection that is used to encrypt the victims' files. This

ransomware was considered to be allegedly Locky's twin and creates the extension of

CERBER to every file that the ransomware encrypts. Cerber appeared in 2016 that

employed the AES encryption algorithm. This kind of ransomware earned for a mature

profit of $ 1 million to $ 2.5 million, and the ransomware author has reported receiving

40% of the ransom. This attack encouraged by the underground Russian forums that allow

everyone to buy Cerber, which makes ransomware attacks possible from anyone with

enough money to pay (Kara & Aydos, 2018).

 Cerber was distributed through Botnet, exploit kits, and email spam that contains

the word document attachment that looks like invoices. If the victim opens the attachment,

he/she will receive a message states that the document has the wrong coding. The victim

is interested in activating the Word macros that encoded VBScript and then execute it.

The VBScript downloads the payload of the Cerbe and enforces the computer talk to the

victim by reading a load message warning. The malicious code is delivered to the victim’s

machine, and the attack begins (Wyke & Ajjan, 2015).

There are some other new versions of Cerber that have avoided security solutions

by dividing the code into minor pieces of code. Without dropping the components onto a

physical disk, these small pieces were extracted and read in their own process. This gives

the advantage of not scanning the reader with an antivirus engine. This version has a

configuration file as JSON format representation. The configuration file offers the ability

to update itself easily, and improves the functionality of the Cerber. The encryption type

and the target files are dictated by this configuration file while executing its activities

(Kurniawan & Riadi, 2018). Cerber uses the following configuration files:

 Blacklist: states that Cerber needs to encrypt the identified folder and decides

which countries should be infected.

 Close_process: indicates which processes must be eliminated.

 Encrypt - keys: Cerber employed this file for encryption purposes.

 Help_files: identifies the type of a ransom note that will be shown to the victim.

 Self_deleting: decides whether the ransomware should delete itself after

execution.

 Whitelist: the number of the files extensions that are targeted by the ransomware.

37

 Unlike Pgpcoder, once the files are encrypted by the Cerber’s is not easy to break

the encryption key. There is no guarantee that victim’s files can be obtained back even if

the victim paid the required ransom to the attackers’ criminal for the intended limited

time.

Figure 2.11: Text file displayed by the Cerber ransom not.

The ransomware note is generated into several ways: as an audio message, as a

text file dropped into a folder containing the compromised data, the same file is used to

generate a screensaver and desktop wallpaper. The message is written that the victim’s

documents, photos and database files have been encrypted. To decrypt these files users,

need to download the Tor Browser and run it, then following the instruction provided by

the website as shown in Figure 2.11. Unlike other ransomware families, this variant

doubles the ransom bitcoins from 1.24 to 2.48 after seven days of non-payment (Adamov

& Carlsson, 2017).

2.4.10 RAA (JS / RANSOM-DLL)

RAA (JS / RANSOM-DLL) is a ransomware variant that is distributed via email

attachment. RAA is written entirely in JavaScript (a programming language). One of the

advantages of using JavaScript is that Windows does not display these extensions by

default. This kind of ransomware pretends like normal attachment that should display

"invoice.js", but the user can see only "invoice". RAA victims do not care about the

extension since it is not visible. RAA (JS / RANSOM-DLL) does not need to download

38

ransomware to the server. When the malicious payload is executed in the victim’s system,

RAA creates a fake word document under the %MyDocuments% folder. The name of the

malicious word document will have similar to doc_attached_CnIj4 and will automatically

pretend that the opened word attachment was corrupted. While the victim’s intention is

drifted, the attachment is corrupted, RAA Ransomware is executed in the

background, then begins to scan all the computer drives and decides if the victim has read

and writes access to them (Misini, 2018). As soon as the ransomware has infected the

victim it is ready to encrypt the data and demand a ransom. RAA does some steps:

 RAA (JS / RANSOM-DLL) launches a decoy file that contains a message which

is mainly used to distract attention. The ransomware makes a call to the server to

request an encryption key.

 The server provides an AES random encryption key as well as an identifier (public

key).

 As soon as the data is encrypted, the victim will have a message demanding to

pay the ransom so he can recover the corresponding AES key for decryption.

Figure 2.12: The Fake attachment of the RAA ransomware

The AES encryption key is not kept in memory by RAA (JS / RANSOM-DLL),

as soon as the encryption is finished, it is deleted, so only the server has a copy of the key

for decryption. Once the encryption is complete, there will be, as with other ransomware,

a procedure to explain how to recover the data. RAA (JS / RANSOM-DLL) also installs

39

a password thief (Misini, 2018). The codename for this virus is Troj / Fareit-AWR. It is

stored in the My Documents directory with the following name: st.exe.

2.4.11 WANNACRY

WannaCry is a crypto-ransomware worm that encrypts the user’s related files and

the hard drive to extort money. Then demands a ransom payment of $300-$600 in bitcoin

in order to decrypt them. WannaCry spread rapidly and become a huge global outbreak.

It infected a number of computer networks especially in a Windows computer. The

WannaCry is also known as Wannacrypt and Wcry as refers to its extension. May 15,

2017, this variant of ransomware has emerged, which is a kind of ransomware that targets

all kinds of files including PDF files, word documents, excel sheets, etc, and encrypts

them in the form of .wcry extension. Program files with the extension .cpp and its source

code is also encrypted by the Wannacry. The WannaCry causes crises across the world

and infecting vulnerable systems globally (Al-rimy et al., 2018).

WannaCry cyber-attack has been reported in 99 countries and over 75,000 attacks

have been carried out on machines running the Windows operating system (Chen &

Bridges, 2017). The most affected organizations are Telefonica, a Spanish broadband and

telecommunications provider, UK's National Health Service (NHS), FedEx, LATAM

Airlines and Deutsche Bahn.

Figure 2.13: Wannacry splash screen

40

Table 2.1: Ransomware Families

Family Year Encryption CC Infection Vector

REVETON 2012 No No Blackhole Exploit

kit

CRYPTLOCKER 2013 Symmetric AES Static Domain Spam Emails

TESLACRYPT 2015 Symmetric AES-

256 and CBC

Static and DGA

domain

Phishing and Spam

emails

LOCKY 2016 Symmetric AES DGA domain Spam

CRYPTOWALL 2014 Asymmetric RSA-

2048

Static Domain Spam and

Malvertising

CTBLOCKER 2015 Symmetric AES No contact Spam Emails

TORRENTLOCKER 2015 Symmetric AES Static Domain Spam Attachment

RAA 2016 Symmetric AES Static Domain Spam Emails

CERBER 2016 Symmetric AES Static Domain

and no contact

Spam and Fake

software

BART 2016 Symmetric AES No contact HTML attachments

PETYA 2016 Symmetric AES Static Domain Worm Fake

software

NOTPETYA 2017 Symmetric AES No contact to EternalBlue

WANNACRY 2017 Symmetric AES Static Domain EternalBlue

LOCKER 2017 Symmetric AES Static Domain Spam and

compromised

websites

BADRABBIT 2017 Symmetric AES No contact Compromised

websites

RYUK 2018 Symmetric AES No contact Directed attack to

business

KATYUSHA 2018 Asymmetric RSA-

2048

Static Domain EternalBlue

GANDCRAB 2018 Symmetric AES Static Domain Fake software crack

LOCKERGOGA 2019 Asymmetric RSA-

4096

No contact worms

The attack vector of the WannaCry compromise through TCP /445 (SMB), since

the ransomware uses a worm that lies in the Windows implementation of vulnerabilities

of the Server Message Block (SMB) protocol, it then attempts to exploit those systems

employing the EternalBlue exploit. If a machine is successfully exploited, WannaCry

gains access to the machine. To deploy the WannaCry into the exploited machine, it uses

a tool called DoublePulsar. This tool represents a backdoor for delivering the infection.

TOR client is implemented by the WannaCry to communicate with its CnC (Da-Yu et al.,

2019). To encrypt the user’s files, WannaCry follows the phases:

 WannaCry created a public/private RSA-2048 key pair representation.

 A public key is fixed wannacry payload; however, the private RSA key is not

intended to send the victim.

41

 A random AES key is created for each key on the victim system that needs to be

encrypted.

 Wannacry thus does not require to contact its Common & Control to encrypt files.

 The extension .wcry or wannacry for every encrypted files.

Microsoft has released a security patch that protected user’s machine against

these Eternalblue patches. A patch, distributed on time, could have saved the wannacry

epidemic. Unfortunately, several organizations and individuals do not often update

their operating systems that cause to be exposed to the attack. WannaCry attempts to

escape from the sandboxes by reaching a non-existent domain. When the ransomware

tries to contact to its CnC, sandboxes provide a false positive alarm and stop the malware

(Tailor & Patel, 2017).

2.5 Ransomware Payment Using Bitcoin

Ransom payment is vary depending on the type of the ransomware variant and the

worth digital currencies rates. Ransomware authors normally determine the ransom

payments in bitcoins (Morato, Berrueta, Magaña, & Izal, 2018). The amount of all

ransoms are of equal value. When the attack is not targeted and it targets a large number

of companies, the ransoms can be low, for amounts between 200 and 500 dollars, for

example. Conversely, if the hackers attempted to target a particular company, they would

not hesitate to demand a larger ransom amount, up to several tens of thousands of dollars.

The newly emerged ransomware families provide a liste of payment options such as

iTunes and Amazon gift card. As the researchers recommend that paying the ransom does

not guarantee that the victim will get back the decryption key to access to the infected

system or the encrypted files (Palisse et al., 2016).

The most popular cryptocurrencies are bitcoin. It is an electronic currency (there

are no notes or coins) invented by Satoshi Nakamoto in 2008. It has the particularity of

not depending on any central bank or central authority . Bitcoin is therefore decentralized;

its value is assessed by the supply and demand of websites that serve as trading places for

bitcoin. This means that each transfer is made directly between users without going

through a third-party authority.

The price of bitcoin is very volatile, for example if you have to pay 1 bitcoin (1

btc = 4,900 euros), the price of Bitcoin is continually fluctuating, in 2016 the value of the

one 1 BTC was $400. This rate was dramatically changed to $7,000 in February 2018.

42

Tomorrow a bitcoin could be worth more than 7,500 or 8,500 euros. It all depends on

supply and demand. Bitcoin transactions use asymmetric encryption.

There is a private key and a public key. The private key serves as a password and

is used to sign transaction messages. The public key is the account number of the user,

i.e. the wallet. Then an address is created from the public key, which itself is created from

the private key. Users can use a new address for each new payment. This allows the

transactions to be separated so that it is not possible to associate them. So, if someone

sends you bitcoins, they can't see your other addresses. Addresses cannot be associated.

For all these reasons bitcoin has become ubiquitous in the cybercrime world.

The financial transactions that are executed and completed are saved in a common

and transparent record, called the blockchain, that is widely accessible. The input

becomes transaction and a list of outputs, each number of Bitcoins transferred to an

explicit receiver’s address. A Bitcoin address is an alphanumeric string derived from the

public key of an asymmetric key pair generated by a Bitcoin user. Every user has many

addresses and key pairs representation in the wallet, this allow to rent a new address for

each transaction to add the level of anonymity (Corrigan, 2017).

Figure 2.14: Ransom not through Bitcoins

Bitcoin performs the same functions as traditional currency. It represents a unit of

account, and measures the usefulness of a good or service. It also facilitates trade; it can

be used, just like normal money, to buy goods and services. It can also serve as a store of

43

value, and therefore can be used to buy goods and services in the future. In this sense,

Bitcoin, which is the first currency without a bank, can be considered a currency.

However, there are differences between Bitcoin and a normal currency like a dollar. The

dollar is legal tender that is recognized by the governments, and persons or institutions

must be paid as hard letters of a dollar,when no one is forced to accept payment in Bitcoin.

Another disadvantage is that there is no guarantee that it will be accepted in the future.

 In addition, unlike the dollar for example, whose excessive fluctuations as shown

in the below Figure 2.15, upwards or downwards, can be regulated by the government,

Bitcoin is based on a decentralized system, that does not under the control of no authority,

it does not belong to a person, a government, or a company, and therefore its value

depends only on supply and demand, which may explain its high volatility. In addition,

in a centralized system, the use of normal money is framed by rules, which allows bank

customers to be reimbursed when someone fraudulently uses a bank card. In a

decentralized system, there is no legal recourse possible, even if users can take out

insurance in order to obtain compensation from specialized organizations, in the event of

problems (Paquet-Clouston, Haslhofer, & Dupont, 2019).

Figure 2.15: The amount of ransom demanded by the ransomware variants (Osterman

Reasearch).

Current ransomware uses cryptocurrency more precisely Bitcoin to pay ransoms.

But before using the cryptocurrency the ransomware requested to settle the ransom with

other payment methods. At the beginning the victims of ransomware could pay the

44

ransoms by sending an SMS via a code like for example those which one can use to pay

a TPG bus ticket. Victims could also pay the ransom to an electronic wallet such as

PayPal. Police authorities and security experts found a solution when changing the

regulations for electronic payments. Using electronic wallets has become less profitable

and much riskier for ransomware which displays their number decrease at that time. A

few years ago, the cryptocurrency began to become popular among individuals but also

among cybercriminals (Conti, Gangwal, & Ruj, 2018).

2.5.1 The technical aspects of bitcoin

One of the fundamental innovations of Bitcoin is that it relies on the network

"Peer-to-peer", a computer network where users are connected to each other via nodes

and on which they can exchange electronic money directly and free of charge, without

going through a third-party entity. Users can contribute to the power of the network by

putting the computing power of their computers to the benefit of the bitcoin network.

Another major invention specific to Bitcoin is that transactions are encrypted using

asymmetric cryptography, that is, by a public key / private key system (Conti et al., 2018).

The signatures of the bitcoin transactions all derive from the ECDSA public key,

one of the safest algorithms at present. The address of the public key is used to send

bitcoins while the private key is used to receive or pay for it. The third revolutionary

singularity alone, is the Blockchain. The "blockchain" is the underlying innovation

bitcoin, "a technology for storing and transmitting information at minimal cost, secure,

transparent and functioning without a central control body". More intuitively, a

"blockchain" is a distributed and secure database allowing any user of the protocol to

observe all of the transactions almost instantly and to be able to check the validity. By

analogy, a Blockchain can therefore be compared to a public ledger, anonymous and

falsifiable. This innovation solves the problem of double-spending, which is to say, that

a bitcoin can be used twice by the same person. In the traditional banking system that we

know, each bank keeps the database of all its clients individually and privately and other

economic players, such as regulatory institutions such as FINMA, do not have access to

this information (Paquet-Clouston et al., 2019).

Whereas with normal money it is possible to make counterfeit money, with

bitcoin, this problem is solved thanks to Blockchain. Since the first transaction, at 6:15

p.m. on January 3, 2009, there have never been any fake bitcoins in circulation. When a

45

transaction is sent over the Bitcoin network, it is randomly routed to one node, then

redirected to all other nodes on the network. The transactions are grouped in what are

called blocks. So that the protocol can verify transactions, "secure the network but also

allowing all users of the system to stay synchronized ", it takes computing power, and this

is called mining. Miners are certain members of the network who have requested to use

the computing power of their machines from the network. In addition to validating data

relating to the transactions which will form a block, minors must solve very complex

mathematical problems. The complexity of these problems varies constantly depending

on the number of miners connected. This is why the SHA-256 hash algorithm is an

integral part of the bitcoin protocol, in order to constantly adapt the difficulty of the

problem, which allows maintaining a validation time by block close to 10 minutes(Conti

et al., 2018).

In addition to the complexity of the problems, their resolution depends on a

random variable, which makes it possible to ensure that it is not always the same minor

which validates all the blocks. This is one of the essential points that secure the

Blockchain. When the problem is resolved by one of the users, it must provide proof that

it is the one who has the solution. This is called proof of work or proof of calculation.

The block validated by this minor is then temporarily inserted into the Blockchain,

so that other users can authenticate the proof of work. If the distributed consensus differs

according to the users, we can end up with two different block chains, and parallel. In a

case, the rule is that, all nodes on the network must keep the two chains and, however,

that one of the two chains are working. Very quickly, one of the two channels will take

precedence over the other. This is why it is said that it takes an hour on average before a

block is irreversibly confirmed, which is equivalent to waiting for five to six other blocks

to be integrated into the Blockchain (Conti et al., 2018).

Minors are paid in bitcoins specially created for block validation and according to

the computing power they bring to the network: this is a strong incentive to contribute to

the computing power of the protocol. To make the process fair, a random variable is

introduced in the protocol to validate a block. This is the only way to create new bitcoins

and therefore the only way to increase the money supply. As an anecdote, the reason they

are called "miners" refers to the gold diggers who increased the money supply as they

discovered it. Initially, in 2009, the remuneration was 50 bitcoins per block inserted in

the Blockchain. The rule is that the remuneration is halved every 210,000 blocks created,

and the process that takes approximately four years.

46

Today, miners touch 25 bitcoins per block and this Figure 2.15 will soon be halved

again because we soon reached 203,000 blocks. The mechanism is thus made that the

reward for mining bitcoins will decrease over time, and therefore, in the end, the bitcoin

money supply is predictable. We know that it will converge to 21 million bitcoins. Each

bitcoin is divisible up to 100 millionth. This is particularly interesting, because this

mechanism is known in advance and completely transparent (Pletinckx, Trap, & Doerr,

2018).

2.5.2 The advantages of using a digital currency

Cryptocurrencies are innovative, first of all for individuals, because they offer a

new form of money and payment. Take the case of bitcoin: bitcoin allows simplified

payments via a mobile phone. A credit card is no longer necessary, just scan the recipient's

QR code or put the two phones against each other to perform a value exchange, using

contactless technology (NFC). Second, security and control over money are greatly

enhanced. The cryptography used in the bitcoin protocol is made up of the most secure

algorithms currently available: ECDSA and SHA-256. As a result, no trusted third party

can puncture a user's account or impersonate their identity, or make payments on their

behalf: some possible fraud with the Current payment system are therefore avoided thanks

to bitcoin (Doguet, 2012).

Other innovation: it is a universal currency, usable worldwide and at all times.

There is no longer a need to have the same service provider, since it is interoperable. In

addition, since it has no physical existence, Bitcoin allows international transfers,

regardless of the amount, immediately: bitcoins can be transferred from one end of the

world to the other in less than one ten minutes and at almost zero cost. If service providers

like Western Union currently take a 10% commission on money transfers, bitcoin just

helps. Ultimately, bitcoin allows individuals to pay anonymously, in digital cash. As for

entrepreneurs, in addition to benefiting from all the advantages cited for individuals, they

no longer need to submit to PCI regulations, controlling and securing online payments,

which is now at their expensein the current system(Conti et al., 2018).

Bitcoin is also a new market, with customers looking to use their new currency.

Using bitcoins is also a way for entrepreneurs to stand out from the competition and gain

visibility. In addition, Bitcoin allows more transparency within a company, since, in its

protocol, transactions are only carried out after all the persons authorized to sign have

47

actually done so, thanks to the multi-signature function. And, finally, as said before,

thanks to Blockchain, the company's accounting is completely transparent and tamper-

proof, which makes it possible to gain the confidence of investors (Rogojanu & Badea,

2014).

2.6 Ransomware Infection Vectors

Ransomware creators use a range of different sophisticated techniques to spread

their malicious intents; in this section, we highlight the most prevalent ransomware

propagation methods depicted below:

2.6.1 Spam emails

Electronic mail (e-mail) is an important communication for millions of people

including governments, health care groups, institutions, and organizations. E-mail have

been widely used by many people in different purpose. At the same time, e-mail is one of

the growing and expensive problems associated with the internet today, in which case it

is spam. Spam is a term that usually refers to the unwanted, unsolicited messages that are

sent to a user's inbox. By obtaining such messages, the recipients are encountered to the

security threat that is exposed to illegal content. It has an attractive link to famous

websites, but it leads to websites that are disturbing (Dada et al., 2019). Spam Email is

also considered to be the carrier of malware to infect the victim’s machine. Spam mails

are widely classified into:

 Spam of adult content: this is common for the young group of ages to fall into this

flash trap for the content of products and services aimed at improving the sexual life

of adults.

 Health and medical spam: this kind of spam email is huge just for beauty purpose;

this is intended to promote the products for weight loss and skincare.

 Computer and internet spam: this spam is generally more dangerous than the

previous one, because it relates to the field of work that offers hardware and

software services with a familiar image to those who are active in a company with

offers for very under an IT department that makes it easy for users and companies

that are aware of the threat (Lee, Lee, & Hong, 2017).

48

 Financial spam: for extortion and financial purpose, this spam focuses on the

banking sector, insurance policies and low-interest loans (Grimes, Hough, &

Signorella, 2007).

The primary infection vectors for ransomware is through malicious spam emails,

where the victim is tricked (Da-Yu et al., 2019). Opening a phishing email is an

insufficient method to execute ransomware, but attackers still need users to download or

open malicious attachments that directly install the ransomware; another way of the

phishing email to deliver ransomware is to click on malicious links within phishing emails

that appear to be a legitimate email message, the 93% of phishing attacks is ransomware

purpose (Goel & Jain, 2018).

Figure 2.16: The distribution of spam emails in 2016 to 2018 (Dada et al., 2019).

2.6.2 Social engineering

 Social engineering is the art of manipulating, persuading, suggestion, and

deceiving people to gain access to a user’s computer. It is an easier method that plays into

human nature’s inclination to trust or to carry out actions that grant the ransomware

creators to access the victim’s machine (Gallegos-Segovia et al., 2017). Social

engineering attacks take place in one or more phases, as shown in Figure 2.17. First, the

attacker investigates the targeted victim to collect the necessary basic information, such

as potential access points and weak security protocols, that are needed to continue the

attack. The attacker then moves to obtain the trust of the victim and provide an incentive

49

for further actions that violate security practices, such as revealing sensitive information

or providing access to critical resources. The most commonly known model generated by

the Kevin Mitnick’s social engineering attack cycle described as (Mouton, Malan,

Leenen, & Venter, 2014):

I. Collecting information: is a process that involves the collection of victim

information to have a scoop of the attack and identification of the possible attack

vectors.

II. Trust: strives for creating a relationship between the attacker and the victim.

Usually, people tend to discover the information when they trust someone, which

will obtain critical information.

III. Exploitation: as soon as a victim trusts an attacker, the link is operated through

requests for information or develop specific actions. Moreover, the victim can be

manipulated to seek the help of an attacker.

IV. Reach /ending: results that obtained from the earlier phases are used to achieve

the goals of the attacker.

Figure 2.17: The Social Engineering Cycle Attack (Mouton et al., 2014)

For instance, the ransomware attacker needs to connect to the network of an

organization. The attacker discovers that a help desk employee knows the password for

the organization's wireless network. Moreover, the attacker obtained personal information

about the employee who has been recognized to be his target. The attacker starts a

conversation with the target using the information obtained to create a trust; in this case,

the ransomware attacker presents himself as an old-fashioned knowledge of the target.

The attacker then exploits the trust by requesting permission to use the corporate wireless

network to send an e-mail. The help desk is willing to provide the password to the

attacker, then the ransomware author has access to the organizational network and

achieves its goal (Gallegos-Segovia et al., 2017).

50

2.6.3 Exploit kits

 Another common method for spreading ransomware is a toolkit that automates

the exploitation of software vulnerabilities for distributing malware(Corrigan, 2017). An

exploitation kit is a malicious software tool that is created, sold and rented, and available

on the software industries and used by ransomware attackers to carry out drive-by-

download attacks. To evade detection, exploit kits are usually encrypted. Exploit kit is an

HTTP server-side application that depends on the returning page with a suitable set of

exploits and the request headers.

The main objective is to download and execute the malicious ransomware

payloads on the victim machine by utilizing the vulnerabilities of the browser (Kotov &

Massacci, 2013). Once a vulnerability is exploited, a traditional piece of ransomware is

loaded onto the victims’ computer. Most often, hackers inject malicious code on a website

that redirects the victim to a malicious site (Yaqoob et al., 2017) as shown in Figure 2.18.

The malicious webpage then returns an HTML document with exploits, which are

typically hidden in unseen JavaScript code.

 The exploit kit identifies vulnerabilities in browsers; if it is vulnerable, it can

leverage it to download ransomware and the victim gets infected. Some ransomware

variants such as wannaCry ransomware propagated through a dropper component named

as EternalBlue that identifies vulnerabilities in the Server Message Block (SMB)

protocol, which enables ransomware to drop binary onto all unpatched, vulnerable

windows machine (Yaqoob et al., 2017).

The increase of the exploit kits becomes more due to the ease of deployment and

the ease way that the ransomware causes the infections. Exploit kits can be deployed

easily, with no advanced exploitation knowledge required, and victims can be directed to

them through a malicious redirect or simply via a hyperlink.

 For instance, the normal user is misled to visit the malicious link provided by the

exploit kit authors that are redirected to the hosting site of the Blackhole. Then, many

exploit modules are loaded silently in the background. If the attach is executed

successfully, the ransomware payload is downloaded and runs silently in the background.

This kit is known to address various vulnerabilities in Adobe Acrobat, Internet Explorer,

Java, Adobe Flash, and Windows (Mansfield-Devine, 2013).

51

Figure 2.18: Exploit kit drive-by-download method (Kotov & Massacci, 2013).

2.6.4 Malvertising: Exploiting web advertising

Online advertising is an online malicious advertising method for distributing of

malware (Sood & Enbody, 2011) used by attackers to inject malicious advertisements

into trusted websites with many visitors. Since advertisements generate an important

portion of the income on the web, considerable efforts are made to attract users to the

advertisement pages. Malicious agents utilized this attraction and then redirect normal

users to infected sites that distribute ransomware. Often, when the user opens the website,

there is no need to click on the ad; loading malvertising page will connect to several

different URLs that lead to ransomware infection (Bhardwaj et al., 2016) as shown in

Figure 2.19. Dynamic delivery of ads is considered to be another approach of online

advertising that can be appointed by malicious agents. The content of this approach is

dynamically changes based on the characteristics of the user’s profile.

The malvertising can appear many popular websites because the attacker can

purchase ad space to install a harmful piece of code. This malicious advertising appears

like daily announcements as pop-ups such as fake browser updates, free tools, banner ads,

antivirus programs, etc. As a consequence, the malicious content can reach a very large

audience that trusted the website. In addition, the users may not identify that they come

across malicious content website while browsing reputable websites that puts them high

52

risk (Xing et al., 2015). Malware authors employ two main methods to infect the victim’s

computer:

1. The advertisement that displays a kind of disturbing appeal to make you click on

the advertisement. The request appears in the form of a "warning", such as a

warning that you are in the risk of malware infection. Or providing a free program.

These tactics utilize social engineering to persuade the user to click on a link (Sood

& Enbody, 2011).

2. Another popular method is drive-by-download employing an invisible web page

module to infect the user. Loading malvertising page that hosting the ad leads you

to an exploit landing page, which uses all your vulnerabilities in your browser or

your software protection to access your machine, and redirect several different

URLs that causes to ransomware infection.

Figure 2.19: The architecture of Mal-advertisement flow (Xing et al., 2015).

2.6.5 Dropper

Another common technique for ransomware is to send a JScript file (*.js) by E-

Mail victims encountering the web to execute a file. There are several ways to make

ransomware undetectable. One of them is the dropper. It is an algorithm that will not link

one program to another. In other terms there will be a dropper and a payload (the

ransomware). The dropper is responsible for initiating the installation of the ransomware

on the system as shown in Figure 2.20. It will separate the ransomware from the installer.

Simply, the dropper acts like a ransomware installer. The dropper activates when the

victim believes they are downloading or launching the file / program they received as an

53

attachment. The dropper sneaks into the ransomware installer without the victim's

knowledge. In other words, the dropper is a means of launching the attack, it is not in

itself a danger, but it allows to cross the security layers of a computer (Raunak &

Krishnan, 2017).

Figure 2.20: Ransomware infection vector using dropper installer

2.7 Ransomware Evasion Techniques

Malicious reverse engineering is the most common attack that aims to reverse or

analyze the program in order to understand the inner working of the program and

reconstruct it. Originally, this method is intended to protect the intellectual property of

software developers through copyright prohibit the direct privacy of software, but it has

been broadly used illegally by malware authors to evade the antivirus scanners (You &

Yim, 2010). To protect the software, there are several methods such as server-side

execution, native code, encryption and obfuscation, is the cheapest and simplest solution

of copyright problem.

2.7.1 Code injection technique

To evade the execution, ransomware injects the legitimate programs through

hooking technique. To achieve this, the malicious program has to be able to access the

space memory of the victim application. To do this, the malware must have administrator

rights or be able to acquire the necessary rights. Indeed, the manipulation of some of the

APIs which allow injecting code is restricted. Code injection allows ransomware to

execute in the context of a legitimate application, making it easier to evade detection

(Francillon & Castelluccia, 2008). Injecting malicious code into a process legitimate can

be achieved by different techniques, for example:

 Injection of a dynamic library; “Dll injection”,

 Adding code directly into the memory space of a process; “Direct injection”.

Malicious

Email Dropper Payload Ransomware

54

The first method is to force the loading of the malicious library via the execution

of an attacker-controlled thread in the victim process as shown in Figure 2.21. For this,

the CreateRemoteThread function is generally used. Once the malicious library is loaded,

the system hands over to its entry point, the Dll main function, which can then trigger

malicious behaviour.

The second method is used to inject compiled code (i.e., as before) or "shellcode",

that is to say mainly the assembler as a string character. To do this, it is necessary to

allocate memory in the victim process and then write to the desired address. The

VirtualAllocEx and WriteProcessMemory functions are then used. Once the code is in

place, the CreateRemoteThread function is called at the base address chosen to trigger the

malicious behavior. This method is more complex to set up, and can affect the stability

of legitimate code. The context in which the malicious code is executed is particular, the

resolution of strings, but also of functions imported must be managed specifically.

Figure 2.21: DLL Injection

Windows functionality can also be abused by malware to inject itself into a

program. This is the "AppInit DLLs" technique. In fact, two registry keys specify the

dynamic libraries that are loaded by user32.dll when this the latter is loaded by a process.

In practice, a large number of programs use this library. Changing registry keys therefore

allows ransomware under the form of a dynamic library to execute in the context of user

programs that use user32.dll, and this in a persistent manner (Jiang, Wangz, Xu, & Wang,

2007).

55

2.7.2 Obfuscation technique

Another technique is "obfuscation". That is to say making the source code

incomprehensible to humans or to a decompile. An Obfuscation is the process of

application transformation that makes the program harder to understand through changing

the physical appearance (Arini and Chloe, 2005). Code obfuscation techniques are

exploited by polymorphic and metamorphic viruses to conceal their behavior from

antivirus scanners. Obfuscation is common widely used by malware writers to avoid

specific signature detection scanners through conversion of the program into a new

different version. These include dead-code insertion, adding no-op instructions,

unnecessary jumps and subroutine reordering (You & Yim, 2010). The most common

obfuscation techniques divided into following main parties: Dead-code-insertion,

Register Renaming and Code transportation.

 Dead-code insertion is the simplest technique that inserts useless codes and some

ineffective instructions or a bunch of nops to a program in order to modify its

physical appearance, but keep its behavior. NOP is equivalent to the (No

Operation) instruction that is either not executed or has no effect on program

outcomes but increases the size of the code. However, this technique is defeated

by the signature-based antivirus scanners by deleting the ineffective instructions

prior to analysis (Lynn, Prabhakaran, & Sahai, 2004).

 Instruction Substitution reordering and the substitution of instruction, during a

set of instructions with corresponding instruction or set of instructions in a random

fashion. This is achieved through creating of labels for each reorder and then

employing conditional jump instructions to skip the control flow to the labels

(Wing and Mark, 2006). Due to the change and reordering of the opcode sequence,

this obfuscation technique is well-identified for bypassing the signature detection

method, because it does not initiate too many jump instructions (Collberg,

Thomborson, & Low, 2003).

 Register reassignment also known Register Renaming is another simple

technique that replaces either the name of the variables or registers from used

instruction with another unused instruction while keeping the behavior and

program code. In contrast to other obfuscation techniques, subroutine permutation

can be simply detected through signature detection, as the signature still exists in

apparent view.

56

 Subroutine permutation is a simple obfuscation technique whereby the order of

subroutines appears in the code is changed. In this type of code obfuscation will

not affect the impact and functionality of the virus as the order in which a

subroutine appears in the program is totally unrelated and does not affect the

running and execution of the program.

In addition, transforming the code makes it possible to hide signatures or

suspicious behavior. As a result, this allows you to get through certain levels of antivirus

protection. But there are also other reasons to use "obfuscation". One of them is that the

financial cost for such a movement is low. Especially since it is easy to set up for someone

who has a minimum of experience. By the way, "obfuscation" is also used in the context

of intellectual property security. This technique allows reverse engineering (a technique

to reconstruct source code from its compiled form) (Collberg et al., 2003).

2.8 Ransomware Analysis

 In recent years, ransomware writers transmitted their malicious executable files

in encrypted form to avoid identifying by anti-virus software. To investigate the

behaviour of the malicious files, ransomware analysis is necessary to get in depth

understanding and learning behaviour of malicious code and how a specific piece of

ransomware functions; it is a prerequisite subject and premise step of effective detection

techniques. Malware analysis is useful for many purposes such as computer security

incident management for organization’s response team to react to the situation whereby

the potentially malicious files are discovered, and the Indicator of computer (IOC)

extraction for the software solution companies. The purpose of ransomware analysis is to

get knowledge about the capability of ransomware, the structure techniques, and anti-

reverse techniques to hide it is self, and also the level of similarity to other malware

samples (Zhang et al., 2019).

Generally, there are two main types of ransomware analysis techniques: static

method and dynamic method (Gandotra, Bansal, & Sofat, 2014). There is no need to

execute the ransomware samples during the static method, its analysis the characteristics

of sample code, whereas dynamic analysis determines the behaviour of ransomware

through execution. In this section, we will discuss static code analysis techniques and

57

dynamic analysis, because both provide complementary information about the

ransomware.

2.8.1 Static analysis technique

Static Malware Analysis (SMA) is the basic malware analysis method that

analyses a program’s code without actually executing it. It provides information about

data flow; programs control and other statistical features without executing the program

(Al-rimy et al., 2018). It also offers the actual view of code and identification of malware

files like compile dates, packers and functions used by the program. It includes many

SMA methods: Basic Information Analysis, portable executable (PE) File Structure

Analysis and Control Flow Analysis etc. (Liu, Ren, Liu, & Duan, 2011). Techniques are

used to simulate the exploration of the program's control flow such as disassemblers,

decompilers (i.e. IDA Pro) or even analyzing the source code. To prevent the malware

analysis and detection, malwares adopt avoidance techniques and measures such as:

polymorphism, shell code, and metamorphism, which make it harder to analysis malware.

This signature-based detection method is hampered by the avoidance techniques

that ransomware employs such as obfuscation and/or packing. Such an approach is

unreliable for detecting to the new ransomware, as it suffers several shortcomings such

as frequently updated signature repository, and the need for expert intervention to

analyses and extract attack signatures. Static analysis is therefore not retained because it

is complex to implement in practice (e.g., computing power, time) (Zhang et al., 2019).

2.8.2 Dynamic analysis technique

In contrast to the static analysis, dynamic analysis requires the execution of the

program and observing the actual action performed; it executes in a real or a virtual

machine environment, the purpose of dynamic malware analysis is to provide insight the

action performed by given malware, mostly without manual reverse engineering. The

advantage of dynamic analysis is immune to the impact of obfuscation attempts and has

no difficulty with self-modifying programs in execution stage (Hampton et al., 2018).

The environment in which the malicious file is executed is controlled to ensure

not to affect the real system. These are complementary, the joint use of the two techniques

is called hybrid analysis. In this thesis, we prefer to use dynamic analysis, for the simple

reason that we are interested in the behavior of ransomware on the file system. It is much

easier to observe their behaviors, i.e. their effects on the system, and thus to develop a

58

countermeasure in this context. Many techniques can be used (e.g., encryption,

obfuscation) and for the most part are current affairs issues difficult to deal with. There

are two very important results:

 It is impossible to design a program that precisely detects all malicious

programs.

 It is impossible to determine whether a program is a virus or not.

Because the problem is undecidable, so false positives and negatives are

inevitable. In other words, there is no perfect detector and there is no algorithm that can

tell exactly whether a program is malware or not. Behavior-based Malware Analysis is

the most important method of dynamic analysis; it traces the behavior of a given malware

in a quite accurate way. It also allows the analyst to know the exactly what actions the

malware is performing like modification of registry, accessed virtual memory, created

processes and created or Modified files (Liu et al., 2011).

A dynamic analysis take place in a realistic environment for the malware, so that

it can run normally. Attackers aware that binaries are being actively analyzed, then they

are developing defense mechanisms. In fact, they are trying to determine if they are

running in an analysis environment, the activity and content of which are simulated, for

example. Many artifacts are used to detect dummy environments (e.g., mouse movement).

Analysis environments are called “sandboxes” or “sandboxes” and use different

technologies. In addition, these are accompanied by monitoring tools, that is,

introspection, to observe the effect of the code on the system. The sandbox as a whole

must be as transparent as possible, that is to say indistinguishable from a conventional

user environment (Kara & Aydos, 2018).

2.8.3 Virtualization

In order to conduct dynamic analysis and to reduce the impact and damage of

ransomware execution on a real operating system, the virtual machine is important. A

virtual machine (VM) is a software realization of a computing environment where by one

or more different operating (OS) or program can be used to install and execute.

Virtualization is the process of creating a software (or virtual) version of a physical

entity". We then use the guest term to designate the virtualized system and the hosting

term for the system that performs virtualization using the “virtual machine monitor”

59

(VMM) (Greamo & Ghosh, 2011). Generally, it is usually much less expensive to deploy

a virtualized lab, than deploying one-to-one physical systems for all the same reasons

large organizations have been doing so in their data centers. The most important reason

researchers employ the use of VME’s the ability to restore virtual machines to their

original form in mere minutes is essential.

The virtual machine normally imitates a real computing environment, but needs

for memory, hard disk, CPU, networked system and other hardware resources are

controlled and managed by a virtualization layer that interprets these requests to the

underlying physical hardware. We distinguish two types of virtualization:

1. Host virtualization, virtual machine and

2. Native virtualization, hypervisor.

 In the first case, a host operating system is required. For the second, the hardware

and the VMM manage the guest without a host operating system. The virtualized system

must share the same hardware architecture as the host for (1) and (2), since most of the

instructions are executed on the hardware. Emulation instead executes all instructions in

software. Introspection is therefore easy. In addition, the guest does not have to share the

same architecture as the host. Artifacts are inherent in virtualization and emulation, which

makes solutions based on these approaches easily detectable. Many solutions exist for

each of the approaches presented. This means that the victim machine seems likely to an

attacker. For example, though, the files and directories present, the applications installed,

etc.

The use of bare machines as a ransomware analysis platform has an advantage and

such as: the total absence of virtualization or emulation. Therefore, using this bare

machine as a platform is optimal transparency. Introspection, on the other hand, is more

complicated to set up and has an impact on transparency (Hoopes, 2009).

Usually, guest operating systems and other programs are not known that they are

executing or running on a virtual platform and, on condition that the VM's virtual platform

is supported. In this case, the impact of ransomware execution has only affected the virtual

PC and not the real one.

After completion of dynamic analysis, the infected virtual machine is discarded

and installed by a clean one, because the installation of the new virtual machine is faster

and easier than installing a real operating system on the computer. However, the general

problem of VM is that Smart executable file may determine that it is running in a

60

virtualized machine and modify its behaviour in order bypass to real PC (Al-rimy et al.,

2018).

2.8.3.1 Virtual Box

Virtual Box is a free powerful x86 hardware virtualization product for Oracle. It

is actively developed with frequent with extremely feature rich, high performance product

for users such as snapshot which is the ability to save a machine state and later revert to

it if anything goes wrong with the machine of the current state. It is also the only

professional virtualization solution that is free and downloadable as Open Source

Software under the terms of the GNU General Public License (GPL) (Gupta & Kumar,

2015).

Virtual box has important features which are the portability and compatibility

means virtual Box can run on a large number of different 32-bit and 64-bit host operating

systems versions such as Windows hosts machine host and Linux as well. The second

feature is no hardware virtualization is needed. For example, virtual Box does not involve

the processor features built into newer hardware like Intel VT-x or AMD-V. Unlike other

virtualization solutions, Virtual Box even can be used on older hardware where these

features are not at hand (Zavarsky & Lindskog, 2016).

 Figure2.22. Running multiple operating systems simultaneously.

61

 The above screenshot describes how VirtualBox can be installed on a Mac

computer and running multiple OS like Windows 7 in a virtual machine window. It is

also providing users to execute more than one operating system in their computer

simultaneously. This way, you can run software developed for one operating system on

another written other operating system (for example, Windows software on Linux or a

Mac) without necessary to reboot to use it (Chen & Bridges, 2017).

2.8.3.2 VMware Player

VMware Player is another free virtualization software that supports x86

virtualization. This product has the properties like Fidelity, Performance, Safety and

Isolation, the most important types are VMware Player and VMware Server are both

available for free download from the VMware site. It has a good out-of-the box support

for seamless integration with the host operating system. The virtual machine will typically

appear to run in a window on the local host, but it is not real machine (Player, 2010).

2.8.3.3 QEMU

Qemu -short for Quick Emulator- is an open-source emulation environment

capable of running another operating system in a window. Qemu creates a virtual machine

similar to the VMWare and VirtualBox. It is one of the isolated environments preferred

by sandboxes (Yao & Wang, 2013). The memory resources of the native machine are

divided between the host OS and the virtual machine means the guest OS. Some features

of the Qemu environment itself are used for analysis system analysis by malicious

software. Qemu emulation media do not have detection methods as much as virtualization

environments. Among the features used for analysis system detection (Greamo & Ghosh,

2011).

2.8.4 Sandbox environments

A sandbox is a computer security term that designates a mechanism used to

improve the security of software and web pages. The rapid increase in the number of

malicious software also increased the need to prevent and examine malware. For this

reason, the importance of the sandboxes, which speed up and facilitate the analysis of

malware, has also increased and the number of sandboxes has increased. For an operating

62

system, it reduces the risks when running software. This term refers to the environment

that allows testing software or websites (Hoopes, 2009).

The suspicious file is run by sending it to an isolated environment. All operations

performed in user mode such as file, registry and network activities are tracked with

analysis tools and recorded. These recorded transactions are reported by the sandboxes

when the analysis process or the determined time of the sandboxes is over. In

cybersecurity, sandboxes are used for advanced malware detection: it is an additional

layer of protection against new security threats, including zero-day viruses and stealth

attacks. What happens in the sandbox stays in the sandbox, which prevents system crashes

and prevents software vulnerabilities from spreading.

The environments created by Sandboxes provide a proactive layer of network

security protection against new advanced and persistent threats (APT). APTs are targeted

attacks, tailor-made and often aimed at compromising organizations and stealing data.

They are designed to evade detection and often go under the radar of simpler detection

methods (Greamo & Ghosh, 2011). Today there are many sandboxes. In this study, a

sandbox that are accessible to everyone are used free of charge. The sandbox used are

described below.

2.8.4.1 Cuckoo sandbox

The analysis of malicious samples is carried out in Cuckoo Sandbox; the

suspicious file is run on the isolated virtual or physical machine. The basic infrastructure

of a cuckoo sandbox consists of one main machine and one or more isolated guest

machines. The host machine sends the suspect file and analysis tools to the isolated

environment. Then it runs the file and starts the analysis. While the analysis is taking

place, the host also records the network traffic generated by the file.

The activities performed by the ransomware files in an isolated environment are

tracked here, and when the analysis is completed, the results are sent to the main machine

and reported. Cuckoo Sandbox performs analysis of Windows, Linux and Android

operating system files and supports VirtualBox, VMware and KVM virtualization

environments (Oktavianto & Muhardianto, 2013). Cuckoo sandbox monitors operations

in user mode and generates analysis results accordingly. In this research, we applied the

Cuckoo Sandbox for analyzing the ransomware sample to obtain the exact malicious

behavior as we will discuss in section 3.

63

2.8.4.2 Anubis sandbox

Anubis sandbox is the automated malware analysis tool that uses isolated or-fully

Qemu, and performs full system analysis. The operating system uses Windows XP SP2.

Qemu is preferred because it has full access to the Qemu emulation environment and the

basic virtual machine detection traces are not found in this environment. Within four

minutes, it automatically performs and reports suspicious file analysis completely.

Anubis generates a detailed analysis report by tracking the system calls, Windows

API functions, file and registry processes and network traffic in malware analysis. It can

present the analysis report in HTML, XML, PDF and Text formats. Anubis sandbox is

not affected by the complexation, debugging and packaging methods that may occur

during the operation of the suspicious file by performing dynamic code analysis (Greamo

& Ghosh, 2011).

Figure 2.23: Anubis Sandbox Environment

2.8.4.3 Comodo automated analysis system

Comodo sandbox is a malware analysis environment that automatically analyzes

the malicious files in fully isolated environments. Windows executable files are analyzed

in a controlled environment. The outputs of the Comodo sandbox analysis is a report

64

containing the actual activities performed by the malicious file and makes inferences

about whether the file is harmful or not.

The Comodo sandbox also has a special feature such as the ability to show

applications running in a virtualized environment from the main machine during analysis

operations. Using VMware virtualization environment, Comodo keeps track of

transactions in user mode (Kunwar & Sharma, 2016).

2.9 Ransomware Detection Methods

Ransomware is the most serious threat in today’s computing world. It continues

to increase in huge volumes and to get out of control. It exposes various threats to the

users such as stealing their sensitive information and breaking the computer system. A

countermeasure of this threat is very important, and many researchers proposed a range

of different malware-detection techniques. The ransomware detection techniques means

any mechanism that provides the detection of any form of ransomware that threatens to

the computer(Brewer, 2016). These techniques can be broadly classified into two

categories: approach-based detection and technique-based detection.

Approach-signature-based detection uses its characterization of the knowledge to

decide the maliciousness of a program, which means it extracts the byte code patterns of

each malware and compares these patterns with byte code of a program under its

repositories. However, this method cannot detect new (unknown) ransomware whose

signature has not been found or generated yet.

On the other hand, approach-anomaly-based detection uses its knowledge of what

considered normal behaviour to decide the maliciousness of a program under inspection.

Hence this approach has benefits over signature based, because it detects any behaviour

that violates the norm, and has the ability to identify new malware. Since the malware

writers are familiarizing the detection mechanisms and evading detection methods

through modifying their malware shapes like avoidance techniques that we discussed

before(Saeed, Selamat, & Abuagoub, 2013).

Every technique has three subclasses; static approach determines the malicious of

file based on structural information without execution of program. Although this

approach has a drawback of not detecting obfuscated malware, but it is very fast approach.

The dynamic approach has the ability to detect the malicious file during and after

execution (Liu et al., 2011).

65

 The third approach which is Hybrid is the combination of the best properties of

both static and dynamic detection. The different class and sub-class of malware detection

are showed in Figure 2.24.

We have generalized the ransomware detection techniques in Figure 2.24. in the

remainder of this section, we focus on the ransomware-detection method on every

approach ransomware detection and anomaly-based. Furthermore, we will do deeply to

machine learning classification algorithms.

Figure 2.24: Ransomware detection and their subclasses.

2.9.1 Signature-based detection

Signature Based Detection is also known as a static approach, is considered to be

the oldest technique, but associated with most popular virus detection techniques used

today. This approach mainly used by antivirus companies; it is based on a signature

database (fingerprints) that characterize the activity of each malware. The detection

involves looking for known elements or patterns of attacks listed in the malware signature

database. Most commercial antivirus scanners employ signatures which are normally a

sequence of bytes within the malware code. Each virus has a unique string of bytes which

becomes the signature of the virus. The fact of this technique becomes efficient is that

comparing these unique strings with repository one, if matches found that file will

consider malicious (Gandotra et al., 2014).

This technique can be either static or behavioural, depending on the nature of the

malware signatures on which it is based. The static signature-based detection approach

relies on structural properties of the program (for example, byte sequences or hash

functions), while a dynamic approach will rely on information from execution (for

example the systems seen on the execution stack) of the program. Typically, a static

Ransomware Detection

Approaches Techniques

Behavioral-based Signature-based Anomaly File-based

Event-based ML-based

66

approach attempts to detect malware before the monitored program runs. On the other

hand, a dynamic approach tries to detect malicious behaviour during or after the execution

of the program.

The combined two approaches are called hybrid techniques, in which case static

and dynamic information is used to detect malware(Kunwar & Sharma, 2016). The goal

is to take advantage of the supposedly superior fidelity of dynamic analysis in the training

phase, while maintaining the efficiency advantage of static detection in the scoring phase.

Figure 2.25: Signature-based Detection approach

 The performance and accuracy of this technique is totally measured on the

signature found in the database of the system. Signature-based detection systems cannot

identify an unseen virus since the database will not have any detailed information about

the unknown virus. Thus, the main condition of the system is to have an updated database

of all the previous signature files of malware. However, previous researches have shown

that signature-based detection is vulnerable to avoidance methods such as obfuscation

techniques, for example, polymorphism and metamorphism(Saeed et al., 2013).

2.9.2 Behavioral-based detection

Behaviour-based detection techniques aim to reduce the rate of false positives

generated during the monitoring phase of the system to be protected. During the learning

phase, a behaviour-based detector is provided with a set of rules that specify all the

acceptable behaviours of any application that may arise within the system to be protected.

The major drawback of behaviour-based detection is the difficulty of determining the set

of security behaviours that a program can exhibit during its execution within the system

to be protected(Liu et al., 2011).

67

Rabek et al. (2003) present a method for detecting hidden malware that can be

injected and generated dynamically at runtime. The detector uses a static analysis

technique to obtain details of all relevant system calls embedded in the code, such as

function names, addresses, and the instruction address followed by each system call. The

detector maintains a record of return addresses for system calls in the code. Then, when

a suspicious program is executed, the detector monitors the behavior of the executable

and ensures that all calls to the system services during execution are the same as those

recorded in the first step. The authors concluded based on a proof of concept study that

their technique ensures that any injected and generated malicious code can be detected

when it makes unexpected system calls. A major drawback of this technique is when

inserting certain irrelevant API calls into malicious code, the detector may fail to match

the new malicious behavior with the behavior already recorded (Rabek, Khazan,

Lewandowski, & Cunningham, 2003).

Research by Wang and Karri (2013) presents the NumChecker tool, a new virtual

machine monitor (VMM) founded to detect the flow of modification control of kernel

rootkits in the host virtual machine (VM). NumChecker detects malicious changes to a

system call in the VM guest by checking the number of certain hardware events that occur

during the execution of the system call. To automatically count these events,

NumChecker relies on hardware performance counters which are mainly the total number

of instructions, branches, returns and floating-point operations. By using these

parameters, the verification cost is considerably reduced and the protection is reinforced.

In their study, the rootkits used are SuckIT which replaces the system call table

with its own copy and it uses it for redirecting to malicious system calls. Another rootkit

used is Adore-ng which manipulates function pointers at the VFS layer for redirecting the

execution flow of malicious routines which hide information by filtering system data. A

deviation rate of 5% is set as the value above which a system call is considered to be

modified (X. Wang & Karri, 2013).

2.9.3 Anomaly-based detection

The other method is anomaly-based detection systems that is designed to examine

the processes going on a host machine for any variation for normal activity. If any

68

abnormal activity is monitored, the system raises an alarm indication the possible

occurrence of malware. This approach has two phases; a learning phase and a detection

phase. The first phase consists of creating, automatically or manually, a profile for the

monitored program (a normal model). It does not matter how the profile is created as long

as the profile precisely defines the characteristics of the program being monitored. Then,

in the detection phase, if a behavior deviates too much from the saved profile, the system

generates an alarm indicating that the program activity is malicious (Gandotra et al.,

2014). In this detection technique, the system attempts to learn normal behavior and

employ the collected heuristics in order to classify an activity as normal or malicious.

The main advantage of anomaly-based detection over signature based is its ability

to detect zero-day attacks, by defining the expected normal behavior, any anomaly can be

detected, whether it’s part of a known attack or not, means it is more reliable and has the

capable of detecting new viruses. However, the possibility of false alarm occurs relatively

higher in this mechanism, because the normal behavior can change over time, although

raising a false alarm is not as a potential problem as allowing a new virus. However, these

systems need to have trained regularly by intruders to examine abnormal behavior as

normal. Thus, the system will fail to identify the abnormal activity from normal behavior

(Morato et al., 2018).

The most important of dynamic analysis is Behavior-based Malware Detection

(BMD) method which utilizes the behavior information of the malware during its

execution in a virtual machine such as one provided by VMware is a popular choice of

the detection basis. This method can eliminate the reliance on the feature of the malware

file itself. Because the behavior of malware is more unique than that of malware feature,

for example, a malware can generate a new variation with different feature through shell

code, Polymorphism and Metamorphism, but its behavior is still the same as the original

one (Liu et al., 2011).

2.9.4 Event-based detection

Event-based detection approaches are intended for specific events that occurred

and identified as compromised indicators for detecting the ransomware attacks. This

technique finds the specific attributes and events necessary to identify variants of

ransomware. Most event-based detection approaches do not need to create or maintain

signatures to detect malicious files.

69

This approach usually detects an event when it is happening in the program under

test or in the host system where the program will be executed. This method identifies

unusual events, or unusual sequences of events, that occurred on the computing device.

For an example, accessing the user’s critical information on the hard disk, a server, event

logs or the number of events that are less than a threshold number of events can be used

to identify an unusual event or an unusual sequence of events. Ahmadian et al. (2015)

proposed monitoring C&C communications to depict any encryption key, DGA needs

additional data exchanged between the malicious code and its remote C&C server, to

distinguish ransomware before it begins its essential functionality(Ahmadian et al., 2015).

Likewise, Heldroid, suggested by Andronio et al. (2015), employs the automated dynamic

method to determine the procedure of obtaining the threatening text from the C&C server

in the case where such text is not entrenched in the payload of the crypto-ransomware

(Nicoló Andronio et al., 2015). similarly, Le Guernic and Legay (2017) suggested a

technique that monitors Microsoft’s cryptographic APIs that several variants of malicious

executable employs as indicators of ransomware attacks to avoid it from locking the

victims’ files (Palisse et al., 2016).

2.9.5 File-based detection

This technique is considered to be one of the most effective techniques for

detecting ransomware. This approach detection is to monitor the resources subject to

attack instead of the malicious process that carries out the attack. File-based detection is

created according to the frequently examining the user-related files and documents to

monitor any malicious changes. To do this, many techniques are used, such as entropy

and similarity measurements. Based on the changes made by the cryptography causes to

the targeted file, it is measured the entropy before and after the encryption.

 This method mainly consists of verifying whether certain regions of the file and

memory system are identical to a trust base containing known values of these regions.

The regions that need to be analyzed are most likely to be changed such as sections of file

changes (Tang, Sethumadhavan, & Stolfo, 2014) .

Many studies have been conducted, network and file integrity monitor called

tripwire were presented by Ben22 when critical system files are modified, it gives an

alarm to the administrator. These monitors are based on witness files and simple hash

comparisons, the LanmanServer operation is denied if the witness files are altered.

70

However, this approach cannot guarantee the changed witness files are modified by a

malicious program or a normal user.

An alternative method presented HelDroid, an automated approach that classifies

known and unknown mobile ransomware and scareware using a machine-learning

method. Their approach is based on detecting threatening text associated with a ransom

note and the “building blocks” that are typically needed to implement a mobile

ransomware application (Nicoló Andronio et al., 2015).

2.10 Machine Learning-based Detection

Recently, classification algorithms have been used to automate and extend the idea

of behavioral methods. In these methods, the binary code of a file or the behavior of the

running application is represented and classifiers are used to learn patterns in order to

classify new (unknown) applications as malicious. In this section, we will deeply examine

the ransomware detection using machine learning;therefore, it is use full to understand

the concept of machine learning such as file representation, feature selection and

classification algorithms.

Machine Learning is an important field of Artificial Intelligence, which aims to

imitate the intelligent abilities of humans by machines through recognition. It has

algorithms that allow computers to reason and make decisions based on input data

(Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012).

Generally, Machine learning (ML) is typically classified into two separate areas,

supervised ML and unsupervised ML. Supervised machine learning is a method that

attempts to find out the relationship between input attributes (also known field,

independent variables, feature) and a target attribute (sometimes referred to as a

dependent variable). ML is also evolved to as classification in the statistics literature;

unsupervised learning is referred to as clustering where instances are unlabelled. Both

types of machine learning are concerned with the analysis of datasets containing

multivariate observations(Zhang et al., 2019).

This research will focus on supervised and semi- supervised machine learning. In

supervised approach is where algorithm (classier) attempts to map inputs to desired

outputs using a specific function. In classification problems a classifier needs to learn

several features (variables or inputs) to predict an output (response).

Supervised methods can be implemented in a variety of domains and applications

such as marketing, finance and manufacturing, disease diagnosis and face recognition,

71

but in this research, we will employ machine learning to identify unseen files either

benign or malicious. Before we go deeply into the supervised machine learning

algorithms, we will briefly discuss the types of machine learning.

2.10.1 Supervised learning

The formulation of the problem of supervised learning is simple: we have a finite

number of examples of a task to be performed, in the form of pairs (input, desired output).

We want to obtain, automatically, a system able to find relatively reliably the output

corresponding to any new entry which could be presented to him. Supervised learning

creates knowledge structures which have the task of classifying new instances into

predefined classes(Bishop, 2006).

2.10.1.1 Regression

In regression problems, the entry is not associated with a class, but in the general

case, with one or more real values (a vector). For example, for a biochemistry experiment,

one might want to predict the reaction rate of an organism based on the levels of different

substances administered to it (Segal, 2004).

2.10.1.2 Time series

In time series problems, it is typically a question of predicting the future values of

a certain amount knowing its past values as well as other information, for example, the

performance of a stock market share. An important difference between regression or

classification problems is that the data typically follow a non-stationary distribution

(Bishop, 2006).

2.10.1.3 Classification

In classification problems, the entry corresponds to an instance of a class, and the

associated output indicates the class. For example, for a face recognition problem, the

entry would be a bitmap image of a person as provided by a camera, and the output would

indicate which person it is among the set of people we want the system to recognize (Dada

et al., 2019). Detecting malware using this approach is accomplished in two phases:

 The training phase: A detection system must be formed with input data in order

to capture the characteristics of interest;

72

 The detection phase: In this phase, the trained detector makes intelligent

decisions on new samples based on training data.

 In addition, there are two methods deployed in the training phase:

 The first method uses two categories of data, namely normal and abnormal data;

 The second method uses only one category of data. In this case, malware detectors

are trained with only one class (normal or abnormal).

This means that the system will be formed only with normal system activity,

which allows it to identify the presence of abnormal activity (Alzarooni, 2012). Various

machine learning approaches such as association rules, support vector machine, decision

trees, random forest, naïve-Bayes and clustering have been proposed for the detection and

classification of malware. The classification is applied to unknown samples in the family

of known malware or also underlines the samples that exhibit invisible behaviour for

detailed analysis. There are generally three types of problems to which supervised

learning is applied.

A. Training Phase

In the machine learning algorithms to identify unknown malicious files, it needs

to have datasets composed of several characteristic features of both malicious and benign

software. Combining with learning algorithms it will generate classifiers. The General

process of classifying previous unseen files as either malicious or benign using ML

methods is separated into two succeeding phases: training, and testing phases. The

training phase is the learning phase which is supplied with a collection of sample or

instances (called the training dataset) which is pre-classified into classes.

The result of the learning process is a classification model which is constructed

by examining and generalizing the data provided. In fact, supervised learning focuses on

modelling the input/output relationships. Its objective is to identify a correspondence

from the characteristics of entry to an exiting class. The acquired knowledge can be

presented in the form of a flowchart, a decision tree, classification rules which can be

used later to classify a new invisible instance. Then, each file is parsed; represent the

documents as vectors and each file is extracted based on the predetermined vocabulary

(Anderson, Kharkar, Filar, & Roth, 2017). The representative vectors of the files in the

training set and the real classification of each file (benign/ malicious) serve as input for a

training algorithm. Figure 2.26. Show the process of the training phase.

73

To put it simply, we train an algorithm and at the end pick the model that best

predicts some well-defined output based on the input data. Supervised techniques adapt

the model to reproduce outputs known from a training set. In the beginning, the system

receives input data as well as output data. Its task is to create appropriate rules that map

the input to the output. The training process should continue until the level of performance

is high enough. After training, the system should be able to assign output objects which

it has not seen during the training phase. In most cases, this process is really fast and

accurate (Dada et al., 2019).

Figure2.26: The process of training phase (Shabtai, Moskovitch, Elovici, & Glezer,

2009).

B. Testing Phase

The second phase is testing, during the testing phase a set of collected benign and

malicious files is required that did not associate in the training set. Each file in the testing

phase is prepared to pars and extracted from vector model. According to this vector, the

classifier identifies a file as either malicious or benign. During this phase, the performance

of the classifier can be evaluated by extracting performance criteria accuracy for

measuring of the classifier’s algorithms (Shabtai et al., 2009).

74

Figure 2.27: The process of testing phase(Shabtai et al., 2009).

The test phase in the classification is where the model that was built in the training

phase is used to classify the new invisible instances. In the Testing phase we use data set

that did not appear in the training phase because we want to evaluate the algorithms what

they have learnt. Therefore, classifier will identify input attribute as benign or malicious.

2.10.1.4 Executable file representation

The first premise of implementing machine learning for malware detection is to

determine the representation of executable files, because it holds a program suitable for

execution. There are several representation files such as Byte n-gram, Portable Executable

features, String features and OpCode n-grams. Byte n-gram features are sequences of n

bytes extracted from an executable file. This is a familiar approach for training machine-

learning classifiers to identify unseen malicious code (Igor et al, 2003). To achieve a

representation of the executables through byte n-grams, we need to extract every possible

sequence of bytes and their appearance frequency. Figure 2.28 shows the overall process

of malware detection using machine learning.

One of the executable file formats used in the window is called the Portable

Executable (PE) file, which is normally used by files with extensions like .

EXE, .DLL, .SYS and. SCR. These features are extracted from certain parts of these

extensions to indicate the modification of file such as the creation of file or infected to

perform malicious activity. PE file consists of MS-DOS header that provides the

compatibility with DOS environment. PE Header is the actual start of the PE file. This

place important information that describes the logical structure of a PE binary is stored.

75

String features are considered as plain-text strings that are fixed in program

executable files like windows and kernel. It used to represent files in the same way as the

text categorization problem. An OpCode stands for operational code defines the sections

of instructions that describe the operation to be done. A complete machine language

instruction comprised of two parts an OpCode and, optionally, the pattern of one or more

operands. The following section will cover feature selection methods in order to

understand the machine learning process (Segal, 2004).

In order to generate various attributes representing the file Function-based feature

is required to extracts functions that reside in the binary representation of a file. These

functions include the size of the longest detected function, the total number of functions

detected, the average size of detected functions, size of the shortest detected function, the

standard deviation of the size of detected functions and etc (Shabtai et al., 2009).

Figure 2.28: ML classifiers taxonomy for malware detection (Shabtai et al., 2009).

2.10.1.5 Feature selection methods

Feature selection is the process of detecting relevant features in the dataset and

reducing everything else as redundant and irrelevant. Feature selection allows to reduce

the dimensionality of the vector and to avoid vectors that may cause accuracy of

76

classification algorithm negatively. It allows the classification algorithms to function

more effectively and make the classification method easier to understand. Generally,

feature selection methods can be divided into three families: filter-based, wrapper based

and embedded methods. The filter approach, a measure is used to identify the correlation

of each feature to the class of malicious or benign (Gu, Li, & Han, 2012).

Wrapper-based methods score the features through a learning algorithm that will

finally be used. They are optimal because they look for to increase the accuracy of a

classifier, tailoring their solutions to a unique inducer. Embedded methods are a

combination of feature selection with the learning algorithm. In this section, we focus on

filter-based methods for supervised feature selection (Vinod & Viswalakshmi, 2018).

Figure 2.29: Types and subtype of feature selection methods

There are numerous filter-based methods for dimensionality reduction, including

Document Frequency, Gain Ratio and Fisher Score. These methods function according to

the filter approach. The feature evaluation that is employed by the feature selection

method is free of any classification algorithm, thus allows comparing the performances

of the different classification algorithms (Vinod & Viswalakshmi, 2018).

A. Filters

Filters select the subsets of the features by finding the correlation to the target

class without involving any learning algorithm. Filters are less computational than

wrapper approaches. To filter the features that contain little information, this type of

method uses statistical measures for calculations based on these characteristics. This

77

method is considered more as a pre-processing step (filtering) before the learning phase.

The application of classification algorithms can only be made after this operation.

The main advantages of this type of method are computational efficiency and

robustness in the face of over-learning. This type of method also has drawbacks such as

ignoring the interactions between the characteristics and making the selection of the

characteristics comprising redundant data instead of searching for those which have

additional information. This type of method does not take into account the classification

method that will be used (Das, 2001).

The features are generally evaluated by measuring the calculation for each of the

feature. Let 𝑋 = {𝑥𝑘|𝑥𝑘 = (𝑥𝑘1, 𝑥𝑘1, … , 𝑥𝑘𝑛), 𝑘 = 1,2, … … , 𝑚} a set of examples of

learning that represents space with feature. Let 𝑌 = {𝑦𝑘, 𝑘 = 1,2, … … , 𝑚} where 𝑦𝑘

represents the class label of the sample 𝑦𝑥. Si 𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖,….. x2i, ..., 𝑥𝑚𝑖) represents

the same feature (i = 1,2, ..., n) so, the goal of the filter evaluation method is to calculate

the score to assess the degree of relevance of each of the features (𝑥𝑖).

 Correlation Criterion: this score is used in the case of a binary classification 𝑦𝑘 ∈

{−1,1}. It is estimated as follows

Where μ𝑖 and μ represent the mean values of the features and labels of the training

set respectively. This function calculates the cosine of the angle between each of

the characteristics and the label vector. In other words, for a given characteristic,

a large absolute value of this measurement indicates its strong linear correlation

with the vector of the labels (Y) (Amamra et al., 2015).

 Fisher's criterion: measures the degree of class separability using a given

characteristic (Gu et al., 2012). It is defined by:

Where 𝑛𝑐 and μ𝑐
𝑖 represents the number, the mean and the standard deviation of

the characteristic within class C respectively. The most global mean of the

features, we could say that the measure is related to the interclass variance of the

characteristic(Gu et al., 2012).

(2.1)

(2.2)

78

 Document Frequency (DF): is the number of files in which a specific n-gram

appears. Gain Ratio (GR), initially showed by Quinlan in the context of Decision

Trees, and was designed to get a solution of a bias in the Information-Gain (IG)

measure which enumerate the expected declining of entropy caused by separation

of the examples that are based according to a selected feature. The most widely

used supervised feature selection methods is fisher score which selects each

feature separately according to their scores under the Fisher criterion (Yang &

Pedersen, 1997).

 Mutual information is a measure of dependence between the distributions of two

populations (Yang & Pedersen, 1997). Let X and Y be two random variables

whose instances are respectively the values of the characters and the class labels.

Mutual information I (i) is defined as the Kullback-Leibler (KL) divergence

between the probability 𝑃(𝑥𝑖, 𝑦) and the product of the probabilities

(𝑃(𝑥𝑖) 𝑃(𝑦)). Mutual information is estimated empirically by:

where the probabilities (𝑃(𝑥𝑖) 𝑃(𝑦))P (xi), P (y) and P (xi, y) are estimated by

the frequencies of the different possible values.

 Max-relevance, Min-Redundancy (mRmR) is a filtering method for the selection

of characteristics proposed by Peng. This method is based on classical statistical

measures such as mutual information, correlation. The basic idea is to take

advantage of these measures to try to minimize the redundancy (mR) between the

features and to maximize the relevance (MR). The authors propose two variants

of their method. One for discrete data and the other for continuous data. For

discrete data, the authors use mutual information to calculate the two factors

mRmR (Ramírez‐Gallego et al., 2017).

 SNR (Signal-to-Noise Ratio coefficient) is a score that measures the power of

discrimination of a characteristic between two classes. Similar to the Fisher

criterion, this method classifies features by calculating the ratio of the absolute

value of the difference between the class means and the class standard deviation.

(2.3)

79

SNR formula for a characteristic and for a two-class problem is calculated by

(Yang & Pedersen, 1997):

B. Wrappers

The Wrappers method select features based on predetermined learning algorithms,

but this method tends to be computationally expensive and has overfitting problems

(Shabtai et al., 2009). To seek the subset of the optimal characteristics, this approach

proceeds to the exploration of the space of characteristics using a classification algorithm.

The selected subsets are adapted to this algorithm and may not remain valid if another

classification algorithm is used. The computation time depends mainly on the complexity

of the employed learning algorithm. The enveloping methods are considered better than

those of filtering due to several criteria. One of these criteria is that this type of method is

capable of selecting the subsets that have a high-performance characteristic for the used

classifier and in addition to smaller sizes than those of the filtering methods (Das, 2001).

The main drawback of “filter” approaches is the fact that they ignore the influence

of the selected characteristics on the performance of the classifier to be used later (Das,

2001). To solve this problem, Kohavi and John introduced the concept “wrapper” for the

selection of characteristics.

The wrapper methods, also known as wrapping methods, evaluate a subset of

features by its classification performance using a learning algorithm. The subsets of

features selected by this method are well suited to the classification algorithm used, but

they are not necessarily valid if the classifier is changed. The complexity of the learning

algorithm makes the wrapper methods very costly in computation time. In general, to

decrease the computation time and to avoid over-learning problems, the cross-validation

mechanism is frequently used. The problem of the complexity of this technique makes it

impossible to use an exhaustive search strategy (NP-complete problem). Therefore,

heuristic or random search methods can be used. Research is nonetheless becoming more

and more impracticable with the increase in the size of the initial set of characteristics

(Das, 2001).

(2.4)

80

C. Embedded

Unlike the “wrapper” and “filter” methods, the “embedded” methods (also called

integrated methods) incorporate the selection of variables during the apprenticeship

process. Such an integrated mechanism for the selection of characteristics can be found.

In the selection methods of the wrapper type, the learning base is divided into two parts:

a learning base and a validation base to validate the selected subset of characteristics.

On the other hand, integrated methods can use all the learning examples to

establish the system. This is an advantage that can improve results. Another advantage of

these methods is their greater speed compared to “Wrapper” approaches because they

avoid that the classifier starts from zero for each subset of characteristics. Embedded

feature selection methods can achieve comparable selection results with the wrapper

model and have the similar efficiency with filter way (Das, 2001).

2.10.1.6 Classification algorithms

Various machine learning approaches such as association rules, Support Vector

Machine, Decision Trees, Random Forest, Naive-Bayes and Clustering have been

proposed for the detection and classification of malware. The classification is applied to

unknown samples in the family of known malware or also underlines the samples that

exhibit invisible behaviour for detailed analysis. An important task in Machine Learning

is classification, where classifier distinguishes between different exemplars, based on

their different patterns. It generalizes the relationship between the input attributes and the

target attribute.

The overall process of machine learning classification is to collect malicious and

benign files, and then represented by a vector of features, then, extraction of files from

the PE-header and the binary code are needed. In the training phase, these files are

employed to train a classifier. During the detection phase, based on the classifications of

the classifier, an unseen file can be identified as malicious or benign (Segal, 2004). In this

research, the most used learning algorithms in the literature are discussed in this section:

A. Decision Tree

Decision tree is a well-established classification algorithm that is built by

recursively dividing the dataset into parts as a tree. Other words, they are Conventional

graphical tree data structure contains nodes and leaves that solve if-then problems.

Classifiers are represented as trees that have under nodes represents tests (attribute) of

81

individual features and whose leaves are categorization decisions (classes). Typically, a

unique characteristic of Decision Trees is the explicit creation of their knowledge, which

can be easily represented as rules (Shabtai et al., 2009).

The overall process of creating a decision tree model starts with collecting a data

set, called the training set. In this data set each record or element comprised of a set of

attributes, one member of which represents the class for that element; all of the records

have a similar structure. Specified data set, a model is derived for the class attributes as a

function of the values of the other attributes. The main objectivity of the decision tree is

to be able to categorize new records as accurately as possible (Tan et al., 2004). To

evaluate the model’s accuracy, a new data set is used which has the same structure as the

training set, this is called the testing set (Dietterich & Kong, 1995).

B. Bayesian Network

The bayesian network, which is also called belief networks is a graphical

representation of uncertain knowledge among a set of variables that easy to build and

translate. In addition, the representation of these algorithms has formal probabilistic

semantic, which generates it suitable for statistical implementation. It contains the acyclic

graph of nodes and arcs representing causal dependencies among variables. The robust of

the dependencies is described by conditional probability distributions. When creating the

bayesian an arc is drawn from top to law or from parent node level to a child node and

each node is connected with the conditional probabilities represented on its parent’s

variables(Shabtai et al., 2012).

Using the bayesian network is similar to that neural network; however, Bayesian

network has two advantages over neural network. First, encoding process, the encoded

expert knowledge can enhance the efficiency and accuracy of learning process. Second,

is the corresponding approach which is the node and arcs in Bayesian network is

correspond to causal relationship. In addition, Bayesian networks can handle incomplete

data sets, and provide significant solution to the problem of over fitting (Heckerman,

2008).

C. Support Vector Machines

82

Support Vector Machine (SVMs) is a binary classifier that tries to discover a linear

hyper-plane separating specified examples into the two given classes. Another terms,

Support vector machines are collection of linked supervised learning methods used for

classification and regression, and belong to linear classifiers family. It is a member of a

class of learning algorithms known as Kernel Methods. In fact, SVM performed well on

traditional text classification tasks; In addition, it is the best-known member of Kernel

Methods. KMs are well suited for pattern analysis, the main purpose is to find and study

different types of data relations for examples, rankings, clusters, correlations, and

classifications (Dietterich & Kong, 1995).

SVMs are very well performed for data mining tasks such as classification,

novelty detection, and regression. In real life scenarios, SVMs have been successfully

implemented in areas such as:

1. Identification of particles

2. The process of recognition faces

3. The Problem of categorization text

4. Bioinformatics

5. Database marketing

SVM has been found to be successful when applied in many various applications,

especially, for pattern classification problems and face recognition. In this thesis, we will

focus on SVM for classification, because we are dealing with malware detection for

identifying benign files and maliciousness programs. SVM is suited for data

classification. Unlike, Neural Networks, SVM is power full and easy to use. However,

occasionally insufficient outputs are received. A classification task typically associates

with training and testing data comprised of some data examples. Every instance in the

training set includes one target and several various attributes. The goal of SVM is to

generate a model that estimates expected results from data instances in the testing set,

which are given only the attributes (Zhang et al., 2019).

D. Artificial Neural Network

An Artificial Neural Network (ANN) (Carrasquilla & Melko, 2017) is an

information processing paradigm encouraged by the way work of biological nervous

83

systems, such as the brain, the information processing. The structure information

processing system is the main important element in this mechanism. A neural network

contains a collection of highly interrelated entities working together, called nodes or units.

Each unit is intended to emulate its biological counterpart in the neuron. Each accepts a

different weighted set of inputs through training algorithm such as back-propagation

(Shabtai et al., 2009).

Neural Network has been implemented in the field of anti-malware mechanisms

the overall process of classifying virus executable and normal file is based on the set of

features that neural network employed. In the first process malicious files are analyzed in

order to be appropriate input, then networks should be trained based on specific features.

Then, the network model can be employed to identify viruses that contain of the most

features present in the model. These network models are common for detecting viruses

that have different family as the training model, but possess some of the malicious

features from the training model (Segal, 2004).

The effectiveness of these network models also based upon the value of the

threshold for the minimum amount number of selected features to be present in a test file.

A higher threshold value is used to train the network model in order to classify viruses

only from the particular virus family where by a lower value threshold generates a result

of higher false positive rates. This detection technique was applied by the IBM Antivirus

program to detect boot sector viruses. The program created the reliability of detecting the

boot sector viruses effectively with less amount of low false positive rate (McIntosh et

al., 2018). Table 2.2 provides some advantages and disadvantages of the above classifiers.

E. Random forests

A random forest is a mixture of the two techniques of “Bagging” and “Random

Subspace” applied to decision trees (Breiman, 2001). At each iteration, a “bootstrap”

sample is drawn randomly in order to build a binary decision tree. The search space for

constructing tree nodes is limited by randomly drawn features. The performance of the

method depends directly on the parameter P. A large number of relatively uncorrelated

models (trees) operating as a committee will outperform any of the individual constituent

models. A small value of risk of degrading the performance of the classifier. In (Breiman,

2001), the author has empirically shown that the optimal value of Pest: P is the total

number of characteristics. The random technique of the approach has shown its relevance

84

and its effectiveness, especially on high-dimensional data (with a high number of

features). This technique allows for a better exploration of the representation space.

Random forests are also used to solve classification problems in several areas, such as

biomedical imagery (Breiman, 2001) . So, the advantages of the random forest algorithm

as follows:

 Classification and the regression task can be employed on the same random forest

algorithm

 The random forest classifier will handle the missing values.

 When we have more trees in the forest, random forest classifier will not overfit the

model.

 Can model the random forest classifier for categorical values also

Using Random Forests based on classification data, the Gini index is most

employed, the formula used to determine how nodes on a decision tree branch will be as

follows:

This formula practices the class and probability to regulate the Gini of each branch

on a node, deciding which of the branches is more likely to happen. Here, pi shows the

comparative frequency of the class and observes in the dataset and c that represents the

number of classes (Breiman, 2001).

As the above Table 2.2 presented, there are some obvious strengths of working

with different classifiers; the most important advantage is the amount of data to train the

classifier, the accuracy of the classifier and processing time. SVM can facilitate these

relationships between input data and the target. In addition to, the error can be controlled

explicitly.

 In addition, ANN has the ability to continue operation if the one of the elements

fails to work. However, there are also some clear limitations to these classifiers; for

example, in order to perform training data ANN needs high processing time and large

amount of data set. Moreover, other classifiers may be well suited for only certain parts

or field. Therefore, combining these ML algorithms where they are most effective will

increase the accuracy of detection rate.

(2.5)

85

2.10.1.7 Ensemble methods in machine learning

Ensemble methods are learning algorithms that construct a set of classifiers and

then classify new data points by taking a weighted vote of their predictions. The main

idea behind an ensemble method is to construct a set of classifiers in order to obtain better

complex global classifiers. Ensemble methods are a member of learning algorithms that

combine a bulk of classifiers and then classify new data. The ensemble of classifiers is

more accurate than any of its individual members is if the classifiers are accurate and

diverse. An accurate classifier is one that has an error rate of better than random guessing.

For example, Neural Network is a suitable method for ensemble; an ensemble neural

network is a learning pattern where a set of a finite number of neural networks is

employed to train for the same task (Dietterich, 2000).

Table 2.2. Summary of Strengths and Weakness of the above Classifiers

Classifier Strengths Weakness

Decision

Tree

They are inexpensive to construct

and very fast at identifying or

classifying unknown records. And

also, the Accuracy can be

compared with other data mining

techniques (Tan et al., 2004).

The ID3 and C4.5 algorithms are not

reliable to find the simplest trees,

because they only use heuristics and

they operate as a black box mechanism,

so optimization of tree for complex

data will be difficult to understand

visually (Kohavi and Quinlan, 1999)

Bayesian

Network

Bayesian Network can readily

handle incomplete data sets. It

facilitates learning about causal

relationships, and Avoid over fitting

(David, 1995).

Spatial and temporal dynamics. It

Continuous data representation

therefore there is no feedback loops

(David, 1995).

Support

Vector

Machines

SVM is power full and easy to train,

it is no need for local optimal. Scales

are well performed to high

dimensional data and the trade-off

between classifier complexity and

error can be control explicitly

(Vikramaditya, 2007).

In order to perform mapping of the

attributes of the input space to the

feature space SVM need for a good

kernel function. Because it enables the

operations to be done in the input space

rather than the potentially high

dimensional feature space

(Vikramaditya, 2007).

Artificial

Neural

network

In case of failure occur, the neural

network element continues without

any problem by their parallel nature.

It only needs learning, but not

reprogrammed later, therefore and

can be implemented in any

application. (Ben and Patrick, 1996)

Neural network needs high processing

time and training to operate. It has

different architecture from the

architecture of microprocessors

therefore needs to be emulated. (Ben

and Patrick, 1996)

Random

Forest

 Random Forest can be used to solve

both classification as well as

Random Forest creates a lot of trees

and combines their outputs. To do so,

86

regression problems. Random

Forest works well with

both categorical and continuous

variables. Random Forest can also

automatically handle missing

values.

this algorithm requires much more

computational power and resources.

Random Forest require much more

time to train as compared to decision

trees as it generates a lot of trees and

makes decision on the majority of

votes.

So as to make the ensemble more efficiency, there should be some kind of

diversity between the classifiers. We can say two classifiers are diverse if they produce

different errors on new data points. To see the importance of accuracy and diversity are

good, let us take example, we have an ensemble consists of three classifiers: {h1, h2, h3}

and assume a new case x. If the three classifiers are similar (i.e., not diverse), then when

h1(x) is going to be wrong, h2 (x) and h3(x) will also be wrong. However, if the errors

made by the classifiers are uncorrelated, then when h1(x) is wrong, h2(x) and h3(x) may

be correct, that is the advantage of ensemble method (Dietterich, 2000) .

2.10.2 Unsupervised learning

In unsupervised learning, there is no notion of desired output;there is only a finite

number of learning data, consisting of "inputs", without any label being attached to it.

2.10.2.1 Density estimation

In a density estimation problem, we seek to properly model the distribution of the

data. The obtained estimator 𝑓(𝑥)must be able to give a good estimate of the probability

density to a test point from the same (unknown) distribution as the learning data (Tang et

al., 2014).

2.10.2.2 Partitioning

The partitioning problem is the unsupervised counterpart of the classification. A

partitioning algorithm attempts to partition the input space into a number of “classes”

based on a finite learning set, containing no explicit class information. The criteria used

to decide whether two points should belong to the same class or to different classes are

specific to each algorithm but are very often linked to a distance measurement between

points (Tang et al., 2014).

87

2.10.2.3 Dimensionality reduction

The goal of a dimension reduction algorithm is to succeed in "summarizing" the

information present in the coordinates of a point in large high dimension

(X ∈ R𝑛 , 𝑛 𝑔𝑟𝑎𝑛𝑑) by a smaller number of characteristics 𝑦 = 𝑓(𝑥), y ∈ R𝑚, 𝑚 < 𝑛.

The hoped-for goal is to preserve “important” information, to highlight it by dissociating

it from noise, and possibly to reveal an underlying structure that would not be

immediately apparent in the original high-dimensional data. The most classic example of

a dimension reduction algorithm is Principal Component Analysis (PCA) (Tang et al.,

2014).

2.10.2.4 Deep learning

Machine learning (ML) systems are able to learn the desired behaviours of

samples in the databases. In addition, such systems can be recycled regularly as more and

more new data appear. Very sophisticated software systems, boosted by machine

learning, are able to change their behaviour so radical without making big changes to their

code. Deep Learning (DL) has become a revolutionized industry technology. Modern

machine translation, search engines and assistant’s translations are all powered by deep

learning. This trend of deep learning spreads its ability to build robotics, to products

pharmaceutical, energy and all other areas of modern technology. Deep learning models

try to imitate as much as possible the information and communication processing

observed in the nervous system biological, such as neural coding, which attempts to

define and describe existing relationships between multiple stimuli and associated neural

responses in the brain (Dietterich, 2000).

Definition 2.3: deep learning (DL) is a class of machine learning techniques

(ML), in which the information is processed in hierarchical layers to understand the

representations and features of data at different times (LeCun, Bengio, & Hinton, 2015).

For the increasing levels of complexity, deep learning is also called hierarchical

learning or structured deep learning. Learning data representations could be done through

semi-supervised, supervised or unsupervised approaches. In practice, all deep learning

algorithms are Neural Networks, which share some common basic properties. They are

all made up of interconnected neurons organized in layers. What sets them apart is the

88

network architecture (or how neurons are organized in the network) and sometimes the

way they are formed (Alhawi, Baldwin, & Dehghantanha, 2018). Deep learning can be

classified into three main classes according to the objectives which they were designed:

 Deep networks of unsupervised or generative learning aim to capture a high-

order correlation of input data for recognition purposes or synthesis of models.

When this class is used to characterize for distributions of common statistics that

are observed the data and their associated classes, networks have a generative

mode and could be transformed into discriminating networks for deeper learning

(LeCun et al., 2015).

 Deep supervised learning networks are used when data the target labels are

available, models can directly provide a power of discriminating for

classification purposes.

 Hybrid deep networks are the combination of the two types of networks that are

mentioned above, so unsupervised deep networks could provide an

excellent initialization on the basis of which discrimination could be

examined (Shabtai et al., 2009).

2.11 Gab Analysis and Directions

Generally, in this section, we refer to the activity and research related to

ransomware detection using supervised machine learning. The idea of employing

symmetric key cryptography in cyber extortion started in 1989 when the AIDS Trojan

has begun to infect machine through floppies. The use of public key cryptography for

extortion was first introduced in (A. Young & Yung, 1996). They have presented how

cryptography can be implemented in ransomware through Trojan. The authors also

proposed countermeasures to monitor the access of the cryptographic tools. Nevertheless,

this preventive approach is unable to detect the advanced ransomware variants.

 A work of (Kharraz, Robertson, Balzarotti, Bilge, & Kirda, 2015) proposed a

method to monitor the Master File Table (MFT) for activity and sorts of I/O Request

Packets (IRP) of the file system to detect zero-day ransomware attacks. They suggested

the mitigation strategy of employing the decoy technique to detect the maliciousness of

the file. However, it is not clear whether the normal user would access the decoy resource

before the attack occurs. Later work, they enhanced and introduced a new method called

Unveil that is designed to detect the attack when ransomware tampers the user’s data,

89

typically by creating a fake user environment (Kirda, 2017). This approach is able to

protect the user’s files. However, the victim should sacrifice some data before the

UNVEIL identifies the attack.

Some researchers employed a static analysis approach for the detection of

ransomware. A recent work of Zhang investigated the opcode sequences feature for

detection and classification of ransomware static analysis approach to map ransomware

into families. The author extracted opcode from ransomware samples created N-grams

sequences and calculated for each N-grams using term frequency-inverse document

frequency (TF-IDF) to select the informative features between families. Then, applying

five machine-learning algorithms achieved the best accuracy of 91.43% (Zhang et al.,

2019). Similarly, Poudyal extracted assembly and dll level of ransomware binaries

statically to perform multi-level analysis, then cosine similarity is used to measure the

similarity between these binaries. Eight supervised machine learning classifiers are

employed to classify ransomware and benign sample. The proposed framework achieved

an accuracy of 97.95% when both extracted features are combined (Poudyal, Subedi, &

Dasgupta, 2018) . However, the sophisticated packing techniques used by newly emerged

ransomware can easily evade the static analysis. Furthermore, is not efficient for early

ransomware detection since there is no need to execute the malicious samples during the

static method, while some variants exhibit their malicious activities on the runtime.

To overcome the limitation of the static analysis, many studies have been

conducted for the detection of ransomware based on the behavioural-centric approach.

This method monitors and records the malicious activities done by the ransomware during

the execution phase. For the purpose of detection and classification, most researchers

utilized machine learning classifiers with the behavioural features extracted from the file

with different filter and wrapper-based feature selection techniques.

Hampton explained the salient features of the ransomware using windows API

call features on 14 various ransomware strains. The frequency of the system calls for the

ransomware and baseline applications are compared to evaluate the similarity between

them. The experimental evaluation of this work claims that the ransomware activities can

be identified through a unique low-level system calls that are present in the ransomware

(Hampton et al., 2018).

Ransomware detection scheme based on the sequence of API call history using

SVM classifier has proposed by Takeuchi to monitor the execution of the windows API

calls; samples are executed in a controlled environment. They deeply examined the

90

sequences of API calls by creating a standardized vector representation of q-grams

extracted from the output logs. The proposed SVM-based scheme showed an accuracy of

97.48% (Takeuchi et al., 2018).

Similar work has presented by Sgandurra to describe a set of the behaviour of

ransomware using Windows API calls, registry key operations, and file system operations

that captured in its early phases of ransomware at run-time. Authors proposed EldeRan,

a framework to observe some unique actions performed by ransomware to dynamically

analyses features that support ransomware detection. The authors selected the informative

binary features using mutual information criteria and then applied a Logistic Regression

classifier that achieved a 96.3% detection rate (Sgandurra et al., 2016) . They assigned a

threshold of 30 seconds for the sample to execute. However, setting a fixed time does not

apply to all ransomware samples, since some variants exhibit their malicious activities

after human interaction or discovering the executing environment.

Qian and Bridges used an automated method for the extraction of ransomware

features from the sandbox output logs, they analysed WannaCry ransomware and two

polymorphic samples in isolated environment. To rank the most significant ransomware

features, term frequency-inverse document frequency (TF-IDF) is used to weight the 74

features from the generated behavioural logs and the top 43 informative features are

selected to discriminate the malware from benign samples. They claim that the method

can accurately extract features from the logs, and the TF-IDF approach provides deeply

analysis of WannaCry malware than other extraction algorithms. Nevertheless, the

number of used WannaCry samples cannot describe the characteristics of ransomware

(Chen & Bridges, 2017).

 Similarly, an interesting behavioural early detection framework is proposed in

Bander to detect zero-day crypto-ransomware using machine learning techniques with

data-centric and semantic features. The detection module of the framework contains

behavioral and anomaly detection scheme to improve the accuracy of the detection in the

early stage before the encryption is carried out. However, the proposed framework was

not implemented empirically(Al-rimy et al., 2017). Microsoft’s Cryptographic API (MS

CAPI) calls were presented by the Young explaining the method to encrypt the sensitive

user’s data and to produce the key by using MS CAPI with eight types of API calls (A.

L. Young, 2005).

Another work presented by palisse et al. [2], which is a detection mechanism that

enables users to decrypt their files by getting the advantage of the weak chaining mode

91

that are used by some ransomware with cipher algorithm. The authors also propose

another detection method based on the intercept calls used by Microsoft’s Cryptographic

API (Palisse et al., 2016). However, the proposed countermeasures are insufficient to

detect other types of ransomware that use Cipher Block Chaining (CBC) mode. In

addition, the protection is implemented, after the files are encrypted. The detection of

high survivable ransomware was first proposed by Ahmadian, the authors implemented

2entFOX framework that extracts 20 static and dynamic features and their statistical

possibilities. For classification case, they applied the Bayesian belief network to detect

high survivable ransomware (Ahmadian & Shahriari, 2016) . However, the detection rate

of this method was low due to the high dimensional feature space used.

An alternative method presented HelDroid, an automated approach that classifies

known and unknown mobile ransomware and scareware using a machine-learning

method. Their approach is based on detecting threatening text associated with a ransom

note and the “building blocks” that are typically needed to implement a mobile

ransomware application (Nicoló Andronio et al., 2015). Another work presented by

Alhawi introduced the NetConverse, a supervised machine learning approach to detect

ransomware using conversation-based network traffic features. They analysed 9

ransomware families, extracted 13 features using TShark and feed 6 classifiers such as

Bayes network (BN), Decision Tree (J48), K-Nearest Neighbors (IBK), Multi-Layer

Perceptron, Random Forest and Logistic Model Tree. The highest accuracy performed

the Decision Tree (J48) classifier that showed 97.1% of detection rate with less positive

(Alhawi et al., 2018).

Vinod proposed a supervised approach for the detection of obfuscated malicious

samples with the extraction of the mnemonic n-gram features using the Minimum

Redundancy Maximum Relevance (mRmR) filter and Principal Component Analysis

(PCA). For a classification, several supervised machine learning algorithms such as NB,

SMO, IBK, J48, Adaboost ADA and RF were used and obtained 94.1% detection

accuracy with mRmR generated features (Vinod, Laxmi, & Gaur, 2012).

A multi-stage feature reduction method for analyzing the commonly-adapted

network traffic features have presented by the Iglesias and Zseby. In their work, many

feature selection techniques such as mRmR, WMR SAM, and LASSO were employed to

reduce 41 traffic features into 16 features. They utilized different classification algorithms

such as DT, kNN, NB, LASSO-LAR, ANN and SVM with fivefold cross-validation and

achieved detection accuracy ranging from 0.27 to 95.48 with mRmR generated features

92

(Iglesias & Zseby, 2015). Huda proposed a non-signature-based framework for the

detection of malicious executables on API calls using hybrids of support vector machine

wrapper and filter-based approach. Authors combined the feature’s ranking score

generated by the filters with wrappers approach to select the optimal feature sets that can

characterize the real behavior of the malware.

Regarding the filter’s methods, mRmR is employed to compute the API call’s

scores, through which SVM based wrapper heuristics is used as a classification algorithm.

In the experimental results, mRmR–SVMS reveals a detection accuracy of 94.362% with

291 APIs (Huda et al., 2018). Darshan and Jaidhar presented a malware detection system

MDS for distinguishing malicious files from the benign executables on the portable

executable optional header fields (PEOHF) features using four filter-based techniques. In

their work, they evaluated the performance of the classifiers along with features

recommended by the filter’s methods (Darshan & Jaidhar, 2018). However, the

aforementioned approaches are insufficient to detect the advanced ransomware traits as

they deal with from the malware perspective. Unlike the normal malware, the

ransomware’s effect is irreversible, therefore, it is important to identify the relevant

features that describe the actual behaviour of the ransomware in the earlier stage of the

attack.

Considering the available literature on ransomware detection using Windows API

calls are suffering a massive amount of irrelevant and redundant system calls invoked by

the malicious executables during its execution. Due to these independent calls can mislead

the actual execution flow of ransomware binaries, and easy defeat these detection

approaches. To fill the gaps in the current methods, we propose an approach for selecting

the optimal windows API call features that can describe the real behaviour of the

ransomware, it also reduces the size of the system call traces by discarding those system

calls that do not have a strong indication for the behaviour characteristic of ransomware.

Such an approach can be used as a detection method for the ransomware in the earlier

phase of the attack.

We also propose an efficient dimensionality reduction technique for the system

call traces collected from the dynamic analysis logs using the filter approach. The model

development and performance evaluation are also discussed in the following sections. We

will represent the gap among the researches, in order to identify the direction. The

following Table 2.3 describes the overall detection techniques based on ML used by the

93

researchers, including the amount of data set, the representation of the file, classifier

algorithms used and result achieved.

94

Table 2.3. Summary of related research on ransomware detection.

Author, and title of the paper Year Data

Sets

Analysis

Approach

Detection Method

Gazet, A.Comparative analysis

of various ransomware virii

2010 15 Static

analysis

Author investigated the foundation of ransomware threats beyond the

phenomenon. This study relies on a comparative analysis of various

ransomware. The reverse engineering and a technical review are done

at different levels: quality of code, malwares’ functionalities and

analysis of cryptographic primitives if any.

Ben22. Cryptolocker - using

Powershell as a tripwire,”

Reddit

2013

41 Dynamic

analysis

The tripwire idea utilizes the witness files that were monitored for

modification or deletion. If a witness file is tampered with, the

Lanman server service is stopped

Kharraz1 et al.Cutting the

Gordian Knot: A Look Under

the Hood of Ransomware

Attacks

2015 1,359 Automati

c

analysis

Master File Table (MFT) and the types of I/O Request Packets (IRP)

of the file system to detect multiple different types of destructive

ransomware attacks that target users’ files.

Shukla et al. POSTER: Locally

Virtualized Environment for

Mitigating Ransomware

Threat.

2016 27 Dynamic

analysis

Presented the gap in the existing state of art and extended the existing

literature by adding new behavioral traits for new variants and

describe a dynamic system which learns new behavior while under

attack.

Chris. Detecting Ransomware

with Honeypot techniques

2016 Static

analysis

To implement a honeypot to detect ransomware activity, the File

Screening service of the Microsoft File Server Resource Manager

feature and EventSentry is done in Windows Security logs.

Ahmadian et al. 2entFOX: A

Framework for High

Survivable Ransomwares

Detection

2016

1359 Dynamic

analysis

Proposed a framework for high survivable ransomwares detection

based on twenty appropriate features. In 2entFOX, after providing

data and preprocessor step they designed a detection system with the

help of Bayesian belief network to use extracted features and their

statistical possibilities.

9
3

95

Kharraz et al.UNVEIL: A

Large-Scale, Automated

Approach to Detecting

Ransomware

2016 148,223

Dynamic

analysis

Present a novel dynamic analysis system called UNVEIL that is

specifically designed to detect ransomware. To mount a successful

attack, ransomware must tamper with a user’s files or desktop.

UNVEIL generates an artificial user environment and detects when

ransomware interacts with user data.

Sgandurra et al.“Automated

Dynamic Analysis of

Ransomware: Benefits,

Limitations and use for

Detection”

2016 582 Automati

c

analysis

Proposed an EldeRan framework for detection of ransomware that

identifies the most important features of ransomware and machine

Learning has shown is a viable and effective approach to detect new

variants and families of ransomware for subsequent analysis and

signature extraction

Palisse1 et al. Ransomware and

the Legacy Crypto API

2017 39 Dynamic

analysis

The first one takes advantage of the weak mode of operation used by

some ransomware. The second one intercept calls made to

Microsoft’s Cryptographic API.

Saleh et al. “A 0-Day Aware

Crypto-Ransomware Early

Behavioral Detection

Framework”

2018 Dynamic

analysis

Proposed an early detection framework for Cyrto-ransomware that

protects users using machine learning algorithms, to improve the

accuracy of the detection authors also proposed anomaly detection

technique to update from normal profile from extracted features

Zhang et al. “Classification of

ransomware families with

machine learning based on N-

gram of opcode”

2018 1787 Static

analysis

Proposed static analysis approach with opcode sequences feature for

detection and classification of ransomware and also deal with

ransomware that can fingerprint the environment. Multi-classification

results indicate that this approach maps ransomware into families.

Poudyal et al. “A Framework

for Analyzing Ransomware

using Machine Learning”

2018 Static

analysis

Eight supervised machine learning classifiers are employed to

classify ransomware and benign sample. The framework achieved an

accuracy of 97.95% when both extracted features are combined.

Hampton et al. “Ransomware

behavioural analysis on

windows platforms”

2018 14 Dynamic

analysis

The experimental evaluation of this work achieved that the

ransomware activities can be identified through a unique low-level

system calls that are present in the ransomware.

Kok et al. “Prevention of

Crypto-Ransomware Using a

Pre-Encryption Detection

Algorithm”

2019 582 Dynamic

analysis

Authors proposed a pre-encryption detection algorithm (PEDA) that

consisted of two phases. In, PEDA-Phase-I, with API and the PEDA-

Phase-II, the signature repository that allows the detection of crypto-

ransomware in the pre-execution stage.

9
4

96

2.12 Summary

In this section, we explored the various types of ransomware, including fake

ransomware, Lockers, and crypto-ransomwares. We further classified the ransomware

based on the threat type, the target approach that infects the victims, and the nature of

infecting the systems. To execute successfully and to encrypt the user’s related files,

ransomware requires to carry out attack phases; this will lead the ransomware to spread and

infect the machine. As common, we explained these phases briefly. Ransomware authors

employ a range of different sophisticated techniques to spread their malicious intents; we

highlighted the most common ransomware propagation method such as: spam emails,

phishing, malware advertising websites, drive-by-download and exploit kits. To deeply

understanding these infection vectors, malware analysts can effectively prevent the

ransomware from spreading. To hide its malicious behaviour and intents, ransomware uses

an avoidance technique, therefore, we also demonstrated the various techniques such as

code injection that the ransomware injects the legitimate programs that enable ransomware

to execute in the context of a legitimate application, making it easier to evade the detection.

Malware writers use avoidance techniques in order to evade the detection of the antivirus

software, such as encryption, compression data and obfuscation techniques. These

techniques beat signature-based detection through transformation and changing the

physical appearance of the virus. For extortion, ransomware needs to inform the ransom

payment which is vary depending on the type of the ransomware variant and the worth

digital currencies rates. Ransomware authors normally determine the ransom payments in

bitcoins. The most popular cryptocurrencies are bitcoin. It is an electronic currency (there

are no notes or coins) invented by Satoshi Nakamoto in 2008, so, we highlighted these

payment methods in details. In addition, to get knowledge about the capability of

ransomware, the structure techniques, and anti-reverse techniques used to hide it is self,

and also the level of similarity to other malware samples, we need malware analysis. There

are two types of malware analysis techniques; static and dynamic analysis. In static method,

the malware is analysed and extracted the program’s code without execution. But dynamic

method executes the malware and exams its behaviour. Both provide complementary

97

information about the malware. In this section, we discussed the ransomware detection

methods in terms of the countermeasure of this threat which is very important, and many

researchers proposed a range of different malware-detection techniques. Ransomware

detection techniques mean any mechanisms which provide the detection of any form of

ransomware that threatens to the computer. These techniques can be broadly classified into

two categories: approach-based detection and technique-based detection. Signature based

detection uses its characterization of the knowledge to decide the maliciousness of a

program, that means it extracts the byte code patterns of each malware and compare these

patterns with byte code of a program under its repositories. However, this method cannot

detect new (unknown) ransomware whose signature has not been found or generated yet.

On the other hand, anomaly-based detection uses its knowledge of what considered normal

behavior to decide the maliciousness of a program under inspection. Hence this approach

has benefits over signature based, because it detects any behavior that violates the norm,

and has the ability to identify new malware. Since the malware writers are familiarizing the

detection mechanisms and evading detection methods through modifying their malware

shapes. Finally, we presented virus detection methods using supervised machine learning

to map inputs to desired outputs using a specific algorithm. In supervised machine learning

we need to collect data sets and to train the classifiers, the testing phase, the classifier

identifies the previous unseen malicious files based on the training phase.

98

3. RESEARCH METHODOLOGY

This section presents the research methodology and provides hypothetical basis and

foundation for our work. It also shows the general frameworks that are developed by the

researchers based on the experiments. In this section will discuss the operational research

frameworks, including data collection, analysing of data, experimental setups, proposed

models and later the overall research plane. The main purpose of this section is to design a

framework to detect ransomware files using supervised and semi-supervised machine

learning as discussed in the literature review. For the performance metrics of this research,

“effectiveness” and “performance” are important terms intended to introduce the overall

accuracy of a specific machine learning algorithms. The output of this is to classify the files

into benign and malicious based on these performance criterions which is false negative

rates, and false positive, in addition to the average error rates of the outputs from supervised

machine learning algorithms. The remaining of this section is organized as follows; the

second subsection will discuss the proposed research frameworks that consist of three

different methods. Every method contains a specific framework that illustrates the follow

of the proposed method. In subsection 3, we describe the performance metrics to measure

the accuracy of the classification algorithms. Finally, the conclusion of the section is also

discussed.

3.1 The Proposed Methods

In this section, we demonstrate the research methods including the experimental

design of the proposed frameworks and describe the method of the behavioural analysis

approach in the sandbox. We also present the dimensionality reduction of the features for

training and testing purposes. This section contains three different proposed research

methods as illustrates in the following sections:

99

3.1.1 Method one

In this section, we present our proposed framework for the identification and

detection of high survivable ransomware as shown in Figure 3.2. To make our methodology

visual and understandable, we propose a methodology framework that consists of three

main phases. Data collection and preparations phase that includes obtaining ransomware

and benign dataset from a variety of sources, checking whether datasets are malware or not

and vice versa and labelling the malware family using VirusTotal service. The second phase

is to analyses samples using Cuckoo sandbox that generates JSON format report. The

collected behavioural log files are passed to pre-processing tasks such as removal of

duplicate files, file type identification, and parsing. The relevant features are extracted from

the analysis file logs to get valuable feature sets. We have applied the term frequency and

inverse document frequency (TF-IDF) algorithm for feature selection. Finally, supervised

machine learning algorithms were implemented for the classification of ransomware and

benign sample.

3.1.1.1 Experimental setup

To gain an in-depth behavioural analysis of ransomware requires executing samples

in a controlled environment. Therefore, we built our malware analysis lab following the

best practices suggested in (Nicolo Andronio, 2015). Cuckoo Sandbox is used, a well-

known leading open source tool to automate malware analysis. Ubuntu 16.04 LTS Desktop

fully updated was our host operating system while installing Cuckoo sandbox.

WindowsXp_server_Pack3 32bit was selected as a guest machine due to its weaker security

protections that enable us to observe more ransomware behaviour (Oktavianto &

Muhardianto, 2013). To perform the analysis in a secure, Virtual box machine was used

with controlled access to the Internet -host-only adapter- to enable commands and controls

(C&C) communication, and to prevent the spread of ransomware.

 Anti-virus, security updates, firewall, and user account control of windows XPSP3

guests were disabled to execute ransomware successfully. Some commonly third-party

applications such as Microsoft Office, Acrobat Reader, Google Chrome and Mozilla

100

Firefox were installed in the guest operating system. Python agent was also installed that

runs inside the guest and acts as cross-platform for communication and the exchange of

data between cuckoo and the guest OS. Finally, in Windows XP several normal user files

inside directories (e.g., My Documents, My Pictures and Videos, valid browsing history)

were created to observe the behaviour activities of ransomware.

Figure 3.1: The Environmental setup for the behavior-based Ransomware detection.

3.1.1.2 Dataset description

The data set for this study consists of ransomware and benign. We collected 1,254

ransomware samples of 14 different families from several sources such as VirusShare and

VirusTotal, - which are publicly computer virus repositories on the net-, we crawled

malware repositories and online forums that share samples. We also downloaded and

collected 1308 benign applications that hosted from the most trustworthy sources such as

software.informer, and system files located in the “System32” directory of a fresh installed

Windows 7 Professional.

To build a realistic dataset, we used in our experiments benign applications that

have ransomware behaviour as shown in Table 3.1. The acquired samples are stored in

separate files on both malware and benign group. To verify that the downloaded benign

101

applications do not contain malicious components inside their payload, we double-checked

the MD5 hash values from Virus Total service that has 57 common different antivirus

software. To obtain the exact family name of ransomware is a very challenging task

especially when you have a large number of malicius files. We applied Antivirus vendors’

labelling scheme in terms of the popularity of ransomware classes among Antivirus

Engines.

The general problem we encountered is mislabelling some samples by antivirus

engines as specific ransomware family. Therefore, we parsed the labels by the set of AV

engines that commonly used to assign malware labels using python script with a threshold

value of 85 that aggregated the labels from the pool of AV in VirusTotal repository. We

consider ransomware to be a specific family if 85% of AV engines described it as belonging

to this family name.

Table 3.1: Distribution of malicious and benign files

Ransomware

Class

Samples First

Seen

Goodware

Class

Application Name Samples

WannaCry 74 2017
Compression

Winzip, 7-zip, WinRAR,

PeaZip, IZArc
225

Reveton 50 2012

Torrent

Locker
108 2012

Encryption

BitLocker, Disk Cryptor,

VeraCrypt, TrueCrypt 172

Dirty Decrypt 51 2015

CryptLocker 173 2013

Data

Destruction

CBL Data Shredder,

HDDErase , MHDD,

PCDiskEraser, KillDisk ,

SDelete

401
Cerber 171 2016

Trojan
82 2013

Kollah 73 2014 Drivers

Updater

Driver Booster, DriverPack

Solution, DriveTheLife
230

Citroni 67 2015

Pgpcoder 46 2015

Browsers

Chrome, Firefox,

Opera ,Safari , Netscape,

Internet Explorer

152 Kovter
23 2013

Petya 89 2016
Multimedia

tools

Canva, Animoto,

Photopeach ,

Picasa, Livestream

182 CryptoWall
151 2014

TeslaCrypt 96 2015 Others 96

Total

Samples
1254

1308

102

 Figure 3.2. The Proposed framework architecture

103

3.1.2 Method two

In this section, we propose a non-signature-based detection framework for

ransomware. This framework uses a behavioural-based analysis to identify malicious

behaviour of applications and detect the ransomware in the earlier phases of the attack. The

proposed framework includes different detection supervised algorithms to monitor running

an application on a machine. For each application, the framework constructed a normal

model based on the ransomware detection algorithm selected. This framework consists of

four different phases as we will discuss in the following sections briefly.

 To build a representative framework, we first need to collect the data set when the

target system runs on the monitored environment. In this work, we monitor system calls

because they are provided by the kernel and are used by programs running in user space.

Indeed, all requests for applications such as network communication, file management or

process-related operations must go through the kernel using the system call interface before

they are executed. This system call provides precise information about the behaviour of an

application.

Figure 3.3: The architecture of the dynamic characteristics of behavior-based

Ransomware detection.

104

The data collected from the dynamic analysis approach will then be passed to the

processing unit for standardization. In order to simplify the process of analysing the data

and creating a model of normal system behaviour, we process the data collected and we

retrieve the traces from generated files. To create the sequences of the system calls, we

contract N-gram construction to reduce the size of the system calls. Normally, Windows

API calls are suffering a massive amount of irrelevant and redundant system calls invoked

by the malicious executables during its execution. The performance of machine learning

depends on the presence or the absence of noisy data. The existence of such noise in the

data set could adversely impact the induction of ML models such as the increase in

processing time, more storage requirement and the difficult analysis of real malicious

intention that can lead overhead and poor prediction ability. Therefore, the Noise

refinement process is applied to filter those system calls that do not have strong indication

to the real behaviour of the program

3.1.3 Method three

In this section, we proposed a ransomware analysis and identification framework

based on the runtime behaviour of ransomware and deep learning-based semi-supervised

technique. Deep learning is a robust unsupervised approach that can extract the hidden

intrinsic patterns from unsupervised feature space through a non-linear transformation and

layered structure in which upper layers compute more abstract forms of features presenting

the latent sources of variabilities in the feature space. The novelty of this proposed approach

is that deep learning-based semi-supervised technique can extract dynamics of behavioural

patterns from the new variants of ransomware obtained from the wild and can integrate the

latent sources to the supervised classifier, making the detection engine independent of

manual signature generation and robust to the changes.

The new contributions of this proposed model are that the model can extract the

attack patterns of the ransomware through the deep learning-based semi-supervised

method, ransomware from 14 families with a large number of features have been considered

and a novel feature extraction procedure has been developed. Moreover, our model is

highly scalable and adaptive. Since the model can learn the frequently changing behaviour

105

of the ransomware and apply this knowledge to detect them, it ensures the zero-day

detection.

Figure 3.4: Ransomware detection system using deep learning

We proposed a detection framework to detect the ransomware using deep learning-

based approach. Deep Learning approach has the benefit of training the model using the

extracted and selected features and behavioural patterns through hidden nodes in different

layers. Since the cyber-attack patterns have been changed very frequently, the inherent

cyber-attack patterns can be extracted using the multiple layers of abstraction of Deep

Learning and represent he actual attack patterns to a non-linear and higher abstraction of

the real scenarios which benefits the detection model. This key advantage of deep learning

facilitates our model to achieve a higher accuracy rate. The data collection is the very first

task of our detection model. The data set contains ransomware and benign ware. Pre-

processing and feature extraction are done in the second phase. We have generated the

global feature set which contains a large number of features, total 15972. FastICA has been

considered to compress the features (Hyvärinen & Oja, 2000). After the feature selection,

we generate the feature vector. The classifier is trained using the train data set. We have

considered 10-fold cross validation to train and test the model. The performance of our

detection model is evaluated using the test data set.

106

3.2 Performance Criteria

In this section, the classifier performance is evaluated using standard accuracy

measurement. The best classifier models among the tested models are compared. The

evaluations of these models based on their classification measurement such as True Positive

Rate (TPR), is the case in which the proportion of positive samples, like ransomware that

is identified correctly as shown in equation (10). False Positive Rate (FPR) is the case in

which the proportion of negative instances wrongly identified as positive as shown in

Equation (11). True Negative (TN): is the case in which samples are correctly classified as

benign programs. False Negative (FN): is the quantity of numbers that are misclassified

malicious programs.

 𝑇𝑃𝑅 = Sensitivity =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
 (3.1)

 𝐹𝑃𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
|𝐹𝑃|

|𝐹𝑃|+|𝑇𝑁|
 (3.2)

The Total amount of accuracy is the ratio of properly identified samples, either

negative or positive, divided by the total samples as defined in equation (12).

 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑃|+ |𝑇𝑁|

|𝑇𝑃|+|𝐹𝑃|+ |𝑇𝑁|+ |𝐹𝑁|
 (3.3)

The total accuracy of the generated classifier determines the effectiveness and

performance. Another method of identifying the performance of the classifier is the use of

the ROC curve which is points of a plot that shows the trade-off between a classifier’s FP

rate and its TP rate.

For a clearer and more efficient representation of the TP rate as a function of FP,

we used the receiver efficiency function also known as ROC (Receiver Operating

Characteristic) curve name. This curve provides an estimation of the optimal value of the

detection threshold allowing a compromise to be achieved between the TP and the FP. A

ROC curve is, therefore, a plot of true positive rates against the false positive rate for

different detection thresholds.

107

We also measured the area under the ROC curve (AUC: Area Under Curve). AUC

is generally used to compare the performance of detectors independently of decision

thresholds. AUC = 1 indicates a perfect detector that detects all anomalies without false

alarms (TPR = 1, FPR = 0), while a random detector will have an AUC = 0.5. The larger

the AUC value, the more the curve moves away from the line of the random classifier

(linear straight line) and approximates the angle of the ideal classifier.

It's good to have a TP of 100% and a FP of 0%, but these alone do not allow us to

properly estimate the performance of the detector. For this, we also measured the number

undetected ransomware attacks, calculating the Total Accuracy Rate (ACC) according to

formula 3.3, where TN denotes the rate of true negatives (the proportion of normal traces

correctly classified as normal on the total number of normal traces in the test set) and FN

denotes the rate of false negatives (the proportion of ransomware attacks incorrectly

classified as normal to the total number of abnormal traces in the test set).

3.3 Summary

This section presented an overview of the research methods. We discussed in detail

the operational research frameworks which show the overall project operation. These

frameworks consist of three different methods; we highlighted every unique method by

presenting the steps to be followed. The researcher also discussed the procedures inside the

operational frameworks, such as the steps involved in data pre-processing, ransomware

analysis approach, refining process and the N-gram constructions. The approach to extract

the Windows API calls function features in the pre-processing are argued which should be

performed before data set are passed to the ransomware classification part. For defining

which supervised machine model is the best, each algorithm should apply and evaluate

separately. After evaluation all possible combinations, the best combination models

determine final proposed scheme. At the end of this section, the performance criteria were

discussed.

108

4. ANALYSIS AND DATA PREPROCESSING

This section describes the preparation and the analysis of the data of this research

derived from the previous section. The reason for the data pre-processing is to create

appropriate, clean and normalized data format that to be input into machine learning-based

classifiers. The format of our data set is portable executables based on the windows family

that compromised of clean and malicious programs. The first subsection in this section

highlights the executable file format used.

The second subsection discusses the analysis of the malicious file executable to

monitors the behaviour of the ransomware using a sandbox environment. Feature

engineering that contains feature retrieving which is the process of extracting data from

specific files to get a set of informative and non-redundant feature. In this subsection two

different features are extracted; integrated features that contains combined seven important

ransomware behaviour; and the system calls which is an interface that the program requests

a service from the kernel operating system. In the third subsection of this section, we

presented a system call refinement process to reduce the size of Windows system call traces

gathered from the dynamic analysis by removing those system calls that do not discover

the main behaviour of the ransomware.

Finally, the feature selection method to eliminate the processing overheads of the

dataset in training and testing phases, and improve the accuracy rate of classifiers are

described in this subsection. We demonstrated the different feature selection methods such

as term frequency-inverse document frequency (TF-IDF) to weight the term based on its

inverse document frequency, Maximum-Relevance and Minimum-Redundancy (mRmR)

which is a well-known filter algorithm that intended to find features with high relevance

with the target class and low redundancy among other features. In addition, another

important feature selection is employed, which is a FastICA that was developed from

Independent Component Analysis (ICA), and the concepts and principles of independent

component analysis still apply to constrained independent component analysis that has been

considered to compress the features.

109

4.1 Executable File Format

Files can be divided into two main categories; data file which is designed to store

information, and executable files that consist of a collection of information describes some

task in the computer. Generally, computer files composed at least one executable file with

the help of data file, as the same situation in malware. The structure of a portable executable

is important because the writer of malicious files use portable executable (PE) as a vehicle

to transform their malicious intent to the target.

Microsoft uses portable executable as standard to all executable file formats under 32-

bit and 64-bit versions of Windows family operating systems. The term portable indicates

the portability and versatility of the file in different windows environments. The PE format

“is a data structure that encapsulates necessary information so that Windows OS loader can

manage wrapped executable code”(T.-Y. Wang, Wu, & Hsieh, 2009).

The PE file can be divided into two main portions; header and body. The header

which contains essential information used to load a PE file such as MS-DOS header. The

content of a PE file is composed of section that is intended to store information. This

includes, Section Tables, API import and export Tables, resource management data, PE

section and any other information related to the windows loader in order to execute code

successfully (Faruki, Laxmi, Gaur, & Vinod, 2012).

The first part of the PE file structure starts with the MS-DOS header called an

IMAGE_DOS_HEADER. This is the place where PE is stored and contains two primary

values called e_magic and e_lfanew. A PE file Header consists of the PE Signature, the

File Header, the Optional Header, and also it determines how many sections are in the PE.

The section Table which is an array of IMAGE_SECTION_HEADER structures contains

Data Directories that gives the information related to sub sections such import table, export

table and resource table. The export table provides the name of the relative virtual machine

of all exported functions in the given machine. Therefore, this project will focus on the

imported and exported function to extract the features (T.-Y. Wang et al., 2009).

http://en.wikipedia.org/wiki/Microsoft_Windows

110

Figure 4.1 PE file structure

Figure 4.1: PE File Structure

4.2 Analysis of Executable Files

In this section, an automated dynamic analysis was used to analyses the samples in

an isolated environment. This analysis collects a large number of ransomware samples and

monitors their behaviour using a sandbox environment. Although the total original dataset

was 2562, after removing samples that did not execute correctly, or cuckoo terminated the

analysis because of the maximum timeout that we set samples to run, or those that many

 Sections

.idata

 .rsrc

.edata

Dos MZ Header

PE files Header

IMG_Optional Header

Section Table

An array of section Header

Data Directories

Import Table

Export Table

Resource Table

………………………

……………..

Import Table

111

AV assigned different ransomware family names, 673 ransomwares from 14 distinct

families and 742 benign samples were analysed.

Given the finite size of the RAM, it is necessary to limit the analysis to about 5 or

15 minutes. It depends on the sample activity and the number of different samples that are

analysed or intercepted (e.g., writing, reading, etc.). Otherwise, the lack of space leads to

the loss of the analysis. Therefore, every sample up to a range of 4 until 9 minutes were

analysed to show to their malicious behaviour and to capture the execution traces of the

samples using a cuckoo sandbox, while the ransomware sample is running on the host.

Cuckoo monitored and recorded information in terms of the API calls, network traffic,

changes of files and folders, processes and memory dumps(Oktavianto & Muhardianto,

2013). We used virtualization software to take a snapshot of the guest machine before the

execution of each malware sample, after execution, the entire system was reverted to a

previous clean state before the infection.

Figure 4.2: The architecture of the Sandbox

Indeed, some ransomware seeks to detect controlled environments and avoid

expressing their malicious behaviour if they succeed. While other ransomware samples

112

wait for human interaction like mouse or keyboard event before executing their malicious

activities, thus, we used a python script that performs basic user’s activity such as browsing

websites, clicking and deleting documents and folders on the desktop. During the analysis

of the samples, we observe ransomware variants used both symmetric and asymmetric

algorithms to encrypt the user’s data. Crypto ransomware creates a randomly symmetric

key with the AES algorithm in victim’s machine and then encrypts files along with that

generated key. After encrypting the data, it encodes the secret key with asymmetric

encryption. At the end of execution, the time taking ransomware samples to encrypt files is

variety, ranging from 27 seconds like Petya up to 2 minutes for CryptoWall.

Figure 4.3: The generated JSON format

 At the end of the analysis, a trace containing a format Compressed JavaScript

Object Notation (JSON) is sent to the analysis phase. The trace in JSON format is then

easily comprehensible to understand how the ransomware behaves. The information is

113

stored with the granularity of a thread (i.e., thread). An uncompressed trace ranges from 20

MB to 200 MB. Traces are also analysed manually, to eliminate samples with similar

behavior which do not are not triggered a second time.

4.3 Feature Engineering

In this subsection, we present the reduction of the data dimensionality of this

research. The process of extracting data from specific files is called feature extraction and

the aim is to get a set of informative and non-redundant data not only made by a selection

of certain features (Yang & Pedersen, 1997). After we construct new features, we will select

the important features by removing those features that have the same behaviours. The

following subsections are described several commonly used reduction techniques. They are

generally grouped into two categories: feature retrieving or extraction and feature selection.

4.3.1 Feature extraction

In this subsection, we will present the process of retrieving features from generated

JSON files. in this approach we extract two main types of features, integrated features that

includes seven types of features such as Registry, files Operation and etc., and Windows

System calls features, the following are explained in details

4.3.1.1 Extracting integrated features

Once the analysis is completed, cuckoo generated human-readable JavaScript

Object Notation (JSON) report for each analysed malware sample. In this study, the most

time dedicated to the extraction of the indicative and accurate behavioural features from

JSON report, which is not an easy task. After we collected the results of the analysis, we

need to retrieve the key elements from the JSON reports such as SHA1, MD5, ransomware

ID and ransomware family as shown in Figure 4.4. These elements indicate the importance

of the ordering samples, it also prevents the sample extraction redundancy by following the

SHA1 and MD5 unique numbers.

114

Figure 4.4: A snippet of extracted key elements from the JSON file.

The size of the report generated by the sandbox occupies hundreds of MBs,

analysing and examining each report manually is experimentally infeasible, therefore, we

build our own parsing algorithm to convert JSON formatted string representations to key-

pair objects. The feature parsing reads the JSON files from all sandbox output reports and

then parsed to get the required features to reduce the search space. The feature parser

functions as a structure to correlate a ransomware sample’s feature calls into states. The

parser maps the Registry paths, Windows API calls, files Operation, Strings, Directories,

Drops and libraries into seven different states.

Indeed, a set of matrices is created from the features set. For example, a matrix of

calls is created to the Windows API, which denotes the presence or absence of a function

during an analysis. Similar behaviour is achieved for other characteristics. This allows you

to add many combinations. These approaches make it possible to model binary variables,

for example the absence or the presence of a registry key. Such a model makes it possible

to link an event (i.e., ransomware) to a combination of variables (i.e., features).

115

Algorithm 4.1: Extracting Features from JSON Report

Input: Set of JSON report path 𝐽𝑅 that contains a number of behavioral

and static features 𝑓.
 Output: Parsed files

1. Function ObtainFeature (𝑆𝑑𝑎𝑡𝑎, states) {

2. for process in json_data['behavior’] ['processes'] do

3. if json_data_process is equal to states then

4. set first_seen_temp=process_first_seen

5. if first_seen is greater than first_seen_temp or equal to

zero

6. set first_seen= first_seen_temp

7. for features in json_data_process[F] do

8. if features [F] not in our_Dictionary_features then

9. set our_Dictionary_Features [F] and timestamps =

f and Feature_time

10. Our_Dictionary_ Features [F][count]=1

11. Else set our_Dictionary_ Features and timestamps=

Features_F_time and append_F

12. our_Dictionary_Features [F][count]+1, return

first_seen, our_Dictionary_Features [F]}

13. Function Json_Files (JR, PR)

14. for (JR, PR) in G_file() do //traverse the file names in a

directory tree

15. for i, name in enumerate [all_files] do

16. If name ends with (‘json’) then

17. Fname= initialize files that matches (name)

18. Open the json data (𝐽𝑅 + 𝐹𝑛𝑎𝑚𝑒) as (𝑗𝑠𝑜𝑛f)

19. Set 𝑆𝑑𝑎𝑡𝑎= load (𝑗𝑠𝑜𝑛f)

20. Call the function of ObtainFeature (𝑆𝑑𝑎𝑡𝑎 ,true)

21. Print(PR)}

22. In the main function {

23. Input 𝐽𝑅 ← parse_directory//initialize the director to be

parsed

24. Input PR ← F // set the place where the result will be

stored

25. Store the user's input in the (𝐽𝑅 , 𝑃𝑅) variables

26. Json_Files(JR, PR)

27. if name is equal to main then

28. exit the system

 Every state represents the presence or the absence of that specific call for this

feature. The Feature parser creates a matrix containing the feature and its states. For

116

instance, in ransomware phases, when the attached completed, the ransomware deletes all

the original victim’s data while keeps the encrypted one, in this case, RegDelete method is

used. So, the parser creates a matrix by investigating whether this specific registry key

operation was performed or not.

Table 4.1: Feature classes and the number of extracted features

Feature Classes

No of

Features

Analysis

Type
Feature Class Description

1 Registry Paths
3208

Dynamic
Registry key operations such as registry

keys opened, read, written and deleted

2
Windows API

Calls

4661
Dynamic

Windows API calls the traces of invocations

of native functions and API calls

3 Files Operations
3210

Dynamic
File operations such as read, open, write and

delete operations

4

Printable String

Information

(PSI)

836

Static

Is a sequence of characters that provide

hints about the functionality of a program

5
Directory

Operation

582
Dynamic

Operations performed on a directory

6
Cryptographic

Libraries

948
Dynamic

Contains and implements several popular

cryptographic algorithms and standards.

7 Dropped Files
186

Dynamic
During installation application dropped set

Extensions of files

4.3.1.2 Extracting System Calls

In this section, we first present the process of capturing system call traces by

executing samples in a controlled environment. The behavioural log files collected from

the sandbox are then passed to the extraction stage to parse and obtain the valuable

Windows API calls. In this work, we monitor system calls because they are provided by

the kernel and are used by programs running in user space. Indeed, all requests for

applications such as network communication, file management or process-related

operations must go through the kernel using the system call interface before they are

executed. This data provides precise information about the behaviour of an application

(Zavarsky & Lindskog, 2016). This is motivated by the assumption that once compromised,

117

the system call traces of an application will be different from those generated by its original

version. The following subsections explain the process in more detail.

A. Tracing System Calls

To execute the suspicious payload and infect the host system, ransomware needs to

invoke the system API calls successfully. These system calls are identified as a feature for

distinguishing malicious files from the benign ones. Since system calls are an interface that

the programs use to request service from the operating system’s kernel, tracing these system

calls could help to indicates the ultimate intent of the program.

Definition 4.1: System call trace is a robust technique to record the execution of

the process dynamically in a controlled environment, let 𝑃 be a process and the

input of the process is 𝐼. If the process 𝑃 invokes the system call 𝑆, where 𝑃 ∈ 𝑆

with input of 𝐼 , the system call trace can be defined as:

 𝑆𝑡 = (P ∈ 𝑆 , 𝐼) (4.1)

The entire trace consists of a list of system calls with different parameters and

return-values of the process. To capture the program’s dynamic behaviour traces,

ransomware sample was executed in an isolated environment. Every sample up to a range

70 until 90 seconds were analyzed to show to their relevant malicious indicator. The

sandbox intercepted and recorded the Windows API calls, while the ransomware sample is

running on the host.

We used virtualization software to take a snapshot of the guest machine before the

execution of each ransomware sample. After execution, the entire system was reverted to a

previous clean state before the infection. Similar to the ransomware samples, benign

applications are also executed in the same isolated environment to obtain their behavioural

features.

118

Figure 4.5: An example of System Call traces

To trace the system calls, ransomware and benign samples need to complete its

execution time, but some ransomware waits for human interaction like clicking the mouse

or pressing a button in the keyboard event before executing their payload. Thus, we utilized

a customized python script that works in conjunction with the Sandbox to perform basic

user’s activities such as browsing websites, clicking and deleting documents and folders on

the desktop. After the execution, the output of the sandbox is a log of JSON (human-

readable JavaScript Object Notation) file for each analysed ransomware and benign sample.

Although this report contains different categories of ransomware analysis results, we

limited our scope to the behavioural category that describes the dynamic characteristics of

the ransomware.

B. Obtaining features from System Call traces

Once the behavioural log was collected, the size of the report generated by the

sandbox occupies hundreds of MBs. Analysing and examining each report manually is

experimentally infeasible, hence, we built a parser engine as shown in algorithm 4.2 to

retrieve the behavioural features from the output file. The feature parsing reads the files

from all Sandbox output reports and then parsed them to get the required system calls to

reduce the search space. To decrease the trace sequences, only the list of the window API

call function names that correspond to the process was extracted while the parameters and

return-values were ignored. A snippet of the critical cryptographic API calls and its

parameters are shown in Figure 4.6.

119

Figure 4.6: Log of Critical Cryptographic API Calls

To prune the collected behavioural logs of the sample’s execution trace, we applied

the following rules:

 First, the system process ID of the ransomware samples is identified.

 Second, we explored the exact position where the process created the new

thread or child process by iterating the system call logs.

 Third, the system calls were sorted chronologically based on the timestamp.

 Finally, relevant function calls are extracted semantically from the log to

construct the representative feature vector.

Not only the extracted output traces contain the original system calls, but also

irrelevant and noisy calls generated by the ransomware to hide its malicious behavior. This

adversely affects the performance of classifiers and increases the false positive rate. To

enhance the detection accuracy and to obtain the valuable system calls, the retrieved

features are transferred to another process to refine the collected traces, as described in the

following subsequent sections.

It is possible to modify the control flow of a program in the user space using a hook,

more commonly known as a hook. A malicious program can thus hide files, processes,

network connections, etc., to one or more of its peers. For this, the ransomware must access

the memory space of the victim process and modify one or more addresses in virtual

memory. One method is to modify the IAT to intercept the call to the desired legitimate

function than to transmit it to a routine that the attacker controls (Francillon & Castelluccia,

2008). This technique is easily detectable and many more techniques evolved to exist.

120

Algorithm 4.2: Effective System calls Generation

Syntax Definitions:

Let 𝑝 be process, 𝐹𝑠 be first seen, log file {𝑙𝑓}, System Call {𝑠},

Database { 𝐷𝐵}, Dynamic behaviour {𝐵𝑑}, timestamps {𝑇𝑠} and

directory tree 𝐽𝑅

Input: File contains the system call traces 𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼)

 and features (𝑓1, 𝑓2, 𝑓3, … . . 𝑓𝑛).
 Output: List of system calls 𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡}

1 Procedure FindSysCalls (𝑆𝑡, Condition) {

2 for each p in 𝑙𝑓 ['𝐵𝑑’] ['𝑃𝑑’] do

3 if 𝑙𝑓{𝑃𝑑} = Condition then

4 𝐹𝑠{temp} ← 𝐹𝑠

5 if 𝐹𝑠 >= 𝐹𝑠{temp}

6 𝐹𝑠← 𝐹𝑠{temp}

7 for each traces in 𝑙𝑓{𝑃𝑑} [𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼)] do

8 if traces [𝑠] do not match any SysCall then

9 Id= 𝑠, update 𝐷𝐵 and 𝑇𝑠= 𝑠{𝑇𝑠}

and 𝐷𝐵{𝑠}[count]=1

10 Else 𝐷𝐵{𝑠}{𝑇𝑠} ← append [𝑠{𝑇𝑠}]
11 𝐷𝐵{𝑠}[count]+1, return 𝐷𝐵{𝑠}

 end for
12 Procedure Loadfile (JR, PR)

13 for (JR, PR) in G_file() do//traverse the directory tree

14 for i, N in enumerate [all_files] do

15 If N ends with (‘json’) then

16 Fn ← (N) //file initialization

17 𝑆𝑑𝑎𝑡𝑎 ← load (𝐽𝑅 + 𝐹𝑛)

18 FindSysCalls (𝑆𝑑𝑎𝑡𝑎 ,true)

19 End

C. N-Grams Construction

To construct the sequential behaviour on the system call log of each sample and

remove the subsequence that have a little effect on the detection, a text-based n-grams

method is employed to combine the system call traces that appear in a consecutive order.

We created N-grams of length 2, 3, 4 and 5 from the system call traces corresponding to

each analyzed sample. We just extracted n-grams system calls that collected from the same

category, for instance, the NtTerminateThread, NtTerminateThread, and NtSuspendThread

are 3-gram system call sequences for process and thread that aim to terminate and suspend

121

a specified threat. The aim is to calculate the n-gram distribution by generating a fixed- size

slice window through enumerating the appearance of each gram. The extracted result of the

n-gram system call trace construction is the vector V that contains the occurrence of every

possible n-gram as shown in Box 4.1.

Box 4.1: A snippet of 3-gram System Call sequences

After generating n-gram frequencies, the total number of features extracted from

the system call trace using 2-grams,3-grams, 4-grams, and 5-grams are 32134 and 76908,

186908, 227151, respectively. However, the volume of these features is quite large in terms

of training time and memory usage. Since all these features do not contribute to the

classification of malicious samples, the noisy subsequence with little influence on the

detection accuracy is eliminated from the sequence trace.

4.3.2 System Call Refinement Process

In this section, the refinement process of system calls used to discover the accurate

system call traces and to achieve better detection performance is described. The massive

amount of system calls invoked by the malicious executable during its execution, some of

these calls are irrelevant and redundant. The aim of this section is to filter out system calls

by discarding irrelevant and redundant features to identify real malicious behavior. This

approach reduces the size of the traces to train the algorithms. We will explore effective

system refinement approach in more detail in the following subsections.

122

4.3.2.1 The Problem of noise features

To evade the detection, ransomware writers disguise themselves by inserting a large

number of irrelevant and redundant dynamic call sequences to hide its run-time malicious

behaviour and to mislead the flow of execution sequences (Anderson et al., 2017). Because

of this, the amount of malicious system calls sequences is enormous that produce the high

noisy behavioural sequence. We consider undesirable or uninformative system call traces

as noise because they don’t contribute to the quality of the detection.

Definition 4.2: System call S is expressed as a redundant System call SR if the feature

vector fi and its correlation fj have a higher value of 𝑆𝑅𝑖,𝑗 near or equals to 1. That

means the two features are considered to be redundant if their values are completely

associated and have no contribution to the target. Generally, the squared cosine

similarity is employed to measure the correlation of a given two system call vectors

(𝑓𝑖, 𝑓𝑗) as expressed in the following equation:

 𝑆𝑅𝑖𝑗 = cos2(𝑓𝑖 , 𝑓𝑗) (4.2)

The performance of machine learning depends on the presence or the absence of

noisy data. The existence of such noise in the data set could adversely impact the induction

of ML models such as the increase in processing time, more storage requirement and the

difficult analysis of real malicious intention that can lead overhead and poor prediction

ability (Xiao et al., 2015).

To reduce the complexity of the model and to improve the performance of the

algorithm, the irrelevant and redundant system calls that do not help in increasing the

accuracy of the detection should be eliminated from the tracing records. This refinement

approach removes the noisy system call subsequence as shown in Box 4.2 from the original

feature space to characterizes the behaviour of the ransomware and its nature.

123

Box 4.2: A snippet of Redundancy API calls

4.3.2.2 Refining Module

The refining module’s purpose is to reduce the size of system call traces gathered

from the dynamic analysis by removing system calls that do not discover the main

behaviour of the ransomware. It is common in practice that, the more time the program

takes to execute, the more system calls functions are generated(Vinod & Viswalakshmi,

2018). Therefore, analysing and inspecting all system calls is computationally infeasible

because there are too many calls that do not represent the suspicious behaviours of the

program. To address this, we filtered the collected program’s traces to make the

performance of the detection process faster by examining the system calls made by the

124

ransomware through the descriptions provided by the Microsoft’s website using a

customized python script. To achieve this goal, we construct an accurate system call in the

following ways:

First, we exclude system calls that have no strong indication for the behaviour

characteristic of ransomware. For example, VirtualAlloc is a memory management system

call used to increase the size of the heap when malloc cannot find enough memory in the

present heap. Some system call does not depict a valuable behaviour of the program, they

only exist for transferring information between the application and operating system. for

example, the setTimer system call adjusts the timer for the process. Certain system calls

are no longer available for current Windows versions, for example,

NtQueryInformationProcess and NtQuerySystemInformation are used to get information

about the process and the system, these functions are present in the older versions of

Windows such as Windows 2000 and Windows XP, but altered or unavailable in the later

version of Windows. Therefore, these system calls are ignored(Vinod & Viswalakshmi,

2018).

 Second, failed system calls do not define the characteristics of the suspicious

program, for example, if the program attempts to read a file twice and fails it, and succeeds

in reading the file for the third time, the first two unsuccessful system calls are considered

to be identical calls. To avoid storing duplicates of the same system calls, the failed system

calls should be removed.

4.3.3 Feature selection

Feature selection is a technique for selecting the most important and relevant

features that are suitable for the detection of ransomware models. A feature selection phase

constitutes an important module for the classification of ransomware and benign samples.

This approach has several advantages such as the reduction of the quantity of sample (less

features). On the one hand, this reduction makes it much easier to manage the data, and

improve the accuracy of the classification, it also helps the authors to have a better

understand of the results provided by the detection model. The feature selection gathers

125

different techniques allowing to select the subset of features set among the whole features,

we employed various selection methods and techniques as we demonstrate in the following

subsections (Yang & Pedersen, 1997).

4.3.3.1 Term Frequency-Inverse Document Frequency

After extracting features of all ransomware and benign samples, the total number of

the extracted integrated features in section 4.4.2 was 13, 631 and this number of features is

too large for processing and feeding to classification algorithm, therefore, we selected 3930

as prominent features as expressed in Figure 4.7. Selecting the most relevant subset features

from the original features can improve classifier performance and the accuracy of

classification operation; hence, the effective feature set was identified using term weight as

the criterion of feature selection.

We applied term frequency-inverse document frequency (TF-IDF) feature selection

method for setting the weight to a term based on its inverse document frequency and

evaluating how important feature is a document in the collection (Chen, Islam, Haswell, &

Bridges, 2019). The purpose of using TF-IDF weighting is to eliminate those features that

commonly occur in many vectors while giving more attention to features that are less

frequent in the vectors. The formula for the TF-IDF expressed as follows:

 𝑊𝑖 = 𝑇𝐹(𝜔𝑖, 𝑑) × 𝐼𝐷𝐹(𝜔𝑖) (4.3)

Where Wi is the weighting scheme of word ωi in document dD, and TF (ωi, d) is

the frequency of term of ωi in document d, and IDF (Inverse Document Frequency) is then

defined as:

 𝐼𝐷𝐹(𝜔𝑖) = 𝑙𝑜𝑔(
 |𝐷|

𝐷𝐹(𝜔𝑖)
) (4.4)

Where DF (ωi) represents the appearance of ωi in a document D. After experiments

and study of many technical reports, seven feature classes were extracted as shown in Table

4.2 with a brief explanation.

126

Figure 4.7: Number of extracted and selected features

We observed in our experiments that the highest scores counted by TF-IDF are

Registry Keys and API Stats. These are the two most indicative among all other feature

classes. Dropped files feature are scaled down due to some normal operations frequently

occur in the entire analysed log files.

Table 4.2: Weights of selected feature classes using TF-IDF algorithm

Feature Classes TF-IDF Score Analysis Type Percentage

1 Registry Paths 2.682 Dynamic Analysis 21.44%

2 Windows API Calls 2.596 Dynamic Analysis 20.72%

3 Files Operations 1.583 Dynamic Analysis 12.64%

4 Printable String Information 1.452 Static Analysis 11.60%

5 Directory Operation 1.420 Dynamic Analysis 11.36%

6 Cryptographic Libraries 1.391 Dynamic Analysis 11.12%

7 Dropped Files 1.290 Dynamic Analysis 10.32%

127

4.3.3.2 Enhanced Maximum Relevance and Minimum Redundancy

The sequences extracted by the N-Grams in section 4.4.3.3. include many noise

instances that will not uniquely identify the function of malicious files. The automatic

identification of these discriminative subset features from the system call logs is a very

indispensable task in the analysis phase since it is time consuming and requires many efforts

to clean the data. To address this issue, we employed the Maximum-Relevance and

Minimum-Redundancy (mRmR) feature selection method proposed by the Peng (Ramí

rez‐Gallego et al., 2017).

The mRmR is a well-known filter algorithm that intended to find features with high

correlation (relevance) with the target class and low correlation (redundancy) to other

features. mRMR has been successfully implemented in many different applications

including microarray gene expression data analysis, video processing and intrusion

detection (Acid et al., 2011). Maximum relevance selects the optimal feature related to the

behaviour of a malicious class without considering relationships among features. If 𝑆 is a

set of malicious features, 𝑀𝐼(𝑓𝑖, 𝐶) represents the mutual information between the features

𝑓𝑖 and the ransomware class, the maximum relevance is calculated by equation 4.5:

 𝑀𝑎𝑥_𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) =
1

|𝑆|
∑ 𝑀𝐼(𝑓𝑖, 𝐶) (4.5)

𝑓𝑖∈𝑆

For discrete features, the relevance and redundancy of the feature are measured by

calculating the mutual information between the features. Two system call features are

considered to be independent if the shared mutual information score is the minimum value

of 𝑀𝐼(𝑓, 𝑓) (Darshan & Jaidhar, 2018). The marginal probability represents 𝑝(𝑥) and 𝑝(𝑦)

whose joint probability distribution is 𝑝(𝑥, 𝑦). So, the mutual information of feature pairs

is defined in equation 4.6:

 𝑀𝐼(𝑓, 𝑓) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 𝑥,𝑦

 (4.6)

128

Selecting features based on maximum relevance (mR) can identify the actual

behaviour relevant to the ransomware. However, mR brings redundancies, since a feature

𝑓𝑖 might be highly dependent on some features selected previously (Ramírez‐Gallego et

al., 2017). To handle the repetition problem in mR, minimum Redundancy (mR) criterion

is utilized and defined as:

 𝑀𝑖𝑛_𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) =
1

|𝑆|2
∑ 𝑀𝐼(𝐹𝑖, 𝐹𝑗) (4.7)

𝑓𝑖,𝑓𝑗∈𝑆

Where 𝑀𝐼(𝐹𝑖, 𝐹𝑗) is the minimum value of mutual information between feature 𝐹𝑖

and feature 𝐹𝑗. The relevance of the system call features to the target Ω is maximized and

redundancy is minimized by merging these two conditions: 𝑀𝑎𝑥_𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) and

𝑀𝑖𝑛_𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) into a single score function denoted by mRMR using mutual

information difference (𝑚𝑅𝑚𝑅 𝑀𝐼𝐷) defined as below:

 𝑀𝐼𝐷 = 𝑀𝐴𝑋𝑆 [𝑀𝐼(𝑓𝑖, Ω) −
1

|𝑆|
∑ 𝑀𝐼(𝐹𝑖, 𝐹𝑗)

𝑓𝑖,𝑓𝑗∈𝑆
] (4.8)

Regarding mRmR, subset features {𝑓𝑖 … . . 𝑓𝑞} ∈ 𝐹 are selected as incremental

search method by finding the features having a maximum value of mutual information

𝑀𝐼(𝐹𝑖 , 𝐹𝑗). These features are ranked based on their relevance to class, and the redundancy

of the features are diminished.

Table 4.3: List of notations used in this thesis

Symbol Meaning

𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼) The system call trace contains a process 𝑃 that invokes system call

with input 𝐼

{𝑓𝑖 … . . 𝑓𝑞} ∈ 𝐹 The subset features are extracted from the feature sets

𝐶 ∈ {𝑀, 𝐵}𝑚 The target class 𝐶 that contains malicious 𝑀 and benign 𝐵 labels

𝑓 ∈ 𝑅𝑚𝑥𝑛 The matrix containing 𝑚 samples and the 𝑛 features

(𝑓𝑖 , 𝑓𝑗) The system call vectors

𝑀𝐼(𝑓𝑖, 𝐶) The mutual information of the pair features and the class 𝐶

𝑝(𝑥, 𝑦) The joint probability distribution of MI

𝑙 ∈ {𝑠1𝑠2𝑠3. . 𝑠𝑡} The list of the system call sequences

(𝑓𝑖 , 𝑓𝑗) ∈ 𝑆 The input of the jth and the ith features in the system call sequences

129

One limitation of mRmR is the unnecessary computation of the mutual information

among pairs of features which gives us the motivation of this Enhanced mRmR method.

This is due to the mRmR uses a forward selection technique to find K feature in the features

set that maximize the 𝑀𝐼𝐷(𝑓𝑖, 𝐶) function. The method starts with an empty set, selects the

best improvement features, adds to the subset of features {𝑓𝑖 … . . 𝑓𝑞}, and removes

from original feature set F. This process continues until all subset features become equal to

the 𝑘. In this repetition, the mRmR algorithm calculates the 𝑀𝐼𝐷 value on (𝑛 − 𝑘 + 1)

feature at each iteration (Han, Huang, & Qin, 2017).

 For example, to decide the {𝑓𝑖 … . . 𝑓𝑞}, the algorithm computes the value of

𝑀𝐼𝐷(𝑓𝑖 , 𝑓𝑗) on the same feature 𝑓 frequently, due to the subsequent iterations, the

computation complexity of the algorithm becomes high when a large number of noisy

features is used. The existing mRMR form is not suitable for ransomware detection because

it is computationally expensive due to a large number of system call features generated by

n-gram. Therefore, we need a lighter version of mRmR to overcome this difficulty.

To overcome this limitation, we put forward the Enhanced Maximum Relevance

and Minimum Redundancy (EmRmR) method to construct an effective system call feature

set with a small number of evaluations and less computational complexity. To achieve this,

we introduced an associative process based on the assumptions for accumulating the

𝑀𝐼(𝑓𝑖 , 𝑓𝑗) values on the feature pairs in each iteration to avoid redundant computation.

We predefined a maximum threshold 𝑘 and the items of the list as shown in Equation 4.9.

 𝐿 = ∑ 𝑀𝐼(𝑓𝑖, 𝑓𝑗) (4.9)

𝑘

𝑖=𝑘+1

In this work, we preserved the idea of the mRmR algorithm but adapted it to solve

the computational problems of the algorithm. The proposed method selects the same subset

features as the original mRmR algorithm. In the beginning, the algorithm accepts

discretised data set as input 𝐷 = (𝑓, 𝐶), where 𝑓 ∈ 𝑅𝑚𝑥𝑛 is a matrix containing 𝑚 samples

and 𝑛 features, 𝐶 ∈ {𝑀, 𝐵}𝑚 is a target class consists of malicious 𝑀 and benign 𝐵 labels,

and the number of features to be selected {𝑓𝑖 … . . 𝑓𝑞} .

130

The function Mutual-info(𝑓𝑖, 𝐶) in the algorithm calculates the relevance of features

to the target class as Equation 4.7, the feature with the highest score is extracted and stored

as 𝑓𝑖 ∈ 𝐹 in 𝑆 variable.

To avoid the redundant computations of the 𝑀𝐼, we then created an empty list

sequence to store the sum of the mutual information output features and use it as a reference

for the next step. A loop is then performed for the remaining features and the mutual

information between the selected feature and the unselected features is computed again as

Equation 6. Finally, the algorithm creates 𝑅𝑓 variable to store features with the maximum

value of relevance and minimum redundancy.

Algorithm 4.3: Enhanced Maximum Relevance and Minimum

Redundancy (EmRMR)

Input: Discretised data d, number of features in d is F, subset features

{𝑓𝑖 … . . 𝑓𝑞} ∈ 𝐹 ,class 𝐶, number of features to select q, 𝑆𝑓 selected

features

Output: selected output features F

 Initialization
1 𝑆𝑓 ← 0;

2 for 𝑓𝑖 ∈ 𝐹 do
3 Relevance (S) ← Mutual_Info(𝑓𝑖 , 𝐶);

4 Aggregate_ Redun =0;

5 end

for

6 𝑆𝑓=Max (Relevance (S))

7 𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡} ← [𝑓𝑖 ∈ 𝐹 | 𝑆]//To store the highest scorer

8 for t1: q-1 do

9 size ← len (𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡})

10 while 𝑣 ++ < size do

11 for 𝑓𝑗 ∈ 𝐹 do

12 𝑅𝑒𝑙𝑓 ← Relevance (S)

13 Aggregate_ Redun =(𝑘 + 1 + 𝑀𝐼(𝑓𝑖 , 𝑓𝑗 + 1))

14 end for

15 𝑅𝑓 ← 𝑅𝑒𝑙𝑓 - Aggregate_ Redun;

16 end for

17 return selected feature subset {𝑓𝑖 … . . 𝑓𝑞};

131

4.3.3.3 Feature selection using FastICA

 The extracted features are then applied to the Algorithm 4.4 to generate the global

set of features and the generation of the feature vector. The global set of features is

generated by combining all the features of the data set. In our data set, we have accumulated

a total 15972 features in the global set. In the feature vector, the columns represent the

features and the rows represent the ransomware or benign ware. The values of this vector

will be {0,1} where {0} represents the absence of the feature and {1} represents the

presence of the feature. Since the global set contains 15972 features and the data set

contains 1237 samples, the two-dimensional matrix will contain 1237 rows and 15972

columns.

The challenging task is to handle such a large number of features. Since ICA

(Independent Component Analysis), a statistical procedure to solve the Blind Source

Separation can be used in the selection process where the components are statistically

independent. FastICA (Hyvärinen & Oja, 2000) is considered as the feature compression

method in our model. The high computation complexity of FastICA did not affect our

system as we have used the GPU based operation where we have used 8 parallel GPUs. It

uses a fixed-point iteration scheme that has been found in independent experiments to be

10-100 times faster than conventional gradient descent methods for ICA. Another

advantage of the FastICA algorithm is that it can be used to perform projection pursuit as

well, thus providing a general-purpose data analysis method that can be used both in an

exploratory fashion and for estimation of independent components. We have selected

40,50, 80 and 100 features using FastICA. These selected features are then applied to the

model.

The performance of deep learning mostly depends on the size of mini batch, initial

settings of weight, number of epochs, learning rate, momentum and number of hidden

layers and units. The different architectures of nodes in hidden layers also affect the

performance of the deep learning-based model (Zhang et al., 2019). In the first phase of our

experiment, we have varied the epoch number.

132

Algorithm 4.4: Global Feature Set Generation and Feature Vector

Generation

𝒊𝒏𝒑𝒖𝒕 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡

Output 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟

1. Begin

2. 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 ← ∅

3. for each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 in each sample in input dataset do

4. if 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 not in 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 then

5. 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

6. end for

7. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 ← ∅

8. for each sample in input data set do

9. 𝑅𝑜𝑤 ← ∅

10. 𝑅𝑜𝑤[′𝑖𝑠_𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒′] ← {0 𝑓𝑜𝑟 𝑏𝑒𝑛𝑖𝑔𝑛, 1 𝑓𝑜𝑟 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒}

11. If 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 is present in the sample

12. 𝑅𝑜𝑤[𝐹𝑒𝑎𝑡𝑢𝑟𝑒] ← 1

13. else

14. 𝑅𝑜𝑤[𝐹𝑒𝑎𝑡𝑢𝑟𝑒] ← 0

15. Append 𝑅𝑜𝑤 to 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

16. end for

17. return 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

18. END

We have varied the epoch number from 50 to 500. In the result section, we have

mentioned only the performance result using 500 epochs because the 500 epochs show the

best performance. Then, we have developed the three different node arrangements-

Architecture1, Architecture2 and Architecture3. The following Table 4.3 shows the nodal

arrangements that are considered in our model.

133

 TABLE 4.4: ARCHITECTURE1, ARCHITECTURE2 AND ARCHITECTURE3

Architecture Name and Definition Combinations considered in our model

Architecture 1 with equal nodes

in L1 and L2

32 nodes in L1 and L2, represented as L32_L32

64 nodes in L1 and L2, represented as L64_L64

128 nodes in L1 and L2, represented as L128_L128

512 nodes in L1 and L2, represented as L512_L512

1024 nodes in L1 and L2, represented as

L1024_L1024

Architecture 2 with less nodes in

L1 and more nodes in L2

32 nodes in L1 and 64 nodes in L2, represented as

L32_L64

64 nodes in L1 and 128 nodes in L2, represented as

L64_L128

128 nodes in L1 and 512 nodes in L2, represented

as L128_L512

512 nodes in L1 and 1024 nodes in L2, represented

as L512_L1024

Architecture 3 with more nodes in

L1 and less nodes in L2

64 nodes in L1 and 32 nodes in L2, represented as

L64_L32

128 nodes in L1 and 64 nodes in L2, represented as

L128_L64

512 nodes in L1 and 128 nodes in L2, represented

as L512_L128

1024 nodes in L1 and 512 nodes in L2, represented

as L1024_L512

4.4 Summary

The main purpose of this section is to create appropriate input for the classification

algorithms and to describe the steps involving data pre-processing. This process consists

several sections; the first section explained the portable executable file format. In this

section sample analysis process to identify the run time behaviour of the ransomware is

discussed. This process mainly focused on the dynamic analysis of a binary that executes

one or more times to observe the ransomware behaviour. The environment in which the

binary is executed is in a controlled environment that guarantee its containment. To extract

the set of features such as Register, file operations, Windows API function calls, and file

paths from the PE executables feature extraction process are discussed in the third section.

134

Data pre-processing that contains the identification of executable files and refinement

model. The massive amount of API calls invoked by the malicious executable during its

execution, some of these calls are irrelevant and redundant. To filter out API calls, we

discarded the irrelevant and redundant features to identify the real malicious behaviours.

Feature reduction method is also discussed, the majority of feature is not contributing the

accuracy and the speed of the classification algorithms, therefore reducing the less

important feature would improve the efficiency of the algorithms. Several feature selections

were used to select the informative feature that would be input to train the machine learning

algorithms.

2. 5. RESULTS AND DISCUSSIONS

135

This section describes the experimental results obtained from the previous section.

We describe the behavioural detection methods and present their accuracy based on the

performance metrics aforementioned in section 3. The performance of the classifier

depends on how the model was built up and how the parameter values assigned, so the first

section of this section illustrates the process of setting the parameters. We select various

parameters and test our models individually to select the best model among them. The

Second section, we highlight the experimental results of the research, so, we divide our

result into three different detection models and we demonstrate the performance of each

result as tabular forms. The first experiment, we performed an automated dynamic

behavioural analysis of real-world ransomware samples that infect Windows platforms, to

distinguish these malicious files from benign files we utilized supervised machine learning

algorithms like Support vector machine (SVM) and Artificial Neural Network (ANN).

The dimensionality reduction of the Windows System Calls features for the

ransomware detection are also presented in the second experiment. Naturally, Windows

API calls are suffering a massive amount of irrelevant and redundant system calls invoked

by the malicious executables during its execution. Therefore, in this experiment, we

introduce a refinement process to reduce the size of the system call traces and to filter the

Windows API calls. Finally, the third experiment discusses a model framework based on

the runtime behaviour of ransomware and deep learning based semi-supervised technique.

Deep learning is a robust unsupervised approach that can extract the hidden intrinsic

patterns from unsupervised feature space through a non-linear transformation and layered

structure in which upper layers compute more abstract forms of features presenting the

latent sources of variabilities in the feature space. Finally, we compared the proposed

methods against previous similar works.

5.1 Setting Experimental Parameters

136

Parameters selection values for the machine learning algorithms have an extreme

effect on the model’s performance and the generalization error. There is no certain method

and technique to set on the optimal parameter values and ranges, only to do an exhaustive

repetitive search over the parameter space to find the best setting. We described the various

parameters and tested our models individually to select the best model among them. In this

study, SVM kernel functions such as the linear kernel, polynomial kernel and Radial basis

function (RBF) are used as shown in Table 5.1. The parameters values for kernel functions

can have an extreme effect of the model’s performance and the generalization

error(Takeuchi et al., 2018)

Table 5.1 Selected parameters value of SVM kernels

Kernel

functions

PARAMETER VALUES

Value

Complexity parameters C

Build logistic

model

 1.0 10 100 1000
Assigned True

Linear kernel
(λ=1)

Polynomial

kernel

(λ=2)

Assigned True

(λ=3)

(λ=4)

Radial Base

Function

kernel

(γ= 0.01)

Assigned to

True

(γ= 0.125)

(γ= 0.25)

(γ= 0.5)

(γ= 1.0)

Therefore, we set the parameters of these kernel functions with the incremental

regularization parameter λ and the cost parameter of C. These selection parameters require

137

an exhaustive repetitive search over the parameter space to find the best settings. The above

Table 5.1 illustrates the kernel functions used and values of their subsequent parameters.

The parameter C regulates the trade-off between the complexity of the model and the

empirical risk of the model. There are two values lambda and gamma both has a decimal

and floating-point with consideration of the complexity control starting 1.0 until 1000 to

reduce overfitting. For proper probability estimation, the BuildLogisticModel was set to

true for all kernel functions.

A user-defined neural network parameter such as hidden layers, momentum and

learning rate was assigned values to test the network performance. The learning rate

parameter is the specified user value that controls the step size when weights are iteratively

adjusted. The momentum parameter is helpful to prevent the algorithm from converging to

a local minimum (Dietterich & Kong, 1995). Setting a high momentum parameter value

can facilitate to increase the speed of convergence of the algorithm. However, selecting too

high momentum parameters can generate a risk of overshooting the minimum, which can

cause the algorithm to become unstable. Hence, in this study, four values of learning rate

and momentum parameters are picked as: 0.1, 0.3, 0.6 and 0.9 respectively as shown in

Figure 5.2. Finally, we created many different models with a variety of outputs.

Table 5.2: Selected ANN user defined parameter values

Parameters Values Auto

build

Graphical user

interface

Epochs 100,500 True True

Hidden layers 1,2,3 True True

Number of neurons in

hidden layer

15,30,60 True True

 Momentum 0.1,0.3,0.6,0.9 True True

Learning rate 0.1,0.3,0.6,0.9 True True

On the other hand, the Deep Learning approach has the benefit of training the model

using the extracted and selected features and behavioural patterns through hidden nodes in

different layers. Since the cyber-attack patterns have been changed very frequently, the

138

inherent cyber-attack patterns can be extracted using the multiple layers of abstraction of

Deep Learning and represent the actual attack patterns to a non-linear and higher

abstraction of the real scenarios which benefits the detection model (LeCun et al., 2015).

Figure 5.1: Architecture 1 with equal nodes in L1 and L2

Since deep learning-based model handles multiple hidden layers, we need to decide

how many hidden layers will be suitable for our model. Too many hidden layers will cost

us more computational complexity, we have chosen two hidden layers. The nodes of the

hidden layer can vary and form different architectures of nodes. As we have considered

only two layer- we have named it as L1(first layer) and L2 (second layer). The following

Figures show the adapted architectures of our model.

Three different architectures have implemented in our modelArchitecture1 in Figure

5.1, Architecture2 and Architecture3. Architecture1 has equal number of nodes in L1 and

L2. Architecture2 has a smaller number of nodes in L1 and more nodes in L2 where as

Architecture3 has more nodes in L1 and less nodes in L2 as shown in Figure 5.2.

139

Figure 5.2: Architecture3 with more nodes in L1 and less nodes in L2

Figure 5.3: RBM layers with input and hidden layer nodes

In Figure 5.3, the input layer is denoted as “𝑖”, hidden layer as “𝑗”, 𝑥 is the bias of

input nodes as shown in Figure 5.3, 𝑦 is the bias of hidden nodes and 𝑤 is the weight then

the structure of input (𝑘)and hidden nodes(𝑙) holds the energy as follows:

𝐸𝑅𝐺(𝑘, 𝑙) = − ∑ 𝑥𝑖𝑖 𝑘𝑖 − ∑ 𝑦𝑗𝑙𝑗𝑗 − ∑ 𝑘𝑖𝑙𝑗𝑤𝑖𝑗𝑖𝑗 (5.1)

The nodes will generate 0 or 1 using the following equations

 For input nodes, 𝑆(𝑘𝑖=1|𝑙) = 𝜎(𝑥𝑖 + ∑ 𝑤𝑖𝑗𝑙𝑗𝑗) (5.2)

 For hidden nodes, 𝑆(𝑙𝑗=1|𝑘) = 𝜎(𝑦𝑖 + ∑ 𝑤𝑖𝑗𝑘𝑖𝑖) (5.3)

140

In these equations, 𝜎(𝑡) = 1 (1 + 𝑒−𝑡)⁄ where 𝑡 = 𝑥𝑖 + ∑ 𝑤𝑖𝑗𝑙𝑗𝑗 and 𝑡 = 𝑦𝑖 +

∑ 𝑤𝑖𝑗𝑘𝑖𝑖 respectively. Equation 5.4 is followed in tanning section to maintain the stochastic

ascent algorithm.

𝑆(𝑘) = (1/𝑡) ∑ 𝑒−𝐸𝑅𝐺(𝑘,𝑙)
𝑗 (5.4)

Let, the learning rate is µ. µ should be more than zero. The change of weight matrix

is accumulated by the following equation where the expectation of data is denoted by β and

expectation of reconstruction is denoted by γ.

 Δ𝑤𝑖𝑗 = µ(β − γ) (5.5)

5.2 Experimental Results

In this section, we will present the results obtained from the experiments of this

research. We carried out three main different experiments including supervised and semi-

supervised machine learning algorithms. In every category we will highlight and explain

the results gathered from that experiment.

5.2.1 Experiment one

In this experiment we employed a behavioural malware detection framework

mentioned in section 3, subsection 3.2.1 in Figure 3.2 for ransomware using two supervised

machine-learning approaches like Support Vector Machine (SVM) and Artificial Neural

Network (ANN) algorithms. We performed an automated dynamic behavioural analysis for

673 real-world ransomware samples that infect Windows platforms. We focused on the

malicious behaviours of 14 newly emerged ransomware families. In the following

subsection, three different experiments are conducted to train and test the classifiers.

5.2.1.1 Train-test splitting method

The purpose of this experiment is to evaluate the performance of the proposed

integrated features by employing a train-test split method, which is dividing the whole data

set into two subsets: training and testing data. first, we split our dataset randomly with a

141

uniform distribution of 80: 20% ratio as training and testing respectively. The experimental

results of ANN showed an accuracy of 0.958 with 0.101 false positive rates while SVM

presented higher false positive of 0.109 compared to ANN and the accuracy of 0.932.

Table 5.3: Result of the train-test splitting method

 FP Rate TP Rate Precision Recall AUC Detection Rate

SVM 0.109 0.853 0.923 0.926 0.904 0.932

MLP 0.101 0.956 0.945 0.951 0.965 0.958

The ROC curve of this experiment is presented in Figure 5.4, and the Table 5.3

shows the results of the FPR, TPR, AUC, precisions and the recalls and the accuracy of the

classifier based on the training and testing splitting method.

Figure 5.4: ROC curve of the classifiers on train-test splitting method

5.2.1.2 Cross-validation method

In the train-test splitting method, once the data set is divided into a ratio that does

not relevant each class of the experimental samples, the result of the holdout error rate will

be inaccurate. To overcome this limitation, we applied the 10-Fold cross-validation

technique to prevent the overfitting problem and to estimate the effectiveness of our

models. In this approach, the entire data set was randomly shuffled and divided into 10

142

equal-sized of subsets such that, each repetition (10-fold) we build our model with 10-1

folds of the data set for the evaluation of the trained model and the remaining one-fold

constitutes for testing.

In this experiment, we have evaluated the performance of classifiers using 10-fold

cross-validation to train and test the algorithms. The results achieved by the classifiers in

this experiment on the whole dataset were quite satisfactory. The best accuracy reached

SVM by presenting 0.982 of AUC with less than 0.035 of false positive rate. It is important

to examine the ability of the classifiers for distinguishing the ransomware from benign

samples, therefore, precision and recall are applied to both datasets and presents 0.945 and

0.942 respectively. SVM also shows a fairly better accuracy of 0.952 comparing to MLP

that shows 0.945 of detection rate and 0.036 of the false positive rates as presented in Figure

5.5 and Table 5.4. This indicates that SVM has super generalization ability and is quite

tolerant for training the iteration of 10-fold set size.

Table 5.4: Result of the 10-fold cross validation method

 FP Rate TP Rate Precision Recall AUC Detection Rate

SVM 0.035 0.962 0.945 0.942 0.982 0.952

MLP 0.036 0.982 0.931 0.932 0.971 0.945

Figure 5.5: ROC curve of the classifiers on the 10-Fold validation method

143

5.2.1.3 Testing with selected subset features

 The aim of this experiment is to evaluate how selected subset features can

effectively contribute to the performance of the algorithms. The selection of subset features

eliminates redundant and irrelevant features and reduces the dimensionality of the dataset.

In this experiment, we divide our features into seven subset features by considering their

importance and ranking based on the aforementioned feature selection algorithm presented

in section 4, subsection 4.6.1. We created the most prominent features as Top-N feature

set: top20, top30, top40, top50, top60, top70, and top80.

Table 5.5: FPR, TPR, AUC and accuracy for SVM and ANN with subset features

Support Vector Machine Artificial Neural Network

FP Rate TP Rate AUC Det. Rate FP Rate TP Rate AUC Det. Rate

20 0.371 0.625 0.948 0.932 0.033 0.952 0.972 0.956

30 0.041 0.959 0.976 0.971 0.007 0.988 0.986 0.987

40 0.006 0.993 0.977 0.976 0.012 0.987 0.982 0.981

50 0.071 0.935 0.974 0.959 0.035 0.962 0.985 0.964

60 0.160 0.839 0.951 0.936 0.035 0.964 0.978 0.948

70 0.041 0.958 0.973 0.933 0.034 0.951 0.980 0.941

80 0.103 0.837 0.238 0.891 0.036 0.841 0.186 0.901

The experimental results demonstrated that ANN showed the highest accuracy of

98.79% when top30 of the feature set was used as training and testing. However, this

classification accuracy had dramatically decreased to 95.63% when top20 of the feature set

was used. The other hands, the best model of SVM presented an accuracy of 97.6% when

top40 of the feature was applied for training the model. Although SVM performed ratio of

0.993 of TPR and 0.0371 of FPR, this indicates that SVM has a higher ratio of false positive

rate compared to ANN.

144

Figure 5.6: Comparison of SVM and ANN classification accuracy with subset features

The experimental result implies the importance of considering the selection of

different subset features. Figure 5.6 compares SVM and ANN classification accuracy

across different subset features. By inspecting Figure.5.6, both ANN and SVM had low

classification accuracy when top80 of the feature set used to train and test the model. This

indicates that more features do not improve the performance of the classifiers as Table 5.5

shows the results of each classifier based on selected features.

5.2.2 Experiment two

In this section, we present the results obtained from various extensive experiments.

To determine the best model for the detection of ransomware, we tested the performance

of five supervised algorithms such as Decision Tree (DT), K-Nearest Neighbour (kNN),

Logistic Regression (LR), Random Forest (RF) and Support Vector Machine (SVM) on the

system call sequences made by the malicious and benign samples. The aforementioned

performance metrics are used to evaluate the models. The proposed architecture of the

dynamic characteristics of behaviour-based ransomware detection is presented in section

3, subsection 3.2.2 in Figure 3.3. In the following subsection, we describe the three different

experiments conducted to train and test the classifiers.

145

5.2.2.1 Windows System Calls with N-gram features

In this experiment, we evaluated the performance of the classifiers on 𝑛 − 𝑔𝑟𝑎𝑚𝑠

of length 2,3,4 and 5 from each system call sequence by employing the train-test split

method, which divides the data-set into two subsets: training and testing data. Before

building the model, we randomly splitted the dataset with a uniform distribution of 80: 20%

ratio as training and testing respectively. The accuracy of the classifiers and the values of

the Area under Curve (AUC) were used as evaluation metrics in this experiment.

Table 5.6: The accuracy of the Tran-test splitting method

 KNN LR SVM RF DT

2-grams 0.584 0.723 0.663 0.678 0.636

3-grams 0.958 0.924 0.984 0.782 0.981

4-grams 0.751 0.865 0.899 0.613 0.815

5-grams 0.729 0.783 0.887 0.592 0.751

Table 5.6 and the Figure 5.7 compares the accuracy of each classifier trained and

tested with various 𝑛 − 𝑔𝑟𝑎𝑚 sequences. The SVM with 3-grams achieved the highest

accuracy among all classifiers, ranging from 66% to 98% with less 0.0261 false-positive

rate. The accuracy of this classifier remained stable when 4-grams and 5-grams of feature

sequence are employed. From the experimental results of the Table, the accuracy of kNN

and DT algorithms are nearly similar. These classifiers with 2-grams of features achieved

a lower accuracy of 58% and 63% respectively, while the accuracy increased significantly

when 3-grams of bytes were used.

The RF classifier produced the lowest accuracy among the classifiers when the

model was trained and tested using different lengths of 𝑛 − grrams. More specifically, the

classifier showed fairly good accuracy of 67% and 78% with 2-grams and 3-grams

sequences respectively. However, the classifier started a low accuracy of 61% and 59%

when 4-grams and 5-grams of system call sequences are trained and tested to the classifier,

this poor performance is probably due to the high computational complexity that the RF

146

Figure 5.7: The classifier’s accuracy on n-gram with train-test splitting method

requires to build the model as we enlarge the size of the n-grams, it also suffers overfitting

problem during the training that the model is unable to generalize the new features in the

testing phase. Interestingly, the LR significantly outperformed the other classifiers and

showed 0.723 of accuracy, it also presented less FPR of 0.413 when2 − 𝑔𝑟𝑎𝑚 features

were trained in the model. This is due to the classifier doesn't involve high computational

power when the model is trained with a smaller size of n-grams.

Figure 5.8 shows the trends for the ROC curve of the classifiers with 2-gram, 3-

gram, 4-gram, and 5-gram. Overall, the AUC values decreased significantly when 2-gram-

based features were used to train the model. This is due to the small length of 𝑛 − 𝑔𝑟𝑎𝑚𝑠

that can result in a poor characterization of the ransomware behaviour, which leads to the

increase the false positive alarms. We expanded the feature dimensionality by increasing

the size of the window to 3-gram.

147

The AUC values of the classifiers also increased dramatically. From Figure 5.8 (c),

it can be seen that the AUC declined slightly at an average of 0.16% for 𝑛 = 4. Moreover,

Figure 5.8 (d) compares the ROC curves of longer sequences for 𝑛 = 5 on the classifiers.

The result shows a considerable drop in AUC values. One possible reason is that a long

sequence of the 𝑛 − 𝑔𝑟𝑎𝑚𝑠 pattern is not useful for distinguishing the behavior of the

ransomware from the benign. In addition, increasing the length of N-grams sequences also

increases the training time of the model.

5.2.2.2 Windows System Calls on N-grams with cross-validation method

The purpose of this experiment is to evaluate the performance of the classifiers on

various sizes of n-gram features with 10 − 𝐹𝑜𝑙𝑑 cross-validation technique. There is a

Figure 5.8. ROC Curve of the Classifiers on N-grams with train-test splitting method

148

limitation in the train-test splitting method, once the dataset is divided into a ratio that does

not relevant each class of the experimental samples, the result of the holdout error rate will

be inaccurate. To overcome this problem, we applied the 10 − 𝐹𝑜𝑙𝑑 cross-validation

technique to prevent the overfitting problem and to estimate the effectiveness of our

models. In this approach, the entire data set was randomly shuffled and divided into 10

equal-sized subsets such that, each repetition (10-fold) we build our model with 10-1 folds

of the data set for the evaluation of the trained model and the remaining one-fold constitutes

for testing.

We tested the accuracy and the Roc curve of every sliced window of different

feature lengths. The results of this experiment show an accuracy variation among the

classifiers (accuracy 52-93%) when 2-grams, 3-grams, 4-grams and 5-grams length with

10-fold cross-validation is used to train and test the algorithms as shown in Table 5.7. These

results were quite satisfactory compared to the previous experiment.

Table 5.7: The accuracy of N-gram with the 10-fold cross-validation

Figure 5.9 shows the classifier’s accuracy on n-grams of length 2,3,4 and 5 from

each system call sequence with the 10-fold cross-validation technique. The best accuracy

among all classifiers was achieved by the SVM with 0.899 of AUC. It also shows the

accuracy of 0.923 when 𝑛 = 4 with less than 0.124 of false-positive rate. This indicates

that SVM has super generalization ability on a large windows size, and is quite tolerant for

training the iteration of 10-fold set size. It can also be observed that kNN performed a low

accuracy of 52% and 63% on both 𝑛 = 2 and 𝑛 = 5 respectively. However, the classifier

shows a fairly better accuracy on = 3. The detailed results of the accuracy of each classifier

based on various windows size is also presented in Table 3 and Figure 5.10.

 KNN LR SVM RF DT

2-grams 0.526 0.782 0.752 0.536 0.829

3-grams 0.769 0.827 0.912 0.751 0.842

4-grams 0.746 0.812 0.923 0.572 0.782

5-grams 0.582 0.683 0.632 0.652 0.752

149

 Figure 5.9 illustrates the AUC variations for the five classifiers on the different 𝑛 −

grams. Three classifiers (LR, SVM, and DT) have a high AUC rate while the other two

classifiers (kNN and RF) have a slightly lower AUC rate when features are sliced into 3 −

𝑔𝑟𝑎𝑚𝑠 and 4 − 𝑔𝑟𝑎𝑚𝑠. By inspecting Figure 6 (d), all classifiers had a significantly low

AUC rate when 5 − 𝑔𝑟𝑎𝑚𝑠 of the feature set used to train and test the model. This is due

to the number of n-gram sequences that increases whenever the window size increases.

Figure 5.9: ROC Curve of the Classifiers on N-grams with 10-fold cross-validation

150

Figure 5.10: The classifier’s accuracy on N-gram with 10-fold cross validation

5.2.2.3 Windows System Calls on k-features

The aim of this experiment is to evaluate how the sub selected 𝑘 features generated

by the Enhanced mRmR in section, subsection 4.6.2 can effectively contribute to the

performance of the algorithms. In this experiment, we divided the features into 𝑘 based

features by considering their importance and ranking determined by the Enhanced mRmR.

Similar to the previous section 5.3.2.2, the 10 − 𝐹𝑜𝑙𝑑 cross-validation technique was

employed to train and test the model. We evaluated five algorithms with the most prominent

features indicated as the Top-k feature set: 30, 60, 90 and 120, and their detection accuracies

were recorded and compared.

Table 5.8: The accuracy of the classifiers with k feature dimensions

 KNN LR SVM RF DT

30 0.567 0.766 0.853 0.674 0.657

60 64.47 0.887 0.853 0.724 0.949

90 0.782 0.801 0.974 0.576 0.805

120 0.701 0.779 0.842 0.589 0.783

151

Table 5.8 shows the detection accuracy of the classifiers with selected subset k

features. In this experiment, the highest accuracy of 97.4% achieved by the SVM with low

false-positive rate of 0.016 when the top90 k of the feature set was used. However, this

detection accuracy had dramatically decreased to 85.3% when top30 and top60 of the

feature set were employed. From Table 5.8, it is obvious that the kNN classifier exhibits

the lowest detection performance of 56.7%, 64.4% and 78.2% at all experimented k

features.

Table 5.9: Precision, Recall, F1-measure and FPR with k feature dimensions

 KNN LR SVM RF DT

Precision 0.308 0.751 0.986 0.601 0.801

Recall 0.328 0.761 0.994 0.555 0.816

F1-measure 0.358 0.749 0.986 0.554 0.807

FPR 0.801 0.284 0.016 0.399 0.216

As presented in the Table 5.8, the accuracy of all classifiers is slightly similar when

k=30. Regarding the classifier’s accuracy, the DT outperforms the other approaches by

presenting a 94.9% detection rate when the top60 features were applied. Furthermore, when

we increase the size of the k features to the 120, the accuracy of the classifiers improved

compared to the lower features. On the other hand, the experimental results shown in

Figure 5.11 reveals that the AUC values of the top30 features decreased as there are

behaviors that have a high frequency in both malicious and benign logs. This indicates that

fewer features do not characterize the real behavior of the ransomware as shown in Figure

5.11(a). Moreover, the ROC curve achieved the highest AUC rate of 98% as we increase

the size of the k to the top90 features. Table 5.9 illustrates the Precision, Recall, F1-measure

and FPR for the classifiers on the top90 k features. This Table clearly shows the SVM and

DT achieved better performance not only for the precision and recall but also the F1-

measure as well.

152

5.2.3 Experiment Three

In Experiment one, the classifiers presented low accuracy of 0.901 when the whole

dataset is used, this is due to some integrated features that are common both available in

ransomware and benign executables. In addition, we used a large dataset, containing several

major ransomware families and several hundreds of irrelevant and noisy features generated

by the ransomware to hide its malicious behaviour. Unlike, the experiment one, in this

section we applied system calls as they are effective for distinguishing between the

behaviour of malicious and benign programs. We also implemented an automated deep-

learning-based ransomware detection engine that can automatically detect whether an

executable is a ransomware or not. With thousands of ransomware executables, we

Figure 5.11: ROC Curve of the Classifiers with different on k features

153

thoroughly test our model and perform an in-depth analysis on the features that deep

learning essentially exploits to characterize the ransomware. So, deep learning models has

the ability to perform automatic feature extraction from raw data, also called feature

learning.

This section will represent the algorithm of our detection model presented in section

3, subsection 3.2.3. Here, we have considered the different arrangement of nodes described

in section 4, subsection 4.6.3 on Table 4.4. We have varied the epoch number and do the

train and test using 10-fold cross validation. The detection model is trained and tested using

both global features and selected features obtained from Algorithm 5.1.

Algorithm 5.1: Varying the node arrangements using Deep Learning based Model

 𝑖𝑛𝑝𝑢𝑡 ← 𝐷𝑎𝑡𝑎(𝐹1𝐹2, 𝐹3 … … … … 𝐹𝑚) {data set with m number of global features}

 Output 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2

1. Begin

2. Set 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 ←

(𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡1𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡2, … … … … 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑛)

3. for each 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 in 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 do

4. for 𝑓𝑜𝑙𝑑 = 1 to 10 do

5. for 𝑒𝑝𝑜𝑐ℎ = 1 to 500 do

6. Train the model using global set of features

7. Test the model

8. Evaluate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1

9. end for

10. end for

11. end for

12. Set 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐹𝑎𝑠𝑡𝐼𝐶𝐴

13. for each 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 in 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 do

14. for 𝑓𝑜𝑙𝑑 = 1 to 10 do

15. for 𝑒𝑝𝑜𝑐ℎ = 1 to 500 do

16. Train the model using 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

17. Test the model

18. Evaluate the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2

19. end for

20. end for

21. end for

22. END

154

Since we are considering the different number of nodes in the hidden layer, we have

chosen three different architectures of node arrangements- equal number of nodes in hidden

layers, more nodes in 1st layer and less nodes in 2nd layer and less nodes in first layer,

more nodes in 2nd layer. In the first stage of our experiment, the deep learning-based

detection model is developed using TensorFlow, and the performance of this model is

evaluated using the global set of features. In our data set, there are total 15,972 features.

This large number of features takes much more time even though we have GPU based

operations to minimize the computational cost. The following Table 5.10(A), 5.10(B))

describes the performance details of our model using the global set of features.

Table 5.10 (A): Performance details using Global Set of features

With Global set of features and 500 epochs

 L32_L

32

L32_L64 L64_L3

2

L64_L64 L64_L128 L128_L64

Accuracy 95.227 94.9040 95.3092 94.90734 95.1505 95.067

Loss 0.1576 0.17443 0.1566 0.1596 0.1645 0.1584

Recall 0.9543 0.94413 0.9440 0.9481 0.9482 0.9420

Precession 0.9260 0.92800 0.9370 0.9245 0.9296 0.9330

f1 score 0.9398 0.9351 0.9402 0.9356 0.9385 0.9371

AUC 0.9926 0.9914 0.9927 0.9927 0.9921 0.9921

TPR 0.9702 0.9637 0.964 0.9662 0.9663 0.9626

TNR 0.9257 0.9268 0.9363 0.9233 0.9290 0.9323

FPR 0.0742 0.0731 0.0636 0.0766 0.0709 0.0676

FNR 0.0297 0.0362 0.036 0.0337 0.0336 0.0373

 Table 5.10 (B): Performance details using Global Set of features

With Global set of features and 500 epochs

 L128_L

128

L128_L

512

L512_L

512

L512_L1

024

L1024_L

512

L1024_L1024

Accuracy 95.877 95.309 95.956 95.793 95.392 95.962

Loss 0.1548 0.1613 0.1572 0.1758 0.1666 0.1548

Recall 0.9545 0.9503 0.9627 0.9627 0.9524 0.9648

Precession 0.9415 0.9312 0.9361 0.9320 0.9314 0.9343

f1 score 0.9475 0.9405 0.9490 0.9469 0.9415 0.9492

AUC 0.9930 0.9926 0.9933 0.9932 0.9921 0.9935

TPR 0.9705 0.9677 0.9756 0.9756 0.9690 0.9769

155

TNR 0.9408 0.9310 0.9356 0.9318 0.9311 0.9338

FPR 0.0591 0.0689 0.0643 0.0681 0.0688 0.0661

FNR 0.0294 0.0322 0.0243 0.0243 0.0309 0.0230

Table 5.10(A, B) shows that, we have achieved 95.96% of accuracy with equal

number of nodes 1024 in each layer (Architectute1). The area under ROC curve (AUC) is

0.9935, very close to 1. Moreover, we have used FastICA for the compression of the

features and run the model with 40,50,80 and 100 features. The highest accuracy level is

94.837% using 50 selected features and architecture1 with 512 nodes in L1 and L2 is

considered here. In this case, the AUC is 0.9871 which is also very satisfactory. The

performance details are shown in the Table 5.11(A, B), Table 5.12(A, B), Table 5.13(A, B)

and Table 5.14(A, B).

Table 5.11 (A): Performance details using FASTICA with 40 features

With 40 selected features using FastICA and 500 epochs

 L32_L3

2

L32_L6

4

L64_L32 L64_L64 L64_L128 L128_L64

Accuracy 92.729 93.457 92.725 93.619 94.185 92.648

Loss 0.2359 0.2220 0.2355 0.2217 0.2115 0.2223

Recall 0.8944 0.9007 0.8861 0.9131 0.9069 0.8988

Precessio

n

0.9216 0.9318 0.9295 0.9268 0.9433 0.9155

f1 score 0.9060 0.9148 0.9054 0.9181 0.9239 0.9054

AUC 0.9850 0.9857 0.9851 0.9856 0.9860 0.9855

TPR 0.9334 0.9375 0.9289 0.9446 0.9417 0.9356

TNR 0.9171 0.9294 0.9244 0.9225 0.9419 0.9117

FPR 0.0828 0.0705 0.0755 0.0774 0.0580 0.0882

FNR 0.0665 0.0624 0.0710 0.0553 0.0582 0.0643

Table 5.11 (B): Performance details using FASTICA with 40 features

With 40 selected features using FastICA and 500 epochs

 L128_L

128

L128_L

512

L512_L

512

L512_L1

024

L1024_L

512

L1024_L10

24

Accuracy 94.109 92.888 92.807 93.461 93.700 93.380

Loss 0.2117 0.1999 0.2013 0.1990 0.2066 0.1976

Recall 0.9129 0.9110 0.9193 0.9068 0.9192 0.9049

156

Precession 0.9377 0.9125 0.9057 0.9290 0.9230 0.9268

f1 score 0.9240 0.9102 0.9101 0.9158 0.9196 0.9147

AUC 0.9856 0.9864 0.9871 0.9868 0.9861 0.9871

TPR 0.945 0.9428 0.9475 0.9410 0.9482 0.9397

TNR 0.9343 0.9072 0.8987 0.9240 0.9192 0.9238

FPR 0.0656 0.0927 0.1012 0.0759 0.0807 0.0761

FNR 0.0549 0.0571 0.0524 0.0589 0.0517 0.0602

Table 5.12 (A): Performance details using FASTICA with 50 features

With 50 selected features using FastICA and 500 epochs

 L32_L32 L32_L6

4

L64_L3

2

L64_L6

4

L64_L12

8

L128_L6

4

Accuracy 93.702 94.271 94.514 94.028 93.706 93.703

Loss 0.2252 0.2132 0.2234 0.2124 0.2065 0.2148

Recall 0.9069 0.8945 0.9027 0.9090 0.8883 0.9130

Precession 0.9319 0.9572 0.9554 0.9369 0.9480 0.9264

f1 score 0.9185 0.9238 0.9278 0.9224 0.9164 0.9190

AUC 0.9859 0.9860 0.9859 0.9859 0.9860 0.9859

TPR 0.9412 0.93503 0.9397 0.9427 0.9311 0.9447

TNR 0.9299 0.9557 0.9540 0.9360 0.9470 0.9245

FPR 0.0700 0.0442 0.0459 0.0639 0.0529 0.0754

FNR 0.0587 0.0649 0.0602 0.0572 0.0688 0.0552

Table 5.12 (B): Performance details using FASTICA with 50 features

With 50 selected features using FastICA and 500 epochs

 L128_L

128

L128_L5

12

L512_L5

12

L512_L10

24

L1024_L5

12

L1024_L1024

Accura

cy

94.188 94.596 94.837 94.275 93.946 93.704

Loss 0.2032 0.1897 0.1911 0.1870 0.1936 0.1893

Recall 0.9048 0.8986 0.9153 0.8863 0.9027 0.9071

Precess

ion

0.9447 0.9607 0.9509 0.9637 0.9418 0.9310

f1 score 0.9240 0.9281 0.9326 0.9231 0.9209 0.9181

AUC 0.9863 0.9867 0.9871 0.9875 0.9874 0.9876

TPR 0.9405 0.9375 0.9468 0.9306 0.9391 0.9412

TNR 0.9438 0.9601 0.9505 0.9639 0.9396 0.9299

FPR 0.0561 0.0398 0.0494 0.0360 0.0603 0.0700

FNR 0.0594 0.0624 0.0531 0.0693 0.0608 0.0587

157

Table 5.13 (A): Performance details using FASTICA with 80 features

With 80 selected features using FastICA and 500 epochs

 L32_L32 L32_L64 L64_L32 L64_L64 L64_L12

8

L128_L6

4

Accuracy 94.347 94.187 93.945 94.108 93.947 93.784

Loss 0.2248 0.2145 0.2256 0.2138 0.2077 0.2167

Recall 0.9006 0.8903 0.8945 0.8883 0.8862 0.8965

Precessio

n

0.9536 0.9590 0.9482 0.9588 0.9567 0.9421

f1 score 0.9254 0.9225 0.9199 0.9214 0.9193 0.9182

AUC 0.9860 0.9858 0.9853 0.9854 0.9855 0.9844

TPR 0.9384 0.9327 0.9346 0.9315 0.9302 0.9356

TNR 0.9518 0.9576 0.9473 0.9575 0.9553 0.9413

FPR 0.0481 0.0423 0.0526 0.0424 0.0446 0.0586

FNR 0.0615 0.0672 0.0653 0.0684 0.0697 0.0643

 Table 5.13 (B): Performance details using FASTICA with 80 features

With 80 selected features using FastICA and 500 epochs

 L128_L

128

L128_L

512

L512_L5

12

L512_L10

24

L1024_L5

12

L1024_L10

24

Accuracy 93.7854 93.866 93.866 94.026 93.783 94.028

Loss 0.2052 0.1961 0.1975 0.1936 0.1982 0.1888

Recall 0.8925 0.8904 0.8925 0.8987 0.9068 0.8987

Precession 0.9464 0.9502 0.9493 0.9470 0.9338 0.9466

f1 score 0.9177 0.9186 0.9188 0.9213 0.9190 0.9212

AUC 0.9862 0.9862 0.9874 0.9874 0.9871 0.9883

TPR 0.9334 0.9323 0.9335 0.9370 0.9413 0.9370

TNR 0.9451 0.9492 0.9472 0.9455 0.9319 0.9455

FPR 0.0548 0.0507 0.0527 0.0544 0.0680 0.0544

FNR 0.0665 0.0676 0.0664 0.0629 0.0586 0.0629

Table 5.14 (A): Performance details using FASTICA with 100 features

With 100 selected features using FastICA and 500 epochs

 L32_L32 L32_L64 L64_L32 L64_L64 L64_L12

8

L128_L6

4

Accuracy 94.029 93.867 94.027 93.786 93.704 94.189

Loss 0.2229 0.2193 0.2254 0.2159 0.2101 0.2154

Recall 0.8862 0.8862 0.8903 0.8924 0.8903 0.8883

158

Precessio

n

0.9592 0.9554 0.9552 0.9471 0.9478 0.9618

f1 score 0.9204 0.9184 0.9207 0.9179 0.9168 0.9225

AUC 0.9838 0.9841 0.9838 0.9838 0.9836 0.9835

TPR 0.9303 0.9302 0.9325 0.9334 0.9322 0.9316

TNR 0.9574 0.9532 0.9534 0.9451 0.9450 0.9597

FPR 0.0425 0.0467 0.0465 0.0548 0.0549 0.0402

FNR 0.0696 0.0697 0.0674 0.0665 0.0677 0.0683

Table 5.14 (B): Performance details using FASTICA with 100 features

With 100 selected features using FastICA and 500 epochs

 L128_L1

28

L128_L5

12

L512_L5

12

L512_L10

24

L1024_L5

12

L1024_L10

24

Accurac

y

93.948 93.944 94.105 94.186 94.348 94.434

Loss 0.2103 0.1976 0.1993 0.1942 0.2013 0.1958

Recall 0.8883 0.8965 0.9047 0.9048 0.9088 0.9088

Precessi

on

0.9552 0.9469 0.9435 0.9456 0.9468 0.9494

f1 score 0.9196 0.9203 0.9229 0.9238 0.9262 0.9274

AUC 0.9841 0.9858 0.9853 0.9858 0.9866 0.9866

TPR 0.9313 0.9358 0.9404 0.9405 0.9430 0.9430

TNR 0.9533 0.9454 0.9418 0.9438 0.9440 0.9461

FPR 0.0466 0.0545 0.0581 0.0561 0.0559 0.0538

FNR 0.0686 0.0641 0.0595 0.0594 0.0569 0.0569

Moreover, we have considered the accuracy Vs epoch and Loss vs epoch curves to

represent the learning process of our model. We have also considered the Adam optimizer

to optimize the learning process. The following Figures (Figure 5.12 and 5.13) shows the

learning process of our model where the loss minimizes, and accuracy maximizes with the

increase of epoch numbers.

159

Figure 5.12: Accuracy VS epoch number and Loss VS epoch number for L1024_L1024

with global set of features

Figure 5.13: Accuracy VS epoch number and Loss VS epoch number for L512_L512

with 50 selected features using FastICA

160

5.3 Comparisons

Although our proposed methods show a better result, we also need to examine the

capabilities of detecting the variants of known and unknown ransomware. We measure our

model through effectiveness and accuracy criteria mentioned in the section 3, subsection

3.3. Therefore, we compare the performance of the proposed methods with other previous

works, anti-virus engines and the similar methods like mRmR. The following subsection

will explain in details.

5.3.1 Comparing with the other classifiers

We compare the accuracy of our proposed method with other classifiers in terms of

the detection capabilities of the variants of known and unknown ransomware. For the

purpose of the performance comparisons, the performance of the classifiers is determined

through the evaluation criteria. For comparison purposes, we divide into two different

scenarios.

5.3.1.1 Scenario one

In this scenario, we evaluate the performance of the Experiment One in section 5.3.1

method with the other three classifiers such as K-Nearest Neighbor (KNN), Decision Tree

and Random Forest (RF). We tested the most informative features selected by the term

frequency-inverse document frequency (TF-IDF) feature selection algorithm presented in

Section 4.6.1. We explored the highest top features set with a testing 10-Fold cross

validation techniques.

Table 5.15: Comparison of the Experiment One Method with other Classifiers

 FP Rate TP Rate Precision Recall AUC Detection Rate

kNN 0.246 0.812 0.812 0.802 0.823 0.834

ANN 0.0261 0.986 0.981 0.979 0.983 0.986

SVM 0.016 0.986 0.976 0.971 0.973 0.979

RF 0.284 0.747 0.751 0.747 0.786 0.798

DT 0.061 0.945 0.945 0.944 0.946 0.952

161

Table 5.15 compares the accuracy of each classifier trained and tested with the

selected top features. The ANN has performed the highest accuracy among all classifiers

by presenting 0.986 of accuracy and less false positive rate. The RF classifier presented the

lowest accuracy among the classifiers and shows 0.798 of accuracy, this poor performance

is probably due to the overfitting problem during the training that the model is unable to

generalize the new features in the testing phase.

Figure 5.14. ROC Comparison of the Experiment One Method with other classifiers

On other hands, we evaluated the performance of the classifiers in terms of values

of the Area under Curve (AUC) as evaluation metrics in this experiment. Figure 5.13

illustrates the AUC variations for the five classifiers. Three classifiers (ANN, SVM, and

DT) have a high AUC rate while other two classifiers (kNN and RF) have a slightly lower

AUC rate.

5.3.1.2 Scenario two

In this scenario, we compare the performance of the deep learning-based model

presented in Experiment Three, in section 5.3.3 with other classifiers, we have chosen

SVM, Random Forest, and Multiclass Classifier. The performance details are represented

in Table 5.16. The comparison is illustrated in the following Table 5.17.

162

Table 5.16: The performance of SVM, Random Forest and Multi-Class classifiers

 SVM Random Forest Multi Class

Accuracy 89.9757 90.9458 88.1164

Recall 0.900 0.909 0.881

Precession 0.909 0.919 0.891

f1 score 0.901 0.910 0.882

AUC 0.909 0.971 0.955

TPR 0.900 0.909 0.881

FPR 0.081 0.070 0.101

From the comparison Table 5.17, we have observed that our designed model using

deep learning and FastICA show better performance than the other classifiers. The

proposed detection model has achieved 95.96% and 94.837% of accuracy using global and

FastICA selected features respectively whereas the SVM achieved 89.97% and random

Forest achieved 90.94% of accuracy.

Table 5.10,5.11,5.12,5.13 and 5.14 have shown that the equal number of nodes in

L1 and L2 (Architecture 1) shows the best accuracy and lower false positive rate.

Additionally, a higher epoch number shows better performance than lower epoch number.

Table 5.17: Comparison with other Classifiers in Experiment Three

 Accuracy Level Area Under ROC

Curve (AUC)

SVM 89.9757 % 0.909

Random Forest 90.9458 % 0.971

Multi Class Classifier 88.1164 % 0.955

Our Detection Model using Deep learning-based

approach with features using FastICA

[Architecture1 with 512 nodes in each layer]

94.837% 0.9871

Our Detection Model using Deep learning-based

approach with global set of features

[Architecture1 with 1024 nodes in each layer]

95.9629% 0.9935

163

5.3.2 Comparing with the previous work

In this section, we compare the performance of the proposed methods with the

previous similar works based on the capabilities of detecting the variants of known and

unknown ransomware. For the purpose of the performance comparisons, the effectiveness

and the accuracy of the classifiers are determined via the evaluation criteria. For

comparison benchmarks, we divide into two different scenarios as we highlighted in the

following sections.

5.3.2.1 Scenario one

The purpose of this section is to compare the performance of the Experiment One,

in section 5.3.1 of the proposed method with the previous similar works based on feature

type and the classifier used. Sgandurra et al. proposed a machine learning-based framework

with integrated features to identify the characteristics of the ransomware in the earlier

phases, authors analyzed and extracted seven different features dynamically, they applied

Logistic Regression classifier that achieved 96.3% detection rate with an area under the

ROC curve of 0.995% (Sgandurra et al., 2016).

Table 5.18: Comparing the Experiment One proposed approach with earlier work

Works Classifier(s) Used Det.Rate

Experiment One of the Proposed Method SVM and ANN 0.986

Sgandurra et al, EldeRan Framework Logistic Regression 0.963

Mahbub et al, RansHunt framework SVM 0.971

Ahmadian et al., 2entFOX Framework Bayesian belief network 0.985

Alhawi at al., NetConverse scheme BN, J48, kNN, MLP, RF and LMT 0.971

Zhang et al. DT, RF, KNN, NB and GBDT 0.914

Poudyal at al. BN, LR, SVM, DT, RF and ADA 0.965

Similar work was presented by Mahbub and Mahbubur using integrated features

from static and dynamic analysis with a machine learning algorithm. Authors proposed

164

RansHunt framework to detect ransomware using support vector machine (SVM) with

unique features. They claimed the hybrid analysis method can early detect the new

ransomware variants (Hasan & Rahman, 2017). The RansHunt framework achieved an

accuracy of 97.10 with less positive rate. A work of Zhang et al. employed the opcode

sequences features with five machine-learning algorithms for the detection of ransomware.

The classifier showed an accuracy of 91.43%. The Table 5.18. summarizes the comparison

result of our proposed method against with similar works (Zhang et al., 2019).

Figure 5.15: Comparison of the Experiment One method with other classifiers

5.3.2.2 Scenario two

In this section, we compare the performance of Experiment Two, in section 5.3.2 of

the proposed method with the previous similar works based on the capabilities of detecting

the variants of known and unknown ransomware. Non-signature-based approach for the

detecting of the obfuscated malware samples has proposed by the Vinod et al et al. This

method employed Minimum Redundancy and Maximum Relevance (mRmR) method and

the Principal Component Analysis (PCA) with different mnemonic n–grams to extract

predominant features (Vinod et al., 2012).

165

Table 5.19: Comparing the Experiment Two proposed approach with earlier work

Works Classifier(s) Used Detection Rate

Proposed kNN, LR, SVM, RF and DT 0.981

Vinod et al et al. NB, SMO, IBK, J48, ADA and RF 0.941

Iglesias and Zseby DT, kNN, NB, LASSO-LAR, ANN and

SVM

0.954

Sgandurra et al Logistic Regression 0.963

Ye et al. OOA_Apriori, OOA_FP-Growth and

OOA_Fast_FP-Growth

0.931

Mahbub et al. SVM 0.971

For classification purposes, several supervised machine learning algorithms are

used that obtained detection accuracy of 94.1% with mRmR generated features. Similar

work was presented by the Iglesias and Zseby proposing a feature reduction method for the

network traffic using combined feature selection techniques such as SAM, LASSO, WMR,

and mRmR (Iglesias & Zseby, 2015). In their work, commonly used 41 traffic features have

been reduced into 16 features based on their contribution to the anomaly detection. To

evaluate the proposed combined feature selection approach, the authors utilized six

classification algorithms with fivefold cross-validation. The experimental results reveal a

detection accuracy ranging from 0.27 to 95.48 with mRmR generated features.

Figure 5.16: Compares the number of evaluations both mRmR and the EmRmR method

166

Sgandurra et al. have proposed a Logistic Regression classifier-based framework

for the detection of the ransomware with integrated features. The authors dynamically

analyzed 11 different ransomware classes and extracted seven features to characterize the

behavior of the ransomware in the earlier phases of the attack. In their work, the LR has

achieved a 96.3% detection rate with an area under the ROC curve of 0.995% and a less

positive rate (Sgandurra et al., 2016). Ye et al. have discussed the detection of the

polymorphic and the malicious metamorphic executables. Authors proposed Intelligent

Malware Detection System (IMDS) using Objective Oriented Association (OOA) mining.

They applied the Max-Relevance algorithm to select the informative API calls with regard

to the class labels. To generate association rules among API calls, they adapted OOA

mining techniques for classification (Ye, Wang, Li, Ye, & Jiang, 2008). A work of Mahbub

and Mahbubur presented an integrated feature from static and dynamic analysis with a

machine learning algorithm. Authors proposed RansHunt framework to detect ransomware

using a support vector machine (SVM) with unique features. They claimed that the hybrid

analysis method could early detect the new ransomware variants with an accuracy of 0.971

and a less positive rate. Table 5.19 shows the comparison of the proposed work with the

previous work (Hasan & Rahman, 2017).

5.3.3 Comparing mRmR with the proposed EmRmR method

In this section, we evaluate the performance of the proposed method in section 4,

subsection 4.6.2 with the original mRmR in terms of running time and the number of

calculations on different feature sets. For the experiments, we employed a dataset consists

of 14 different ransomware and 7 benign classes as presented in section 3, subsection

3.2.1.2, and tested each separately. We computed the runtime by counting the total time

that the mRmR and the EmRmR method taking to select specific features from the collected

logs. We adjusted the number of features to be selected as fifty features for both mRmR

and the EmRmR method. The average runtime analysis and the number of computations

of the mRmR and the mRmR method with mutual information (MI) on the various datasets

are depicted in Figures 5.15-5.16.

167

Overall, the proposed method significantly outperformed the original mRmR

method by reducing the computational time to an average of 9.6 minutes for the entire

dataset as shown in Figure 5.17. The proposed method needs less than one minute to finish

execution for the datasets with a large number of features like DD, CB, DU, CL and MT,

whereas mRmR requires two minutes and 85 seconds. Regarding the datasets where the

number of samples is small like DC, PC and KV, the runtime demanded by the EmRmR

method reaches 91 up to the 46 seconds. This indicates that the proposed method is more

than three times faster than the original mRmR.

Figure 5.17: Time-complexity for mRmR and the Proposed EmRmR Method

In addition, we explored the number of computations executed by both mRmR and

the Enhanced mRmR method on each of the aforementioned datasets. Similar to the

previous running time analysis, again we set the number of features to select as 50 and

calculated the number of evaluations required by the mRmR and the unnecessary

evaluations of MI avoided by the EmRmR method. It is interesting to note that the proposed

method has achieved important enhancement concerning the amount of the evaluations

performed by the mRmR, particularly using samples with a large number of noisy features

like CW, EC, DD, MT, EC, and DU. Generally, the EmRmR method has a lower margin

of 18336 number of evaluations than the mRmR which is 43.65% lower on the whole

datasets.

168

Table 5.20: Comparison of mRmR and the proposed EmRmR method

 mRmR Proposed EmRmR Difference

Runtime (s) 1169.42 742.83 426.59

Evaluations 32542 18336 14206

The reason for this reduced number of evaluations is due to the accumulating of

mutual information computations achieved by the EmRmR. The run time and the number

of evaluations for the mRmR and the EmRmR method on different datasets are presented

in Table 5.20-5.21.

5.3.4 Comparison with AV scanners

Although our proposed method of Experiment One, in section 5.3.1, shows a better

result, we also need to examine the capabilities of detecting the variants of known and

unknown ransomware. We measure our classifiers through effectiveness and accuracy

criteria and compare the performance of our proposed method with anti-virus engines. For

comparative benchmarks, we selected the five Anti-Virus (AV) scanners with the highest

detection rate available at VIRUSTOTAL service. VirusTotal (VT) is a web service that

allows the analysis of a given malware sample by the signature-based engines of different

AntiVirus vendors. All the engines are always kept up-to-date with the latest version of the

signatures. A submission of a malware sample to VirusTotal at a given point in time thus

provides a snapshot on the ability of the different signature-based engines to correctly

identify a threat in such samples.

The detection performance of each AV scanners is evaluated using standard

accuracy measurements such as True Positive Rate (TPR), False Positive Rate (FPR), ROC

curve and the detection rate. From the experimental results, we observe that ANN

significantly outperformed the other approaches and showed 0.986 of AUC, it also

presented TPR of 0.988 and FBR of 0.036, despite ANN’s false positive rate is higher than

3 of the AVs as shown in Table 5.22.

169

Table 5.21: Comparing mRmR and EmRmR based on the number of calculations and run

Time on different datasets

Dataset Acr

ony

m

Cla

ss

Sam

ple

Featur

es

mRmR EmRmR

#Calc #RTime (s) # Calc # RTime (s)

WannaCry WC M 74 8263 329 1.81 165 0.56

Reveton RV M 50 5021 316 1.75 163 0.53

Torrent Locker TL M 108 1102 460 2.84 205 1.43

Dirty Decrypt DD M 51 7539 314 1.03 153 0.46

CryptLocker CL M 173 44869 2850 103 1493 0.62

Cerber CB M 171 44235 2630 96 1210 0.59

Trojan-Ransom TR M 82 18593 986 11.2 560 7.82

Kollah KL M 73 7159 304 1.72 159 0.52

Citroni CT M 67 8036 303 1.01 138 0.41

Pgpcoder PC M 46 8172 283 0.95 134 0.43

Kovter KV M 23 7985 271 0.91 128 0.39

Petya PT M 89 17652 1030 12.3 654 8.62

CryptoWall CW M 151 43281 2937 113 1702 79.5

TeslaCrypt TC M 96 20352 1262 13.2 865 9.36

Compression CM B 225 26350 1390 18.4 920 11.5

Encryption EC B 172 44856 3001 110 1700 82.1

Data Destruction DD B 401 54385 3807 225 2053 139

Drivers Updater DU B 230 46523 2862 183 1802 110

Browsers BR B 152 45383 2804 102 1398 78

Multimedia tools MT B 182 40359 3240 126 2014 92

Others OT B 96 22986 1163 14.3 720 8.2

Figure 5.18: Comparison of the proposed method to VirusTotal

170

The other hands, the VirusTotal achieved the highest accuracy over the SVN and

ANN algorithms with a detection rate of 0.989 and 0.986, though ANN classifier

outperforms 3 out of 5 top selected AV scanners. This is due to the most common detection

method used by the antivirus is signature-based detection; which implies that VirusTotal

AV engines already have a matched signature of these datasets. In addition, some of our

data set are publicly available for a longer period.

 Table 5.22: Comparison of our proposed approach with AVs

The Figure 5.18 shows the comparison of the detection rate and false alarm of the

VIRUSTOTAL and our method using both ANN and SVM. From the result of Figure 5.18,

it is obvious that the AUC of VIRUSTOTAL outperforms ANN and SVM algorithms,

however, according to the false alarm criteria, the VirusTotal shows an average of 5.4%

and is worse than ANN classifier that presents an average error rate of 2.3%. ANN provided

a better accuracy regarding SVM with 4.4% error rate.

5.4 Discussions

In this section, we present the discussions on the experimental results obtained from

the previous sections. We discuss three different experiments such as an automated

dynamic behavioural detection framework. Another important detection model which is a

system call refinement-based enhanced minimum redundancy maximum relevance method

for ransomware early detection and the last model which is the avoiding future digital

TP Rate FP Rate

AUC Detection

Accuracy

SVM 0.0993 ± 0.0837 0.0371 ± 0.006 0.977 ± 0.238 0.9760±0.8910

ANN 0.0988 ± 0.0841 0.0360 ± 0.007 0.986 ± 0.186 0.9870±0.9010

AV1 0.0203 ± 0.0079 0.0186 ± 0.0080 0.977 ± 0.238 0.989 ± 0.0273

AV2 0.0159 ± 0.0060 0.0166 ± 0.0048 0.986 ± 0.186 0.986 ± 0.0262

AV3 0.0274 ± 0.0082 0.0396 ± 0.0080 0.977 ± 0.238 0.9569 ± 0.0173

AV4 0.0205 ± 0.0079 0.0000 ± 0.0000 0.986 ± 0.186 0.9369 ± 0.0173

AV5 0.0101 ± 0.0079 0.0496 ± 0.0080 0.977 ± 0.238 0.9160 ± 0.0273

171

extortion through robust protection against ransomware threats using deep learning-based

adaptive approaches, the following subsection will explain detail.

5.4.1 Automated dynamic behavioral detection framework

The avoidance techniques that ransomware employs such as obfuscation and/or

packing makes it difficult to analyse such programs statically. Although many ransomware

detections studies have been conducted, they are limited to a small portion of the attack's

characteristics. To this end, this research proposed a framework for the behavioural-based

dynamic analysis of ransomware with integrated valuable feature sets.

This method analysed 673 real-world ransomware samples that infect Windows

platforms. We collected 1,254 ransomware samples of 14 newly emerged different

ransomware families from several sources such as VirusShare and VirusTotal. We focused

these malicious behaviours on their suspicious intentions of 14 families. The activities

performed by the malicious program is recorded in the sandbox in a controlled environment

and obtained generated report of the samples as JSON format. The size of the report

generated by the sandbox occupies hundreds of MBs, analysing and examining each report

manually is experimentally infeasible, therefore, we build our own parsing algorithm to

convert JSON formatted string representations to key-pair objects. The feature parsing

reads the JSON files from all sandbox output reports and then parsed to get the required

features to reduce the search space.

Then, the extracted a set of features that forms an integrated set of features that

could indicate what the ransomware strain is actually doing on the system. Term

Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful

features from the analysed samples. Support Vector Machine (SVM) and Artificial Neural

Network (ANN) were utilized to develop and implement a machine learning-based

detection model able to recognize certain behavioural traits of high survivable ransomware

attacks. Creating SVM and ANN models require to set various parameters and test

individually to select the best model among them. In this study, SVM kernel functions such

as the linear kernel, polynomial kernel and Radial basis function (RBF) are used.

172

In this study we applied three different experiments along with a variety of outputs.

Experimental evaluation indicates that the proposed framework achieved an area under the

ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate

that the proposed framework can detect high survivable ransomware in the early stage

accurately. To empirically evaluate the proposed approach, we compared the experimental

results with previous work, other classifiers and the VirusTotal service.

5.4.2 A System Call Refinement-Based EmRmR Method for Ransomware Detection

Ransomware is a special type of malicious software that encrypts the user’s assets

and makes it unavailable to the users until a ransom is paid to the ransomware author.

Distribution of the crypto-ransomware can happen through a very large infection vector

including application and browser vulnerabilities, extraction of ZIP files, malicious payload

e.g. cryptoWall, JRE vulnerability e.g. DMA locker, exploit kits such as neutrino, eternal

blue, eternal romance, etc. Such attacks have become one of the most widespread malwares

that poses serious threat to both individuals and business organizations. Against this

destructive malicious program, the dynamic analysis approach is the most popular approach

for detecting such an attack. The majority of dynamic analysis relies on the system calls as

these provide an interface for programs to request service from the operating system.

However, to hide its malicious behaviour, ransomware invokes a huge amount of system

calls that contain the redundancy and the irrelevant system calls that the ransomware

authors inject in the actual execution flow of suspicious binaries generate a high noisy

behavioural sequence that adversely impacts in the induction of the classifiers.

 To this end, we proposed a non-signature-based detection approach on the effective

windows API call sequences using supervised machine learning techniques. We also

introduced a refinement process to reduce the size of the system call traces gathered from

the dynamic analysis and filter the system call that do not describe the behaviour of the

malware. Then, five machine-learning classifiers (Decision Tree (DT), K-Nearest

Neighbour (KNN), Logistic Regression (LR), Random Forest (RF) and Support Vector

Machine (SVM)) are trained on the refined system call sequences. We tested the classifiers

173

on the various performance metrics with an extensive experimental evaluation to determine

the effectiveness of the proposed method.

To achieve this objective, we proposed an Enhanced Maximum-Relevance and

Minimum-Redundancy (EmRmR) filter method to remove the noisy features and select the

most relevant subset of features to characterize the real behaviour of the ransomware.

Unlike the original mRmR, the EmRmR avoids unnecessary computations intrinsic in the

original mRmR algorithms with small number of evaluations. To prove this, we

experimented with the EmRmR algorithm on datasets with different feature-sets and

compared with mRmR. The EmRmR method was three times faster than the original

mRmR.

In addition, this work has introduced a refinement process to reduce the size of the

program’s call traces by removing those windows API calls that do not have a strong

indication for describing the critical behaviour of the ransomware. To do this, Windows

API calls performed by the ransomware are deeply studied through the descriptions

provided by Microsoft’s website using a customized python script. After accomplishing

extensive experimental evaluations, and comparing with existing behavioural-based

detection approaches, the proposed method has shown to be effective for discriminating the

behavior of ransomware, and indicates a high detection accuracy with few false-positive

rates. For comparative benchmarks, we evaluated the performance of the proposed method

with the previous similar works based on the capabilities of detecting the variants of known

and unknown ransomware.

5.4.3 Avoiding future digital extortion through robust protection against

ransomware threats using deep learning based adaptive approaches

Digital extortion has become a major cyber risk for many organizations; small-

medium enterprises (SME) to large enterprises business and individual entrepreneurs. In

recent years, mass ransomware attacks not only targeted to the individuals but also have

been proliferated into the large business organizations such as courier companies FedEx

174

and TNT, Maerx, WPP (the world’s largest advertising agency), pharmaceutical company

Reckitt Benckiser and Kingdom’s National Health Service.

 Ransomware is a kind of malware which is the main threat for digital extortion and

has caused many organizations to lose huge revenue by paying much bigger ransom

demands to the cyber criminals in recent years. Explosive growth of ransomware is due to

the existing large infection vector such as social engineering, email attachment, zip file

download, browsing malicious site, infected search engine which are boosted dramatically

by easily available cryptographic tools, Ransomware As a Service (RaaS), increased cloud

storage and off-the-self ransomware toolkits. The large infection vector and available

toolkits not only grew ransomware extremely, but also made them more obfuscated,

encrypted and varying patterns in the new variants. This, in turn, caused the conventional

supervised analysis and detection engine to fail to detect the new variants of ransomware.

This research addresses the limitations of a conventional supervised detection

engine and proposes semi-supervised framework to compute the inherent latent sources of

the varying patterns in the new variants in an unsupervised way using deep learning

approaches. We Proposed a framework that analysis ransomware based on the runtime

behavior of program and deep learning based semi-supervised technique, and then extracts

the inherent characteristics in the varying patterns from the unlabeled ransomware obtained

from the wild which is scalable to accommodate upcoming malicious executables. Then

the unsupervised learned model is combined with supervised classification, thus

constructing an adaptive detection model.

The novelty of our proposed approach is that deep learning based semi-supervised

technique can extract dynamics of behavioral patterns from the new variants of ransomware

obtained from the wild and can integrate the latent sources to the supervised classifier,

making the detection engine independent of manual signature generation and robust to the

changes. The proposed framework has been verified using real ransomware data with a

dynamic analysis testbed. Our extensive experimental results and discussion demonstrate

that the proposed adaptive framework can successfully identify different variants of

ransomware and achieve higher performance than existing supervised approaches.

175

5.5 Summary

This section discusses the experimental results of the proposed a behavioural

ransomware detection framework using a machine-learning approach. Several experiments

are implemented including an automated dynamic behavioural analysis approach for the

detection of the ransomware. In this experiment, the key observation of this research is to

investigate an integrated set of features that could indicate what the ransomware strain is

actually doing on the system. The TF-IDF algorithm has shown to be an effective approach

for ranking and weighting behavioural features. We developed a detection model for HSR

by utilizing Support Vector Machine and Artificial Neural Network algorithms using

integrated valuable features that generated. Three different experimental evaluation was

conducted to measure the performance of the proposed method. Through our experimental

results, the proposed approach has shown to be easy to train and test. Another important

experiment was carried out, a non-signature-based method for the detection of the

ransomware on windows API call sequences using a supervised learning approach has been

proposed. In this experiment, we proposed an enhanced maximum relevance and minimum

redundancy (EmRmR) method that selects the same features as the original mRmR but

significantly faster. To carry out this objective, we avoided the unnecessary computations

of the mutual information by accumulating the duplications of each MI iterations. To prove

this, we experimented with the EmRmR algorithm on datasets with different feature-sets

and compared with mRmR. For detection purposes, we employed five machine learning

classifiers on 𝑛 − 𝑔𝑟𝑎𝑚𝑠 of length 2,3,4 and 5 from each system call sequence made by

the malicious and benign samples. Finally, we experimented an adaptive approach that can

extract inherent nature of exploitation and encryption of new variants of ransomware. The

extracted features are integrated into the supervised detection engine to build an adaptive

model. The proposed methods have been tested in a real ransomware dynamic analysis

engine with real ransomware data. Our experimental results demonstrate that the proposed

model achieves significant performance improvement over supervised detection

approaches and achieves high accuracies.

176

REFERENCES

Acid, S., De Campos, L. M., & Fernández, M. (2011). Minimum redundancy maximum

relevancy versus score-based methods for learning Markov boundaries. Paper

presented at the 2011 11th International Conference on Intelligent Systems Design

and Applications.

Adamov, A., & Carlsson, A. (2017). The state of ransomware. Trends and mitigation

techniques. Paper presented at the 2017 IEEE East-West Design & Test Symposium

(EWDTS).

Ahmadian, M. M., & Shahriari, H. R. (2016). 2entFOX: A framework for high survivable

ransomwares detection. Paper presented at the 2016 13th International Iranian

Society of Cryptology Conference on Information Security and Cryptology

(ISCISC).

Ahmadian, M. M., Shahriari, H. R., & Ghaffarian, S. M. (2015). Connection-monitor &

connection-breaker: A novel approach for prevention and detection of high

survivable ransomwares. Paper presented at the 2015 12th International Iranian

Society of Cryptology Conference on Information Security and Cryptology

(ISCISC).

Aidan, J. S., Verma, H. K., & Awasthi, L. K. (2017). Comprehensive Survey on Petya

Ransomware Attack. Paper presented at the 2017 International Conference on Next

Generation Computing and Information Systems (ICNGCIS).

Al-rimy, B. A. S., Maarof, M. A., & Shaid, S. Z. M. (2017). A 0-day aware crypto-

ransomware early behavioral detection framework. Paper presented at the

International Conference of Reliable Information and Communication Technology.

Al-rimy, B. A. S., Maarof, M. A., & Shaid, S. Z. M. (2018). Ransomware threat success

factors, taxonomy, and countermeasures: A survey and research directions.

Computers & Security, 74, 144-166.

Al-rimy, B. A. S., Maarof, M. A., & Shaid, S. Z. M. (2019). Crypto-ransomware early

detection model using novel incremental bagging with enhanced semi-random

subspace selection. Future Generation Computer Systems, 101, 476-491.

Alhawi, O. M., Baldwin, J., & Dehghantanha, A. (2018). Leveraging machine learning

techniques for windows ransomware network traffic detection. In Cyber Threat

Intelligence (pp. 93-106): Springer.

Almashhadani, A. O., Kaiiali, M., Sezer, S., & O’Kane, P. (2019). A multi-classifier

network-based crypto ransomware detection system: A case study of Locky

ransomware. IEEE Access, 7, 47053-47067.

Alzarooni, K. (2012). Malware variant detection. UCL (University College London),

Amamra, A., Robert, J. M., & Talhi, C. (2015). Enhancing malware detection for Android

systems using a system call filtering and abstraction process. Security and

Communication Networks, 8(7), 1179-1192.

Anderson, H. S., Kharkar, A., Filar, B., & Roth, P. (2017). Evading machine learning

malware detection. black Hat.

Andronio, N. (2015). Heldroid: Fast and efficient linguistic-based ransomware detection.

177

Andronio, N., Zanero, S., & Maggi, F. (2015). Heldroid: Dissecting and detecting mobile

ransomware. Paper presented at the International Symposium on Recent Advances

in Intrusion Detection.

Aurangzeb, S., Aleem, M., Iqbal, M. A., & Islam, M. A. (2017). Ransomware: A Survey

and Trends. Journal of Information Assurance & Security, 6(2).

Bhardwaj, A., Avasthi, V., Sastry, H., & Subrahmanyam, G. (2016). Ransomware digital

extortion: a rising new age threat. Indian Journal of Science and Technology, 9(14),

1-5.

Bishop, C. M. (2006). Pattern recognition and machine learning: springer.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Brewer, R. (2016). Ransomware attacks: detection, prevention and cure. Network Security,

2016(9), 5-9.

Cabaj, K., Gawkowski, P., Grochowski, K., & Osojca, D. (2015). Network activity analysis

of CryptoWall ransomware. Przeglad Elektrotechniczny, 91(11), 201-204.

Cabaj, K., & Mazurczyk, W. (2016). Using software-defined networking for ransomware

mitigation: the case of cryptowall. Ieee Network, 30(6), 14-20.

Carrasquilla, J., & Melko, R. G. (2017). Machine learning phases of matter. Nature Physics,

13(5), 431-434.

Chen, Q., & Bridges, R. A. (2017). Automated behavioral analysis of malware: A case

study of wannacry ransomware. Paper presented at the 2017 16th IEEE

International Conference on Machine Learning and Applications (ICMLA).

Chen, Q., Islam, S. R., Haswell, H., & Bridges, R. A. (2019). Automated Ransomware

Behavior Analysis: Pattern Extraction and Early Detection. Paper presented at the

International Conference on Science of Cyber Security.

Chou, T.-S., Yen, K. K., & Luo, J. (2008). Network intrusion detection design using feature

selection of soft computing paradigms. International journal of computational

intelligence, 4(3), 196-208.

Collberg, C. S., Thomborson, C. D., & Low, D. W. K. (2003). Obfuscation techniques for

enhancing software security. In: Google Patents.

Conti, M., Gangwal, A., & Ruj, S. (2018). On the economic significance of ransomware

campaigns: A Bitcoin transactions perspective. Computers & Security, 79, 162-189.

Corrigan, K. (2017). Ransomware: a growing epidemic for business. Utica College,

Da-Yu, K., HSIAO, S.-C., & Raylin, T. (2019). Analyzing WannaCry Ransomware

Considering the Weapons and Exploits. Paper presented at the 2019 21st

International Conference on Advanced Communication Technology (ICACT).

Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., & Ajibuwa, O. E. (2019).

Machine learning for email spam filtering: review, approaches and open research

problems. Heliyon, 5(6), e01802.

Darshan, S. S., & Jaidhar, C. (2018). Performance evaluation of filter-based feature

selection techniques in classifying portable executable files. Procedia Computer

Science, 125, 346-356.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature selection. Paper

presented at the Icml.

178

Dietterich, T. G. (2000). Ensemble methods in machine learning. Paper presented at the

International workshop on multiple classifier systems.

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and

statistical variance of decision tree algorithms. Retrieved from

Doguet, J. J. (2012). The nature of the form: Legal ad regulatory issues surrounding the

bitcoin digital currency system. La. L. Rev., 73, 1119.

Faruki, P., Laxmi, V., Gaur, M. S., & Vinod, P. (2012). Mining control flow graph as api

call-grams to detect portable executable malware. Paper presented at the

Proceedings of the Fifth International Conference on Security of Information and

Networks.

Francillon, A., & Castelluccia, C. (2008). Code injection attacks on harvard-architecture

devices. Paper presented at the Proceedings of the 15th ACM conference on

Computer and communications security.

Fukushima, Y., Sakai, A., Hori, Y., & Sakurai, K. (2010). A behavior based malware

detection scheme for avoiding false positive. Paper presented at the 2010 6th IEEE

workshop on secure network protocols.

Gallegos-Segovia, P. L., Bravo-Torres, J. F., Larios-Rosillo, V. M., Vintimilla-Tapia, P.

E., Yuquilima-Albarado, I. F., & Jara-Saltos, J. D. (2017). Social engineering as an

attack vector for ransomware. Paper presented at the 2017 CHILEAN Conference

on Electrical, Electronics Engineering, Information and Communication

Technologies (CHILECON).

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A survey.

Journal of Information Security, 2014.

Gazet, A. (2010). Comparative analysis of various ransomware virii. Journal in computer

virology, 6(1), 77-90.

Goel, D., & Jain, A. K. (2018). Mobile phishing attacks and defence mechanisms: State of

art and open research challenges. Computers & Security, 73, 519-544.

Gostev, A., Unuchek, R., Garnaeva, M., Makrushin, D., & Ivanov, A. (2016). IT Threat

Evolution in Q1 2016. Kapersky 2015 Report, Kapersky L.

Greamo, C., & Ghosh, A. (2011). Sandboxing and virtualization: Modern tools for

combating malware. IEEE Security & Privacy, 9(2), 79-82.

Grimes, G. A., Hough, M. G., & Signorella, M. L. (2007). Email end users and spam:

relations of gender and age group to attitudes and actions. Computers in Human

Behavior, 23(1), 318-332.

Gu, Q., Li, Z., & Han, J. (2012). Generalized fisher score for feature selection. arXiv

preprint arXiv:1202.3725.

Gupta, S., & Kumar, P. (2015). An immediate system call sequence based approach for

detecting malicious program executions in cloud environment. Wireless Personal

Communications, 81(1), 405-425.

Hampton, N., Baig, Z., & Zeadally, S. (2018). Ransomware behavioural analysis on

windows platforms. Journal of information security and applications, 40, 44-51.

Hampton, N., & Baig, Z. A. (2015). Ransomware: Emergence of the cyber-extortion

menace.

179

Han, S., Huang, H., & Qin, H. (2017). Automatically Redundant Features Removal for

Unsupervised Feature Selection via Sparse Feature Graph. arXiv preprint

arXiv:1705.04804.

Hasan, M. M., & Rahman, M. M. (2017). RansHunt: A support vector machines based

ransomware analysis framework with integrated feature set. Paper presented at the

2017 20th International Conference of Computer and Information Technology

(ICCIT).

Heckerman, D. (2008). A tutorial on learning with Bayesian networks. In Innovations in

Bayesian networks (pp. 33-82): Springer.

Hoopes, J. (2009). Virtualization for security: including sandboxing, disaster recovery,

high availability, forensic analysis, and honeypotting: Syngress.

Huda, S., Islam, R., Abawajy, J., Yearwood, J., Hassan, M. M., & Fortino, G. (2018). A

hybrid-multi filter-wrapper framework to identify run-time behaviour for fast

malware detection. Future Generation Computer Systems, 83, 193-207.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and

applications. Neural networks, 13(4-5), 411-430.

Iglesias, F., & Zseby, T. (2015). Analysis of network traffic features for anomaly detection.

Machine learning, 101(1-3), 59-84.

Jiang, X., Wangz, H. J., Xu, D., & Wang, Y.-M. (2007). Randsys: Thwarting code injection

attacks with system service interface randomization. Paper presented at the 2007

26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007).

Jones Jr, C., & Muhammad, J. Ransomware and Its Impact on Modern Society.

Kalaimannan, E., John, S. K., DuBose, T., & Pinto, A. (2017). Influences on ransomware’s

evolution and predictions for the future challenges. Journal of Cyber Security

Technology, 1(1), 23-31.

Kara, I., & Aydos, M. (2018). Static and dynamic analysis of third generation cerber

ransomware. Paper presented at the 2018 International Congress on Big Data, Deep

Learning and Fighting Cyber Terrorism (IBIGDELFT).

Kendzierskyj, S., & Jahankhani, H. (2019). The Role of Blockchain in Supporting Critical

National Infrastructure. Paper presented at the 2019 IEEE 12th International

Conference on Global Security, Safety and Sustainability (ICGS3).

Kharraz, A., & Kirda, E. (2017). Redemption: Real-time protection against ransomware at

end-hosts. Paper presented at the International Symposium on Research in Attacks,

Intrusions, and Defenses.

Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., & Kirda, E. (2015). Cutting the

gordian knot: A look under the hood of ransomware attacks. Paper presented at the

International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment.

Kirda, E. (2017). UNVEIL: a large-scale, automated approach to detecting ransomware

(keynote). Paper presented at the 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER).

Kok, S., Abdullah, A., Jhanjhi, N., & Supramaniam, M. (2019). Prevention of Crypto-

Ransomware Using a Pre-Encryption Detection Algorithm. Computers, 8(4), 79.

180

Kotov, V., & Massacci, F. (2013). Anatomy of exploit kits. Paper presented at the

International symposium on engineering secure software and systems.

Kunwar, R. S., & Sharma, P. (2016). Malware Analysis: Tools and Techniques. Paper

presented at the Proceedings of the Second International Conference on Information

and Communication Technology for Competitive Strategies.

Kurniawan, A., & Riadi, I. (2018). Detection and Analysis Cerber Ransomware Based on

Network Forensics Behavior. International Journal of Network Security, 20(5),

836-843.

Kyurkchiev, N., Iliev, A., Rahnev, A., & Terzieva, T. (2019). A New Analysis of

Cryptolocker Ransomware and Welchia Worm Propagation Behavior. Some

Applications. III. Communications in Applied Analysis, 23(2), 359-382.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

Lee, J., Lee, J., & Hong, J. (2017). How to Make Efficient Decoy Files for Ransomware

Detection? Paper presented at the Proceedings of the International Conference on

Research in Adaptive and Convergent Systems.

Liao, K., Zhao, Z., Doupé, A., & Ahn, G.-J. (2016). Behind closed doors: measurement

and analysis of CryptoLocker ransoms in Bitcoin. Paper presented at the 2016

APWG Symposium on Electronic Crime Research (eCrime).

Liu, W., Ren, P., Liu, K., & Duan, H.-x. (2011). Behavior-based malware analysis and

detection. Paper presented at the 2011 first international workshop on complexity

and data mining.

Lynn, B., Prabhakaran, M., & Sahai, A. (2004). Positive results and techniques for

obfuscation. Paper presented at the International conference on the theory and

applications of cryptographic techniques.

Mansfield-Devine, S. (2013). Security review: the past year. Computer Fraud & Security,

2013(1), 5-11.

Mansfield-Devine, S. (2017). Ransomware: the most popular form of attack. Computer

Fraud & Security, 2017(10), 15-20.

McIntosh, T. R., Jang-Jaccard, J., & Watters, P. A. (2018). Large scale behavioral analysis

of ransomware attacks. Paper presented at the International Conference on Neural

Information Processing.

Menahem, E., Shabtai, A., Rokach, L., & Elovici, Y. (2009). Improving malware detection

by applying multi-inducer ensemble. Computational Statistics & Data Analysis,

53(4), 1483-1494.

Misini, L. (2018). Etude des Ransomware. Haute école de gestion de Genève,

Moore, C. (2016). Detecting ransomware with honeypot techniques. Paper presented at the

2016 Cybersecurity and Cyberforensics Conference (CCC).

Morato, D., Berrueta, E., Magaña, E., & Izal, M. (2018). Ransomware early detection by

the analysis of file sharing traffic. Journal of Network and Computer Applications,

124, 14-32.

Mouton, F., Malan, M. M., Leenen, L., & Venter, H. S. (2014). Social engineering attack

framework. Paper presented at the 2014 Information Security for South Africa.

O'Kane, P., Sezer, S., & Carlin, D. (2018). Evolution of ransomware. IET Networks, 7(5),

321-327.

181

Oktavianto, D., & Muhardianto, I. (2013). Cuckoo malware analysis: Packt Publishing Ltd.

Palisse, A., Le Bouder, H., Lanet, J.-L., Le Guernic, C., & Legay, A. (2016). Ransomware

and the legacy crypto API. Paper presented at the International Conference on Risks

and Security of Internet and Systems.

Paquet-Clouston, M., Haslhofer, B., & Dupont, B. (2019). Ransomware payments in the

bitcoin ecosystem. Journal of Cybersecurity, 5(1), tyz003.

Pascariu, C., & Barbu, I.-D. (2015). Ransomware–an emerging threat. International

Journal of Information Security and Cybercrime, 4(2), 27-32.

Pathak, P., & Nanded, Y. M. (2016). A dangerous trend of cybercrime: ransomware

growing challenge. International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), 5(2), 371-373.

Player, V. (2010). 7.1. VMware.

Pletinckx, S., Trap, C., & Doerr, C. (2018). Malware coordination using the blockchain:

An analysis of the cerber ransomware. Paper presented at the 2018 IEEE

Conference on Communications and Network Security (CNS).

Poudyal, S., Subedi, K. P., & Dasgupta, D. (2018). A framework for analyzing ransomware

using machine learning. Paper presented at the 2018 IEEE Symposium Series on

Computational Intelligence (SSCI).

Prakash, K. P., Nafis, T., & Biswas, D. S. (2017). Preventive measures and incident

response for locky Ransomware. International Journal of Advanced Research in

Computer Science, 8(5), 392-395.

Rabek, J. C., Khazan, R. I., Lewandowski, S. M., & Cunningham, R. K. (2003). Detection

of injected, dynamically generated, and obfuscated malicious code. Paper presented

at the Proceedings of the 2003 ACM workshop on Rapid malcode.

Rajab, M. A., Ballard, L., Marvrommatis, P., Provos, N., & Zhao, X. (2010). The nocebo

effect on the web: an analysis of fake anti-virus distribution.

Ramírez‐Gallego, S., Lastra, I., Martínez‐Rego, D., Bolón‐Canedo, V., Benítez, J. M.,

Herrera, F., & Alonso‐Betanzos, A. (2017). Fast‐mRMR: Fast minimum

redundancy maximum relevance algorithm for high‐dimensional big data.

International Journal of Intelligent Systems, 32(2), 134-152.

Raunak, P., & Krishnan, P. (2017). Network detection of ransomware delivered by exploit

kit. ARPN Journal of Engineering and Applied Sciences, 12, 3885-3889.

Reddy, D. K. S., & Pujari, A. K. (2006). N-gram analysis for computer virus detection.

Journal in computer virology, 2(3), 231-239.

Richardson, R., & North, M. M. (2017). Ransomware: Evolution, mitigation and

prevention. International Management Review, 13(1), 10.

Richet, J.-L. (2016). Extortion on the internet: the rise of crypto-ransomware. Harvard.

Roberts, N. (2018). Ransomware: an evolving threat. Utica College,

Rogojanu, A., & Badea, L. (2014). The issue of competing currencies.

Saeed, I. A., Selamat, A., & Abuagoub, A. M. (2013). A survey on malware and malware

detection systems. International Journal of Computer Applications, 67(16).

Scaife, N., Carter, H., Traynor, P., & Butler, K. R. (2016). Cryptolock (and drop it):

stopping ransomware attacks on user data. Paper presented at the 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS).

182

Sedano, J., Chira, C., González, S., Herrero, Á., Corchado, E., & Villar, J. R. (2015). On

the selection of key features for android malware characterization. Paper presented

at the Computational Intelligence in Security for Information Systems Conference.

Segal, M. R. (2004). Machine learning benchmarks and random forest regression.

Sgandurra, D., Muñoz-González, L., Mohsen, R., & Lupu, E. C. (2016). Automated

dynamic analysis of ransomware: Benefits, limitations and use for detection. arXiv

preprint arXiv:1609.03020.

Shabtai, A., Moskovitch, R., Elovici, Y., & Glezer, C. (2009). Detection of malicious code

by applying machine learning classifiers on static features: A state-of-the-art

survey. information security technical report, 14(1), 16-29.

Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012). Detecting unknown

malicious code by applying classification techniques on opcode patterns. Security

Informatics, 1(1), 1.

Shukla, M., Mondal, S., & Lodha, S. (2016). Poster: Locally virtualized environment for

mitigating ransomware threat. Paper presented at the Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security.

Sood, A. K., & Enbody, R. J. (2011). Malvertising–exploiting web advertising. Computer

Fraud & Security, 2011(4), 11-16.

Tailor, J. P., & Patel, A. D. (2017). A comprehensive survey: ransomware attacks

prevention, monitoring and damage control. Int. J. Res. Sci. Innov, 4, 2321-2705.

Takeuchi, Y., Sakai, K., & Fukumoto, S. (2018). Detecting ransomware using support

vector machines. Paper presented at the Proceedings of the 47th International

Conference on Parallel Processing Companion.

Tang, A., Sethumadhavan, S., & Stolfo, S. J. (2014). Unsupervised anomaly-based

malware detection using hardware features. Paper presented at the International

Workshop on Recent Advances in Intrusion Detection.

ur Rehman, H., Yafi, E., Nazir, M., & Mustafa, K. (2018). Security assurance against

cybercrime ransomware. Paper presented at the International conference on

intelligent computing & optimization.

Vinod, P., Laxmi, V., & Gaur, M. S. (2012). Reform: Relevant features for malware

analysis. Paper presented at the 2012 26th International Conference on Advanced

Information Networking and Applications Workshops.

Vinod, P., & Viswalakshmi, P. (2018). Empirical Evaluation of a System Call-Based

Android Malware Detector. Arabian Journal for Science and Engineering, 43(12),

6751-6770.

Wang, T.-Y., Wu, C.-H., & Hsieh, C.-C. (2009). Detecting unknown malicious executables

using portable executable headers. Paper presented at the 2009 Fifth International

Joint Conference on INC, IMS and IDC.

Wang, X., & Karri, R. (2013). Numchecker: Detecting kernel control-flow modifying

rootkits by using hardware performance counters. Paper presented at the 2013 50th

ACM/EDAC/IEEE Design Automation Conference (DAC).

Wyke, J., & Ajjan, A. (2015). The current state of ransomware. SOPHOS. A SophosLabs

Technical Paper.

183

Xiao, T., Xia, T., Yang, Y., Huang, C., & Wang, X. (2015). Learning from massive noisy

labeled data for image classification. Paper presented at the Proceedings of the

IEEE conference on computer vision and pattern recognition.

Xing, X., Meng, W., Lee, B., Weinsberg, U., Sheth, A., Perdisci, R., & Lee, W. (2015).

Understanding malvertising through ad-injecting browser extensions. Paper

presented at the Proceedings of the 24th international conference on world wide

web.

Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text

categorization. Paper presented at the Icml.

Yao, H., & Wang, Z.-Y. (2013). Construction of virtualized resource pool based on KVM-

QEMU with Libvirt. Comput. Modernization, 1(7), 26-29.

Yaqoob, I., Ahmed, E., ur Rehman, M. H., Ahmed, A. I. A., Al-garadi, M. A., Imran, M.,

& Guizani, M. (2017). The rise of ransomware and emerging security challenges in

the Internet of Things. Computer Networks, 129, 444-458.

Ye, Y., Wang, D., Li, T., Ye, D., & Jiang, Q. (2008). An intelligent PE-malware detection

system based on association mining. Journal in computer virology, 4(4), 323-334.

You, I., & Yim, K. (2010). Malware obfuscation techniques: A brief survey. Paper

presented at the 2010 International conference on broadband, wireless computing,

communication and applications.

Young, A., & Yung, M. (1996). Cryptovirology: Extortion-based security threats and

countermeasures. Paper presented at the Proceedings 1996 IEEE Symposium on

Security and Privacy.

Young, A. L. (2005). Building a cryptovirus using Microsoft’s cryptographic API. Paper

presented at the International Conference on Information Security.

Zakaria, W. Z. A., Abdollah, M. F., Mohd, O., & Ariffin, A. F. M. (2017). The rise of

ransomware. Paper presented at the Proceedings of the 2017 International

Conference on Software and e-Business.

Zavarsky, P., & Lindskog, D. (2016). Experimental analysis of ransomware on windows

and android platforms: Evolution and characterization. Procedia Computer Science,

94, 465-472.

Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., & Sangaiah, A. K. (2019).

Classification of ransomware families with machine learning based on N-gram of

opcodes. Future Generation Computer Systems, 90, 211-221.

Zhao, J. Y., Kessler, E. G., Yu, J., Jalal, K., Cooper, C. A., Brewer, J. J., . . . Guo, W. A.

(2018). Impact of trauma hospital ransomware attack on surgical residency training.

journal of surgical research, 232, 389-397.

184

APPENDIX A

The most important ransomware API Calls with category and attack phases

 API Calls API Category Attack

Stages

Functions

P
re

-E
n
cr

y
p
ti

o
n

GetComputerNameA System

Information

Exploitation Retrieves the NetBIOS name of

the local computer

GetNativeSystemInfo System

Information

Exploitation Gathering the system

information like system time and

memory status

GetSystemDirectoryA System

Information

Exploitation Retrieves the path of the system

directory

GetSystemInfo System

Information

Exploitation Retrieves information about the

current system

GetSystemWindowsDirector

yW

System

Information

Exploitation Retrieves the path of the shared

Windows directory on a multi-

user system

GetUserNameA System

Information

Exploitation Retrieves the name of the user

associated with the current

thread

GetSystemTimeAsFileTime Time

Functions

Exploitation Retrieves the current system date

and time

GetTimeZoneInformation Time

Functions

Exploitation Retrieves the current time zone

settings

SetFileTime Time

Functions

Exploitation Sets the date and time that the

specified file or directory was

created

HttpOpenRequestW WinINet

Functions

Contacting Creates an HTTP request handle

InternetConnectA WinINet

Functions

Contacting Opens File Transfer Protocol

(FTP) or HTTP session for the

attacker’s site.

InternetOpenUrlA WinINet

Functions

Contacting Opens a resource specified by a

complete FTP or HTTP URL

HttpSendRequestA WinINet

Functions

Contacting Sends the specified request to

the attacker’s HTTP server

InternetReadFile WinINet

Functions

Contacting Reads data from a handle opened

by the InternetOpenUrl,

FtpOpenFile, HttpOpenRequest

WSARecv Windows

Network

Contacting Receives data from a connected

socket or a bound connectionless

socket

WriteProcessMemory Process and

Thread

Execution To write data to a remote

process. Ransomware uses this

function as part of process

injection.

185

CreateRemoteThread Process and

Thread

Execution Creates a thread that runs in the

virtual address space of another

process

NtResumeThread Process and

Thread

Execution To resume a previously

suspended thread

QueueUserAPC Process and

Thread

Execution To execute, ransomware uses

this function to inject code into

another process

SetThreadContext Process and

Thread

Execution To modify the context of a given

thread.

GetFileSize File

Management

Execution The ransomware retrieves the

size gathered of the specified

file.

GetFileType File

Management

Execution Retrieves the file type of the

targeted file

RegNotifyChangeKeyValue Registry

Function

Execution Runs in loop and monitors if the

key is changed

RegCreateKeyExA Registry

Function

Execution Creates the specified registry key

for encryption

NtAllocateVirtualMemory Memory

Management

Execution Creates new region of memory

within the virtual address space

of the specified process.

NtCreateSection Memory

Management

Execution Creates or opens a named or

unnamed file mapping object for

a specified file

E
n

cr
y

p
ti

o
n

CryptEncrypt Cryptography Encryption The CryptEncrypt function

encrypts data.

CryptCreateHash Cryptography Encryption Initiates the hashing of a stream

of data

CryptGenKey Cryptography Encryption Generates a random

cryptographic session key or a

public/private key pair.

CryptHashData Cryptography Encryption Adds data to a specified hash

object

CryptAcquireContextW Cryptography Encryption Acquires a handle to a particular

key container within a particular

cryptographic service provider.

CryptReleaseContext Cryptography Encryption Releases the handle of a

cryptographic service provider

(CSP) and a key container.

CryptGetHashParam Cryptography Encryption Retrieves data that governs the

operations of a hash object.

CryptDecodeObjectEx Cryptography Encryption Decodes a structure of the type

indicated by the lpszStructType

parameter

CryptExportKey Cryptography Encryption Exports the victim’s public RSA

key to new file

186

EncryptMessage Cryptography Encryption Encrypts a message to provide

privacy

CertControlStore Cryptography Encryption Notifies when there is a

difference between the contents

of a cached store and the

contents of that store as it is

persisted to storage

FindFirstFileExW File Operation Encryption Searches a directory for a file or

subdirectory with a name and

attributes that match those

specified

FindNextFileW File Operation Encryption Continues a file search to

encrypt

CreateFileW File Operation Encryption Create opens encrypted files.

WriteFile File Operation Encryption Encrypts and Writes data to the

targeted file.

P
o
st

-E
n
cr

y
p
ti

o
n

DrawTextExW Font and Text Extortion Draws formatted text in the

specified rectangle

SendNotifyMessageW Font and Text Extortion Sends threatening message to the

victim via windows

LoadStringA String

Functions

Extortion Loads a string resource from the

executable file associated with a

specified module.

WriteConsoleA Console

Functions

Extortion Writes a threatening character

string to a console

DeleteFileW File

Management

Backup

spoliation

Deletes the backup files

CopyFileA File

Management

Backup

spoliation

Copies an existing encrypted

back up file to a new file

MoveFileWithProgressW File

Management

Backup

spoliation

Replaces the original file with

ones that is encrypted

SetFilePointer File

Management

Backup

spoliation

Moves the file pointer of the

specified file

CryptDecrypt Cryptography Release Decrypts data previously

encrypted by the malware

187

APPENDIX B

SNIPPET OF FEUTURE SELECTION DATASET

188

APPENDIX C

ELIMINATING THE REDUNDANCY OF THE FUNCTION CALLING, C++

COD

#include <stdio.h> /* required for file operations */

#include <stdlib.h>

#include <string.h>

#include <conio.h> /* for clrscr */

#include <dos.h> /* for delay */

FILE *fr,*fw; /* declare the file pointer */

Main ()

{

 clrscr();

 printf ("\n \n \t\t Program for Eliminating Redundancy has Started,");

 printf ("\n \n \t\t Open Files ,");

 fr = fopen ("All_Benign Data set.txt", "rt"); /* open the file for reading */

 fw = fopen ("All_Benign Data set_output.txt", "wt");

 int i=0;

 int j=0,k=0;

 char line;//,ch;

 char cmd[25];

 char cmd1[25];

 printf ("\n \n \t\t Read file ,");

 // c = fgetc (pFile); (c != EOF);

 Line =NULL;

 while(line != EOF)

 {

 Line = fgetc(fr);

 if(line==',')

 {

 cmd[k++]=',';

 fputs (cmd,fw);

 // printf (" found ,");

 for (int w=0;w<=25;w++)

 cmd[w]=NULL;

 k=0;

 Continue;

 }

 //******************************

 if(line==' ')

 {

 If (strcmp(cmd,cmd1)== 0)

 {

189

 For (int w=0;w<=25;w++)

 cmd[w]=NULL;

 k=0;

 Continue;

 }

 Else

 {

 for (int w=0;w<=25;w++)

 cmd1[w]=NULL;

 for (j=0; j<=k; j++)

 cmd1[j]=cmd[j];

 cmd[k++]=' ';

 fputs (cmd,fw);

 for (int w=0;w<=25;w++)

 cmd[w]=NULL;

 k=0;

 Continue;

 }

 }

 //******************************

 cmd[k]=line;

 k++;

 }

 fclose(fr); /* close the file prior to exiting the routine */

 fclose(fw);

 printf ("\n \n \t\t Finish copy , %d line has been copyed",i);

 getche(); } /*of main*/

190

APPENDIX D

A SNIPPET OF BINARY BENIGN AND RANSOMWARE DATA SET

191

APPENDIX E

CUCKOO SANDBOX HTML REPORT

192

APPENDIX F

REMOVING NOISY DATASET USING C++ COD

#include <stdio.h> /* required for file operations */

#include <stdlib.h>

#include <string.h>

#include <conio.h> /* for clrscr */

#include <dos.h> /* for delay */

FILE *fr,*fw; /* declare the file pointer */

 const int size=100;

main()

{

 char line[250],ch;

 clrscr();

 fr = fopen ("Xburstcopy.txt", "rt"); /* open the file for reading */

 fw = fopen ("Xburstcopy.txt", "wt");

 int i=0;

 int j=0,k=0;

 while(fgets(line, 250, fr) != NULL)

 {

 k=0;

 do

 {

 ch= line[k];

 k++;

 } while (ch !='*');

 do

 {

 ch= line[k];

 k++;

 } while (ch !='*');

 int l=0;

 do

 {

 char cmd[25];

 ch= line[k];

 if(ch=='*')

 {

 if ((strcmp(cmd, "HeapAlloc")== 0)

 || (strcmp(cmd, "HeapFree")== 0)

193

 || (strcmp(cmd, "IsBadReadPtr")== 0)

 || (strcmp(cmd, "IsBadWritePtr")== 0)

 || (strcmp(cmd, "LocalAlloc")== 0)

 || (strcmp(cmd, "LocalFree")== 0)

 || (strcmp(cmd, "IsBadStringPtrW")== 0))

 {

 ;

 }

 else {

 i++;

 fputs (line,fw);

 }

 for (int w=0;w<=25;w++)

 cmd[w]=NULL;

 break;

 }

 cmd[l]= line[k];

 l++;

 k++;

 } while (ch !='*');

 }

 fclose(fr); /* close the file prior to exiting the routine */

 fclose(fw);

 printf ("\n \n \t\t Finish copy , %d line has been copyed",i);

 getche();

} /*of main*/

194

Curriculum Vitae

Personal Information

Name: Yahye Abukar Ahmed

Mother name: Anab Ali Mohamed

Date of Birth: 1986

Place of Birth: Mogadishu, Somalia

Citizenship: Somali

Marital Status: Married

Contact Address: E-mail: yahye@simad.edu.so

 Tel: 00905367473020

Educational Background

2014- Current Selçuk Üniversitesi, PhD Candidate in

 Computer Engineering (Intrusion

 Detection system)

2014-2015 Turkish Language Certificate, GBA:3.58

 (Necmetttin Erbakan Üniversitesi)

2011-2013 Universiti Teknologi Malaysia (UTM).

 Master of Computer Science

 (Information Security) CGPA: 3.71

2010 – 2011 SIMAD University.

Bachelor Degree: in Information

Technology. CGPA: 3.67

2007 – 2010 SIMAD University.

Post Secondary Diploma: In Information

Technology : CGPA: 3.81

2008 SIMAD University.
CISCO IT Essential I

 2007 Horyal Computer institute: Computer

 Training.

2006-2007 Immamu shafi’i School

 Secondary School

195

Honors and Awards

Won first class award for recognition of high performing student in SIMAD

University.

Publications

A) Papers

 Sh.Sharmeen, Y. Ahmed, Sh.Huda, B.Kocer and M.Hassan, “Avoiding future

digital extortion through robust protection against ransomware threats

using deep learning based adaptive approaches,” IEEE Access, vol.

 Y. Ahmed, B.Kocer and B.Al-irmy , “Automated Analysis Approach for the

Detection of High Survivable Ransomware,” KSII TRANSACTIONS ON

INTERNET AND INFORMATION SYSTEMS, vol. 14, Nov. 2019.

 Y. Ahmed, M. Maarof, F.Hassan and M. Abshir, “Survey of keyloggers

Technologies,” International Journal of Computer Science and

Telecommunications, vol. 5, Feb. 2014.

 Y. Ahmed and A.Abdullahi, “ Mitigating of Malicious Insider Keylogger

Threats,” JISRI. Journal of Research and Innovation in Information

Systems, vol. 3, Jan. 2013.

 Y. Ahmed and B.Kocer, “ Supervised Machine learning Approach for

Detection of malicious executables,” International Conference on

Mathematics, Science and Engineering Education

 Y. Ahmed, B.Kocer, Sh.Huda, and M.Hassan, “A System Call Refinement-

Based Enhanced Minimum Redundancy Maximum Relevance Method for

Ransomware Early Detection” Journal of Network and Computer

Applications” June 15, 2020

B) Articles

 Security Issues in Mobile Banking Service: (Deeqtoon), published in

Somali Business Review (SBR)

 The Impact of Emerging ICT Industries on Small-Business Performance

In Somalia, published in Somali Business Review (SBR)

 The Challenges of Social Network on Small Business Performance in

Somalia, published in Somali Business Review (SBR)

 The Effect of Emerging EPOS Technology on Customer Service in

Retailer Shops in Somalia, published in Somali Business Review (SBR)

196

Work Experiences
19/12/017-05/09/2018 EMFA Software and Consultancy

2/11/2016-15/3/2017 Asylum-Seekers and Immigrants and

 Solidarity Association (Volunteer)

2015-2016 Research assistance at Mevlana

University

2013-2014 Former head of computer Science

 Department and lecturer at SIMAD

 UNIVERSITY

2013-2014 Sofa software developer (ICT)

2013-2014 Lecturer at UNIVERSITY OF SOMALIA

(UNISO)

2009– 2010 Lecturer at SOMALI C0MPUTER

INSTTTUTE (SOCOMIN).

2008– 2009 Teacher in Hilaal Primary and

 Secondary school.

Seminars and Workshops attended

4-6 January 2013 UTM ISC International Student Activity

 Management Workshop, Mersing, JB

 Malaysia

7-8 October 2012 Matlab workshops Held in Faculty

 of Computer Science and Information

 System, UTM

December, 2011 Navigate Your Career Held in UTM

12-13, May 2012 Adobe Flash Training Held in Faculty

 Of Computer Science and Information

 System, UTM

197

9 March 2011 The Role of knowledge in building

 Society held by UTM-ISC-Somalia

Aug – Oct, 2007 Web Developing Training by Sofa

 Software Technology, Held in

Mogadisho.

December, 2014 How to Write an Effective Academic

Report as Facilitator in UNIVERSITY OF

SOMALIA (UNISO)

Aug, 28, 2015 Ethical Hacking Seminar as Facilitator

in SIMAD UNIVERSITY

December 25, 2013 workshop on research methods in

SIMAD UNIVERSITY

July 23, 2013 Training on Pedagogy, Curriculum

 Review and Examination quality

 Assurance by Makerere University

 Business School in Uganda

Skills

Security information security, security policy

IT Professional Web Developing, Communications,

Networking and Programming.

Computer All Office applications

Languages
Somali Mother Tongue

English Fluently

Turkish very good (with certificate)

Arabic Good

Referee

NAME JOB ADDRESS
Prof. Dr. Bekir KARLIK Selçuk Üniversitesi Bilgisayar Müh. Bölümü

Fuad Mirre Dean, Faculty of Computer Science and Technology in SIMAD

	Final_Submision_7_May_2020 (1)
	onay sayfası
	declaration
	Final_Submision_7_May_2020 (1)

