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Ransomware, kullanıcı ile ilgili dosyaları ve verileri şifreleyen ve onları fidye olarak tutan kötü amaçlı 

bir yazılımdır. Bu tür saldırılar hem bireyler hem de iş organizasyonları için ciddi tehdit oluşturan en yaygın 

kötü amaçlı yazılımlardan biri haline gelmiştir. Bu yıkıcı zararlı program, son yıllarda siber suçlulara çok daha 

büyük fidye talepleri ödeyerek birçok kuruluşun büyük gelir kaybetmesine neden olmuştur. Fidye yazılımının 

hızlıca büyümesini sağlayan araçlar olarak; sosyal mühendislik, e-posta eki, zip dosyası indirmesi, kötü amaçlı 

siteye göz atma, virüslü arama motoru gibi büyük enfeksiyon yayılma yolları olarak gösterilebilir. Ayrıca 

kolayca kullanılabilen şifreleme araçları, Ransomware As a Service (RaaS), bulut depolama ve kendi kendine 

fidye yazılımı araç kitleri bu tür kötü amaçlı yazılımların geliştirilmesini kolaylaştırmıştır. Virüs yayılmasını 

kolaylaştıran enfeksiyon kitleri ve mevcut geliştirme araçları fidye yazılımlarını son derece büyütmekle 

kalmamış, aynı zamanda yeni varyantları da daha gizlenmiş, şifrelenmiş ve değişen desenler haline getirmiştir. 

Bu yıkıcı zararlı programa karşı, dinamik analiz yaklaşımı böyle bir saldırıyı tespit etmek için en popüler 

yaklaşımdır. Dinamik analizlerin çoğu, sistem çağrılarına dayanmaktadır, çünkü bunlar işletim sisteminden 

hizmet talep eden programlar için bir arabirim sağlar. Bununla birlikte, virüs yazarının çalıştırılabilir dosyaya 

enjekte ettiği fazlalık ve ilgisiz sistem çağrıları, fidye yazılımı tespit edilmesini olumsuz yönde etkileyen yüksek 
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gürültülü bir davranış dizisi oluşturmaktadır. Bu yüzden de algılama motorları ransomware'in yeni varyantlarını 

tespit edememektedir. Bu araştırma hem denetimli hem de yarı denetimli makine öğrenme tekniklerini 

kullanarak etkili Windows API çağrı dizileri üzerinden imzasız bir algılama yaklaşımı önermiştir. Bu hedefe 

ulaşmak için, gürültülü özellikleri kaldırmak, fidye yazılımının gerçek davranışını karakterize etmek ve en 

alakalı özellik alt kümesini seçmek için Gelişmiş Maksimum Alaka Düzeyi ve Minimum Yedeklilik (EmRmR) 

filtre yöntemi önerilmiştir. Orijinal mRmR'den farklı olarak, EmRmR az sayıda değerlendirmeyle orijinal 

mRmR algoritmalarına özgü gereksiz hesaplamaları önler. Buna ek olarak, bu çalışmada, fidye yazılımının kritik 

davranışını açıklamak için anlamlı olmayan Windows API çağrılarını kaldırarak programın çağrı izlerinin 

boyutunu azaltmak için bir arıtma işlemi geliştirilmiştir. Rafine edilmiş sistem çağrılarını kullanarak birkaç 

sınıflandırıcı algoritması geliştirilmiş ve saldırının erken aşamalarında fidye yazılımını tespit etmek için daha 

düşük yanlış pozitif oranla yüksek doğruluk elde edilmiştir. Buna ek olarak, bu araştırma geleneksel denetimli 

algılama motorunun sınırlamalarına değinmekte ve ayrıca derin öğrenme yaklaşımlarını kullanarak yeni 

varyantlardaki değişken örüntülerin doğal gizli kaynaklarını denetimsiz bir şekilde hesaplamak için yarı 

denetimli bir çerçeve önermektedir. Önerilen çerçeve, yaklaşan kötü amaçlı çalıştırılabilir dosyaları barındırmak 

için ölçeklenebilir olan vahşi ortamdan elde edilen etiketlenmemiş fidye yazılımlarından farklı desenlerdeki 

doğal özellikleri ayıklar. Kapsamlı deneysel sonuçlarımız ve tartışmamız, önerilen uyarlanabilir çerçevenin, 

fidye yazılımının farklı varyantlarının davranışlarını başarıyla ayırt edebildiğini ve mevcut denetimli 

yaklaşımlardan daha yüksek performans elde edebildiğini göstermektedir. 

 
Anahtar Kelimeler: Fidye yazılımı, Sistem çağrısı, Terim Frekans-Ters Belge Frekansı, Maksimum Alaka 

Düzeyi ve Minimum Artıklık, N-Gram, Dijital gasp, derin öğrenme, uyarlanabilir yaklaşımlar. 
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Ransomware is malicious software that encrypts the user-related files and data and holds them to 

ransom. Such attacks have become one of the most widespread malwares that poses serious threat to both 

individuals and business organizations. This destructive malicious program has caused many organizations to 

lose huge revenue by paying much bigger ransom demands to the cyber criminals in recent years. Explosive 

growth of ransomware is due to the existing large infection vector such as social engineering, email attachment, 

zip file download, browsing malicious site, infected search engine which are boosted dramatically by easily 

available cryptographic tools, Ransomware As a Service (RaaS), increased cloud storage and off-the-self 

ransomware toolkits. The large infection vector and available toolkits not only grew ransomware extremely, but 
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also made them more obfuscated, encrypted and varying patterns in the new variants. Against this destructive 

malicious program, the dynamic analysis approach is the most popular approach for detecting such an attack. 

The majority of dynamic analysis relies on the system calls as these provide an interface for programs to request 

service from the operating system. However, the redundancy and the irrelevant system calls that the ransomware 

authors inject in the actual execution flow of suspicious binaries generate a high noisy behavioral sequence that 

adversely impacts in the induction of the supervised classifiers. This, in turn, caused the conventional supervised 

analysis and detection engine to fail to detect the new variants of ransomware. This research proposed a non-

signature-based detection approach on the effective windows API call sequences using both supervised and 

semi-supervised machine learning techniques. To achieve this objective, we proposed an Enhanced Maximum-

Relevance and Minimum-Redundancy (EmRmR) filter method to remove the noisy features and select the most 

relevant subset of features to characterize the real behavior of the ransomware. Unlike the original mRmR, the 

EmRmR avoids unnecessary computations intrinsic in the original mRmR algorithms with small number of 

evaluations. In addition, this research has introduced a refinement process to reduce the size of the program’s 

call traces by removing those windows API calls that do not have strong indication for describing the critical 

behavior of the ransomware. We developed several classifiers algorithms using refined system calls and achieves 

high accuracy with a lower false-positive rate for detecting ransomware in the early phases of the attack. In 

addition, this research addresses the limitations of conventional supervised detection engine and also proposed 

a semi-supervised framework to compute the inherent latent sources of the varying patterns in the new variants 

in an unsupervised way using deep learning approaches. The Proposed framework extracts the inherent 

characteristics in the varying patterns from the unlabeled ransomware obtained from the wild which is scalable 

to accommodate upcoming malicious executables. After accomplishing Our extensive experimental results and 

discussion demonstrate that the proposed adaptive framework can successfully discriminate the behavior of 

different variants of ransomware and achieve higher performance than existing supervised approaches. 

 
Key Words: Ransomware, System call, Term Frequency-Inverse Document Frequency, Maximum 

Relevance and Minimum Redundancy, N-Grams, Digital extortion, deep learning, adaptive approaches. 
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PREFACE 

 
“Ransomware is unique among cybercrime because in order for the attack to be successful, it requires the 

victim to become a willing accomplice after the fact” 

 
-James Scott, Institute for Critical Infrastructure Technology, 2018 

 

The most prevalent and potentially devastating form of malware, ransomware encrypts the 

user’s related files and hard drive, and demands payment of a ransom before a deadline. A 

famous global ransomware attack of this variety occurred in 2017, when the Wannacry 

ransomware targeted thousands of computers around the world and spread itself within 

corporate networks. The frequency of ransomware attacks increased by three times in 2017 

over 2016: an attack occurred every 40 seconds. For example, WannaCry cyber-attack has 

been reported in 99 countries and over 75,000 attacks have been carried out on machines 

running the Windows operating system. The losses due to ransom was calculated as 200 

million USD per year extorted by the criminal gangs. Due to this significant economic loss, 

severity of disruption in sensitive business organizations, and the explosive growth of 

ransomware, the detection of ransomware has been an important research field which gives us 

the motivation of this thesis.  Against this destructive malicious program, the dynamic 

analysis approach is the most popular and reliable approach for detecting such an attack. The 

majority of dynamic analysis relies on the system calls as these provide an interface for 

programs to request service from the operating system. However, the redundancy and the 

irrelevant system calls that the ransomware authors inject in the actual execution flow of 

suspicious binaries generate a high noisy behavioral sequence that adversely impacts in the 

induction of the supervised classifiers. The propose of this thesis is to describe and monitor 

the valuable features of ransomware dynamically by conducting a behavioral-based analysis 

of ransomware within sandbox in an isolated environment, and to developed detection models 

for ransomware utilizing supervised machine learning algorithms, and adaptive detection 

engine using deep learning based semi-supervised model.                                                                                              

 

Yahye Abukar AHMED   
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1. INTRODUCTION 

 

 

The most devastated and fast-spreading computer world attack is ransomware that 

can encrypt the assets in the victim’s machine, make it unavailable to the users and pose a 

serious threat to achieving the CIA Triad (Al-rimy, Maarof, & Shaid, 2019) security goals 

such as availability. The term ransomware is originally derived from two combined words 

ransom and malware. After encrypting the victim’s assets ransomware author demands a 

ransom for the restoration of the assets (user’s data) into their original states (ur Rehman, 

Yafi, Nazir, & Mustafa, 2018). If the victim paid the ransom to the attacker through the 

anonymous currency mechanisms like Bitcoin (Kalaimannan, John, DuBose, & Pinto, 

2017) , the access to the encrypted assets is made available again. The malware encrypts 

the most important user’s files on the hard drives, removable drives and mapped network 

shares for extortion. Once ransomware reaches to the victim’s machine through the 

infection vehicle, it starts the reconnaissance phase in which it searches for OS version, 

installed applications, user’s files and folders, accessibility functions, backup files and 

folders, credential information in the victim’s machine, and thereby identifies the most 

important resources and files (Scaife, Carter, Traynor, & Butler, 2016). After the 

encryption, the ransomware displays a message that requires payment to restore the 

captured user’s data. The next step is to register the decryption key with a particular user 

and make available when the ransom is paid; therefore, ransomware uses the command-

and-control (C&C) server to establish communication with its creator (Ahmadian, 

Shahriari, & Ghaffarian, 2015).    

Although the revolution of ransomware appeared at the end of the 1980s (Shukla, 

Mondal, & Lodha, 2016)when the PC CYBORG also known as Aids Info Disk (AIDS) 

Trojan starts to calculate the number of times the machine has booted until a criterion 

number (90) reached. After that, the Trojan AIDS locks the critical user’s files, hides all 

directory and encrypts the labels of the files on the drive C: (Shukla et al., 2016). This 

ransomware targeted the healthcare industry, after 28 years, the healthcare industry 

remains a top target for ransomware attacks. However, the sequence of successful attacks 

of ransomware has resulted in increasing many new ransomware variants in the last few 

years; for instance, the WannaCry cyber threat has been reported in 99 countries, and over 

75,000 attacks have been carried out on machines running the Windows operating system 

(Al-rimy, Maarof, & Shaid, 2018).  
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The motivation is the significant revenue of the extortion, for example, effective 

ransomware like CryptoWall version 3.0 earned an estimated $325 Million as extortion in 

the USA alone (Moore, 2016). A report released by FBI just in 2016 estimated that the 

losses of $1 billion caused by ransomware. The victims of ransomware are not only limited 

to home users or individuals but also targets government networks, businesses and health 

services. It causes damage to financial losses or sensitive information that can lead to the 

disruption of daily operations (Da-Yu, HSIAO, & Raylin, 2019). 

Availability of cryptographic tools and easy anonymous financial transaction 

methods such as cryptocurrencies, off-the-shelf ransomware development kit such as eda2, 

angler exploit kit, Neutrino exploit kit, Ransomware-as-a-Service (RaaS), increased usage 

of cloud-based file sharing are the primary reasons for explosive growth of ransomware 

which encourages ransomware attacker to develop new ransomware variants in the last 

few years (Mansfield-Devine, 2017) .  

On other hand, machine learning (ML), a broad branch of artificial intelligence, is 

computational methods using regularities, induced patterns and previous experience to 

improve accurate predictions and performance. Machine learning is the science of getting 

computers to act without being explicitly programmed. It is designed to develop the 

efficiency of computer algorithms to solve with large-scale of data. In machine learning 

classifier is used to recognize contents inside executable code files to classify new files 

from normal files (Menahem, Shabtai, Rokach, & Elovici, 2009). The classifier is a set of 

rules that is applied to a specified training of malicious executables and normal files. 

Generally, classifiers are trained to recognize unseen malicious executables as 

maliciousness, and complex patterns recognition that lead to intelligent decisions based on 

the training data. In machine learning algorithms track the sequences generated by the 

system calls and addressed as the characteristics of the program. The programs interact 

with the operating system through system calls. Therefore, the input of machine learning 

algorithm depends on the feature extraction which generates new features that are 

extracted from the original one, while the selection methods keep the subset of the original 

features. The extracted features including API calls (Takeuchi, Sakai, & Fukumoto, 2018). 

The remaining of this section is organized as follows; the first subsection will 

discuss problem background. The second subsection problem statement is described in 

detail. The scope of the thesis will also be highlighted in subsection three. The rest are the 

objectivities of the research is also discussed in the fourth subsection. Finally, the 

significance of the study will be illustrated. 



 

 

3 
 

2. Problem Background  

 

 

Recently, ransomware has become one of the most widespread malware threats 

that internet users experience (Ahmadian et al., 2015). Normally, victims of ransomware 

are not limited to home users or individuals, but also targets government networks, 

businesses, national health service hospital and causes permanent or temporary loss of 

proprietary or sensitive information, disruption to regular operations and financial losses.  

This threat has become a major cyber risk for many organizations; small-medium 

enterprises (SME) to large enterprises business and individual entrepreneurs (Al-rimy et 

al., 2018). 

For example, the courier companies FedEx and TNT, Maerx, WPP (the world’s 

largest advertising agency), pharmaceutical company Reckitt Benckiser and Kingdom’s 

National Health Service (Mansfield-Devine, 2017). These attacks caused severe financial 

losses, e.g. an estimated damage by the WannaCry alone was 5 billion dollars 

approximately. The leading courier company of the world, FedEx, acquired $300million 

financial loss resulting from disrupted operations, legal and reputational cost caused by 

ransomware attacks (Al-rimy et al., 2018). The world leader of shipping and logistic 

business, Maresk lost $200 million to $300 million due to catastrophic ransomware attacks 

which caused it to shut down its 76 terminal ports (Yaqoob et al., 2017).  In 2016, the 

Hollywood Presbyterian Medical Center (HPMC) computer network was down for more 

than a week as the Southern California hospital worked to recover from a ransomware 

attack, after a ransom of 40 Bitcoins — approximately $17,000 — was paid, the hospital’s 

computer systems were released. A report released by FBI just in 2016 estimated that 

losses of $1 billion caused by ransomware. A report released by McAfee, demonstrates 

ransomwares have grown since 2014 (Al-rimy et al., 2018). 

In January 2017, a hotel in Austria named Seehotel Jagerwirt was affected by a 

ransomware attack that took over the systems of the hotel and tampered the room key cards 

and guest check-ins (Mansfield-Devine, 2017). As part of the ransom to release the hotel’s 

computers, hackers required that the hotel pays 2 Bitcoin or roughly 1,500 euro or $1,600. 

The hotel agreed to this payment because it was faster and cheaper than trying to fight it. 

May 15, 2017, new ransomware, called WannaCry emerged, which is a kind of 

ransomware that targets all kinds of files including PDF files, word documents, excel 

sheets, etc, and encrypts them in the form of .wcry extension. WannaCry causes crises 
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across the world and infecting vulnerable systems globally. WannaCry cyber-attack has 

been reported in 99 countries and over 75,000 attacks have been carried out on machines 

running the Windows operating system (Da-Yu et al., 2019). 

The explosive growth of ransomware happened due to enormous availability of 

easy cryptographic tools for applying encryption techniques such as single key (symmetric 

key mechanism), dual key (public-private key) or hybrid to produce ransomware (Yaqoob 

et al., 2017), easily available financial transaction methods with anonymity such as P2P 

cryptocurrencies which influence ransomware authors to feel safe (not being caught by 

law enforcement agencies), availability of off-the self-ransomware development kit such 

as eda2, angler exploit kit, Neutrino exploit kit, Ransomware- as-a-Service (RaaS) based 

on the cloud platform which enable a novice to create ransomware and spread. Increased 

usage of cloud-based file sharing such as OneDrive, Google drive has also accelerated 

ransomware distribution for large business organizations. Often ransomware authors not 

only demand the ransom, but the installed ransomware also create mass disruption in the 

system, for example, WannaCry locked out the health professionals from the electronic 

medical recording system (EMRS), computerized tomography (CT), magnetic resonance 

imaging (MRI) scanners, blood test service systems of UK’s national health services (Zhao 

et al., 2018). 

Detection of the ransomware is commonly performed by tools such as anti-virus 

programs based on the analysis of the signature recognition. Ransomware analysis 

approaches are widely classified into static and dynamic analyses. In the static analysis 

approach, there is no need to execute the ransomware samples. When a new malicious 

sample is explored, the static detection needs to catch its binary signature through 

analyzing the executable instructions (Sgandurra, Muñoz-González, Mohsen, & Lupu, 

2016). Ransomware detection program searches the virus signature database to find if 

there are matched signatures. If a match is found, the file under test will be identified as a 

malicious executable. This approach has proved to be effective when the malware is 

known beforehand in the database, and the accuracy is totally dependent on the signature 

database of the system. However, this signature-based detection method is hampered by 

the avoidance techniques that ransomware employs such as obfuscation and/or packing. 

Such an approach is unreliable for detecting to the zero-day ransomware, as it suffers 

several shortcomings such as frequently updated signature repository, and the need for 

expert intervention to analyse and extract attack signatures (Fukushima, Sakai, Hori, & 

Sakurai, 2010).  
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In the dynamic analysis, on the other hand, ransomware samples are executed in a 

controlled environment such as sandbox to reveal the runtime behaviour of the samples. 

Certain dynamic behavioural features are extracted from the malicious file and used for 

classification and detection purposes. The most promising approaches to detect and 

characterize the malware behaviour are system calls as they provide a valuable information 

and attack patterns that help in the detection of such attacks. To execute the suspicious 

payload, ransomware needs to request services from the operating system through 

Windows API calls. These system calls can represent the essential characteristics of the 

ransomware. However, significant growth of ransomware through a huge infection vector, 

changes the patterns of infection very rapidly. This requires a sophisticated detection 

engine which is based on the runtime feature of ransomware and requires as less supervised 

knowledge as possible (Vinod & Viswalakshmi, 2018). 

 

2.2 Problem Statement 

 

 

Ransomware is malicious software that encrypts the user-related files and data and 

holds them to ransom. Such attacks have become one of the serious threats to cyberspace. 

The avoidance techniques that ransomware employs such as obfuscation and/or packing 

makes it difficult to analyse such programs statically. Although many ransomware 

detections studies have been conducted, they are limited to a small portion of the attack's 

characteristics. In the dynamic analysis, several current studies rely on system calls as they 

are effective for distinguishing between the behaviour of malicious and benign programs. 

A system call is a way for programs to interact with the operating system. A computer 

program makes a system call when it makes a request to the operating system’s kernel. 

System call provides the services of the operating system to the user programs via 

Application Program Interface (API). It provides an interface between a process and 

operating system to allow user-level processes to request services of the operating system. 

System calls are the only entry points into the kernel system. (Al-rimy, Maarof, & Shaid, 

2017).  

Authors Hampton et al. employed windows API call features for identifying the 

salient feature of the ransomware. For the detection purpose, the frequency of the system 

calls for the ransomware and baseline applications were compared to measure the 

similarity between them (Hampton, Baig, & Zeadally, 2018). Amamra et al. introduced a 

filtering and abstraction process to eliminate the irrelevant and redundancy system calls 
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for anomaly-based malware detection. This process has also combined the same system 

calls to reduce the size of the traces (Amamra, Robert, & Talhi, 2015). However, the 

redundant and irrelevant system calls that are injected by the malware authors in the actual 

execution flow of suspicious binaries can easily defeat these detection approaches.  

Moreover, the size of the system call traces is commonly very large that generates 

a high noisy behavioural sequence (Chou, Yen, & Luo, 2008). This has adversely impact 

on the induction of machine learning classifiers such as the increase in training time, more 

storage requirement and the difficult analysis of real malicious behaviour that can lead 

overhead and poor prediction ability (Xiao, Xia, Yang, Huang, & Wang, 2015). 

To address this issue, dimensionality reduction approaches such as filters and 

wrappers have been proposed to handle the noisy problem and select the optimal features 

to improve the performance of the classifiers. Wrappers select features based on 

predetermined learning algorithms, but this method tends to be computationally expensive 

and has overfitting problems (Acid, De Campos, & Fernández, 2011). Unlike wrapper 

methods, filters select the subsets of the features by finding the correlation to the target 

class without involving any learning algorithm.  

Filters are less computational than wrapper approaches. Among the widely-used 

filter methods, the Minimum-Redundancy Maximum-Relevance (mRmR) method has 

been successfully employed in the malware detection applications in the past few years.  

Several studies have employed such approach as this provides a relevant feature 

for discriminating the behaviour of the malware and benign files (Sedano et al., 2015). 

However, the original mRmR method has a limitation of unnecessary computations due to 

the mutual information calculations among feature sets. In the mRmR, to find the most 

relevant subset feature, the mutual information between a specific feature and the class 

target is quantified. The redundancy of the features is penalized based on mutual 

information within features (Darshan & Jaidhar, 2018). This process continues until the 

subset features are equal to the selected features, and the algorithm calculates the same 

mutual information values more than one time that leads to duplications.  

Therefore, the original mRMR method is not suitable for the detection of 

ransomware because it is computationally expensive due to the large number of system 

call features generated by n-gram. Therefore, we need a lighter version of mRmR to 

overcome this difficulty.   

 



 

 

7 
 

2.3 The Research Questions 

 

There are important questions which arise:  

 

1. Feature extraction is a key to apply machine learning to successfully detect 

malicious executables, which feature extraction approach can propose significant 

features that can represent the real behavior of the ransomware? 

 

2. The most promising approaches to detect and characterize the ransomware 

behaviour are system calls as they provide valuable information and attack 

patterns. Windows API calls are suffering a massive amount of irrelevant and 

redundant system calls invoked by the malicious executables during its execution, 

how to reduce the size of the system call traces? 

 

3. How supervised machine learning implemented using an integrated number of 

features? 

 

4. How to develop an adaptive detection engine using deep learning-based semi-

supervised model on an integrated number of features? 

 

5. How to evaluate the efficiency of supervised machine and semi-supervised in 

detecting of the ransomware. 

 

2.4 Objectives of the Research 

 

The following are the objectives of the research: 

 

1. We proposed a framework for describing dynamically monitored valuable 

features of ransomware by conducting a behavioral-based analysis of ransomware 

within a sandbox in an isolated environment, through the Term Frequency-Inverse 

document frequency (TF-IDF), Enhanced Minimum-Redundancy and Maximum-

Relevance (EmRmR) and FastICA methods, we have extracted the most relevant 

features that provide the best performance in detecting new ransomware on 

windows platforms.   
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2. We have developed detection models for ransomware utilizing supervised 

machine learning algorithms, and adaptive detection engine using deep learning 

based semi-supervised model. The proposed method achieves high accuracy and 

less false positive rate for detecting ransomware in the early phases of the attack.  

 

3. We have empirically validated the method with an extensive experimental 

evaluation to show the effectiveness of the proposed models.  

 

2.5 Scope of the Research 

 

The scope of this research will be the following: 

1. Focus on ransomware that exists in Microsoft Windows platform, due to a large 

number of the ransomware attack occurs; there are more Windows-based 

computers than any other type of OS. Ransomware attackers often use exploit kits 

software in Microsoft based machines to get access on victims’ machines. 

2. For analysis purposes, the samples are executed in Cuckoo sandbox installed in 

Ubuntu 16.04 LTS Desktop fully updated, with WindowsXp_server_Pack3 32bit 

installed as a guest machine due to its weaker security protections that enable us 

to observe more ransomware behavior. To perform the analysis in a secure, 

Virtual box machine was used with controlled access to the Internet. 

 

3. In this research, Supervised Machine learning and semi-supervised techniques 

were focused as they provide the real characteristic of ransomware during 

execution, because they perform statistical comparisons on specific datasets to 

examine the accuracies of the algorithms.  

 

4. Four common performance metric was used, so evaluate the performance of 

ensemble machine learning technique are True Positive (TP), False Positive (FP), 

True Negative (TN), and finally False Negative (FN). 

 

2.6 Significance of the Study  

 

 

Regarding cyber-attacks caused by the malware, the most wide-spread and 

sophisticated destructive is the one motivated by the ransomware. Ransomware is one of 
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the most discussed cyber security threats and constitutes a hot topic in the cybercriminals 

in present time. The number of infected ransomware victims has dramatically increased 

now days from the perspective of small individuals, businesses, enterprise and some 

hospitals. The losses due to ransom was calculated as 200 million USD per year extorted 

by the criminal gangs. Due to the significant economic loss and severity of disruption in 

sensitive business organizations, the detection of ransomware has been an important 

research problem. 

Therefore, an efficient of ransomware detection can save sensitive data, 

organization integrity and financial loss, it provides computer home user and 

organizations confidence in the security field. The expected outcome of this study is to 

detect malicious executable files with better accuracy in comparison to other detection 

methods. This proposed scheme can be used in real-life situations such as business and 

organization network. The supervised machine learning and semi-supervised techniques 

is expected to have higher performance while maintaining low false positives. This study 

will be beneficial to the antivirus researches through effective machine learning 

algorithms, and provide recommendations on how to evaluate the performance of a 

certain ML algorithms in accordance to ransomware detection. 

 

2.7 Organization of the Research 

 

This study consists of six sections. Section 1 is about introduction of the study, 

Problem background, objectives, scope and significance of the project. Section 2 provides 

the literature reviews on ransomware, the categorization and the types of the ransomware. 

Analysis of the ransomware based on the static and dynamic approach. In this section the 

detection methods including machine learning algorithms will be illustrated. The 

framework of methodology and data set used to detect new executable malicious files will 

be discussed in the Section 3. Section 4 analysis and data pre-processing steps, feature 

extraction and feature selection, developing models, parameter settings are also discussed. 

Finally, result and discussions of the proposed methods and their extensive experiments, 

and comparing the proposed method based on the accuracy of the algorithms are 

discussed in Section 5.   
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2. LITERATURE REVIEW 

 

This section reviews the literature of ransomware and its detection based on the 

different aspects. It begins the overview of the ransomware in terms of the its revolution 

and the phases of the ransomware attack. The category of the ransomware based on the 

threat type of view, whether the fake ransomware that scares the user to extort it or the 

real ransomware is focused in this section. In this section, two types of real ransomware, 

those lock the victim’s screen while other variant encrypts the user’s related files called 

crypto-ransomware are also classified. In addition, in this section, the digital extortion 

that becomes a major cyber risk for many organizations; small-medium enterprises (SME) 

to large enterprises business and individual entrepreneurs, followed by the various 

popular type of the ransomware families are discussed, these families are based on the 

behaviours of the ransomware including the type of the algorithm used, the encryption 

approach, the amount of the extortion, and the threatening messages are classified. 

Analysing of ransomware, both static and dynamic approaches are also briefly explained. 

This section defines ransomware analysis as the action taking malware apart to study it 

in order to determine the impact and sophisticated level of ransomware. It also concluded 

the detection of ransomware including signature, anomaly and emulation-based detection. 

The remaining subsections are discussed the avoidance techniques used by the 

ransomware writers to evade the detection such as encryption, compression data and 

obfuscation techniques. This subsection addresses detection mechanisms of unseen nasty 

code through data mining techniques based on the extraction of static malicious features 

from binary files. Finally, the machine learning classifier algorithms to identify new files 

as benign or malicious is focused. 

 
 

2.1 Overview of Ransomware  

 

The expansion of the Internet and its importance is increasing at an amazing rate 

in recent years, not only the size but also the services offered; along with this particular 

importance and benefits, the number of complex attacks has also grown especially, in the 

wide use of the Internet. In recent years, the malicious code has posed a serious security 

threat to business and commercial companies, computer network system and 

governments. Therefore, the level of the security in malicious code has reached a peak, 

in (Reddy & Pujari, 2006), ranked the impact of viruses and worms as top serious security 
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threats. Moreover, as the number of the unknown virus rises, the rate of detection 

complexity also increases. Due to the significant increase of the available tools and the 

extortions encouraged to increase the attack of malicious programs like the newly 

emerged malicious executable called ransomware.    

In recent years, ransomware has been making headlines around the world, but this 

kind of software is not new. The first type of ransomware appeared in 1989 (Shukla et al., 

2016). It was the Trojan AIDS also known as PC Cyborg. At that time, AIDS was one of 

the newspapers in the whole world. After that, Doctor Joseph Popp took advantage of the 

situation and distributed around 20,000 floppy disks to patients, individuals and also 

medical institutions. This diskette contains an AIDS information program (Da-Yu et al., 

2019). But it also contained ransomware, which after a few days encrypted computer files 

and then demanded a ransom of $ 189 to recover the encrypted files. 

The first attack was the PC cyborg in 1989; the ransomware attacks remained 

unnoticed until the mid-2000s. One reason is that hackers wrote their own encryption 

code, which was quite simple to decrypt and, therefore, easy to counter. But everything 

changed when they started to rely on encryption libraries that are almost impossible to 

decrypt without the decryption key (Hampton et al., 2018). The first ransomware to use 

encryption techniques arrived in 2005 (for example Gpcod used RSA1024 bit 

encryption). GPCoder infected Windows systems and targeted files with a variety of 

extensions. There are two types of ransomware: Encrypting ransomware and blocker as 

we will discuss in the following sections, but in simple way, the encrypting ransomware 

encrypts files and folders on the computer while blocker ransomware locks the devices. 

Both ask for a ransom to allow the victim to regain control of their data or device(Gazet, 

2010). 

Ransomware has taken on a whole new dimension and it all started with the 

popularization of Bitcoin, which allows hackers to be very difficult to trace. In addition, 

encryption algorithms have become more and more complex, which makes them almost 

impossible to decipher without knowing the key. 

Some even decrypt a file to show the victim that the key actually works. This 

pushes victims to pay the ransom since they are confident that hackers can unlock the 

files. For businesses, paying the ransom is often the cheapest option. So, if companies are 

sure they will find their files for a fee, they will not hesitate. Because of all these elements 

that make ransomware viable and very attractive in financial terms, their number is simply 

exploded, as the graph indicates (Kalaimannan et al., 2017). 
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2.2 Ransomware Attack Phases 

 

To encrypt the user’s related files, ransomware requires to carry out attack phases, 

this will lead the ransomware successfully spread and infect the machine. The following 

are the most prominent phases of ransomware:   

  

2.2.1 Infection phase  

 

Ransomware can attack a computer, a smartphone or a Tablet, using different 

techniques: phishing, adware or malicious applications as we will discuss in the following 

infection vector section. Once the malicious payload is hosted in the machine, the 

"Ransomware" can be triggered either remotely by the hacker, or at a date and time 

previously defined or when the user performs a specific action (Dada, Bassi, Chiroma, 

Adetunmbi, & Ajibuwa, 2019). 

 

2.2.2 Spoliation of the backup phase 

 

Once the malicious file is executed, the Ransomware can locate and remove the 

backup files to prevent the user from performing a restore (Dada et al., 2019). 

 

2.2.3 Encryption phase 

 

At the heart of crypto ransomware, main objective is its ability to transform mass 

amounts of data from a usable state to an unusable state. Typically, ransomware data 

transformation function is employed through encryption by opening the original file and 

directly overwrites its content with its encrypted data. Depending on its category,  

ransomware can encrypt files, display a permanent threat message (overlay) and even 

change the password of a terminal. In any case, the user can no longer use his device 

(Dada et al., 2019). 

 

2.2.4 Notification phase 

 

The user is informed that his files are being held and that he must pay a ransom to 

recover them. Often, victims have a few days to pay, otherwise the ransom amount 

increases. The files are eventually permanently deleted once the authorized time is 

reached (Palisse, Le Bouder, Lanet, Le Guernic, & Legay, 2016). 
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2.3 Ransomware Categorization  

 

The categorization of the ransomware is based on the several factors that 

determine the layout of ransomware such as: 

1. The type of threat Classification, 

2. The targeted approach that infects the victims  

3. The nature of infecting the systems. 

 

2.3.1 Ransomware threat type classification 

 

We classified the ransomware according to the type of threat to the infected 

machine. This threat varies based on the different factors, the purpose of the attack and 

the type of victim. So, from this threat type point of view, ransomware is classified as 

scareware and Real ransomware. 

 

2.3.1.1 Fake ransomware 

 

 

This type of ransomware does not compromise the user’s files, but they only scare 

the users that they have encrypted the files. Fake ransomware criminals tackle the fear of 

ransomware threats instead of creating the real ransomware, they only use a simple 

encryption tool. The purpose of the fake ransomware is extortion by persuading the victim 

to pay, this kind of ransomware employ social engineering as an attack vector by showing 

an encrypted page so that the victim can think his/her data can be recovered(Pathak & 

Nanded, 2016). Another purpose of fake ransomware is to divert the attention of the users 

from the real attack which is another ransomware.  

To infect the user’s machine, fake ransomware uses a social engineering technique 

to convince the users that their computer systems are compromised and they are offering  

free antivirus downloads to scan for the ransomware (Rajab, Ballard, Marvrommatis, 

Provos, & Zhao, 2010). The fake antivirus plays on the security fears and calls for the 

user to take actions in self-preservation. For instance, Personal Shield Pro is a rogue 

antivirus program that infects the system and takes over the control of the compromised 

computer. This program pretends to be the updates of some programs such as Shockwave, 

Flash, or codecs. When the Windows boots, the Personal Shield Pro performs a fake scan 

to infect the machine. Personal Shield Pro is capable of infecting Windows 9x, 2000, XP, 

Vista, and Windows 7. 
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2.3.1.2 Real ransomware 

 

In contrast to the fake ransomware, the real ransomware is a harmful program that 

uses various system utilities to escalate the extortion. We can divide this type of 

ransomware into two main categories, locker ransomware and crypto-ransomware (Cabaj 

& Mazurczyk, 2016).  

 

A. Screen-locker ransomware  

 

Screen- Locker ransomware is a malicious program that locks the screen of the 

victim when the computer is compromised.  and emails victims into thinking their 

computer is locked. After the affection, the ransomware blocks the victim's desktop, 

computer input devices for end users or mobile devices or input interface devices such as 

the keyboard and mouse by denying access to the device owner (Pathak & Nanded, 2016). 

The ransomware displays a message on the screen and allows limited access to some 

functions such as moving the mouse or keeping the keys on the numeric keypad activated 

so that the victim can enter the ransom and pay a ransom before the normal access is 

restored(Aurangzeb, Aleem, Iqbal, & Islam, 2017).  

The Screen-Locker ransomware accuses the victims accessing un illegitimate 

websites or doing a prohibited activity. The Screen-Locker ransomware imitates a police 

officer that is going to punish the computer users for employing pirated software. The 

Screen-Locker Ransomware displays a message for ransom but does not include any 

detailed instructions about how to make the payments (Aurangzeb et al., 2017).  

This Locker-ransomware keeps the system and the files intact and can be removed 

through various system restoration techniques such as restoring the system to its safe 

Mode in order to find the original data that ransomware locked (Bhardwaj, Avasthi, 

Sastry, & Subrahmanyam, 2016). Un updated anti-malware software can also be removed 

from the malicious payload associated with the screen-locker ransomware. The following 

are some Screen-Locker ransomwares: 

 

 Kovter 

 Winlock 

 Reveton  

 LockScreen 

 BlueScreen 
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B. Crypto-ransomware 

 

Crypto-Ransomware is malicious software that encrypts the user-related files and 

data and holds them to ransom. User’s data access is permitted again if the victim paid 

the requested ransom using the anonymous currency mechanisms like Bitcoin. 

Ransomware that employs the encryption algorithms is known as crypto ransomware. 

The revolution of the crypto-ransomware begun in 2013 when Crypto-Locker appeared 

(McIntosh, Jang-Jaccard, & Watters, 2018). The aim of the crypto-ransomware is to 

breach the availability of the data by encrypting a victim’s files, or rendering them 

inaccessible as shown in Figure 2.1.  

The ransomware encrypts the most important user’s files on the hard drives, 

removable drives and mapped network shares for extortion (Kharraz & Kirda, 2017). 

After the encryption occurs, the ransomware shows a message that requires payment to 

restore the captured user’s data (Ahmadian et al., 2015). The next step is to register the 

decryption key with a particular user and make available when the ransom is paid; 

therefore, ransomware uses the command- and- control(C&C) server to establish 

communication with its creator (Brewer, 2016). The Crypto-ransomware contacts C&C 

server through multiple proxy servers which are typically legitimate but hacked machines 

to request a public encryption key. The amount of ransom is vary depending on the 

specific ransomware variant, and the payment is often only in Bitcoins, or a similar digital 

cryptocurrency. Specific instructions are also provided 

Unlike the locker-ransomware, the effect of a crypto-ransomware attack is 

irreversible; to encrypt the victim’s files, the crypto-ransomware employs cryptography 

functions. In the first quarter of 2016, the increase of the crypto-ransomware becomes 

high as reported in (Gostev, Unuchek, Garnaeva, Makrushin, & Ivanov, 2016), due to its 

ability to exhibit  massive damage and tangible extortion against victims.  

The Crypto-ransomware spread is changing dramatically. In 2018, Sophos 

discovered that half (54%) of the organizations that they investigated had been the victim 

of ransomware in the past year. The main target was government networks, businesses, 

and national health service hospitals. The impact crypto-ransomware showed that India 

had the highest level of infection, followed by Mexico, the United States and Canada. A 

Report released by the FBI just in 2016 estimated that losses of $1 billion caused by 

ransomware (Moore, 2016).  
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Figure 2.1: Ransomware Categorizations (Kok, Abdullah, Jhanjhi, & Supramaniam, 

2019) 

 

 

2.3.2 Ransomware platform classification 

 

Ransomware variants can be classified based on the targeted environment. The 

target platform includes Personal computers (PC), internet of things (IoT) or mobile 

environment. The detailed description about the environmental-based ransomwares 

classification are provided below: 

 

2.3.2.1 Personal computer ransomware 

 

The personal Computer ransomware as the name implies, this type ransomware is 

a malicious program that infects only the personal data or user’s multiple files on the 

individual computers. The PC ransomware spread to other computers when the 

attachment is sent via email or carried by users on physical media such as USB drives, an 

external hard disk, or floppy disks. According to the McAfee and Symantec reported that 

the number of ransomwares that attack PCs is growing dramatically. Attacks of this type 

are not only limited to the windows-based computer, but also other PC-based systems 

such as Mac OS and Linux. 

 The PC ransomware prevents the victim from accessing their data, the attack 

phases of the Windows based ransomware is shown in Figure 2.2. There are several ways 

to do this, such as encrypting data or blocking computer access as we mentioned in the 

previous subsections. These methods are intended to obtain the payment of a ransom. 

Once paid, the victim will be able to access their data (Al-rimy et al., 2018). 
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Figure 2.2: The Phases of the windows-based ransomware (Zavarsky & Lindskog, 

2016). 

 

In window-based ransomware, after delivering and installing the malicious 

payload on the system, some significant changes are observed. These changes can be 

described as File system activities, registry activities, and network communications 

(Zavarsky & Lindskog, 2016). 

 

 File System Activities: during the attack of the windows-based ransomware, 

several files are modified, opened, deleted and created. The constantly muddied 

files include a.txt files that the ransomware employed for threatening the victim 

after the encryption carried out, for contacting PIPE\lsarpc is used with the Local 

Security Authority subsystem. For resistance purpose, the Cryptowall 

ransomware changed the system.pif available under the Start Menu. Not to 

recover the encrypted files, window-based ransomware employed vssadmin tool 

to deletes the shadow using the command Delete Shadows/All/Quietcommand 

(Zavarsky & Lindskog, 2016).  

 Registry Activities: after the execution of the samples, most of the windows-

based ransomware modified the registry key values. Here, the most observed 

changed register keys like Crypto-Wall do as presented in the box 1.  

 

 

 

            Box 2.1: Registry activities made by the Crypto-Wall during execution 

 

Then, the Crypto-Wal changes the AppData value to C:\Documents and 

Settings\Administrator\Application Data, cache value to C:\Documents and 

Settings\Administrator\Local Settings\Temporary Internet Files. Some variants 

modified the registery key values of the computer name. for instance, the 

following are: 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\ 

ComputerName\ActiveComputerName and HKEY_LOCAL_MACHINE\ 

SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon. Some keys 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curr

entVersion\Run, HKU\S-1-5-21-842925246-1425521274-308236825-

500\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell  
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like HKLM\System\CurrentControlSet\Control\Terminal Server checks if 

Terminal Server user is enabled or not. It makes sure that Language Hotkey and 

Layout Hotkey are also enabled(Chen & Bridges, 2017). 

 Network Activity: The windows-based ransomware contacting the Command 

and Control server by starting communication with a Client Hello using TLSV1 

with the response.  The server then sent through a certified message to victim’s 

machine. After establishing the communication between the server and the 

victim’s machine Client key exchange are performed in the victim’s system. 

Also Encrypted Handshake message is completed to obtain the encryption keys 

and other messages (Zavarsky & Lindskog, 2016).  

 

 

2.3.2.2 Mobile ransomware 

 

The market for smartphones has boomed considerably in recent years. These 

phones have exceeded their primary functionality of voice communication and are now 

real mini-computers, with their own operating system which allows the user to install all 

kinds of applications. Although the number of phone models are significantly used, two 

operating systems largely dominate the market: Apple's iOS and Google's Android. The 

latter allows any user with some programming knowledge to create and publish their own 

applications on the Google Play site, where other users can download them.  On the one 

hand, malicious applications (ransomware) are regularly found in this market. The newly 

emerged malicious program include ransomware as it becomes aware of such 

contamination, Google reacts by removing suspicious applications from the market. 

However, the time required for this reaction leaves time for many users to become 

infected (Zavarsky & Lindskog, 2016). These markets are not controlled and are therefore 

infested with malware: it is crucial for these users to be able to detect them in order to 

limit the risks. The following are some of the mobile ransomware during the attack: 

 

 Privilege Escalation: when the application is delivered to user’s mobile, after 

that, the application needs to open, so that, it has to request for administrator 

rights. To take the privileges of the application users are required to activate the 

button by clicking it., and this causes the malicious application to be removed 

from the device. The newly emerged ransomware variant, the activation window, 

is covered with a malicious window imitating to be an update patch installation. 
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So, in some way, the program attempts to find the administrator privileges to lock 

the victim’s device. 

 Information Collection: during the attack, the ransomware collects the important 

information about the International Mobile Equipment Identity (IMEI) number, 

call logs, contacts, profile, history bookmarks, SMS, the list of accounts in account 

service, phone state, GPS location of the phone, and IP address. Some of the 

ransomware even check the tasks running on the device.  

 Permissions Used: All programs that are installed by normal users ’needs 

authorizations and permission to be given to role properly. Nonetheless, the 

ransomware requests for permissions that is not intended for the working of the 

program. All the permission requests which don’t appear to be in agreement with 

application functions can be taken threat and may not be granted (Nicoló 

Andronio, Zanero, & Maggi, 2015).  

  
  

2.3.2.3 Internet of Things (IoT) ransomware 

 

Today, the Internet is gradually transforming into a Hyper Network, like a network 

formed by multitudes of connections between Artefacts (physical, documentary), actors 

(biological, algorithmic), scripts and concepts (linked data, metadata, ontologies , 

folksonomies), called "Internet of Things (IoT) Internet of Things (IoT)", connecting 

billions of human beings, but also billions of objects. It becomes the most powerful tool 

ever invented by humans to create, modify, and share information. This transformation 

shows the evolution of the Internet network: from a network of computers to a network 

of personal computers, and then to a nomad network integrating communications 

technologies. Developments in Machine-to-Machine (M2M) technologies for remote 

machine control and also the appearance in the year 2000 of IP (Internet Protocol) on 

mobile cellular networks have accelerated the evolution of M2M towards  'IoT (Yaqoob 

et al., 2017). 

The Internet of Things must be designed for easy use and secure handling to avoid 

potential threats and risks, while masking the underlying technological complexity. The 

Internet of Things become potential target of ransomware attacks. Even though these 

devices are intended to save the personal or organizational documents and files, locker-

ransomware attacks become the most serious threat to the IoT devices by disrupting the 

normal flow of the work and deactivate the access to the surveillance systems. This kind 
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of ransomware causes a power outage, or imposing a disturbing break of the 

manufacturing processes. For instance, the Android.Lockdroid.E is considered to be the 

IoT-based ransomware that locks smart TVs and disables the users to access (Richet, 

2016).  

 
 

2.3.3 Ransomware target classification 
 

In this section, we will discuss the effect of the ransomware based on the targeted 

victim. The classification of this kind of ransomware can be divided on the three main 

part as explained in the following section as detail. 

 

2.3.3.1 Individual  

 

The best targets for ransomware are individuals, businesses or even public 

institutions. Anyone can be the target of an attack. But hackers have learned to target their 

attacks better. There are many reasons for hackers to attack individuals: 

 

 Individuals almost never back up their data. They lack computer security 

knowledge which makes them easy to handle (for example they do not pay 

attention to what they will click). 

 

  They do not keep their software up to date. They use free antivirus which are 

less efficient; they think that antivirus protection against all threats. Basic 

protections are not implemented (proxy, firewall, etc.).  

All of these elements make individuals vulnerable to a ransomware attack. Of 

course, It is obvious that these criticisms do not apply to everyone and luckily elsewhere. 

But users should be aware of that a single mistake can allow the ransomware to infect 

their machine (Palisse et al., 2016).  

 

2.3.3.2 Business 

 

For businesses, the reasons for attacks are also numerous. First, businesses have 

money and a ransomware attack causes a lot of trouble for the business. There is also the 

human factor which is still undervalued, hackers use social engineering techniques to 

deceive the collaborators of the company. Hackers can use malware to attack computers, 

servers, and even files on sharing systems. Small businesses are not prepared to deal with 
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ransomware attacks. In addition, companies prefer not to report a ransomware infection 

for fear of the consequences of the image of the company. Indeed, such an incident can 

have serious consequences for a company. These can be financial but it can also break 

the trust that customers, suppliers or partners have with the company (Corrigan, 2017). 

 As the researcher stated that 70% of companies pay the ransom which is a huge 

percentage, but as we said above, it is impossible for a company to work without its data. 

So, if they don't have a backup plan, they are forced to pay in the hope of recovering the 

data. The biggest risk is the data that employees save in unprotected locations. Ensure 

that users are aware of and follow best practices for recording data so that it is stored 

securely. If this is not the case, do not hesitate to organize training or simulation sessions. 

Saving important data to suitably protected storage will help reduce the risks (Corrigan, 

2017).  

 

2.3.3.3 Public institutions 

 

Public institutions also have employees who are rarely aware of the risks of social 

engineering which is used with skill by hackers. Hackers can see successfully attacking a 

media-known target as personal achievement. But the biggest problem remains that public 

institutions generally use outdated software and hardware, so their computer systems have 

flaws that have not been patched up. As we can see, hackers can attack anyone. It all 

depends on the resources and motivations of the hacker (Kendzierskyj & Jahankhani, 

2019). 

 

 

2.4 Types of Ransomware  

 

There are different types of ransomware families as shown in Table 2.1, those who 

block the computer screen, those who encrypt the data, those who block the start-up of 

the system and those which target the mobiles. The first versions of ransomware were 

those lock the computer screen until the victim paid the ransom. There was no data 

encryption. So, the victim has to find a way to remove the ransomware from the computer 

to recover the data (Hampton et al., 2018). After that, ransomware has evolved and 

become a more serious threat to the world. One of the evolutions of ransomware is 

encrypting ransomware. This method works only after installing data from network 

drives, computers or servers. There are some who even look for connected USB sticks. 
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Encrypting ransomware is effective because the private data is often important to the 

users. Once, the file is encrypted, it is impossible for the victim to recover with a simple 

reset of the operating system(Al-rimy et al., 2018). To encrypt, there are two ways. 

 The symmetrical way that uses the same key to encrypt and decrypt. So, this way 

is easier to break since it uses the same key. The victim only needs to find the key 

used to recover their data. 

 The asymmetric way, in this method there is a public key which is shared and 

which allows the data to be encrypted. There is also a private key, which it is not 

shared and is used to decrypt the data. The private key will only be released once 

the ransom has been paid. 

 

Once the data has been encrypted, a screen message will appear showing the 

amount of the ransom that the victim has to pay if they want to recover their data. 

Generally, the victim is asked to pay in bitcoin (cryptocurrency), since it is very difficult 

to identify who owns the bitcoin addresses. The following are the famous ransomware 

types:  

 

2.4.1 Reveton 
 

The Reveton - is also known as Police Ransomware- is a computer infection 

program that locks the victim’s computer unless the demanded ransom is paid to the 

ransomware developer. Reveton is identified as one of the most famous Screen Lockers, 

which appeared in August 2012, and it infected many windows operating systems. The 

distribution of Reveton ransomware is Blackhole Exploit kit, after delivering the 

exploitation on the victim computer, it downloads Citadel malware.  

The Citadel malware also downloads the Reveton payload. Citadel was malware 

that is very similar to the associate of Zeus malware. The characteristics of the Citadel 

stealer is to steal the credentials of the users that are stored in password managers such as 

password safe and KeepPass. Reveton usually displays a lock screen when you log in to 

Windows that pretends to be from a law enforcement agency based on the geographical 

(Hampton & Baig, 2015).  For example, FBI message pops up if you are in the United 

States of America. A message from Metropolitan Police if you are in the United Kingdom. 
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Figure 2.3: Fake message from Reveton ransomware 

 

In order to access your computer, you must submit a MoneyPak voucher, or other 

payment coupons, to the malware developers and they will then unlock your computer so 

you can access your Windows desktop again. The displayed message is written like the 

victim’s computer was detected as having broken various laws regarding pornographic 

material, download copyrighted programs, or the distribution of copyrighted programs as 

shown in Figure 2.3.  For example, messages usually are in the form of long lines 

announcement states “You have browsed illegal materials and must pay a fine”. To access 

the computer victim, you need to pay a fine or the government will prosecute you or will 

be jailed. In order to pay a fine, you will typically need to purchase a MoneyPak voucher 

and submit the voucher identification number into the lock screen (Bhardwaj et al., 

2016).   

 

2.4.2 Cryptlocker 

 

Appeared on September 5, 2013, a variant of ransomware that encrypts the user’s 

files on a victim's machine and demands a ransom to be paid to the malware authors. The 

decryption keys will be provided by threat authors via MoneyPak or Bitcoin within 72 

hours, after that limited time the decryption keys will be destroyed and the user’s files 

will be almost impossible to recover (Scaife et al., 2016). The files are encrypted using 

AES with a random key which is then encrypted to a 2048-bits RSA public key. The 

Crypto-locker encrypts important widely used user’s related files such as word extension 

files, PDF files and excel files as shown in Box 2.2. Crypto-Locker spread in two 



 

 

24 
 

methods. In the first version release, Crypto-Locker attackers focus on the on companies, 

business professionals through spam emails pretending as a customer complaining the 

organization’s products. The malicious payload files are distributed as ZIP archives, 

which destructively encrypt all the user’s files on a system if it is open (Kyurkchiev, Iliev, 

Rahnev, & Terzieva, 2019).  

Later versions of Crypto-Locker that appeared on October 7, 2013, spread through 

Game over Zeus, a peer-to-peer botnet who have used the Cutwail spam network to send 

huge amounts of spam emails that occur as established online retailers and financial 

institutions. These emails are usually forged invoices, order urgent confirmations or 

unpaid balances to lure victims to follow the malicious links that have redirected to 

Crypto-Locker to operate the kits. 

 

 

 

 

 

 

 

 

Box 2.2: List of extension files encrypted by the Crypto-locker.  

 

Crypto-locker employs a dual key (public/private) encryption method, which 

means that decrypting the files is impossible without the private key. This is where the 

ransom part comes into play: after Crypto-locker executed and infected the machine, a 

message displays demanding a ransom within a limited time in 72 hours. The average of 

Crypto-locker ransom is about $300 to $2,000. The payment is required to be in Bitcoin 

form, which is an untraceable electronic monetary system. If the victims fail to pay the 

ransom within mentioned above time, the ransomware will not appear from the victim’s 

system leaving your important files still encrypted – and unusable. The ransom notice 

may appear to come from the government or the police, but this is not the case. Paying 

the ransom may – or may not – remove the malware and there is no guarantee it will not 

re-infect your system in the future (Liao, Zhao, Doupé, & Ahn, 2016). 

 

*.jpe, *.jpg, *.3fr, *.accdb, *.ai, *.arw, *.bay, *.cdr, *.cer, *.cr2, *.crt, 

*.crw, *.dbf, *.dcr, *.der, *.dng, *.doc, *.docm, *.docx, *.dwg, *.dxf, 

*.dxg, *.eps, *.erf, *.indd, *.kdc, *.mdb, *.mdf, *.mef, *.mrw, *.nef, 

*.nrw, *.odb, *.odc, *.odm, *.odp, *.ods, *.odt, *.orf, *.p7b, *.p7c, 

*.p12, *.pdd, *.pef, *.pem, *.pfx, *.ppt, *.pptm, *.pptx, *.psd, *.pst, 

*.ptx, *.r3d, *.raf, *.raw, *.rtf, *.rw2, *.rwl, *.sr2, *.srf, *.srw, *.wb2, 

*.wpd, *.wps, *.x3f, *.xlk, *.xls, *.xlsb, *.xlsm, *.xlsx, img_*.jpg 
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Figure 2.4: Crypto-locker ransom note.  

According to the above Figure 2.4, the ransom message states that the personal 

files, photos and videos of the victim has been encrypted with strong encryption algorithm 

that nobody will never be able to restore the files. This kind of threat is displayed to the 

victim and only a certain amount of time is given to the normal users to pay a ransom and 

recover the access to their files. Crypto-locker leaves the so-called ransom note like the 

one shown above.  

 

2.4.3 Teslacrypt 
 

TeslaCrypt was discovered in February 2015, which encrypts the files and spread 

through websites that convey victims to an exploit kit. Unlike other ransomware, during 

the attack, TeslaCrypt saves the encryption keys on the user’s hard disk. This kind of 

ransomware is considered to be the first ransomware that attacks specifically on files used 

by video games. Similar to the CryptoLocker, the encryption is performed with the stream 

cipher.  The infection vector of TeslaCrypt was through compromised websites that 

redirect the victims to an exploit kit (drive-by-download).  

Angler is considered to be the carrier who uses Adobe Flash. The encryption 

process takes place independently of communication with the C&C, but their concept of 

cryptosystems differs somewhat (Wyke & Ajjan, 2015). TeslaCrypt includes a public 

ECC key in its binary code, shared among many examples, which is used to calculate a 

shared secret involved in generating an AES session key. The system has an ECC master 

private key.  
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TeslaCrypt focuses many of the file extensions that commonly used on the 

system for general-purpose. It does not encrypt the music and video file formats such 

as MP3s and MP4s, as well as many file extensions associated with common business-

class applications. It encrypts the file formats from efficiency suites such as Open Office 

and Microsoft Office, as well as formats associated with video games as shown in Box 

2.3 (Pascariu & Barbu, 2015). To encrypt the user’s files, TeslaCrypt employs 

the Advanced Encryption Standard (AES) algorithm, but the ransomware perverts its file 

encryption in two main methods: 

1. The encrypted files have been renamed with an "ecc" extension files, which 

suggests the use of an Elliptic Curve Cryptographic (ECC) algorithm. The 

ransomware employs the algorithm when generating Bitcoin addresses, but not 

to encrypt files. 

2. Splash screen messages and files left on compromised systems claim to use the 

RSA-2048 encryption algorithm. 

Box 2.3: TeslaCrypt encrypts this  list of extension files.  

 
The encryption process begins with the malware using the 

GetLogicalDriveStrings() API function to enumerate storage on the system's lettered 

drives (e.g., C:\). The GetDriveType() API call then selectively targets DRIVE_FIXED 

drives (e.g., hard disks, solid-state drives (SSDs)) and DRIVE_REMOTE drives (e.g., 

mapped network shares). TeslaCrypt does not attack removable (e.g., USB) storage or 

scan connected networks for open shares. The ransomware recursively scans the drives 

for files with targeted extensions, and then opens, reads, and encrypts each file. The 

encrypted data is written into the original file, which reduces the likelihood that forensic 

tools can recover the original data (O'Kane, Sezer, & Carlin, 2018). 

.7z, .map, .m2, .rb, .jpg, .cdr, .png, .mcmeta, .wmo, .rar,.indd, .jpeg, .vfs0, .itm, .m4a, 

.ai, .txt, .mpqge, .sb, .wma, .eps, .p7c, .kdb, .fos, .avi, .pdf, .p7b, .db0, .mcgame, 

.wmv, .pdd, .p12, .DayZProfile, .vdf, .csv, .d3dbsp, .psd, .pfx, .rofl, .ztmp, .sc2save, 

.sis, .hkx, .sie, .sid, .bar, .pem, .crt, .dbfv, .mdf, .wb2, .cer, .sum, .ncf, .upk, .rtf, 

.ibank, .t13, .t12, .qdf, .gdb.tax, .pkpass, .bc6, .bc7, .bkp, .qic, .bkf, .sidn, .sidd, 

.mddata, .itl, .itdb, .icxs, .fsh, .w3x, .unity3d, .big, .menu, .das, .der, .layout, .dmp, 

.blob, .esm, .001, .vtf, .dazip, .fpk, .mlx, .kf, .iwd, .vpk, .tor, .psk, .rim, .ntl, .hvpl, 

.hplg, .hkdb, .mdbackup, .syncdb, .gho, .svg, .cas, .lrf, .css, .jpe, .odt, .ods, .dng, .js, 

.vpp_pc, .ff, .odp, .pak, .3fr, .flv, .odm, .m3u, .cfr, .arw, .odc, .srf, .py, .snx, .lvl, 

.odb, .desc, .sr2, .doc, .bay, .crw, .cr2, .dcr, .xxx, .arch00, .wotreplay, .docx, .docm, 

.wps, .xls, .kdc, .xlsx, .xlsm, .mef, .epk, .erf, .rgss3a, .bik, .xlsb, .nrw, .mrwref, .slm, 

.orf, .xlk, .lbf, .ppt, .pptx, .pptm, .mdb, .accdb, .pst, .sav, .raf, .raw, .re4, .apk, .rwl, 

.rw2, .bsa, .ltx, .r3d, .ptx, .pef, .srw, .x3f, .litemod, .iwi, .asset, .forge, .dwg, .xf, .dxg, 

.wpd. 
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Figure 2.5: TeslaCrypt ransom splash screen. 

TeslaCrypt creates a "HELP_RESTORE_FILES.txt" file that contains ransom 

payment details. Many hundreds or thousands of these files can be found on 

compromised systems. A ransom message (see Figure 2.5) is saved as 

"HeLP_ReSTORe_FILeS.bmp" on the desktop and becomes the desktop's background 

image. Some older versions used the filenames "HELP_TO_SAVE_YOUR_FILES" 

and "HELP_TO_DECRYPT_YOUR_FILES". 

The ransom splash screen is displayed states that the victim’s files have been 

encrypted, show encrypted files button can be seen the list of the encrypted files (Pathak 

& Nanded, 2016). If the victim attempts to remove or corrupt the software their files 

will be lost. 

 

2.4.4 Locky 
 

Locky ransomware is a malicious program that encrypts the user’s files on 

Windows and holds them hostage for ransom. This ransomware is identified as an 

instance of crypto-locker ransomware. Locky ransomware was discovered at the 

beginning of 2016 and immediately became one of the most serious ransomware threats. 

The Locky ransomware spreads more than 100 countries worldwide. The United States 
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and France are the most infected countries, authors concentrate the best of the previous 

ransomware to achieve a highly skilled threat (Almashhadani, Kaiiali, Sezer, & O’Kane, 

2019). Locky was spread through spam email campaigns and exploit kits. There are some 

famous Locky ransomware variants such as:  

 Locky Decryptor is a variant of locky ransomware that pretends to be a decrypt 

tool for Locky.  

 AutoLocy the impact of this variant, is not more as the original. This variant 

spreads through spam emails. 

 Zepto appreaed in June 2016 with malicious email campaigns distribution. This 

variant encrypts the user’s files using AES-128 and RSA-2048 cipher that make 

it very hard to crack it.  

 Hucky is an abbreviation of Hungarian Locky that encrypts the with desktop 

picture in Hungarian.  

The infection vector starts with a social engineered (SE) email. Ransomware 

developers send spam email imitating as invoice payment with purchase ordered 

references as shown in Figure 2.6. The red highlighted section shows the structure of the 

Locky URL that is needed to be clicked. All of the affected emails consist of an archive 

(7zip, rar, zip) which has an embedded in VBscript file. After the victim opens the 

attached document, it’ll prompt the victim to enable the Word macros so that its contents 

can be displayed properly. A macro is somewhat like a shortcut that performs some sort 

of automated function. When executed, the script connects to command and control 

(C&C) servers to download the Locky Ransomware, which then encrypts the users’ data 

locally as well as the files on network shares.  

The Necurs botnet is identified as another main distributor that spreads the Locky 

payload infections, usually as a result of a specially-crafted Microsoft Office Word or 

Excel file with malicious macros, and then enabled. To inspire the victim to enable the 

macros, a distorted message is displayed with “the data encoding is not correct, please 

permit macro to be updated” (Prakash, Nafis, & Biswas, 2017). The macro is then 

downloaded by the Word document and the Locky code starts to encrypts the files on the 

user’s directories and simultaneously renames the all file names and changes the file 

extension to .locky. 
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Figure 2.6: Spam email with invoice attackmen  

For distribution of the malware, the first versions employed hiding techniques by 

injecting itself into the windows explorer process, but it was easily identified by some 

registry keys. Here are some registry keys created:  

 Id: to keep the victim’s identity id key is employed  

 Pubkey: for encryption, the Locky needs to store the key in the RSA publicly.  

 Paytext: in the ransom note usually is stored in the registry 

 Completed: if the encryption process is successfully carried out this registery key 

is used. 

Once the malicious payload is delivered into the system, some steps are followed: 

 Locky pretends like normal windows executable, it renames itself to svchost.exe 

to avoid the detection.   

 The renamed Locky file starts to delete the backup files and prevent a system from 

restoring. 

 Locky begins to communicate the command and control servers to find the he 

RSA public key 

 Locky generates a unique ID of the victim and saved on the command and control 

server. 
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When Locky has finished encrypting the victim’s files, it will remove the 

downloaded executable and then display a ransom note through instructions in Bitcoin as 

shown in Figure 2.7, it requires ~0.5 Bitcoin, that is equal to ~$400-500, where the value 

of Bitcoin was around $900-1000, but in 2017 some variants demanded $900, ransom 

also went up to $1000. 

 

 

Figure 2.7: Locky Ransomware Note 

 

2.4.5 Cryptowall 
 

CryptoWall -is also known as Cropto- was discovered in early 2014 and encrypted 

the user’s files using RSA and employed Onion Router Tor to obfuscate communications 

with the command and control server. The CyptoWall user interface was quite similar to 

CryptoLocker. Unlike other ransomware families, the CryptoWall followed a proper 

software development life cycle. Due to this development, their versions were given 

version numbers.  The infection vector of CryptoWall employed email spams that sent 

through email and are contained within spam attachments. The email attachment contains 

a JavaScript code that will download the executable JPG files to harm the victim. It will 

also generate a new instance of EXPLORER.EXE AND SVCHOST.EXE to make 

communication with their server. In addition to, to encrypt the victim’s files, first, it will 

delete the volume shadow copies and installs spyware that steals passwords and 

BITCOIN wallets. This kind of ransomware has equipped with different types of spyware 

involved in it (Cabaj, Gawkowski, Grochowski, & Osojca, 2015). To execute and infect 
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the machine, the Cryptowall hide itself by injecting into a legitimate Windows process 

such as svchost. Several versions of Cryptowall have the capability of identifying the 

sandbox environment by employing self-protection mechanisms. There is some new 

version of CryptoWall as describe below: 

 Cryptowall 2.0. This variant is almost similar to the original Cryptowal. It 

encrypts the victim’s files with RSA-2048 encryption algorithm and seeks to make 

it victim pay either $500 USD, 500 EUR or 1.22 Bitcoin.  Unlike Cryptowall 1.0 

version which cannot delete the files, this variant had the ability to securely delete 

files. To collect and track the victim’s payment, Cryptowall 2.0 generated a unique 

bitcoin address for each of its victims, which was not available in 

CryptoLocker1.0 (Aurangzeb et al., 2017).  

 Cryptowall 3.0. to infect the system, this version distributes through Magnitude 

and Fiesta exploit kits, which is easier than its previous examples. This Version 

3.0 employed an RSA 2048-bit public key, that downloaded from the Common 

and Control domain. For encryption purposes, Cryptowall 3.0 upgraded to AES 

symmetric encryption with Cipher Block Chaining (CBC) mode which is applied 

via the Invisible Internet Project (I2P) network.  

 Cryptowall 4.0 -is known as Help Your Files ransomware- was seen first in 

November 2015. It has a unique characteristic that has not been seen in the 

previous version of this ransomware. The infection vector of this ransomware was 

employed via email attachments. Some exploit kits, such as Angler, also 

distributed it. The subject of these emails was mainly related to job vacancies. 

This Cryptowall version demands to pay $700 in exchange for the decryption key 

(Cabaj & Mazurczyk, 2016). 

 

2.4.6 Pgpcoder  
 

PGPCODER was first appeared in Russia, and it is the oldest ransomware that 

discovered in 2005. PGPCODER is considered to be the first ransomware that was seen 

by enforcement. PGPCODER encrypts the files with extension of Vnimanie_.txt in which 

means Attention in Russian. The early versions of Gpcoder employed a symmetric key 

that was simply breakable. Because of this, many antivirus engines recovered the victim’s 

files by decrypting the hostage files. This ransomware was distributed through infected 
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websites by the drive-by-download technique. Later in 2010, another updated version of 

this ransomware was discovered (Jones Jr & Muhammad).   

The Initial versions of PGpcoder employed a symmetric key and were easily 

breakable. Many antivirus vendors could decrypt the encrypted files. But later, the 

encryption algorithms got stronger and very tough to crack. Some of the encryption 

algorithms used were RSA1024, AES256, and so on. Ransomware would change the file 

extension of the original file to something else. This version searches the files with the 

following extensions, as shown in the following Box 2.4. Gpcoder obtains these 

extensions to encrypt the file. It starts by reading the contents of the file into memory. 

Then the ransomware encrypts the contents and writes it into a new file. The new file has 

a different extension from the original file. The original file is deleted (Tailor & Patel, 

2017). 

 

Box 2.4: List of file extensions for Pgpcoder ransomware 

Victims received an alert to send an email for instructions on how to decrypt 

the files after payment. This was pretty much the same situation as the 1989 version. 

It would take files, archive them, and then put a password over the files, but a security 

researcher cracked the code, and then gave that code to anyone who had encrypted 

files. The failure in this version was that the ransomware could be removed from the 

computer's safe mode where one could uninstall, or delete it. "It didn’t tamper with 

files on the disc, but criminals became more aggressive with trying to get you to pay 

(Zavarsky & Lindskog, 2016). The average of the payment ranging from $100 -$200, 

the ransom pop up message states that the victim’s files are encrypted with the RSA-

1024 algorithm as shown in Figure 2.8. To access the files the victim needs to by the 

decryptor tool through normal email like yahoo.    

 

Figure 2.8: PGpcoder ransom splash screen. 

.asc,.db,.db1,.db2,.dbf,.doc,.htm,.html,.jpg, .pgp,.rar,.rtf,.txt,.xls,.zip, .omg, .encoded 
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2.4.7 Zcryptor 
 

 Zcryptor is a classic ransomware that encrypts the user’s file like the other 

ransomware. However, it has a special feature that should not be overlooked. This 

ransomware is also spread via USB keys and hard drives. Once it has infected a computer 

via traditional means (social engineering, email, spam, ...), it starts to execute the payload 

by using the masquerading as an installer of the program. It detects whether there are any 

computer media (USB keys, hard drives) that are connected to the computer. If it finds 

one, it will copy the files and make them invisible to the user. Then, as soon as the device 

is connected to a new computer(O'Kane et al., 2018). The ransomware will infect it. 

Once the payload is delivered on the system and executed it. The ransomware 

creates  a registry key that make sure that it could run at start-up, then it drops the 

autorun.inf on removable drives, along with a zycrypt.lnk in the start-up folder. After that, 

the ransomware generates a hidden copy of itself under the system folder of the registry 

(Roberts, 2018).  as Drive:\system.exe and %appdata%\zcrypt.exe. 

 
Figure 2.9: Zcryptor ransom not 

After the encryption, Zcryptor displays a message that looks like a normal HTML 

page stating that their files are encrypted and demanded a ransom ranging 1.2 bitcoins 

(average of $650) as shown in Figure 2.9. If the victim did not pay the required money in 

four days, the ransom increases to 5 bitcoins (more than $2,500). 
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2.4.8 Petya  
 

The Petya was first discovered in May 2016 that encrypts the Master Boot Record 

(MBR) of the windows. After execution, Petya encrypts the user’s files by overwriting 

the Master Boot Record with a malicious payload and then boot the windows system with 

extensions as shown in Box 2.5. then the victim has redirected the boot screen that 

demands a ransom. It also encrypts the Master File Table (MFT) system drive that causes 

the system to reboot and displays the blue screen of death (BSOD). After restarting the 

machine, Petya generates a fake CHDISK screen as shown in Figure 2.10. This is made 

by the boot-loader that has replaced the original MBR (Aidan, Verma, & Awasthi, 2017). 

This boot-loader further encrypts MFT in the background while the CHKDISK screen is 

shown to the victim.  

 
Figure 2.10: fake CHDISK screen 

When the computer is on, the first program to run the is the Basic Input Output 

System (BIOS). This BIOS performs the Power on Self (POST) test and reads the Master 

Boot Record (MBR). POST checks whether all hardware devices are connected to the 

system for the proper functioning of the system. The BIOS then reads the MBR. MBR 

refers to the first sector of a partition known as the volume boot record (VBR). VBR 

contains a lot of information, such as partition size and partition type (Aurangzeb et al., 

2017). If the partition type is NTFS (New Technology File System is the file system used 

by Windows), VBR contains information about the Master File Table (MFT). The space 

of the MFT is the kept by the NTFS file system, where all information about a file, 

including its size, time and date, permissions, and data content, is stored in MFT entries, 
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or in a space outside the MFT described. through MFT inputs. Because of the MFT is 

encrypted, Windows cannot identify the file system and therefore it cannot load the rest 

of the operating system components.   

Box 2.5: Petya Encryption file extensions 

 

Petya uses an EternalBlue and SMB as propagation methods to spread within an 

infected network. Another infection method was spread via spam emails that show as a 

resume with the malicious attachment (Richardson & North, 2017). There are some 

updated versions of Petya ransomware such as Petya-Mischa and goldeneye Petya.  

 RED-PETYA is a new version of the original Petya that has all functions mentioned 

above. The RED-Petya is identified to be the first version that employs Salsa20, 

asymmetrical key algorithm, to encrypt the MFT and make the drives unavailable. 

However, the execution of the algorithm is not implemented correctly, resulting in an 

unintended error that enables to decrypt of the infected files, although the bugs of the 

later version of the Red-Petya has been fixed. 

 PETYA-MISCHA also is known as GREEN-PETYA, was first discovered in 

September 2016. This Petya-Mischa consists of two components, the Petya and the 

MISCHA. To execute the payload, the Petya needs administrator rights to run; 

otherwise, it fails. If the Petya-Mischa failed to encrypts MF, MISCHA encrypts the 

victim’s personal files, and displays a splash green screen; this version was therefore 

called GREEN-PETYA. 

 PETYA-GOLDENEYE is a later version of Petya that spread in Germany in 

December 2016. GoldenEye is discovered to be the next version of Petya-Mischa. 

Unlike the Petya-Mischa, Goldeneye encrypts the files in the file on the hard disk 

first, then encodes the MFT. After encoding the files, GoldenEye adds a string that 

consists of eight random characters to the end of every file name. The distribution of 

the Petya- GoldenEye through the spam emails that seemed to be legitimate emails. 

Unlike the Petya-Mischa that requires the administrator rights for encryption of the 

MFT, the GoldenEye acquired the administrator rights (Zakaria, Abdollah, Mohd, & 

Ariffin, 2017).  

.3ds, .asp, .bak, .cpp, .disk, .7z, .aspx, .accdb, .avhd, .c, .cfg, .cs, .ctl, .djvu, .zip, .work, 

.vmsd, .xls, .vmx, .xlsx, .vsdx, .vfd, .vbox, .rtf, .pvi, .pmf, .vdi, .tar, .rar, .pst, .php, 

.ost, .mdb, .ova, .msg, .vmc, .vbs, .sln, .py, .ppt, .ovf, .hdd, .nrg, .kdbx, .fdb, .dwg, .h, 

.eml, .doc, .ai, .back, .conf, .dbf, .docx, .gz, .mail, .ora, .pdf, .pptx 

, .pyc, .sql, .xvd, .vcb, .vmdk, .vsv. 
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2.4.9  Cerber 

 

Cerber is a ransomware infection that is used to encrypt the victims' files. This 

ransomware was considered to be allegedly Locky's twin and creates the extension of 

CERBER to every file that the ransomware encrypts. Cerber appeared in 2016 that 

employed the AES encryption algorithm. This kind of ransomware earned for a mature 

profit of $ 1 million to $ 2.5 million, and the ransomware author has reported receiving 

40% of the ransom. This attack encouraged by the underground Russian forums that allow 

everyone to buy Cerber, which makes ransomware attacks possible from anyone with 

enough money to pay (Kara & Aydos, 2018). 

 Cerber was distributed through Botnet, exploit kits, and email spam that contains 

the word document attachment that looks like invoices. If the victim opens the attachment, 

he/she will receive a message states that the document has the wrong coding. The victim 

is interested in activating the Word macros that encoded VBScript and then execute it. 

The VBScript downloads the payload of the Cerbe and enforces the computer talk to the 

victim by reading a load message warning. The malicious code is delivered to the victim’s 

machine, and the attack begins (Wyke & Ajjan, 2015). 

There are some other new versions of Cerber that have avoided security solutions 

by dividing the code into minor pieces of code. Without dropping the components onto a 

physical disk, these small pieces were extracted and read in their own process. This gives 

the advantage of not scanning the reader with an antivirus engine. This version has a 

configuration file as JSON format representation. The configuration file offers the ability 

to update itself easily, and improves the functionality of the Cerber. The encryption type 

and the target files are dictated by this configuration file while executing its activities 

(Kurniawan & Riadi, 2018). Cerber uses the following configuration files: 

  Blacklist: states that Cerber needs to encrypt the identified folder and decides 

which countries should be infected. 

 Close_process: indicates which processes must be eliminated. 

  Encrypt - keys: Cerber employed this file for encryption purposes. 

 Help_files: identifies the type of a ransom note that will be shown to the victim. 

  Self_deleting: decides whether the ransomware should delete itself after 

execution. 

 Whitelist: the number of the files extensions that are targeted by the ransomware.  
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 Unlike Pgpcoder, once the files are encrypted by the Cerber’s is not easy to break 

the encryption key. There is no guarantee that victim’s files can be obtained back even if 

the victim paid the required ransom to the attackers’ criminal for the intended limited 

time.  

 

 

Figure 2.11: Text file displayed by the Cerber ransom not. 

 

The ransomware note is generated into  several ways: as an audio message, as a 

text file dropped into a folder containing the compromised data, the same file is used to 

generate a screensaver and desktop wallpaper. The message is written that the victim’s 

documents, photos and database files have been encrypted. To decrypt these files users, 

need to download the Tor Browser and run it, then following the instruction provided by 

the website as shown in Figure 2.11. Unlike other ransomware families, this variant 

doubles the ransom bitcoins from 1.24 to 2.48 after seven days of non-payment (Adamov 

& Carlsson, 2017). 

 

2.4.10 RAA (JS / RANSOM-DLL) 

 

RAA (JS / RANSOM-DLL) is a ransomware variant that is distributed via email 

attachment. RAA is written entirely in JavaScript (a programming language). One of the 

advantages of using JavaScript is that Windows does not display these extensions by 

default. This kind of ransomware pretends like normal attachment that should display 

"invoice.js", but the user can see only "invoice". RAA victims do not care about the 

extension since it is not visible. RAA (JS / RANSOM-DLL) does not need to download 
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ransomware to the server.  When the malicious payload is executed in the victim’s system, 

RAA creates a fake word document under the %MyDocuments% folder. The name of the 

malicious word document will have similar to doc_attached_CnIj4 and will automatically 

pretend that the opened word attachment was corrupted. While the victim’s intention is 

drifted, the attachment is corrupted, RAA Ransomware is executed in the 

background, then begins to scan all the computer drives and decides if the victim has read 

and writes access to them (Misini, 2018). As soon as the ransomware has infected the 

victim it is ready to encrypt the data and demand a ransom. RAA does some steps:  

 RAA (JS / RANSOM-DLL) launches a decoy file that contains a message which 

is mainly used to distract attention. The ransomware makes a call to the server to 

request an encryption key.  

 The server provides an AES random encryption key as well as an identifier (public 

key).  

 As soon as the data is encrypted, the victim will have a message demanding to 

pay the ransom so he can recover the corresponding AES key for decryption.  

 

 

Figure 2.12: The Fake attachment of the RAA ransomware 

 

The AES encryption key is not kept in memory by RAA (JS / RANSOM-DLL), 

as soon as the encryption is finished, it is deleted, so only the server has a copy of the key 

for decryption. Once the encryption is complete, there will be, as with other ransomware, 

a procedure to explain how to recover the data. RAA (JS / RANSOM-DLL) also installs 
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a password thief (Misini, 2018). The codename for this virus is Troj / Fareit-AWR. It is 

stored in the My Documents directory with the following name: st.exe. 

 

2.4.11 WANNACRY 

 

WannaCry is a crypto-ransomware worm that encrypts the user’s related files and 

the hard drive to extort money. Then demands a ransom payment of $300-$600 in bitcoin 

in order to decrypt them. WannaCry spread rapidly and become a huge global outbreak. 

It infected a number of computer networks especially in a Windows computer. The 

WannaCry is also known as Wannacrypt and Wcry as refers to its extension. May 15, 

2017, this variant of ransomware has emerged, which is a kind of ransomware that targets 

all kinds of files including PDF files, word documents, excel sheets, etc, and encrypts 

them in the form of .wcry extension. Program files with the extension .cpp and its source 

code is also encrypted by the Wannacry. The WannaCry causes crises across the world 

and infecting vulnerable systems globally (Al-rimy et al., 2018).   

WannaCry cyber-attack has been reported in 99 countries and over 75,000 attacks 

have been carried out on machines running the Windows operating system (Chen & 

Bridges, 2017). The most affected organizations are Telefonica, a Spanish broadband and 

telecommunications provider, UK's National Health Service (NHS), FedEx, LATAM 

Airlines and Deutsche Bahn.  

  

 

Figure 2.13: Wannacry splash screen 
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Table 2.1: Ransomware Families 

Family Year Encryption CC  Infection Vector 

REVETON 2012 No No Blackhole Exploit 

kit 

CRYPTLOCKER 2013 Symmetric AES Static Domain Spam Emails 

TESLACRYPT 2015 Symmetric AES-

256 and CBC 

Static and DGA 

domain 

Phishing and Spam 

emails 

LOCKY 2016 Symmetric AES DGA domain Spam 

CRYPTOWALL 2014 Asymmetric RSA-

2048 

Static Domain Spam and 

Malvertising 

CTBLOCKER 2015 Symmetric AES No contact Spam Emails 

TORRENTLOCKER 2015 Symmetric AES Static Domain Spam Attachment 

RAA 2016 Symmetric AES Static Domain Spam Emails 

CERBER 2016 Symmetric AES Static Domain 

and no contact 

Spam and Fake 

software  

BART 2016  Symmetric AES No contact HTML attachments 

PETYA 2016 Symmetric AES Static Domain Worm Fake 

software 

NOTPETYA 2017 Symmetric AES No contact to EternalBlue 

WANNACRY 2017 Symmetric AES Static Domain EternalBlue 

LOCKER 2017 Symmetric AES Static Domain Spam and 

compromised 

websites 

BADRABBIT 2017 Symmetric AES No contact Compromised 

websites 

RYUK 2018 Symmetric AES No contact Directed attack to 

business  

KATYUSHA 2018 Asymmetric RSA-

2048 

Static Domain EternalBlue 

GANDCRAB 2018 Symmetric AES Static Domain Fake software crack 

LOCKERGOGA 2019 Asymmetric RSA-

4096 

No contact worms 

 

The attack vector of the WannaCry compromise through  TCP /445 (SMB), since 

the ransomware uses a worm that lies in the Windows implementation of vulnerabilities 

of the Server Message Block (SMB) protocol, it then attempts to exploit those systems 

employing the EternalBlue exploit. If a machine is successfully exploited, WannaCry 

gains access to the machine. To deploy the WannaCry into the exploited machine, it uses 

a tool called DoublePulsar. This tool represents a backdoor for delivering the infection. 

TOR client is implemented by the WannaCry to communicate with its CnC (Da-Yu et al., 

2019). To encrypt the user’s files, WannaCry follows the phases: 

 

 WannaCry created a public/private RSA-2048 key pair representation. 

  A public key is fixed wannacry payload; however, the private RSA key is not 

intended to send the victim. 
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 A random AES key is created for each key on the victim system that needs to be 

encrypted. 

 Wannacry thus does not require to contact its Common & Control to encrypt files.  

 The extension .wcry or wannacry for every encrypted files. 

Microsoft has released a security patch that protected user’s machine against 

these Eternalblue patches. A patch, distributed on time, could have saved the wannacry 

epidemic. Unfortunately, several organizations and individuals do not often update 

their operating systems that cause to be exposed to the attack. WannaCry attempts to 

escape from the sandboxes by reaching a non-existent domain. When the ransomware 

tries to contact to its CnC, sandboxes provide a false positive alarm and stop the malware 

(Tailor & Patel, 2017). 

 

2.5 Ransomware Payment Using Bitcoin 

 

Ransom payment is vary depending on the type of the ransomware variant and the 

worth digital currencies rates. Ransomware authors normally determine the ransom 

payments in bitcoins (Morato, Berrueta, Magaña, & Izal, 2018). The amount of all 

ransoms are of equal value. When the attack is not targeted and it targets a large number 

of companies, the ransoms can be low, for amounts between 200 and 500 dollars, for 

example. Conversely, if the hackers attempted to target a particular company, they would 

not hesitate to demand a larger ransom amount, up to several tens of thousands of dollars. 

The newly emerged ransomware families provide a liste of  payment options such as 

iTunes and Amazon gift card. As the researchers recommend that paying the ransom does 

not guarantee that the victim will get back the decryption key to access to the infected 

system or the encrypted files (Palisse et al., 2016). 

The most popular cryptocurrencies are bitcoin. It is an electronic currency (there 

are no notes or coins) invented by Satoshi Nakamoto in 2008. It has the particularity of 

not depending on any central bank or central authority . Bitcoin is therefore decentralized; 

its value is assessed by the supply and demand of websites that serve as trading places for 

bitcoin. This means that each transfer is made directly between users without going 

through a third-party authority.  

The price of bitcoin is very volatile, for example if you have to pay 1 bitcoin (1 

btc = 4,900 euros), the price of Bitcoin is continually fluctuating, in 2016 the value of the 

one 1 BTC was $400. This rate was dramatically changed to $7,000 in February 2018. 
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Tomorrow a bitcoin could be worth more than 7,500 or 8,500 euros. It all depends on 

supply and demand. Bitcoin transactions use asymmetric encryption.  

There is a private key and a public key. The private key serves as a password and 

is used to sign transaction messages. The public key is the account number of the user, 

i.e. the wallet. Then an address is created from the public key, which itself is created from 

the private key. Users can use a new address for each new payment. This allows the 

transactions to be separated so that it is not possible to associate them. So, if someone 

sends you bitcoins, they can't see your other addresses. Addresses cannot be associated. 

For all these reasons bitcoin has become ubiquitous in the cybercrime world.  

The financial transactions that are executed and completed are saved in a common 

and transparent record, called the blockchain, that is widely accessible. The input 

becomes transaction and a list of outputs, each number of Bitcoins transferred to an 

explicit receiver’s address. A Bitcoin address is an alphanumeric string derived from the 

public key of an asymmetric key pair generated by a Bitcoin user. Every user has many 

addresses and key pairs representation in the wallet, this allow to rent a new address for 

each transaction to add the level of anonymity (Corrigan, 2017).  

 

Figure 2.14: Ransom not through Bitcoins 

Bitcoin performs the same functions as traditional currency. It represents a unit of 

account, and measures the usefulness of a good or service. It also facilitates trade; it can 

be used, just like normal money, to buy goods and services. It can also serve as a store of 
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value, and therefore can be used to buy goods and services in the future. In this sense, 

Bitcoin, which is the first currency without a bank, can be considered a currency. 

However, there are differences between Bitcoin and a normal currency like a dollar. The 

dollar is legal tender that is recognized by the governments, and persons or institutions 

must be paid as hard letters of a dollar,when no one is forced to accept payment in Bitcoin. 

Another disadvantage is that there is no guarantee that it will be accepted in the future. 

 In addition, unlike the dollar for example, whose excessive fluctuations as shown 

in the below Figure 2.15, upwards or downwards, can be regulated by the government, 

Bitcoin is based on a decentralized system, that does not under the control of no authority, 

it does not belong to a person, a government, or a company, and therefore its value 

depends only on supply and demand, which may explain its high volatility. In addition, 

in a centralized system, the use of normal money is framed by rules, which allows bank 

customers to be reimbursed when someone fraudulently uses a bank card. In a 

decentralized system, there is no legal recourse possible, even if users can take out 

insurance in order to obtain compensation from specialized organizations, in the event of 

problems (Paquet-Clouston, Haslhofer, & Dupont, 2019).  

 

Figure 2.15: The amount of ransom demanded by the ransomware variants (Osterman 

Reasearch). 

Current ransomware uses cryptocurrency more precisely Bitcoin to pay ransoms. 

But before using the cryptocurrency the ransomware requested to settle the ransom with 

other payment methods. At the beginning the victims of ransomware could pay the 
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ransoms by sending an SMS via a code like for example those which one can use to pay 

a TPG bus ticket. Victims could also pay the ransom to an electronic wallet such as 

PayPal. Police authorities and security experts found a solution when changing the 

regulations for electronic payments. Using electronic wallets has become less profitable 

and much riskier for ransomware which displays their number decrease at that time. A 

few years ago, the cryptocurrency began to become popular among individuals but also 

among cybercriminals (Conti, Gangwal, & Ruj, 2018). 

 

2.5.1 The technical aspects of bitcoin 
 

One of the fundamental innovations of Bitcoin is that it relies on the network 

"Peer-to-peer", a computer network where users are connected to each other via nodes 

and on which they can exchange electronic money directly and free of charge, without 

going through a third-party entity. Users can contribute to the power of the network by 

putting the computing power of their computers to the benefit of the bitcoin network. 

Another major invention specific to Bitcoin is that transactions are encrypted using 

asymmetric cryptography, that is, by a public key / private key system (Conti et al., 2018). 

The signatures of the bitcoin transactions all derive from the ECDSA public key, 

one of the safest algorithms at present. The address of the public key is used to send 

bitcoins while the private key is used to receive or pay for it. The third revolutionary 

singularity alone, is the Blockchain. The "blockchain" is the underlying innovation 

bitcoin, "a technology for storing and transmitting information at minimal cost, secure, 

transparent and functioning without a central control body". More intuitively, a 

"blockchain" is a distributed and secure database allowing any user of the protocol to 

observe all of the transactions almost instantly and to be able to check the validity. By 

analogy, a Blockchain can therefore be compared to a public ledger, anonymous and 

falsifiable. This innovation solves the problem of double-spending, which is to say, that 

a bitcoin can be used twice by the same person. In the traditional banking system that we 

know, each bank keeps the database of all its clients individually and privately and other 

economic players, such as regulatory institutions such as FINMA, do not have access to 

this information (Paquet-Clouston et al., 2019). 

Whereas with normal money it is possible to make counterfeit money, with 

bitcoin, this problem is solved thanks to Blockchain. Since the first transaction, at 6:15 

p.m. on January 3, 2009, there have never been any fake bitcoins in circulation. When a 
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transaction is sent over the Bitcoin network, it is randomly routed to one node, then 

redirected to all other nodes on the network. The transactions are grouped in what are 

called blocks. So that the protocol can verify transactions, "secure the network but also 

allowing all users of the system to stay synchronized ", it takes computing power, and this 

is called mining. Miners are certain members of the network who have requested to use 

the computing power of their machines from the network. In addition to validating data 

relating to the transactions which will form a block, minors must solve very complex 

mathematical problems. The complexity of these problems varies constantly depending 

on the number of miners connected. This is why the SHA-256 hash algorithm is an 

integral part of the bitcoin protocol, in order to constantly adapt the difficulty of the 

problem, which allows maintaining a validation time by block close to 10 minutes(Conti 

et al., 2018). 

In addition to the complexity of the problems, their resolution depends on a 

random variable, which makes it possible to ensure that it is not always the same minor 

which validates all the blocks. This is one of the essential points that secure the 

Blockchain. When the problem is resolved by one of the users, it must provide proof that 

it is the one who has the solution. This is called proof of work or proof of calculation. 

The block validated by this minor is then temporarily inserted into the Blockchain, 

so that other users can authenticate the proof of work. If the distributed consensus differs 

according to the users, we can end up with two different block chains, and parallel. In a 

case, the rule is that, all nodes on the network must keep the two chains and, however, 

that one of the two chains are working. Very quickly, one of the two channels will take 

precedence over the other. This is why it is said that it takes an hour on average before a 

block is irreversibly confirmed, which is equivalent to waiting for five to six other blocks 

to be integrated into the Blockchain (Conti et al., 2018). 

Minors are paid in bitcoins specially created for block validation and according to 

the computing power they bring to the network: this is a strong incentive to contribute to 

the computing power of the protocol. To make the process fair, a random variable is 

introduced in the protocol to validate a block. This is the only way to create new bitcoins 

and therefore the only way to increase the money supply. As an anecdote, the reason they 

are called "miners" refers to the gold diggers who increased the money supply as they 

discovered it. Initially, in 2009, the remuneration was 50 bitcoins per block inserted in 

the Blockchain. The rule is that the remuneration is halved every 210,000 blocks created, 

and the process that takes approximately four years.  
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Today, miners touch 25 bitcoins per block and this Figure 2.15 will soon be halved 

again because we soon reached 203,000 blocks. The mechanism is thus made that the 

reward for mining bitcoins will decrease over time, and therefore, in the end, the bitcoin 

money supply is predictable. We know that it will converge to 21 million bitcoins. Each 

bitcoin is divisible up to 100 millionth. This is particularly interesting, because this 

mechanism is known in advance and completely transparent (Pletinckx, Trap, & Doerr, 

2018). 

 

2.5.2 The advantages of using a digital currency 

 

Cryptocurrencies are innovative, first of all for individuals, because they offer a 

new form of money and payment. Take the case of bitcoin: bitcoin allows simplified 

payments via a mobile phone. A credit card is no longer necessary, just scan the recipient's 

QR code or put the two phones against each other to perform a value exchange, using 

contactless technology (NFC). Second, security and control over money are greatly 

enhanced. The cryptography used in the bitcoin protocol is made up of the most secure 

algorithms currently available: ECDSA and SHA-256. As a result, no trusted third party 

can puncture a user's account or impersonate their identity, or make payments on their 

behalf: some possible fraud with the Current payment system are therefore avoided thanks 

to bitcoin (Doguet, 2012).  

Other innovation: it is a universal currency, usable worldwide and at all times. 

There is no longer a need to have the same service provider, since it is interoperable. In 

addition, since it has no physical existence, Bitcoin allows international transfers, 

regardless of the amount, immediately: bitcoins can be transferred from one end of the 

world to the other in less than one ten minutes and at almost zero cost. If service providers 

like Western Union currently take a 10% commission on money transfers, bitcoin just 

helps. Ultimately, bitcoin allows individuals to pay anonymously, in digital cash. As for 

entrepreneurs, in addition to benefiting from all the advantages cited for individuals, they 

no longer need to submit to PCI regulations, controlling and securing online payments, 

which is now at their expensein the current system(Conti et al., 2018). 

Bitcoin is also a new market, with customers looking to use their new currency. 

Using bitcoins is also a way for entrepreneurs to stand out from the competition and gain 

visibility. In addition, Bitcoin allows more transparency within a company, since, in its 

protocol, transactions are only carried out after all the persons authorized to sign have 
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actually done so, thanks to the multi-signature function. And, finally, as said before, 

thanks to Blockchain, the company's accounting is completely transparent and tamper-

proof, which makes it possible to gain the confidence of investors (Rogojanu & Badea, 

2014). 

 

2.6 Ransomware Infection Vectors 

 

Ransomware creators use a range of different sophisticated techniques to spread 

their malicious intents; in this section, we highlight the most prevalent ransomware 

propagation methods depicted below: 

 

2.6.1 Spam emails  
 

Electronic mail (e-mail) is an important communication for millions of people 

including governments, health care groups, institutions, and organizations. E-mail have 

been widely used by many people in different purpose. At the same time, e-mail is one of 

the growing and expensive problems associated with the internet today, in which case it 

is spam. Spam is a term that usually refers to the unwanted, unsolicited messages that are 

sent to a user's inbox. By obtaining such messages, the recipients are encountered to the 

security threat that is exposed to illegal content. It has an attractive link to famous 

websites, but it leads to websites that are disturbing  (Dada et al., 2019). Spam Email is 

also considered to be the carrier of malware to infect the victim’s machine. Spam mails 

are widely classified into:  

 Spam of adult content: this is common for the young group of ages to fall into this 

flash trap for the content of products and services aimed at improving the sexual life 

of adults.  

 Health and medical spam: this kind of spam email is huge just for beauty purpose; 

this is intended to promote the products for weight loss and skincare. 

 Computer and internet spam: this spam is generally more dangerous than the 

previous one, because it relates to the field of work that offers hardware and 

software services with a familiar image to those who are active in a company with 

offers for very under an IT department that makes it easy for users and companies 

that are aware of the threat (Lee, Lee, & Hong, 2017). 
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 Financial spam: for extortion and financial purpose, this spam focuses on the 

banking sector, insurance policies and low-interest loans (Grimes, Hough, & 

Signorella, 2007). 

 

The primary infection vectors for ransomware is through malicious spam emails, 

where the victim is tricked (Da-Yu et al., 2019). Opening a phishing email is an 

insufficient method to execute ransomware, but attackers still need users to download or 

open malicious attachments that directly install the ransomware; another way of the 

phishing email to deliver ransomware is to click on malicious links within phishing emails 

that appear to be a legitimate email message, the 93% of phishing attacks is ransomware 

purpose (Goel & Jain, 2018). 

 

Figure 2.16: The distribution of spam emails in 2016 to 2018 (Dada et al., 2019). 

 

2.6.2 Social engineering 

 

 Social engineering is the art of manipulating, persuading, suggestion, and 

deceiving people to gain access to a user’s computer. It is an easier method that plays into 

human nature’s inclination to trust or to carry out actions that grant the ransomware 

creators to access the victim’s machine (Gallegos-Segovia et al., 2017). Social 

engineering attacks take place in one or more phases,  as shown in Figure 2.17. First, the 

attacker investigates the targeted victim to collect the necessary basic information, such 

as potential access points and weak security protocols, that are needed to continue the 

attack. The attacker then moves to obtain the trust of the victim and provide an incentive 
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for further actions that violate security practices, such as revealing sensitive information 

or providing access to critical resources. The most commonly known model generated by 

the Kevin Mitnick’s social engineering attack cycle described as (Mouton, Malan, 

Leenen, & Venter, 2014): 

 

I. Collecting information: is a process that involves the collection of victim 

information to have a scoop of the attack and identification of the possible attack 

vectors. 

II. Trust: strives for creating a relationship between the attacker and the victim. 

Usually, people tend to discover the information when they trust someone, which 

will obtain critical information. 

III. Exploitation: as soon as a victim trusts an attacker, the link is operated through 

requests for information or develop specific actions. Moreover, the victim can be 

manipulated to seek the help of an attacker. 

IV. Reach /ending: results that obtained from the earlier phases are used to achieve 

the goals of the attacker. 

 

 

Figure 2.17: The Social Engineering Cycle Attack (Mouton et al., 2014)  

 

For instance, the ransomware attacker needs to connect to the network of an 

organization.  The attacker discovers that a help desk employee knows the password for 

the organization's wireless network. Moreover, the attacker obtained personal information 

about the employee who has been recognized to be his target. The attacker starts a 

conversation with the target using the information obtained to create a trust; in this case, 

the ransomware attacker presents himself as an old-fashioned knowledge of the target. 

The attacker then exploits the trust by requesting permission to use the corporate wireless 

network to send an e-mail. The help desk is willing to provide the password to the 

attacker, then the ransomware author has access to the organizational network and 

achieves its goal (Gallegos-Segovia et al., 2017). 
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2.6.3 Exploit kits 

 

 Another common method for spreading ransomware is a toolkit that automates 

the exploitation of software vulnerabilities for distributing malware(Corrigan, 2017). An 

exploitation kit is a malicious software tool that is created, sold and rented, and available 

on the software industries and used by ransomware attackers to carry out drive-by-

download attacks. To evade detection, exploit kits are usually encrypted. Exploit kit is an 

HTTP server-side application that depends on the returning page with a suitable set of 

exploits and the request headers.  

The main objective is to download and execute the malicious ransomware 

payloads on the victim machine by utilizing the vulnerabilities of the browser (Kotov & 

Massacci, 2013). Once a vulnerability is exploited, a traditional piece of ransomware is 

loaded onto the victims’ computer. Most often, hackers inject malicious code on a website 

that redirects the victim to a malicious site (Yaqoob et al., 2017) as shown in Figure 2.18. 

The malicious webpage then returns an HTML document with exploits, which are 

typically hidden in unseen JavaScript code. 

 The exploit kit identifies vulnerabilities in browsers; if it is vulnerable, it can 

leverage it to download ransomware and the victim gets infected. Some ransomware 

variants such as wannaCry ransomware propagated through a dropper component named 

as EternalBlue that identifies vulnerabilities in the Server Message Block (SMB) 

protocol, which enables ransomware to drop binary onto all unpatched, vulnerable 

windows machine (Yaqoob et al., 2017). 

The increase of the exploit kits becomes more due to the ease of deployment and 

the ease way that the ransomware causes the infections. Exploit kits can be deployed 

easily, with no advanced exploitation knowledge required, and victims can be directed to 

them through a malicious redirect or simply via a hyperlink. 

 For instance, the normal user is misled to visit the malicious link provided by the 

exploit kit authors that are redirected to the hosting site of the Blackhole. Then, many 

exploit modules are loaded silently in the background. If the attach is executed 

successfully, the ransomware payload is downloaded and runs silently in the background. 

This kit is known to address various vulnerabilities in Adobe Acrobat, Internet Explorer, 

Java, Adobe Flash, and Windows (Mansfield-Devine, 2013).  
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Figure 2.18: Exploit kit drive-by-download method (Kotov & Massacci, 2013).  

 

2.6.4 Malvertising: Exploiting web advertising 

 

Online advertising is an online malicious advertising method for distributing of 

malware (Sood & Enbody, 2011) used by attackers to inject malicious advertisements 

into trusted websites with many visitors. Since advertisements generate an important 

portion of the income on the web, considerable efforts are made to attract users to the 

advertisement pages. Malicious agents utilized this attraction and then redirect normal 

users to infected sites that distribute ransomware. Often, when the user opens the website, 

there is no need to click on the ad; loading malvertising page will connect to several 

different URLs that lead to ransomware infection (Bhardwaj et al., 2016) as shown in 

Figure 2.19. Dynamic delivery of ads is considered to be another approach of online 

advertising that can be appointed by malicious agents. The content of this approach is 

dynamically changes based on the characteristics of the user’s profile.  

The malvertising can appear many popular websites because the attacker can 

purchase ad space to install a harmful piece of code. This malicious advertising appears 

like daily announcements as pop-ups such as fake browser updates, free tools, banner ads, 

antivirus programs, etc. As a consequence, the malicious content can reach a very large 

audience that trusted the website. In addition, the users may not identify that they come 

across malicious content website while browsing reputable websites that puts them high 
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risk (Xing et al., 2015). Malware authors employ two main methods to infect the victim’s 

computer: 

1. The advertisement that displays a kind of disturbing appeal to make you click on 

the advertisement. The request appears in the form of a "warning", such as a 

warning that you are in the risk of malware infection. Or providing a free program. 

These tactics utilize social engineering to persuade the user to click on a link (Sood 

& Enbody, 2011). 

2. Another popular method is drive-by-download employing an invisible web page 

module to infect the user. Loading malvertising page that hosting the ad leads you 

to an exploit landing page, which uses all your vulnerabilities in your browser or 

your software protection to access your machine, and redirect several different 

URLs that causes to ransomware infection. 

 

 

Figure 2.19: The architecture of Mal-advertisement flow (Xing et al., 2015). 

 

2.6.5 Dropper 

 

Another common technique for ransomware is to send a JScript file (*.js) by E-

Mail victims encountering the web to execute a file. There are several ways to make 

ransomware undetectable. One of them is the dropper. It is an algorithm that will not link 

one program to another. In other terms there will be a dropper and a payload (the 

ransomware). The dropper is responsible for initiating the installation of the ransomware 

on the system as shown in Figure 2.20. It will separate the ransomware from the installer. 

Simply, the dropper acts like a ransomware installer. The dropper activates when the 

victim believes they are downloading or launching the file / program they received as an 
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attachment. The dropper sneaks into the ransomware installer without the victim's 

knowledge. In other words, the dropper is a means of launching the attack, it is not in 

itself a danger,  but it allows to cross the security layers of a computer (Raunak & 

Krishnan, 2017). 

 

 

 

 

Figure 2.20: Ransomware infection vector using dropper installer 

 

2.7 Ransomware Evasion Techniques  

 

Malicious reverse engineering is the most common attack that aims to reverse or 

analyze the program in order to understand the inner working of the program and 

reconstruct it. Originally, this method is intended to protect the intellectual property of 

software developers through copyright prohibit the direct privacy of software, but it has 

been broadly used illegally by malware authors to evade the antivirus scanners (You & 

Yim, 2010). To protect the software, there are several methods such as server-side 

execution, native code, encryption and obfuscation, is the cheapest and simplest solution 

of copyright problem. 

 

2.7.1 Code injection technique  

 

To evade the execution, ransomware injects the legitimate programs through 

hooking technique. To achieve this, the malicious program has to be able to access the 

space memory of the victim application. To do this, the malware must have administrator 

rights or be able to acquire the necessary rights. Indeed, the manipulation of some of the 

APIs which allow injecting code is restricted. Code injection allows ransomware to 

execute in the context of a legitimate application, making it easier to evade detection 

(Francillon & Castelluccia, 2008). Injecting malicious code into a process legitimate can 

be achieved by different techniques, for example: 

 Injection of a dynamic library; “Dll injection”,  

 Adding code directly into the memory space of a process; “Direct injection”.  

 

Malicious 

Email Dropper Payload Ransomware 
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The first method is to force the loading of the malicious library via the execution 

of an attacker-controlled thread in the victim process as shown in Figure 2.21. For this, 

the CreateRemoteThread function is generally used. Once the malicious library is loaded, 

the system hands over to its entry point, the Dll main function, which can then trigger 

malicious behaviour.  

The second method is used to inject compiled code (i.e., as before) or "shellcode", 

that is to say mainly the assembler as a string character. To do this, it is necessary to 

allocate memory in the victim process and then write to the desired address. The 

VirtualAllocEx and WriteProcessMemory functions are then used. Once the code is in 

place, the CreateRemoteThread function is called at the base address chosen to trigger the 

malicious behavior. This method is more complex to set up, and can affect the stability 

of legitimate code. The context in which the malicious code is executed is particular, the 

resolution of strings, but also of functions imported must be managed specifically. 

 

 

Figure 2.21: DLL Injection  

 

Windows functionality can also be abused by malware to inject itself into a 

program. This is the "AppInit DLLs" technique. In fact, two registry keys specify the 

dynamic libraries that are loaded by user32.dll when this the latter is loaded by a process. 

In practice, a large number of programs use this library. Changing registry keys therefore 

allows ransomware under the form of a dynamic library to execute in the context of user 

programs that use user32.dll, and this in a persistent manner (Jiang, Wangz, Xu, & Wang, 

2007).  
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2.7.2 Obfuscation technique 

 

Another technique is "obfuscation". That is to say making the source code 

incomprehensible to humans or to a decompile. An Obfuscation is the process of 

application transformation that makes the program harder to understand through changing 

the physical appearance (Arini and Chloe, 2005). Code obfuscation techniques are 

exploited by polymorphic and metamorphic viruses to conceal their behavior from 

antivirus scanners. Obfuscation is common widely used by malware writers to avoid 

specific signature detection scanners through conversion of the program into a new 

different version. These include dead-code insertion, adding no-op instructions, 

unnecessary jumps and subroutine reordering (You & Yim, 2010). The most common 

obfuscation techniques divided into following main parties: Dead-code-insertion, 

Register Renaming and Code transportation. 

 Dead-code insertion is the simplest technique that inserts useless codes and some 

ineffective instructions or a bunch of nops to a program in order to modify its 

physical appearance, but keep its behavior. NOP is equivalent to the (No 

Operation) instruction that is either not executed or has no effect on program 

outcomes but increases the size of the code. However, this technique is defeated 

by the signature-based antivirus scanners by deleting the ineffective instructions 

prior to analysis (Lynn, Prabhakaran, & Sahai, 2004). 

 Instruction Substitution reordering and the substitution of instruction, during a 

set of instructions with corresponding instruction or set of instructions in a random 

fashion. This is achieved through creating of labels for each reorder and then 

employing conditional jump instructions to skip the control flow to the labels 

(Wing and Mark, 2006). Due to the change and reordering of the opcode sequence, 

this obfuscation technique is well-identified for bypassing the signature detection 

method, because it does not initiate too many jump instructions (Collberg, 

Thomborson, & Low, 2003). 

 Register reassignment also known Register Renaming is another simple 

technique that replaces either the name of the variables or registers from used 

instruction with another unused instruction while keeping the behavior and 

program code. In contrast to other obfuscation techniques, subroutine permutation 

can be simply detected through signature detection, as the signature still exists in 

apparent view. 
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 Subroutine permutation is a simple obfuscation technique whereby the order of 

subroutines appears in the code is changed. In this type of code obfuscation will 

not affect the impact and functionality of the virus as the order in which a 

subroutine appears in the program is totally unrelated and does not affect the 

running and execution of the program. 

 

In addition, transforming the code makes it possible to hide signatures or 

suspicious behavior. As a result, this allows you to get through certain levels of antivirus 

protection. But there are also other reasons to use "obfuscation". One of them is that the 

financial cost for such a movement is low. Especially since it is easy to set up for someone 

who has a minimum of experience. By the way, "obfuscation" is also used in the context 

of intellectual property security. This technique allows reverse engineering (a technique 

to reconstruct source code from its compiled form) (Collberg et al., 2003). 

 

 

2.8 Ransomware Analysis  

 

   In recent years, ransomware writers transmitted their malicious executable files 

in encrypted form to avoid identifying by anti-virus software. To investigate the 

behaviour of the malicious files, ransomware analysis is necessary to get in depth 

understanding and learning behaviour of malicious code and how a specific piece of 

ransomware functions; it is a prerequisite subject and premise step of effective detection 

techniques. Malware analysis is useful for many purposes such as computer security 

incident management for organization’s response team to react to the situation whereby 

the potentially malicious files are discovered, and the Indicator of computer (IOC) 

extraction for the software solution companies. The purpose of ransomware analysis is to 

get knowledge about the capability of ransomware, the structure techniques, and anti-

reverse techniques to hide it is self, and also the level of similarity to other malware 

samples (Zhang et al., 2019).  

Generally, there are two main types of ransomware analysis techniques: static 

method and dynamic method (Gandotra, Bansal, & Sofat, 2014). There is no need to 

execute the ransomware samples during the static method, its analysis the characteristics 

of sample code, whereas dynamic analysis determines the behaviour of ransomware 

through execution. In this section, we will discuss static code analysis techniques and 
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dynamic analysis, because both provide complementary information about the 

ransomware. 

2.8.1 Static analysis technique 

 

Static Malware Analysis (SMA) is the basic malware analysis method that 

analyses a program’s code without actually executing it.  It provides information about 

data flow; programs control and other statistical features without executing the program 

(Al-rimy et al., 2018). It also offers the actual view of code and identification of malware 

files like compile dates, packers and functions used by the program. It includes many 

SMA methods: Basic Information Analysis, portable executable (PE) File Structure 

Analysis and Control Flow Analysis etc. (Liu, Ren, Liu, & Duan, 2011). Techniques are 

used to simulate the exploration of the program's control flow such as disassemblers, 

decompilers (i.e. IDA Pro) or even analyzing the source code. To prevent the malware 

analysis and detection, malwares adopt avoidance techniques and measures such as:  

polymorphism, shell code, and metamorphism, which make it harder to analysis malware.  

This signature-based detection method is hampered by the avoidance techniques 

that ransomware employs such as obfuscation and/or packing. Such an approach is 

unreliable for detecting to the new ransomware, as it suffers several shortcomings such 

as frequently updated signature repository, and the need for expert intervention to 

analyses and extract attack signatures. Static analysis is therefore not retained because it 

is complex to implement in practice (e.g., computing power, time) (Zhang et al., 2019). 

 

2.8.2 Dynamic analysis technique 

 

In contrast to the static analysis, dynamic analysis requires the execution of the 

program and observing the actual action performed; it executes in a real or a virtual 

machine environment, the purpose of dynamic malware analysis is to provide insight the 

action performed by given malware, mostly without manual reverse engineering. The 

advantage of dynamic analysis is immune to the impact of obfuscation attempts and has 

no difficulty with self-modifying programs in execution stage (Hampton et al., 2018). 

The environment in which the malicious file is executed is controlled to ensure 

not to affect the real system. These are complementary, the joint use of the two techniques 

is called hybrid analysis. In this thesis, we prefer to use dynamic analysis, for the simple 

reason that we are interested in the behavior of ransomware on the file system. It is much 

easier to observe their behaviors, i.e. their effects on the system, and thus to develop a 
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countermeasure in this context. Many techniques can be used (e.g., encryption, 

obfuscation) and for the most part are current affairs issues difficult to deal with. There 

are two very important results:  

 It is impossible to design a program that precisely detects all malicious 

programs. 

 It is impossible to determine whether a program is a virus or not. 

 

Because the problem is undecidable, so false positives and negatives are 

inevitable. In other words, there is no perfect detector and there is no algorithm that can 

tell exactly whether a program is malware or not. Behavior-based Malware Analysis is 

the most important method of dynamic analysis; it traces the behavior of a given malware 

in a quite accurate way. It also allows the analyst to know the exactly what actions the 

malware is performing  like modification of registry, accessed virtual memory, created 

processes and created or Modified files (Liu et al., 2011). 

A dynamic analysis take place in a realistic environment for the malware, so that 

it can run normally. Attackers aware that binaries are being actively analyzed, then they 

are developing defense mechanisms. In fact, they are trying to determine if they are 

running in an analysis environment, the activity and content of which are simulated, for 

example. Many artifacts are used to detect dummy environments (e.g., mouse movement). 

Analysis environments are called “sandboxes” or “sandboxes” and use different 

technologies. In addition, these are accompanied by monitoring tools, that is, 

introspection, to observe the effect of the code on the system. The sandbox as a whole 

must be as transparent as possible, that is to say indistinguishable from a conventional 

user environment (Kara & Aydos, 2018).  

 

2.8.3 Virtualization  

 

In order to conduct dynamic analysis and to reduce the impact and damage of 

ransomware execution on a real operating system, the virtual machine is important. A 

virtual machine (VM) is a software realization of a computing environment where by one 

or more different operating (OS) or program can be used to install and execute. 

Virtualization is the process of creating a software (or virtual) version of a physical 

entity". We then use the guest term to designate the virtualized system and the hosting 

term for the system that performs virtualization using the “virtual machine monitor” 
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(VMM) (Greamo & Ghosh, 2011). Generally, it is usually much less expensive to deploy 

a virtualized lab, than deploying one-to-one physical systems for all the same reasons 

large organizations have been doing so in their data centers. The most important reason 

researchers employ the use of VME’s the ability to restore virtual machines to their 

original form in mere minutes is essential. 

The virtual machine normally imitates a real computing environment, but needs 

for memory, hard disk, CPU, networked system and other hardware resources are 

controlled and managed by a virtualization layer that interprets these requests to the 

underlying physical hardware. We distinguish two types of virtualization:  

1. Host virtualization, virtual machine and 

2. Native virtualization, hypervisor. 

 In the first case, a host operating system is required. For the second, the hardware 

and the VMM manage the guest without a host operating system. The virtualized system 

must share the same hardware architecture as the host for (1) and (2), since most of the 

instructions are executed on the hardware. Emulation instead executes all instructions in 

software. Introspection is therefore easy. In addition, the guest does not have to share the 

same architecture as the host. Artifacts are inherent in virtualization and emulation, which 

makes solutions based on these approaches easily detectable. Many solutions exist for 

each of the approaches presented. This means that the victim machine seems likely to an 

attacker. For example, though, the files and directories present, the applications installed, 

etc.  

The use of bare machines as a ransomware analysis platform has an advantage and 

such as: the total absence of virtualization or emulation. Therefore, using this bare 

machine as a platform is optimal transparency. Introspection, on the other hand, is more 

complicated to set up and has an impact on transparency (Hoopes, 2009).  

Usually, guest operating systems and other programs are not known that they are 

executing or running on a virtual platform and, on condition that the VM's virtual platform 

is supported. In this case, the impact of ransomware execution has only affected the virtual 

PC and not the real one.  

After completion of dynamic analysis, the infected virtual machine is discarded 

and installed by a clean one, because the installation of the new virtual machine is faster 

and easier than installing a real operating system on the computer. However, the general 

problem of VM is that Smart executable file may determine that it is running in a 
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virtualized machine and modify its behaviour in order bypass to real PC (Al-rimy et al., 

2018). 

 

 

2.8.3.1 Virtual Box 

 

Virtual Box is a free powerful x86 hardware virtualization product for Oracle. It 

is actively developed with frequent with extremely feature rich, high performance product 

for users such as snapshot which is the ability to save a machine state and later revert to 

it if anything goes wrong with the machine of the current state. It is also the only 

professional virtualization solution that is free and downloadable as Open Source 

Software under the terms of the GNU General Public License (GPL) (Gupta & Kumar, 

2015). 

Virtual box has important features which are the portability and compatibility 

means virtual Box can run on a large number of different 32-bit and 64-bit host operating 

systems versions such as Windows hosts machine host and Linux as well. The second 

feature is no hardware virtualization is needed. For example, virtual Box does not involve 

the processor features built into newer hardware like Intel VT-x or AMD-V. Unlike other 

virtualization solutions, Virtual Box even can be used on older hardware where these 

features are not at hand (Zavarsky & Lindskog, 2016).  

 

 

             Figure2.22. Running multiple operating systems simultaneously. 
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 The above screenshot describes how VirtualBox can be installed on a Mac 

computer and running multiple OS like Windows 7 in a virtual machine window. It is 

also providing users to execute more than one operating system in their computer 

simultaneously. This way, you can run software developed for one operating system on 

another written other operating system (for example, Windows software on Linux or a 

Mac) without necessary to reboot to use it (Chen & Bridges, 2017).  

 

2.8.3.2 VMware Player 

 

VMware Player is another free virtualization software that supports x86 

virtualization. This product has the properties like Fidelity, Performance, Safety and 

Isolation, the most important types are VMware Player and VMware Server are both 

available for free download from the VMware site. It has a good out-of-the box support 

for seamless integration with the host operating system. The virtual machine will typically 

appear to run in a window on the local host, but it is not real machine (Player, 2010). 

 

2.8.3.3 QEMU 

 

Qemu -short for Quick Emulator- is an open-source emulation environment 

capable of running another operating system in a window. Qemu creates a virtual machine 

similar to the VMWare and VirtualBox. It is one of the isolated environments preferred 

by sandboxes (Yao & Wang, 2013).  The memory resources of the native machine are 

divided between the host OS and the virtual machine means the guest OS. Some features 

of the Qemu environment itself are used for analysis system analysis by malicious 

software. Qemu emulation media do not have detection methods as much as virtualization 

environments. Among the features used for analysis system detection (Greamo & Ghosh, 

2011). 

 

2.8.4 Sandbox environments 
 

A sandbox is a computer security term that designates a mechanism used to 

improve the security of software and web pages. The rapid increase in the number of 

malicious software also increased the need to prevent and examine malware. For this 

reason, the importance of the sandboxes, which speed up and facilitate the analysis of 

malware, has also increased and the number of sandboxes has increased. For an operating 
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system, it reduces the risks when running software. This term refers to the environment 

that allows testing software or websites (Hoopes, 2009). 

The suspicious file is run by sending it to an isolated environment. All operations 

performed in user mode such as file, registry and network activities are tracked with 

analysis tools and recorded. These recorded transactions are reported by the sandboxes 

when the analysis process or the determined time of the sandboxes is over. In 

cybersecurity, sandboxes are used for advanced malware detection: it is an additional 

layer of protection against new security threats, including zero-day viruses and stealth 

attacks. What happens in the sandbox stays in the sandbox, which prevents system crashes 

and prevents software vulnerabilities from spreading.  

The environments created by Sandboxes provide a proactive layer of network 

security protection against new advanced and persistent threats (APT). APTs are targeted 

attacks, tailor-made and often aimed at compromising organizations and stealing data. 

They are designed to evade detection and often go under the radar of simpler detection 

methods (Greamo & Ghosh, 2011). Today there are many sandboxes. In this study, a 

sandbox that are accessible to everyone are used free of charge. The sandbox used are 

described below. 

 

2.8.4.1 Cuckoo sandbox 

 

The analysis of malicious samples is carried out in Cuckoo Sandbox; the 

suspicious file is run on the isolated virtual or physical machine. The basic infrastructure 

of a cuckoo sandbox consists of one main machine and one or more isolated guest 

machines. The host machine sends the suspect file and analysis tools to the isolated 

environment. Then it runs the file and starts the analysis. While the analysis is taking 

place, the host also records the network traffic generated by the file.  

The activities performed by the ransomware files in an isolated environment are 

tracked here, and when the analysis is completed, the results are sent to the main machine 

and reported. Cuckoo Sandbox performs analysis of Windows, Linux and Android 

operating system files and supports VirtualBox, VMware and KVM virtualization 

environments (Oktavianto & Muhardianto, 2013). Cuckoo sandbox monitors operations 

in user mode and generates analysis results accordingly. In this research, we applied the 

Cuckoo Sandbox for analyzing the ransomware sample to obtain the exact malicious 

behavior as we will discuss in section 3.  
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2.8.4.2 Anubis sandbox 

 

Anubis sandbox is the automated malware analysis tool that uses isolated or-fully 

Qemu, and performs full system analysis. The operating system uses Windows XP SP2. 

Qemu is preferred because it has full access to the Qemu emulation environment and the 

basic virtual machine detection traces are not found in this environment. Within four 

minutes, it automatically performs and reports suspicious file analysis completely.  

Anubis generates a detailed analysis report by tracking the system calls, Windows 

API functions, file and registry processes and network traffic in malware analysis. It can 

present the analysis report in HTML, XML, PDF and Text formats. Anubis sandbox is 

not affected by the complexation, debugging and packaging methods that may occur 

during the operation of the suspicious file by performing dynamic code analysis (Greamo 

& Ghosh, 2011). 

 

Figure 2.23: Anubis Sandbox Environment 

 

 

2.8.4.3 Comodo automated analysis system 

 

Comodo sandbox is a malware analysis environment that automatically analyzes 

the malicious files in fully isolated environments. Windows executable files are analyzed 

in a controlled environment.  The outputs of the Comodo sandbox analysis is a report 
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containing the actual activities performed by the malicious file and makes inferences 

about whether the file is harmful or not.  

The Comodo sandbox also has a special feature such as the ability to show 

applications running in a virtualized environment from the main machine during analysis 

operations. Using VMware virtualization environment, Comodo keeps track of 

transactions in user mode (Kunwar & Sharma, 2016). 

2.9 Ransomware Detection Methods 

 

Ransomware is the most serious threat in today’s computing world. It continues 

to increase in huge volumes and to get out of control. It exposes various threats to the 

users such as stealing their sensitive information and breaking the computer system. A 

countermeasure of this threat is very important, and many researchers proposed a range 

of different malware-detection techniques. The ransomware detection techniques means 

any mechanism that provides the detection of any form of ransomware that threatens to 

the computer(Brewer, 2016). These techniques can be broadly classified into two 

categories: approach-based detection and technique-based detection. 

Approach-signature-based detection uses its characterization of the knowledge to 

decide the maliciousness of a program, which means it extracts the byte code patterns of 

each malware and compares these patterns with byte code of a program under its 

repositories. However, this method cannot detect new (unknown) ransomware whose 

signature has not been found or generated yet.  

On the other hand, approach-anomaly-based detection uses its knowledge of what 

considered normal behaviour to decide the maliciousness of a program under inspection. 

Hence this approach has benefits over signature based, because it detects any behaviour 

that violates the norm, and has the ability to identify new malware. Since the malware 

writers are familiarizing the detection mechanisms and evading detection methods 

through modifying their malware shapes like avoidance techniques that we discussed 

before(Saeed, Selamat, & Abuagoub, 2013).   

Every technique has three subclasses; static approach determines the malicious of 

file based on structural information without execution of program. Although this 

approach has a drawback of not detecting obfuscated malware, but it is very fast approach. 

The dynamic approach has the ability to detect the malicious file during and after 

execution (Liu et al., 2011). 
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 The third approach which is Hybrid is the combination of the best properties of 

both static and dynamic detection. The different class and sub-class of malware detection 

are showed in Figure 2.24. 

We have generalized the ransomware detection techniques in Figure 2.24. in the 

remainder of this section, we focus on the ransomware-detection method on every 

approach ransomware detection and anomaly-based. Furthermore, we will do deeply to 

machine learning classification algorithms. 

 

 

 

 

 

 

 

 

 

Figure 2.24: Ransomware detection and their subclasses. 

 

 

2.9.1 Signature-based detection  
 

Signature Based Detection is also known as a static approach, is considered to be 

the oldest technique, but associated with most popular virus detection techniques used 

today. This approach mainly used by antivirus companies; it is based on a signature 

database (fingerprints) that characterize the activity of each malware. The detection 

involves looking for known elements or patterns of attacks listed in the malware signature 

database. Most commercial antivirus scanners employ signatures which are normally a 

sequence of bytes within the malware code. Each virus has a unique string of bytes which 

becomes the signature of the virus. The fact of this technique becomes efficient is that 

comparing these unique strings with repository one, if matches found that file will 

consider malicious (Gandotra et al., 2014). 

This technique can be either static or behavioural, depending on the nature of the 

malware signatures on which it is based. The static signature-based detection approach 

relies on structural properties of the program (for example, byte sequences or hash 

functions), while a dynamic approach will rely on information from execution (for 

example the systems seen on the execution stack) of the program. Typically, a static 
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approach attempts to detect malware before the monitored program runs. On the other 

hand, a dynamic approach tries to detect malicious behaviour during or after the execution 

of the program.  

The combined two approaches are called hybrid techniques, in which case static 

and dynamic information is used to detect malware(Kunwar & Sharma, 2016). The goal 

is to take advantage of the supposedly superior fidelity of dynamic analysis in the training 

phase, while maintaining the efficiency advantage of static detection in the scoring phase. 

 

Figure 2.25: Signature-based Detection approach 

 

 The performance and accuracy of this technique is totally measured on the 

signature found in the database of the system. Signature-based detection systems cannot 

identify an unseen virus since the database will not have any detailed information about 

the unknown virus. Thus, the main condition of the system is to have an updated database 

of all the previous signature files of malware. However, previous researches have shown 

that signature-based detection is vulnerable to avoidance methods such as obfuscation 

techniques, for example, polymorphism and metamorphism(Saeed et al., 2013).  

 

2.9.2 Behavioral-based detection 

 

Behaviour-based detection techniques aim to reduce the rate of false positives 

generated during the monitoring phase of the system to be protected. During the learning 

phase, a behaviour-based detector is provided with a set of rules that specify all the 

acceptable behaviours of any application that may arise within the system to be protected. 

The major drawback of behaviour-based detection is the difficulty of determining the set 

of security behaviours that a program can exhibit during its execution within the system 

to be protected(Liu et al., 2011).  
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Rabek et al. (2003) present a method for detecting hidden malware that can be 

injected and generated dynamically at runtime. The detector uses a static analysis 

technique to obtain details of all relevant system calls embedded in the code, such as 

function names, addresses, and the instruction address followed by each system call. The 

detector maintains a record of return addresses for system calls in the code. Then, when 

a suspicious program is executed, the detector monitors the behavior of the executable 

and ensures that all calls to the system services during execution are the same as those 

recorded in the first step. The authors concluded based on a proof of concept study that 

their technique ensures that any injected and generated malicious code can be detected 

when it makes unexpected system calls. A major drawback of this technique is when 

inserting certain irrelevant API calls into malicious code, the detector may fail to match 

the new malicious behavior with the behavior already recorded (Rabek, Khazan, 

Lewandowski, & Cunningham, 2003). 

Research by Wang and Karri (2013) presents the NumChecker tool, a new virtual 

machine monitor (VMM) founded to detect the flow of modification control of kernel 

rootkits in the host virtual machine (VM). NumChecker detects malicious changes to a 

system call in the VM guest by checking the number of certain hardware events that occur 

during the execution of the system call. To automatically count these events, 

NumChecker relies on hardware performance counters which are mainly the total number 

of instructions, branches, returns and floating-point operations. By using these 

parameters, the verification cost is considerably reduced and the protection is reinforced.  

In their study, the rootkits used are SuckIT which replaces the system call table 

with its own copy and it uses it for redirecting to malicious system calls. Another rootkit 

used is Adore-ng which manipulates function pointers at the VFS layer for redirecting the 

execution flow of malicious routines which hide information by filtering system data. A 

deviation rate of 5% is set as the value above which a system call is considered to be 

modified (X. Wang & Karri, 2013).  

 

 

 

2.9.3 Anomaly-based detection  
 

The other method is anomaly-based detection systems that is designed to examine 

the processes going on a host machine for any variation for normal activity. If any 
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abnormal activity is monitored, the system raises an alarm indication the possible 

occurrence of malware. This approach has two phases; a learning phase and a detection 

phase. The first phase consists of creating, automatically or manually, a profile for the 

monitored program (a normal model). It does not matter how the profile is created as long 

as the profile precisely defines the characteristics of the program being monitored. Then, 

in the detection phase, if a behavior deviates too much from the saved profile, the system 

generates an alarm indicating that the program activity is malicious (Gandotra et al., 

2014). In this detection technique, the system attempts to learn normal behavior and 

employ the collected heuristics in order to classify an activity as normal or malicious.  

The main advantage of anomaly-based detection over signature based is its ability 

to detect zero-day attacks, by defining the expected normal behavior, any anomaly can be 

detected, whether it’s part of a known attack or not, means it is more reliable and has the 

capable of detecting new viruses. However, the possibility of false alarm occurs relatively 

higher in this mechanism, because the normal behavior can change over time, although 

raising a false alarm is not as a potential problem as allowing a new virus. However, these 

systems need to have trained regularly by intruders to examine abnormal behavior as 

normal. Thus, the system will fail to identify the abnormal activity from normal behavior 

(Morato et al., 2018). 

The most important of dynamic analysis is Behavior-based Malware Detection 

(BMD) method which utilizes the behavior information of the malware during its 

execution in a virtual machine such as one provided by VMware is a popular choice of 

the detection basis. This method can eliminate the reliance on the feature of the malware 

file itself.  Because the behavior of malware is more unique than that of malware feature, 

for example, a malware can generate a new variation with different feature through shell 

code, Polymorphism and Metamorphism, but its behavior is still the same as the original 

one (Liu et al., 2011).  

 

2.9.4 Event-based detection  
 

Event-based detection approaches are intended for specific events that occurred 

and identified as compromised indicators for detecting the ransomware attacks. This 

technique finds the specific attributes and events necessary to identify variants of 

ransomware. Most event-based detection approaches do not need to create or maintain 

signatures to detect malicious files.  
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This approach usually detects an event when it is happening in the program under 

test or in the host system where the program will be executed. This method identifies 

unusual events, or unusual sequences of events, that occurred on the computing device. 

For an example, accessing the user’s critical information on the hard disk, a server, event 

logs or the number of events that are less than a threshold number of events can be used 

to identify an unusual event or an unusual sequence of events. Ahmadian et al. (2015) 

proposed monitoring C&C communications to depict any encryption key, DGA needs 

additional data exchanged between the malicious code and its remote C&C server, to 

distinguish ransomware before it begins its essential functionality(Ahmadian et al., 2015). 

Likewise, Heldroid, suggested by Andronio et al. (2015), employs the automated dynamic 

method to determine the procedure of obtaining the threatening text from the C&C server 

in the case where such text is not entrenched in the payload of the crypto-ransomware 

(Nicoló Andronio et al., 2015). similarly, Le Guernic and Legay (2017) suggested a 

technique that monitors Microsoft’s cryptographic APIs that several variants of malicious 

executable employs as indicators of ransomware attacks to avoid it from locking the 

victims’ files (Palisse et al., 2016).  

 

2.9.5 File-based detection  
 

This technique is considered to be one of the most effective techniques for 

detecting ransomware. This approach detection is to monitor the resources subject to 

attack instead of the malicious process that carries out the attack. File-based detection is 

created according to the frequently examining the user-related files and documents to 

monitor any malicious changes. To do this, many techniques are used, such as entropy 

and similarity measurements. Based on the changes made by the cryptography causes to 

the targeted file, it is measured the entropy before and after the encryption.  

 This method mainly consists of verifying whether certain regions of the file and 

memory system are identical to a trust base containing known values of these regions. 

The regions that need to be analyzed are most likely to be changed such as sections of file 

changes (Tang, Sethumadhavan, & Stolfo, 2014) .  

Many studies have been conducted, network and file integrity monitor called 

tripwire were presented by Ben22 when critical system files are modified, it gives an 

alarm to the administrator. These monitors are based on witness files and simple hash 

comparisons, the LanmanServer operation is denied if the witness files are altered. 
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However, this approach cannot guarantee the changed witness files are modified by a 

malicious program or a normal user.  

An alternative method presented HelDroid, an automated approach that classifies 

known and unknown mobile ransomware and scareware using a machine-learning 

method. Their approach is based on detecting threatening text associated with a ransom 

note and the “building blocks” that are typically needed to implement a mobile 

ransomware application (Nicoló Andronio et al., 2015). 

2.10 Machine Learning-based Detection 

 

Recently, classification algorithms have been used to automate and extend the idea 

of behavioral methods. In these methods, the binary code of a file or the behavior of the 

running application is represented and classifiers are used to learn patterns in order to 

classify new (unknown) applications as malicious. In this section, we will deeply examine 

the ransomware detection using machine learning;therefore, it is use full to understand 

the concept of machine learning such as file representation, feature selection and 

classification algorithms.  

Machine Learning is an important field of Artificial Intelligence, which aims to 

imitate the intelligent abilities of humans by machines through recognition. It has 

algorithms that allow computers to reason and make decisions based on input data 

(Shabtai, Moskovitch, Feher, Dolev, & Elovici, 2012). 

Generally, Machine learning (ML) is typically classified into two separate areas, 

supervised ML and unsupervised ML. Supervised machine learning is a method that 

attempts to find out the relationship between input attributes (also known field, 

independent variables, feature) and a target attribute (sometimes referred to as a 

dependent variable). ML is also evolved to as classification in the statistics literature; 

unsupervised learning is referred to as clustering where instances are unlabelled. Both 

types of machine learning are concerned with the analysis of datasets containing 

multivariate observations(Zhang et al., 2019). 

This research will focus on supervised and semi- supervised machine learning. In 

supervised approach is where algorithm (classier) attempts to map inputs to desired 

outputs using a specific function. In classification problems a classifier needs to learn 

several features (variables or inputs) to predict an output (response).  

Supervised methods can be implemented in a variety of domains and applications 

such as marketing, finance and manufacturing, disease diagnosis and face recognition, 
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but in this research, we will employ machine learning to identify unseen files either 

benign or malicious. Before we go deeply into the supervised machine learning 

algorithms, we will briefly discuss the types of machine learning.  

 

2.10.1 Supervised learning  
 

The formulation of the problem of supervised learning is simple: we have a finite 

number of examples of a task to be performed, in the form of pairs (input, desired output). 

We want to obtain, automatically, a system able to find relatively reliably the output 

corresponding to any new entry which could be presented to him. Supervised learning 

creates knowledge structures which have the task of classifying new instances into 

predefined classes(Bishop, 2006).  

 

2.10.1.1  Regression 
 

In regression problems, the entry is not associated with a class, but in the general 

case, with one or more real values (a vector). For example, for a biochemistry experiment, 

one might want to predict the reaction rate of an organism based on the levels of different 

substances administered to it (Segal, 2004).  

 

2.10.1.2 Time series 
 

In time series problems, it is typically a question of predicting the future values of 

a certain amount knowing its past values as well as other information, for example, the 

performance of a stock market share. An important difference between regression or 

classification problems is that the data typically follow a non-stationary distribution 

(Bishop, 2006). 

 

2.10.1.3 Classification 
 

In classification problems, the entry corresponds to an instance of a class, and the 

associated output indicates the class. For example, for a face recognition problem, the 

entry would be a bitmap image of a person as provided by a camera, and the output would 

indicate which person it is among the set of people we want the system to recognize (Dada 

et al., 2019). Detecting malware using this approach is accomplished in two phases: 

 The training phase: A detection system must be formed with input data in order 

to capture the characteristics of interest; 



 

 

72 
 

 The detection phase: In this phase, the trained detector makes intelligent 

decisions on new samples based on training data. 

 In addition, there are two methods deployed in the training phase: 

 The first method uses two categories of data, namely normal and abnormal data;  

 The second method uses only one category of data. In this case, malware detectors 

are trained with only one class (normal or abnormal). 

 

This means that the system will be formed only with normal system activity, 

which allows it to identify the presence of abnormal activity (Alzarooni, 2012). Various 

machine learning approaches such as association rules, support vector machine, decision 

trees, random forest, naïve-Bayes and clustering have been proposed for the detection and 

classification of malware. The classification is applied to unknown samples in the family 

of known malware or also underlines the samples that exhibit invisible behaviour for 

detailed analysis. There are generally three types of problems to which supervised 

learning is applied.  

 

A. Training Phase  

 

In the machine learning algorithms to identify unknown malicious files, it needs 

to have datasets composed of several characteristic features of both malicious and benign 

software. Combining with learning algorithms it will generate classifiers. The General 

process of classifying previous unseen files as either malicious or benign using ML 

methods is separated into two succeeding phases: training, and testing phases.  The 

training phase is the learning phase which is supplied with a collection of sample or 

instances (called the training dataset) which is pre-classified into classes.  

The result of the learning process is a classification model which is constructed 

by examining and generalizing the data provided. In fact, supervised learning focuses on 

modelling the input/output relationships. Its objective is to identify a correspondence 

from the characteristics of entry to an exiting class. The acquired knowledge can be 

presented in the form of a flowchart, a decision tree, classification rules which can be 

used later to classify a new invisible instance. Then, each file is parsed; represent the 

documents as vectors and each file is extracted based on the predetermined vocabulary 

(Anderson, Kharkar, Filar, & Roth, 2017). The representative vectors of the files in the 

training set and the real classification of each file (benign/ malicious) serve as input for a 

training algorithm. Figure 2.26. Show the process of the training phase. 
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To put it simply, we train an algorithm and at the end pick the model that best 

predicts some well-defined output based on the input data. Supervised techniques adapt 

the model to reproduce outputs known from a training set. In the beginning, the system 

receives input data as well as output data. Its task is to create appropriate rules that map 

the input to the output. The training process should continue until the level of performance 

is high enough. After training, the system should be able to assign output objects which 

it has not seen during the training phase. In most cases, this process is really fast and 

accurate (Dada et al., 2019).  

 

 

Figure2.26: The process of training phase (Shabtai, Moskovitch, Elovici, & Glezer, 

2009). 

 

B. Testing Phase   

 

The second phase is testing, during the testing phase a set of collected benign and 

malicious files is required that did not associate in the training set.  Each file in the testing 

phase is prepared to pars and extracted from vector model. According to this vector, the 

classifier identifies a file as either malicious or benign. During this phase, the performance 

of the classifier can be evaluated by extracting performance criteria accuracy for 

measuring of the classifier’s algorithms (Shabtai et al., 2009).  
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Figure 2.27: The process of testing phase(Shabtai et al., 2009). 

The test phase in the classification is where the model that was built in the training 

phase is used to classify the new invisible instances. In the Testing phase we use data set 

that did not appear in the training phase because we want to evaluate the algorithms what 

they have learnt. Therefore, classifier will identify input attribute as benign or malicious. 

 

2.10.1.4 Executable file representation  
 

The first premise of implementing machine learning for malware detection is to 

determine the representation of executable files, because it holds a program suitable for 

execution. There are several representation files such as Byte n-gram, Portable Executable 

features, String features and OpCode n-grams. Byte n-gram features are sequences of n 

bytes extracted from an executable file. This is a familiar approach for training machine-

learning classifiers to identify unseen malicious code (Igor et al, 2003). To achieve a 

representation of the executables through byte n-grams, we need to extract every possible 

sequence of bytes and their appearance frequency. Figure 2.28 shows the overall process 

of malware detection using machine learning. 

One of the executable file formats used in the window is called the Portable 

Executable (PE) file, which is normally used by files with extensions like . 

EXE, .DLL, .SYS and. SCR. These features are extracted from certain parts of these 

extensions to indicate the modification of file such as the creation of file or infected to 

perform malicious activity. PE file consists of MS-DOS header that provides the 

compatibility with DOS environment. PE Header is the actual start of the PE file. This 

place important information that describes the logical structure of a PE binary is stored.   
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String features are considered as plain-text strings that are fixed in program 

executable files like windows and kernel. It used to represent files in the same way as the 

text categorization problem. An OpCode stands for operational code defines the sections 

of instructions that describe the operation to be done. A complete machine language 

instruction comprised of two parts an OpCode and, optionally, the pattern of one or more 

operands. The following section will cover feature selection methods in order to 

understand the machine learning process (Segal, 2004).  

In order to generate various attributes representing the file Function-based feature 

is required to extracts functions that reside in the binary representation of a file. These 

functions include the size of the longest detected function, the total number of functions 

detected, the average size of detected functions, size of the shortest detected function, the 

standard deviation of the size of detected functions and etc (Shabtai et al., 2009). 

 

 

Figure 2.28: ML classifiers taxonomy for malware detection (Shabtai et al., 2009). 

 

 

2.10.1.5 Feature selection methods 
 

Feature selection is the process of detecting relevant features in the dataset and 

reducing everything else as redundant and irrelevant. Feature selection allows to reduce 

the dimensionality of the vector and to avoid vectors that may cause accuracy of 
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classification algorithm negatively.  It allows the classification algorithms to function 

more effectively and make the classification method easier to understand. Generally, 

feature selection methods can be divided into three families: filter-based, wrapper based 

and embedded methods. The filter approach, a measure is used to identify the correlation 

of each feature to the class of malicious or benign (Gu, Li, & Han, 2012). 

Wrapper-based methods score the features through a learning algorithm that will 

finally be used. They are optimal because they look for to increase the accuracy of a 

classifier, tailoring their solutions to a unique inducer. Embedded methods are a 

combination of feature selection with the learning algorithm. In this section, we focus on 

filter-based methods for supervised feature selection (Vinod & Viswalakshmi, 2018). 

 

Figure 2.29: Types and subtype of feature selection methods  

 

There are numerous filter-based methods for dimensionality reduction, including 

Document Frequency, Gain Ratio and Fisher Score. These methods function according to 

the filter approach. The feature evaluation that is employed by the feature selection 

method is free of any classification algorithm, thus allows comparing the performances 

of the different classification algorithms (Vinod & Viswalakshmi, 2018).  

 

A.  Filters 

 

Filters select the subsets of the features by finding the correlation to the target 

class without involving any learning algorithm. Filters are less computational than 

wrapper approaches. To filter the features that contain little information, this type of 

method uses statistical measures for calculations based on these characteristics. This 
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method is considered more as a pre-processing step (filtering) before the learning phase. 

The application of classification algorithms can only be made after this operation.  

The main advantages of this type of method are computational efficiency and 

robustness in the face of over-learning. This type of method also has drawbacks such as 

ignoring the interactions between the characteristics and making the selection of the 

characteristics comprising redundant data instead of searching for those which have 

additional information. This type of method does not take into account the classification 

method that will be used (Das, 2001). 

The features are generally evaluated by measuring the calculation for each of the 

feature. Let 𝑋 = {𝑥𝑘|𝑥𝑘 = (𝑥𝑘1, 𝑥𝑘1, … , 𝑥𝑘𝑛), 𝑘 = 1,2, … … , 𝑚} a set of examples of 

learning that represents space with feature. Let 𝑌 = {𝑦𝑘, 𝑘 = 1,2, … … , 𝑚} where 𝑦𝑘 

represents the class label of the sample 𝑦𝑥. Si 𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖,….. x2i, ..., 𝑥𝑚𝑖) represents 

the same feature (i = 1,2, ..., n) so, the goal of the filter evaluation method is to calculate 

the score to assess the degree of relevance of each of the features (𝑥𝑖).  

 Correlation Criterion: this score is used in the case of a binary classification 𝑦𝑘 ∈

{−1,1}. It is estimated as follows 

 

 

 

Where μ𝑖 and μ represent the mean values of the features and labels of the training 

set respectively. This function calculates the cosine of the angle between each of 

the characteristics and the label vector. In other words, for a given characteristic, 

a large absolute value of this measurement indicates its strong linear correlation 

with the vector of the labels (Y) (Amamra et al., 2015). 

 Fisher's criterion: measures the degree of class separability using a given 

characteristic (Gu et al., 2012). It is defined by: 

 

Where 𝑛𝑐 and μ𝑐
𝑖  represents the number, the mean and the standard deviation of 

the characteristic within class C respectively. The most global mean of the 

features, we could say that the measure is related to the interclass variance of the 

characteristic(Gu et al., 2012). 

(2.1) 

(2.2) 
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 Document Frequency (DF): is the number of files in which a specific n-gram 

appears. Gain Ratio (GR), initially showed by Quinlan in the context of Decision 

Trees, and was designed to get a solution of a bias in the Information-Gain (IG) 

measure which enumerate the expected declining of entropy caused by separation 

of the examples that are based according to a selected feature. The most widely 

used supervised feature selection methods is fisher score which selects each 

feature separately according to their scores under the Fisher criterion (Yang & 

Pedersen, 1997). 

 Mutual information is a measure of dependence between the distributions of two 

populations (Yang & Pedersen, 1997). Let X and Y be two random variables 

whose instances are respectively the values of the characters and the class labels. 

Mutual information I (i) is defined as the Kullback-Leibler (KL) divergence 

between the probability 𝑃(𝑥𝑖, 𝑦) and the product of the probabilities 

(𝑃(𝑥𝑖) 𝑃(𝑦)). Mutual information is estimated empirically by: 

 

where the probabilities (𝑃(𝑥𝑖) 𝑃(𝑦))P (xi), P (y) and P (xi, y) are estimated by 

the frequencies of the different possible values. 

 

 Max-relevance, Min-Redundancy (mRmR) is a filtering method for the selection 

of characteristics proposed by Peng. This method is based on classical statistical 

measures such as mutual information, correlation. The basic idea is to take 

advantage of these measures to try to minimize the redundancy (mR) between the 

features and to maximize the relevance (MR). The authors propose two variants 

of their method. One for discrete data and the other for continuous data. For 

discrete data, the authors use mutual information to calculate the two factors 

mRmR (Ramírez‐Gallego et al., 2017). 

 SNR (Signal-to-Noise Ratio coefficient) is a score that measures the power of 

discrimination of a characteristic between two classes. Similar to the Fisher 

criterion, this method classifies features by calculating the ratio of the absolute 

value of the difference between the class means and the class standard deviation. 

(2.3) 
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SNR formula for a characteristic and for a two-class problem is calculated by 

(Yang & Pedersen, 1997): 

 

 

B. Wrappers 

 

The Wrappers method select features based on predetermined learning algorithms, 

but this method tends to be computationally expensive and has overfitting problems 

(Shabtai et al., 2009). To seek the subset of the optimal characteristics, this approach 

proceeds to the exploration of the space of characteristics using a classification algorithm. 

The selected subsets are adapted to this algorithm and may not remain valid if another 

classification algorithm is used. The computation time depends mainly on the complexity 

of the employed learning algorithm. The enveloping methods are considered better than 

those of filtering due to several criteria. One of these criteria is that this type of method is 

capable of selecting the subsets that have a high-performance characteristic for the used 

classifier and in addition to smaller sizes than those of the filtering methods (Das, 2001). 

The main drawback of “filter” approaches is the fact that they ignore the influence 

of the selected characteristics on the performance of the classifier to be used later (Das, 

2001). To solve this problem, Kohavi and John introduced the concept “wrapper” for the 

selection of characteristics.  

The wrapper methods, also known as wrapping methods, evaluate a subset of 

features by its classification performance using a learning algorithm. The subsets of 

features selected by this method are well suited to the classification algorithm used, but 

they are not necessarily valid if the classifier is changed. The complexity of the learning 

algorithm makes the wrapper methods very costly in computation time. In general, to 

decrease the computation time and to avoid over-learning problems, the cross-validation 

mechanism is frequently used. The problem of the complexity of this technique makes it 

impossible to use an exhaustive search strategy (NP-complete problem). Therefore, 

heuristic or random search methods can be used. Research is nonetheless becoming more 

and more impracticable with the increase in the size of the initial set of characteristics 

(Das, 2001). 

 

(2.4) 
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C. Embedded  

 

Unlike the “wrapper” and “filter” methods, the “embedded” methods (also called 

integrated methods) incorporate the selection of variables during the apprenticeship 

process. Such an integrated mechanism for the selection of characteristics can be found. 

In the selection methods of the wrapper type, the learning base is divided into two parts: 

a learning base and a validation base to validate the selected subset of characteristics.  

On the other hand, integrated methods can use all the learning examples to 

establish the system. This is an advantage that can improve results. Another advantage of 

these methods is their greater speed compared to “Wrapper” approaches because they 

avoid that the classifier starts from zero for each subset of characteristics. Embedded 

feature selection methods can achieve comparable selection results with the wrapper 

model and have the similar efficiency with filter way (Das, 2001). 

2.10.1.6 Classification algorithms 
 

Various machine learning approaches such as association rules, Support Vector 

Machine, Decision Trees, Random Forest, Naive-Bayes and Clustering have been 

proposed for the detection and classification of malware. The classification is applied to 

unknown samples in the family of known malware or also underlines the samples that 

exhibit invisible behaviour for detailed analysis. An important task in Machine Learning 

is classification, where classifier distinguishes between different exemplars, based on 

their different patterns. It generalizes the relationship between the input attributes and the 

target attribute.  

The overall process of machine learning classification is to collect malicious and 

benign files, and then represented by a vector of features, then, extraction of files from 

the PE-header and the binary code are needed. In the training phase, these files are 

employed to train a classifier. During the detection phase, based on the classifications of 

the classifier, an unseen file can be identified as malicious or benign (Segal, 2004). In this 

research, the most used learning algorithms in the literature are discussed in this section: 

 

A. Decision Tree 

Decision tree is a well-established classification algorithm that is built by 

recursively dividing the dataset into parts as a tree. Other words, they are Conventional 

graphical tree data structure contains nodes and leaves that solve if-then problems. 

Classifiers are represented as trees that have under nodes represents tests (attribute) of 
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individual features and whose leaves are categorization decisions (classes). Typically, a 

unique characteristic of Decision Trees is the explicit creation of their knowledge, which 

can be easily represented as rules (Shabtai et al., 2009). 

The overall process of creating a decision tree model starts with collecting a data 

set, called the training set. In this data set each record or element comprised of a set of 

attributes, one member of which represents the class for that element; all of the records 

have a similar structure. Specified data set, a model is derived for the class attributes as a 

function of the values of the other attributes. The main objectivity of the decision tree is 

to be able to categorize new records as accurately as possible (Tan et al., 2004). To 

evaluate the model’s accuracy, a new data set is used which has the same structure as the 

training set, this is called the testing set (Dietterich & Kong, 1995). 

 

B. Bayesian Network 

 

The bayesian network, which is also called belief networks is a graphical 

representation of uncertain knowledge among a set of variables that easy to build and 

translate. In addition, the representation of these algorithms has formal probabilistic 

semantic, which generates it suitable for statistical implementation. It contains the acyclic 

graph of nodes and arcs representing causal dependencies among variables. The robust of 

the dependencies is described by conditional probability distributions. When creating the 

bayesian an arc is drawn from top to law or from parent node level to a child node and 

each node is connected with the conditional probabilities represented on its parent’s 

variables(Shabtai et al., 2012). 

Using the bayesian network is similar to that neural network; however, Bayesian 

network has two advantages over neural network. First, encoding process, the encoded 

expert knowledge can enhance the efficiency and accuracy of learning process. Second, 

is the corresponding approach which is the node and arcs in Bayesian network is 

correspond to causal relationship. In addition, Bayesian networks can handle incomplete 

data sets, and provide significant solution to the problem of over fitting (Heckerman, 

2008). 

 

C. Support Vector Machines 
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Support Vector Machine (SVMs) is a binary classifier that tries to discover a linear 

hyper-plane separating specified examples into the two given classes. Another terms, 

Support vector machines are collection of linked supervised learning methods used for 

classification and regression, and belong to linear classifiers family. It is a member of a 

class of learning algorithms known as Kernel Methods. In fact, SVM   performed well on 

traditional text classification tasks; In addition, it is the best-known member of Kernel 

Methods. KMs are well suited for pattern analysis, the main purpose is to find and study 

different types of data relations for examples, rankings, clusters, correlations, and 

classifications (Dietterich & Kong, 1995). 

SVMs are very well performed for data mining tasks such as classification, 

novelty detection, and regression. In real life scenarios, SVMs have been successfully 

implemented in areas such as:  

 

1. Identification of particles  

2. The process of recognition faces 

3. The Problem of categorization text  

4. Bioinformatics  

5. Database marketing 

 

SVM has been found to be successful when applied in many various applications, 

especially, for pattern classification problems and face recognition. In this thesis, we will 

focus on SVM for classification, because we are dealing with malware detection for 

identifying benign files and maliciousness programs. SVM is suited for data 

classification. Unlike, Neural Networks, SVM is power full and easy to use. However, 

occasionally insufficient outputs are received. A classification task typically associates 

with training and testing data comprised of some data examples. Every instance in the 

training set includes one target and several various attributes. The goal of SVM is to 

generate a model that estimates expected results from data instances in the testing set, 

which are given only the attributes (Zhang et al., 2019). 

        

D. Artificial Neural Network 

 

An Artificial Neural Network (ANN) (Carrasquilla & Melko, 2017) is an 

information processing paradigm encouraged by the way work of biological nervous 
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systems, such as the brain, the information processing. The structure information 

processing system is the main important element in this mechanism. A neural network 

contains a collection of highly interrelated entities working together, called nodes or units. 

Each unit is intended to emulate its biological counterpart in the neuron. Each accepts a 

different weighted set of inputs through training algorithm such as back-propagation 

(Shabtai et al., 2009). 

Neural Network has been implemented in the field of anti-malware mechanisms 

the overall process of classifying virus executable and normal file is based on the set of 

features that neural network employed. In the first process malicious files are analyzed in 

order to be appropriate input, then networks should be trained based on specific features. 

Then, the network model can be employed to identify viruses that contain of the most 

features present in the model. These network models are common for detecting viruses 

that have different family as the training model, but possess some of the malicious 

features from the training model (Segal, 2004). 

The effectiveness of these network models also based upon the value of the 

threshold for the minimum amount number of selected features to be present in a test file. 

A higher threshold value is used to train the network model in order to classify viruses 

only from the particular virus family where by a lower value threshold generates a result 

of higher false positive rates. This detection technique was applied by the IBM Antivirus 

program to detect boot sector viruses. The program created the reliability of detecting the 

boot sector viruses effectively with less amount of low false positive rate (McIntosh et 

al., 2018). Table 2.2 provides some advantages and disadvantages of the above classifiers. 

 

E. Random forests 

 

A random forest is a mixture of the two techniques of “Bagging” and “Random 

Subspace” applied to decision trees (Breiman, 2001). At each iteration, a “bootstrap” 

sample is drawn randomly in order to build a binary decision tree. The search space for 

constructing tree nodes is limited by randomly drawn features. The performance of the 

method depends directly on the parameter P. A large number of relatively uncorrelated 

models (trees) operating as a committee will outperform any of the individual constituent 

models. A small value of risk of degrading the performance of the classifier. In (Breiman, 

2001), the author has empirically shown that the optimal value of Pest: P is the total 

number of characteristics. The random technique of the approach has shown its relevance 
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and its effectiveness, especially on high-dimensional data (with a high number of 

features). This technique allows for a better exploration of the representation space. 

Random forests are also used to solve classification problems in several areas, such as 

biomedical imagery (Breiman, 2001) . So, the advantages of the random forest algorithm 

as follows:  

 Classification and the regression task can be employed on the same random forest 

algorithm  

 The random forest classifier will handle the missing values. 

 When we have more trees in the forest, random forest classifier will not overfit the 

model. 

 Can model the random forest classifier for categorical values also 

Using Random Forests based on classification data, the Gini index is most 

employed, the formula used to determine how nodes on a decision tree branch will be as 

follows: 

 
 

This formula practices the class and probability to regulate the Gini of each branch 

on a node, deciding which of the branches is more likely to happen. Here, pi shows the 

comparative frequency of the class and observes in the dataset and c that represents the 

number of classes (Breiman, 2001). 

As the above Table 2.2 presented, there are some obvious strengths of working 

with different classifiers; the most important advantage is the amount of data to train the 

classifier, the accuracy of the classifier and processing time.  SVM can facilitate these 

relationships between input data and the target. In addition to, the error can be controlled 

explicitly.   

 In addition, ANN has the ability to continue operation if the one of the elements 

fails to work. However, there are also some clear limitations to these classifiers; for 

example, in order to perform training data ANN needs high processing time and large 

amount of data set. Moreover, other classifiers may be well suited for only certain parts 

or field. Therefore, combining these ML algorithms where they are most effective will 

increase the accuracy of detection rate. 

 

(2.5) 
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2.10.1.7 Ensemble methods in machine learning 
 

Ensemble methods are learning algorithms that construct a set of classifiers and 

then classify new data points by taking a weighted vote of their predictions. The main 

idea behind an ensemble method is to construct a set of classifiers in order to obtain better 

complex global classifiers. Ensemble methods are a member of learning algorithms that 

combine a bulk of classifiers and then classify new data. The ensemble of classifiers is 

more accurate than any of its individual members is if the classifiers are accurate and 

diverse. An accurate classifier is one that has an error rate of better than random guessing. 

For example, Neural Network is a suitable method for ensemble; an ensemble neural 

network is a learning pattern where a set of a finite number of neural networks is 

employed to train for the same task (Dietterich, 2000). 

 

Table 2.2. Summary of Strengths and Weakness of the above Classifiers 

Classifier Strengths Weakness 

 

Decision 

Tree 

They are inexpensive to construct 

and very fast at identifying or 

classifying unknown records. And 

also, the   Accuracy can be 

compared with other data mining 

techniques (Tan et al., 2004). 

The ID3 and C4.5 algorithms are not 

reliable to find the simplest trees, 

because they only use heuristics and 

they operate as a black box mechanism, 

so optimization of tree for complex 

data will be difficult to understand 

visually (Kohavi and Quinlan, 1999) 

 

Bayesian 

Network 

Bayesian Network can readily 

handle incomplete data sets. It 

facilitates learning about causal 

relationships, and Avoid over fitting 

(David, 1995). 

Spatial and temporal dynamics. It 

Continuous data representation 

therefore there is no feedback loops 

(David, 1995). 

 

Support 

Vector 

Machines 

SVM is power full and easy to train, 

it is no need for local optimal. Scales 

are well performed to high 

dimensional data and the trade-off 

between classifier complexity and 

error can be control explicitly 

(Vikramaditya, 2007). 

In order to perform mapping of the 

attributes of the input space to the 

feature space SVM need for a good 

kernel function. Because it enables the 

operations to be done in the input space 

rather than the potentially high 

dimensional feature space 

(Vikramaditya, 2007). 

Artificial 

Neural 

network 

In case of failure occur, the neural 

network element continues without 

any problem by their parallel nature. 

It only needs learning, but not 

reprogrammed later, therefore and 

can be implemented in any 

application. (Ben and Patrick, 1996) 

Neural network needs high processing 

time and training to operate. It has 

different architecture from the 

architecture of microprocessors 

therefore needs to be emulated. (Ben 

and Patrick, 1996) 

 

Random 

Forest 

 Random Forest can be used to solve 

both classification as well as 

Random Forest creates a lot of trees 

and combines their outputs. To do so, 
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regression problems. Random 

Forest works well with 

both categorical and continuous 

variables.  Random Forest can also 

automatically handle missing 

values. 

this algorithm requires much more 

computational power and resources. 

Random Forest require much more 

time to train as compared to decision 

trees as it generates a lot of trees and 

makes decision on the majority of 

votes. 

         

So as to make the ensemble more efficiency, there should be some kind of 

diversity between the classifiers. We can say two classifiers are diverse if they produce 

different errors on new data points. To see the importance of accuracy and diversity are 

good, let us take example, we have an ensemble consists of three classifiers: {h1, h2, h3} 

and assume a new case x. If the three classifiers are similar (i.e., not diverse), then when 

h1(x) is going to be wrong, h2 (x) and h3(x) will also be wrong. However, if the errors 

made by the classifiers are uncorrelated, then when h1(x) is wrong, h2(x) and h3(x) may 

be correct, that is the advantage of ensemble method (Dietterich, 2000) . 

 

2.10.2 Unsupervised learning 

 

 

In unsupervised learning, there is no notion of desired output;there is only a finite 

number of learning data, consisting of "inputs", without any label being attached to it. 

 

2.10.2.1 Density estimation 

 

In a density estimation problem, we seek to properly model the distribution of the 

data. The obtained estimator 𝑓(𝑥)must be able to give a good estimate of the probability 

density to a test point from the same (unknown) distribution as the learning data (Tang et 

al., 2014). 

 

2.10.2.2 Partitioning 

 

The partitioning problem is the unsupervised counterpart of the classification. A 

partitioning algorithm attempts to partition the input space into a number of “classes” 

based on a finite learning set, containing no explicit class information. The criteria used 

to decide whether two points should belong to the same class or to different classes are 

specific to each algorithm but are very often linked to a distance measurement between 

points (Tang et al., 2014). 



 

 

87 
 

 

2.10.2.3 Dimensionality reduction 

 

The goal of a dimension reduction algorithm is to succeed in "summarizing" the 

information present in the coordinates of a point in large high dimension 

(X ∈ R𝑛 , 𝑛 𝑔𝑟𝑎𝑛𝑑) by a smaller number of characteristics 𝑦 = 𝑓(𝑥), y ∈ R𝑚, 𝑚 < 𝑛. 

The hoped-for goal is to preserve “important” information, to highlight it by dissociating 

it from noise, and possibly to reveal an underlying structure that would not be 

immediately apparent in the original high-dimensional data. The most classic example of 

a dimension reduction algorithm is Principal Component Analysis (PCA) (Tang et al., 

2014). 

 

2.10.2.4 Deep learning  

 

Machine learning (ML) systems are able to learn the desired behaviours of 

samples in the databases. In addition, such systems can be recycled regularly as more and 

more new data appear. Very sophisticated software systems, boosted by machine 

learning, are able to change their behaviour so radical without making big changes to their 

code. Deep Learning (DL) has become a revolutionized industry technology. Modern 

machine translation, search engines and assistant’s translations are all powered by deep 

learning. This trend of deep learning spreads its ability to build robotics, to products 

pharmaceutical, energy and all other areas of modern technology. Deep learning models 

try to imitate as much as possible the information and communication processing 

observed in the nervous system biological, such as neural coding, which attempts to 

define and describe existing relationships between multiple stimuli and associated neural 

responses in the brain (Dietterich, 2000).  

 

Definition 2.3: deep learning (DL) is a class of machine learning techniques 

(ML), in which the information is processed in hierarchical layers to understand the 

representations and features of data at different times (LeCun, Bengio, & Hinton, 2015). 

For the increasing levels of complexity, deep learning is also called hierarchical 

learning or structured deep learning. Learning data representations could be done through 

semi-supervised, supervised or unsupervised approaches. In practice, all deep learning 

algorithms are Neural Networks, which share some common basic properties. They are 

all made up of interconnected neurons organized in layers. What sets them apart is the 
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network architecture (or how neurons are organized in the network) and sometimes the 

way they are formed (Alhawi, Baldwin, & Dehghantanha, 2018). Deep learning can be 

classified into three main classes according to the objectives which they were designed:  

 Deep networks of unsupervised or generative learning aim to capture a high-

order correlation of input data for recognition purposes or synthesis of models. 

When this class is used to characterize for distributions of common statistics that 

are observed the data and their associated classes, networks have a generative 

mode and could be transformed into discriminating networks for deeper learning 

(LeCun et al., 2015). 

 Deep supervised learning networks are used when data the target labels are 

available, models can directly provide a power of discriminating for 

classification purposes. 

 Hybrid deep networks are the combination of the two types of networks that are 

mentioned above, so unsupervised deep networks could provide an 

excellent initialization on the basis of which discrimination could be 

examined (Shabtai et al., 2009). 

 

2.11 Gab Analysis and Directions  

 

Generally, in this section, we refer to the activity and research related to 

ransomware detection using supervised machine learning. The idea of employing 

symmetric key cryptography in cyber extortion started in 1989 when the AIDS Trojan 

has begun to infect machine through floppies. The use of public key cryptography for 

extortion was first introduced in (A. Young & Yung, 1996). They have presented how 

cryptography can be implemented in ransomware through Trojan. The authors also 

proposed countermeasures to monitor the access of the cryptographic tools. Nevertheless, 

this preventive approach is unable to detect the advanced ransomware variants. 

 A work of (Kharraz, Robertson, Balzarotti, Bilge, & Kirda, 2015) proposed a 

method to monitor the Master File Table (MFT) for activity and sorts of I/O Request 

Packets (IRP) of the file system to detect zero-day ransomware attacks. They suggested 

the mitigation strategy of employing the decoy technique to detect the maliciousness of 

the file. However, it is not clear whether the normal user would access the decoy resource 

before the attack occurs. Later work, they enhanced and introduced a new method called 

Unveil that is designed to detect the attack when ransomware tampers the user’s data, 
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typically by creating a fake user environment (Kirda, 2017). This approach is able to 

protect the user’s files. However, the victim should sacrifice some data before the 

UNVEIL identifies the attack. 

Some researchers employed a static analysis approach for the detection of 

ransomware. A recent work of Zhang investigated the opcode sequences feature for 

detection and classification of ransomware static analysis approach to map ransomware 

into families. The author extracted opcode from ransomware samples created N-grams 

sequences and calculated for each N-grams using term frequency-inverse document 

frequency (TF-IDF) to select the informative features between families. Then, applying 

five machine-learning algorithms achieved the best accuracy of 91.43% (Zhang et al., 

2019). Similarly, Poudyal extracted assembly and dll level of ransomware binaries 

statically to perform multi-level analysis, then cosine similarity is used to measure the 

similarity between these binaries. Eight supervised machine learning classifiers are 

employed to classify ransomware and benign sample. The proposed framework achieved 

an accuracy of 97.95% when both extracted features are combined (Poudyal, Subedi, & 

Dasgupta, 2018) . However, the sophisticated packing techniques used by newly emerged 

ransomware can easily evade the static analysis. Furthermore, is not efficient for early 

ransomware detection since there is no need to execute the malicious samples during the 

static method, while some variants exhibit their malicious activities on the runtime. 

To overcome the limitation of the static analysis, many studies have been 

conducted for the detection of ransomware based on the behavioural-centric approach. 

This method monitors and records the malicious activities done by the ransomware during 

the execution phase. For the purpose of detection and classification, most researchers 

utilized machine learning classifiers with the behavioural features extracted from the file 

with different filter and wrapper-based feature selection techniques.  

Hampton explained the salient features of the ransomware using windows API 

call features on 14 various ransomware strains. The frequency of the system calls for the 

ransomware and baseline applications are compared to evaluate the similarity between 

them. The experimental evaluation of this work claims that the ransomware activities can 

be identified through a unique low-level system calls that are present in the ransomware 

(Hampton et al., 2018).  

Ransomware detection scheme based on the sequence of API call history using 

SVM classifier has proposed by Takeuchi to monitor the execution of the windows API 

calls; samples are executed in a controlled environment. They deeply examined the 
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sequences of API calls by creating a standardized vector representation of q-grams 

extracted from the output logs. The proposed SVM-based scheme showed an accuracy of 

97.48% (Takeuchi et al., 2018).  

Similar work has presented by Sgandurra to describe a set of the behaviour of 

ransomware using Windows API calls, registry key operations, and file system operations 

that captured in its early phases of ransomware at run-time. Authors proposed EldeRan, 

a framework to observe some unique actions performed by ransomware to dynamically 

analyses features that support ransomware detection. The authors selected the informative 

binary features using mutual information criteria and then applied a Logistic Regression 

classifier that achieved a 96.3% detection rate (Sgandurra et al., 2016) . They assigned a 

threshold of 30 seconds for the sample to execute. However, setting a fixed time does not 

apply to all ransomware samples, since some variants exhibit their malicious activities 

after human interaction or discovering the executing environment. 

Qian and Bridges used an automated method for the extraction of ransomware 

features from the sandbox output logs, they analysed WannaCry ransomware and two 

polymorphic samples in isolated environment. To rank the most significant ransomware 

features, term frequency-inverse document frequency (TF-IDF) is used to weight the 74 

features from the generated behavioural logs and the top 43 informative features are 

selected to discriminate the malware from benign samples. They claim that the method 

can accurately extract features from the logs, and the TF-IDF approach provides deeply 

analysis of WannaCry malware than other extraction algorithms. Nevertheless, the 

number of used WannaCry samples cannot describe the characteristics of ransomware 

(Chen & Bridges, 2017). 

 Similarly, an interesting behavioural early detection framework is proposed in 

Bander to detect zero-day crypto-ransomware using machine learning techniques with 

data-centric and semantic features. The detection module of the framework contains 

behavioral and anomaly detection scheme to improve the accuracy of the detection in the 

early stage before the encryption is carried out. However, the proposed framework was 

not implemented empirically(Al-rimy et al., 2017). Microsoft’s Cryptographic API (MS 

CAPI) calls were presented by the Young explaining the method to encrypt the sensitive 

user’s data and to produce the key by using MS CAPI with eight types of API calls (A. 

L. Young, 2005).  

Another work presented by palisse et al. [2], which is a detection mechanism that 

enables users to decrypt their files by getting the advantage of the weak chaining mode 



 

 

91 
 

that are used by some ransomware with cipher algorithm. The authors also propose 

another detection method based on the intercept calls used by Microsoft’s Cryptographic 

API (Palisse et al., 2016). However, the proposed countermeasures are insufficient to 

detect other types of ransomware that use Cipher Block Chaining (CBC) mode. In 

addition, the protection is implemented, after the files are encrypted. The detection of 

high survivable ransomware was first proposed by Ahmadian, the authors implemented 

2entFOX framework that extracts 20 static and dynamic features and their statistical 

possibilities. For classification case, they applied the Bayesian belief network to detect 

high survivable ransomware (Ahmadian & Shahriari, 2016) . However, the detection rate 

of this method was low due to the high dimensional feature space used.  

An alternative method presented HelDroid, an automated approach that classifies 

known and unknown mobile ransomware and scareware using a machine-learning 

method. Their approach is based on detecting threatening text associated with a ransom 

note and the “building blocks” that are typically needed to implement a mobile 

ransomware application (Nicoló Andronio et al., 2015). Another work presented by 

Alhawi introduced the NetConverse, a supervised machine learning approach to detect 

ransomware using conversation-based network traffic features. They analysed 9 

ransomware families, extracted 13 features using TShark and feed 6 classifiers such as 

Bayes network (BN), Decision Tree (J48), K-Nearest Neighbors (IBK), Multi-Layer 

Perceptron, Random Forest and Logistic Model Tree. The highest accuracy performed 

the Decision Tree (J48) classifier that showed 97.1% of detection rate with less positive 

(Alhawi et al., 2018). 

Vinod proposed a supervised approach for the detection of obfuscated malicious 

samples with the extraction of the mnemonic n-gram features using the Minimum 

Redundancy Maximum Relevance (mRmR) filter and Principal Component Analysis 

(PCA). For a classification, several supervised machine learning algorithms such as NB, 

SMO, IBK, J48, Adaboost ADA and RF were used and obtained 94.1% detection 

accuracy with mRmR generated features (Vinod, Laxmi, & Gaur, 2012).  

A multi-stage feature reduction method for analyzing the commonly-adapted 

network traffic features have presented by the Iglesias and Zseby.  In their work, many 

feature selection techniques such as mRmR, WMR SAM, and LASSO were employed to 

reduce 41 traffic features into 16 features. They utilized different classification algorithms 

such as DT, kNN, NB, LASSO-LAR, ANN and SVM with fivefold cross-validation and 

achieved detection accuracy ranging from 0.27 to 95.48 with mRmR generated features 
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(Iglesias & Zseby, 2015). Huda proposed a non-signature-based framework for the 

detection of malicious executables on API calls using hybrids of support vector machine 

wrapper and filter-based approach. Authors combined the feature’s ranking score 

generated by the filters with wrappers approach to select the optimal feature sets that can 

characterize the real behavior of the malware.  

Regarding the filter’s methods, mRmR is employed to compute the API call’s 

scores, through which SVM based wrapper heuristics is used as a classification algorithm. 

In the experimental results, mRmR–SVMS reveals a detection accuracy of 94.362% with 

291 APIs (Huda et al., 2018). Darshan and Jaidhar presented a malware detection system 

MDS for distinguishing malicious files from the benign executables on the portable 

executable optional header fields (PEOHF) features using four filter-based techniques. In 

their work, they evaluated the performance of the classifiers along with features 

recommended by the filter’s methods (Darshan & Jaidhar, 2018). However, the 

aforementioned approaches are insufficient to detect the advanced ransomware traits as 

they deal with from the malware perspective. Unlike the normal malware, the 

ransomware’s effect is irreversible, therefore, it is important to identify the relevant 

features that describe the actual behaviour of the ransomware in the earlier stage of the 

attack.  

Considering the available literature on ransomware detection using Windows API 

calls are suffering a massive amount of irrelevant and redundant system calls invoked by 

the malicious executables during its execution. Due to these independent calls can mislead 

the actual execution flow of ransomware binaries, and easy defeat these detection 

approaches. To fill the gaps in the current methods, we propose an approach for selecting 

the optimal windows API call features that can describe the real behaviour of the 

ransomware, it also reduces the size of the system call traces by discarding those system 

calls that do not have a strong indication for the behaviour characteristic of ransomware. 

Such an approach can be used as a detection method for the ransomware in the earlier 

phase of the attack.  

We also propose an efficient dimensionality reduction technique for the system 

call traces collected from the dynamic analysis logs using the filter approach. The model 

development and performance evaluation are also discussed in the following sections. We 

will represent the gap among the researches, in order to identify the direction. The 

following Table 2.3 describes the overall detection techniques based on ML used by the 
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researchers, including the amount of data set, the representation of the file, classifier 

algorithms used and result achieved.  



 

 

94 
 

Table 2.3. Summary of related research on ransomware detection.  

Author, and title of the paper  Year Data 

Sets  

Analysis 

Approach 

Detection Method 

Gazet, A.Comparative analysis 

of various ransomware virii 

2010 15 Static 

analysis 

Author investigated the foundation of ransomware threats beyond the 

phenomenon. This study relies on a comparative analysis of various 

ransomware. The reverse engineering and a technical review are done 

at different levels: quality of code, malwares’ functionalities and 

analysis of cryptographic primitives if any. 

Ben22. Cryptolocker - using 

Powershell as a tripwire,” 

Reddit 

 

2013 

41 Dynamic 

analysis 

The tripwire idea utilizes the witness files that were monitored for 

modification or deletion. If a witness file is tampered with, the 

Lanman server service is stopped 

Kharraz1 et al.Cutting the 

Gordian Knot: A Look Under 

the Hood of Ransomware 

Attacks 

2015 1,359 Automati

c 

analysis 

Master File Table (MFT) and the types of I/O Request Packets (IRP) 

of the file system to detect multiple different types of destructive 

ransomware attacks that target users’ files. 

Shukla et al. POSTER: Locally 

Virtualized Environment for 

Mitigating Ransomware 

Threat. 

2016 27 Dynamic 

analysis 

Presented the gap in the existing state of art and extended the existing 

literature by adding new behavioral traits for new variants and 

describe a dynamic system which learns new behavior while under 

attack. 

Chris. Detecting Ransomware 

with Honeypot techniques 

2016  Static 

analysis 

To implement a honeypot to detect ransomware activity, the File 

Screening service of the Microsoft File Server Resource Manager 

feature and EventSentry is done in Windows Security logs. 

Ahmadian et al. 2entFOX: A 

Framework for High 

Survivable Ransomwares 

Detection 

 

2016 

1359 Dynamic 

analysis 

Proposed a framework for high survivable ransomwares detection 

based on twenty appropriate features. In 2entFOX, after providing 

data and preprocessor step they designed a detection system with the 

help of Bayesian belief network to use extracted features and their 

statistical possibilities. 

9
3
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Kharraz et al.UNVEIL: A 

Large-Scale, Automated 

Approach to Detecting 

Ransomware 

2016 148,223 

 

Dynamic 

analysis 

Present a novel dynamic analysis system called UNVEIL that is 

specifically designed to detect ransomware. To mount a successful 

attack, ransomware must tamper with a user’s files or desktop. 

UNVEIL generates an artificial user environment and detects when 

ransomware interacts with user data. 

Sgandurra et al.“Automated 

Dynamic Analysis of 

Ransomware: Benefits, 

Limitations and use for 

Detection” 

2016 582 Automati

c 

analysis 

Proposed an EldeRan framework for detection of ransomware that 

identifies the most important features of ransomware and machine 

Learning has shown is a viable and effective approach to detect new 

variants and families of ransomware for subsequent analysis and 

signature extraction 

Palisse1 et al. Ransomware and 

the Legacy Crypto API 

2017 39 Dynamic 

analysis 

The first one takes advantage of the weak mode of operation used by 

some ransomware. The second one intercept calls made to 

Microsoft’s Cryptographic API. 

Saleh et al. “A 0-Day Aware 

Crypto-Ransomware Early 

Behavioral Detection 

Framework” 

2018  Dynamic 

analysis 

Proposed an early detection framework for Cyrto-ransomware that 

protects users using machine learning algorithms, to improve the 

accuracy of the detection authors also proposed anomaly detection 

technique to update from normal profile from extracted features  

Zhang et al. “Classification of 

ransomware families with 

machine learning based on N-

gram of opcode” 

2018 1787 Static 

analysis 

Proposed static analysis approach with opcode sequences feature for 

detection and classification of ransomware and also deal with 

ransomware that can fingerprint the environment. Multi-classification 

results indicate that this approach maps ransomware into families. 

Poudyal et al. “A Framework 

for Analyzing Ransomware 

using Machine Learning” 

2018  Static 

analysis 

Eight supervised machine learning classifiers are employed to 

classify ransomware and benign sample. The framework achieved an 

accuracy of 97.95% when both extracted features are combined. 

Hampton et al. “Ransomware 

behavioural analysis on 

windows platforms” 

2018 14 Dynamic  

analysis 

The experimental evaluation of this work achieved that the 

ransomware activities can be identified through a unique low-level 

system calls that are present in the ransomware. 

Kok et al.   “Prevention of 

Crypto-Ransomware Using a 

Pre-Encryption Detection 

Algorithm” 

2019 582 Dynamic  

analysis 

Authors proposed a pre-encryption detection algorithm (PEDA) that 

consisted of two phases. In, PEDA-Phase-I, with API and the PEDA-

Phase-II, the signature repository that allows the detection of crypto-

ransomware in the pre-execution stage.  

9
4
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2.12  Summary  

 

In this section, we explored the various types of ransomware, including fake 

ransomware, Lockers, and crypto-ransomwares. We further classified the ransomware 

based on the threat type, the target approach that infects the victims, and the nature of 

infecting the systems. To execute successfully and to encrypt the user’s related files, 

ransomware requires to carry out attack phases; this will lead the ransomware to spread and 

infect the machine. As common, we explained these phases briefly. Ransomware authors 

employ a range of different sophisticated techniques to spread their malicious intents; we 

highlighted the most common ransomware propagation method such as: spam emails, 

phishing, malware advertising websites, drive-by-download and exploit kits. To deeply 

understanding these infection vectors, malware analysts can effectively prevent the 

ransomware from spreading. To hide its malicious behaviour and intents, ransomware uses 

an avoidance technique, therefore, we also demonstrated the various techniques such as 

code injection that the ransomware injects the legitimate programs that enable ransomware 

to execute in the context of a legitimate application, making it easier to evade the detection.  

Malware writers use avoidance techniques in order to evade the detection of the antivirus 

software, such as encryption, compression data and obfuscation techniques. These 

techniques beat signature-based detection through transformation and changing the 

physical appearance of the virus. For extortion, ransomware needs to inform the ransom 

payment which is vary depending on the type of the ransomware variant and the worth 

digital currencies rates. Ransomware authors normally determine the ransom payments in 

bitcoins.  The most popular cryptocurrencies are bitcoin. It is an electronic currency (there 

are no notes or coins) invented by Satoshi Nakamoto in 2008, so, we highlighted these 

payment methods in details. In addition, to get knowledge about the capability of 

ransomware, the structure techniques, and anti-reverse techniques used to hide it is self, 

and also the level of similarity to other malware samples, we need malware analysis. There 

are two types of malware analysis techniques; static and dynamic analysis. In static method, 

the malware is analysed and extracted the program’s code without execution. But dynamic 

method executes the malware and exams its behaviour. Both provide complementary 
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information about the malware. In this section, we discussed the ransomware detection 

methods in terms of the countermeasure of this threat which is very important, and many 

researchers proposed a range of different malware-detection techniques. Ransomware 

detection techniques mean any mechanisms which provide the detection of any form of 

ransomware that threatens to the computer. These techniques can be broadly classified into 

two categories: approach-based detection and technique-based detection. Signature based 

detection uses its characterization of the knowledge to decide the maliciousness of a 

program, that means it extracts the byte code patterns of each malware and compare these 

patterns with byte code of a program under its repositories. However, this method cannot 

detect new (unknown) ransomware whose signature has not been found or generated yet. 

On the other hand, anomaly-based detection uses its knowledge of what considered normal 

behavior to decide the maliciousness of a program under inspection. Hence this approach 

has benefits over signature based, because it detects any behavior that violates the norm, 

and has the ability to identify new malware. Since the malware writers are familiarizing the 

detection mechanisms and evading detection methods through modifying their malware 

shapes. Finally, we presented virus detection methods using supervised machine learning 

to map inputs to desired outputs using a specific algorithm. In supervised machine learning 

we need to collect data sets and to train the classifiers, the testing phase, the classifier 

identifies the previous unseen malicious files based on the training phase.  
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3.  RESEARCH METHODOLOGY 

 

 

 

This section presents the research methodology and provides hypothetical basis and 

foundation for our work. It also shows the general frameworks that are developed by the 

researchers based on the experiments. In this section will discuss the operational research 

frameworks, including data collection, analysing of data, experimental setups, proposed 

models and later the overall research plane. The main purpose of this section is to design a 

framework to detect ransomware files using supervised and semi-supervised machine 

learning as discussed in the literature review. For the performance metrics of this research, 

“effectiveness” and “performance” are important terms intended to introduce the overall 

accuracy of a specific machine learning algorithms. The output of this is to classify the files 

into benign and malicious based on these performance criterions which is false negative 

rates, and false positive, in addition to the average error rates of the outputs from supervised 

machine learning algorithms. The remaining of this section is organized as follows; the 

second subsection will discuss the proposed research frameworks that consist of three 

different methods. Every method contains a specific framework that illustrates the follow 

of the proposed method. In subsection 3, we describe the performance metrics to measure 

the accuracy of the classification algorithms. Finally, the conclusion of the section is also 

discussed.  

 

3.1 The Proposed Methods  

 

In this section, we demonstrate the research methods including the experimental 

design of the proposed frameworks and describe the method of the behavioural analysis 

approach in the sandbox. We also present the dimensionality reduction of the features for 

training and testing purposes. This section contains three different proposed research 

methods as illustrates in the following sections:  
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3.1.1 Method one 

 

In this section, we present our proposed framework for the identification and 

detection of high survivable ransomware as shown in Figure 3.2. To make our methodology 

visual and understandable, we propose a methodology framework that consists of three 

main phases. Data collection and preparations phase that includes obtaining ransomware 

and benign dataset from a variety of sources, checking whether datasets are malware or not 

and vice versa and labelling the malware family using VirusTotal service. The second phase 

is to analyses samples using Cuckoo sandbox that generates JSON format report. The 

collected behavioural log files are passed to pre-processing tasks such as removal of 

duplicate files, file type identification, and parsing. The relevant features are extracted from 

the analysis file logs to get valuable feature sets. We have applied the term frequency and 

inverse document frequency (TF-IDF) algorithm for feature selection. Finally, supervised 

machine learning algorithms were implemented for the classification of ransomware and 

benign sample.   

 

3.1.1.1 Experimental setup  
 

To gain an in-depth behavioural analysis of ransomware requires executing samples 

in a controlled environment. Therefore, we built our malware analysis lab following the 

best practices suggested in (Nicolo Andronio, 2015). Cuckoo Sandbox is used, a well-

known leading open source tool to automate malware analysis. Ubuntu 16.04 LTS Desktop 

fully updated was our host operating system while installing Cuckoo sandbox. 

WindowsXp_server_Pack3 32bit was selected as a guest machine due to its weaker security 

protections that enable us to observe more ransomware behaviour (Oktavianto & 

Muhardianto, 2013). To perform the analysis in a secure, Virtual box machine was used 

with controlled access to the Internet -host-only adapter- to enable commands and controls 

(C&C) communication, and to prevent the spread of ransomware. 

 Anti-virus, security updates, firewall, and user account control of windows XPSP3 

guests were disabled to execute ransomware successfully. Some commonly third-party 

applications such as Microsoft Office, Acrobat Reader, Google Chrome and Mozilla 
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Firefox were installed in the guest operating system. Python agent was also installed that 

runs inside the guest and acts as cross-platform for communication and the exchange of 

data between cuckoo and the guest OS. Finally, in Windows XP several normal user files 

inside directories (e.g., My Documents, My Pictures and Videos, valid browsing history) 

were created to observe the behaviour activities of ransomware.        

 

 

Figure 3.1: The Environmental setup for the behavior-based Ransomware detection. 

 

 

3.1.1.2 Dataset description 

 

 

The data set for this study consists of ransomware and benign. We collected 1,254 

ransomware samples of 14 different families from several sources such as VirusShare and 

VirusTotal, - which are publicly computer virus repositories on the net-, we crawled 

malware repositories and online forums that share samples. We also downloaded and 

collected 1308 benign applications that hosted from the most trustworthy sources such as 

software.informer, and system files located in the “System32” directory of a fresh installed 

Windows 7 Professional.  

To build a realistic dataset, we used in our experiments benign applications that 

have ransomware behaviour as shown in Table 3.1. The acquired samples are stored in 

separate files on both malware and benign group. To verify that the downloaded benign 
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applications do not contain malicious components inside their payload, we double-checked 

the MD5 hash values from Virus Total service that has 57 common different antivirus 

software. To obtain the exact family name of ransomware is a very challenging task 

especially when you have a large number of malicius files. We applied Antivirus vendors’ 

labelling scheme in terms of the popularity of ransomware classes among Antivirus 

Engines. 

The general problem we encountered is mislabelling some samples by antivirus 

engines as specific ransomware family. Therefore, we parsed the labels by the set of AV 

engines that commonly used to assign malware labels using python script with a threshold 

value of 85 that aggregated the labels from the pool of AV in VirusTotal repository. We 

consider ransomware to be a specific family if 85% of AV engines described it as belonging 

to this family name.  

 

Table 3.1: Distribution of malicious and benign files 

 

Ransomware 

Class 

Samples First 

Seen 

Goodware 

Class 

Application Name Samples 

WannaCry 74 2017 
Compression 

Winzip, 7-zip, WinRAR, 

PeaZip, IZArc 
225 

Reveton 50 2012 

Torrent 

Locker 
108 2012 

Encryption 

BitLocker, Disk Cryptor, 

VeraCrypt, TrueCrypt 172 

Dirty Decrypt 51 2015 

CryptLocker 173 2013 

Data 

Destruction 

CBL Data Shredder, 

HDDErase , MHDD, 

PCDiskEraser, KillDisk , 

SDelete 

401 
Cerber 171 2016 

Trojan 
82 2013 

Kollah 73 2014 Drivers 

Updater 

Driver Booster, DriverPack 

Solution, DriveTheLife 
230 

Citroni 67 2015 

Pgpcoder 46 2015 

Browsers 

Chrome,  Firefox, 

Opera ,Safari , Netscape, 

Internet Explorer 

152 Kovter 
23 2013 

Petya 89 2016 
Multimedia 

tools 

Canva, Animoto, 

Photopeach , 

Picasa, Livestream 

182 CryptoWall 
151 2014 

TeslaCrypt 96 2015 Others  96 

Total 

Samples 
1254 

 

  
1308 
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 Figure 3.2. The Proposed framework architecture 
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3.1.2 Method two 

 

In this section, we propose a non-signature-based detection framework for 

ransomware. This framework uses a behavioural-based analysis to identify malicious 

behaviour of applications and detect the ransomware in the earlier phases of the attack. The 

proposed framework includes different detection supervised algorithms to monitor running 

an application on a machine. For each application, the framework constructed a normal 

model based on the ransomware detection algorithm selected. This framework consists of 

four different phases as we will discuss in the following sections briefly.  

 To build a representative framework, we first need to collect the data set when the 

target system runs on the monitored environment. In this work, we monitor system calls 

because they are provided by the kernel and are used by programs running in user space. 

Indeed, all requests for applications such as network communication, file management or 

process-related operations must go through the kernel using the system call interface before 

they are executed. This system call provides precise information about the behaviour of an 

application. 

 

Figure 3.3: The architecture of the dynamic characteristics of behavior-based 

Ransomware detection. 
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The data collected from the dynamic analysis approach will then be passed to the 

processing unit for standardization. In order to simplify the process of analysing the data 

and creating a model of normal system behaviour, we process the data collected and we 

retrieve the traces from generated files.  To create the sequences of the system calls, we 

contract N-gram construction to reduce the size of the system calls. Normally, Windows 

API calls are suffering a massive amount of irrelevant and redundant system calls invoked 

by the malicious executables during its execution. The performance of machine learning 

depends on the presence or the absence of noisy data. The existence of such noise in the 

data set could adversely impact the induction of ML models such as the increase in 

processing time, more storage requirement and the difficult analysis of real malicious 

intention that can lead overhead and poor prediction ability. Therefore, the Noise 

refinement process is applied to filter those system calls that do not have strong indication 

to the real behaviour of the program  

   

3.1.3 Method three 

 

In this section, we proposed a ransomware analysis and identification framework 

based on the runtime behaviour of ransomware and deep learning-based semi-supervised 

technique. Deep learning is a robust unsupervised approach that can extract the hidden 

intrinsic patterns from unsupervised feature space through a non-linear transformation and 

layered structure in which upper layers compute more abstract forms of features presenting 

the latent sources of variabilities in the feature space. The novelty of this proposed approach 

is that deep learning-based semi-supervised technique can extract dynamics of behavioural 

patterns from the new variants of ransomware obtained from the wild and can integrate the 

latent sources to the supervised classifier, making the detection engine independent of 

manual signature generation and robust to the changes. 

The new contributions of this proposed model are that the model can extract the 

attack patterns of the ransomware through the deep learning-based semi-supervised 

method, ransomware from 14 families with a large number of features have been considered 

and a novel feature extraction procedure has been developed. Moreover, our model is 

highly scalable and adaptive. Since the model can learn the frequently changing behaviour 



  

105 
 

of the ransomware and apply this knowledge to detect them, it ensures the zero-day 

detection. 

Figure 3.4:  Ransomware detection system using deep learning 

 

We proposed a detection framework to detect the ransomware using deep learning-

based approach. Deep Learning approach has the benefit of training the model using the 

extracted and selected features and behavioural patterns through hidden nodes in different 

layers. Since the cyber-attack patterns have been changed very frequently, the inherent 

cyber-attack patterns can be extracted using the multiple layers of abstraction of Deep 

Learning and represent he actual attack patterns to a non-linear and higher abstraction of 

the real scenarios which benefits the detection model.  This key advantage of deep learning 

facilitates our model to achieve a higher accuracy rate. The data collection is the very first 

task of our detection model. The data set contains ransomware and benign ware. Pre-

processing and feature extraction are done in the second phase. We have generated the 

global feature set which contains a large number of features, total 15972. FastICA has been 

considered to compress the features (Hyvärinen & Oja, 2000). After the feature selection, 

we generate the feature vector. The classifier is trained using the train data set. We have 

considered 10-fold cross validation to train and test the model. The performance of our 

detection model is evaluated using the test data set.   
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3.2 Performance Criteria 

 

In this section, the classifier performance is evaluated using standard accuracy 

measurement. The best classifier models among the tested models are compared. The 

evaluations of these models based on their classification measurement such as True Positive 

Rate (TPR), is the case in which the proportion of positive samples, like ransomware that 

is identified correctly as shown in equation (10). False Positive Rate (FPR) is the case in 

which the proportion of negative instances wrongly identified as positive as shown in 

Equation (11). True Negative (TN): is the case in which samples are correctly classified as 

benign programs. False Negative (FN): is the quantity of numbers that are misclassified 

malicious programs.  

  

      𝑇𝑃𝑅 = Sensitivity =
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
                                                 (3.1) 

 

     𝐹𝑃𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
|𝐹𝑃|

|𝐹𝑃|+|𝑇𝑁|
                                                                      (3.2) 

 

The Total amount of accuracy is the ratio of properly identified samples, either 

negative or positive, divided by the total samples as defined in equation (12). 

 

 

      𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑇𝑃|+ |𝑇𝑁|

|𝑇𝑃|+|𝐹𝑃|+ |𝑇𝑁|+ |𝐹𝑁|
                                                                (3.3) 

 

The total accuracy of the generated classifier determines the effectiveness and 

performance. Another method of identifying the performance of the classifier is the use of 

the ROC curve which is points of a plot that shows the trade-off between a classifier’s FP 

rate and its TP rate. 

For a clearer and more efficient representation of the TP rate as a function of FP, 

we used the receiver efficiency function also known as ROC (Receiver Operating 

Characteristic) curve name. This curve provides an estimation of the optimal value of the 

detection threshold allowing a compromise to be achieved between the TP and the FP. A 

ROC curve is, therefore, a plot of true positive rates against the false positive rate for 

different detection thresholds. 
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We also measured the area under the ROC curve (AUC: Area Under Curve). AUC 

is generally used to compare the performance of detectors independently of decision 

thresholds. AUC = 1 indicates a perfect detector that detects all anomalies without false 

alarms (TPR = 1, FPR = 0), while a random detector will have an AUC = 0.5. The larger 

the AUC value, the more the curve moves away from the line of the random classifier 

(linear straight line) and approximates the angle of the ideal classifier. 

It's good to have a TP of 100% and a FP of 0%, but these alone do not allow us to 

properly estimate the performance of the detector. For this, we also measured the number 

undetected ransomware attacks, calculating the Total Accuracy Rate (ACC) according to 

formula 3.3, where TN denotes the rate of true negatives (the proportion of normal traces 

correctly classified as normal on the total number of normal traces in the test set) and FN 

denotes the rate of false negatives (the proportion of ransomware attacks incorrectly 

classified as normal to the total number of abnormal traces in the test set). 

 

3.3 Summary 

 

This section presented an overview of the research methods. We discussed in detail 

the operational research frameworks which show the overall project operation. These 

frameworks consist of three different methods; we highlighted every unique method by 

presenting the steps to be followed. The researcher also discussed the procedures inside the 

operational frameworks, such as the steps involved in data pre-processing, ransomware 

analysis approach, refining process and the N-gram constructions.  The approach to extract 

the Windows API calls function features in the pre-processing are argued which should be 

performed before data set are passed to the ransomware classification part. For defining 

which supervised machine model is the best, each algorithm should apply and evaluate 

separately. After evaluation all possible combinations, the best combination models 

determine final proposed scheme. At the end of this section, the performance criteria were 

discussed.  
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4. ANALYSIS AND DATA PREPROCESSING  

 

 

This section describes the preparation and the analysis of the data of this research 

derived from the previous section. The reason for the data pre-processing is to create 

appropriate, clean and normalized data format that to be input into machine learning-based 

classifiers. The format of our data set is portable executables based on the windows family 

that compromised of clean and malicious programs. The first subsection in this section 

highlights the executable file format used.   

The second subsection discusses the analysis of the malicious file executable to 

monitors the behaviour of the ransomware using a sandbox environment. Feature 

engineering that contains feature retrieving which is the process of extracting data from 

specific files to get a set of informative and non-redundant feature. In this subsection two 

different features are extracted; integrated features that contains combined seven important 

ransomware behaviour; and the system calls which is an interface that the program requests 

a service from the kernel operating system. In the third subsection of this section, we 

presented a system call refinement process to reduce the size of Windows system call traces 

gathered from the dynamic analysis by removing those system calls that do not discover 

the main behaviour of the ransomware.   

Finally, the feature selection method to eliminate the processing overheads of the 

dataset in training and testing phases, and improve the accuracy rate of classifiers are 

described in this subsection. We demonstrated the different feature selection methods such 

as term frequency-inverse document frequency (TF-IDF) to weight the term based on its 

inverse document frequency, Maximum-Relevance and Minimum-Redundancy (mRmR) 

which is a well-known filter algorithm that intended to find features with high relevance 

with the target class and low redundancy among other features. In addition, another 

important feature selection is employed, which is a FastICA that was developed from 

Independent Component Analysis (ICA), and the concepts and principles of independent 

component analysis still apply to constrained independent component analysis that has been 

considered to compress the features.  
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4.1 Executable File Format  

 

Files can be divided into two main categories; data file which is designed to store 

information, and executable files that consist of a collection of information describes some 

task in the computer. Generally, computer files composed at least one executable file with 

the help of data file, as the same situation in malware. The structure of a portable executable 

is important because the writer of malicious files use portable executable (PE) as a vehicle 

to transform their malicious intent to the target. 

Microsoft uses portable executable as standard to all executable file formats under 32-

bit and 64-bit versions of Windows family operating systems. The term portable indicates 

the portability and versatility of the file in different windows environments. The PE format 

“is a data structure that encapsulates necessary information so that Windows OS loader can 

manage wrapped executable code”(T.-Y. Wang, Wu, & Hsieh, 2009).  

The PE file can be divided into two main portions; header and body. The header 

which contains essential information used to load a PE file such as MS-DOS header. The 

content of a PE file is composed of section that is intended to store information. This 

includes, Section Tables, API import and export Tables, resource management data, PE 

section and any other information related to the windows loader in order to execute code 

successfully (Faruki, Laxmi, Gaur, & Vinod, 2012).  

The first part of the PE file structure starts with the MS-DOS header called an 

IMAGE_DOS_HEADER. This is the place where PE is stored and contains two primary 

values called e_magic and e_lfanew. A PE file Header consists of the PE Signature, the 

File Header, the Optional Header, and also it determines how many sections are in the PE. 

The section Table which is an array of IMAGE_SECTION_HEADER structures contains 

Data Directories that gives the information related to sub sections such import table, export 

table and resource table. The export table provides the name of the relative virtual machine 

of all exported functions in the given machine. Therefore, this project will focus on the 

imported and exported function to extract the features (T.-Y. Wang et al., 2009). 

 

 

http://en.wikipedia.org/wiki/Microsoft_Windows
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Figure 4.1 PE file structure 

 

 

 

 

 

Figure 4.1: PE File Structure 

 

 

4.2 Analysis of Executable Files 

 

In this section, an automated dynamic analysis was used to analyses the samples in 

an isolated environment. This analysis collects a large number of ransomware samples and 

monitors their behaviour using a sandbox environment. Although the total original dataset 

was 2562, after removing samples that did not execute correctly, or cuckoo terminated the 

analysis because of the maximum timeout that we set samples to run, or those that many 
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AV assigned different ransomware family names, 673 ransomwares from 14 distinct 

families and 742 benign samples were analysed.  

Given the finite size of the RAM, it is necessary to limit the analysis to about 5 or 

15 minutes. It depends on the sample activity and the number of different samples that are 

analysed or intercepted (e.g., writing, reading, etc.). Otherwise, the lack of space leads to 

the loss of the analysis. Therefore, every sample up to a range of 4 until 9 minutes were 

analysed to show to their malicious behaviour and to capture the execution traces of the 

samples using a cuckoo sandbox, while the ransomware sample is running on the host. 

Cuckoo monitored and recorded information in terms of the API calls, network traffic, 

changes of files and folders, processes and memory dumps(Oktavianto & Muhardianto, 

2013). We used virtualization software to take a snapshot of the guest machine before the 

execution of each malware sample, after execution, the entire system was reverted to a 

previous clean state before the infection.  

 

 

Figure 4.2: The architecture of the Sandbox 

 

Indeed, some ransomware seeks to detect controlled environments and avoid 

expressing their malicious behaviour if they succeed. While other ransomware samples 
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wait for human interaction like mouse or keyboard event before executing their malicious 

activities, thus, we used a python script that performs basic user’s activity such as browsing 

websites, clicking and deleting documents and folders on the desktop. During the analysis 

of the samples, we observe ransomware variants used both symmetric and asymmetric 

algorithms to encrypt the user’s data. Crypto ransomware creates a randomly symmetric 

key with the AES algorithm in victim’s machine and then encrypts files along with that 

generated key. After encrypting the data, it encodes the secret key with asymmetric 

encryption. At the end of execution, the time taking ransomware samples to encrypt files is 

variety, ranging from 27 seconds like Petya up to 2 minutes for CryptoWall. 

 

 

Figure 4.3: The generated JSON format 

 At the end of the analysis, a trace containing a format Compressed JavaScript 

Object Notation (JSON) is sent to the analysis phase. The trace in JSON format is then 

easily comprehensible to understand how the ransomware behaves. The information is 
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stored with the granularity of a thread (i.e., thread). An uncompressed trace ranges from 20 

MB to 200 MB. Traces are also analysed manually, to eliminate samples with similar 

behavior which do not are not triggered a second time.  

 

4.3 Feature Engineering  

 

In this subsection, we present the reduction of the data dimensionality of this 

research. The process of extracting data from specific files is called feature extraction and 

the aim is to get a set of informative and non-redundant data not only made by a selection 

of certain features (Yang & Pedersen, 1997). After we construct new features, we will select 

the important features by removing those features that have the same behaviours. The 

following subsections are described several commonly used reduction techniques. They are 

generally grouped into two categories: feature retrieving or extraction and feature selection. 

 

4.3.1 Feature extraction  
 

In this subsection, we will present the process of retrieving features from generated 

JSON files. in this approach we extract two main types of features, integrated features that 

includes seven types of features such as Registry, files Operation and etc., and Windows 

System calls features, the following are explained in details  

 

4.3.1.1 Extracting integrated features 

 

Once the analysis is completed, cuckoo generated human-readable JavaScript 

Object Notation (JSON) report for each analysed malware sample. In this study, the most 

time dedicated to the extraction of the indicative and accurate behavioural features from 

JSON report, which is not an easy task. After we collected the results of the analysis, we 

need to retrieve the key elements from the JSON reports such as SHA1, MD5, ransomware 

ID and ransomware family as shown in Figure 4.4. These elements indicate the importance 

of the ordering samples, it also prevents the sample extraction redundancy by following the 

SHA1 and MD5 unique numbers.  
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Figure 4.4: A snippet of extracted key elements from the JSON file. 

 

The size of the report generated by the sandbox occupies hundreds of MBs, 

analysing and examining each report manually is experimentally infeasible, therefore, we 

build our own parsing algorithm to convert JSON formatted string representations to key-

pair objects. The feature parsing reads the JSON files from all sandbox output reports and 

then parsed to get the required features to reduce the search space. The feature parser 

functions as a structure to correlate a ransomware sample’s feature calls into states. The 

parser maps the Registry paths, Windows API calls, files Operation, Strings, Directories, 

Drops and libraries into seven different states. 

Indeed, a set of matrices is created from the features set. For example, a matrix of 

calls is created to the Windows API, which denotes the presence or absence of a function 

during an analysis. Similar behaviour is achieved for other characteristics. This allows you 

to add many combinations. These approaches make it possible to model binary variables, 

for example the absence or the presence of a registry key. Such a model makes it possible 

to link an event (i.e., ransomware) to a combination of variables (i.e., features). 
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Algorithm 4.1: Extracting Features from JSON Report  

Input: Set of JSON report path 𝐽𝑅 that contains a number of behavioral 

and static features 𝑓.             
 Output: Parsed files 

1.  Function ObtainFeature (𝑆𝑑𝑎𝑡𝑎, states) { 

2.   for process in json_data['behavior’] ['processes'] do 

3.          if json_data_process is equal to states then  

4.     set first_seen_temp=process_first_seen 

5.    if first_seen is greater than first_seen_temp or equal to 

zero 

6.    set first_seen= first_seen_temp 

7.     for features in json_data_process[F] do 

8.   if features [F] not in our_Dictionary_features then 

9.   set our_Dictionary_Features [F] and timestamps = 

f and Feature_time 

10.   Our_Dictionary_ Features [F][count]=1 

11.   Else set our_Dictionary_ Features and timestamps= 

Features_F_time and append_F 

12.   our_Dictionary_Features [F][count]+1, return 

first_seen, our_Dictionary_Features [F]} 

13.   Function Json_Files (JR, PR  ) 

14.   for (JR, PR) in G_file() do //traverse the file names in a 

directory tree 

15.   for i, name in enumerate [all_files] do 

16.   If name ends with (‘json’) then 

17.   Fname= initialize files that matches (name)  

18.   Open the json data (𝐽𝑅 + 𝐹𝑛𝑎𝑚𝑒)  as (𝑗𝑠𝑜𝑛f)  

19.   Set 𝑆𝑑𝑎𝑡𝑎= load (𝑗𝑠𝑜𝑛f) 

20.   Call the function of ObtainFeature ( 𝑆𝑑𝑎𝑡𝑎 ,true ) 

21.   Print(PR)} 

22.  In the main function { 

23.   Input 𝐽𝑅 ← parse_directory//initialize the director to be 

parsed 

24.   Input PR ← F   // set the place where the result will be 

stored  

25.   Store the user's input in the (𝐽𝑅 , 𝑃𝑅 ) variables 

26.   Json_Files( JR, PR  ) 

27.       if name is equal to main then 

28.   exit the system  

 

 Every state represents the presence or the absence of that specific call for this 

feature. The Feature parser creates a matrix containing the feature and its states.  For 
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instance, in ransomware phases, when the attached completed, the ransomware deletes all 

the original victim’s data while keeps the encrypted one, in this case, RegDelete method is 

used. So, the parser creates a matrix by investigating whether this specific registry key 

operation was performed or not. 

 

Table 4.1: Feature classes and the number of extracted features 

# 
Feature Classes 

No of 

Features  

Analysis 

Type 
Feature Class Description 

1 Registry Paths 
3208 

Dynamic 
Registry key operations such as registry 

keys opened, read, written and deleted 

2 
Windows API 

Calls 

4661 
Dynamic 

Windows API calls the traces of invocations 

of native functions and API calls 

3 Files Operations 
3210 

Dynamic 
File operations such as read, open, write and 

delete operations 

4 

Printable String 

Information 

(PSI) 

836 

Static 

Is a sequence of characters that provide 

hints about the functionality of a program 

5 
Directory 

Operation 

582 
Dynamic 

Operations performed on a directory 

6 
Cryptographic 

Libraries 

948 
Dynamic 

Contains and implements several popular 

cryptographic algorithms and standards. 

7 Dropped Files 
186 

Dynamic 
During installation application dropped set 

Extensions of files 

 

 

4.3.1.2 Extracting System Calls 

 

In this section, we first present the process of capturing system call traces by 

executing samples in a controlled environment. The behavioural log files collected from 

the sandbox are then passed to the extraction stage to parse and obtain the valuable 

Windows API calls. In this work, we monitor system calls because they are provided by 

the kernel and are used by programs running in user space. Indeed, all requests for 

applications such as network communication, file management or process-related 

operations must go through the kernel using the system call interface before they are 

executed. This data provides precise information about the behaviour of an application 

(Zavarsky & Lindskog, 2016). This is motivated by the assumption that once compromised, 
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the system call traces of an application will be different from those generated by its original 

version. The following subsections explain the process in more detail.  

 

A. Tracing System Calls 

 

To execute the suspicious payload and infect the host system, ransomware needs to 

invoke the system API calls successfully. These system calls are identified as a feature for 

distinguishing malicious files from the benign ones. Since system calls are an interface that 

the programs use to request service from the operating system’s kernel, tracing these system 

calls could help to indicates the ultimate intent of the program.  

 

Definition 4.1: System call trace is a robust technique to record the execution of 

the process dynamically in a controlled environment, let 𝑃 be a process and the 

input of the process is 𝐼. If the process 𝑃 invokes the system call 𝑆, where 𝑃 ∈ 𝑆 

with input of 𝐼 , the system call trace can be defined as: 

 

              𝑆𝑡 = (P ∈ 𝑆 , 𝐼)                                                                                                           (4.1) 

 
 

The entire trace consists of a list of system calls with different parameters and 

return-values of the process. To capture the program’s dynamic behaviour traces, 

ransomware sample was executed in an isolated environment. Every sample up to a range 

70 until 90 seconds were analyzed to show to their relevant malicious indicator. The 

sandbox intercepted and recorded the Windows API calls, while the ransomware sample is 

running on the host.  

We used virtualization software to take a snapshot of the guest machine before the 

execution of each ransomware sample. After execution, the entire system was reverted to a 

previous clean state before the infection. Similar to the ransomware samples, benign 

applications are also executed in the same isolated environment to obtain their behavioural 

features.   
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Figure 4.5: An example of System Call traces 

To trace the system calls, ransomware and benign samples need to complete its 

execution time, but some ransomware waits for human interaction like clicking the mouse 

or pressing a button in the keyboard event before executing their payload. Thus, we utilized 

a customized python script that works in conjunction with the Sandbox to perform basic 

user’s activities such as browsing websites, clicking and deleting documents and folders on 

the desktop. After the execution, the output of the sandbox is a log of JSON (human-

readable JavaScript Object Notation) file for each analysed ransomware and benign sample. 

Although this report contains different categories of ransomware analysis results, we 

limited our scope to the behavioural category that describes the dynamic characteristics of 

the ransomware. 

 

B. Obtaining features from System Call traces 

 
 

Once the behavioural log was collected, the size of the report generated by the 

sandbox occupies hundreds of MBs. Analysing and examining each report manually is 

experimentally infeasible, hence, we built a parser engine as shown in algorithm 4.2 to 

retrieve the behavioural features from the output file. The feature parsing reads the files 

from all Sandbox output reports and then parsed them to get the required system calls to 

reduce the search space. To decrease the trace sequences, only the list of the window API 

call function names that correspond to the process was extracted while the parameters and 

return-values were ignored. A snippet of the critical cryptographic API calls and its 

parameters are shown in Figure 4.6.    
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Figure 4.6:  Log of Critical Cryptographic API Calls  

To prune the collected behavioural logs of the sample’s execution trace, we applied 

the following rules:  

 First, the system process ID of the ransomware samples is identified.  

 Second, we explored the exact position where the process created the new 

thread or child process by iterating the system call logs. 

  Third, the system calls were sorted chronologically based on the timestamp.  

 Finally, relevant function calls are extracted semantically from the log to 

construct the representative feature vector.    

Not only the extracted output traces contain the original system calls, but also 

irrelevant and noisy calls generated by the ransomware to hide its malicious behavior. This 

adversely affects the performance of classifiers and increases the false positive rate. To 

enhance the detection accuracy and to obtain the valuable system calls, the retrieved 

features are transferred to another process to refine the collected traces, as described in the 

following subsequent sections.  

It is possible to modify the control flow of a program in the user space using a hook, 

more commonly known as a hook. A malicious program can thus hide files, processes, 

network connections, etc., to one or more of its peers. For this, the ransomware must access 

the memory space of the victim process and modify one or more addresses in virtual 

memory. One method is to modify the IAT to intercept the call to the desired legitimate 

function than to transmit it to a routine that the attacker controls (Francillon & Castelluccia, 

2008). This technique is easily detectable and many more techniques evolved to exist. 
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Algorithm 4.2: Effective System calls Generation 

Syntax Definitions:  

Let 𝑝 be process, 𝐹𝑠 be first seen, log file {𝑙𝑓}, System Call {𝑠},     

Database { 𝐷𝐵},  Dynamic behaviour {𝐵𝑑}, timestamps {𝑇𝑠}    and 

directory tree 𝐽𝑅 

Input: File contains the system call traces 𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼)  

          and features (𝑓1, 𝑓2, 𝑓3, … . . 𝑓𝑛).             
 Output: List of system calls 𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡} 

1 Procedure FindSysCalls (𝑆𝑡, Condition) { 

2  for each p in 𝑙𝑓 ['𝐵𝑑’] ['𝑃𝑑’] do 

3          if  𝑙𝑓{𝑃𝑑}   = Condition then  

4       𝐹𝑠{temp} ← 𝐹𝑠 

5     if  𝐹𝑠 >= 𝐹𝑠{temp}  

6   𝐹𝑠← 𝐹𝑠{temp} 

7   for each traces in 𝑙𝑓{𝑃𝑑} [𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼)] do 

8  if traces [𝑠] do not match any SysCall then 

9  Id= 𝑠, update 𝐷𝐵 and 𝑇𝑠= 𝑠{𝑇𝑠} 

and 𝐷𝐵{𝑠}[count]=1 

10  Else 𝐷𝐵{𝑠}{𝑇𝑠} ← append [𝑠{𝑇𝑠}] 
11  𝐷𝐵{𝑠}[count]+1, return 𝐷𝐵{𝑠} 

  end for 
12  Procedure Loadfile (JR, PR ) 

13  for (JR, PR) in G_file() do//traverse the directory tree 

14  for i, N in enumerate [all_files] do 

15  If N ends with (‘json’) then 

16  Fn ← (N) //file initialization  

17  𝑆𝑑𝑎𝑡𝑎 ← load (𝐽𝑅 + 𝐹𝑛)   

18  FindSysCalls ( 𝑆𝑑𝑎𝑡𝑎 ,true ) 

19 End  

 

C. N-Grams Construction 
 

To construct the sequential behaviour on the system call log of each sample and 

remove the subsequence that have a little effect on the detection, a text-based n-grams 

method is employed to combine the system call traces that appear in a consecutive order. 

We created N-grams of length 2, 3, 4 and 5 from the system call traces corresponding to 

each analyzed sample. We just extracted n-grams system calls that collected from the same 

category, for instance, the NtTerminateThread, NtTerminateThread, and NtSuspendThread 

are 3-gram system call sequences for process and thread that aim to terminate and suspend 
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a specified threat. The aim is to calculate the n-gram distribution by generating a fixed- size 

slice window through enumerating the appearance of each gram. The extracted result of the 

n-gram system call trace construction is the vector V that contains the occurrence of every 

possible n-gram as shown in Box 4.1. 

 

 

Box 4.1: A snippet of 3-gram System Call sequences 

 

After generating n-gram frequencies, the total number of features extracted from 

the system call trace using 2-grams,3-grams, 4-grams, and 5-grams are 32134 and 76908, 

186908, 227151, respectively. However, the volume of these features is quite large in terms 

of training time and memory usage. Since all these features do not contribute to the 

classification of malicious samples, the noisy subsequence with little influence on the 

detection accuracy is eliminated from the sequence trace.  

 

4.3.2 System Call Refinement Process  
 

In this section, the refinement process of system calls used to discover the accurate 

system call traces and to achieve better detection performance is described. The massive 

amount of system calls invoked by the malicious executable during its execution, some of 

these calls are irrelevant and redundant. The aim of this section is to filter out system calls 

by discarding irrelevant and redundant features to identify real malicious behavior. This 

approach reduces the size of the traces to train the algorithms. We will explore effective 

system refinement approach in more detail in the following subsections. 
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4.3.2.1 The Problem of noise features 

 
 

To evade the detection, ransomware writers disguise themselves by inserting a large 

number of irrelevant and redundant dynamic call sequences to hide its run-time malicious 

behaviour and to mislead the flow of execution sequences (Anderson et al., 2017). Because 

of this, the amount of malicious system calls sequences is enormous that produce the high 

noisy behavioural sequence. We consider undesirable or uninformative system call traces 

as noise because they don’t contribute to the quality of the detection.  

Definition 4.2: System call S is expressed as a redundant System call SR if the feature 

vector fi and its correlation fj have a higher value of 𝑆𝑅𝑖,𝑗 near or equals to 1. That 

means the two features are considered to be redundant if their values are completely 

associated and have no contribution to the target. Generally, the squared cosine 

similarity is employed to measure the correlation of a given two system call vectors 

(𝑓𝑖, 𝑓𝑗) as expressed in the following equation:  

 

         𝑆𝑅𝑖𝑗 = cos2(𝑓𝑖 , 𝑓𝑗)                                                                                                          (4.2) 

 

The performance of machine learning depends on the presence or the absence of 

noisy data. The existence of such noise in the data set could adversely impact the induction 

of ML models such as the increase in processing time, more storage requirement and the 

difficult analysis of real malicious intention that can lead overhead and poor prediction 

ability (Xiao et al., 2015). 

To reduce the complexity of the model and to improve the performance of the 

algorithm, the irrelevant and redundant system calls that do not help in increasing the 

accuracy of the detection should be eliminated from the tracing records. This refinement 

approach removes the noisy system call subsequence as shown in Box 4.2 from the original 

feature space to characterizes the behaviour of the ransomware and its nature.  

 

 



  

123 
 

 
 

Box 4.2: A snippet of Redundancy API calls 

 

 

 

4.3.2.2 Refining Module 
 
 

The refining module’s purpose is to reduce the size of system call traces gathered 

from the dynamic analysis by removing system calls that do not discover the main 

behaviour of the ransomware. It is common in practice that, the more time the program 

takes to execute, the more system calls functions are generated(Vinod & Viswalakshmi, 

2018). Therefore, analysing and inspecting all system calls is computationally infeasible 

because there are too many calls that do not represent the suspicious behaviours of the 

program. To address this, we filtered the collected program’s traces to make the 

performance of the detection process faster by examining the system calls made by the 
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ransomware through the descriptions provided by the Microsoft’s website using a 

customized python script. To achieve this goal, we construct an accurate system call in the 

following ways:   

First, we exclude system calls that have no strong indication for the behaviour 

characteristic of ransomware. For example, VirtualAlloc is a memory management system 

call used to increase the size of the heap when malloc cannot find enough memory in the 

present heap. Some system call does not depict a valuable behaviour of the program, they 

only exist for transferring information between the application and operating system. for 

example, the setTimer system call adjusts the timer for the process. Certain system calls 

are no longer available for current Windows versions, for example, 

NtQueryInformationProcess and NtQuerySystemInformation are used to get information 

about the process and the system, these functions are present in the older versions of 

Windows such as Windows 2000 and Windows XP, but altered or unavailable in the later 

version of Windows. Therefore, these system calls are ignored(Vinod & Viswalakshmi, 

2018). 

 Second, failed system calls do not define the characteristics of the suspicious 

program, for example, if the program attempts to read a file twice and fails it, and succeeds 

in reading the file for the third time, the first two unsuccessful system calls are considered 

to be identical calls. To avoid storing duplicates of the same system calls, the failed system 

calls should be removed. 

 

  

4.3.3 Feature selection 

 

Feature selection is a technique for selecting the most important and relevant 

features that are suitable for the detection of ransomware models. A feature selection phase 

constitutes an important module for the classification of ransomware and benign samples. 

This approach has several advantages such as the reduction of the quantity of sample (less 

features). On the one hand, this reduction makes it much easier to manage the data, and 

improve the accuracy of the classification, it also helps the authors to have a better 

understand of the results provided by the detection model. The feature selection gathers 
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different techniques allowing to select the subset of features set among the whole features, 

we employed various selection methods and techniques as we demonstrate in the following 

subsections (Yang & Pedersen, 1997). 

 

4.3.3.1 Term Frequency-Inverse Document Frequency 

 

After extracting features of all ransomware and benign samples, the total number of 

the extracted integrated features in section 4.4.2 was 13, 631 and this number of features is 

too large for processing and feeding to classification algorithm, therefore, we selected 3930 

as prominent features as expressed in Figure 4.7. Selecting the most relevant subset features 

from the original features can improve classifier performance and the accuracy of 

classification operation; hence, the effective feature set was identified using term weight as 

the criterion of feature selection.  

We applied term frequency-inverse document frequency (TF-IDF) feature selection 

method for setting the weight to a term based on its inverse document frequency and 

evaluating how important feature is a document in the collection (Chen, Islam, Haswell, & 

Bridges, 2019). The purpose of using TF-IDF weighting is to eliminate those features that 

commonly occur in many vectors while giving more attention to features that are less 

frequent in the vectors. The formula for the TF-IDF expressed as follows:    

 

  𝑊𝑖 = 𝑇𝐹(𝜔𝑖, 𝑑) ×  𝐼𝐷𝐹(𝜔𝑖)                                                                                 (4.3) 

 

Where Wi is the weighting scheme of word ωi in document dD, and TF (ωi, d) is 

the frequency of term of ωi in document d, and IDF (Inverse Document Frequency) is then 

defined as: 

 

  𝐼𝐷𝐹(𝜔𝑖) = 𝑙𝑜𝑔(
 |𝐷|

𝐷𝐹(𝜔𝑖)
)                                                                                         (4.4) 

 

Where DF (ωi) represents the appearance of ωi in a document D. After experiments 

and study of many technical reports, seven feature classes were extracted as shown in Table 

4.2 with a brief explanation.  
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Figure 4.7: Number of extracted and selected features 

 

We observed in our experiments that the highest scores counted by TF-IDF are 

Registry Keys and API Stats. These are the two most indicative among all other feature 

classes. Dropped files feature are scaled down due to some normal operations frequently 

occur in the entire analysed log files.  

 

Table 4.2: Weights of selected feature classes using TF-IDF algorithm 

# Feature Classes TF-IDF Score Analysis Type Percentage 

1 Registry Paths 2.682 Dynamic Analysis 21.44% 

2 Windows API Calls 2.596 Dynamic Analysis 20.72% 

3 Files Operations 1.583 Dynamic Analysis 12.64% 

4 Printable String Information  1.452 Static Analysis 11.60% 

5 Directory Operation 1.420 Dynamic Analysis 11.36% 

6 Cryptographic Libraries 1.391 Dynamic Analysis 11.12% 

7 Dropped Files 1.290 Dynamic Analysis 10.32% 
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4.3.3.2 Enhanced Maximum Relevance and Minimum Redundancy  

 

The sequences extracted by the N-Grams in section 4.4.3.3. include many noise 

instances that will not uniquely identify the function of malicious files. The automatic 

identification of these discriminative subset features from the system call logs is a very 

indispensable task in the analysis phase since it is time consuming and requires many efforts 

to clean the data. To address this issue, we employed the Maximum-Relevance and 

Minimum-Redundancy (mRmR) feature selection method proposed by the Peng (Ramí

rez‐Gallego et al., 2017).  

The mRmR is a well-known filter algorithm that intended to find features with high 

correlation (relevance) with the target class and low correlation (redundancy) to other 

features. mRMR has been successfully implemented in many different applications 

including microarray gene expression data analysis, video processing and intrusion 

detection (Acid et al., 2011). Maximum relevance selects the optimal feature related to the 

behaviour of a malicious class without considering relationships among features. If  𝑆 is a 

set of malicious features, 𝑀𝐼(𝑓𝑖, 𝐶) represents the mutual information between the features 

𝑓𝑖 and the ransomware class, the maximum relevance is calculated by equation 4.5: 

 

  𝑀𝑎𝑥_𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) =
1

|𝑆|
∑ 𝑀𝐼(𝑓𝑖, 𝐶)                                                            (4.5)

𝑓𝑖∈𝑆
 

 

For discrete features, the relevance and redundancy of the feature are measured by 

calculating the mutual information between the features. Two system call features are 

considered to be independent if the shared mutual information score is the minimum value 

of 𝑀𝐼(𝑓, 𝑓) (Darshan & Jaidhar, 2018). The marginal probability represents 𝑝(𝑥) and 𝑝(𝑦) 

whose joint probability distribution is 𝑝(𝑥, 𝑦). So, the mutual information of feature pairs 

is defined in equation 4.6: 

 

    𝑀𝐼(𝑓, 𝑓) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 𝑥,𝑦

        (4.6) 



  

128 
 

Selecting features based on maximum relevance (mR) can identify the actual 

behaviour relevant to the ransomware. However, mR brings redundancies, since a feature 

𝑓𝑖 might be highly dependent on some features selected previously (Ramírez‐Gallego et 

al., 2017). To handle the repetition problem in mR, minimum Redundancy (mR) criterion 

is utilized and defined as:   

 

 𝑀𝑖𝑛_𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) =
1

|𝑆|2
∑ 𝑀𝐼(𝐹𝑖, 𝐹𝑗)                                                       (4.7)

𝑓𝑖,𝑓𝑗∈𝑆

 

 

Where 𝑀𝐼(𝐹𝑖, 𝐹𝑗) is the minimum value of mutual information between feature 𝐹𝑖 

and feature 𝐹𝑗. The relevance of the system call features to the target Ω is maximized and 

redundancy is minimized by merging these two conditions: 𝑀𝑎𝑥_𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶) and  

𝑀𝑖𝑛_𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑒(𝑓𝑖, 𝐶)  into a single score function denoted by mRMR using mutual 

information difference (𝑚𝑅𝑚𝑅 𝑀𝐼𝐷) defined as below:  

 

 𝑀𝐼𝐷 = 𝑀𝐴𝑋𝑆 [𝑀𝐼(𝑓𝑖, Ω)  −
1

|𝑆|
∑ 𝑀𝐼(𝐹𝑖, 𝐹𝑗) 

𝑓𝑖,𝑓𝑗∈𝑆
]                                              (4.8) 

 

Regarding mRmR, subset features {𝑓𝑖 … . . 𝑓𝑞} ∈  𝐹  are selected as incremental 

search method by finding the features having a maximum value of mutual information 

𝑀𝐼(𝐹𝑖 , 𝐹𝑗). These features are ranked based on their relevance to class, and the redundancy 

of the features are diminished.  

Table 4.3: List of notations used in this thesis 

Symbol Meaning 

𝑆𝑡 = (𝑃 ∈ 𝑆 , 𝐼) The system call trace contains a process 𝑃 that invokes system call 

with input 𝐼 

{𝑓𝑖 … . . 𝑓𝑞} ∈  𝐹   The subset features are extracted from the feature sets 

𝐶 ∈ {𝑀, 𝐵}𝑚 The target class 𝐶  that contains malicious 𝑀 and benign 𝐵 labels 

𝑓 ∈ 𝑅𝑚𝑥𝑛 The matrix containing 𝑚 samples and the 𝑛 features 

(𝑓𝑖 , 𝑓𝑗) The system call vectors 

𝑀𝐼(𝑓𝑖, 𝐶) The mutual information of the pair features and the class 𝐶 

𝑝(𝑥, 𝑦) The joint probability distribution of MI 

𝑙 ∈ {𝑠1𝑠2𝑠3. . 𝑠𝑡} The list of the system call sequences 

(𝑓𝑖 , 𝑓𝑗) ∈ 𝑆 The input of the jth and the ith features in the system call sequences  
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One limitation of mRmR is the unnecessary computation of the mutual information 

among pairs of features which gives us the motivation of this Enhanced mRmR method. 

This is due to the mRmR uses a forward selection technique to find K feature in the features 

set that maximize the 𝑀𝐼𝐷(𝑓𝑖, 𝐶) function. The method starts with an empty set, selects the 

best improvement features, adds to the subset of features {𝑓𝑖 … . . 𝑓𝑞}, and removes 

from original feature set F. This process continues until all subset features become equal to 

the 𝑘. In this repetition, the mRmR algorithm calculates the 𝑀𝐼𝐷  value on  (𝑛 − 𝑘 + 1)  

feature at each iteration (Han, Huang, & Qin, 2017). 

 For example, to decide the {𝑓𝑖 … . . 𝑓𝑞}, the algorithm computes the value of 

𝑀𝐼𝐷(𝑓𝑖 , 𝑓𝑗   ) on the same feature 𝑓 frequently, due to the subsequent iterations, the 

computation complexity of the algorithm becomes high when a large number of noisy 

features is used. The existing mRMR form is not suitable for ransomware detection because 

it is computationally expensive due to a large number of system call features generated by 

n-gram. Therefore, we need a lighter version of mRmR to overcome this difficulty.   

To overcome this limitation, we put forward the Enhanced Maximum Relevance 

and Minimum Redundancy (EmRmR) method to construct an effective system call feature 

set with a small number of evaluations and less computational complexity. To achieve this, 

we introduced an associative process based on the assumptions for accumulating the 

𝑀𝐼(𝑓𝑖 , 𝑓𝑗   ) values on the feature pairs in each iteration to avoid redundant computation. 

We predefined a maximum threshold 𝑘 and the items of the list as shown in Equation 4.9.  

 

   𝐿 = ∑ 𝑀𝐼(𝑓𝑖, 𝑓𝑗   )                                                                                                    (4.9)

𝑘

𝑖=𝑘+1

 

 

In this work, we preserved the idea of the mRmR algorithm but adapted it to solve 

the computational problems of the algorithm. The proposed method selects the same subset 

features as the original mRmR algorithm. In the beginning, the algorithm accepts 

discretised data set as input 𝐷 = (𝑓, 𝐶), where 𝑓 ∈ 𝑅𝑚𝑥𝑛 is a matrix containing 𝑚 samples 

and 𝑛 features, 𝐶 ∈ {𝑀, 𝐵}𝑚   is a target class consists of malicious 𝑀 and benign 𝐵 labels, 

and the number of features to be selected {𝑓𝑖 … . . 𝑓𝑞} .  
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The function Mutual-info(𝑓𝑖, 𝐶) in the algorithm calculates the relevance of features 

to the target class as Equation 4.7, the feature with the highest score is extracted and stored 

as 𝑓𝑖  ∈  𝐹 in 𝑆 variable. 

To avoid the redundant computations of the 𝑀𝐼, we then created an empty list 

sequence to store the sum of the mutual information output features and use it as a reference 

for the next step. A loop is then performed for the remaining features and the mutual 

information between the selected feature and the unselected features is computed again as 

Equation 6. Finally, the algorithm creates 𝑅𝑓 variable to store features with the maximum 

value of relevance and minimum redundancy. 

 

Algorithm 4.3: Enhanced Maximum Relevance and Minimum 

Redundancy (EmRMR) 

Input: Discretised data d, number of features in d is F, subset features 

{𝑓𝑖 … . . 𝑓𝑞} ∈  𝐹  ,class 𝐶, number of features to select q, 𝑆𝑓 selected 

features 

Output: selected output features F   

 Initialization 
1 𝑆𝑓 ← 0; 

2  for 𝑓𝑖  ∈  𝐹  do  
3         Relevance (S) ← Mutual_Info(𝑓𝑖 , 𝐶); 

4    Aggregate_ Redun =0; 

5 end 

for 

 

6 𝑆𝑓=Max (Relevance (S)) 

7 𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡} ← [𝑓𝑖  ∈  𝐹 | 𝑆]//To store the highest scorer 

8 for t1:  q-1 do 

9 size ← len (𝑙 ∈ {𝑠1𝑠2𝑠3 … . . 𝑠𝑡}) 

10 while 𝑣 ++ < size do 

11  for 𝑓𝑗  ∈  𝐹  do 

12  𝑅𝑒𝑙𝑓 ← Relevance (S) 

13   Aggregate_ Redun =(𝑘 + 1 +  𝑀𝐼(𝑓𝑖 , 𝑓𝑗  + 1)) 

14   end for 

15  𝑅𝑓 ←  𝑅𝑒𝑙𝑓 -  Aggregate_ Redun; 

16 end for 

17 return selected feature subset {𝑓𝑖 … . . 𝑓𝑞}; 
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4.3.3.3 Feature selection using FastICA 

 

 The extracted features are then applied to the Algorithm 4.4 to generate the global 

set of features and the generation of the feature vector. The global set of features is 

generated by combining all the features of the data set. In our data set, we have accumulated 

a total 15972 features in the global set. In the feature vector, the columns represent the 

features and the rows represent the ransomware or benign ware. The values of this vector 

will be {0,1} where {0} represents the absence of the feature and {1} represents the 

presence of the feature. Since the global set contains 15972 features and the data set 

contains 1237 samples, the two-dimensional matrix will contain 1237 rows and 15972 

columns. 

The challenging task is to handle such a large number of features. Since ICA 

(Independent Component Analysis), a statistical procedure to solve the Blind Source 

Separation can be used in the selection process where the components are statistically 

independent. FastICA (Hyvärinen & Oja, 2000) is considered as the feature compression 

method in our model. The high computation complexity of FastICA did not affect our 

system as we have used the GPU based operation where we have used 8 parallel GPUs. It 

uses a fixed-point iteration scheme that has been found in independent experiments to be 

10-100 times faster than conventional gradient descent methods for ICA. Another 

advantage of the FastICA algorithm is that it can be used to perform projection pursuit as 

well, thus providing a general-purpose data analysis method that can be used both in an 

exploratory fashion and for estimation of independent components. We have selected 

40,50, 80 and 100 features using FastICA. These selected features are then applied to the 

model. 

The performance of deep learning mostly depends on the size of mini batch, initial 

settings of weight, number of epochs, learning rate, momentum and number of hidden 

layers and units. The different architectures of nodes in hidden layers also affect the 

performance of the deep learning-based model (Zhang et al., 2019). In the first phase of our 

experiment, we have varied the epoch number. 
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Algorithm 4.4: Global Feature Set Generation and Feature Vector 

Generation 

𝒊𝒏𝒑𝒖𝒕 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡 

Output   𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 

1.  Begin 

2.          𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 ← ∅ 

3.  for each 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 in each sample in input dataset do 

4.           if 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 not in 𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 then 

5.           𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑡 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

6.  end for 

7.  𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 ← ∅ 

8.  for each sample in input data set do 

9.         𝑅𝑜𝑤 ← ∅ 

10.        𝑅𝑜𝑤[′𝑖𝑠_𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒′]  ← {0 𝑓𝑜𝑟 𝑏𝑒𝑛𝑖𝑔𝑛, 1 𝑓𝑜𝑟 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒} 

11.  If  𝐹𝑒𝑎𝑡𝑢𝑟𝑒 is present in the sample 

12.       𝑅𝑜𝑤[𝐹𝑒𝑎𝑡𝑢𝑟𝑒] ← 1 

13.  else 

14.       𝑅𝑜𝑤[𝐹𝑒𝑎𝑡𝑢𝑟𝑒] ← 0 

15.      Append 𝑅𝑜𝑤 to 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

16.  end for 

17.  return  𝐺𝑙𝑜𝑏𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

18.  END 

     

We have varied the epoch number from 50 to 500. In the result section, we have 

mentioned only the performance result using 500 epochs because the 500 epochs show the 

best performance. Then, we have developed the three different node arrangements- 

Architecture1, Architecture2 and Architecture3. The following Table 4.3 shows the nodal 

arrangements that are considered in our model. 
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  TABLE 4.4: ARCHITECTURE1, ARCHITECTURE2 AND ARCHITECTURE3 

Architecture Name and Definition Combinations considered in our model  

Architecture 1 with equal nodes 

in L1 and L2 

 

32 nodes in L1 and L2, represented as L32_L32 

64 nodes in L1 and L2, represented as L64_L64 

128 nodes in L1 and L2, represented as L128_L128 

512 nodes in L1 and L2, represented as L512_L512 

1024 nodes in L1 and L2, represented as 

L1024_L1024 

Architecture 2 with less nodes in 

L1 and more nodes in L2 

32 nodes in L1 and 64 nodes in L2, represented as 

L32_L64 

64 nodes in L1 and 128 nodes in L2, represented as 

L64_L128 

128 nodes in L1 and 512 nodes in L2, represented 

as L128_L512 

512 nodes in L1 and 1024 nodes in L2, represented 

as L512_L1024 

Architecture 3 with more nodes in 

L1 and less nodes in L2 

64 nodes in L1 and 32 nodes in L2, represented as 

L64_L32 

128 nodes in L1 and 64 nodes in L2, represented as 

L128_L64 

512 nodes in L1 and 128 nodes in L2, represented 

as L512_L128 

1024 nodes in L1 and 512 nodes in L2, represented 

as L1024_L512 

 

 

 

4.4 Summary  
 

The main purpose of this section is to create appropriate input for the classification 

algorithms and to describe the steps involving data pre-processing.  This process consists 

several sections; the first section explained the portable executable file format. In this 

section sample analysis process to identify the run time behaviour of the ransomware is 

discussed. This process mainly focused on the dynamic analysis of a binary that executes 

one or more times to observe the ransomware behaviour. The environment in which the 

binary is executed is in a controlled environment that guarantee its containment. To extract 

the set of features such as Register, file operations, Windows API function calls, and file 

paths from the PE executables feature extraction process are discussed in the third section. 
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Data pre-processing that contains the identification of executable files and refinement 

model. The massive amount of API calls invoked by the malicious executable during its 

execution, some of these calls are irrelevant and redundant. To filter out API calls, we 

discarded the irrelevant and redundant features to identify the real malicious behaviours. 

Feature reduction method is also discussed, the majority of feature is not contributing the 

accuracy and the speed of the classification algorithms, therefore reducing the less 

important feature would improve the efficiency of the algorithms. Several feature selections 

were used to select the informative feature that would be input to train the machine learning 

algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 5. RESULTS AND DISCUSSIONS 
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This section describes the experimental results obtained from the previous section. 

We describe the behavioural detection methods and present their accuracy based on the 

performance metrics aforementioned in section 3. The performance of the classifier 

depends on how the model was built up and how the parameter values assigned, so the first 

section of this section illustrates the process of setting the parameters. We select various 

parameters and test our models individually to select the best model among them. The 

Second section, we highlight the experimental results of the research, so, we divide our 

result into three different detection models and we demonstrate the performance of each 

result as tabular forms. The first experiment, we performed an automated dynamic 

behavioural analysis of real-world ransomware samples that infect Windows platforms, to 

distinguish these malicious files from benign files we utilized supervised machine learning 

algorithms like Support vector machine (SVM) and Artificial Neural Network (ANN).  

The dimensionality reduction of the Windows System Calls features for the 

ransomware detection are also presented in the second experiment. Naturally, Windows 

API calls are suffering a massive amount of irrelevant and redundant system calls invoked 

by the malicious executables during its execution. Therefore, in this experiment, we 

introduce a refinement process to reduce the size of the system call traces and to filter the 

Windows API calls. Finally, the third experiment discusses a model framework based on 

the runtime behaviour of ransomware and deep learning based semi-supervised technique. 

Deep learning is a robust unsupervised approach that can extract the hidden intrinsic 

patterns from unsupervised feature space through a non-linear transformation and layered 

structure in which upper layers compute more abstract forms of features presenting the 

latent sources of variabilities in the feature space. Finally, we compared the proposed 

methods against previous similar works.   

 

5.1 Setting Experimental Parameters  
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Parameters selection values for the machine learning algorithms have an extreme 

effect on the model’s performance and the generalization error. There is no certain method 

and technique to set on the optimal parameter values and ranges, only to do an exhaustive 

repetitive search over the parameter space to find the best setting. We described the various 

parameters and tested our models individually to select the best model among them. In this 

study, SVM kernel functions such as the linear kernel, polynomial kernel and Radial basis 

function (RBF) are used as shown in Table 5.1. The parameters values for kernel functions 

can have an extreme effect of the model’s performance and the generalization 

error(Takeuchi et al., 2018)   

 

Table 5.1 Selected parameters value of SVM kernels 

 
 

Kernel 

functions  

 

PARAMETER VALUES 

 

Value 

 

Complexity parameters C 
 

Build logistic 

model 

 1.0 10 100 1000 
Assigned True 

Linear kernel 
(λ=1) 

  

 
      

Polynomial 

kernel 

 
(λ=2) 

        

 

Assigned True 

 
(λ=3) 

        

 
(λ=4) 

        

 

 

 

Radial Base 

Function 

kernel 

(γ= 0.01)         
 

Assigned to 

True 

(γ= 0.125)         

(γ= 0.25)         

(γ= 0.5)         

(γ= 1.0)         

Therefore, we set the parameters of these kernel functions with the incremental 

regularization parameter λ and the cost parameter of C. These selection parameters require 
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an exhaustive repetitive search over the parameter space to find the best settings. The above 

Table 5.1 illustrates the kernel functions used and values of their subsequent parameters. 

The parameter C regulates the trade-off between the complexity of the model and the 

empirical risk of the model. There are two values lambda and gamma both has a decimal 

and floating-point with consideration of the complexity control starting 1.0 until 1000 to 

reduce overfitting. For proper probability estimation, the BuildLogisticModel was set to 

true for all kernel functions.   

A user-defined neural network parameter such as hidden layers, momentum and 

learning rate was assigned values to test the network performance. The learning rate 

parameter is the specified user value that controls the step size when weights are iteratively 

adjusted. The momentum parameter is helpful to prevent the algorithm from converging to 

a local minimum (Dietterich & Kong, 1995). Setting a high momentum parameter value 

can facilitate to increase the speed of convergence of the algorithm. However, selecting too 

high momentum parameters can generate a risk of overshooting the minimum, which can 

cause the algorithm to become unstable. Hence, in this study, four values of learning rate 

and momentum parameters are picked as: 0.1, 0.3, 0.6 and 0.9 respectively as shown in 

Figure 5.2. Finally, we created many different models with a variety of outputs.  

 

Table 5.2: Selected ANN user defined parameter values 

 

Parameters   Values  Auto 

build 

Graphical user 

interface 

Epochs 100,500 True True 

Hidden layers 1,2,3 True True 

Number of neurons in 

hidden layer   

15,30,60 True True 

 Momentum  0.1,0.3,0.6,0.9 True True 

Learning rate 0.1,0.3,0.6,0.9 True True 

On the other hand, the Deep Learning approach has the benefit of training the model 

using the extracted and selected features and behavioural patterns through hidden nodes in 

different layers. Since the cyber-attack patterns have been changed very frequently, the 
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inherent cyber-attack patterns can be extracted using the multiple layers of abstraction of 

Deep Learning and represent the actual attack patterns to a non-linear and higher 

abstraction of the real scenarios which benefits the detection model (LeCun et al., 2015).  

  

 

 

 

 

 

 

 

 

 

Figure 5.1: Architecture 1 with equal nodes in L1 and L2 

 

Since deep learning-based model handles multiple hidden layers, we need to decide 

how many hidden layers will be suitable for our model. Too many hidden layers will cost 

us more computational complexity, we have chosen two hidden layers. The nodes of the 

hidden layer can vary and form different architectures of nodes. As we have considered 

only two layer- we have named it as L1(first layer) and L2 (second layer). The following 

Figures show the adapted architectures of our model. 

Three different architectures have implemented in our modelArchitecture1 in Figure 

5.1, Architecture2 and Architecture3. Architecture1 has equal number of nodes in L1 and 

L2. Architecture2 has a smaller number of nodes in L1 and more nodes in L2 where as 

Architecture3 has more nodes in L1 and less nodes in L2 as shown in Figure 5.2.  
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Figure 5.2: Architecture3 with more nodes in L1 and less nodes in L2 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.3: RBM layers with input and hidden layer nodes 

 
 

In Figure 5.3, the input layer is denoted as “𝑖”, hidden layer as “𝑗”,  𝑥 is the bias of 

input nodes as shown in Figure 5.3, 𝑦 is the bias of hidden nodes and 𝑤 is the weight then 

the structure of input (𝑘)and hidden nodes(𝑙) holds the energy as follows:  

𝐸𝑅𝐺(𝑘, 𝑙) = − ∑ 𝑥𝑖𝑖 𝑘𝑖 − ∑ 𝑦𝑗𝑙𝑗𝑗 − ∑ 𝑘𝑖𝑙𝑗𝑤𝑖𝑗𝑖𝑗                                                     (5.1) 
 
 

The nodes will generate 0 or 1 using the following equations 

 For input nodes,  𝑆(𝑘𝑖=1|𝑙) = 𝜎(𝑥𝑖 + ∑ 𝑤𝑖𝑗𝑙𝑗𝑗 )                                            (5.2) 

 For hidden nodes, 𝑆(𝑙𝑗=1|𝑘) = 𝜎(𝑦𝑖 + ∑ 𝑤𝑖𝑗𝑘𝑖𝑖 )                                         (5.3) 
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In these equations,  𝜎(𝑡) = 1 (1 + 𝑒−𝑡)⁄   where 𝑡 = 𝑥𝑖 + ∑ 𝑤𝑖𝑗𝑙𝑗𝑗  and 𝑡 = 𝑦𝑖 +

∑ 𝑤𝑖𝑗𝑘𝑖𝑖  respectively. Equation 5.4 is followed in tanning section to maintain the stochastic 

ascent algorithm. 

𝑆(𝑘) = (1/𝑡) ∑ 𝑒−𝐸𝑅𝐺(𝑘,𝑙)
𝑗                                                                     (5.4) 

 
Let, the learning rate is µ. µ should be more than zero. The change of weight matrix 

is accumulated by the following equation where the expectation of data is denoted by β and 

expectation of reconstruction is denoted by γ.  

    Δ𝑤𝑖𝑗 = µ(β − γ)                                                                               (5.5)  

 

 

5.2 Experimental Results  
 

In this section, we will present the results obtained from the experiments of this 

research. We carried out three main different experiments including supervised and semi-

supervised machine learning algorithms. In every category we will highlight and explain 

the results gathered from that experiment.     

 

5.2.1 Experiment one 
 

In this experiment we employed a behavioural malware detection framework 

mentioned in section 3, subsection 3.2.1 in Figure 3.2 for ransomware using two supervised 

machine-learning approaches like Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) algorithms. We performed an automated dynamic behavioural analysis for 

673 real-world ransomware samples that infect Windows platforms. We focused on the 

malicious behaviours of 14 newly emerged ransomware families. In the following 

subsection, three different experiments are conducted to train and test the classifiers. 

 

5.2.1.1 Train-test splitting method 

 

The purpose of this experiment is to evaluate the performance of the proposed 

integrated features by employing a train-test split method, which is dividing the whole data 

set into two subsets: training and testing data. first, we split our dataset randomly  with a 
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uniform distribution of 80: 20% ratio as training and testing respectively. The experimental 

results of ANN showed an accuracy of 0.958 with 0.101 false positive rates while SVM 

presented higher false positive of 0.109 compared to ANN and the accuracy of 0.932.  

 

Table 5.3: Result of the train-test splitting method 

 FP Rate TP Rate Precision Recall AUC Detection Rate 

SVM 0.109 0.853 0.923 0.926 0.904 0.932 

MLP 0.101 0.956 0.945 0.951 0.965 0.958 

 

The ROC curve of this experiment is presented in Figure 5.4, and the Table 5.3 

shows the results of the FPR, TPR, AUC, precisions and the recalls and the accuracy of the 

classifier based on the training and testing splitting method. 

 

 
Figure 5.4: ROC curve of the classifiers on train-test splitting method 

 

 

5.2.1.2  Cross-validation method 

 

In the train-test splitting method, once the data set is divided into a ratio that does 

not relevant each class of the experimental samples, the result of the holdout error rate will 

be inaccurate. To overcome this limitation, we applied the 10-Fold cross-validation 

technique to prevent the overfitting problem and to estimate the effectiveness of our 

models. In this approach, the entire data set was randomly shuffled and divided into 10 
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equal-sized of subsets such that, each repetition (10-fold) we build our model with 10-1 

folds of the data set for the evaluation of the trained model and the remaining one-fold 

constitutes for testing. 

In this experiment, we have evaluated the performance of classifiers using 10-fold 

cross-validation to train and test the algorithms. The results achieved by the classifiers in 

this experiment on the whole dataset were quite satisfactory. The best accuracy reached 

SVM by presenting 0.982 of AUC with less than 0.035 of false positive rate. It is important 

to examine the ability of the classifiers for distinguishing the ransomware from benign 

samples, therefore, precision and recall are applied to both datasets and presents 0.945 and 

0.942 respectively. SVM also shows a fairly better accuracy of 0.952 comparing to MLP 

that shows 0.945 of detection rate and 0.036 of the false positive rates as presented in Figure 

5.5 and Table 5.4. This indicates that SVM has super generalization ability and is quite 

tolerant for training the iteration of 10-fold set size.  

 

Table 5.4: Result of the 10-fold cross validation method 

 FP Rate TP Rate Precision Recall AUC Detection Rate 

SVM 0.035 0.962 0.945 0.942 0.982 0.952 

MLP 0.036 0.982 0.931 0.932 0.971 0.945 

 

 
Figure 5.5: ROC curve of the classifiers on the 10-Fold validation method 
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5.2.1.3 Testing with selected subset features  

 

 

    The aim of this experiment is to evaluate how selected subset features can 

effectively contribute to the performance of the algorithms. The selection of subset features 

eliminates redundant and irrelevant features and reduces the dimensionality of the dataset. 

In this experiment, we divide our features into seven subset features by considering their 

importance and ranking based on the aforementioned feature selection algorithm presented 

in section 4, subsection 4.6.1. We created the most prominent features as Top-N feature 

set: top20, top30, top40, top50, top60, top70, and top80.  

 

Table 5.5: FPR, TPR, AUC and accuracy for SVM and ANN with subset features 

 
Support Vector Machine Artificial Neural Network 

FP Rate TP Rate AUC Det. Rate FP Rate TP Rate AUC Det. Rate 

20 0.371 0.625 0.948 0.932 0.033 0.952 0.972 0.956 

30 0.041 0.959 0.976 0.971 0.007 0.988 0.986 0.987 

40 0.006 0.993 0.977 0.976 0.012 0.987 0.982 0.981 

50 0.071 0.935 0.974 0.959 0.035 0.962 0.985 0.964 

60 0.160 0.839 0.951 0.936 0.035 0.964 0.978 0.948 

70 0.041 0.958 0.973 0.933 0.034 0.951 0.980 0.941 

80 0.103 0.837 0.238 0.891 0.036 0.841 0.186 0.901 

 

The experimental results demonstrated that ANN showed the highest accuracy of 

98.79% when top30 of the feature set was used as training and testing. However, this 

classification accuracy had dramatically decreased to 95.63% when top20 of the feature set 

was used. The other hands, the best model of SVM presented an accuracy of 97.6% when 

top40 of the feature was applied for training the model. Although SVM performed ratio of 

0.993 of TPR and 0.0371 of FPR, this indicates that SVM has a higher ratio of false positive 

rate compared to ANN.  
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Figure 5.6: Comparison of SVM and ANN classification accuracy with subset features 

 

The experimental result implies the importance of considering the selection of 

different subset features. Figure 5.6 compares SVM and ANN classification accuracy 

across different subset features. By inspecting Figure.5.6, both ANN and SVM had low 

classification accuracy when top80 of the feature set used to train and test the model. This 

indicates that more features do not improve the performance of the classifiers as Table 5.5 

shows the results of each classifier based on selected features.  

 

 

5.2.2 Experiment two 

 

In this section, we present the results obtained from various extensive experiments. 

To determine the best model for the detection of ransomware, we tested the performance 

of five supervised algorithms such as Decision Tree (DT), K-Nearest Neighbour (kNN), 

Logistic Regression (LR), Random Forest (RF) and Support Vector Machine (SVM) on the 

system call sequences made by the malicious and benign samples. The aforementioned 

performance metrics are used to evaluate the models. The proposed architecture of the 

dynamic characteristics of behaviour-based ransomware detection is presented in section 

3, subsection 3.2.2 in Figure 3.3. In the following subsection, we describe the three different 

experiments conducted to train and test the classifiers. 
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5.2.2.1 Windows System Calls with N-gram features   

 
 

In this experiment, we evaluated the performance of the classifiers on 𝑛 − 𝑔𝑟𝑎𝑚𝑠 

of length 2,3,4 and 5 from each system call sequence by employing the train-test split 

method, which divides the data-set into two subsets: training and testing data. Before 

building the model, we randomly splitted the dataset with a uniform distribution of 80: 20% 

ratio as training and testing respectively. The accuracy of the classifiers and the values of 

the Area under Curve (AUC) were used as evaluation metrics in this experiment.    

 

Table 5.6: The accuracy of the Tran-test splitting method 

 KNN LR SVM  RF DT 

2-grams 0.584 0.723 0.663 0.678 0.636 

3-grams 0.958 0.924 0.984 0.782 0.981 

4-grams 0.751 0.865 0.899 0.613 0.815 

5-grams 0.729 0.783 0.887 0.592 0.751 

 

Table 5.6 and the Figure 5.7 compares the accuracy of each classifier trained and 

tested with various 𝑛 − 𝑔𝑟𝑎𝑚 sequences. The SVM with 3-grams achieved the highest 

accuracy among all classifiers, ranging from 66% to 98% with less 0.0261 false-positive 

rate. The accuracy of this classifier remained stable when 4-grams and 5-grams of feature 

sequence are employed. From the experimental results of the Table, the accuracy of kNN 

and DT algorithms are nearly similar. These classifiers with 2-grams of features achieved 

a lower accuracy of 58% and 63% respectively, while the accuracy increased significantly 

when 3-grams of bytes were used.  

The RF classifier produced the lowest accuracy among the classifiers when the 

model was trained and tested using different lengths of 𝑛 − grrams. More specifically, the 

classifier showed fairly good accuracy of 67% and 78% with 2-grams and 3-grams 

sequences respectively. However, the classifier started a low accuracy of 61% and 59% 

when 4-grams and 5-grams of system call sequences are trained and tested to the classifier, 

this poor performance is probably due to the high computational complexity that the RF  
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Figure 5.7: The classifier’s accuracy on n-gram with train-test splitting method 

 

 

requires to build the model as we enlarge the size of the n-grams, it also suffers overfitting 

problem during the training that the model is unable to generalize the new features in the 

testing phase. Interestingly, the LR significantly outperformed the other classifiers and 

showed 0.723 of accuracy, it also presented less FPR of 0.413 when2 − 𝑔𝑟𝑎𝑚 features 

were trained in the model. This is due to the classifier doesn't involve high computational 

power when the model is trained with a smaller size of n-grams. 

Figure 5.8 shows the trends for the ROC curve of the classifiers with 2-gram, 3-

gram, 4-gram, and 5-gram. Overall, the AUC values decreased significantly when 2-gram-

based features were used to train the model. This is due to the small length of 𝑛 − 𝑔𝑟𝑎𝑚𝑠 

that can result in a poor characterization of the ransomware behaviour, which leads to the 

increase the false positive alarms. We expanded the feature dimensionality by increasing 

the size of the window to 3-gram.  
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The AUC values of the classifiers also increased dramatically. From Figure 5.8 (c), 

it can be seen that the AUC declined slightly at an average of 0.16% for 𝑛 = 4. Moreover, 

Figure 5.8 (d) compares the ROC curves of longer sequences for 𝑛 = 5 on the classifiers. 

The result shows a considerable drop in AUC values. One possible reason is that a long 

sequence of the 𝑛 − 𝑔𝑟𝑎𝑚𝑠 pattern is not useful for distinguishing the behavior of the 

ransomware from the benign. In addition, increasing the length of N-grams sequences also 

increases the training time of the model.    

 

5.2.2.2 Windows System Calls on N-grams with cross-validation method 
 

The purpose of this experiment is to evaluate the performance of the classifiers on 

various sizes of n-gram features with 10 − 𝐹𝑜𝑙𝑑 cross-validation technique.  There is a 

  

  
Figure 5.8. ROC Curve of the Classifiers on N-grams with train-test splitting method 
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limitation in the train-test splitting method, once the dataset is divided into a ratio that does 

not relevant each class of the experimental samples, the result of the holdout error rate will 

be inaccurate. To overcome this problem, we applied the 10 − 𝐹𝑜𝑙𝑑 cross-validation 

technique to prevent the overfitting problem and to estimate the effectiveness of our 

models. In this approach, the entire data set was randomly shuffled and divided into 10 

equal-sized subsets such that, each repetition (10-fold) we build our model with 10-1 folds 

of the data set for the evaluation of the trained model and the remaining one-fold constitutes 

for testing. 

We tested the accuracy and the Roc curve of every sliced window of different 

feature lengths. The results of this experiment show an accuracy variation among the 

classifiers (accuracy 52-93%) when 2-grams, 3-grams, 4-grams and 5-grams length with 

10-fold cross-validation is used to train and test the algorithms as shown in Table 5.7. These 

results were quite satisfactory compared to the previous experiment. 

  

Table 5.7: The accuracy of N-gram with the 10-fold cross-validation 

 

 

 

 

 

 

Figure 5.9 shows the classifier’s accuracy on n-grams of length 2,3,4 and 5 from 

each system call sequence with the 10-fold cross-validation technique. The best accuracy 

among all classifiers was achieved by the SVM with 0.899 of AUC. It also shows the 

accuracy of 0.923 when 𝑛 = 4 with less than 0.124 of false-positive rate. This indicates 

that SVM has super generalization ability on a large windows size, and is quite tolerant for 

training the iteration of 10-fold set size. It can also be observed that kNN performed a low 

accuracy of 52% and 63% on both 𝑛 = 2  and 𝑛 = 5 respectively. However, the classifier 

shows a fairly better accuracy on = 3.  The detailed results of the accuracy of each classifier 

based on various windows size is also presented in Table 3 and Figure 5.10. 

 KNN LR SVM  RF DT 

2-grams 0.526 0.782 0.752 0.536 0.829 

3-grams 0.769 0.827 0.912 0.751 0.842 

4-grams 0.746 0.812 0.923 0.572 0.782 

5-grams 0.582 0.683 0.632 0.652 0.752 
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 Figure 5.9 illustrates the AUC variations for the five classifiers on the different 𝑛 −

grams. Three classifiers (LR, SVM, and DT) have a high AUC rate while the other two 

classifiers (kNN and RF) have a slightly lower AUC rate when features are sliced into 3 −

𝑔𝑟𝑎𝑚𝑠  and 4 − 𝑔𝑟𝑎𝑚𝑠. By inspecting Figure 6 (d), all classifiers had a significantly low 

AUC rate when 5 − 𝑔𝑟𝑎𝑚𝑠 of the feature set used to train and test the model. This is due 

to the number of n-gram sequences that increases whenever the window size increases.  

  

  
Figure 5.9: ROC Curve of the Classifiers on N-grams with 10-fold cross-validation  
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Figure 5.10: The classifier’s accuracy on N-gram with 10-fold cross validation 

 

 

5.2.2.3 Windows System Calls on k-features  

 

The aim of this experiment is to evaluate how the sub selected 𝑘 features generated 

by the Enhanced mRmR in section, subsection 4.6.2 can effectively contribute to the 

performance of the algorithms. In this experiment, we divided the features into 𝑘 based 

features by considering their importance and ranking determined by the Enhanced mRmR. 

Similar to the previous section 5.3.2.2, the 10 − 𝐹𝑜𝑙𝑑 cross-validation technique was 

employed to train and test the model. We evaluated five algorithms with the most prominent 

features indicated as the Top-k feature set: 30, 60, 90 and 120, and their detection accuracies 

were recorded and compared.  

 

Table 5.8: The accuracy of the classifiers with k feature dimensions 

 

 KNN LR SVM RF DT 

30 0.567 0.766 0.853 0.674 0.657 

60 64.47 0.887 0.853 0.724 0.949 

90 0.782 0.801 0.974 0.576 0.805 

120 0.701 0.779 0.842 0.589 0.783 
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Table 5.8 shows the detection accuracy of the classifiers with selected subset k 

features. In this experiment, the highest accuracy of 97.4% achieved by the SVM with low 

false-positive rate of 0.016 when the top90 k of the feature set was used. However, this 

detection accuracy had dramatically decreased to 85.3% when top30 and top60 of the 

feature set were employed. From Table 5.8, it is obvious that the kNN classifier exhibits 

the lowest detection performance of 56.7%, 64.4% and 78.2% at all experimented k 

features.  

 

Table 5.9: Precision, Recall, F1-measure and FPR with k feature dimensions 

 KNN LR SVM  RF DT 

Precision 0.308 0.751 0.986 0.601 0.801 

Recall 0.328 0.761 0.994 0.555 0.816 

F1-measure 0.358 0.749 0.986 0.554 0.807 

FPR 0.801 0.284 0.016 0.399 0.216 

 

As presented in the Table 5.8, the accuracy of all classifiers is slightly similar when 

k=30. Regarding the classifier’s accuracy, the DT outperforms the other approaches by 

presenting a 94.9% detection rate when the top60 features were applied. Furthermore, when 

we increase the size of the k features to the 120, the accuracy of the classifiers improved 

compared to the lower features.  On the other hand, the experimental results shown in 

Figure 5.11 reveals that the AUC values of the top30 features decreased as there are 

behaviors that have a high frequency in both malicious and benign logs. This indicates that 

fewer features do not characterize the real behavior of the ransomware as shown in Figure 

5.11(a). Moreover, the ROC curve achieved the highest AUC rate of 98% as we increase 

the size of the k to the top90 features. Table 5.9 illustrates the Precision, Recall, F1-measure 

and FPR for the classifiers on the top90 k features. This Table clearly shows the SVM and 

DT achieved better performance not only for the precision and recall but also the F1-

measure as well. 
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5.2.3 Experiment Three 

 

In Experiment one, the classifiers presented low accuracy of 0.901 when the whole 

dataset is used, this is due to some integrated features that are common both available in 

ransomware and benign executables. In addition, we used a large dataset, containing several 

major ransomware families and several hundreds of irrelevant and noisy features generated 

by the ransomware to hide its malicious behaviour. Unlike, the experiment one, in this 

section we applied system calls as they are effective for distinguishing between the 

behaviour of malicious and benign programs. We also implemented an automated deep-

learning-based ransomware detection engine that can automatically detect whether an 

executable is a ransomware or not. With thousands of ransomware executables, we 

 

 

 

 

 

 
Figure 5.11:  ROC Curve of the Classifiers with different on k features 
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thoroughly test our model and perform an in-depth analysis on the features that deep 

learning essentially exploits to characterize the ransomware. So, deep learning models has 

the ability to perform automatic feature extraction from raw data, also called feature 

learning.  

This section will represent the algorithm of our detection model presented in section 

3, subsection 3.2.3. Here, we have considered the  different arrangement of nodes described 

in section 4, subsection 4.6.3 on Table 4.4. We have varied the epoch number and do the 

train and test using 10-fold cross validation. The detection model is trained and tested using 

both global features and selected features obtained from Algorithm 5.1. 

 

Algorithm 5.1: Varying the node arrangements using Deep Learning based Model 

 𝑖𝑛𝑝𝑢𝑡 ← 𝐷𝑎𝑡𝑎(𝐹1𝐹2, 𝐹3 … … … … 𝐹𝑚) {data set with m number of global features} 

 Output 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 

1.  Begin 

2.  Set 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 ←

(𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡1𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡2, … … … … 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑛)  

3.  for each 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 in 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 do 

4.              for  𝑓𝑜𝑙𝑑 = 1 to 10 do 

5.                     for  𝑒𝑝𝑜𝑐ℎ = 1 to 500 do 

6.                             Train the model using global set of features  

7.                             Test the model 

8.                              Evaluate  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1                

9.                     end for  

10.           end for 

11.  end for 

12.  Set 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐹𝑎𝑠𝑡𝐼𝐶𝐴 

13.  for each 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡 in 𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡𝑠 do 

14.              for  𝑓𝑜𝑙𝑑 = 1 to 10 do 

15.                     for  𝑒𝑝𝑜𝑐ℎ = 1 to 500 do 

16.                             Train the model using 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

17.                             Test the model 

18.                             Evaluate the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2              

19.                    end for  

20.           end for 

21.  end for 

22.  END 
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Since we are considering the different number of nodes in the hidden layer, we have 

chosen three different architectures of node arrangements- equal number of nodes in hidden 

layers, more nodes in 1st layer and less nodes in 2nd layer and less nodes in first layer, 

more nodes in 2nd layer. In the first stage of our experiment, the deep learning-based 

detection model is developed using TensorFlow, and the performance of this model is 

evaluated using the global set of features. In our data set, there are total 15,972 features. 

This large number of features takes much more time even though we have GPU based 

operations to minimize the computational cost. The following Table 5.10(A), 5.10(B)) 

describes the performance details of our model using the global set of features. 

 

Table 5.10 (A): Performance details using Global Set of features  

 

With Global set of features and 500 epochs 

 L32_L

32 

L32_L64 L64_L3

2 

L64_L64 L64_L128 L128_L64 

Accuracy 95.227 94.9040 95.3092 94.90734 95.1505 95.067 

Loss 0.1576 0.17443 0.1566 0.1596 0.1645 0.1584 

Recall 0.9543 0.94413 0.9440 0.9481 0.9482 0.9420 

Precession 0.9260 0.92800 0.9370 0.9245 0.9296 0.9330 

f1 score 0.9398 0.9351 0.9402 0.9356 0.9385 0.9371 

AUC 0.9926 0.9914 0.9927 0.9927 0.9921 0.9921 

TPR 0.9702 0.9637 0.964 0.9662 0.9663 0.9626 

TNR 0.9257 0.9268 0.9363 0.9233 0.9290 0.9323 

FPR 0.0742 0.0731 0.0636 0.0766 0.0709 0.0676 

FNR 0.0297 0.0362 0.036 0.0337 0.0336 0.0373 

 

 Table 5.10 (B): Performance details using Global Set of features  

 

With Global set of features and 500 epochs 

 L128_L

128 

L128_L

512 

L512_L

512 

L512_L1

024 

L1024_L

512 

L1024_L1024 

Accuracy 95.877 95.309 95.956 95.793 95.392 95.962 

Loss 0.1548 0.1613 0.1572 0.1758 0.1666 0.1548 

Recall 0.9545 0.9503 0.9627 0.9627 0.9524 0.9648 

Precession 0.9415 0.9312 0.9361 0.9320 0.9314 0.9343 

f1 score 0.9475 0.9405 0.9490 0.9469 0.9415 0.9492 

AUC 0.9930 0.9926 0.9933 0.9932 0.9921 0.9935 

TPR 0.9705 0.9677 0.9756 0.9756 0.9690 0.9769 
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TNR 0.9408 0.9310 0.9356 0.9318 0.9311 0.9338 

FPR 0.0591 0.0689 0.0643 0.0681 0.0688 0.0661 

FNR 0.0294 0.0322 0.0243 0.0243 0.0309 0.0230 

 

Table 5.10(A, B) shows that, we have achieved 95.96% of accuracy with equal 

number of nodes 1024 in each layer (Architectute1). The area under ROC curve (AUC) is 

0.9935, very close to 1. Moreover, we have used FastICA for the compression of the 

features and run the model with 40,50,80 and 100 features. The highest accuracy level is 

94.837% using 50 selected features and architecture1 with 512 nodes in L1 and L2 is 

considered here.  In this case, the AUC is 0.9871 which is also very satisfactory. The 

performance details are shown in the Table 5.11(A, B), Table 5.12(A, B), Table 5.13(A, B) 

and Table 5.14(A, B). 

 

Table 5.11 (A): Performance details using FASTICA with 40 features 

  

With 40 selected features using FastICA and 500 epochs 

 L32_L3

2 

L32_L6

4 

L64_L32 L64_L64 L64_L128 L128_L64 

Accuracy 92.729 93.457 92.725 93.619 94.185 92.648 

Loss 0.2359 0.2220 0.2355 0.2217 0.2115 0.2223 

Recall 0.8944 0.9007 0.8861 0.9131 0.9069 0.8988 

Precessio

n 

0.9216 0.9318 0.9295 0.9268 0.9433 0.9155 

f1 score 0.9060 0.9148 0.9054 0.9181 0.9239 0.9054 

AUC 0.9850 0.9857 0.9851 0.9856 0.9860 0.9855 

TPR 0.9334 0.9375 0.9289 0.9446 0.9417 0.9356 

TNR 0.9171 0.9294 0.9244 0.9225 0.9419 0.9117 

FPR 0.0828 0.0705 0.0755 0.0774 0.0580 0.0882 

FNR 0.0665 0.0624 0.0710 0.0553 0.0582 0.0643 

 

Table 5.11 (B): Performance details using FASTICA with 40 features  

 

With 40 selected features using FastICA and 500 epochs 

 L128_L

128 

L128_L

512 

L512_L

512 

L512_L1

024 

L1024_L

512 

L1024_L10

24 

Accuracy 94.109 92.888 92.807 93.461 93.700 93.380 

Loss 0.2117 0.1999 0.2013 0.1990 0.2066 0.1976 

Recall 0.9129 0.9110 0.9193 0.9068 0.9192 0.9049 
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Precession 0.9377 0.9125 0.9057 0.9290 0.9230 0.9268 

f1 score 0.9240 0.9102 0.9101 0.9158 0.9196 0.9147 

AUC 0.9856 0.9864 0.9871 0.9868 0.9861 0.9871 

TPR 0.945 0.9428 0.9475 0.9410 0.9482 0.9397 

TNR 0.9343 0.9072 0.8987 0.9240 0.9192 0.9238 

FPR 0.0656 0.0927 0.1012 0.0759 0.0807 0.0761 

FNR 0.0549 0.0571 0.0524 0.0589 0.0517 0.0602 

 

Table 5.12 (A): Performance details using FASTICA with 50 features  

 

With 50 selected features using FastICA and 500 epochs 

 L32_L32 L32_L6

4 

L64_L3

2 

L64_L6

4 

L64_L12

8 

L128_L6

4 

Accuracy 93.702 94.271 94.514 94.028 93.706 93.703 

Loss 0.2252 0.2132 0.2234 0.2124 0.2065 0.2148 

Recall 0.9069 0.8945 0.9027 0.9090 0.8883 0.9130 

Precession 0.9319 0.9572 0.9554 0.9369 0.9480 0.9264 

f1 score 0.9185 0.9238 0.9278 0.9224 0.9164 0.9190 

AUC 0.9859 0.9860 0.9859 0.9859 0.9860 0.9859 

TPR 0.9412 0.93503 0.9397 0.9427 0.9311 0.9447 

TNR 0.9299 0.9557 0.9540 0.9360 0.9470 0.9245 

FPR 0.0700 0.0442 0.0459 0.0639 0.0529 0.0754 

FNR 0.0587 0.0649 0.0602 0.0572 0.0688 0.0552 

 

 

Table 5.12 (B): Performance details using FASTICA with 50 features  

 

With 50 selected features using FastICA and 500 epochs 

 L128_L

128 

L128_L5

12 

L512_L5

12 

L512_L10

24 

L1024_L5

12 

L1024_L1024 

Accura

cy 

94.188 94.596 94.837 94.275 93.946 93.704 

Loss 0.2032 0.1897 0.1911 0.1870 0.1936 0.1893 

Recall 0.9048 0.8986 0.9153 0.8863 0.9027 0.9071 

Precess

ion 

0.9447 0.9607 0.9509 0.9637 0.9418 0.9310 

f1 score 0.9240 0.9281 0.9326 0.9231 0.9209 0.9181 

AUC 0.9863 0.9867 0.9871 0.9875 0.9874 0.9876 

TPR 0.9405 0.9375 0.9468 0.9306 0.9391 0.9412 

TNR 0.9438 0.9601 0.9505 0.9639 0.9396 0.9299 

FPR 0.0561 0.0398 0.0494 0.0360 0.0603 0.0700 

FNR 0.0594 0.0624 0.0531 0.0693 0.0608 0.0587 
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Table 5.13 (A): Performance details using FASTICA with 80 features  

 

With 80 selected features using FastICA and 500 epochs 

 L32_L32 L32_L64 L64_L32 L64_L64 L64_L12

8 

L128_L6

4 

Accuracy 94.347 94.187 93.945 94.108 93.947 93.784 

Loss 0.2248 0.2145 0.2256 0.2138 0.2077 0.2167 

Recall 0.9006 0.8903 0.8945 0.8883 0.8862 0.8965 

Precessio

n 

0.9536 0.9590 0.9482 0.9588 0.9567 0.9421 

f1 score 0.9254 0.9225 0.9199 0.9214 0.9193 0.9182 

AUC 0.9860 0.9858 0.9853 0.9854 0.9855 0.9844 

TPR 0.9384 0.9327 0.9346 0.9315 0.9302 0.9356 

TNR 0.9518 0.9576 0.9473 0.9575 0.9553 0.9413 

FPR 0.0481 0.0423 0.0526 0.0424 0.0446 0.0586 

FNR 0.0615 0.0672 0.0653 0.0684 0.0697 0.0643 

 

 Table 5.13 (B): Performance details using FASTICA with 80 features  

 

With 80 selected features using FastICA and 500 epochs 

 L128_L

128 

L128_L

512 

L512_L5

12 

L512_L10

24 

L1024_L5

12 

L1024_L10

24 

Accuracy 93.7854 93.866 93.866 94.026 93.783 94.028 

Loss 0.2052 0.1961 0.1975 0.1936 0.1982 0.1888 

Recall 0.8925 0.8904 0.8925 0.8987 0.9068 0.8987 

Precession 0.9464 0.9502 0.9493 0.9470 0.9338 0.9466 

f1 score 0.9177 0.9186 0.9188 0.9213 0.9190 0.9212 

AUC 0.9862 0.9862 0.9874 0.9874 0.9871 0.9883 

TPR 0.9334 0.9323 0.9335 0.9370 0.9413 0.9370 

TNR 0.9451 0.9492 0.9472 0.9455 0.9319 0.9455 

FPR 0.0548 0.0507 0.0527 0.0544 0.0680 0.0544 

FNR 0.0665 0.0676 0.0664 0.0629 0.0586 0.0629 

  

 
Table 5.14 (A): Performance details using FASTICA with 100 features  

 

With 100 selected features using FastICA and 500 epochs 

 L32_L32 L32_L64 L64_L32 L64_L64 L64_L12

8 

L128_L6

4 

Accuracy 94.029 93.867 94.027 93.786 93.704 94.189 

Loss 0.2229 0.2193 0.2254 0.2159 0.2101 0.2154 

Recall 0.8862 0.8862 0.8903 0.8924 0.8903 0.8883 
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Precessio

n 

0.9592 0.9554 0.9552 0.9471 0.9478 0.9618 

f1 score 0.9204 0.9184 0.9207 0.9179 0.9168 0.9225 

AUC 0.9838 0.9841 0.9838 0.9838 0.9836 0.9835 

TPR 0.9303 0.9302 0.9325 0.9334 0.9322 0.9316 

TNR 0.9574 0.9532 0.9534 0.9451 0.9450 0.9597 

FPR 0.0425 0.0467 0.0465 0.0548 0.0549 0.0402 

FNR 0.0696 0.0697 0.0674 0.0665 0.0677 0.0683 

 

Table 5.14 (B): Performance details using FASTICA with 100 features  

With 100 selected features using FastICA and 500 epochs 

 L128_L1

28 

L128_L5

12 

L512_L5

12 

L512_L10

24 

L1024_L5

12 

L1024_L10

24 

Accurac

y 

93.948 93.944 94.105 94.186 94.348 94.434 

Loss 0.2103 0.1976 0.1993 0.1942 0.2013 0.1958 

Recall 0.8883 0.8965 0.9047 0.9048 0.9088 0.9088 

Precessi

on 

0.9552 0.9469 0.9435 0.9456 0.9468 0.9494 

f1 score 0.9196 0.9203 0.9229 0.9238 0.9262 0.9274 

AUC 0.9841 0.9858 0.9853 0.9858 0.9866 0.9866 

TPR 0.9313 0.9358 0.9404 0.9405 0.9430 0.9430 

TNR 0.9533 0.9454 0.9418 0.9438 0.9440 0.9461 

FPR 0.0466 0.0545 0.0581 0.0561 0.0559 0.0538 

FNR 0.0686 0.0641 0.0595 0.0594 0.0569 0.0569 

 

Moreover, we have considered the accuracy Vs epoch and Loss vs epoch curves to 

represent the learning process of our model. We have also considered the Adam optimizer 

to optimize the learning process.  The following Figures (Figure 5.12 and 5.13) shows the 

learning process of our model where the loss minimizes, and accuracy maximizes with the 

increase of epoch numbers. 
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Figure 5.12: Accuracy VS epoch number and Loss VS epoch number for L1024_L1024 

with global set of features 

 

Figure 5.13: Accuracy VS epoch number and Loss VS epoch number for L512_L512 

with 50 selected features using FastICA 
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5.3 Comparisons 
 

Although our proposed methods show a better result, we also need to examine the 

capabilities of detecting the variants of known and unknown ransomware. We measure our 

model through effectiveness and accuracy criteria mentioned in the section 3, subsection 

3.3. Therefore, we compare the performance of the proposed methods with other previous 

works, anti-virus engines and the similar methods like mRmR. The following subsection 

will explain in details. 

 

5.3.1 Comparing with the other classifiers  

 

We compare the accuracy of our proposed method with other classifiers in terms of 

the detection capabilities of the variants of known and unknown ransomware. For the 

purpose of the performance comparisons, the performance of the classifiers is determined 

through the evaluation criteria. For comparison purposes, we divide into two different 

scenarios.  

5.3.1.1 Scenario one  

 

In this scenario, we evaluate the performance of the Experiment One in section 5.3.1 

method with the other three classifiers such as K-Nearest Neighbor (KNN), Decision Tree 

and Random Forest (RF). We tested the most informative features selected by the term 

frequency-inverse document frequency (TF-IDF) feature selection algorithm presented in 

Section 4.6.1. We explored the highest top features set with a testing 10-Fold cross 

validation techniques. 

 

Table 5.15: Comparison of the Experiment One Method with other Classifiers 

 FP Rate  TP Rate Precision Recall AUC Detection Rate 

kNN 0.246 0.812 0.812 0.802 0.823 0.834 

ANN 0.0261 0.986 0.981 0.979 0.983 0.986 

SVM 0.016 0.986 0.976 0.971 0.973 0.979 

RF 0.284 0.747 0.751 0.747 0.786 0.798 

DT 0.061 0.945 0.945 0.944 0.946 0.952 
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Table 5.15 compares the accuracy of each classifier trained and tested with the 

selected top features. The ANN has performed the highest accuracy among all classifiers 

by presenting 0.986 of accuracy and less false positive rate. The RF classifier presented the 

lowest accuracy among the classifiers and shows 0.798 of accuracy, this poor performance 

is probably due to the overfitting problem during the training that the model is unable to 

generalize the new features in the testing phase.  

 
Figure 5.14. ROC Comparison of the Experiment One Method with other classifiers 

 

On other hands, we evaluated the performance of the classifiers in terms of values 

of the Area under Curve (AUC) as evaluation metrics in this experiment. Figure 5.13 

illustrates the AUC variations for the five classifiers. Three classifiers (ANN, SVM, and 

DT) have a high AUC rate while other two classifiers (kNN and RF) have a slightly lower 

AUC rate. 

 

5.3.1.2 Scenario two  

 

In this scenario, we compare the performance of the deep learning-based model 

presented in Experiment Three, in section 5.3.3 with other classifiers, we have chosen 

SVM, Random Forest, and Multiclass Classifier. The performance details are represented 

in Table 5.16. The comparison is illustrated in the following Table 5.17. 
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Table 5.16: The performance of SVM, Random Forest and Multi-Class classifiers 

 

 SVM Random Forest Multi Class  

Accuracy 89.9757  90.9458 88.1164 

Recall 0.900 0.909 0.881 

Precession 0.909 0.919 0.891 

f1 score 0.901 0.910 0.882 

AUC 0.909 0.971 0.955 

TPR 0.900  0.909    0.881 

FPR 0.081  0.070 0.101 

 

From the comparison Table 5.17, we have observed that our designed model using 

deep learning and FastICA show better performance than the other classifiers. The 

proposed detection model has achieved 95.96% and 94.837% of accuracy using global and 

FastICA selected features respectively whereas the SVM achieved 89.97% and random 

Forest achieved 90.94% of accuracy.  

Table 5.10,5.11,5.12,5.13 and 5.14 have shown that the equal number of nodes in 

L1 and L2 (Architecture 1) shows the best accuracy and lower false positive rate. 

Additionally, a higher epoch number shows better performance than lower epoch number. 

 

Table 5.17: Comparison with other Classifiers in Experiment Three 

 

 Accuracy Level Area Under ROC 

Curve (AUC) 

SVM 89.9757 % 0.909 

Random Forest 90.9458 % 0.971 

Multi Class Classifier 88.1164 % 0.955 

Our Detection Model using Deep learning-based 

approach with features using FastICA 

[Architecture1 with 512 nodes in each layer] 

94.837% 0.9871 

Our Detection Model using Deep learning-based 

approach with global set of features 

[Architecture1 with 1024 nodes in each layer] 

95.9629% 0.9935 
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5.3.2 Comparing with the previous work 

 

In this section, we compare the performance of the proposed methods with the 

previous similar works based on the capabilities of detecting the variants of known and 

unknown ransomware. For the purpose of the performance comparisons, the effectiveness 

and the accuracy of the classifiers are determined via the evaluation criteria. For 

comparison benchmarks, we divide into two different scenarios as we highlighted in the 

following sections.   

 

5.3.2.1 Scenario one  

 

The purpose of this section is to compare the performance of the Experiment One, 

in section 5.3.1 of the proposed method with the previous similar works based on feature 

type and the classifier used. Sgandurra et al. proposed a machine learning-based framework 

with integrated features to identify the characteristics of the ransomware in the earlier 

phases, authors analyzed and extracted seven different features dynamically, they applied 

Logistic Regression classifier that achieved 96.3% detection rate with an area under the 

ROC curve of 0.995% (Sgandurra et al., 2016).  

 

 

Table 5.18: Comparing the Experiment One proposed approach with earlier work 

 

Works Classifier(s) Used Det.Rate 

Experiment One of the Proposed Method SVM and ANN 0.986 

Sgandurra et al, EldeRan Framework Logistic Regression 0.963 

Mahbub et al, RansHunt framework SVM 0.971 

Ahmadian et al., 2entFOX Framework Bayesian belief network 0.985 

Alhawi at al., NetConverse scheme BN, J48, kNN, MLP, RF and LMT 0.971 

Zhang et al. DT, RF, KNN, NB and GBDT 0.914 

Poudyal at al. BN, LR, SVM, DT, RF and ADA 0.965 

 

Similar work was presented by Mahbub and Mahbubur using integrated features 

from static and dynamic analysis with a machine learning algorithm. Authors proposed 
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RansHunt framework to detect ransomware using support vector machine (SVM) with 

unique features. They claimed the hybrid analysis method can early detect the new 

ransomware variants (Hasan & Rahman, 2017). The RansHunt framework achieved an 

accuracy of 97.10 with less positive rate. A work of Zhang et al. employed the opcode 

sequences features with five machine-learning algorithms for the detection of ransomware. 

The classifier showed an accuracy of 91.43%. The Table 5.18. summarizes the comparison 

result of our proposed method against with similar works (Zhang et al., 2019). 

 
Figure 5.15: Comparison of the Experiment One method with other classifiers 

 

 

5.3.2.2 Scenario two  

 

In this section, we compare the performance of Experiment Two, in section 5.3.2 of 

the proposed method with the previous similar works based on the capabilities of detecting 

the variants of known and unknown ransomware. Non-signature-based approach for the 

detecting of the obfuscated malware samples has proposed by the Vinod et al et al. This 

method employed Minimum Redundancy and Maximum Relevance (mRmR) method and 

the Principal Component Analysis (PCA) with different mnemonic n–grams to extract 

predominant features (Vinod et al., 2012).  
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Table 5.19: Comparing the Experiment Two proposed approach with earlier work 

 

Works Classifier(s) Used Detection Rate 

Proposed  kNN, LR, SVM, RF and DT 0.981 

Vinod et al et al. NB, SMO, IBK, J48, ADA and RF 0.941 

Iglesias and Zseby  DT, kNN, NB, LASSO-LAR, ANN and 

SVM 

0.954 

Sgandurra et al  Logistic Regression 0.963 

Ye et al. OOA_Apriori, OOA_FP-Growth and 

OOA_Fast_FP-Growth 

0.931 

Mahbub et al. SVM 0.971 

 
For classification purposes, several supervised machine learning algorithms are 

used that obtained detection accuracy of 94.1% with mRmR generated features. Similar 

work was presented by the Iglesias and Zseby proposing a feature reduction method for the 

network traffic using combined feature selection techniques such as SAM, LASSO, WMR, 

and mRmR (Iglesias & Zseby, 2015). In their work, commonly used 41 traffic features have 

been reduced into 16 features based on their contribution to the anomaly detection. To 

evaluate the proposed combined feature selection approach, the authors utilized six 

classification algorithms with fivefold cross-validation. The experimental results reveal a 

detection accuracy ranging from 0.27 to 95.48 with mRmR generated features.  

 

 
Figure 5.16: Compares the number of evaluations both mRmR and the EmRmR method 
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Sgandurra et al. have proposed a Logistic Regression classifier-based framework 

for the detection of the ransomware with integrated features. The authors dynamically 

analyzed 11 different ransomware classes and extracted seven features to characterize the 

behavior of the ransomware in the earlier phases of the attack. In their work, the LR has 

achieved a 96.3% detection rate with an area under the ROC curve of 0.995% and a less 

positive rate (Sgandurra et al., 2016). Ye et al. have discussed the detection of the 

polymorphic and the malicious metamorphic executables. Authors proposed Intelligent 

Malware Detection System (IMDS) using Objective Oriented Association (OOA) mining. 

They applied the Max-Relevance algorithm to select the informative API calls with regard 

to the class labels. To generate association rules among API calls, they adapted OOA 

mining techniques for classification (Ye, Wang, Li, Ye, & Jiang, 2008). A work of Mahbub 

and Mahbubur presented an integrated feature from static and dynamic analysis with a 

machine learning algorithm. Authors proposed RansHunt framework to detect ransomware 

using a support vector machine (SVM) with unique features. They claimed that the hybrid 

analysis method could early detect the new ransomware variants with an accuracy of 0.971 

and a less positive rate. Table 5.19 shows the comparison of the proposed work with the 

previous work (Hasan & Rahman, 2017).  

 
 

5.3.3 Comparing mRmR with the proposed EmRmR method 
 

In this section, we evaluate the performance of the proposed method in section 4, 

subsection 4.6.2 with the original mRmR in terms of running time and the number of 

calculations on different feature sets. For the experiments, we employed a dataset consists 

of 14 different ransomware and 7 benign classes as presented in section 3, subsection 

3.2.1.2, and tested each separately. We computed the runtime by counting the total time 

that the mRmR and the EmRmR method taking to select specific features from the collected 

logs. We adjusted the number of features to be selected as fifty features for both mRmR 

and the EmRmR method.  The average runtime analysis and the number of computations 

of the mRmR and the mRmR method with mutual information (MI) on the various datasets 

are depicted in Figures 5.15-5.16.  
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Overall, the proposed method significantly outperformed the original mRmR 

method by reducing the computational time to an average of 9.6 minutes for the entire 

dataset as shown in Figure 5.17. The proposed method needs less than one minute to finish 

execution for the datasets with a large number of features like DD, CB, DU, CL and MT, 

whereas mRmR requires two minutes and 85 seconds. Regarding the datasets where the 

number of samples is small like DC, PC and KV, the runtime demanded by the EmRmR 

method reaches 91 up to the 46 seconds. This indicates that the proposed method is more 

than three times faster than the original mRmR. 

    

 
Figure 5.17:  Time-complexity for mRmR and the Proposed EmRmR Method 

 

In addition, we explored the number of computations executed by both mRmR and 

the Enhanced mRmR method on each of the aforementioned datasets. Similar to the 

previous running time analysis, again we set the number of features to select as 50 and 

calculated the number of evaluations required by the mRmR and the unnecessary 

evaluations of MI avoided by the EmRmR method. It is interesting to note that the proposed 

method has achieved important enhancement concerning the amount of the evaluations 

performed by the mRmR, particularly using samples with a large number of noisy features 

like CW, EC, DD, MT, EC, and DU. Generally, the EmRmR method has a lower margin 

of 18336 number of evaluations than the mRmR which is 43.65% lower on the whole 

datasets.     
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Table 5.20: Comparison of mRmR and the proposed EmRmR method 

 mRmR Proposed EmRmR Difference 

Runtime (s) 1169.42 742.83 426.59 

Evaluations 32542 18336 14206 

 

The reason for this reduced number of evaluations is due to the accumulating of 

mutual information computations achieved by the EmRmR. The run time and the number 

of evaluations for the mRmR and the EmRmR method on different datasets are presented 

in Table 5.20-5.21.  

 

5.3.4 Comparison with AV scanners 
 

Although our proposed method of Experiment One, in section 5.3.1, shows a better 

result, we also need to examine the capabilities of detecting the variants of known and 

unknown ransomware. We measure our classifiers through effectiveness and accuracy 

criteria and compare the performance of our proposed method with anti-virus engines. For 

comparative benchmarks, we selected the five Anti-Virus (AV) scanners with the highest 

detection rate available at VIRUSTOTAL service. VirusTotal (VT) is a web service that 

allows the analysis of a given malware sample by the signature-based engines of different 

AntiVirus vendors. All the engines are always kept up-to-date with the latest version of the 

signatures. A submission of a malware sample to VirusTotal at a given point in time thus 

provides a snapshot on the ability of the different signature-based engines to correctly 

identify a threat in such samples. 

The detection performance of each AV scanners is evaluated using standard 

accuracy measurements such as True Positive Rate (TPR), False Positive Rate (FPR), ROC 

curve and the detection rate. From the experimental results, we observe that ANN 

significantly outperformed the other approaches and showed 0.986 of AUC, it also 

presented TPR of 0.988 and FBR of 0.036, despite ANN’s false positive rate is higher than 

3 of the AVs as shown in Table 5.22. 
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Table 5.21: Comparing mRmR and EmRmR based on the number of calculations and run 

Time on different datasets 

 
Dataset  Acr

ony

m 

Cla

ss 

Sam

ple 

Featur

es 

mRmR EmRmR 

#Calc #RTime (s) # Calc # RTime (s) 

WannaCry WC M 74 8263 329 1.81 165 0.56 

Reveton RV M 50 5021 316 1.75 163 0.53 

Torrent Locker TL M 108 1102 460 2.84 205 1.43 

Dirty Decrypt DD M 51 7539 314 1.03 153 0.46 

CryptLocker CL M 173 44869 2850 103 1493 0.62 

Cerber CB M 171 44235 2630 96 1210 0.59 

Trojan-Ransom TR M 82 18593 986 11.2 560 7.82 

Kollah KL M 73 7159 304 1.72 159 0.52 

Citroni CT M 67 8036 303 1.01 138 0.41 

Pgpcoder PC M 46 8172 283 0.95 134 0.43 

Kovter KV M 23 7985 271 0.91 128 0.39 

Petya PT M 89 17652 1030 12.3 654 8.62 

CryptoWall CW M 151 43281 2937 113 1702 79.5 

TeslaCrypt TC M 96 20352 1262 13.2 865 9.36 

Compression CM B 225 26350 1390 18.4 920 11.5 

Encryption EC B 172 44856 3001 110 1700 82.1 

Data Destruction DD B 401 54385 3807 225 2053 139 

Drivers Updater DU B 230 46523 2862 183 1802 110 

Browsers BR B 152 45383 2804 102 1398 78 

Multimedia tools MT B 182 40359 3240 126 2014 92 

Others OT B 96 22986 1163 14.3 720 8.2 

 
Figure 5.18: Comparison of the proposed method to VirusTotal 
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The other hands, the VirusTotal achieved the highest accuracy over the SVN and 

ANN algorithms with a detection rate of 0.989 and 0.986, though ANN classifier 

outperforms 3 out of 5 top selected AV scanners. This is due to the most common detection 

method used by the antivirus is signature-based detection; which implies that VirusTotal 

AV engines already have a matched signature of these datasets. In addition, some of our 

data set are publicly available for a longer period.  

 

 Table 5.22: Comparison of our proposed approach with AVs 

 

The Figure 5.18 shows the comparison of the detection rate and false alarm of the 

VIRUSTOTAL and our method using both ANN and SVM. From the result of Figure 5.18, 

it is obvious that the AUC of VIRUSTOTAL outperforms ANN and SVM algorithms, 

however, according to the false alarm criteria, the VirusTotal shows an average of 5.4% 

and is worse than ANN classifier that presents an average error rate of 2.3%. ANN provided 

a better accuracy regarding SVM with 4.4% error rate. 

 

5.4 Discussions 

 

In this section, we present the discussions on the experimental results obtained from 

the previous sections. We discuss three different experiments such as an automated 

dynamic behavioural detection framework. Another important detection model which is a 

system call refinement-based enhanced minimum redundancy maximum relevance method 

for ransomware early detection and the last model which is the avoiding future digital 

 
TP Rate  FP Rate 

AUC Detection 

Accuracy 

SVM 0.0993 ± 0.0837 0.0371 ± 0.006 0.977 ± 0.238 0.9760±0.8910 

ANN 0.0988 ± 0.0841 0.0360 ± 0.007 0.986 ± 0.186 0.9870±0.9010 

AV1 0.0203 ± 0.0079 0.0186 ± 0.0080 0.977 ± 0.238 0.989 ± 0.0273 

AV2 0.0159 ± 0.0060 0.0166 ± 0.0048 0.986 ± 0.186 0.986 ± 0.0262 

AV3 0.0274 ± 0.0082 0.0396 ± 0.0080 0.977 ± 0.238 0.9569 ± 0.0173 

AV4 0.0205 ± 0.0079 0.0000 ± 0.0000 0.986 ± 0.186 0.9369 ± 0.0173 

AV5 0.0101 ± 0.0079 0.0496 ± 0.0080 0.977 ± 0.238 0.9160 ± 0.0273 
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extortion through robust protection against ransomware threats using deep learning-based 

adaptive approaches, the following subsection will explain detail.  

 

5.4.1 Automated dynamic behavioral detection framework 
 

The avoidance techniques that ransomware employs such as obfuscation and/or 

packing makes it difficult to analyse such programs statically. Although many ransomware 

detections studies have been conducted, they are limited to a small portion of the attack's 

characteristics. To this end, this research proposed a framework for the behavioural-based 

dynamic analysis of ransomware with integrated valuable feature sets. 

This method analysed 673 real-world ransomware samples that infect Windows 

platforms. We collected 1,254 ransomware samples of 14 newly emerged different 

ransomware families from several sources such as VirusShare and VirusTotal. We focused 

these malicious behaviours on their suspicious intentions of 14 families. The activities 

performed by the malicious program is recorded in the sandbox in a controlled environment 

and obtained generated report of the samples as JSON format. The size of the report 

generated by the sandbox occupies hundreds of MBs, analysing and examining each report 

manually is experimentally infeasible, therefore, we build our own parsing algorithm to 

convert JSON formatted string representations to key-pair objects. The feature parsing 

reads the JSON files from all sandbox output reports and then parsed to get the required 

features to reduce the search space. 

Then, the extracted a set of features that forms an integrated set of features that 

could indicate what the ransomware strain is actually doing on the system. Term 

Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful 

features from the analysed samples. Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) were utilized to develop and implement a machine learning-based 

detection model able to recognize certain behavioural traits of high survivable ransomware 

attacks. Creating SVM and ANN models require to set various parameters and test 

individually to select the best model among them. In this study, SVM kernel functions such 

as the linear kernel, polynomial kernel and Radial basis function (RBF) are used.   
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In this study we applied three different experiments along with a variety of outputs.  

Experimental evaluation indicates that the proposed framework achieved an area under the 

ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate 

that the proposed framework can detect high survivable ransomware in the early stage 

accurately. To empirically evaluate the proposed approach, we compared the experimental 

results with previous work, other classifiers and the VirusTotal service. 

 

5.4.2 A System Call Refinement-Based EmRmR Method for Ransomware Detection 

 

Ransomware is a special type of malicious software that encrypts the user’s assets 

and makes it unavailable to the users until a ransom is paid to the ransomware author. 

Distribution of the crypto-ransomware can happen through a very large infection vector 

including application and browser vulnerabilities, extraction of ZIP files, malicious payload 

e.g. cryptoWall, JRE vulnerability e.g. DMA locker, exploit kits such as neutrino, eternal 

blue, eternal romance, etc. Such attacks have become one of the most widespread malwares 

that poses serious threat to both individuals and business organizations.  Against this 

destructive malicious program, the dynamic analysis approach is the most popular approach 

for detecting such an attack. The majority of dynamic analysis relies on the system calls as 

these provide an interface for programs to request service from the operating system. 

However, to hide its malicious behaviour, ransomware invokes a huge amount of system 

calls that contain the redundancy and the irrelevant system calls that the ransomware 

authors inject in the actual execution flow of suspicious binaries generate a high noisy 

behavioural sequence that adversely impacts in the induction of the classifiers. 

 To this end, we proposed a non-signature-based detection approach on the effective 

windows API call sequences using supervised machine learning techniques. We also 

introduced a refinement process to reduce the size of the system call traces gathered from 

the dynamic analysis and filter the system call that do not describe the behaviour of the 

malware. Then, five machine-learning classifiers (Decision Tree (DT), K-Nearest 

Neighbour (KNN), Logistic Regression (LR), Random Forest (RF) and Support Vector 

Machine (SVM)) are trained on the refined system call sequences. We tested the classifiers 
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on the various performance metrics with an extensive experimental evaluation to determine 

the effectiveness of the proposed method.  

To achieve this objective, we proposed an Enhanced Maximum-Relevance and 

Minimum-Redundancy (EmRmR) filter method to remove the noisy features and select the 

most relevant subset of features to characterize the real behaviour of the ransomware. 

Unlike the original mRmR, the EmRmR avoids unnecessary computations intrinsic in the 

original mRmR algorithms with small number of evaluations. To prove this, we 

experimented with the EmRmR algorithm on datasets with different feature-sets and 

compared with mRmR. The EmRmR method was three times faster than the original 

mRmR.  

In addition, this work has introduced a refinement process to reduce the size of the 

program’s call traces by removing those windows API calls that do not have a strong 

indication for describing the critical behaviour of the ransomware. To do this, Windows 

API calls performed by the ransomware are deeply studied through the descriptions 

provided by Microsoft’s website using a customized python script. After accomplishing 

extensive experimental evaluations, and comparing with existing behavioural-based 

detection approaches, the proposed method has shown to be effective for discriminating the 

behavior of ransomware, and indicates a high detection accuracy with few false-positive 

rates. For comparative benchmarks, we evaluated the performance of the proposed method 

with the previous similar works based on the capabilities of detecting the variants of known 

and unknown ransomware. 

 

5.4.3 Avoiding future digital extortion through robust protection against 

ransomware threats using deep learning based adaptive approaches  

 

Digital extortion has become a major cyber risk for many organizations; small-

medium enterprises (SME) to large enterprises business and individual entrepreneurs. In 

recent years, mass ransomware attacks not only targeted to the individuals but also have 

been proliferated into the large business organizations such as courier companies FedEx 
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and TNT, Maerx, WPP (the world’s largest advertising agency), pharmaceutical company 

Reckitt Benckiser and Kingdom’s National Health Service. 

 Ransomware is a kind of malware which is the main threat for digital extortion and 

has caused many organizations to lose huge revenue by paying much bigger ransom 

demands to the cyber criminals in recent years. Explosive growth of ransomware is due to 

the existing large infection vector such as social engineering, email attachment, zip file 

download, browsing malicious site, infected search engine which are boosted dramatically 

by easily available cryptographic tools, Ransomware As a Service (RaaS), increased cloud 

storage and off-the-self ransomware toolkits. The large infection vector and available 

toolkits not only grew ransomware extremely, but also made them more obfuscated, 

encrypted and varying patterns in the new variants. This, in turn, caused the conventional 

supervised analysis and detection engine to fail to detect the new variants of ransomware.  

This research addresses the limitations of a conventional supervised detection 

engine and proposes semi-supervised framework to compute the inherent latent sources of 

the varying patterns in the new variants in an unsupervised way using deep learning 

approaches. We Proposed a framework that analysis ransomware based on the runtime 

behavior of program and deep learning based semi-supervised technique, and then extracts 

the inherent characteristics in the varying patterns from the unlabeled ransomware obtained 

from the wild which is scalable to accommodate upcoming malicious executables. Then 

the unsupervised learned model is combined with supervised classification, thus 

constructing an adaptive detection model.  

The novelty of our proposed approach is that deep learning based semi-supervised 

technique can extract dynamics of behavioral patterns from the new variants of ransomware 

obtained from the wild and can integrate the latent sources to the supervised classifier, 

making the detection engine independent of manual signature generation and robust to the 

changes. The proposed framework has been verified using real ransomware data with a 

dynamic analysis testbed. Our extensive experimental results and discussion demonstrate 

that the proposed adaptive framework can successfully identify different variants of 

ransomware and achieve higher performance than existing supervised approaches. 
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5.5 Summary  

 

This section discusses the experimental results of the proposed a behavioural 

ransomware detection framework using a machine-learning approach. Several experiments 

are implemented including an automated dynamic behavioural analysis approach for the 

detection of the ransomware. In this experiment, the key observation of this research is to 

investigate an integrated set of features that could indicate what the ransomware strain is 

actually doing on the system. The TF-IDF algorithm has shown to be an effective approach 

for ranking and weighting behavioural features. We developed a detection model for HSR 

by utilizing Support Vector Machine and Artificial Neural Network algorithms using 

integrated valuable features that generated. Three different experimental evaluation was 

conducted to measure the performance of the proposed method. Through our experimental 

results, the proposed approach has shown to be easy to train and test. Another important 

experiment was carried out, a non-signature-based method for the detection of the 

ransomware on windows API call sequences using a supervised learning approach has been 

proposed. In this experiment, we proposed an enhanced maximum relevance and minimum 

redundancy (EmRmR) method that selects the same features as the original mRmR but 

significantly faster. To carry out this objective, we avoided the unnecessary computations 

of the mutual information by accumulating the duplications of each MI iterations. To prove 

this, we experimented with the EmRmR algorithm on datasets with different feature-sets 

and compared with mRmR. For detection purposes, we employed five machine learning 

classifiers on 𝑛 − 𝑔𝑟𝑎𝑚𝑠 of length 2,3,4 and 5 from each system call sequence made by 

the malicious and benign samples. Finally, we experimented an adaptive approach that can 

extract inherent nature of exploitation and encryption of new variants of ransomware. The 

extracted features are integrated into the supervised detection engine to build an adaptive 

model. The proposed methods have been tested in a real ransomware dynamic analysis 

engine with real ransomware data. Our experimental results demonstrate that the proposed 

model achieves significant performance improvement over supervised detection 

approaches and achieves high accuracies. 
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APPENDIX A 

 

The most important ransomware API Calls with category and attack phases 

 

 API Calls API Category Attack 

Stages 

Functions 

P
re

-E
n
cr

y
p
ti

o
n
 

GetComputerNameA System 

Information  

Exploitation Retrieves the NetBIOS name of 

the local computer 

GetNativeSystemInfo System 

Information  

Exploitation Gathering the system 

information like system time and 

memory status  

GetSystemDirectoryA System 

Information  

Exploitation Retrieves the path of the system 

directory 

GetSystemInfo System 

Information  

Exploitation Retrieves information about the 

current system 

GetSystemWindowsDirector

yW 

System 

Information  

Exploitation Retrieves the path of the shared 

Windows directory on a multi-

user system 

GetUserNameA System 

Information  

Exploitation Retrieves the name of the user 

associated with the current 

thread 

GetSystemTimeAsFileTime Time 

Functions 

Exploitation Retrieves the current system date 

and time 

GetTimeZoneInformation Time 

Functions 

Exploitation Retrieves the current time zone 

settings 

SetFileTime Time 

Functions 

Exploitation Sets the date and time that the 

specified file or directory was 

created 

HttpOpenRequestW WinINet 

Functions 

Contacting Creates an HTTP request handle 

InternetConnectA WinINet 

Functions 

Contacting Opens File Transfer Protocol 

(FTP) or HTTP session for the 

attacker’s site. 

InternetOpenUrlA WinINet 

Functions 

Contacting Opens a resource specified by a 

complete FTP or HTTP URL 

HttpSendRequestA WinINet 

Functions 

Contacting Sends the specified request to 

the attacker’s HTTP server 

InternetReadFile WinINet 

Functions 

Contacting Reads data from a handle opened 

by the InternetOpenUrl, 

FtpOpenFile, HttpOpenRequest 

WSARecv Windows 

Network 

Contacting Receives data from a connected 

socket or a bound connectionless 

socket 

WriteProcessMemory Process and 

Thread  

Execution  To write data to a remote 

process. Ransomware uses this 

function as part of process 

injection. 



  

185 
 

CreateRemoteThread Process and 

Thread  

Execution  Creates a thread that runs in the 

virtual address space of another 

process 

NtResumeThread Process and 

Thread  

Execution To resume a previously 

suspended thread  

QueueUserAPC Process and 

Thread 

Execution To execute, ransomware uses 

this function to inject code into 

another process 

SetThreadContext      Process and 

Thread 

Execution To modify the context of a given 

thread.  

GetFileSize File 

Management 

Execution The ransomware retrieves the 

size gathered of the specified 

file. 

GetFileType File 

Management 

Execution Retrieves the file type of the 

targeted file 

RegNotifyChangeKeyValue   Registry 

Function  

Execution Runs in loop and monitors if the 

key is changed 

RegCreateKeyExA   Registry 

Function 

Execution Creates the specified registry key 

for encryption 

NtAllocateVirtualMemory Memory 

Management 

Execution Creates new region of memory 

within the virtual address space 

of the specified process. 

NtCreateSection Memory 

Management 

Execution Creates or opens a named or 

unnamed file mapping object for 

a specified file 

E
n

cr
y

p
ti

o
n
 

CryptEncrypt Cryptography  Encryption The CryptEncrypt function 

encrypts data. 

CryptCreateHash Cryptography  Encryption Initiates the hashing of a stream 

of data 

CryptGenKey Cryptography  Encryption Generates a random 

cryptographic session key or a 

public/private key pair.  

CryptHashData     Cryptography  Encryption Adds data to a specified hash 

object 

CryptAcquireContextW Cryptography  Encryption Acquires a handle to a particular 

key container within a particular 

cryptographic service provider. 

CryptReleaseContext Cryptography  Encryption Releases the handle of a 

cryptographic service provider 

(CSP) and a key container. 

CryptGetHashParam  Cryptography  Encryption Retrieves data that governs the 

operations of a hash object. 

CryptDecodeObjectEx Cryptography Encryption Decodes a structure of the type 

indicated by the lpszStructType 

parameter 

CryptExportKey Cryptography Encryption Exports the victim’s public RSA 

key to new file  
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EncryptMessage Cryptography Encryption Encrypts a message to provide 

privacy 

CertControlStore Cryptography Encryption Notifies when there is a 

difference between the contents 

of a cached store and the 

contents of that store as it is 

persisted to storage 

FindFirstFileExW File Operation Encryption Searches a directory for a file or 

subdirectory with a name and 

attributes that match those 

specified 

FindNextFileW File Operation Encryption Continues a file search to 

encrypt   

CreateFileW    File Operation Encryption Create opens encrypted files.  

WriteFile File Operation Encryption Encrypts and Writes data to the 

targeted file.  

P
o
st

-E
n
cr

y
p
ti

o
n
 

DrawTextExW  Font and Text Extortion Draws formatted text in the 

specified rectangle 

SendNotifyMessageW Font and Text Extortion Sends threatening message to the 

victim via windows  

LoadStringA String 

Functions 

Extortion Loads a string resource from the 

executable file associated with a 

specified module. 

WriteConsoleA Console 

Functions 

Extortion Writes a threatening character 

string to a console  

DeleteFileW File 

Management  

Backup 

spoliation 

Deletes the backup files  

CopyFileA File 

Management  

Backup 

spoliation 

Copies an existing encrypted 

back up file to a new file 

MoveFileWithProgressW File 

Management  

Backup 

spoliation 

Replaces the original file with 

ones that is encrypted 

SetFilePointer File 

Management 

Backup 

spoliation 

Moves the file pointer of the 

specified file 

CryptDecrypt Cryptography Release Decrypts data previously 

encrypted by the malware 
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APPENDIX B  

 

 

SNIPPET OF FEUTURE SELECTION DATASET  
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APPENDIX C 

 

ELIMINATING THE REDUNDANCY OF THE FUNCTION CALLING, C++ 

COD 

 

#include <stdio.h>   /* required for file operations */ 

#include <stdlib.h> 

#include <string.h> 

#include <conio.h>  /* for clrscr */ 

#include <dos.h>  /* for delay */ 

FILE *fr,*fw;            /* declare the file pointer */ 

Main () 

{ 

    clrscr(); 

    printf ("\n \n \t\t Program for Eliminating Redundancy has Started," ); 

    printf ("\n \n \t\t Open Files ," ); 

   fr = fopen ("All_Benign Data set.txt", "rt");  /* open the file for reading */ 

   fw = fopen ("All_Benign Data set_output.txt", "wt"); 

   int i=0; 

    int j=0,k=0; 

    char line;//,ch; 

    char cmd[25]; 

    char cmd1[25]; 

    printf ("\n \n \t\t Read file ," ); 

    // c = fgetc (pFile);   (c != EOF); 

     Line =NULL; 

  while(line != EOF) 

   { 

          Line = fgetc(fr); 

           if(line==',') 

             { 

               cmd[k++]=','; 

              fputs  (cmd,fw); 

            //   printf (" found ," ); 

              for (int w=0;w<=25;w++) 

                 cmd[w]=NULL; 

                 k=0; 

                 Continue; 

             } 

         //****************************** 

              if(line==' ') 

              { 

                If (strcmp(cmd,cmd1)== 0) 

                     { 
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                     For (int w=0;w<=25;w++) 

                          cmd[w]=NULL; 

                        k=0; 

                      Continue; 

                    } 

                Else 

                    { 

                      for (int w=0;w<=25;w++) 

                          cmd1[w]=NULL; 

                      for (j=0; j<=k; j++) 

                       cmd1[j]=cmd[j]; 

 

                      cmd[k++]=' '; 

                      fputs  (cmd,fw); 

                      for (int w=0;w<=25;w++) 

                          cmd[w]=NULL; 

                        k=0; 

                        Continue; 

                   } 

              } 

           //****************************** 

          cmd[k]=line; 

          k++; 

    } 

   fclose(fr);  /* close the file prior to exiting the routine */ 

   fclose(fw); 

      printf ("\n \n \t\t Finish copy , %d line has been copyed",i ); 

   getche();  } /*of main*/ 
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APPENDIX D 

 

 

A SNIPPET OF BINARY BENIGN AND RANSOMWARE DATA SET 
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APPENDIX E 

 

 

CUCKOO SANDBOX HTML REPORT 
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APPENDIX F 

 

 

REMOVING NOISY DATASET USING C++ COD 

 

 

#include <stdio.h>   /* required for file operations */ 

#include <stdlib.h> 

#include <string.h> 

#include <conio.h>  /* for clrscr */ 

#include <dos.h>  /* for delay */ 

FILE *fr,*fw;            /* declare the file pointer */ 

 const int size=100; 

main() 

{ 

    char line[250],ch; 

   clrscr(); 

   fr = fopen ("Xburstcopy.txt", "rt");  /* open the file for reading */ 

   fw = fopen ("Xburstcopy.txt", "wt"); 

   int i=0; 

    int j=0,k=0; 

   while(fgets(line, 250, fr) != NULL) 

   { 

       k=0; 

    do 

    { 

          ch= line[k]; 

          k++; 

    } while (ch !='*'); 

     do 

    { 

          ch= line[k]; 

          k++; 

    } while (ch !='*'); 

    int l=0; 

    do 

    { 

          char cmd[25]; 

          ch= line[k]; 

          if(ch=='*') 

         { 

           if ( (strcmp(cmd, "HeapAlloc")== 0) 

                || (strcmp(cmd, "HeapFree")== 0) 
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                || (strcmp(cmd, "IsBadReadPtr")== 0) 

                || (strcmp(cmd, "IsBadWritePtr")== 0) 

                || (strcmp(cmd, "LocalAlloc")== 0) 

                || (strcmp(cmd, "LocalFree")== 0) 

                || (strcmp(cmd, "IsBadStringPtrW")== 0) ) 

                { 

                    ; 

                } 

               else { 

          i++; 

         fputs  (line,fw); 

         } 

          for (int w=0;w<=25;w++) 

         cmd[w]=NULL; 

            break; 

          } 

          cmd[l]= line[k]; 

          l++; 

          k++; 

    } while (ch !='*'); 

   } 

   fclose(fr);  /* close the file prior to exiting the routine */ 

   fclose(fw); 

      printf ("\n \n \t\t Finish copy , %d line has been copyed",i ); 

   getche(); 

} /*of main*/ 
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