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Statistics Department

Statistics Programme

Thesis Advisor: Prof. Gülay BAŞARIR
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A FUNCTIONAL DATA ANALYSIS APPROACH
TO REMOTE SENSING DATA

SUMMARY

Functional Data Analysis (FDA) is a statistical field which has gained importance due
to the progress in modern science, mainly in the ability to measure in continous time
results of an experiment and the possibility to record them. Many methods such as
discriminant analysis, principal components analysis and regression analysis that are
used on vector spaces for classification, dimension reduction and modelling have been
adapted to the functional case. FDA is concerned on variables that are defined on a
continuum or that have continous structure. Therefore, FDA has an important role in
the analysis of spectral data sets and images that are mostly recorded in the fields of
chemometry, medicine and ecology. Especially in ecology, the analysis of images that
are recorded in satellite sensors inform us in a fast and economical way about the use
of land, the crop production in land, the water pollution and the amount of minerals
include the water.

The aim of this study is to propose the use of FDA approach and to predict the amount
of Total Suspended Solids (TSS) in the estuary of Guadalquivir river in Cadiz on
remote sensing data by using different Functional Linear Regression Models (FLRM).
Besides, it is purposed to compare the results obtained from various FLRMs and
classical statistical methods practically, to design a simulation study in order to support
findings and to determine the best prediction model.

In accordance with this purpose, the following chapter reviews the studies on this area
and the literature on FDA.

In the second chapter, the general framework of FDA is explained, descriptive statistics
and exploratory data analysis for functional variables are handled and the methods
which can be used to convert a discrete variable to a functional variable are presented.

In the third chapter, the theoretical background of the extension of principal component
analysis from multivariate case to the functional case is explained.

In the fourth chapter, FLRM for the case of scalar response is explained
comprehensively.

In the fifth chapter, the acquisition of the satellite images and in-situ data are explained
in detail. In order to estimate the amount of TSS on satellite data, some classical
statistical models and functional models are used and their results are compared.

In the sixth chapter, a simulation study is designed to support findings and to measure
the performance of the FLRMs and later its results are presented.

As to final chapter, the results obtained are discussed and compared to the results of
the studies in the literature and prospective suggestions are made.
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Key Words: Functional data analysis, functional linear regression models, functional
principal components regression, functional partial least squares regression, remote
sensing data.
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UZAKTAN ALGILAMA VERİLERİNE
FONKSİYONEL VERİ ANALİZİ YAKLAŞIMININ UYGULANMASI

ÖZET

Son zamanlarda modern bilimin gelişmesi ve özellikle de verilerin sürekli zamanda
ölçülme eğiliminin artmasıyla Fonksiyonel Veri Analizi (FVA) istatistikte önem
kazanmıştır. Klasik istatistikte vektör uzayları üzerinde tanımlanan diskriminant
analizi, temel bileşenler analizi, regresyon analizi gibi sınıflama, boyut indirgeme ve
modelleme amaçlarıyla kullanılan pek çok yöntem fonksiyonel duruma uyarlanmıştır.
FVA, bir süreklilik üzerinde tanımlanan ya da sürekli yapıya sahip olan değişkenlerin
analizi ile ilgilenir. Bu nedenle, FVA kemometri, tıp ve çevrebilim gibi alanlarda bir
spektrum üzerinde tanımlanan ya da görüntü olarak kaydedilen verilerin analizinde
önemli yere sahiptir. Özellikle çevrebilimde, uydulardan elde edilen görüntü
verilerinin analiz edilmesi karada toprak kullanımı, sudaki kirlilik ya da mineral oranı
gibi pek çok konuda daha ucuz ve hızlı bir şekilde bilgi sahibi olmamızı sağlar.

Bu çalışmanın amacı, FVA yaklaşımını önermek, Fonksiyonel Doğrusal Regresyon
Modellerini (FDRM) uzaktan algılama verileri üzerinde İspanya’nın Cadiz bölgesinde
bulunan Guadalquivir nehir ağzında biriken katı madde oranının tahmin edilmesi
için uygulamak ve çeşitli FDRM ile klasik istatistiksel modellerden elde edilen
sonuçları uygulamalı olarak karşılaştırmaktır. Ayrıca, uygulama sonuçlarının
desteklenmesi amacıyla bir simülasyon çalışması tasarlamak ve bu şekilde en iyi
tahmin performansını gösteren modelleri belirlemek amaçlanmaktadır.

Bu amaç doğrultusunda çalışmanın izleyen bölümünde, fonksiyonel veri analizi
konusunda literatür taraması yapılarak bu alandaki çalışmalardan bahsedilmiştir.

İkinci bölümde, fonksiyonel veri analizi genel çerçevesi ile açıklanmış, fonksiyonel
değişkenler için betimsel istatistiklerin hesabı ve keşifsel veri analizi konu-
larına değinilerek kesikli bir değişkeni fonksiyonel değişkene dönüştürmek için
kullanılabilecek yöntemler tanıtılmıştır.

Üçüncü bölümde, önemli bir boyut indirgeme yöntemi olan temel bileşenler analizinin
çok değişkenli analizden fonksiyonel veri analizine uyarlanması ve teorik alt yapısı ele
alınmıştır.

Dördüncü bölümde, yanıt değişkenin skaler olduğu durumda kullanılabilecek FDRM
kapsamlı olarak açıklanmıştır.

Beşinci bölümde, uygulamada kullanılan uydu verilerinin ve skaler yanıt vektörünü
oluşturan katı madde oranı değerlerinin nasıl elde edildiği anlatılmış, katı madde
oranının uydu verilerinden tahmin edilmesi için bazı klasik istatistiksel yöntemler ve
fonksiyonel yöntemler kullanılarak elde edilen sonuçlar karşılaştırılmıştır.

Altıncı bölümde, uygulamadan elde edilen sonuçların desteklenmesi ve kullanılan
fonksiyonel modellerin tahmin performansının karşılaştırılabilmesi için tasarlanan
simülasyon çalışması anlatılmış ve sonuçları verilmişir.

xv



Çalışmanın son bölümünde ise elde edilen sonuçlar genel olarak yorumlanmış,
literatürde yapılan çalışmalarla karşılaştırılmış ve ileriye yönelik önerilerde
bulunulmuştur.

Anahtar kelimeler: Fonksiyonel veri analizi, fonksiyonel doğrusal regresyon
modelleri, fonksiyonel temel bileşenler regresyon, fonksiyonel kısmi en küçük kareler
regresyon, uzaktan algılama verileri.
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1 INTRODUCTION

Due to the progress of modern science, recently it is more common to work on

large data bases in many fields such as medicine, economy and environmental

studies. The analysis of large data sets require further developments of existing

methods. Functional Data Analysis (FDA) is an extension of multivariate

statistical analysis methods which concerns with the analysis of curves instead of

vectors. FDA is an important approach in analyzing the data sets measured over time,

space or any other continuum. Therefore, it has gained importance in the fields of

biomedical science and bioinformatics (Wu and Müller, 2010; Escabias et al., 2012).

According to Ullah and Finch (2013), 21% of the published articles between the years

2005-2010 that use FDA approach were related to the biomedical science. Several

applications of FDA are found in the literature including biomechanics, magnetic

resonance imaging (MRI) and gene expression profiles (Ullah and Finch, 2013;

Ramsay, 2000; Viviani et al., 2005; Müller et al., 2008).

Differently from multivariate data analysis, functional data analysis consider a

sequence of individual observations as a whole single entity under the assumption that

the process generating the data is smooth. For a function to be smooth means that it

has differentiability until a certain degree.

The functional data analysis methods help to reveal additional information

contained in the functions or their derivatives, which is not available through traditional

methods (Levitin et al., 2007). The main goals of functional data analysis are to

represent the data in ways that aid further analysis, to display the data so as to highlight

various characteristics, to study the pattern and variation among the data, to explain

variation in an outcome or dependent variable by using input or independent variable

information, to compare two or more sets of data where it is possible to contain

different sets of replicates of the same function or different functions for a common

set of replicates. In this sense, some of the methods that are adapted from multivariate

1



statistical analysis to functional data analysis are functional descriptive statistics,

functional principal components analysis, functional linear models and functional

canonical correlation analysis (Ramsay and Silverman, 2005).

Because of the data structure that consists of repeated measurements over time per

observation, functional data analysis is involved with longitudinal data analysis which

is a multivariate method. Although the data structure that two methods deal with seem

similar, in fact they are quite different from each other.

Longitudinal data analysis (LDA) concerns with small number of repeated

measurements which are collected at different time points per subject, whereas

functional data analysis deals with large number of repeated measurements which can

be collected at different time points, frequencies or any other continuum. Besides,

longitudinal data is often viewed as as a random vector in a parametric model while

functional data is handled as a smooth process observed at discrete time points with

few model structural assumptions which yields nonparametric or semi parametric

approaches (Davidian et al., 2004). A good comparison of the methodology of FDA

and LDA can be found in the studies of Rice (2004) and Hall et al. (2006).

The importance of functions and the difference between the classical and modern

concepts of mathematical analysis was explained by Dieudonné (1960) :

"The idea that a function f is a single object, which may itself vary and is in general

to be thought of as a point in a large functional space; indeed it may be said that one

of the main differences between the classical and modern concepts of Analysis is that,

in classical mathematics, when one writes f (x), f is visualized as "fixed" and x as

variables, whereas nowadays both f and x are considered as variables (and sometimes

it is x which is fixed, and f becomes the varying object)."

Although the importance of functional analysis had been mentioned in 60’s, the first

articles about the context of using functions as random observations were published in

80’s (Dauxois et al., 1982; Ramsay, 1982; Besse and Ramsay, 1986). Ramsay (1982)

gives an functional analytic view of the data and explains how to extend the statistical

concepts to functional data where Besse and Ramsay (1986) offers a new technique

for principal components analysis when the data consists of sampled functions. The

approach for estimating the mean function of a sample of curves which are assumed

2



as independent observations of a random function coming from a stochastic process

is defined in 90’s by Rice and Silverman (1991). Following this, the notion of

functional data analysis is first proposed in the publication of Ramsay and Dalzell

(1991) in which classical multivariate statistical methods such as linear modeling and

principal components analysis were applied into the infinite dimensional space. Later

Silverman (1996) proposed a new approach with a smoothing parameter. As mentioned

in Manteiga and Vieu (2007) and Shang (2014) principal component analysis and

linear regression modeling were the first classical multivariate statistical methods that

were adapted to functional data. Functional principal components analysis (FPCA) is

an important method that since it can be used with different aims such as exploring,

modelling and clustering. Therefore FPCA has found wide field of application from

modeling fMRI data (Viviani et al., 2005) to modeling aircraft trajectories (Nicol,

2013). A wide literature review of FPCA can be found in Shang (2014).

Functional linear regression models (FLRM) were proposed for explaining the

relationship between two variables where at least one of them has functional structure.

FLRM was firstly developed for the case where both the response and the predictor

are functions (Ramsay and Dalzell, 1991). Then, they were extended to the case

where the covariates are functional but the response is scalar and to the case where

the response is functional but the covariates are scalar (Cardot et al., 1999; James,

2002). Following that, functional logistic regression models were developed to predict

a binary response variable from functional covariates (Escabias et al., 2004; Müller

and Stadtmüller, 2005). In order to avoid problems arise from multicollinearity and

high dimensionality, the jointly use of functional logistic regression and principal

component analysis was suggested by Escabias et al. (2005). Different applications

of logistic regression on functional data can be found in Ratcliffe et al. (2002);

Müller and Stadtmüller (2005); Aguilera (2008). Functional logistic regression models

were later extended to generalized functional linear models (James, 2002; Müller and

Stadtmüller, 2005).Cuevas et al. (2004) proposed a an ANOVA test for functional data.

Various applications of functional data analysis approach was adapted to the areas such

as the analysis of pinch force of human fingers (Ramsay et al., 1995), the analysis of

lip motion (Ramsay et al., 1996), the analysis of handwritings (Ramsay, 2000), the

analysis of growth curves, climatic variation, criminology, the nondurable good index

3



Table 1.1: Linear and Nonparametric Models for Multivariate and Functional Data

Data Type Linear Models Nonparametric Models

X ∈ Rp X ∈ Rp

Multivariate Y = a0 +∑
p
j=1 a jX j + ε Y = r(X1, ...,Xp)+ ε

C = {r linear} C = {r continous}

χ ∈ F = L2(T ) χ ∈ F = L2(T )
Functional Y =

∫
T ρ(t)χ(t)dt + ε Y = r(χ)+ ε

C = {χχχ 7→ ∫
T ρ(t)χ(t)dt ∈ R} C = {r continous}

and the movement of hip and knee ankles (Ramsay and Silverman, 2002, 2005), the

analysis of musical performance (Almansa and Delicado, 2009) and the analysis of

aircraft trajectories (Nicol, 2013).

Functional models are divided in parametric and nonparametric models as in the

multivariate case. But the structure of functional models are quite different from

multivariate models in terms of the space that the data is defined. The new approach

that combines nonparametric analysis and the functional data was proposed by Ferraty

and Vieu (2003) where the relationship between a curve and a categorical response is

investigated by means of nonparametric Kernel methods. Nonparametric functional

approach was extended to supervised and unsupervised curve classification methods.

Different applications of nonparametric methods were done related to the areas like

chemometry, speech recognition and electricity consumption (Ferraty and Vieu, 2006).

Considering the general form of regression models,

Y = r(X)+ ε

the distinction between parametric and nonparametric models for multivariate and

functional data can be summarized as in the Table (1.1) where X denotes the

multivariate variables defined on a vector space R and χ = χ(t), t ∈ T = (t1, tn)

denotes the functional variables defined on a bounded functional space L2(T ).
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Another important tool in functional data analysis is to determine outliers.

Different outlier detection methods for functional data based on depth measures were

offered (Febrero et al., 2007, 2008). Following that, robust outlier detection methods

for functional data were also studied (Sawant et al., 2012).

Recently, different literature reviews in FDA have been published (Cuevas, 2014; Wang

et al., 2016; Morris, 2014; Reiss et al., 2016). Among these Cuevas (2014) explained

the theory of statistics for functional data and focused on the recent advances on

regression, classification and dimension reduction methods, Wang et al. (2016) gave a

summary of the developments in FDA by time, Morris (2014) focused on functional

regression and Reiss et al. (2016) gave an extensive literature review of functional

regression with a scalar response. Due to the advances in FDA and the popularity of

the subject, many journals devoted special issues to this topic such as Statistica Sinica,

issue 14, 3 (2004), Computational Statistics, 22, 3 (2007), Computational Statistics &

Data Analysis, 51, 10 (2007) and Journal of Multivariate Analysis, 101, 2 (2010) with

the introductions of Davidian et al. (2004); Manteiga and Vieu (2007); Valderrama

(2007) and Ferraty (2010). Recently, functional data analysis gain importance in

national literature (Keser, 2010, 2007; Gündüz, 2012; Sözen, 2014; Özçomak and

Gündüz, 2014). Keser (2010) and Sözen (2014) analysed the rainfall data in the

Aegean and Black Sea regions through functional principal components analysis. In

the study of Gündüz (2012), functional canonical correlation analysis is used as a tool

to estimate the Istanbul Stock Exchange index 30. The national studies are mostly

focused on Functional Principal Components and Functional Canonical Correlation

Analysis. Lately, there aren’t any studies that focus on other areas of functional data

in the national literature.

5



2 GENERAL FRAMEWORK OF FUNCTIONAL
DATA

Classical statistical analysis methods are concerned with the observations that are

points. However, functional data analysis is concerned with observations in the form of

real functions. The functional data sample consists of N functions χ1,χ2, ...,χN defined

on some set of T . In functional data analysis the sample space is an infinite dimensional

functional space rather than a vector space. Due to this infinite-dimensional nature of

the sample space FDA is regarded as a new branch of the statistical theory (Cuevas,

2014).

2.1 The Structure of Functional Data

As it can be seen in Table (1.1), the most important distinction between the multivariate

and functional variable is the space where the variable is defined. A functional variable

χ is a random variable taking values in a functional space F which can be either a

metric or a semi-metric space in general. A functional data set consists of a sample

of N functional variables χ1,χ2, ...,χN (can be also denoted by χ1(t),χ2(t), ...,χN(t))

that depend on argument values t j,( j = 1, ...,n) which are identically distributed as χ

(Febrero-Bande and Oviedo de la Fuente, 2012; Ferraty and Vieu, 2006). The argument

values t j can define same measurement points for all observations or can vary from

record to record (Ramsay and Silverman, 2005).

Considering the definition of functional data set, any process {χ(t) : t ≥ 0} that is

observed in discrete grid points t1, t2, ..., tn can also be regarded as a functional data.

But this type of discrete processes are not always functional. According to Cuevas

(2014):

"There are at least two reasons that could lead us to consider this as a functional data:

first the probability (at least theoretical) of observing the phenomenon in a much finer
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grid and, in the limit, to observe x(t) at any fixed instant t. Second, the choice of a

functional model to approximately represent it."

Some properties of a functional data set can be listed as follows (Ramsay and

Silverman, 2002):

• Although the functional data can be observed at discrete points, conceptually it is

defined as continuos.

• The individual datum of a functional data set is a whole function rather than a

single observed point. Although it is assumed that the observed functional datum

is independent from one another, there is no assumption about the independence of

observations that consist the same functional datum.

• The functional data consists of functions of time. Time is not considered as a

variable as in the multivariate context.

• Even though the functional data is not necessarily smoothly observed, smoothness

is required for modeling the functional data.

Similarly to classical data analysis to estimate means and standard deviations and

outlier detections are important steps in functional data analysis. However, because

of the functional structure of the data the estimation of mean and standard deviation is

a bit harder than in the multivariate case.

2.2 Functional Exploratory Data Analysis

Mean, standard deviation, variance and other summary statistics of a functional data

such as depth are calculated in analogy to the multivariate case. The main difference is

that these statistics are calculated by using point-wise averages across replications and

the result is now a function rather than a scalar.

2.2.1 Mean, Variance and Covariance Functions

Consider a square integrable random function χ = χ(t), t ∈ T = [t1, tn] in L2(T ) space.

Square integrability requires that
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E‖χ‖2 = E
∫

T
χ

2(t)dt < ∞. (2.1)

The main two parameters of the population that consists of square integrable functions

are the mean function and the variance function which are respectively given by

equations (2.2) and (2.3)

µχ(t) = E[χ(t)], (2.2)

Varχ(t) = σ
2
χ(t) = E

[
(χ(t)−µ(t))2

]
. (2.3)

The covariance function of a functional data set gives an information about the

dependency of the records across different argument values. The covariance function

of two argument values t,s ∈ T is found from the equation (2.4)

Covχ(t,s) = cχ(t,s) = E[
(
χ(t)−µχ(t)

)(
χ(s)−µχ(s)

)
]. (2.4)

Hence, the correlation function is calculated through the variance and covariance

functions given by the equations (2.3) and (2.4):

Corχ(t,s) = rχ(t,s) =
Covχ(t,s)√

Varχ(t)Varχ(s)
. (2.5)

Another important parameter for the functional case is the covariance operator which

is defined by the equation (2.6)

Γχ(ξ ) = E
[
〈
(
χ−µχ

)
,ξ 〉
(
χ−µχ

)]
. (2.6)

for all t ∈ T and ξ (t) ∈ L2(T ).

Covariance operator takes the role of variance-covariance matrix in functional data

analysis. Therefore, it is especially important in computing functional principal

components which will be explained detailedly in Chapter 3.

Assume that a functional data set consists of independent identically distributed,

square integrable observations χ1(t),χ2(t), ...,χN(t) in L2(T ) which have the same
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distribution as χ(t). Then the mean, the variance and the covariance functions of the

functional sample can be estimated from the sample counterparts of the equations (2.2),

(2.3) and (2.4). The sample mean function is calculated as in the equation (2.7):

µ̂χ(t) = χ̄(t) =
1
N

N

∑
i=1

χi(t). (2.7)

Similarly, the sample variance function is obtained from the equation (2.8)

σ̂
2
χ(t) =

1
N−1

N

∑
i=1

[χi(t)− χ̄(t)]2. (2.8)

The standard deviation function is the point-wise square root of the variance function

and it is denoted by σ̂χ(t).

The empirical versions of the covariance function, the correlation function and the

covariance operator are given by following equations:

ĉχ(t,s) =
1

N−1

N

∑
i=1

[χi(t)− χ̄(t)][χi(s)− χ̄(s)], (2.9)

r̂χ(t,s) =
ĉχ(t,s)√

σ̂2
χ(t)σ̂2

χ(s)
, (2.10)

Γ̂χ(ξ ) = (N−1)−1
N

∑
i=1

[〈(χi− χ̄) ,ξ (t)〉(χi− χ̄)] , ξ (t) ∈ L2(T ). (2.11)

The mean of a functional sample is an estimator of the center of the functional

distribution, whereas the covariance of a functional sample is an estimator of the scale

and the correlation structure of the functional distribution (Febrero et al., 2007).

When there are pairs of observed functions such as (χi,γi), to investigate if they depend

on each other, cross-covariance or cross-correlation functions which are respectively

given in the equations (2.12) and (2.13) are used.

Covχ,γ(t,s) = ĉχ,γ(t,s) =
1

N−1

n

∑
i=1

[χi(t)− χ̄(t)][γi(s)− γ̄(s)], (2.12)

Corχ,γ(t,s) = r̂χ,γ(t,s) = Covχ,γ(t,s)/Varχ(t)Varγ(s) (2.13)
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To estimate center and scale properties of a data set, some different estimators can

also be used rather than ordinary mean and standard deviation functions. Median and

trimmed mean are some of robust location measures where median absolute deviation

and trimmed standard deviation are robust scale measures. Functional α-trimmed

mean gives the mean of the most central curves where α is 0 ≤ α ≤ (n− 1)/n. The

depth measure can also be used to estimate the most central curve.

2.2.2 Depth Measures

The depth measures the centrality of an observation within a given data cloud. The

most popular depth measures for scalar covariates are the half-space depth, the

simplicial depth and the Fraiman-Muniz depth measure.

In the univariate context, the depth of a point is calculated based on the cumulative

distribution function FN of the sample consists of scalar observations X1,X2, ...,XN .

FN(x) =
1
N

N

∑
k=1

I{Xk 6 x}. (2.14)

The halfspace depth (HSD) of the observation Xi is defined by means of (2.14) as

HSD(Xi) = min(F(Xi),1−F(Xi)) (2.15)

In case of Xi is the median, F(Xi) is equal to 1/2, and so HSD(Xi) is equal to 1/2

which gives the largest possible depth. If Xi is the largest point, then F(Xi) = 0 and

HSD(Xi) = 0 and it gives the least possible depth (Horváth and Kokoszka, 2012).

The simplicial depth (SD) is calculated as

SD(Xi) = 2F(Xi)(1−F(Xi)) (2.16)

where the largest and the smallest possible depths take the values of 1/2 and 0

respectively.

The depth measure offered by Fraiman and Muniz (2001) takes values between 1/2

and 1 and defined as
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FMD(Xi) = 1−|1
2
−F(Xi)| (2.17)

For a sample of functions
{

χi(t), t ∈ T, i = 1,2, ...,N
}

, the empirical cumulative

distribution function at point t ∈ [tmin, tmax] is described as

FN,t(χi(t)) =
1
N

N

∑
k=1

I
{

χk(t)6 χi(t)
}

(2.18)

where I(·) is an indicator function (Febrero et al., 2007).

If the univariate depth of the data Xi at point t is defined as D on R, then the

functional depth (FD) of the curves χ1,χ2, ...,χN can be found from the integration

of the univariate depths.

FD(χi) =
∫ tmax

tmin

D(χi(t))dt, i = 1, ...N. (2.19)

For instance, the functional Fraiman-Muniz depth (FMD) of curve χi(t) is defined as

FMD(χi) =
∫ tmax

tmin

[1−|1
2
−FN,t(χi(t))|]dt. (2.20)

Likewise in the univariate context, the curves which attain the maximum and the

minimum values are the deepest and the least deepest curves, respectively (Febrero

et al., 2007).

There are also other types of functional depths such as modal depth, random projection

depth (RPD) and band-depth. Detailed information about these techniques can be

found in Febrero et al. (2008) and López-Pintado and Romo (2009).

The depth measure is an important indicator of outlying. Because, the curves that have

significantly low depth values are more close to be outliers. In functional context, a

functional outlier is a curve which comes from a different distribution in a function

space than the rest of the curves, which are assumed to be identically distributed.

The algorithm of identifying outliers by using depth measures is as follows (Horváth

and Kokoszka, 2012):

1. Calculate F(χ1),F(χ2), ...,F(χN).
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2. Determine a threshold value of C and remove the curves with depth smaller than C.

Classify these curves as outliers. If there are no such curves, the procedure ends here.

3. Return to step 1 and apply it to the rest of the sample obtained by removing curves

in step 2.

Febrero-Bande and Oviedo de la Fuente (2012) proposed two different outlier

detection procedures based on bootstrap samples. One of them uses trimming and

the other one uses weighting principle. These methods are implemented respectively

as functions "outliers.depth.trim()" and "outliers.depth.pond()" in the R package

"fda.usc" (Febrero-Bande and Oviedo de la Fuente, 2012; Oviedo de la Fuente, 2011).

In the first method, the bootstrap samples are chosen after removing %α of data curves.

In the second procedure, each observation (each curve) is weighted depending on

its depth value. The last steps of both procedures are similar. The algorithm of for

"outliers.depth.pond()" function can be summarized as follows:

1. A measure of functional depth such as SD, FMD or RPD is chosen and the functional

depths D(χ1), ...,D(χn) are obtained for the data set χ1(t), ...,χn(t).

2. B number of bootstrap samples χb
i are taken from the functional data set in a way

that each curve is sampled with a probability proportional to its depth.

3. Considering that Zb
i (t1), ...,Z

b
i (tN) is normally distributed with mean zero and the

covariance matrix γΣχ where Σχ is the covariance matrix of χ(t1), ...,χ(tN) and γ is a

smoothing parameter, the bootstrap samples are smoothed such that Y b
i = χb

i +Zb
i .

4. For each bootstrap sample b = 1, ...B, a cut off value Cb is chosen such that

P(Dn(χi) ≤ Cb) = c, i = 1, ...,N where by default it is equal to the 1th percentile

(c = 0.01) of the distribution of the depths D(Y b
i ).

5. The median of the values Cb are taken and denoted by C.

Then the second and third steps of the previous algorithm by Horváth and Kokoszka

(2012) are applied. For detailed information see Oviedo de la Fuente (2011).

2.3 Representing Functional Data

The first step in a functional data analysis is to convert raw data to functional objects

(Levitin et al., 2007). This can be done in two different ways. If it is assumed that
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the discrete values are errorless, interpolation is used. But if it is assumed that an

observational error exists, then the conversion is made by smoothing (Ramsay and

Silverman, 2005). Therefore, smoothing or interpolation is the most important part

of functional data analysis. It serves to convert relatively enough discrete points of a

functional datum to a smooth function.

The smoothness implies that two adjacent points that compose a function χ are linked

together to some extent and unlikely to be too different from each other (Ramsay and

Silverman, 2005). If the data is defined on a L2 or a Hilbert space smoothing can be

done based on basis functions representation. Otherwise kernel methods can be used

in smoothing (Febrero-Bande and Oviedo de la Fuente, 2012).

2.3.1 Basis Representation

A basis is a system of functions which are independent of each other. Basis function

procedure represents a function χ as a linear combination of K known basis functions

φk:

χ(t) =
K

∑
k=1

ckφk(t). (2.21)

This expression can be written in matrix terms:

χ(t) = c′φφφ = φφφ
′c, (2.22)

where c denotes the vector of length K of the coefficients ck and φφφ is a n×K matrix

contains the basis functions φk(t j) (Ramsay and Silverman, 2005). The coefficients ck

define the weight related to each basis function in constructing a curve.

The dimension of expansion is equal to number of basis functions K. The

basis expansion approach enables to work with infinite dimensional functions by

representing them in finite dimension. The choice of number K of functions and

the type of basis are the most important steps in smoothing. The smaller K provides

convenience in computation.

The type of the basis expansion is determined according to the type of the data.

Mostly used basis functions are Fourier basis and B-spline basis functions. Fourier
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basis is mostly preferred for periodic data whereas B-spline basis are mostly used for

non-periodic data.

Except these two methods, there are also other types of basis functions such as

monomials, wavelet bases, polynomial bases, exponential and power bases, the

polygonal bases and constant basis. Wavelet bases are mostly chosen where the

derivatives are not required. Constant basis is the simplest of all. It is mostly

used to define a scalar observation as a functional datum. Therefore, it has

particularly importance in determining the intercept function in functional linear

models. Polynomial basis can be used for simpler functional problems.

2.3.1.1 Fourier basis

The best known basis expansion is the Fourier series expansion which can be given in

the form of

χ̂(t) = c0 + c1 sinωt + c2 cosωt + c3 sin2ωt + c4 cos2ωt + ... (2.23)

where the coefficients are φ0(t) = 1, φ2r−1(t) = sinrωt, φ2r(t) = cosrωt. It is periodic

with the period 2π/ω .

The basis expansion of a derivative estimate can be written in the form:

Dχ̂(t) =
K

∑
i=1

ĉkDφk(t) = ĉcc′Dφφφ(t). (2.24)

A basis system that gives good representation of function estimates is not always

appropriate for derivative estimates. Therefore, it is suggested to control if the

approximation of one or more derivatives behave reasonably or not (Ramsay and

Silverman, 2005).

The Fourier expansion coefficients for derivatives of a function can be easily computed

as well from the following equations:

Dsinrωt = rω cosrωt

Dcosrωt =−rω sinrωt
(2.25)
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The Fourier expansions of higher derivatives can be also easily found by multiplying

coefficients by suitable powers of rω . For example, the coefficient vector of a second

order derivative D2χ of a function can be found as

(0,−ω2c1,−ω2c2,−4ω2c3,−4ω2c4, ...).

Fourier basis has good computational facilities for equally spaced and periodic data.

They are especially appropriate for stable functions where the curvature tends to be of

the same order everywhere. Fourier series expansions are very popular in mathematics,

statistics and engineering applications. But they are not offered for smoothing of non

periodic and not equally spaced data. In this case, it would be better to use other types

of basis systems such as B-splines.

As mentioned in the book of Ramsay and Silverman (2005):

"A Fourier series is like margarine: It’s cheap and you can spread it on practically

anything, but don’t expect that the result will be exciting eating."

2.3.1.2 B-spline basis

Spline functions are the most common choice of approximation system for

non-periodic functional data or parameters (Ramsay and Silverman, 2005). The

advantage of splines are that they are fast to compute and they achieve a good

approximation of the data with a relatively small number of K’s (Horváth and

Kokoszka, 2012).

The first step to construct a a spline is to divide the interval on which the function

is defined, into L subintervals. The points that separates one interval from an other

are called breakpoints and they are denoted by τl where l = 1, ...,L− 1. Splines gain

more flexibility as the number of breakpoints increases. The sequence of values at

breakpoints of a spline basis are called knots. The number of knots related to a break

point can be more than one. The knots and breakpoints define the same thing if and

only if the knots are distinct.

A spline function is a polynomial of a fixed degree or an order that is defined on each

interval. The degree of a polynomial refers to the highest power of the polynomial.

The order of a polynomial is the number of constants required to define it which is
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one more than the value of its degree (Ramsay et al., 2009). It is represented by m. If

m = 1, it is a step function of degree zero. For m = 2, it is piecewise linear. Order 3

and 4 splines define a quadratic and a cubic polynomial, respectively. In applications

mostly order 4 splines are used because they seem quite smooth and their first and

second degree of derivatives exist. If there is the need of smooth derivatives, Ramsay

et al. (2009) suggests that the order of the spline basis should be at least two higher

than the highest order derivative to be used.

For the case that the number of knots are equal to the number of breakpoints, the

number K of basis functions of a spline system is equal to the sum of the order m of

the polynomial and the number of interior knots (Ramsay and Silverman, 2005).

K = m+L−1. (2.26)

Some basic properties of splines can be summarized as follows (Ramsay and

Silverman, 2005):

1. Each basis function φk(t) is an order m spline function with a knot sequence τ .

2. The sums and differences of splines are splines. The multiple and the linear

combination of spline functions still define a spline function.

3. Any spline function defined by order m and the knot sequence τ can be expressed

as a linear combination of these basis functions.

2.3.1.3 Bias - Variance Trade Off

The determination of number of basis is an important part of smoothing. While

determining the number K of basis functions, the bias and the variance of the

estimation should be considered to find out the best approximation. Using high number

of basis can give a better representation of the data with low bias

Bias[χ̂(t)] = χ(t)−E[χ̂(t)] (2.27)

but it increases the variance of the estimate χ̂(t).
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Var[χ̂(t)] = E[χ̂(t)−E[χ̂(t)2] (2.28)

Similarly, using small number of basis functions produces high bias but decreases the

sampling variance (Levitin et al., 2007). This contradiction between the number of

basis and smoothness is called "bias-variance trade-off".

Therefore, another criterion called Mean Squared Error (MSE) is used to decide to

the number of basis. MSE criterion considers both the bias and the variance of the

estimate. MSE is calculated as in the equation (2.29)

MSE[χ̂(t)] = E[χ̂(t)−χ(t)2] (2.29)

which can be equivalently given in terms of bias and variance as

MSE[χ̂(t)] = Bias2[χ̂(t)]+Var[χ̂(t)] (2.30)

This criteria gives permission to tolerate a little bias if there is a big reduction in the

sampling variance (Ramsay and Silverman, 2005).

Another method offered to determine the number of basis is stepwise variable selection

method which is based on adding the basis functions one after another and testing at

each step if the fit is improved or not (Ramsay and Silverman, 2005).

2.3.2 Kernel Smoothing

Functional data can also be represented by using nonparametric methods that are based

on localized weighting principle. Kernel smoothing method is one of the most popular

nonparametric smoothing methods. In kernel smoothing the weight values depend on

a Kernel function given as

wi(t) = K
(

ti− t
h

)
(2.31)

where h is called the bandwidth parameter and determines the weight value wi(t)

according to the distance to related point t. Small values of h states that only

observations close to t receive any weight while the reverse means that the observations
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considerable away from t take weights, too. Here, kernel function K(·) can be

chosen as one of well known kernel functions such as Gaussian, Uniform, Quadratic,

Epanechnikov, Triweight or Cosine Kernel.

The bandwidth parameter h is a measure of concentration. Small values of h imply

that only observations close to t receive weight where as the higher values of h means

that even the observations distant from t have relevant weight (Ramsay and Silverman,

2005).

In kernel smoothing the estimate at a given point can be written as a linear combination

of observed responses

χ̂(t j) =
n

∑
j=1

S j(t) y j (2.32)

where S j(t) is a measure of weight that is based on local weights and it is called as a

linear smoother. Kernel estimator is the simplest and most classic case of an estimator

that uses local weights (Ramsay and Silverman, 2005).

The most popular Kernel estimator is the Nadaraya-Watson estimator. The

Nadaraya-Watson kernel estimator is defined by.

S j(t) =
K
[

t j−t
h

]

∑l=1 K
[
(tl−t)

h

] (2.33)

Other possible estimators that can be used in kernel smoothing are k nearest neighbors

(KNN) estimator, local linear regression estimator and local polynomial estimator

(Wasserman, 2006; Febrero-Bande and Oviedo de la Fuente, 2012).

In kernel smoothing, the derivatives can not be easily calculated by taking the

derivative of the kernel estimator. Because some kernels such as uniform and quadratic

kernels are not differentiable. For estimating derivatives, it is suggested that the

bandwidth value h to be larger than the one used in estimating the function (Ramsay

and Silverman, 2005).
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2.3.3 Functional Principal Components (FPC) Basis

In functional data analysis, principal components analysis is used as a dimension

reduction technique as in the multivariate case. The most important difference is that

in functional context the components are functions rather than vectors (Levitin et al.,

2007).

Functional Principal Components Analysis (FPCA) helps to represent a functional data

in terms of a combination of orthonormal variables that are obtained by maximizing the

variance of the component scores which is equal to N−1
∑

K
j=1 fi j

2. This is essential to

reveal the most important modes of variation in the variables (Ramsay and Silverman,

2005).

The main algorithm of functional principal components can be summarized as follows:

1. The determination of principal component weight function ξ1(t) of norm 1 for

which the principal component scores fi1 =
∫

T ξ1(t)χi(t)dt maximize ∑ f 2
i1 subject

to ‖ξ1‖2 = 1 in order to minimize sum of square errors.

2. The computation of following weight function ξ2(t) and the principal

component scores fi2 =
∫

ξ2(t)χi(t)dt that maximize ∑ f 2
i2 subject to the constraint

‖ξ2‖2 = 1 considering the constraint of orthogonality of two components as given
∫

ξ1(t)ξ2(t)dt = 0.

3. The repetition of the steps as much as the number of principal components.

The functional variables can be written in terms of principal component scores fi j and

the eigenfunctions ξ j in a finite orthonormal basis

χ̂i(t) =
K

∑
j=1

fi jξ j(t), i = 1, ...,N. (2.34)

Detailed information about this methodology will be given in Chapter 3.

2.3.4 Functional Partial Least Squares (FPLS) Basis

Partial Least squares (PLS) is a dimension reduction method alternative to principal

components analysis (PCA). PLS approach and regression are generally used together.
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Therefore, it is denominated as Partial Least Squares Regression (PLSR). PLSR is

extended to the case that the explanatory variables are in the form of a stochastic

process by Preda and Saporta (2005). In functional context, it is used with functional

linear regression analysis with a scalar response and called Functional Partial Least

Squares (FPLS) Regression. This approach will has been explained detailedly in

Chapter 4. FPLS is based on the determination of FPLS components by considering

the correlation between the scalar response variable and the functional predictors.

Different applications of FPLS regression especially on chemometrics, can be found

in the literature (Saeys et al., 2008; Aguilera et al., 2010; Preda and Schiltz, 2011).

The main idea of FPLS is to represent the functional variable χi(t) in terms of FPLS

components ϕl and FPLS scores υil ,

χ̂i(t) =
K

∑
l=1

υilϕl(t), i = 1, ...,N. (2.35)

The main algorithm to obtain FPLS components has been given in the next sections.

The detailed information about this technique can be found in Preda and Saporta (2005)

and Aguilera et al. (2010). The algorithm of FPLS regression also takes part in fda.usc

package of R software Febrero-Bande and Oviedo de la Fuente (2012).

2.4 Smoothing Functional Data

The vital part of smoothing functional data is to determine the model that fits the raw

data. Different fitting algorithms can be chosen according to the smoothing method that

is used to represent the data. Three main criteria used in fitting functional data are Least

Squares Criteria - which can be separated into two as Ordinary (Unweighted) Least

Squares (OLS) and Weighted Least Squares(WLS), Localized Least Squares (LLS)

and Roughness Penalty Approach.

Least Squares Criteria is generally used for basis representation to determine basis

coefficients. In the case of autocorrelation, weighted least squares criterion is used

rather than OLS criterion. LLS is mainly used for kernel smoothing where the weight

functions are determined by a kernel function. Roughness penalty approach is another

method which takes into account an extra smoothing parameter and uses penalized

least squares criterion in fitting the data to a smooth function.
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2.4.1 Fitting by Least Squares Criterion

Fitting the raw data by using a basis system can be seen as a regression problem in the

form of

y j = χ(t j)+ ε j (2.36)

where y j states discretely observed raw data vector (y1,y2, ...,yn), χ(t j) is the basis

function expansion of given in the form of (2.21) where t is the vector consisting of

the observation points t j, j = 1, ...n and ε j the n length vector contains the error terms.

2.4.1.1 Ordinary (Unweighted) Least Squares Fit

The coefficients ck in the equation (2.21) should be determined in a way to obtain an

optimal fit to data. Therefore, they are chosen in order to minimize the error sum of

squares by the least squares estimate

SSE =
n

∑
j=1

[
y j−

K

∑
k=1

ckφk(t j)

]2

=
n

∑
j=1

[
y j−φφφ(t j)

′c
]2 (2.37)

which can also be defined in matrix terms as

(y−φφφccc)′(y−φφφccc) (2.38)

(Ramsay et al., 2009; Hooker, 2010).

In functional notation, this can be shown as a norm ‖ y−φφφc ‖2.

Taking the derivative of the expression in (2.38) respect to ccc

2φφφφφφ
′c−2φφφ

′y = 0, (2.39)

and solving it for ccc leads us to the ordinary least squares estimate ĉcc.

ĉcc = (φφφ ′φφφ)−1
φφφ
′y (2.40)

By using equation (2.40), the estimated curve values x̂(t) are obtained from
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χ̂(t) = φφφ(φφφ ′φφφ)−1
φφφ
′y (2.41)

The smoothed values χ̂(t) can be written as a linear transformation of the observed

discrete values y j by using the smoothing matrix. In this case, the smoothing operation

is called a linear smoother.

χ̂(t) =
n

∑
j=1

S j(t) y j (2.42)

Here, S j(t) is a measure of weight that is based on local weights. It weights the jth

discrete data value.

In matrix terms, it can be defined as (2.43)

χ̂(t) = Sy (2.43)

Here, χ̂(t) is a column vector that consists of the values of the estimate of the

function χ(t) at each sampling point t j and S is the smoothing matrix that converts

the dependent variable vector into the fitted values likewise in linear regression. In

the least squares context, S is a projection matrix with the property of idempotency

(Ramsay and Silverman, 2005).

The smoothing matrix of the ordinary or unweighted least squares is in the form of

(2.44)

S = φφφ(φφφ ′φφφ)−1
φφφ
′ (2.44)

2.4.1.2 Weighted Least Squares Fit

This simple least squares approximation is appropriate in the case that the residuals ε j

are independently and identically distributed with mean zero and constant variance σ2.

When the residuals are autocorrelated or the variance vary with the observation time,

the use of weighted least squares method is offered to smooth the data (Ramsay and

Silverman, 2005).
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The least squares criterion of WLS is an extension of OLS with an additional weight

matrix W which is a symmetric and positive definite matrix.

(y−φφφc)′W(y−φφφc) (2.45)

As in the multivariate context the weight matrix W can simply be obtained from the

variance-covariance matrix of residuals as

W = ΣΣΣ
−1
e (2.46)

and in this case the weighted least squares estimate ĉ is expressed as

ĉ = (φφφ ′Wφφφ)−1
φφφ
′Wy (2.47)

.

Hence, the smoothing matrix for weighted least squares estimation is written in the

form

S = φφφ(φφφ ′Wφφφ)−1
φφφ
′W. (2.48)

2.4.2 Fitting by Localized Least Squares Criterion

The values of the function estimate at a point t j is affected by the observations nearby.

Considering this, the function estimates at point t j can be written as

χ(t j) =
n

∑
j

w jy j (2.49)

by using local weight functions w j. The localized weights here are obtained from

Kernel functions in the way that is shown in the equation (2.31).

2.4.2.1 Localized basis functions smoothing

The least squares criterion can be extended in a way to give a local measure of error.

This method combines the ideas of basis function estimators and the kernel estimators.
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The localized basis function estimators of this method are obtained by minimizing the

sum of square errors which is given as

SSELLS =
n

∑
j=1

w j(t)

[
y j−

K

∑
k=1

ckφk(t j)

]2

(2.50)

where w j(t) denotes the weights obtained from a kernel function in the form of (2.31).

In matrix terms it can be written as

SSELLS = (y−φφφc)′W(y−φφφc). (2.51)

.

The localized least squares estimates are found from

ĉ = (φφφ ′Wφφφ)−1
φφφ
′Wy. (2.52)

2.4.2.2 Local polynomial smoothing

Another technique that can be used in smoothing is local polynomial smoothing. In

this method, the estimated curve values χ̂i(t) are obtained from the minimization of

the formula

SSELPS =
n

∑
j=1

Kernh(t j, t)

[
y j−

L

∑
l=0

cl(t− t j)
l

]2

(2.53)

.

In general, the value of L is taken at least one. In the situation that the derivatives

are used, it is suggested to take l two higher than the highest order derivative required

(Ramsay and Silverman, 2005).

2.4.3 Fitting by Roughness Penalty Approach

Another popular smoothing method is the roughness penalty approach. This approach

enables to use large number of basis functions while imposing smoothness by

penalizing some measure of function complexity (Ramsay et al., 2009). A popular
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measure of a roughness of a function χ is the integrated squared second derivative

which can also be called curvature.

PEN2(χ) =
∫ [

D2
χ(t)

]2
dt. (2.54)

The choice of the roughness penalty is dependent on the type of the data. If the aim

is to smooth second derivatives then the penalization of the curvature of the second

derivative can give good results.

PEN4(χ) =
∫ [

D4
χ(t)

]2
dt (2.55)

Accordingly, when dealing with periodic data the penalization of the harmonic

acceleration operator would be used as a measure of roughness

PENL(χ) =
∫ [

(Lχ)2](t)dt =‖ Lχ ‖2 (2.56)

where

Lχ = D3
χ +ω

2dχ (2.57)

The general form of roughness penalty can be defined in matrix form

PENm(χ) =
∫

[Dm
χ(t)]2 dt

=
∫

[Dmcφφφ(t)]2 dt

=
∫

c′Dm
φφφ(t)Dm

φφφ(t)′cdt

= c′
[∫

Dm
φφφ(t)Dm

φφφ
′(t)dt

]
ccc

= c′Rc

(2.58)

where

R =
∫

Dm
φφφ(((ttt)))Dm

φφφ(((ttt)))′dt. (2.59)
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The penalized residual sum of squares approach is obtained from the addition of the

weighted sum of squares error criteria and the multiple of PENm(χ) by a smoothing

parameter λ

SSEPEN = (y−φφφc)′W(y−φφφc)+λc′Rc. (2.60)

When the derivative of (2.60) is taken, it is seen that

−2φφφ
′Wy+φφφ

′Wφφφc+λRc = 0. (2.61)

From this equation, the estimated coefficient vector is obtained.

ĉ = (φφφ ′Wφφφ +λR)−1
φφφ
′Wy. (2.62)

Hence, the smoothing matrix takes the form of

Sφφφ ,λ = φφφ(φφφ ′Wφφφ +λR)−1
φφφ
′W. (2.63)

When λ = 0, it is equal to the smoothing matrix of LSS which was given in the

expression (2.48).

The degrees of freedom (df) of a least squares smoother is equal to the trace of the

smoothing matrix which is equal to the number of parameters K that the coefficient

vector consists (Ramsay and Silverman, 2005).

d f = trace(S) = K. (2.64)

2.4.3.1 The Choice of Smoothing Parameter

The most popular methods that are used to decide the value of the smoothing parameter

are Cross-Validation (CV) and Generalized Cross Validation criterions.

Cross Validation (CV) criteria can be written as

CV(ν) =
1
n

n

∑
j

(
y j− ŷ j(− j)

)2
ω j (2.65)
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where ŷ j(− j) denotes the estimator when leaving out the jth pair (t j,y j) and ω j is

the weight at point t j. Although this method is widely used, it has some problems.

This method is computationally intensive and it can lead to under smoothing the data

(Ramsay and Silverman, 2005). Therefore, generalized cross validation (GCV) method

that has less tendency to undersmooth data is offered. It can be calculated as in (2.66)

GCV(ν) =
1
n

n

∑
j

(
y j− ŷ j(− j)

)2
ω jΞ(ν) (2.66)

where Ξ(ν) denotes the type of penalizing function. Here ν indicates a parameter that

depends both on the number K of basis and on the smoothing parameter λ .

For GCV criteria Ξ(ν) is equal to

Ξ(ν) =
(
1−Tr(S) n−1)−2

(2.67)

According to the change in this function, different criteria can be used such as Akaike

Information Criterion (AIC), Finite Prediction Error (FPE), Rice Bandwidth Selector

and Shibata’s Model Selector criterion. The Ξ(ν) functions according to mentioned

criteria have been explained detailedly in Febrero-Bande and Oviedo de la Fuente

(2012).

27



3 FUNCTIONAL PRINCIPAL COMPONENTS
ANALYSIS

Principal components analysis method is an important technique in multivariate

analysis which is used to reduce dimension and helps to reveal uncorrelated orthogonal

components as a linear combination of existing random variables considering the

correlation or covariances between them.

Functional principal components analysis (FPCA) is an extension of multivariate

principal components analysis (PCA). The main difference between two methods is

that FPCA deals with curves instead of vectors. Therefore, the covariance matrix and

eigenvectors are replaced with the linear operator and eigenfunctions, respectively.

The principal components are elements of L2 space rather than vector space Rp. The

methodology of FPCA is based on Karhunen-Loève decomposition which is used to

define random variables that come from a stochastic process. Detailed information

about this expansion can be found in the Appendix. The main differences between the

methods of PCA and FPCA can be summarized as in Table (3.1).

Table 3.1: The comparison of PCA and FPCA methods

PCA FPCA
Data Vectors ∈ Rp Functions ∈ L2(T ), T = [t1, tn]
Variables X = [X1,X2, ...,Xp] χ(t) = [χ1(t), ...,χN(t)]

X j = [x1 j, ...,xn j], j = 1, ...p t ∈ T = [t1, tn]
Covariance Matrix VVV Operator Γχ bounded between t1 and tn

V = Cov(X) ∈ R Γχ : L2(T )→ L2(T )
Eigenstructure Vector u j ∈ Rp Function ξ j ∈ L2(T ), t ∈ T

Vu j = λ ju j
∫

T c(s, t)ξ j(s)ds = λ jξ j(t)
Components Random variables in Rp Random functions in L2(T )

Despite these differences, the main idea of both analysis is the same which is to obtain

significant factors that explain the variability of the data most.
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3.1 The Approximation of Principal Components Analysis

In multivariate case, the principal components or the scores are linear combinations

of the centered observations xi j’s of the jth variable with the loadings u j =

(u1 j,u2 j, ...,up j)
′ which are chosen in a way to reveal the strongest mode of variation

in the data. This can be written as

fik =
p

∑
j=1

uk jxi j = u′jxi, i = 1, ...N, j = 1, ...p, k = 1, ...p (3.1)

where xi denotes the vector xi = (xi1, ...,xip)
′, u j denotes the weight vector of the jth

component and k is the number of components considering that there are as many

components as the number of variables p.

The weight vector of the first component u1 = (u11, ...,up1)
′ is obtained from the

maximization of the variance of the first component fi1

fi1 =
p

∑
j=1

u j1xi j = u′1xi (3.2)

subject to the constraint

‖u1‖2 = u′1u1 = 1. (3.3)

The weight vector of the second component u2 is obtained from the maximization of

the variance of the second component fi2 subject to the constraint ‖u2‖2 = u′2u2 = 1

and additionally subject to the constraint

u′2u1 = 0 (3.4)

which indicates the orthogonality of the components.

The weight vector related to the mth component is obtained from the repetition of the

mentioned steps so as to let fim have maximum variance subject to the constraint

‖um‖2 = u′mum = 1 (3.5)
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and subject to m−1 additional constraints

u′lum = 0, l < m (3.6)

In this manner, the most important modes of variation in the data are determined and

the amount of variation of the components decrease in each step.

Considering that X is a N× p matrix consists of the centered observations xi j, u is a p

length weight vector and fik are the principal component scores which are computed

from the maximization criteria which is given in matrix form as

max N−1u′X′Xu subject to u′u = 1. (3.7)

Since the variance-covariance matrix V is defined as

V = N−1X′X, (3.8)

the criterion (3.7) takes the form

max u′Vu subject to u′u = 1. (3.9)

The solution of this maximization problem is obtained by solving the eigenequation

problem given as

Vu j = λ ju j (3.10)

where λ j indicates the eigenvalues and u j indicates the eigenvectors of the variance

covariance matrix. For each j, eigenvectors satisfy the conditions given in the

equations (3.5) and (3.6) respectively.

Due to the effect of centering, the rank of the centered data matrix is equal to N− 1

and the p× p symmetric matrix V has at most min(p,N−1) non-zero eigenvalues λ j.

Different eigenvalue-eigenvector pairs (λ j,u j) can be found satisfying the condition

(3.10).
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Considering that V is a p× p symmetric matrix, the solution of any maximization

problem in the form of

max x′Vx subject to x′x = 1 (3.11)

can be calculated by using quadratic forms.

Let λ1 > λ2 > ... > λp > 0 be the positive eigenvalues of V given in decreasing

order and u j be corresponding eigenvectors of V that satisfy the condition of

orthonormality. Assume that D is a diagonal matrix with diagonal elements

λ j, ( j = 1, ..., p) and U is an orthonormal matrix whose columns are the

eigenvectors of V given as U = [u1, ...,up]. The elements u1,u2, ...,up of the

orthonormal matrix U compose an orthonormal basis in Rp. According to the singular

value decomposition theorem, V can be written as

V = UDU′. (3.12)

where due to the orthonormality U′ = U−1 and

UU′ = U′U = I. (3.13)

In order to obtain a unit length vector x, a vector y = U′x is taken, so that x = Uy.

Since ‖u j‖ = 1, the expressions x′x and y′y are equivalent (Horváth and Kokoszka,

2012).

x′x = y′U′Uy = y′y. (3.14)

If the singular value decomposition of the variance covariance matrix V in the equation

(3.12) is used and x = uy is set in the equation (3.11), the maximization problem takes

the form of

max y′Dy subject to y′y = 1. (3.15)

This problem can be solved by setting y to a unit vector y = [1,0, ...,0]′. Then, x is

obtained as the first column of U, as x = u1 with the maximum value of eigenvalue λ1.
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These steps can be extended to find all eigenvectors of V with the additional constraints

x′u1 = x′u2 = ...= x′um−1 = 0.

In the mth step, x is found as x = um where x′Vx = λmu′mum = λm, is equal to the

mth eigenvalue. So that, it is proved that the weight vectors u j in the equation (3.9)

are equivalent to the eigenvectors of the variance covariance matrix related to the

corresponding eigenvalue.

3.2 Principal Component Analysis for Functional Data

In functional principal component analysis (FPCA), the data consists of continous

functions. The weight vector u j and the centered observation vector xi in the

multivariate context now become functions and are denoted by ξ j(t) and χc(t),

respectively. Therefore, the summation, which is used to take a linear combination

of vectors, is replaced by an integral. In this case, the functional principal component

scores are given as the inner product of empirical weight functions ξ̂ j(t) and centered

observation curves χc(t) in q dimensional functional space.

fi j =
∫

T
ξ̂ j(t)χc

i (t)dt, i = 1, ...,N, j = 1, ...q (3.16)

where χc
i (t) are centered curves obtained from subtracting the mean function from

each curve.

The steps of functional principal component analysis are similar to principal

component analysis with a difference that now the operations are on functionals. As a

first step, the weight function of the first functional principal component ξ1(t) is found

by maximizing the variance of the principal component scores

fi1 =
∫

T
ξ̂1(t)χc

i (t)dt (3.17)

under the restriction

∫

T
ξ̂

2
1 (t)dt = ‖ξ̂1‖2 = 1. (3.18)
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In the next steps, other weight functions are computed for which the variance of

functional principal component scores are maximized subject to the constraint ‖ξ̂m‖2 =

1 and subject to m−1 additional constraints of orthogonality

∫

T
ξ̂l(t)ξ̂m(t)dt = 0, l < m. (3.19)

In functional context, the variance covariance matrix V leaves its place to the empirical

covariance operator Γ̂χ . Assume that the centered random curves χc
i (t) are elements

of the Hilbert space L2[T ] and it is provided that E‖χ‖2 = E[
∫

χ(t)2dt]< ∞ for every

t ∈ T = [t1, tn].

Then the maximization problem of the quadratic forms for the functional case is

defined by

max 〈Γ̂χ ξ̂ , ξ̂ 〉 subject to ‖ξ̂‖= 1 (3.20)

where ξ̂ ∈ H.

By using Riesz representation theorem mentioned in 2.6, this maximization problem

can be rewritten as:

〈Γ̂χ ξ̂ , ξ̂ 〉= 〈E[〈χc
i (t), ξ̂ (s)〉χc

i (s)], ξ̂ (t)〉= E
[
〈χc

i , ξ̂ 〉2
]
, ξ̂ ∈ L2[T ]. (3.21)

On the other hand, the goal of functional principal components analysis is to reduce

dimension and to represent the data in q dimensional space for ease of calculation. Let

ξ̂1, ξ̂2, ..., ξ̂q be an orthonormal basis that consists of orthonormal functions. Once such

an orthonormal basis is found so as to minimize the sum of square errors (SSE),

SSE =
N

∑
i=1
‖χc

i − χ̂
c
i ‖2, (3.22)

each curve χ̂c
i can be replaced by an expansion,

χ̂
c
i =

q

∑
j=1
〈χc

i , ξ̂ j〉ξ̂ j, (3.23)
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such that q < N. The inner product 〈χc
i , ξ̂ j〉 is the jth score of χi which is defined by

(3.16).

Under the condition of orthonormality ‖ξ̂ j‖2 = 1, the equation (3.22) can be

reexpressed as:

N

∑
i=1
‖χc

i −〈χc
i , ξ̂ j〉ξ̂ j‖2 =

N

∑
i=1
‖χc

i ‖2−2
N

∑
i=1

q

∑
j=1
〈χc

i , ξ̂ j〉2 +
N

∑
i=1

q

∑
j=1
〈χc

i , ξ̂ j〉2‖ξ̂ j‖2

=
N

∑
i=1
‖χc

i ‖2−
N

∑
i=1

q

∑
j=1
〈χc

i , ξ̂ j〉2.
(3.24)

So, minimizing SSE is equivalent to maximize the term ∑
N
i=1 ∑

q
j=1〈χc

i , ξ̂ j〉2 which is

equal to maximize 〈Γ̂χ ξ̂ , ξ̂ 〉. The solutions of this maximization problem is obtained

from the theorem below.

Theorem (Horváth and Kokoszka, 2012): Suppose that Ψ is a symmetric, positive

definite Hilbert-Schmidt operator with eigenfunctions υ j and let λ1 > λ2 > ... > λp >

λp+1 be the eigenvalues. Then,

sup
{
〈Ψξ ,ξ 〉 : ‖ξ‖= 1, 〈ξ ,υ j〉= 0, 1≤ j ≤ i−1, i < p

}
= λi (3.25)

is realized and the supremum is reached if ξ = υi.

Assume that υ̂ j’s are the orthonormal eigenfunctions of the sample covariance operator

Γ̂χ . Then by Spectral Decomposition Theorem given in the Appendix 2.4, the

maximization criterion can be expanded as follows,

N

∑
i=1

q

∑
j=1
〈χc

i , ξ̂ j〉2 =
q

∑
j=1
〈Γ̂χ ξ̂ j, ξ̂ j〉

=
∞

∑
j=1

λ̂ j〈ξ̂1, υ̂ j〉2 +
∞

∑
j=1

λ̂ j〈ξ̂2, υ̂ j〉2 + ...+
∞

∑
j=1

λ̂ j〈ξ̂q, υ̂ j〉2.
(3.26)

where λ̂ j denote the empirical eigenvalues in decreasing order λ̂1 > λ̂2 > ....

From the theorem mentioned above, it is obviously seen that ξ̂1 = υ̂1, ξ̂2 = υ̂2, ..., ξ̂q =

υ̂q. Consequently, the weight functions ξ̂ j’s are in fact orthonormal eigenfunctions of

the sample covariance operator and they are called the empirical functional principal
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component (EFPC). The jth score of χc
i is interpreted as the weight of the contribution

of the functional principal component ξ̂ j to the curve χc
i .

The empirical eigenfunctions of the covariance operator ξ̂ j are solutions of the

eigenequation defined by (3.27):

Γ̂χ ξ̂ j = λ̂ jξ̂ j, j ≥ 1. (3.27)

Considering that the empirical covariance operator can be defined as an integral

transform with the kernel ĉ(s, t), it can be reexpressed by

∫

T
ĉ(t,s)ξ̂ j(s)ds = λ̂ jξ̂ j(t), j ≥ 1. (3.28)

There are different ways to compute functional principal components. Mostly used

method is the basis representation.

Considering that each observed function has a basis expansion such as mentioned in

(2.21) and (2.22) in the previous chapter, the eigenfunctions can be defined in terms of

basis functions as

ξ̂ (t) =
K

∑
k=1

bkφk(t), (3.29)

or equivalently in matrix notation

ξ̂ (t) = φφφ(t)′b. (3.30)

Using the basis expansion of functional data in the matrix form,

χ̂ = Cφφφ (3.31)

the empirical variance covariance function can be written in matrix notation,

ĉ(t,s) =
1

N−1
φφφ(t)′C′Cφφφ(s). (3.32)

If an order K symmetric matrix W is defined as
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W =
∫

φφφ(s)φφφ(s)′ds (3.33)

then the eigenequation is equivalent to

∫

T
ĉ(t,s)ξ̂ (s)ds =

∫ 1
N−1

φφφ(t)′C′Cφφφ(s)φφφ(s)′bds

=
1

N−1
φφφ(t)′C′CWb.

(3.34)

Since the weight functions can be written in terms of basis functions given as in the

equation (3.30), the eigenequation problem takes the form of

1
N−1

φφφ(t)′C′CWb = λ̂ φφφ(t)′b. (3.35)

This equation is realized for all t ∈ T , then φφφ(t)′ can be removed and the equation can

be redefined by

1
N−1

C′CWb = λ̂b. (3.36)

Here, the constraint ‖ξ̂‖ = 1 implies that bWb = 1 and the additional constraint of

orthogonality of two functions ξ̂1 and ξ̂2 is denoted by b1Wb2 = 0.

To obtain principal components, the eigenvector u = W1/2b is defined and set into the

equation (3.36). So it becomes,

1
N−1

W1/2C′CW1/2u = λ̂u. (3.37)

and b = W−1/2u is computed for each eigenvector.

For orthonormal basis expansion, the equivalence W = I is realized which denotes

that the weight matrix is equal to the identity matrix. In this case, functional principal

component analysis is reduced to the multivariate principal component analysis with

the following eigenequation problem

1
N−1

C′Cu = λ̂u. (3.38)
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The second way to compute functional principal components is to use data driven basis

instead of basis expansion (Ramsay and Silverman, 2005). In this case, the integral

involved in the left size of the eigenequation problem should be approximated to a

sum of discrete values. For a function f , this approximation can be shown as

∫
f (t)dt ≈

n

∑
j=1

w j f (t j) (3.39)

where t j indicates the argument values or in other words quadrature points, n is the

number of argument values and w j’s are the weights belonged to each function value

in the sum which can also be called quadrature weights.

If an approximation such as given in the equation (3.39) is applied to the covariance

operator, it takes the form of

Γ̂χ ξ̂ ≈ VW ˜̂
ξξξ (3.40)

where the matrix V composes of the covariance values ĉ(t j, tk) at the argument values,
˜̂
ξ is an order n vector that contains the values of ξ̂ (t j) and W is a diagonal matrix with

diagonal elements equal to the quadrature weights w j.

The approximately equivalent matrix eigenanalysis problem can be written in the form

VW ˜̂
ξ = λ

˜̂
ξξξ . (3.41)

In this case, the constraints of orthonormality and orthogonality are defined by using

weight matrix as in the equation (3.42).

ξ̃ξξ
′
mW ˜̂

ξξξ m = 1 and ˜̂
ξξξ
′
mW ˜̂

ξξξ k = 0, k < m. (3.42)

Similar to the rewritten eigenequation problem given in (3.37), the equation (3.41) can

be rewritten by using the equality u = W1/2 ˜̂
ξξξ in terms of orthonormal vector u.

W1/2VW1/2u = λ̂u. (3.43)

The solution of this problem requires numerical iterations and consists of four steps:
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1) The determination of the values of n,w j’s and t j’s

2) The computation of eigenvalues λ̂ j’s and eigenvectors u j’s of the matrix

W1/2VW1/2

3) The computation of

˜̂
ξξξ m = W1/2um. (3.44)

4) Using an interpolation technique to convert discretized values of the vector ˜̂
ξξξ m to a

function ξ̂m.

From this procedure, the number of obtained eigenfunctions are as much as the number

of argument values n.

There are several methods proposed to determine the number q of the functional

principal components is an important step. The most popular of these methods is the

scree plot which plots the eigenvalues λ̂ j against j. The point where the decrease of

the eigenvalues appear is chosen as the selected value of q (Horváth and Kokoszka,

2012).

Another method to determine the number of components is the Cumulative

Percentage of Variance (CPV). CPV criteria is defined as follows.

CPV(q) =
∑

q
k=1 λ̂k

∑
N
k=1 λ̂k

. (3.45)

Horváth and Kokoszka (2012) recommend that the p is chosen for which CPV criteria

exceeds a level of 85%. In addition to these methods, pseudo-AIC or cross-validation

methods can also be used to determine the number of components.

One of the important tool in functional principal components analysis is to visualise

the results. This step is important to interpret the components. To visualise results

the overall mean function of the functional data is computed and a suitable multiple of

each principal component curve is added to and subtracted from the functional mean.

The mean function and the effects of adding and subtracting the multiple of each curve

is plotted for each component. The choice of the multiple of the principal component

function is important. It is a constant and can be defined by C. It is generally chosen
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subjectively. This constant C can differ from function to function but for ease of

comparison it is offered to be the same for all the principal components functions

(Ramsay and Silverman, 2005). In the study of Ramsay and Silverman (2005) C is

chosen as 0.2 to give easily interpretable results.
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4 FUNCTIONAL LINEAR MODELS

Linear models has an important place in classical statistical analysis to reveal the linear

relationship between variables and to make predictions in classical statistical analysis.

As in the case of principal component analysis, linear models can also be adapted to

functional data with the name functional linear models.

A linear model is called a functional linear model (FLM) due to the functional

structure of the variables that construct the linear model. FLMs are divided into

different groups according to the structure of the response and independent variables.

A FLM with a functional response and a categorical independent variable is called

a functional analysis of variance model whereas a model with scalar response and

functional variables or a model with a functional response is called a functional

multiple regression model.

Functional linear regression models (FLRM) can be summarized basically as in Table

(4.1).

Table 4.1: Functional Linear Regression Models

Model Response
Variable

Regressors Functional Linear Model

The Functional Re-
sponse Model

Functional Scalar γi(t) = β (t)Xi + εi(t)

The Fully
Functional Model

Functional Functional γi(t) =
∫

β (t,s)χi(s)ds+εi(t)

The Scalar Response
Model

Scalar Functional Yi =
∫

β (s)χi(s)ds+ εi

In this chapter, we will focus on functional linear regression models for scalar

responses which are used to model the relationship between a real random variable

and a functional random variable defined on a interval of length T . Several studies

can be found in the literature that aims to explain a scalar response form a functional
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variable (Ramsay and Silverman, 2005; Cardot et al., 1999; Aguilera et al., 2010; Preda

and Schiltz, 2011). Specifically, these models are mostly used in chemometrics where

the explanatory variables are functions of wavelenghts such as in the studies of Ferraty

and Vieu (2006) and Aguilera et al. (2010).

4.1 Functional Linear Regression Models (FLRM) for Scalar Responses

A general linear regression model with scalar response is in the form of

Y = Zβββ + εεε, (4.1)

where Y denotes the N×1 response vector, Z is the N× p design matrix, βββ is the p×1

parameter vector and εεε is the N×1 error term.

The main difference between a linear regression model and a functional linear

regression model is that some elements are now square integrable functions rather than

vectors. In this manner, the functional scalar response model takes the form

Y = 〈χ,β 〉+ ε =
∫

T
χ(s)β (s)ds+ ε. (4.2)

Here the predictor is a square integrable function taking values at point t ∈ T and

satisfy the conditions E[‖χ‖2] ≤ ∞ and µχ(t) = E[χ(t)], the functional slope of the

model β (s) is a square integrable function in L2(T ) , the error term ε is a real random

variable with mean 0 and variance σε
2 (Febrero-Bande et al., 2015).

The functional linear regression model given in (4.2) has infinite number of solutions

that give perfect prediction of the response (Ramsay and Silverman, 2005). Therefore,

different techniques based on basis functions and nonparametric smoothing are

proposed to assess an interpretable estimate of the parameter function β (s) (Ramsay

and Silverman, 2005; Ferraty and Vieu, 2006; Aguilera et al., 2010). Here, mostly

preferred three methods will be explained. The first method is to use classical basis

representation. The other methods are based on dimension reduction methods principal

components analysis and partial least squares analysis. Therefore, they are named

as Functional Principal Components Regression (FPCR) and Functional Partial Least

Squares Regression (FPLS). FPCR and FPLSR models can be constructed based on
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two approaches. The first one is the basis expansion approach. The other approach

was offered by Febrero-Bande and Oviedo de la Fuente (2012) and it is based on the

functional components obtained from the eigenstructure of the data. In this study, we

will focus on the second approach. More information about constructing FPCR and

FPLSR models in terms of basis functions can be found in the studies of Ocaña et al.

(2007); Aguilera et al. (2010); Aguilera Morillo (2013).

4.1.1 Functional Linear Regression Models (FLRM) with Basis Representation

The functional linear model in the equation (4.2) can be estimated from the following

expression:

Ŷi =
∫

T
χi(s)β̂ (s)ds. (4.3)

This expression defines the inner product 〈χi, β̂ 〉 and can be approximated by using

basis expansion.

An estimate of the parameter function β (s) is the basis expansion in terms of basis

functions θl’s

β
∗(s) =

L

∑
l=1

blθl(s). (4.4)

Here the coefficients b1,b2, ...,bL are estimated from the minimization of the criteria

sum of square errors

N

∑
i=1

[
Yi−

∫

T
χi(s)β ∗(s)ds

]2

=
N

∑
i=1

[
Yi−

L

∑
l=1
〈χi,θl〉bl

]2

. (4.5)

So the estimation of the parameter function is defined by

β̂ (s) =
L

∑
k=1

b̂lθl(s) = θθθ(s)′b̂. (4.6)

On the other hand, the functional predictors χi(s) can also be expanded in terms of

basis functions φ1(s),φ2(s), ...,φK(s) such as mentioned in Chapter 2,
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χi(s) =
K

∑
k=1

ckφk(s) = Cφφφ(s). (4.7)

By substituting the expansions given in the equations (4.6) and (4.7) into the model

(4.3), the functional linear model can be redefined by

Ŷi =
∫

Cφφφ(s)θθθ(s)′b̂ds, (4.8)

such that C and b̂ indicate the basis coefficient vectors of the functions χi(s) and β̂ (s)

respectively.

Let Jφθ define a K×L dimension matrix of inner product between the basis functions,

Jφθ =
∫

φφφ(s)θθθ ′(s)ds. (4.9)

Then the equation (4.8) can be rewritten in matrix form as

Ŷi = CJφθ b̂. (4.10)

Considering the intercept term b0, a L+1 length parameter vector ζζζ = (b0,b1, ...,bK)

and a N × K dimension design matrix Z = [1 CJφθ ] can be defined. Hence, the

functional linear regression problem given in the expression (4.10) is induced to an

ordinary linear regression problem with the estimated parameter vector ζ̂ζζ such that,

Ŷ = Zζ̂ζζ . (4.11)

The sum of square errors (SSE) of the functional linear regression model is defined as

SSE =
N

∑
i=1

(Yi− Ŷi) =
N

∑
i=1

(Yi−〈χi, β̂ 〉). (4.12)

By using equations (4.11) and (4.12) SSE can be rewritten in matrix form as

SSE = ‖Y−Zζ̂ζζ‖2. (4.13)

This problem can be seen as an ordinary linear regression problem and the least squares

estimate of ζζζ is estimated by minimizing (4.13), yielding to
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Z′Zζ̂ζζ −Z′Y = 0. (4.14)

Hence, ζ̂ζζ is obtained as

ζ̂ζζ = (Z′Z)−1Z′Y. (4.15)

Substituting (4.15) into the equation (4.11) gives the predicted values of the response

Ŷ

Ŷ = Z(Z′Z)−1Z′Y, (4.16)

where H = Z(Z′Z)−1Z′ defines the hat matrix such as in ordinary multiple linear

regression with the degrees of freedom df = trace(H).

4.1.2 Roughness Penalty Approach

A functional linear regression model in the form of (4.3) can also be fitted by a

roughness penalty approach to obtain a smooth estimate of the parameter function.

Then the penalized sum of squares problem in functional context is defined by

N

∑
i=1

[Yi− Ŷi]
2 +λ

∫
[Dm

β (s)]2ds. (4.17)

where λ is a smoothing parameter and Dm is the linear differential operator which

denotes the mth derivative of the parameter function β (s). The last term of (4.17) refers

the roughness penalty and it is chosen depending on the structure of the parameter

function β (s). Usually the second derivative of the parameter function is chosen as the

roughness penalty (Ramsay and Silverman, 2005).

Assume that R is a penalization matrix as defined in the equation (2.59). Then the

roughness penalty can be written in matrix form. Considering (4.10), the penalized

residual sum of squares problem in matrix form is expressed by

PENSSEλ (b̂0, b̂) = ‖Y− b̂0−CJφ ,θ b̂‖2 +λ b̂′Rb̂. (4.18)
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The expression (4.18) can be rewritten in a simpler form in terms of augmented

parameter vector ζ̂ζζ = (b̂0, b̂′)′ and the design matrix Z

PENSSEλ (ζ̂ζζ ) = ‖Y−Zζ̂ζζ‖2 +λ ζ̂ζζ
′′′R0ζ̂ζζ . (4.19)

where R0 is a augmented penalty matrix obtained by attaching a column and row of K

zeros.

The solution of this problem is obtained by solving the equation

(Z′Z+λR0)ζ̂ζζ = Z′Y. (4.20)

Hence, the parameter vector ζζζ is estimated as

ζ̂ζζ = (Z′Z+λR0)
−1Z′Y (4.21)

with the variance

Var[ζ̂ζζ ] = σ
2
ε (Z

′Z+λR0)
−1Z′Z(Z′Z+λR0)

−1. (4.22)

The smoothing parameter λ is chosen subjectively or depending on one of the methods

mentioned in Chapter 2 such as cross validation.

The cross validation algorithm can be adapted to this approach as follows:

CVλ =
N

∑
i=1

[Yi− b̂(−i)
0 −

∫
zi(s)β̂

(−i)
λ

(s)]2ds (4.23)

where b(−i)
0 and β

(−i)
λ

(s) are respectively the estimates of the intercept and β parameter

obtained by minimizing the penalized residual sum of squares based on all the data

except the ith data pair (zi,yi). The λ for which the CV criteria is minimum gives the

optimum lambda value (Ramsay and Silverman, 2005).

Another definition of CVλ is based on the the hat matrix H. In the penalized least

squares regression the hat matrix H is defined by the equation

H = Z(Z′Z+λR)−1Z′ (4.24)
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Let hii denote the diagonal elements of the hat matrix, then CVλ can be computed from

CVλ =
N

∑
i=1

(
Yi− Ŷ 2

i
1−hii

)2

. (4.25)

Due to its computational simplicity, mostly basis expansion approach is preferred in

solving functional linear regression problems. But in the case of multicollinearity,

this method alone would not be enough. In this case, functional principal

components regression and functional partial least squares regression methods

are offered to avoid multicollinearity and to reduce dimension. The latter

depends on the relationship between the scalar response variable and the functional

explanatory variable(s) and is mostly used in the case of functional scalar response

models.

4.1.3 Functional Principal Component Regression (FPCR)

The idea of FPCR is to predict scalar response vector Y based on the functional

principal component scores. Considering that the eigenfunctions ξ1,ξ2, ... of the

covariance operator Γχ form an orthonormal basis in L2(T ), the stochastic process

χ(t), t ∈ T with mean E [χ] = µχ can be represented in terms of functional principal

components according to the Karhunen-Loève Theorem given in (B.12),

χ̂(t) = µχ +
∞

∑
j=1

f jξ j(t), i = 1, ...N (4.26)

where f j, j≥ 1 are uncorrelated zero mean random variables that compose of principal

component scores.

Assume that Y is the response vector with mean E [Y] = µY and the variance σ2
Y =

E
[
(Y−µY)

2]. So the functional linear model with the scalar response Y can be

expressed by

Y = µY + 〈χ−µχ ,β 〉+ ε = µY +
∫

T

(
χ(t)−µχ(t)

)
β (t)dt + ε. (4.27)

χ(t) and the set of functional principal component scores f j span the same linear space.

Thus, the functional linear regression of the scalar response on χ(t) is equivalent to
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the linear regression of the response on the principal component scores f j (Preda and

Saporta, 2005). This can easily be seen when the expansion (4.26) is set into the

equation (4.27).

Y = µY +
∫

T
χ(t)β (t)dt−

∫

T
µχ(t)β (t)dt + ε

= µY +
∫

T
µχ(t)β (t)dt +

∫

T

∞

∑
j=1

f jξ j(t)β (t)dt−
∫

T
µχ(t)β (t)dt + ε

= µY +
∫

T

∞

∑
j=1

f jξ j(t)β (t)dt + ε.

(4.28)

Equation (4.28) defines an ordinary simple linear regression problem in the form of

Y = µY +
∞

∑
j=1

f jb j + ε, (4.29)

where f j = 〈χc,ξ 〉 is the explanatory variable and b j =
∫

T ξ j(t)β (t)dt = 〈β ,ξ j〉 is the

coefficient vector.

Hence, the functional slope β (t) can be written in terms of orthonormal principal

component functions such that,

β (t) =
∞

∑
j=1

b jξ j(t). (4.30)

If the term f j in the model (4.29) is expanded, the intercept term of the functional

linear regression model is found as,

b0 = µY−
∫

T
µχ(t)β (t)dt. (4.31)

Due to the fact that the parameter function β (t) is a square integrable function, it is

satisfied that ∑
∞
j=1 b2

j < ∞. So the regression coefficients b j of the model (4.29) can be

computed from (4.32) such as in an ordinary simple linear regression problem,

b j =
Cov(Y, f j)

Var( f j)
. (4.32)
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Then, considering that the variance of the principal components scores is equal to the

related eigenvalue of the covariance operator obtained from the equation Γχξ j = λ jξ j,

the functional slope β (t) can be rewritten as

β (t) =
∞

∑
j=1

Cov(Y, f j)

Var( f j)
ξ j(t) =

∞

∑
j=1

cY, f j

λ j
ξ j(t). (4.33)

This result can also be given by a Lemma.

Lemma (Horváth and Kokoszka, 2012): Suppose that χ(t) is a centered process, Y

and ε are zero mean random variables. The following linear model holds

Y =
∫

T
β (t)χ(t)dt + ε, (4.34)

under the condition that β is a square integrable function with
∫ ∫

β 2(t)dt < ∞.

Let ξ j(t) be the functional principal components and f j be the scores defined by the

inner product 〈χ,ξ j〉. Then it is realized that

β (t) =
∞

∑
j=1

E[ f jY ]
E[ f 2

j ]
ξ j(t). (4.35)

The goodness of fit of the functional linear model is measured by the coefficient of the

determination that is denoted by R2. R2 is the proportion of the scalar response variance

explained by the functional predictor χ (Febrero-Bande et al., 2015). In functional case

it is computed from

R2 =
Var(E[Y|χ])

Var[Y]
. (4.36)

The numerator of the formula (4.36) is equal to

Var(E[Y|χ]) =
∞

∑
j=1

λ jb2
j =

∞

∑
j=1

c2
Y, f j

λ j
. (4.37)

Therefore the coefficient of determination can be rewritten as

R2 =
1

Var[Y]

∞

∑
j=1

c2
Y, f j

λ j
=

∞

∑
j=1

r2
Y, f j

(4.38)
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where r2
Y, f j

denotes the correlation between the scalar response and FPC scores.

Hence, it can be said that the goodness of fit of FPCR depends on the relationship

between the response and the FPC scores.

Consider a sample of independent identically distributed observations χ1,χ2, ...,χN

that have the same distribution as χ(t). Then the functional linear regression model for

the sample drawn from (χ,Y) is written in the form of

Ŷi = Ȳ +
∫

T
(χi(t)− χ̄(t))β̂ j(t)dt, i = 1,2, ...,N, j = 1, ...,K. (4.39)

Let ξ̂ j and λ̂ j denote the empirical eigenfunctions and eigenvalues of the sample

covariance operator Γ̂χ and f̂ j = ( f̂1 j, ... f̂NK)
T be the sample functional principal

component scores where f̂i j = 〈χ − χ̄, ξ̂ j〉 for i = 1, ...,N and j = 1, ...,K. Then the

slope of the functional linear regression model is estimated from the projection of the

regressors onto the K empirical functional components ξ̂ j, j = 1, ...,K related to the

largest eigenvalues λ̂ j

β̂ j(t) =
K

∑
j=1

b̂ jξ̂ j(t). (4.40)

To compute β̂ j(t), first the values of b̂ j which minimize the criteria (4.41) should be

estimated,

N

∑
i=1

[Yi−
K

∑
j=1
〈χc

i (t), ξ̂ j〉b̂ j]
2. (4.41)

From Lemma (Horváth and Kokoszka, 2012) mentioned above, it is known that the

estimated regression coefficients b̂ j is computed from the ratio of covariance between

the scalar response and the sample principal component scores to the variance of the

FPC scores fi j that is equal to the associated eigenvalue λ̂ j,

b̂ j =
Cov(Y, f j)

Var( f j)
=

ĉY, f j

λ̂ j
, j = 1, ...K (4.42)

So, the estimation of the parameter function β (t) can be rewritten in terms of sample

counterparts of the covariance function, eigenfunctions and the eigenvalues as in the

equation (4.43)
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β̂FPC(t) =
K

∑
j=1

ĉY, f j

λ̂ j
ξ̂ j(t). (4.43)

The coefficient vector b̂ j estimated from the first K principal components is expressed

by

b̂ j =

(
f T
.1Y

Nλ̂1
,

f T
.2Y

Nλ̂2
, ...,

f T
.KY

Nλ̂K

)
. (4.44)

The predicted values of the response are obtained from the equality Ŷ = HY where H

is a hat matrix with degrees of freedom d f = trace(H) =K. H consists of the elements

H = (
f.1 f T

.1Y
Nλ̂1

,
f.2 f T

.2Y
Nλ̂2

, ...,
f.K f T

.KY
Nλ̂K

). (4.45)

Hence, the vector of residuals is equal to

ε̂i = Y− Ŷ = (I−H)Y. (4.46)

with the variance

σ̂
2
ε =

εiε
T
i

N−K−1
. (4.47)

To measure the goodness of fit of an estimated functional linear model, the sample

coefficient of determination is used which is defined by

R̂2 =
K

∑
j=1

λ̂ jb̂2
j =

K

∑
j=1

r̂2
Y, f j

(4.48)

The most important problem in FPCR is to choose the optimum number of principal

components. Cross-validation criteria (CV) or different model selection criteria can be

used to select the number K of principal components that best estimate the response

(Febrero-Bande and Oviedo de la Fuente, 2012).

The CV criteria is given with the formula

CV(K) =
1
N

N

∑
i=1

(Yi−〈χi, β̂(−i,K)〉)2. (4.49)
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The general formula for the model selection criteria (MSC) can be written as

MSC(K) = log

[
1
N

N

∑
i=1

(
Yi−〈χi, β̂(i,K)〉

)2
]
+ pN

K
N
. (4.50)

The last term pn in this formula differs according to the type of the information

criterion. The mostly used criteria are Schwarz Information Criteria (SIC), Corrected

SIC (SICc), Akaike-Information Criteria (AIC) and Corrected AIC (AICc). The value

of K which minimize the criteria MSC is taken as the number of projections.

The values of pn for the criterias SIC, SICc, AIC and AICc are given respectively as

below (Febrero-Bande and Oviedo de la Fuente, 2012).

SIC(pN) =
log(N)

N
. (4.51)

SICc(pN) =
log(N)

N−K−2
. (4.52)

AIC(pN) = 2. (4.53)

AICc(pN) =
2N

N−K−2
. (4.54)

4.1.4 Functional Partial Least Squares Regression (FPLSR)

Partial Least Squares Regression (PLSR) is a popular estimation method alternative to

PCR which takes into account the correlation between the response and the predictors

(Delaigle et al., 2012). This method is mostly preferred in chemometrics (Aguilera

et al., 2010). PLS approach is adapted to the functional context by Preda and Saporta

(2005). Wang et al. (2009) proposed a new PLS approach to solve the multicollinearity

problem that is encountered in the multiple linear regression of functional data. There

are several studies of FPLSR in the literature for the case of scalar response (Preda

and Saporta, 2005; Reiss and Ogden, 2007; Aguilera et al., 2010; Febrero-Bande et al.,

2015). Recently, Preda and Schiltz (2011) extended this approach to the case where

both the response and the predictors are functionals.
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Functional partial least squares (FPLS) method is based on the maximization of the

covariance between the functional independent variable χ(t) and the scalar response

Y. Due to the fact that FPLS components are more related to the variability of the

response, they are more relevant to predict the outcome (Oviedo de la Fuente, 2011;

Reiss and Ogden, 2007). The maximization criterion, which is known as Tucker’s

criterion in the literature, can be defined by

max Cov2(
∫

T
χ(t)ϕ(t)dt,Y) (4.55)

where ϕ(t) is a functional element of L2(T ) with the norm ‖ϕ(t)‖L2(T ) = 1 (Aguilera

et al., 2010).

FPLS components are computed from an iterative algorithm. The steps of this

algorithm can be summarized as follows (Febrero-Bande et al., 2015):

1. The response vector and the functional predictors are centered and defined as Y c =

Y −µY and χc = χ−µχ respectively. For the first step, let l = 0. The initial values of

the response Yl and predictor χl are taken as Y0 = Y c and χ0 = χc.

2. Let ϕl+1 ∈ L2(T ) be the associated weight function defined by (4.56),

ϕl+1 =
Cov(Yl,χl)

‖Cov(Yl,χl)‖
=

E[Ylχl(t)]∫
T E[Ylχl(t)dt]

, t ∈ [0,T ], (4.56)

and let υl+1 = 〈χl,ϕl+1〉 denote FPLS component score which is chosen so as to

maximize the square of Cov2[Yl,υl+1] = c2
Yl ,υl+1

as given in Tucker’s criterion.

3. Regress Yl and χl on the partial least squares components to obtain the regression

coefficient estimates ψl+1 ∈R and δl+1 ∈ L2[T ] which are obtained from the regression

models (4.57) and (4.58):

Yl = ψl+1υl+1 + εl(t), (4.57)

χl = δl+1υl+1 +ηl(t), (4.58)

as in given in the equations (4.59) and (4.60):

52



ψl+1 =
Cov[Yl,υl+1]

Var[υl+1]
, (4.59)

δl+1 =
Cov[χl,υl+1]

Var[υl+1]
. (4.60)

4. Set Yl+1 and χl+1 as error terms of the models (4.57) and (4.58) such as given in the

equations (4.61) and (4.62) respectively:

Yl+1 = Yl−ψl+1νl+1, (4.61)

χl+1 = χl−δl+1υl+1. (4.62)

5. Take l = l +1 and repeat the algorithm from second step on.

The FPLS components υl are defined by the inner product of {χ(t) : t ∈ [0,T ]} and

weight functions ϕl(t) such as given in (4.63):

υl = 〈χl−1,ϕl〉=
∫

T
χl−1(t)ϕl(t)dt. (4.63)

As in the case of FPCR, FPLSR is based on regressing the response vector on the

FPLS components. The functional linear model (4.29) can be represented as a linear

combination of PLS components (Oviedo de la Fuente, 2011). The parameter function

β (t) can be found from expansion of this equation:

Y = µY +
∞

∑
l=1

clυl + ε (4.64)

For beginning, assume that just one FPLS component is used. For l = 1, the equation

(4.64) is equal to

Y = µY + c1υ1 + ε. (4.65)

From the definition of FPLS components as given in (4.63), υ1 can be written as

υ1 =
∫

T
χ0(t)ϕ1(t)dt. (4.66)
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By using the initial value of χ0 = χc and setting ϕ1(t) as φ1(t) the equation takes the

form

υ1 =
∫

T
χ

c(t)φ1(t)dt. (4.67)

Then (4.65) can be rewritten as

Y = µY + c1

∫

T
χ

c(t)φ1(t)dt + ε. (4.68)

Hence it can be easily seen that for l = 1 the β (t) functional parameter is equal to

β (t) = c1φ1(t). (4.69)

Let us take two FPLS components. For l = 2, the scalar response variable can be

written as a linear combination of 2 FPLS components.

Y = µY +
2

∑
l=1

clυl + ε

= µY + c1υ1 + c2υ2 + ε.

(4.70)

The expansion of υ1 was given in (4.67). By using the equation (4.62), χ1(t) is equal

to

χ1(t) = χ0(t)−δ1υ1 = χ
c(t)−δ1υ1. (4.71)

Then the expansion of υ2 can be written as

υ2 = 〈χ1,ϕ2〉=
∫

T
(χc−δ1υ1)ϕ2(t)dt

=
∫

T
(χc

ϕ2(t)−〈δ1,ϕ2〉υ1)dt

=
∫

T
χ

c
ϕ2(t)dt−

∫

T
χ

c(t)〈δ1,ϕ2〉ϕ1

=
∫

T
χ

c(t)[ϕ2(t)−〈δ1,ϕ2〉ϕ1(t)]dt

(4.72)

By setting (4.72) into the equation (4.70) the model takes the form of

Y = µY + c1

∫

T
χ

c(t)φ1(t)dt +
∫

T
χ

c(t)[ϕ2(t)−〈δ1,ϕ2〉ϕ1(t)]dt. (4.73)
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Hence the approximation of β (t) parameter with two FPLS components is found as

β (t) = c1φ1 + c2[ϕ2(t)−〈δ1,ϕ2〉φ1(t)] = c1φ1(t)+ c2φ2(t). (4.74)

Then it is found that φ2(t) = ϕ2(t)−〈δ1,ϕ2〉φ1(t) .

For l = 3, on top of υ1 and υ2, the expansion of υ3 should be set into the equation

y = µY +
3

∑
i=1

clυl = c1υ1 + c2υ2 + c3υ3. (4.75)

By using the definition (4.63) and the equation (4.62), the expansion the third FPLS

component is found as

υ3 = 〈χ2,ϕ3〉=
∫

T
(χc−δ1υ1−δ2υ2)ϕ3(t)dt

=
∫

T
(χc

ϕ3(t)−〈δ1,ϕ3〉υ1)dt−〈δ2,ϕ3〉υ2)dt

=
∫

T
χ

c
ϕ3(t)dt−

∫

T
χ

c(t)〈δ1,ϕ3〉φ1−
∫

T
χ

c(t)〈δ2,ϕ3〉φ2

=
∫

T
χ

c(t)[ϕ3(t)−〈δ1,ϕ3〉φ1−〈δ2,ϕ3〉φ2]dt

(4.76)

Hence, φ3(t) = ϕ3(t)− 〈δ1,ϕ3〉φ1− 〈δ2,ϕ3〉φ2 is found and the parameter function

β (t) as an approximation of 3 FPLS components is given by

β (t) = c1φ1(t)+ c2φ2(t)+ c3[ϕ3(t)−〈δ1,ϕ3〉φ1−〈δ2,ϕ3〉φ2]

= c1φ1(t)+ c2φ2(t)+ c3φ3(t).
(4.77)

By calculating the further steps, it can be seen that φl(t) functions shows the same

pattern. So the definition of φl(t) can be generalized by following equations.

φ1 = ϕ1, for l = 1 (4.78)

φl = ϕl−〈δ1,ϕl〉φ1− ...−〈δl−1ϕl〉φl−1, for l ≥ 2. (4.79)

Hence, the regression coefficient estimator of the functional linear model can be

written as in the equation (4.80) for the infinite case,
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β =
∞

∑
l=1

clφl, (4.80)

where φl satisfies the conditions given by (4.78) and (4.79).

In case of q number of FPLS components, the slope of the functional linear model can

be estimated from

β̂FPLS =
q

∑
i=1

ĉl φ̂l. (4.81)

The number of FPLS components can be determined by the same methods given for

their counterpart FPC’s (Oviedo de la Fuente, 2011).

The goodness of fit of the FPLSR model is determined by the coefficient of

determination which is a measure of squared correlations between the scalar response

Y and the FPLS components:

R2 = ∑
l

r2
Y,υl

. (4.82)
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5 APPLICATION

FDA assumes that the functional data set is measured on a continuity such as

a dense time interval or a spectrum that consists of different frequency channels

or wavelengths. FDA techniques are mostly popular in analyzing spectral data

sets that are measured on a spectrum. There are many applications of FDA

techniques on spectral data, especially in chemometrics (Saeys et al., 2008; Aguilera

et al., 2013). The data gathered from remote sensing sensors via transmission of

electromagnetic energy is also a kind of spectral data. As mentioned by Pidwirny

(2006) remote sensing has many applications in the fields of land-use mapping,

agriculture, forestry and oceanography (Faivre and Fischer, 1997; Caballero et al.,

2014a,b; Nezlin and DiGiacomo, 2005). In oceanography, remote sensing data are

used to estimate ocean characteristic parameters such as Sea Surface Temperature

(SST), Chlorophyll-a content (Chl-a) and Total Suspended Solids (TSS) (Devi

et al., 2015; Caballero et al., 2014a,b; Clarke et al., 2006; Schwarz et al.,

2008). Recently, FDA gain importance in analyzing remote sensing sensor data

sets. Cardot et al. (2003) and Besse et al. (2005) applied functional data

analysis approaches to predict land use from remote sensing data obtained from

the Vegetation sensor of the SPOT4 Satellite. Liu et al. (2012) offered a new

rotation approach for functional factor analysis with an application on periodic

remote sensing data. Gong et al. (2015) used FPCA to model high-dimensional

temperature curves and temperature surfaces of Lake Victoria. Lately, Ferraty et al.

(2016) study on predicting the chlorophyll content from a hyperspectrum data between

wavelengths 400 - 2500 nm by using nonparametric functional models. Although,

there are many applications of multivariate analysis techniques on remote sensing

satellite data in oceanography (Clarke et al., 2006; Caballero et al., 2014a,b; Nezlin

and DiGiacomo, 2005), there are few studies that use FDA approach (Gong et al.,

2015; Ferraty et al., 2016).
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In this study, it is aimed to apply functional data analysis techniques on the Remote

Sensing (RS) data to estimate the amount of TSS in the coastal zone adjacent to

the Guadalquivir estuary and to compare the performance of functional data analysis

approach with alternative multivariate analysis techniques.

5.1 Material and Methods

The data set consists of two parts: RS data and in-situ data. The satellite data

is obtained from 300 m full spatial resolution (FRS) MEdium Resolution Imaging

Spectrometer (MERIS) on board the Envisat multispectral platform where in-situ data

is comprised of the samples collected from ocean by different campaigns.

5.1.1 Remotely Sensed Data

The study area corresponds to the coastal region of the Gulf of Cadiz in the

southwest coast of the Iberian Peninsula (35.5o− 37.5o N latitude and 1o− 10o W

longitude). Specifically, we will study the Guadalquivir estuary, one of the largest

and most productive estuarine systems of the west Europe. The satellite data belong

to the Region Of Interest (ROI) was downloaded from the Ocean Colour Website

(http://oceancolor.gsfc.nasa.gov) in hdf format. It consists of Level-2 Remote Sensing

Reflectance (Rrs) (sr−1) at eight different wavelengths (413 nm, 443 nm, 490 nm, 510

nm, 560 nm, 620 nm, 665 nm, 681 nm) with 300 m full spatial resolution between

the years 2002-2011. A Level-2 data product is the result of the sensor calibration and

atmospheric correction, consisting of derived geophysical variables generated from

the corresponding radiometrically corrected Level-1A product by using the standard

NASA processing methodologies. The MERIS overpass time for central Europe is

between 9:30 and 11:00 UTC, with a global coverage every 3 days.

SeaDAS image analysis software (SeaWifs Data Analysis System, version 6,

http://seadas.gsfc.nasa.gov/) and the interface VMware Workstation 12 Player

(https://www.vmware.com/) were used to convert data from hdf format to ascii format.

The data was passed through a quality control process corresponding to the L2 flags

given in the Table 5.1 to remove the suspicious and low-quality data points. This
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Table 5.1: L2 flags

L2 flags Description
LAND pixel is over land
CLOUD cloud contamination
ATMFAIL atmospheric corection failure
HIGLINT high sun glit
HILT total radiance above knee
HISATZEN large satellite zenith
CLDICE clouds and/or ice
COCCOLITH coccolithophores detected
HISOLZEN large solar zenith
LOWLW very low water-leaving radiance
CHLFAIL chlorophyll algorithm failure
NAVWARN questionable navigation
MAXAERITER maximum iterations
CHLWARN chlorophyl out of range
ATMWARN atmospheric correction is suspect

filtering process is done by using MATLAB 7.12.0-R2011a software and the filtered

data was saved in mat format for all wavelengths and all years.

The difference between the latitudes and longitudes of the region of interest is 2o and

9o, respectively. Considering that there is 111.12 km distance between each degree,

the total distance between latitudes and longitudes are approximately 222 km and

999 km. Considering that the resolution of images is 300 m it is seen that there

are 740 pixels for the latitude and 3330 pixels for the longitude. So, the data set

consists of 740× 3330 pixel images. The download process gave us 2464200 pixel

vectors for each wavelength. These generated data files were edited and analyzed

using MATLAB7.12.0 software (m_map toolbox), and the study area was then subset

from the images to a Region Of Interest (ROI) with geographic extents of 36.01−37o

N latitude and 7−6.01o W longitude.

5.1.2 In-situ data

The in-situ data consist of the records of TSS values which are obtained from the

samples collected by the station of Junta de Andalucia and by the cruises of Reserva

and Fluctuaciones in the Guadalquivir estuary. The surface samples taken into analysis
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were collected with a rosette sampler (5 m below water surface) with a distance from

coast from 1km to 25 km offshore.

The samples were collected during different time periods. The samples collected

by Junta de Andalucía covers the period between April 2008 - May 2011 where the

samples of Reserva and Fluctuaciones were collected between the periods July 2002

- September 2004 and May 2005 - May 2007 respectively. Each sample is collected

by one of the campaigns from a determined coordinate. The coordinate of the station

Junta de Andalucia was fixed with the lattitude 36.78o N and longitude 6.37o W where

the coordinates of the stations Reserva and Fluctuaciones were chosen according to the

campaign planning. The coordinates of each station can be seen in the Figure 5.1.

Figure 5.1: The study area and ROI. a) The study area. b) Map of Guadalquivir estuary and
the Gulf of Cadiz coastal area showing the ROI. Pink stars and circles indicate the
stations of Fluctuaciones and Reserva, respectively. The white round circle is the
station of Junta de Andalucía.

The amount of TSS concentration in a sample is measured according to the protocols

mentioned in Caballero et al. (2014b).
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5.1.3 Validation Procedure

In the validation process, the filtered satellite data were matched up with in-situ data

collected from the stations Junta de Andalucía, Reserva and Fluctuaciones considering

the coordinate and the time that the sample is collected. In this step, the coordinates of

in-situ and the satellite data were matched up by choosing the nearest point in the 2×2

pixel box area. All the matched-ups were done in MATLAB 7.12.0-R2011a software.

After matching, totally 71 observations were obtained. Setting the condition that the

time difference between in-situ samples and the satellite data should be at most one and

a half hour, in order to reduce differences because the large spatio-temporal variability

of these estuarine waters, the number of observations decrease from 71 to 31. Four

observations were removed from the data set due to the fact that they were not collected

from the water surface, one observation was removed due to the measurement error

during filtering process and one observation was removed due to the missing Rrs values

at the wavelengths 413 nm and 665 nm. Finally, the analysis were conducted on 25

observations left.

5.1.4 Statistical Methods

Several multivariate and functional methods were used to investigate the

relationship between TSS and Rrs values and their performances are compared. It

is assumed that FLRM gives better estimation than other models with two reasons:

FLRM uses all the information obtained from the satellite and the spectral structure of

the data allows us to take the observations as curves rather than points.

Due to the spectral structure of the data, functional linear regression models

for scalar response were used in analyzing the relationship between TSS and

Rrs where the scalar response vector consists of TSS values and the functional

explanatory variable consists of the Rrs values recorded at eight different

wavelengths.

Usually wavelength Rrs 665 is used to predict TSS concentration (Binding et al., 2003,

2005; Caballero et al., 2014b). For MERIS data Nechad et al. (2010) offered to use

the bands 665 nm and 681 nm to model TSS. In study of Caballero et al. (2014b) a

simple exponential regression model is found reasonable to analyse the relationship
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between TSS and Rrs 665. Since, the highest correlation in our data set is found in

the wavelengths 665 nm and 681 nm, two simple exponential regression models were

constructed between TSS values and the Rrs values at the wavelengths 665 nm and

681 nm respectively. Following that, a stepwise exponential regression model is fitted

to choose the optimum number of wavelengths that explain the response.

Alternative to FLRM and exponential regression models, Least Absolute Shrinkage

and Selection Operator (LASSO) model and Generalized Additive Models (GAM)

with different link functions and parameters were used to model TSS. The

performance of the models were compared by using an adjusted Mean Error of

Prediction (MEP) computed from Leave One Out Cross Validation (LOOCV) results.

For 2-fold cross validation MEP is defined by,

MEP =
∑

n
i=1(yi− ŷi)

2/n
Var(y)

=
SSE

Var(y)
, (5.1)

where y indicates the response vector of the set that will be predicted (Febrero-Bande

and Oviedo de la Fuente, 2012).

In the case of LOOCV, in every step there is just one observation. Since, the variance

can not be calculated just for one observation an Adjusted MEP (AMEP) criteria is

used to compare the models. AMEP is defined by the equation 5.2,

AMEP =
∑

n
i=1(yi− ŷi)

2/n
∑

n
i=1(yi− ȳ−i)2 =

SSE
∑

n
i=1(yi− ȳ−i)2 , (5.2)

where the term ∑
n
i=1(yi − ȳ−i)

2 is a constant that is used to scale MEP values of

different models.

All the statistical analysis were done in R v3.2.3 for Windows statistical software

package.

5.1.4.1 Generalized Additive Models (GAM)

Generalized additive models (GAM) were first introduced by Hastie and Tibshirani

(1986). GAM are nonparametric extensions of generalized linear models (GLM)

which allows to model some function of the expected value of the response by a sum of
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nonparametric or parametric functions of the predictors (Hothorn and Everitt, 2014).

The model is defined by the equation 5.3,

g(E[Y |X1,X2, ...,Xp]) = α + f (X1)+ f (X2)+ ...+ f (Xp), (5.3)

where the response may follow one of the member distributions of exponential

distribution family (Wood, 2006). The link function g can be identity, logit, probit

or log link according to the distribution of the response. Identity link function is

used mostly for Gaussian response where log link function is used for Poisson count

data. For modelling binomial probabilities, logit or probit link functions are preferred

(Friedman et al., 2001; Hastie et al., 2011).

GAM are halfway between generalized nonparametric multiple regression model

and generalized linear model. In the case of multiple regressors, the multiple

nonparametric regression models may face a problem called the curse of

dimensionality which means that the neighbourhood of any point t may contain no

observational data (Delicado, 2015). In the case of high dimensional data, GAM are

alternative to nonparametric multiple regression models.

If the functions on the right side of the equation (5.3) are all linear, then generalized

additive model is equivalent to generalized linear model. If some of the functions in

the model have a linear effect on the response while some others do not, then it is

called a semi-parametric model. Semi-parametric models are more flexible comparing

to nonparametric models.

5.1.4.2 Least Absolute Shrinkage and Selection Operator (LASSO) Model

In a multiple linear regression problem if the number of predictors p are greater

than the number of observations n, different shrinkage methods are offered

to penalize the estimator to avoid the problems that can occur from high

dimensionality. LASSO is one of these shrinkage methods which is used with the

aim of variable selection. The LASSO estimate is found by minimizing penalized sum

of squares criteria with norm L1 as the penalty term,
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N

∑
i=1

(
Yi−β0−

p

∑
j=1

xi jβ j

)2

+λ

p

∑
j=1
|β j|, (5.4)

subject to ∑
p
j=1 |β j| ≤ t (Hastie et al., 2011). Here t is called the tunning parameter.

For ease of interpretation, the coefficients are drawn versus a range of standardized

tunning parameters s = t/∑
p
j=1 |β j|. The optimum value of s is determined by using

cross validation. The coefficients which take value for the optimum s are taken into the

analysis.

5.2 Results

The data set consists of 25 observations collected from 3 different stations: 14

observations from "Junta de Andalucía" station, 7 observations from "Reserva" cruise

stations and 4 observations from "Fluctuaciones" cruise stations.

The correlation plot in the Figure 5.2 implies that the wavelengths are highly correlated

and there is an exponential relationship between in situ TSS values and Rrs values at

each wavelenght.

5.2.1 Exponential Regression Models

In order to decide which wavelength to be used in the exponential regression, the

correlations between the logarithm of TSS and wavelengths were analyzed. The

correlations between TSS and the wavelengths 413 nm, 443 nm, 490 nm, 510 nm,

560 nm, 620 nm, 665 nm, 681 nm were found as 0.723 (p < 0.001), 0.671 (p < 0.001),

0.596 (p=0.002), 0.567 (p=0.003), 0.533 (p=0.005), 0.681 (p < 0.001), 0.729 (p <

0.001), 0.734 (p < 0.001), respectively. Since, the highest correlations are found for

the bands 665 nm and 681 nm, two exponential regression models were constructed

between TSS and these wavelengths.

In situ TSS measurements ranged between 3 - 327 mg/L while Rrs values at the

wavelength 681 nm ranged between 0.000 - 0.0275 sr−1 and Rrs values at the

wavelength 665 nm ranged between 0.000 - 0.028 sr−1. As it is seen from the scatter

plot of observations in Figure 5.3, the dispersion of Rrs values for both bands are

similar.

The fitted exponential regression model for the band 681 nm is,
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Figure 5.2: The correlation plot between variables

TSS = 24.14∗ exp(74.38∗Rrs 681), (5.5)

with significant parameters (p < 0.001), 0.54 explained variance and 0.57 standard

error.

The second highly correlated wavelength was Rrs 665. Exponential model between

TSS and Rrs 665 satisfies the following equation.

TSS = 24.04∗ exp(70.83∗Rrs 665), (5.6)

where R square is 0.53 and the standard error is 0.57.

Following these models, a stepwise linear regression model is constructed between the

logarithm of TSS and the Rrs values. As a result,the covariates Rrs 413 (p=0.121), Rrs

560 (p=0.003) and Rrs 620 (p=0.003) were chosen according to AIC criteria and this
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Figure 5.3: The scatter plot between in situ TSS and Rrs values at wavelengths 665
nm and 681 nm. Blue curve indicates the relationship between TSS and Rrs
665 nm while pink curve indicates the relationship between TSS and Rrs 681 nm.

four parameter model was found significant (p < 0.001) with R square 0.69, adjusted

R square 0.65 and the standard error 0.49.

The estimated model is

log TSS = 3.42+82.90∗Rrs 413−100.46∗Rrs 560+142.92∗Rrs 620. (5.7)

As well as these models, exponential regression models with two explanatory variables

were also fitted to data. The exponential model with the parameters Rrs 620 nm and

Rrs 681 nm and the exponential model with the parameters Rrs 620 nm and Rrs 665

nm were found significant. Though, the adjusted R square of these models were lower

that the stepwise regression model.

66



The standard error, R square, Adjusted R square and AMEP values of the mentioned

models are given in Table 5.2.

Table 5.2: MEP Values for Exponential Regression Models

Model Std Error Adj R2 AMEP
log TSS = b0 +b1 Rrs 681 0.57 0.52 0.46
log TSS = b0 +b1 Rrs 665 0.58 0.51 0.48
log TSS = b0 +b1 Rrs 620+b2 Rrs 681 0.53 0.58 5.07
log TSS = b0 +b1 Rrs 620+b2 Rrs 665 0.53 0.59 2.98
log TSS = b0 +b1 Rrs 413+b2 Rrs 560+b3 Rrs 620 0.50 0.65 1.37

Accrding to AMEP values, the exponential regression models with one explanatory

variable (Rrs 665 or Rrs 681 as the coefficient) seem reasonable. Although the standard

error and the explained variance of these models are lower than the rest, they are the

best models to predict TSS. First of all, they are not effected by multicollinearity.

Secondly, as it can be seen from the residual plots given in Figure 5.4, other exponential

models violates the assumption of the homogeneity of variance.

Figure 5.4: The Residual Plots of Used Exponential Models
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In addition to stepwise exponential regression model, Principal Components

Regression (PCR) and Partial Least Squares Regression (PLSR) methods were used

to avoid correlation between the variables and to reduce dimension. The optimum

number of components for both models were determined by cross validation. The

AMEP values of the ordinary PC and PLS regression models including all components

and Cross Validated(CV) PCR and PLSR models including just chosen components

are as given in the Table 5.3.

Table 5.3: MEP Values for PC and PLS Regression Models

Model MSE R2 AMEP
PCR 0.19 0.70 3.91
PLSR 0.19 0.70 3.40
PCR CV with 2 components 0.29 0.55 0.86
PLSR CV wih 2 components 0.23 0.64 0.90

According to the table regression models with the components chosen by CV criterion

gave better results than regression models that include all the components.

5.2.2 GAM and LASSO Models

In this study, mainly three types of GAM were used to model TSS values. Firstly,

GAM with Gaussian distribution and identity link is used to model the logarithm of

TSS by means of Rrs 665 and Rrs 681. This way it is aimed to obtain a more flexible

model than the exponential regression models. Secondly, the dependent variable is

taken as TSS and Gamma distribution with inverse link is used in modelling. Besides,

alternative to one term models, two term models were also tested to find out the best

GAM model that explains TSS values.

The adjusted R square, the percentage of explained deviance (Dev. Exp.) and AMEP

values of the related GAM models are summarized in Table 5.4:

The LASSO model is constructed by taking logarithm of TSS as dependent variable.

The optimum number of coefficients that should be taken into the analysis were

determined by considering the optimum value of lambda that is found from 10-fold

cross validation. Optimum value of lambda can be determined in two ways: The

lambda value that gives the mean cross-validated error or the lambda value which
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Table 5.4: AMEP Values for GAM

Model Family Link Adj R2 Dev. Exp. AMEP
log TSS∼ s(Rrs 665) Gaussian identity 0.89 93.2 966.01
log TSS∼ s(Rrs 681) Gaussian identity 0.87 92.0 1866.72
TSS∼ s(Rrs 620)+ s(Rrs 665) Gaussian log 0.88 89.0 1.53
TSS∼ s(Rrs 620)+ s(Rrs 681) Gaussian log 0.85 90.6 1.53
TSS∼ s(Rrs 665) Gamma inverse 0.73 69.0 1.63
TSS∼ s(Rrs 681) Gamma inverse 0.74 69.0 1.63

gives the maximum value such that error is within 1 standard error of the minimum is

chosen as optimum lambda.

As it can be seen in the Figure 5.5, the lambda value based on the mean cross

validated error is found as 1.01 and the number of variables that should be taken into

the analysis is determined as 4 where the lambda value based on the standard error is

found as 1.21 with the number of variables equal to 2. On the upper side of the Figure,

for different values of lambda the number of variables that should be taken into the

analysis are given.

Figure 5.5: Mean Squared Error versus a range of values of lambda. The dashed line
on the left side of the plot shows the lambda value based on cross-validated error
where as the dashed line on the right side of the plot shows the lambda based on
standard error.

The coefficients that entered to the analysis step by step according to the value of L1

norm can be seen from Figure 5.6.

the optimum number of parameters of LASSO model were chosen as minimum 2,

maximum 4 by CV criterion. The AMEP value was found equal to 33.71. This value
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Figure 5.6: LASSO Model. The coefficients that are in the analysis for the range of L1 norm
values. On x-axis the value of norm is seen. Each curve defines one coefficient.

is quite higher than the AMEP values of previous models. Therefore, it has been seen

that LASSO model is not a good option for modelling TSS values.

5.2.3 Functional Linear Regression Models

The models that are used in modelling the scalar response are functional linear

regression by using B-spline basis, FPCR including all the components, FPCR with

Cross Validation (FPCR CV), FPLSR including all the components, FPLSR with Cross

Validation (FPLSR CV) and the FLRM with the first and second derivatives of Rrs and

log Rrs curves as explanatory variables. All the models were compared in terms of

AMEP values given by the equation (5.2). Initially, the scalar response was taken as

raw TSS values and the functional linear models were constructed between TSS and

the Rrs curves. Then the logarithm of TSS values were taken as response and they were

regressed respectively on Rrs curves, on the logarithm of Rrs curves and on the first and

second derivatives of them. In order to do functional modelling, first the curves were

smoothed by using several methods: B-spline basis expansion with optimum number

of basis chosen by CV criterion, Penalized B-spline method with optimum number

of basis and optimum value of lambda chosen by CV, and Nadaraya-Watson kernel

method. The graphs of these methods didn’t show a big difference. Therefore, for

ease of computation B-spline smoothing method with 8 number of basis is preferred in

smoothing the data. For the first and the second derivatives of Rrs and log Rrs curves

also B-spline smoothing with 8 number of basis is used. The smoothed curves of
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functional explanatory variables obtained from different methods are shown in Figure

5.7.

Figure 5.7: Functional Explanatory Variables. (a) Rrs curves. (b) Rrs curves smoothed by
B-spline method. (c) Rrs curves smoothed by penalized B-spline method. (d) Rrs
curves smoothed by Nadaraya-Watson method. (e) log Rrs curves. (f) log Rrs
curves smoothed by B-spline method. (g) log Rrs curves smoothed by penalized
B-spline method. (h) log Rrs curves smoothed by Nadaraya-Watson method. (i)
1st derivative of Rrs curves. (j) 2nd derivative of Rrs curves. (k) 1st derivative of
log Rrs curves. (l) 2nd derivative of log Rrs curves.

For functional outlier detection one of the procedures offered by Febrero-Bande

and Oviedo de la Fuente (2012) was used which is based on weighting and

bootstrap. This procedure is repeated for four types of depth measures:

Fraiman-Muniz Depth (FMD), Modal Depth (MD), Random Tukey Depth (RTD) and

Random Projection Depth (RPD). The number of bootstrap samples and the quantile

to determine the cut off value obtained from Bootstrap sample were taken 200 and 0.5

since they are offered by Febrero-Bande and Oviedo de la Fuente (2012) as default
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values. Although, there are suspicious observations in the data set, none of them were

recognized as outliers. The analysis were done on 25 observations.

The AMEP values for the related FLRMs are as given in the Table 5.5.

Table 5.5: AMEP Values for FLRM

MODEL TSS ∼ Rrs log TSS ∼ Rrs log TSS ∼ log Rrs
B-Spline Basis 0.34 0.43 0.77
FPCR 0.64 0.36 0.85
FPCR CV 0.34 0.22 0.75
FPLSR 0.64 0.36 0.85
FPLSR CV 0.33 0.24 0.79
Der1 0.57 0.64 0.96
Der1 Pen 0.54 0.63 0.97
Der2 0.57 0.39 1.02
Der2 Pen 0.51 0.33 0.92

All the models given in Table 5.5 were found significant with p < 0.05. The highest

AMEP values belong to the FLRMs between logarithm of TSS and logarithm of Rrs

curve. Therefore, it is seen that predicting TSS from the logarithm of Rrs curves is not

convenient. On the other hand, the lowest AMEP values are found for FLRMs between

the logarithm of TSS and Rrs curves except for the methods B-spline basis, FLR on

the first derivative and penalized FLR on the first derivative. These methods give better

predictions when TSS is modelled on RsS curves. Generally, cross validated FPCR and

FPLSR methods give lower AMEP values. The best predictions are obtained from the

methods FPCR CV and FPLSR CV for the case of "log TSS∼ Rrs" with AMEP values

respectively 0.22 and 0.24. Here CV criterion chooses two number of components for

both methods. For the case of FPCR the fifth and the second components are chosen

while for the case of FPLSR first two components are chosen.

The coefficient of determination (R2) of FPCR CV model is found as 0.66 with the

standart deviation 0.50. Top middle graph shows that there exists heterogenity of

variance. This can arise from the less number of observations. As far as it is seen

from the Leverage graph given at the the bottom left graph of Figure 5.8, the 8th curve

is a possible influence curve. According to the Q-Q plot and boxplot of residuals given

at the bottom of Figure 5.8, it can be said that the residuals approximately follow a

skew normal distribution with two extreme values.
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Figure 5.8: The summary graphs for the model FPCR CV between log TSS and Rrs

The fifth and the second PCs explain respectively 4.3 and 6.8 percentage of the

variability. The parameter estimates of the PCs with the standard error, t statistic values

and p values are given in the Table 5.6.

Table 5.6: Parameter Estimates of FPCR CV model

Parameter Estimate Std. Error t value p value
Intercept 3.76 0.10 37.4 < 0.001
FPC 5 −24.05 3.92 −6.13 < 0.001
FPC 2 −8.35 3.12 −2.68 0.013

On the other hand, for FPLSR CV model the coefficient of determination (R2) of is

found as as 0.69 which is slightly higher than FPCR CV model with the standard

deviation 0.23. As it is seen from Leverage graph given at the bottom left of Figure 5.9,

there weren’t observed any atypical nor influence curves. The residual plots indicate

that the distribution of residuals seem similar to the case of FPCR CV model.
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Figure 5.9: The summary graphs for the model FPLSR CV between log TSS and Rrs

The parameter estimates and the standard errors of the first and the second component

of FPLSR CV model can be seen in the Table 5.7.

Table 5.7: Parameter Estimates of FPLSR CV model

Parameter Estimate Std. Error t value p value
Intercept 3.76 0.09 38.89 < 0.001
FPLSC 1 0.12 0.005 23.89 < 0.001
FPLSC 2 0.20 0.001 178.77 < 0.001

The components chosen by CV criterion both for FPCR and FPLSR models were found

significant. The chosen FPCR and FPLS components can be drawn as in the Figure

5.10.

As far as seen from the left panel of Figure 5.10, the second FPC (red line) gives more

weight to the band value 550 nm while it gives lower weight to the highest and lowest
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Figure 5.10: The functional components of cross validated FPCR and FPLSR Models.

band values. On the contrary, the fifth FPC (black line) is harder to interpret while

it is curly. For the case of FPLSR, the first FPLS component (black line) is a more

stable function that gives higher values for the higher bands while the second FPLS

component gives lower weight to the middle band and higher weigth to the lower and

higher band values. In fact, the second FPLSC can be interpreted as the inverse of the

second FPC.

The estimated parameter function of cross validated FPCR and FPLSR models are

shown in the Figure 5.11. As it is seen from the left panel, the higher band values

are more efficient in estimating the parameter for both cases. The main difference

between the two parameter functions is that the lower band values are more important

for FPLSR parameter comparing to FPCR parameter.
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Figure 5.11: The parameter estimate of cross validated FPCR and FPLSR Models

5.3 Concluding Remarks

FLRM generally have lower AMEP values comparing to other statistical methods.

Among classical statistical models (exponential regression model, GAM and LASSO),

the simple exponential regression models with the wavelength 681 nm and the

wavelength 665 nm predict TSS better than its counterparts. These are the mostly

used models in the literature to predict TSS values. When the scalar response is taken

as TSS, FLRM with B-Spline basis expansion, FPCR CV and FPLSR CV models

are better. All the FLRM between log TSS and Rrs are better in predicting response

comparing to exponential regression models and other statistical methods except the

ones in which the first derivative of the Rrs curves are used as explanatory variable.

Among all the models FPCR CV and FPLSR CV models gave the best predictions.

As a result, FLRM are good alternative to classical statistical models in predicting

TSS value from Rrs values. Especially, in the future studies with more number of

wavelengths FLRM would gain much more importance in modelling Rrs data.
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6 SIMULATION STUDY

In order to compare predictive performance of the proposed functional models and to

support findings, a simulation study is designed. The simulation study has four main

steps. In the first step, day images obtained from satellite were taken as functional

predictor in order to generate a scalar response vector. In the second step, the response

vector Ỹ was generated based on the satellite image that was chosen in the previous

step. Four different models and three different standard deviations were used in

producing the response. As the third step, the generated responses were predicted

based on six different models. In this sense, 2-fold CV method based on three different

sample sizes were used and the models used in prediction were compared in terms of

their MEP values. These steps will be detailed in the following sections.

6.1 The Choice of Functional Predictor

The day images recorded at eight different bands 413 nm, 443 nm, 490 nm, 510

nm, 560 nm, 620 nm, 665 nm, 681 nm were used to create the functional predictor.

The images show the area bounded by 36.01− 37o N latitude and 7− 6.01o W

longitude. Therefore, each image consist of 136900 pixels. Each pixel corresponds to

the information of water reflectances. In order to use as much information as possible,

the pixels belong to the land were removed and only the pixels that have value greater

than 0 were considered in choosing functional predictor. As the wavelength increases,

the quantity of information in pixels decreases (see Figure 6.1). Therefore, the choice

of the pixels that compose the functional predictor was done based on the highest

wavelength 681 nm.

The image that contains more information was determined as one of the days belonging

to the year 2009 with 9843 pixels. This image was used as functional predictor χ̃(t).

Then, the RRS values at eight wavelengths for that day were merged and the functional

data object is created. Totally 66 observations were removed due to the missing values
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Figure 5.5: Lasso Model

Figure ??: The coefficients that are in the analysis for the range of L1 norm values. On
x-axis the value of norm is seen. Each curve defines one coefficient.

(a) Rrs 413 (b) Rrs 443 (c) Rrs 490 (d) Rrs 510

(e) Rrs 560 (f) Rrs 620 (g) Rrs 665 (h) Rrs 681

Figure 5.6

66

Figure 6.1: Images obtained from satellite data for different wavelengths.

at different wavelengths. Finally, 9777 functional observations were left (N=9777).

The curves for each pixel were drawn in Figure 6.2.

Figure 6.2: Functional observations used for simulation.

6.2 Generating the Response

The scalar response Ỹ was generated based on the parameters of the models between

the logarithm of TSS and Rrs values, since the best predictions in real life data were

obtained from those models. Four models (M = 4) were used in generating the

logarithm of TSS values: simple exponential regression with 665 nm wavelength,

78



FLRM with B-spline Basis approach, FPCR with all components, FPCR with the

components chosen by CV criterion. FPLSR could not be used since this method

requires that the covariance between the response and the predictor is known. Here,

the covariance can not be computed because the response is unknown due to the fact

that it is generated based on the chosen predictor.

Initially the response vector (Ỹexp) was generated based on the classical simple

exponential regression model given in the equation (5.6). As explanatory variable Rrs

values recorded at the band 665 nm for the chosen day was used.

Then, FLRMs which can be expressed in the general form,

Ỹi =
∫

χ̃
∗
i (t)β (t)dt + ε, (6.1)

were used to simulate the response. Here, χ̃∗(t) denotes the functional predictor

composed of Rrs values at 8 different wavelengths related to the day chosen in the

previous step and β (t) is the functional parameter estimate that was taken respectively

from the models FLRM B-spline basis expansion, FPCR and FPCR with CV method

used in the application. The responses of functional linear models will be denoted

respectively by Ỹbasis, ỸFPC and ỸFPCV .

The response (Ỹexp) for FLRM with B-spline basis approach is generated from the

equation (6.2),

Ỹbasis =
∫

χ̃
∗(t)β (t)dt = c∗i Jφθ b∗, (6.2)

where Jφθ is the matrix computed from the inner product of basis functions

φφφ(t) = [φ1(t), ..,φ8(t)]′ and θθθ(t) = [θ1(t), ...,θ5(t)]′ that are used to extend χ̃∗i (t) =

∑
8
k=1 c∗ikφk(t) and β (t) = ∑

5
l=1 b∗l θl(k), respectively. Here, c∗i = [c∗i1, ...,c

∗
i8]
′ and

b∗ = [b∗1, ...,b
∗
5]
′ indicate the coefficient vectors that are used in the extension of the

functional predictor and the parameter function. b∗ and Jφθ parameters in the model

(6.2) were taken directly from the related FLRM in the application where c∗i is obtained

from the smoothing of the chosen functional predictor χ̃∗i (t) on 8 number of B-spline

basis functions.

In the case of FPCR, the model given in the equation (6.1) is induced to,
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ỸFPC = µY +
∫

χ̃
∗(t)β (t)dt = µY +F∗pcb∗ (6.3)

where µY is the mean of the real response vector, F∗pc denotes the score matrix which

is computed from F∗pc = 〈χ, ξ̂ 〉 and b∗ is the parameter vector obtained from the

extension βFPC(t) = ∑
J
j=1 b∗j ξ̂ j computed in the application. J indicates the number

of components that are used in the extension of the data which is equal to 8 for FPCR

with all the components and is equal to 2 for FPCR with CV method.

The error term ε is a normally distributed vector with zero mean and the variance

equal to the raw residual variance of the model from which the functional parameter

was taken. The raw residual variances of the models in the application were quite high

due to the less number of observations. So that three different values (S = 3) for the

model variance were used in the simulation: the raw residual variances of the models

in the application (σ2
1 = σ̂2), one fifth of the model residual variance(σ2

2 = σ̂2/5),

one tenth of the model residual variance (σ2
3 = σ̂2/10). For each value of the residual

variance and each type of model, the response was generated five hundred (P = 500)

times.

6.3 The Comparison of the Prediction Models

Seven (E=7) different models were used in predicting the response: exponential

regression with band 665 nm, FLRM with B-spline basis expansion, FPCR, FPCR

CV, FPLSR, FPLSR CV models and FLRM with second derivative as explanatory

variable (FLRM Der2). In order to measure the predictive performance of the models

their MEP values were computed from 2-fold cross validation based on the equation

(5.1).

The data was splitted into two considering three (G = 3) different sample sizes ss =

{25,50,100}. The maximum value of the sample size was taken as 100, while in real

life data the predictions are always done on limited number of observations. ss out of

9777 pixels were randomly chosen from the image and the response was predicted on

ss observations for rest of the (N− ss) pixels.

This procedure was repeated R = 100 times in order to use as much different pixels as

possible for each sample size. The MEP values for each response and each prediction
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Figure 6.3: The Simulation Design

model were computed. Then, the median of MEP values (medMEP) were taken instead

of mean due to the skewness of the distribution.

Finally, the mean of medMEP values were taken over P= 500 simulations. The models

were compared in terms of their mean(medMEP) values.

The simulation study can be summarized as in the Figure 6.3. The simulation design

has M×S×G, i.e. 36, possible scenarios. For each scenario, the results obtained from

E = 7 different models are compared.

6.4 Simulation Results

The results of simulation study regarding to the sample sizes were given respectively

in Table 6.1, Table 6.2 and Table 6.3.
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Table 6.1: Simulation Results for Sample Size 25

Sample size 25 (ss=25)

Type of
Response

Residual
Variance

Exp.
Reg.

FLRM
Basis FPCR

FPCR
CV FPLSR

FPLSR
CV

FLRM
Der2

Ỹexp

σ2
1 0.99 1.26 1.57 1.25 1.57 0.98 1.04

σ2
2 0.14 0.25 0.36 0.29 0.36 0.31 0.67

σ2
3 0.04 0.07 0.09 0.09 0.09 0.09 0.65

Ỹbas

σ2
1 1.10 1.11 1.32 1.15 1.32 1.09 1.10

σ2
2 1.19 0.13 0.20 0.17 0.20 0.16 1.03

σ2
3 1.20 0.03 0.05 0.05 0.05 0.06 1.02

ỸFPC

σ2
1 1.06 1.22 1.27 1.16 1.27 1.13 1.01

σ2
2 1.08 0.76 0.17 0.21 0.17 0.29 0.85

σ2
3 1.07 0.75 0.04 0.05 0.04 0.05 0.83

ỸFPCcv

σ2
1 0.88 0.78 0.91 0.82 0.91 0.74 0.78

σ2
2 0.52 0.08 0.09 0.08 0.09 0.07 0.15

σ2
3 0.49 0.03 0.02 0.02 0.02 0.02 0.11

Table 6.2: Simulation Results for Sample Size 50

Sample Size 50 (ss=50)

Type of
Response

Residual
Variance

Exp.
Reg.

FLRM
Basis FPCR

FPCR
CV FPLSR

FPLSR
CV

FLRM
Der2

Ỹexp

σ2
1 0.90 1.00 1.08 0.98 1.08 0.89 0.97

σ2
2 0.11 0.14 0.16 0.15 0.16 0.20 0.60

σ2
3 0.03 0.04 0.04 0.04 0.04 0.04 0.57

Ỹbas

σ2
1 1.02 0.84 0.91 0.89 0.91 0.86 1.04

σ2
2 0.94 0.08 0.09 0.09 0.09 0.10 0.95

σ2
3 0.94 0.02 0.02 0.02 0.02 0.03 0.94

ỸFPC

σ2
1 0.97 0.90 0.85 0.88 0.85 0.88 0.95

σ2
2 0.83 0.40 0.08 0.08 0.08 0.09 0.76

σ2
3 0.82 0.36 0.02 0.02 0.02 0.02 0.75

ỸFPCcv

σ2
1 0.89 0.71 0.75 0.73 0.75 0.71 0.73

σ2
2 0.54 0.07 0.07 0.07 0.07 0.07 0.14

σ2
3 0.52 0.02 0.02 0.02 0.02 0.02 0.09
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Table 6.3: Simulation Results for Sample Size 100

Sample Size 100 (ss=100)

Type of
Response

Residual
Variance

Exp.
Reg.

FLRM
Basis FPCR

FPCR
CV FPLSR

FPLSR
CV

FLRM
Der2

Ỹexp

σ2
1 0.84 0.88 0.91 0.88 0.91 0.86 0.95

σ2
2 0.10 0.11 0.12 0.12 0.12 0.12 0.56

σ2
3 0.03 0.03 0.03 0.03 0.03 0.03 0.53

Ỹbas

σ2
1 0.96 0.72 0.75 0.75 0.75 0.74 1.01

σ2
2 0.77 0.07 0.07 0.07 0.07 0.07 0.91

σ2
3 0.76 0.02 0.02 0.02 0.02 0.02 0.91

ỸFPC

σ2
1 0.91 0.75 0.69 0.72 0.69 0.72 0.92

σ2
2 0.69 0.27 0.06 0.06 0.06 0.06 0.72

σ2
3 0.67 0.24 0.01 0.01 0.01 0.01 0.71

ỸFPCcv

σ2
1 0.90 0.69 0.70 0.69 0.70 0.69 0.71

σ2
2 0.59 0.07 0.06 0.06 0.06 0.06 0.13

σ2
3 0.57 0.02 0.02 0.02 0.02 0.02 0.09

As seen from Table 6.1, for the sample size 25, as the error variance decreases the

mean medMEP values of the models except the exponential regression model and

FLRM Der2 decrease for the response types Ỹbasis and ỸFPC. For the case of high error

variance, the response types Ỹexp ve Ỹbasis have been predicted better by the models

FPLSR CV and FLRM Der2 where the response ỸFPCcv has been predicted better by

FPLSR CV model. As the residual variance decreases, usually the best predicitons

are obtained from the models from which the response was generated from. As an

exception, FPLSR CV model predicted the response ỸFPCcv better than FPCR CV

model. FPCR CV and FPLSR CV models that include all the components give always

the same results.

When the sample size is 50 and the error variance is high (σ2
1 ), Ỹexp is predicted better

by FPLSR CV method and the response ỸFPCcv is predicted better by FLRM Basis and

FPLSR CV methods. Except these, the best predictions are obtained from the models

that the response comes from. As the sample size increases and the error variance

decreases it is seen that the mean medMEP values decrease. However, this decrease is

higher in FLRMs with Rrs curves as explanatory variables compared to other models.
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As it is seen in Table 6.3, for lower values of variance the response all the models

except FLRM Der2 gave better predictions for the response Ỹexp. Among the responses

generated from functional models, for the high value of variance the response Ỹbasis has

been predicted better by FLRM Basis method but when the error variance decreases

the predictive performance of all functional regression models gets closer. The best

predictions for the responses ỸFPC and ỸFPCcv have been obtained from FLRMs based

on dimension reduction methods from whch they are generated from.

Generally as the sample size increases and the residual variance decreases, the

medMEP values of the models decrease for all type of responses. Particularly, the

mean of medMEP values of functional linear models get closer. Among functional

linear models, FLRM with the second derivative as explanatory variable (FLRM Der2)

make difference with regards to high MEP values.

When the response comes from exponential regression model, there is not found a

big difference between MEP values of exponential regression model and FLRMs. But

when the response comes from a functional model, the difference between MEP values

of exponential regression model and FLRMs increase, generally FLRM predict better

than exponential regression model.

Considering all types of response, generally FLRMs make better predictions than

exponential regression model that is mostly used in the literature. Particularly, FLRM

based on dimension reduction methods (FPCR, FPLSR, FPCR CV and FPLSR CV)

and FLRM basis make better predictions with lower values of MEP.

As a result, the simulation study support the findings obtained from the application.

FLRM can be used alternative to classical statistical models for remote sensing

data applications even though when there the data is recorded at limited number of

wavelengths.
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7 CONCLUSION

In this study, FDA approach has been proposed to make predictions from remote

sensing data in oceanography as an alternative to classical statistical methods. In

this sense various statistical models have been applied to predict the amount of TSS

in the coastal region of Guadalquivir estuary in Cadiz from satellite data. While

in oceanography mostly classical exponential regression models have been used to

model TSS, in this study many different models have been used and their results have

been compared. For FLRMs different responses and explanatory variables were taken.

Among these, FLRMs between the logarithm of TSS and Rrs values that are based on

dimension reduction methods gave better predictions compared to GAM, LASSO and

classical exponential regression models.

The importance of this study is that FLRMs have been used for the first time to predict

the amount of TSS from satellite data in oceanography. In previous studies that use the

remote sensing data obtained from MERIS, TSS values were mostly predicted from

regression models with single band. Binding et al. (2003) have predicted the amount

of minerals from the quadratic regression model that use the reflectance values at the

band 665 nm. In the study of Nechad et al. (2010) exponential regression model with

band 681 nm have been used to model TSS while in the study of Caballero et al. (2016)

the highest amount of correlation were found in band 665 nm. There are studies that

use the RS data obtained from other satellite sensors such as MODIS or DEIMOS

(Caballero et al., 2014a,b). However due to its high amount of resolution MERIS is

preferable. Nechad et al. (2010) has mentioned that it would be better to use multiple

bands rather than single band to model particularly low values of TSS. In this study, as

well as FLRMs many other single and multiple band models that had never been used

before have been applied and compared. The most suitable models have been found to

be FLRMs.

85



The limitation of this study is the low number of observations and wavelengths.

The number of observations were increased in the designed simulation study.

Unfortunately, because of the sensors that were used in that period, it is not possible

to increase the number of wavelengths. Recently, the sensors that record data in more

number of wavelengths are in use. However, there haven’t been enough number of

collected samples that match with that period. In this branch, Ferraty et al. (2016) study

on a new project in which some parameters related to the environment are predicted

from hyperspectral remote sensing data by using nonparametric FLRMs. Naturally,

the increase in the number of wavelengths increases the size of the data set.

The results obtained in the application have been supported by a simulation study.

According to the results of the simulation as the sample size increases and the

error variance decreases, the predictive performance of FLRMs generally gets better

than exponential regression models. In analogy to the application, FLRMs based

on dimension reduction methods have given better predictions than other functional

models. Due to the limited time, the simulation study has been designed with restricted

number of parameters. In the future, the simulation study can be improved by changing

some parameters. For instance, the sample size used for prediction can be taken as 200

rather than 100, the pixels that compose the functional variable can be chosen based

on a determined route instead of using randomly chosen pixels, the images recorded at

different days can be considered in order to use more number of images while creating

the functional variable.

In matching process in the application the nearest pixels in the 2× 2 pixel area were

taken in order to have more number of observations. It can be analysed how the results

are effected when the exact pixels of the data are used. Considering the 3.5 TB size

of the remote sensing data set, it can be said that this study also includes a big data

problem. It is foreseen that in the future FLRMs will gain more importance and will

provide more convenience in analysis compared to other statistical models.

It is thought that this study is the first most detailed study in our country that has been

done in this area and it would be an usefull resource for further researchs on this area.
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A Some Definitions On Functional Spaces

In functional data analysis we work on functional spaces rather than finite dimensional
vector spaces. Functional spaces have almost the same properties as vector spaces with
the difference that vectors are replaced by functions and matrices are replaced by linear
operators. A functional data is always defined on a metric or a semi-metric space. The
primary step of functional data analysis is to decide the space on which the functional
data is defined.

In this part some definitions and theorems have been given which are useful while
dealing with functional data. Some of the references that are used are Kreyszig (1978);
Ramsay and Silverman (2005); Horváth and Kokoszka (2012) and Cuevas (2014).

1.1 Metric Spaces and Its Properties

A metric space is a pair (X ,d) where X is a set and d : X ×X −→ R is a distance
function (metric) on X which satisfies following conditions for all x,y,z ∈ X :

1. d is real valued, non-negative and finite. (Positivity)

2. d(x,y) = 0 if and only if x = y. (Identity)

3. d(x,y) = d(y,x) (Symmetry)

4. d(x,y)≤ d(x,y)+d(y,z) (Triangle inequality)

The real line R with the usual metric d(x,y) = |x− y| and the plane R2 with the
Euclidean metric d(x,y) =

√
(x1− y1)2 +(x2− y2)2 are examples of metric spaces.

A semi-metric space satisfies the same properties as a metric space except the second
property mentioned below which means that in semi-metric spaces the distance d(x,y)
between two elements x,y ∈ X can be equal to zero even when x and y are distinct
points.

An example of a semi metric is the set of absolute integrable functions defined on the
interval [0,1] which can be given as

d(χ,γ) =
∫ 1

0
|χ(t)− γ(t)|dt

1.2 Inner Product Spaces and Its Properties

An inner product is an operator with properties positivity, symmetry and bilinearity.
The inner product of x and y is notated by 〈x,y〉 and have following properties:
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1. 〈x,x〉 ≥ 0 for all x. 〈x,x〉= 0 if and only if x = 0. (Positivity)

2. 〈x,y〉= 〈y,x〉 for all x and y. (Symmetry)

3. For all a,b ∈ R and all vectors x,y and z,
〈ax+by,z〉= a〈x,z〉+b〈y,z〉. (Bilinearity)

A vector space on which an inner product can be defined is called an inner product
space.

For Euclidean space the inner product of two vectors x = (x1,x2, ...xn) and y =
(y1,y2, ...yn) is given as dot product.

〈(x1,x2, ...xn),(y1,y2, ...yn)〉= x1y1 + x2y2 + ...xnyn = ∑i xiyi

In the vector space of real functions with inner product, the sum is replaced by integral.
For the functions χ(t) and γ(t), where t takes values in the interval [0,T ], the inner
product is defined as

〈χ,γ〉= ∫ T
0 χ(t)γ(t)dt

1.3 Normed Spaces and Its Properties

In a vector space the inner product of an element x is a measure of its size. The positive
square root of this size is called the norm and the norm of x is shown as

‖x‖2 = 〈x,x〉

where ‖x‖ ≥ 0 according to the positivity axiom of inner product.

The norm of an element of n-dimensional Euclidean space is equal to the length of the
vector. The norm of a function χ is called its L 2 norm and shown as

‖χ‖=
(∫

χ(t)2dt
)1/2

The properties of norm are similar to the properties of inner product and can be
summarized as follows:

1. ‖x‖ ≥ 0 for all x. ‖x‖= 0 if and only if x = 0. (Positivity)

2. ‖x+ y‖= ‖y+ x‖ for all x and y. (Symmetry)

3. For all real numbers a,
‖ax‖= |a|‖x‖.

Let X be a vector space and a function ‖ · ‖ : X −→ R is given. If for all elements
x,y ∈ X and a scalar λ ∈R the properties mentioned below are satisfied, then (X ,‖ ·‖)
is called a normed space.

All normed spaces are metric spaces but all metric spaces are not normed spaces.
Similarly, all inner product spaces are normed spaces but the reciprocal is not true.
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1.4 Hilbert Spaces

If a H is a complete inner product space, then H is called a Hilbert space.

The space L2 = L2([0,T ]) is the set of measurable real valued functions defined on
[0,T ] satisfying

∫ T
0 χ2(t)dt <∞. It is called as the space of square integrable functions.

The space L2 is a seperable Hilbert space with a inner product of χ and γ is given by

〈χ,γ〉=
∫

χ(t)γ(t)dt.
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B Operators and Some Usefull Theorems for
Functional Data

2.1 Linear Operator, Integral Operator and Hilbert-Schmidt Operator

A linear operator is a mapping between two vector spaces.

A linear operator Ψ(x) is said to be symmetric and positive definite if it satisfies the
properties:

1. 〈Ψ(x),x〉= 〈x,Ψ(x)〉. (Symmetry)

2. 〈Ψ(x),x〉 ≥ 0. (Positive-Definiteness)

An integral operator Ψ on L2(T ), Ψ : ξ → Ψξ , ξ ∈ L2(T ) with the kernel function
ψ : T ×T → R is defined by

Ψ(ξ )(t) =
∫

T
ψ(t,s)ξ (s)ds, ξ ∈ L2(T ). (B.1)

If the kernel function ψ satisfies the condition
∫ ∫

ψ2(t,s)dtds < ∞, then this kernel
is called a Hilbert-Schmidt kernel. A linear and bounded integral operator with a
Hilbert-Schmidt kernel is called a Hilbert-Schmidt operator.

If the related kernel of an integral operator is symmetric and positive-definite, then the
integral operator is also symmetric and positive definite.

2.2 Covariance Operator and Its Properties

The covariance operator is an integral operator where the covariance function c(t,s) =
E[χ(t)χ(s)] is its kernel and it is expressed by

Γχξ (t) =
∫

c(t,s)ξ (s)ds, ξ ∈ L2(T ). (B.2)

The covariance function c(s, t) satisfies the properties of symmetry and positive
definiteness.

c(s, t) = c(t,s) (B.3)
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∫ ∫
c(t,s)ξ (t)ξ (s)dtds =

∫ ∫
E[χc(t)χc(s)ξ (t)ξ (s)] = E[(

∫
χ

c(t)ξ (t)dt)2]≥ 0.

(B.4)

Therefore the covariance operator Γχ is also symmetric and positive-definite.

Considering the eigenequation Γχξ j = λ jξ j it can be shown that the covariance
operator has non-negative eigenvalues:

λ j = 〈Γχξ j,ξ j〉= 〈E
[
〈χ,ξ j〉χ

]
,ξ j〉= E

[
〈χ,ξ j〉2

]
. (B.5)

If infinite sum is taken at the both sides of the equation (B.5) it is seen that

∞

∑
j=1

λ j =
∞

∑
j=1

E
[
〈χ,ξ j〉2

]
= E‖χ‖2 < ∞, (B.6)

so the eigenvalues of the covariance operator satisfy the condition ∑
∞
j=1 λ j < ∞.

An operator is a covariance operator if and only if it is symmetric, positive-definite and
bounded.

2.3 Singular Value Decomposition of a Linear Operator

Consider a separable Hilbert space H with inner product 〈·, ·〉 that generates the norm
‖ · ‖. Let L denote the space of bounded linear operators on H with the norm

‖Ψ‖L = sup{‖Ψ(x)‖ : ‖x‖= 1}.

Singular value decomposition establishes that a compact operator Ψ ∈ L can be
represented by

Ψ(x) =
∞

∑
j=1

λ j〈x,ξ j〉η j, (B.7)

where η j and ξ j are orthonormal bases and λ j is a real sequence converging to zero.

2.4 Spectral Decomposition of a Hilbert-Schmidt Operator

A symmetric and positive definite Hilbert-Schmidt operator ensures the spectral
decomposition

Ψ(x) =
∞

∑
j=1

λ j〈x,ξ j〉ξ j, x ∈ H (B.8)

where ξ j’s are the orthonormal eigenfunctions of Ψ which are assumed to form an
orthonormal basis.
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2.5 Parseval’s Equality

Let ξ j be an orthonormal basis in a seperable Hilbert space H. Then Parseval’s equaliy
states that

∑
j
〈χ,ξ j〉= ‖χ‖2 = 〈χ,χ〉. (B.9)

2.6 Riesz Representation Theorem

Riesz Representation theorem establishes that the covariance operator Γχ : L2(T )→
L2(T ) can be written as

Γχξ = E [〈χ,ξ 〉χ] , ξ ∈ L2(T ). (B.10)

2.7 Mercer’s Theorem

The continous, symmetric, positive-definite kernel ψ(t,s) of a Hilbert Schmidt
operator can be represented by

ψ(t,s) =
∞

∑
j=1

λ jξ j(t)ξ j(t) in L2(T ×T ) (B.11)

where ξ j are orthonormal functions in L2(T ) and λ j is a decreasing sequence of
positive numbers. Mercer’s Lemma states that the kernel of a symmetric, positive
definite linear operator can be written in terms of its eigenvalues and eigenfunctions.

2.8 Karhunen-Loève Expansion

Let be a centered stochastic process with E[χ(t)] = 0 and E[χ2(t)] ≤ ∞ for all values
of t. Then χ(t) can be represented by

χ̂(t) =
∞

∑
j=1

f jξ j(t) (B.12)

where {ξ j} j∈N is an orthonormal basis given by the eigenfunctions of the covariance
operator Γχ associated with the corresponding eigenvalue λ j and f j is a sequence of
orthogonal random variables with E[ f j] = 0, E[ fi f j] = 0 for i 6= j and E[ f 2

j ] = λ j
(Cuevas (2014) has been followed here).
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library(fda) 
library(fda.usc) 
 
#simulation<-function(Xt,rep=100,P=500){  
rep=100  
P=500  
for(p in 1:P){  
print(p)  
print(date())  
mep<-function(newx,newy,mod,exp=FALSE){  
pred<-predict(mod,newx)  
if(exp) MEP <- ((1 / length(newy)) * sum((newy - exp(pred))^2))  
else MEP <- ((1 / length(newy)) * sum((newy - pred)^2))  
return(MEP)  
}  
 
simexp<-function(data_665s,samp=samp,rep=rep){  
amep.665s<-numeric()  
for (r in 1:rep){  
data_665s.sam<-data_665s[samp[[r]],]  
aux<-lm(lY~Xt_665,data=data_665s.sam)  
mep.reg665s<-mep(newx=data_665s[-samp[[r]],2,drop=FALSE],newy=exp(data_665s[-
samp[[r]],1]),mod=aux,exp=TRUE)  
scalvar<-var(exp(data_665s[-samp[[r]],1]))  
amep.665s[r]<-mep.reg665s/scalvar  
}  
return(median(amep.665s))  
}  
 
simfunc<-
function(chi,lgY,mod="bas",samp=samp,rep=rep,bas1=basis1,bas2=basis2,bas2d2=basis2d2){  
amep.sim<-numeric()  
for (r in 1:rep){  
chi.aux<-chi[samp[[r]],]  
lgY.aux<-lgY[samp[[r]],]  
if(mod=="bas") aux<-fregre.basis(chi.aux,lgY.aux,bas1,bas2)  
if(mod=="fpc") aux<-fregre.pc(chi.aux,lgY.aux,l=1:8)  
if(mod=="fpcv"){  
aux0<-fregre.pc.cv(chi.aux,lgY.aux,8)  

C Simulation Function Implemented In R
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aux<-fregre.pc(chi.aux,lgY.aux,aux0$pc.opt)  
}  
if(mod=="fpls") aux<-fregre.pls(chi.aux,lgY.aux,l=1:8)  
if(mod=="fplscv"){  
aux0<-fregre.pls.cv(chi.aux,lgY.aux,8)  
aux<-fregre.pls(chi.aux,lgY.aux,aux0$pls.opt)  
}  
if(mod=="fd2") aux<-fregre.basis(chi.aux,lgY.aux,bas1,bas2d2)  
 
mep.sim<-mep(chi[-samp[[r]],,drop=FALSE],exp(lgY[-samp[[r]]]),mod=aux,exp=TRUE)  
scalvar<-var(exp(lgY[-samp[[r]]]))  
amep.sim[r]<-mep.sim/scalvar  
}  
return(median(amep.sim))  
}  
MEPlist_exp<-vector(mode="list",length=P)  
MEPlist_bas<-vector(mode="list",length=P)  
MEPlist_pc<-vector(mode="list",length=P)  
MEPlist_pcv<-vector(mode="list",length=P)  
MEPlist_d2<-vector(mode="list",length=P)  
MEPS<-vector(mode="list",length=P)  
lys<-vector(mode="list",length=5)  
for(i in 1:5) lys[[i]]<-vector(mode="list",length=3)  
###Exponential Regression Model with Rrs 665nm  
#a vector composed of rrs at 665 nm  
Xt_665<-Xt[,7]  
b<-reg.665$coefficients  
 
##generating lY.exp  
lys[[1]][[1]]<-lYexp.sd1<-b[1]+Xt_665*b[2]+rnorm(length(Xt_665),sd=sd(reg.665$residuals))  
lys[[1]][[2]]<-lYexp.sd2<-b[1]+Xt_665*b[2]+rnorm(length(Xt_665),sd=sd(reg.665$residuals)/5)  
lys[[1]][[3]]<-lYexp.sd3<-b[1]+Xt_665*b[2]+rnorm(length(Xt_665),sd=sd(reg.665$residuals)/10)  
 
##generating lY.bas  
listXt<-list()  
wl<-Xt[,c(1:8)]  
listXt$rrs<-wl[,]  
rrs.nm<-as.numeric(substring(names(listXt$rrs),5))  
Xtfdata<-fdata(listXt$rrs,argvals=rrs.nm,names=list(main='Water reflectances of box 
data',xlab='Wavelength',ylab='Water Reflectances'))  
ts<-Xtfdata[["argvals"]]  
bsXt<-create.bspline.basis(rangeval=range(ts),nbasis=8)  
fdXt <- Data2fd(argvals=ts,y=t(Xtfdata$data),basisobj=bsXt)  
Cnew<-fdXt$coefs  
Xtfd<-fdata2fd(Xtfdata,nbasis = 8)  
J<-flrly$J  
B<-flrly$beta.est$coefs  
a<-flrly$a.est  
lys[[2]][[1]]<-lYbas.sd1<-a+t(Cnew)%*%J%*%B+rnorm(n=nrow(t(Cnew)),sd=sd(flrly$residuals))  
lys[[2]][[2]]<-lYbas.sd2<-a+t(Cnew)%*%J%*%B+rnorm(n=nrow(t(Cnew)),sd=sd(flrly$residuals)/5)  
lys[[2]][[3]]<-lYbas.sd3<-a+t(Cnew)%*%J%*%B+rnorm(n=nrow(t(Cnew)),sd=sd(flrly$residuals)/10)  
 

105



##generating lY.pc  
Xtcen<-fdata.cen(Xtfdata) Xtfdatacen<-Xtcen$Xcen  
Fpc<-inprod.fdata(Xtfdatacen,fpcly$fdata.comp$rotation)  
bpc<-fpcly$coefficients[2:9]  
sdpc<-sd(fpcly$residuals)  
lys[[3]][[1]]<-lYpc.sd1<-mean(fpcly$y)+Fpc%*%as.matrix(bpc)+rnorm(n=9777,0,sd=sdpc)  
lys[[3]][[2]]<-lYpc.sd2<-mean(fpcly$y)+Fpc%*%as.matrix(bpc)+rnorm(n=9777,0,sd=sdpc/5)  
lys[[3]][[3]]<-lYpc.sd3<-mean(fpcly$y)+Fpc%*%as.matrix(bpc)+rnorm(n=9777,0,sd=sdpc/10)  
 
##generating lY.pcv  
Fpcv<-inprod.fdata(Xtfdatacen,fpcvly$fregre.pc$fdata.comp$rotation)  
bpcv<-fpcvly$fregre.pc$coefficients[2:3]  
sdpcv<-sd(fpcvly$fregre.pc$residuals)  
lys[[4]][[1]]<-lYpcv.sd1<-
mean(fpcvly$fregre.pc$y)+Fpcv[,c(2,5)]%*%as.matrix(bpcv)+rnorm(n=9777,0,sd=sdpcv)  
lys[[4]][[2]]<-lYpcv.sd2<-
mean(fpcvly$fregre.pc$y)+Fpcv[,c(2,5)]%*%as.matrix(bpcv)+rnorm(n=9777,0,sd=sdpcv/5)  
lys[[4]][[3]]<-lYpcv.sd3<-
mean(fpcvly$fregre.pc$y)+Fpcv[,c(2,5)]%*%as.matrix(bpcv)+rnorm(n=9777,0,sd=sdpcv/10)  
 
##generating lY.der2  
der2Xt<-fdata.deriv(Xtfdata, nbasis=8, nderiv=2)  
listder2Xt<-list()  
wld<-der2Xt[,c(1:8)]  
listder2Xt$rrs<-wld[,]  
rss.nm<-as.numeric(substring(names(listXt$rrs),5))  
ts<-Xtfdata[["argvals"]]  
 
bsXt<-create.bspline.basis(rangeval=range(ts),nbasis=8)  
der2Xtfd <- Data2fd(argvals=ts,y=t(der2Xt$data),basisobj=bsXt)  
Cd2<-der2Xtfd$coefs  
Jd2<-regd2ly$J  
Bd2<-regd2ly$coefficients[2:5]  
ad2<-regd2ly$coefficients[1]  
lys[[5]][[1]]<-lYd2.sd1<-ad2+t(Cd2)%*%Jd2%*%Bd2+rnorm(n=nrow(t(Cd2)),sd=sd(regd2ly$residuals))  
lys[[5]][[2]]<-lYd2.sd2<-
ad2+t(Cd2)%*%Jd2%*%Bd2+rnorm(n=nrow(t(Cd2)),sd=sd(regd2ly$residuals)/5)  
lys[[5]][[3]]<-lYd2.sd3<-
ad2+t(Cd2)%*%Jd2%*%Bd2+rnorm(n=nrow(t(Cd2)),sd=sd(regd2ly$residuals)/10)  
samp25<-samp50<-samp100<-list()  
for(r in 1:rep){  
samp25[[r]]<-sample(1:length(data_665s[,1]),25)  
samp50[[r]]<-sample(1:length(data_665s[,1]),50)  
samp100[[r]]<-sample(1:length(data_665s[,1]),100)  
}  
cont<-TRUE  
for(z in 1:5){  
if(cont){  
 
MEPaux<-as.data.frame(matrix(nrow=3,ncol=21,NA))  
for(i in 1:3){  
data_665s$lY<-lys[[z]][[i]]  
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for(j in 1:3){  
if(j==1) sampl<-samp25  
if(j==2) sampl<-samp50  
if(j==3) sampl<-samp100  
if(cont){  
MEPaux[i,((j-1)*7)+1]<-try(simexp(data_665s,samp=sampl,rep=rep),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+1])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+2]<-
try(simfunc(chi=Xtfdata,lgY=as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="bas"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+2])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+3]<-
try(simfunc(Xtfdata,as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="fpc"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+3])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+4]<-
try(simfunc(Xtfdata,as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="fpcv"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+4])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+5]<-
try(simfunc(Xtfdata,as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="fpls"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+5])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+6]<-
try(simfunc(Xtfdata,as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="fplscv"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+6])  
}  
if(cont){  
MEPaux[i,((j-1)*7)+7]<-
try(simfunc(der2Xt,as.matrix(lys[[z]][[i]]),samp=sampl,rep=rep,mod="fd2"),TRUE)  
cont<-is.numeric(MEPaux[i,((j-1)*7)+7])  
}  
}  
}  
colnames(MEPaux)<-
paste(rep(c('exp','bas','fpc','fpcv','fpls','fplscv','der2'),3),'_',rep(c(25,50,100),each=7),sep="")  
if(z==1){  
rownames(MEPaux)<-c('lYexp.sd1','lYexp.sd2','lYexp.sd3')  
MEPlist_exp[[p]]<-MEPaux  
}  
if(z==2){  
rownames(MEPaux)<-c('lYbas.sd1','lYbas.sd2','lYbas.sd3')  
MEPlist_bas[[p]]<-MEPaux  
}  
if(z==3){  
rownames(MEPaux)<-c('lYpc.sd1','lYpc.sd2','lYpc.sd3')  
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MEPlist_pc[[p]]<-MEPaux  
}  
if(z==4){  
rownames(MEPaux)<-c('lYpcv.sd1','lYpcv.sd2','lYpcv.sd3')  
MEPlist_pcv[[p]]<-MEPaux  
}  
if(z==5){  
rownames(MEPaux)<-c('lYd2.sd1','lYd2.sd2','lYd2.sd3')  
MEPlist_d2[[p]]<-MEPaux  
}  
if(z==1) MEPSaux<-MEPaux  
else MEPSaux<-rbind(MEPSaux,MEPaux)  
}  
}  
MEPS[[p]]<-MEPSaux  
if(cont){  
arch<-paste("iter_NAD_Y_",p,".csv",sep="")  
write.csv2(MEPSaux,arch)  
}  
}  
#}  
 
for (p in 1:P){  
if (p==1) sumMEP=as.matrix(MEPS[[1]])  
else sumMEP=sumMEP+as.matrix(MEPS[[p]])  
}  
meanMEP<-sumMEP/P  
write.csv2(sumMEP,"sumMEP_500.csv")  
write.csv2(meanMEP,"meanMEP_500.csv") 
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