KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FİZİK ANABİLİM DALI YÜKSEK LİSANS TEZİ

NÜKLEON GİRİŞLİ BAZI NÜKLEER REAKSİYONLARIN TESİR KESİTLERİNİN HESAPLANMASI

Osman KARABUDAK

EYLÜL 2012

Fizik Anabilim Dalında Osman KARABUDAK tarafından hazırlanan "Nükleon Girişli Bazı Nükleer Reaksiyonların Tesir Kesitlerinin Hesaplanması" adlı Yüksek Lisans Tezinin Anabilim Dalı standartlarına uygun olduğunu onaylarım.

Prof. Dr. Saffet NEZİR Anabilim Dalı Başkanı

Bu tezi okuduğumu ve tezin **Yüksek Lisans Tezi** olarak bütün gereklilikleri yerine getirdiğini onaylarım.

Doç. Dr. Abdullah AYDIN Danışman

Jüri Üyeleri

Başkan : Doç. Dr. Abdullah KAPLAN
Üye : Doç. Dr. Abdullah AYDIN
Üye : Yrd. Doç. Dr. İsmail H. SARPÜN

...../..../.....

Bu tez ile Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu Yüksek Lisans derecesini onaylamıştır.

> Doç. Dr. Erdem Kamil YILDIRIM Fen Bilimleri Enstitüsü Müdürü

ÖZET

NÜKLEON GİRİŞLİ BAZI NÜKLEER REAKSİYONLARIN TESİR KESİTLERİNİN HESAPLANMASI

KARABUDAK, Osman Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Yüksek Lisans Tezi Danışman: Doç. Dr. Abdullah AYDIN Eylül 2012, 63 sayfa

Bu tez çalışmasında, bazı medikal radyoizotopların üretim tesir kesitleri nükleer reaksiyon modelleri kullanılarak hesaplandı. Bu radyoizotopların üretimleri için gerekli en uygun enerji aralıkları belirlendi. Elde edilen sonuçlar literatürdeki deneysel verilerle karşılaştırılarak nükleer reaksiyon modellerinin uygunluğu tartışıldı.

Anahtar Kelimeler: Radyoizotop, nükleer reaksiyon modelleri, exciton model, hibrid model, geometri bağımlı hibrid model.

ABSTRACT

THE CALCULATION OF THE CROSS–SECTIONS FOR SOME NUCLEON– INDUCED NUCLEAR REACTIONS

KARABUDAK, Osman Kırıkkale University Institute of Sciences Department of Physics, M. Sc. Thesis Supervisor: Assoc. Prof. Dr. Abdullah AYDIN September 2012, 63 pages

In thesis, the production cross sections for some medical radioisotopes are calculated using the nuclear reaction models. The optimum energy ranges for the production of these radioisotopes are determined. The calculated results are compared with the experimental data in the literature, and the applicability of nuclear reaction models is discussed.

Key Words: Radioisotope, nuclear reaction model, exciton model, hybrid model, geometry dependent hybrid model.

TEŞEKKÜR

Bana tez çalışma konusunu öneren, gerekli bilgisayar programlarımı sağlayan, kendi kütüphanesindeki kaynaklarını kullandıran ve çalışmalarım boyunca değerli yardım ve katkılarıyla beni yönlendirerek maddi ve manevi yardımlarını esirgemeyen değerli danışman hocam, Doç. Dr. Abdullah AYDIN'a sonsuz teşekkürlerimi sunarım. Tezimde gerekli olan TALYS 1.2 hesaplamalarında bana yardımcı olan arkadaşım Hakan PEKDOĞAN'a da teşekkürlerimi sunarım.

Ayrıca tezimin her aşamasında büyük fedakârlıklar gösterip, zorluklara göğüs gererek bugünlere gelmemi sağlayan, maddi ve manevi desteklerini esirgemeyen annem Süreyya KARABUDAK, babam Celalettin KARABUDAK ve sevgili ablam Seda VURAL' a teşekkür ederim.

Osman KARABUDAK

Kırıkkale, 2012

İÇİNDEKİLER

<u>Sayfa</u>

ÖZET	i
ABSTRACT	ii
TEŞEKKÜR	iii
İÇİNDEKİLER	iv
ŞEKİLLER DİZİNİ	vi
ÇİZELGELER DİZİNİ	viii
SİMGELER DİZİNİ	ix
1. GİRİŞ	
2. KURAMSAL TEMELLER	4
2.1. Nükleer Reaksiyonlar	4
2.2. Nükleer Reaksiyon Türleri	
2.2.1. Bileşik Çekirdek Reaksiyonları	5
2.2.2. Direkt Reaksiyonlar	7
2.3. Nükleer Reaksiyon Tesir Kesiti	9
2.4. Diferansiyel Tesir Kesiti	9
2.5. Nükleer Reaksiyon Modelleri	
2.5.1. Griffin (Exciton) Modeli	
2.5.2. Hibrid Model	
2.5.3. Geometri Bağımlı Hibrid Model	15
2.6. Tıpta Kullanılan Radyoizotoplar	16
2.7. Radyoizotopların Kullanım Alanları	17
2.7.1. Tek Foton Bilgisayarlı Tomografi (SPECT)	17
2.7.2. Pozitron Emisyon Tomografisi (PET)	19
3. MATERYAL VE YÖNTEM	
3.1. ALICE/ASH Bilgisayar Programı	
3.2. TALYS 1.2 Bilgisayar Program1	

4. ARAŞTIRMA BULGULARI	25
4.1. ¹¹⁹ Sn(p,n) ¹¹⁹ Sb Reaksiyonu	25
4.2. ¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb Reaksiyonu	28
4.3. ⁶¹ Ni(p,n) ⁶¹ Cu Reaksiyonu	31
4.4. ¹²⁴ Te(p,n) ¹²⁴ I Reaksiyonu	34
4.5. ¹¹¹ Cd(p,n) ¹¹¹ In Reaksiyonu	37
4.6. ¹⁸ O(p,n) ¹⁸ F Reaksiyonu	40
4.7. ⁶⁴ Ni(p,n) ⁶⁴ Cu Reaksiyonu	42
4.8. ⁶⁶ Zn(p,n) ⁶⁶ Ga Reaksiyonu	44
4.9. ¹⁹⁸ Hg(n,p) ¹⁹⁸ Au Reaksiyonu	47
4.10. ⁶³ Cu(n,2n) ⁶² Cu Reaksiyonu	50
4.11. ⁷⁵ As(n,2n) ⁷⁴ As Reaksiyonu	52
5. TARTIŞMA VE SONUÇ	55
KAYNAKLAR	58

ŞEKİLLER DİZİNİ

<u>Şekil</u> <u>Sa</u>	<u>ıyfa</u>
2.1. ⁶⁴ Zn* bileşik çekirdeği için farklı çıkış kanalları	5
2.2. Zn bileşik çekirdeğinin oluşmasıyla sonuçlanan farklı reaksiyonlar için tesir kesitleri	6
2.3. Çekirdeğin yüzeyinde meydana gelen doğrudan reaksiyonların geometrisi	7
2.4. Bileşik çekirdek oluşumu aşaması ve doğrudan reaksiyon türleri	8
2.5. d Ω katı açısı içinde saçılan demeti gösteren reaksiyon geometrisi	. 10
2.6. Griffin modelinde, bir reaksiyonun ilk evrelerinin şematik temsili	13
2.7. Hibrid modeldeki reaksiyonun ilk birkaç durumunun şematik temsili	14
2.8 Tek Foton Yayınlamalı Bilgisayarlı Tomografi (SPECT) cihazının genel görünümü	. 18
2.9 Pozitron Yayınlamalı Tomografi (PET) cihazının genel görünümü	19
4.1. ¹¹⁹ Sn radyoizotopunun bozunum şeması	. 26
4.2. ¹¹⁹ Sn(p,n) ¹¹⁹ Sb reaksiyonu tesir kesiti	. 27
4.3. ¹⁶⁹ Tm radyoizotopunun bozunum şeması	. 29
4.4. ¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb reaksiyonu tesir kesiti	. 30
4.5. ⁶¹ Cu radyoizotopunun bozunum şeması	. 32
4.6. ⁶¹ Ni(p,n) ⁶¹ Cu reaksiyonu tesir kesiti	. 33
4.7. ¹²⁴ I radyoizotopunun bozunum şeması	. 35
4.8. ¹²⁴ Te(p,n) ¹²⁴ I reaksiyonu tesir kesiti	. 36
4.9. ¹¹¹ In radyoizotopunun bozunum şeması	. 37
4.10. ¹¹¹ Cd(p,n) ¹¹¹ In reaksiyonu tesir kesiti	. 39
4.11. ¹⁹ F izotopunun bozunum şeması	. 40
4.12. ¹⁸ O(p,n) ¹⁸ F reaksiyonu tesir kesiti	. 41
4.13. ⁶⁴ Cu izotopunun bozunum şeması	. 42
4.14. ⁶⁴ Ni(p,n) ⁶⁴ Cu reaksiyonu tesir kesiti	43
4.15. ⁶⁶ Ga izotopunun bozunum şeması	. 45
4.16. ⁶⁶ Zn(p,n) ⁶⁶ Ga reaksiyonu tesir kesiti	. 46

4.18. 198 Hg(n,p) 198 Au reaksiyonu tesir kesiti	8
62	9
4.19. ⁶² Cu izotopunun bozunum şeması)
4.20. 63 Cu(n,2n) 62 Cu reaksiyonu tesir kesiti	1
4.21. ⁷⁴ As izotopunun ⁷⁴ Se izotopuna bozunum şeması	3
4.22. ⁷⁴ As izotopunun ⁷⁴ Ge izotopuna bozunum şeması 5	3
4.23. 75 As(n,2n) ⁷⁴ As reaksiyonu tesir kesiti	4

ÇİZELGELER DİZİNİ

Çizelge	<u>Sayfa</u>
1.1. Parçacık hızlandırıcılarının kullanım alanları	2
2.1. Nükleer Tıp alanında kullanılan bazı radyoizotoplar	20
4.1. ¹¹⁹ Sn(p,n) ¹¹⁹ Sb Reaksiyonu' nun Q değeri ve eşik enerjisi	25
4.2 ¹⁶⁹ Tm(p,n) ¹⁶⁹ Yb Reaksiyonu'nun Q değeri ve eşik enerjisi	28
4.3 ⁶¹ Ni(p,n) ⁶¹ Cu Reaksiyonu'nun Q değeri ve eşik enerjisi	31
4.4 ¹²⁴ Te(p,n) ¹²⁴ I Reaksiyonu'nun Q değeri ve eşik enerjisi	
4.5 ¹¹¹ Cd(p,n) ¹¹¹ In Reaksiyonu'nun Q değeri ve eşik enerjisi	37
4.6 ¹⁸ O(p,n) ¹⁸ F Reaksiyonu'nun Q değeri ve eşik enerjisi	40
4.7 ⁶⁴ Ni(p,n) ⁶⁴ Cu Reaksiyonu'nun Q değeri ve eşik enerjisi	42
4.8 ⁶⁶ Zn(p,n) ⁶⁶ Ga Reaksiyonu'nun Q değeri ve eşik enerjisi	44
4.9 ¹⁹⁸ Hg(n,p) ¹⁹⁸ Au Reaksiyonu'nun Q değeri ve eşik enerjisi	47
4.10 ⁶³ Cu(n,2n) ⁶² Cu Reaksiyonu'nun Q değeri ve eşik enerjisi	50
4.11 ⁷⁵ As(n,2n) ⁷⁴ As Reaksiyonu'nun Q değeri ve eşik enerjisi	52
5.1 Bu çalışmada incelenen nükleon girişli nükleer reaksiyonların Q değerler enerjileri ile üretilebilecek radyoizotopların maksimum tesir kesitleri ve enerji aralıkları	ri, eşik optimum 56

SİMGELER DİZİNİ

Ei	: Gelen parçacığa ait ilk enerji.
Ai	: Çekirdeğin kütle numarası.
Ν	: Çekirdeğin nötron sayısı.
E _F	: Fermi enerjisi.
τ	: Etkileşme süresi.
E	: Bileşik çekirdeğin uyarılma enerjisi.
U	: Residual çekirdeğin uyarılma enerjisi.
ε,ε'	: Gelen ve giden parçacıkların kütle merkezi sistemindeki
	enerjileri.
$P_v(\varepsilon)d\varepsilon$: Enerjisi ε ile ε + d ε olan ve sürekli bölgeye yayınlanan v tipi parçacıkların (nötron ve proton) sayısı.
n_0	: Başlangıç exciton sayısı.
р	: Parçacık sayısı.
h	: Deşik sayısı.
Δn	: Exciton sayısındaki değişim.
n	: Denge konumundaki (en muhtemel) exciton sayısı.
${}_n \chi_v$: Bir n exciton durumundaki v türündeki parçacıkların sayısı.
Ν (ε,U)	: Bir exciton ε kanal enerjisiyle yayınlandığında kalan
	çekirdeğin U uyarılma enerjisinin diğer n-1 excitonları
	arasında paylaşılacak şekilde n excitonunun uygun bir
	biçimde düzenlenme sayısı.
$N_n(E)$: E uyarılma enerjisinde n parçacık artı deşik toplam birleştirim sayısı.
$\lambda_{c}(\varepsilon)$: Bir parçacığın (ε) kanal enerjisiyle sürekli bölgeye
/	yayınlanma hızı.

$\lambda_{+}(\epsilon)$: ε enerjili bir parçacığın sürekli bölgeye yayınlanmış olduğu	
	zamanki çekirdek içi geçiş hızı.	
D _n	: Bir n- exciton zincirinde başlangıç popülasyon kesiti.	
σ_R	: Reaksiyon tesir kesiti.	
σ_i	: İnelastik tesir kesiti.	
g	: Tek – parçacık düzey yoğunluğu.	
$\tau(n)$: n exciton durumunda ortalama ömür.	
q (n, t=0)	: Başlangıç şartı.	
τ(<i>n</i>)	: Sistemin n(n=p+h) excitonlu bir durumda kalma zamanı.	
W _I	: n excitonlu durumun birim zamandaki toplam bozunum	
	ihtimali.	
λ^+	$: n \rightarrow n+2$ durumu geçiş ihtimali.	
λ-	: $n \rightarrow n - 2$ durumu için geçiş ihtimali.	

1. GİRİŞ

Atom çekirdeği üzerindeki ilk bilgiler, 1926 yıllarına kadar 10⁻¹² cm mertebesinde bir çapa sahip olduğu ve pozitif yüklü protonlardan oluştuğundan ibaretti. Ayrıca cekirdeğin etrafında, 10⁻⁸ cm mertebesindeki yörüngeler üzerinde dolanan elektronun yükü ölçülmüştü. Protonun yükünün de aynı değerde fakat pozitif olduğu ve elektronun kütlesinin yaklaşık 2000 katı daha büyük bir kütleye sahip olduğu biliniyordu. Çekirdekte protonlarla birlikte kütleleri yaklaşık protonunki kadar fakat elektrik yükü bulunmayan parçacıkların yani nötronların mevcut olduğu ancak altı yıl sonra 1932 de Chadwick tarafından gösterilmiştir. Bunların hepsi tarihte nükleer fizikçilerin masum devresi olarak adlandırılır. Gerçekten çekirdek hakkında daha temel bilgilerin elde edilebilmesi için bazı hızlı parçacıkların kullanılarak, çekirdeklerin bombardıman edilmesi ve bu nükleer reaksiyon sonucu oluşan durumun incelenmesi gerekiyordu. Hızlı parçacığın proton olabileceği fakat hedef çekirdeğin pozitif yükünden dolayı ortaya çıkan Coulomb itmesi sebebiyle protonun belirli bir enerjiye yani eşik enerjisine sahip olması gerekliliği ortaya çıkmıştı. Bu hızlandırmayı temin eden sistemlere parçacık hızlandırıcıları denmiştir. Hızlandırıcı yarışında ilk adım, 1926 yıllarında daha enerjik ve daha şiddetli X-ışınları elde etmek maksadıyla geliştirilmeye başlanan elektron hızlandırıcıları ile atılmıştır.

Katot ışınları tüpü olarak bilinen ilk hızlandırıcı, aralarında yüksek voltaj farkı uygulanmış katot ve anot elektrotlarına sahip bir lambadan ibaretti. Günümüzde var olan parçacık hızlandırıcılarının gelişimi 1920' li yıllara kadar uzanmaktadır. 1920'lerde, John Douglas Cockcroft ve Ernest Thomas Sinton Walton bir vakum teknesine konulmuş iki elektrot arasına 100 KeV'luk gerilim uygulayarak, ilk yüksek voltaj parçacık hızlandırıcısını yaptılar. Takip eden yıllarda, parçacıkların zamanla değişken potansiyele sahip bir dizi geçitler üzerinde hızlandırılması düşüncesi doğdu. Bu düşünce doğrultusundaki çalışmalar neticesinde; Rolf Widereo 1929 yılında ilk modern lineer elektron hızlandırıcısını (Linac), Ernest O. Lawrence ise 1932 yılında manyetik alanı da kullanarak, dairesel tipte olan siklotronu tasarlayıp hayata geçirdiler. Cockcroft-Walton proton hızlandırıcısı ile hızlandırılan protonlar Li çekirdekleri üzerine gönderilerek iki He çekirdeği ortaya çıkarılmıştır. Daha yüksek elektrostatik hızlandırma potansiyelleri ise Van de Graaff jeneratörü ile elde edilmiştir. Bu hızlandırıcı ile enerji olarak MeV düzeyine ulaşılmıştır. İndüksiyon doğrusal hızlandırıcıları ile yine birkaç MeV enerjiye ulaşmak aynı tarihlerde söz konusu olmuştur (Krane, 2001).

1940'lı yılların sonlarından başlayarak gelişen teknoloji ile ortalama her yedi yılda bir hızlandırıcılarla ulaşılan enerjinin üst sınırı 10 kat arttırılmış ve günümüzde TeV (10¹² eV) boyutlarındaki enerjilere ulaşılmıştır.

Parçacık fiziğinin ve nükleer fiziğin vazgeçilmez deneysel aygıtları olan hızlandırıcılar günümüzde temel parçacıkların üretimi, serbest elektron lazerlerinin üretimi ve başta temel araştırmalar olmak üzere, endüstriyel ve teknolojik ürünlerin üretilmesinde, tıpta teşhis ve tedavi amaçlı kullanılan radyoizotopların üretilmesinde ve özellikle gelişmiş ülkelerde temel bilimlerin, mühendisliğin ve teknolojinin gelişmesinde kilit rol oynayarak makro ekonominin bir parçası halini almıştır.

Günümüzde yaklaşık olarak 15000 parçacık hızlandırıcısı, değişik alanların hizmetinde faaliyet göstermektedir. Bunlardan, çekirdek ve temel parçacık fiziği araştırmalarında kullanılan hızlandırıcıların, sayılarının 100 civarında olması dikkat çekicidir. Radyoterapi amaçlı tasarlanmış hızlandırıcıların, 5000 adet ile en yaygın çeşit olduğu söylenebilir. Tıbbi izotop üretiminde kullanılan siklotron hızlandırıcı sayısı 200 civarındadır. Dünya nüfusuna oranladığımızda, 30 milyon insan başına 1 siklotron düşmektedir. Buradan, dünya ortalamasını tutturabilmemiz için 2 adet siklotron hızlandırıcısına sahip olmamız gerektiği ortaya çıkmaktadır (Ercan, 2001).

İyon impalamantasyonu ve yüzey modifikasyonları	7000
Endüstrideki hızlandırıcılar	1500
Radyoterapi	5000
Tıbbi izotop üretimi (Siklotron)	200
Hadronterapi	20
Sinkrotron radyasyonu kaynakları	70
Nükleer olmayan araştırmalardaki hızlandırıcılar	1000
Nükleer ve parçacık fiziği araştırmaları	110

Çizelge 1.1 Parçacık hızlandırıcılarının kullanım alanları

Yukarıda da bahsedildiği gibi, teşhis ve tedavi amaçlı tıbbi radyoizotopların üretimi, nükleer teknoloji ve nükleer fiziğin önemli bir uygulama alanıdır. Söz konusu izotoplar, nötronlar ile oluşturulan nükleer reaksiyonlar ile nükleer reaktörlerde veya yüklü parçacıklarla oluşturulan nükleer reaksiyonlar ile hızlandırıcılarda üretilirler. Tıbbi uygulamaların amacı, yapay radyoizotoplar kullanılarak, insan organizmasını araştırmak, hastalıklara tanı koyabilmek ve tedavi edebilmektir. Bu bakımdan radyoizotoplarla ilgili nükleer reaksiyon tesir kesiti verilerinin önemi, radyoizotop üretim programlarında iyi bilinmelidir.

Bu çalışmada; ¹¹⁹Sb, ¹⁶⁹Yb, ⁶¹Cu, ¹²⁴I, ¹¹¹In, ¹⁸F, ⁶⁴Cu, ⁶⁶Ga, ⁷⁴As, ¹⁹⁸Au, ⁶²Cu gibi radyoizotopların üretim tesir kesitleri hesaplandı. Bu hesaplamalarda farklı nükleer reaksiyon modellerini kullanan bilgisayar programlarından yararlanıldı. Elde edilen sonuçlar, uluslararası atom enerji kurumundan ve literatürden alınan deneysel tesir kesiti verileri ile karşılaştırıldı. Nükleer reaksiyon modellerinin bu verilere uygunluğu araştırıldı ve ayrıca tezde konu edilen radyoizotopların üretiminde gerekli olan en uygun proton enerji aralıkları belirlendi.

2. KURAMSAL TEMELLER

2.1. Nükleer Reaksiyonlar

Bir reaktörden veya bir hızlandırıcıdan ya da bir radyoaktif kaynaktan yayınlanan, enerji taşıyan parçacıklar, kütlesel bir hedef malzeme üzerine düşürülürlerse, bu hedef içerisindeki elementlerin atomları ile enerjik bombardıman parçacıkları arasında nükleer reaksiyonlar oluşabilir.

Nükleer reaksiyonlar, enerji taşıyan bu bombardıman parçacıkların kütle numaralarına ve enerjilerine göre üç ayrı kategoride toplanabilir. Kütle numarası A≤4 ve nükleon başına enerjisi 10 MeV ya da daha az olan bombardıman parçacıkları için klasik düşük enerjili nükleer reaksiyon kuralları geçerlidir ve nükleer fizik kapsamında genellikle bu reaksiyonlar incelenir. Son zamanlarda üzerinde yoğun araştırmaların yapıldığı, A<40 olan bombardıman parçacıkları ile oluşturulan nükleer reaksiyonlar, ağır iyon reaksiyonları olarak adlandırılır. Kinetik enerjisi 100 MeV–1GeV aralığında olan bombardıman parçacıkları orta enerjili reaksiyon sınıfındadır ve bu reaksiyonlarda proton ve nötronlar birbirlerine dönüşebilirken, mezon oluşumu gözlenir. 1 GeV üzerinde enerjiye sahip parçacıkları için, nükleonları oluşturulabilir. Bu tür reaksiyonlar, yüksek enerjili reaksiyonlar grubundadır (Krane, 2001).

2.2. Nükleer Reaksiyon Türleri

Nükleer reaksiyonlar, gelen bombardıman parçacığının nükleon başına enerjisi (MeV/A) ve reaksiyon zamanına bağlı olarak yavaş (Bileşik Çekirdek Reaksiyonları) ve hızlı (Direkt Reaksiyonlar) olmak üzere ikiye ayrılabilir.

2.2.1 Bileşik Çekirdek Reaksiyonları

Bombardıman parçacığı, çekirdek yarıçapına göre, küçük bir çarpma parametresi ile hedef çekirdeğe girdiğinde, gelen nükleonun hedef çekirdek nükleonlarıyla ardışık etkileşim yapma ihtimali vardır. Birkaç ardışık etkileşmeden sonra bombardıman parçacığının enerjisi, bombardıman parçacığı ve hedef çekirdekten oluşan bileşik sistemin nükleonları arasında paylaştırılır. Bu etkileşimlerin sonucunda nükleonlar arası enerjilerdeki istatistiksel dağılımla çekirdekten bir nükleonun salıverilme olasılığı artar. Bombardıman parçacığının soğurulması ve çıkan parçacığın yayınlanmasından önceki bu süreç, bir ara durumu oluşturur ve bu duruma bileşik çekirdek denir (Hauser ve Feshblach, 1952).

Bileşik çekirdek, buharlaşma modeli ile açıklanan parçacık salınımı yolu ile bozunur. Bileşik çekirdeğin oluşumu ve bozunumu sembolik olarak ;

$$a + A \rightarrow C^* \rightarrow B + b$$
 (2.1)

şeklinde gösterilir. Burada, C^* , bileşik çekirdeği ifade eder. Bileşik çekirdeğin bozunma olasılığı bileşik çekirdeğin oluşum sürecinden bağımsızdır.

Dolayısıyla; çıkış kanalı olasılığı, Bohr bağımsızlık hipotezi gereği, giriş kanalı olasılığından bağımsızdır. Bileşik çekirdek bir kez oluştuğunda, oluşum sürecini unutarak farklı çıkış kanallarına belirli olasılıklarla bozunur.

Bu durum ⁶⁴Zn^{*} bileşik çekirdeği için örnek olarak Şekil 2.1' de gösterilmiştir.

Şekil 2.1 ⁶⁴Zn^{*} bileşik çekirdeği için farklı çıkış kanalları

Bileşik çekirdeğinin oluşumu sonrasında farklı çıkış kanallarına karşılık gelen reaksiyon tesir kesitleri ⁶⁴Zn^{*} bileşik çekirdeği için Şekil 2.2' de verilmiştir. Bu reaksiyon tesir kesitleri, bileşik çekirdek modelinin temel varsayımlarıyla uyumlu, benzer özellikler göstermektedir.

Şekil 2.2 Zn bileşik çekirdeğinin oluşmasıyla sonuçlanan farklı reaksiyonlar için tesir kesitleri

Bu bileşik çekirdeği oluşturmak için geçen zaman 10^{-16} ile 10^{-18} sn arasında değişmektedir (Krane, 2001).

2.2.2 Direkt Reaksiyonlar

Bu reaksiyonda gelen bombardıman parçacığın enerjisi arttıkça parçacığın dalga boyu, çekirdek içi nükleonla etkileşecek kadar düşer. Bu durumda bombardıman parçacığı öncelikli olarak çekirdeğin yüzeyindeki nükleonlarla etkileşir. Bu etkileşme Şekil 2.3' de gösterilmektedir. Bu reaksiyon, direkt reaksiyonları oluşturur. Bu reaksiyonla, bir kabuk durumuna bir nükleon eklenip, koparıldığı için çekirdeğin kabuk yapısının incelenmesine katkıda bulunulur. Aynı zamanda ürün çekirdeğin birçok uyarılmış durumuna bu reaksiyonla ulaşılır.

Şekil 2.3 Çekirdek yüzeyinde meydana gelen direkt reaksiyonların geometrisi (Krane, 2001)

Direkt reaksiyonları, bileşik reaksiyonlardan ayıran temel fark direkt reaksiyonların 10⁻²² sn mertebesi kadar kısa bir zamanda meydana gelmesidir. İki reaksiyon için belirlenen açısal dağılımda ise direkt reaksiyonların daha keskin piklere sahip olduğu gözlenmiştir.

İnelastik saçılma, büyük ölçüde gelen parçacığın enerjisine bağlı olarak, ya bir direkt reaksiyon veya bir bileşik çekirdek reaksiyonu ile meydana gelebilir. Bu reaksiyonların şematik gösterimi Şekil 2.4' de verilmiştir. (d,n) döteron direkt soyulma (stripping) reaksiyonu her iki reaksiyonla da oluşabilir. Ama bir (d,p) döteron direkt soyulma stripping reaksiyonu ancak direkt reaksiyonla oluşabilir. Çünkü bileşik reaksiyonda, döteron, hedef çekirdeğe girdikten sonra istatistiksel dağılımının ardından, protonun coulomb engelini aşarak buharlaşması güçtür.

Şekil 2.4 Bileşik çekirdek oluşumu aşaması ve direkt reaksiyon türleri

2.3 Nükleer Reaksiyon Tesir Kesiti

Mikroskobik fizik alanında teoriler genellikle kesinlik ifade etmez. Farklı çekirdek reaksiyonlarının meydana gelme ihtimallerini ölçmek veya hesaplamak çok önemlidir. Radyoizotop üretiminde, soğurulmada, saçılmada veya herhangi bir nükleer reaksiyonda gelen parçacıklar hedefe çarptıkları zaman neler olabileceğini ifade etmenin yolları bilinmelidir. Genel olarak, tesir kesiti, reaksiyonun meydana gelme ihtimalinin bağıl bir ölçüsünü verir (Krane, 2001). Nükleer reaksiyon modeline göre birbirlerine doğru gelen iki küre ancak birbirlerine değerlerse reaksiyon gerçekleşir. Bu canlandırmada reaksiyon olasılığı her iki kürenin yüzey alanları ile orantılıdır. Örneğin, bir nötronun hedef ile etkileşme olasılığı çekirdek yüzeyinin alanı ile orantılıdır ve hedef ile etkileşen nötronun büyüklüğü yaklaşık 1 barn kadardır (1 barn = 10^{-24} cm²). Nükleer bir reaksiyonun enerjisi, coulomb engeli ile Q değerini asmak için gereken enerjiden düşük ise (tünelleme olayı hariç) nükleer reaksiyon oluşmaz. Engelin altındaki enerjilerde reaksiyon olasılığı düşüktür. Nükleer reaksiyon için ihtiyaç duyulan enerji, hedef malzemenin atom numarası arttıkça artmaktadır. Küçük atom numaralı hedef malzemeler düşük enerjili hızlandırıcılar kullanılabilir ancak yüksek atom numaralı hedefler için parçacık enerjisi yüksek olmalıdır (Yalçıner, 2008).

Bir nükleer reaksiyonun meydana gelme ihtimalini belirleyen ölçülebilen niceliklere tesir kesiti adı verilir. Gelen parçacıkların hedef çekirdekleriyle doğrudan etkileştikleri belirli etkin alanları vardır. Tesir kesitinin birimi barn'dır. Barn b, daha sık kullanılan milibarn ise, mb sembolü ile gösterilir (1b = 10^3 mb = 10^{-24} cm²) (Yalçıner, 2008).

2.4. Diferansiyel Tesir Kesiti

Gelen parçacıklar hedef çekirdekle etkileştiklerinde, her zaman tek tip bir nükleer reaksiyon meydana gelmez. Eğer birden fazla nükleer reaksiyon meydana gelirse, her bir reaksiyon için tesir kesitleri farklı olacaktır. Bu özel tesir kesitlerine diferansiyel (kısmi) tesir kesitleri denir ve toplam tesir kesiti bunların toplamından oluşur. Nükleer reaksiyondan veya saçılmadan sonra meydana gelen parçacıkların çoğu, anizotropik dağılma gösterirler ve aynı zamanda farklı açılarda farklı enerjilere sahip olurlar. Geliş yönüyle θ açısı yaparak $d\Omega$ katı açısı içine birim zamanda saçılan parçacıkların sayısının bilinmesi önemlidir. Böylece açıya bağımlı başka bir tesir kesitine gerek duyulur ve birim katı açı başına düşen tesir kesiti olarak tarif edilerek,

$$\sigma(\theta, \phi) = \frac{d\theta}{d\Omega}$$
(2.2)

şeklinde yazılır. Böylece toplam tesir kesiti ise,

$$\sigma_T = \int_{\Omega} \frac{d\sigma}{d\Omega} d\Omega \tag{2.3}$$

olacaktır. $d\Omega$ katı açısının değeri, Şekil 2.5 yardımıyla,

$$d\Omega = \frac{alan}{(mesafe)^2} = \frac{dA}{r^2} = \frac{(rd\theta)(rsin\theta d\phi)}{r^2} = sin\theta d\theta d\phi$$
(2.4)

ifadesiyle verilir. Toplam katı açı,

$$\Omega = \int_{\Omega} d\Omega = \iint \sin\theta d\theta d\phi = 4\pi$$
(2.5)

olup katı açı kesri ise,

$$\frac{d\Omega}{\Omega} = \frac{A}{r^2} \frac{1}{4\pi} = \frac{A}{4\pi r^2}$$
(2.6)

dir. σ_T , toplam tesir kesiti iki bağıntı birleştirilerek,

Şekil 2.5 $d\Omega$ katı açısı içinde saçılan demeti gösteren reaksiyon geometrisi

$$\sigma_T = \int \frac{d\sigma}{d\Omega} d\Omega = \int \frac{d\sigma}{d\Omega} \sin\theta d\theta d\phi$$
(2.7)

ifadesiyle bulunabilir.

Şayet diferansiyel tesir kesiti Ø'den bağımsız ise tesir kesiti (Ø üzerinden integral alındıktan sonra);

$$\sigma_T = 2\pi \int \frac{d\sigma}{d\Omega} \sin\theta d\theta \tag{2.8}$$

olacaktır. Burada $d\sigma/d\Omega = \sigma(\theta)$ diferansiyel tesir kesitidir. Diferansiyel tesir kesiti ölçümünün, sadece enerjiye bağımlı olmayıp, aynı zamanda tesir kesitinin yöne bağımlılığının nükleer reaksiyonun cinsine göre olduğu gerçeğinin bulunmasında da faydası vardır. Bir nükleer kuvvet tipi kabullenerek, farklı nükleer reaksiyonların açısal dağılımını ifade etmek mümkündür. Teori ile deney arasındaki uygunluk, farz edilen nükleer kuvvet şeklinin doğruluk derecesini verecektir (Yalçıner, 2008).

2.5. Nükleer Reaksiyon Modelleri

2.5.1. Griffin (Exciton) Modeli

Nükleer reaksiyonlar için Griffin (veya exciton) denge öncesi model (Williams F.C., (1971)) ilk kez 1966 yılında Griffin tarafından ileri sürülmüştür. Daha sonra birçok araştırmacı tarafından genişletilip, düzeltilerek hem yayınlanan parçacıkların açı integralli spektrumlarının hesaplanmasında hem de çekirdeklerin uyarılma fonksiyonlarının elde edilmesinde büyük bir başarıyla kullanıldı. Ancak ne Griffin modeli ne de Blann tarafından geliştirilen Hibrid Model (Fu C.Y., (1984)) yayınlanan parçacıkların açısal dağılımlarını açıklamayı başarmıştır. Denge öncesi modeller arasında ilk olarak yalnız "Intranuclear cascade" (INC) yayınlanan parçacıkların açısal dağılımlarını açıklayabilmiştir. Ancak bu modelin başarı düzeyi sınırlıdır.

Griffin Modeli'ne göre bir reaksiyonun ilk birkaç evresi şematik olarak Şekil 2.6' da gösterilmiştir. Nükleer potansiyel, eşit aralıklı tek parçacık durumları olarak gösterilmiştir. Mermi parçacık, hedef çekirdeğe girdikten sonra 1p–0h (1 parçacık – 0 deşik) durumu oluşturur. Daha sonra hedef nükleonlardan biriyle etkileşerek 2p–1h (2 parçacık–1 deşik) durumunu meydana getirir. Bunu takip eden etkileşmeler daha fazla parçacık–deşik çiftini oluşturur. Sonuç olarak yeteri kadar parçacık – deşik oluşunca, geriye doğru çift–yok olma süreci başlar ve bu olay, tekrar kararlı duruma gelinceye kadar devam eder. Sistemin durumu, parçacık ve deşik derecelerine göre sınıflandırılır. Denge süreci, çeşitli tek parçacık durumlarından ziyade, farklı nükleer durum gruplarının yerleşme ihtimallerinin hesaplanması ile takip edilir. Nükleer durumların her biri için parçacık yayınlanması yapabilen bağlı olmayan durumlar oluşacaktır. Bu durum Şekil 2.6' da görülmektedir. Bu modele göre, her bir duruma ait parçacık yayınlanma hızı hesaplanabilir ve bu bilgiler, denge öncesi yayınlanma spektrumunu elde etmek için bulunma ihtimalleri ile birleştirilebilir (Griffin, 1966, Blann, 1968, Oblozinsky ve Ribansky, 1974).

Açıklandığı gibi bu model, denge süreci izlenirken ve parçacık yayınlanması hesaplanırken, sadece uyarılmış parçacık sayısı ve deşikleri dikkate alır. Ayrıca, denge sürecinin takibi için basit ve çözümü kolay olan birtakım denklemler kullanır. Denge öncesi işlemler, 10 MeV' in üzerindeki hafif parçacıklar ile oluşturulan nükleer reaksiyonlarda önemli bir yer tutar. Exciton model, Cline ve Ribansky tarafından verilen master denklemlerinin çözümüne dayanır (Cline C.K., (1972)), (Ribansky I., Oblozinsky P., Betak E., (1973)).

$$-q(n,t=0) = \lambda^{+}(E,n+2)\tau(n+2) + \lambda^{-}(E,n-2)\tau(n-2) - [\lambda^{+}(E,n) + \lambda^{-}(E,n) + W_{1}(E,n)]\tau(n)$$
(2.9)

Burada q (n, t = 0); başlangıç şartıdır, $\tau(n)$; sistemin n(n = p+h) excitonlu bir durumda kalma zamanı, W_l ; n excitonlu durumun birim zamandaki toplam bozunum ihtimali, E; bileşik çekirdeğin uyarılma enerjisi, λ_{+} ve λ_{-} sırasıyla; $n \rightarrow n + 2$ ve $n \rightarrow n - 2$ durumları için geçiş ihtimalleridir.

Master denklem sistemi için başlangıç koşulu,

$$P(p, h, 0) = \delta(p, p_0)\delta(h, h_0)$$
(2.10)

nükleonlarla oluşturulan reaksiyonlar için başlangıç parçacık sayısı $p_0 = 2$, başlangıç deşik sayısı $h_0 = 1$ dir.

Şekil 2.6 Griffin modelinde, bir reaksiyonun ilk evrelerinin şematik temsili. Yatay çizgiler, potansiyel kuyusundaki eşit aralıklı tek parçacık durumlarını göstermektedir. Uyarılmış parçacık ve deşiklerin serbestlik derecesi, her konfigürasyon için listelenmektedir.

2.5.2. Hibrid (Melez) Model

Hibrid modeli, Fermi-gaz-denge modeli ile Grifin (Exciton) modellerinin temel özelliklerinin birleşiminden meydana gelmektedir. Şematik olarak Şekil 2.7' de gösterilmiştir. Hibrid model; Griffin modelinde olduğu gibi tek parçacık durumlarını eşit aralıklı bir yerleşim olarak kabul eder. Çekirdek durumlarını, uyarılmış parçacık ve deşikleri içerecek şekilde sınıflandırılır (Blann, 1971), (Cline, 1972).

Daha önce söylendiği gibi gelen nükleon, hedef çekirdekle 1p – 0h durumu oluşturur. Sonra 2p – 1h durumu oluşturmak için hedef nükleonla etkileşme yapar. Böylece iki-cisim etkilesmeleri daha fazla parçacık-desik çifti oluşumuna sebebiyet verirler. Bu model her bir nükleer durum için uyarılmış parçacıkların uyarılma enerjilerinin dağılımını hesaplar. Şekil 2.7' deki küçük grafikler, Fermi enerjisinin üzerinde bulunan, ɛi enerjili tek parçacık durumundaki uyarılmış parçacığın bulunma ihtimalini gösterir. Her parçacık uyarılma enerjisi için, yeni parçacık-deşik oluşumuna bağlı olarak kısmi parçacık yayınlanma oranları hesaplanır. İlk olarak 2p-1h konfigrasyonu ile başlanırken, sıra ile bütün durumlar düşünülür. Parçacık yayınlanmasını tüm süreçler denge öncesi spektrumuna katkıda bulunur. Bu süreç, denge sistemindeki en muhtemel eksiton sayısına ulasılana kadar devam eder. Daha sonra reaksiyonun denge kısmı için standart bir bileşik çekirdek modeli hesabına devam edilir. Bunu takiben nükleer dengede, sadece uvarılmış parçacıklar ve deşikler önemlidir. Parçacık yayınlanma oranlarını incelerken tek tek parçacıkların uyarılma enerjileri önem kazanır. Bu sadece kapalı tip hesaplamalar için geçerlidir. Griffin modelinde olduğu gibi Hibrid modelinde de mermi olarak kompleks parçacıklar kullanılabilir. Ancak parçacık yayınlanması, Fermi-gaz-denge modelindeki gibi ele alındığında; nükleonların yayınlanma hesabı mümkün olur.

Şekil 2.7 Hibrid modeldeki reaksiyonun ilk birkaç durumunun şematik temsili

Küçük grafikler, uyarılmış parçacıkların enerji dağılımını göstermektedir. Aralarındaki oklar da parçacık yayınlanma ve parçacık-deşik çifti oluşumu için geçiş ihtimallerini temsil etmektedir. Enerji skalasının sıfır noktası fermi enerjisidir ve eksen üzerindeki işaret ise yayınlanma eşiğini göstermektedir.

2.5.3. Geometri Bağımlı Hibrid Model

Denge öncesi bozunma için hibrid model formülü Blann ve Vonach (Blann, Vonach, 1983), (Blann, Mignerey, Scobel, 1976) tarafından

$$\frac{d\sigma_v(\varepsilon)}{d\varepsilon} = \sigma_R P_v(\varepsilon)$$
(2.11)

ve

$$P_{\nu}(\varepsilon)d\varepsilon = \sum_{\substack{n=n_{0}\\\Delta n=+2}}^{\overline{n}} \left[\begin{array}{c} {}_{n}\chi_{\nu} N_{n}(\varepsilon,U) / N_{n}(E) \end{array} \right] g \ d\varepsilon \left[\lambda_{c}(\varepsilon) / (\lambda_{c}(\varepsilon) + \lambda_{+}(\varepsilon)) \right] D_{n}$$

$$(2.12)$$

olarak verilmiştir. Burada σ_R ; reaksiyon tesir kesiti, ${}_n \mathcal{X}_v$; n exciton durumundaki v tipli parçacıkların (proton veya nötron) sayısı, P_{v} (ϵ)d ϵ ; enerjisi ϵ ile ϵ + d ϵ arasında sürekli bölgeye yayılan v tipli parçacıkların (proton veya nötron) sayısını gösterir. Ayrıca, $\lambda_{c}(\varepsilon)$; bir parçacığın ε kanal enerjisi ile sürekli bölgeye yayınlanma hızı, $\lambda_{+}(\varepsilon)$; ε enerjili bir parçacığın çekirdek içi geçiş hızı, E bileşik sisteminin uyarılma enerjisi, N (ε ,U) bir exciton ε kanal enerjisiyle yayınlandığında kalan çekirdeğin $U = E - B_v - \varepsilon$ uyarılma enerjisinin diğer n-1 excitonları arasında paylaşılacak sekilde n excitonun uygun bir biçimde düzenlenme sayısı, $N_n(E)$ E uvarılma enerjisinde n parçacık artı deşik toplam birleştirim sayısı, D_n bir n-exciton zincirinde başlangıç popülasyon kesiti, g tek-parçacık düzey yoğunluğudur. Denklem (13)' deki köşeli parantez içindeki nicelik sürekli bölgede enerjisi ϵ ile ε + d ε arasında olan parçacık sayısını verir. İkinci parantez içindeki ifade ise sürekli bölgeye geçiş hızının toplam geçiş hızına oranıdır.

2.6. Tıpta Kullanılan Radyoizotoplar

Radyoizotopların biyolojik bilimlerde kullanılması 1923 yılında Von HEVESY' nin çalışmalarıyla başlar (Hevesy, 1923). Hevesy bu tür çalışmalar için gerekli radyasyon miktarının çok küçük olması gerektiğini göstermiştir. O zaman bu tür çalışmalar için gerekli radyoizotoplar henüz mevcut değildi. Bu problem Curie ve Jeliotun, 1934' de radyoizotopların suni olarak üretilebileceğini keşfetmeleriyle çözümlendi (Curie, Foliot, 1934). Birçok bilim adamı yeni radyonüklid üretimi çalışmalarına kendilerini adadı. Ve kısa bir sürede çok sayıda radyonüklid biyolojik bilimcilerin kullanımı için hazırlandı.

Herz ve arkadaşları 1938 yılında tavşan üzerinde yaptıkları deneylerle tiroid bezinin ¹³¹I izotopunu tuttuğunu gösterdi (Blann, Vonach, 1983). Hamilton ve Soley 1939' da insanda ¹³¹I' in tiroiddeki tutulumunu basit bir Geiger-Muller sayacı ile ölçtüler (Blann, Mignerey, Scobel, 1976). Nükleer tıp bilimi adı altında toplanılan bu çalışmalarla teşhis ve tedavide uygulanacak sayısız metod bulundu.

Radyoizotopların biyomedikal araştırmada en büyük katkıları, şüphesiz canlı organizmadaki biyolojik ünitelerin sürekli bir değişim halinde olduğunu göstermeleridir (Colobetti, (1979)). Radyoizleyiciler sistemdeki dengeyi bozmazlar, ama kendileri sisteme verildiklerinde denge halinde olmadıkları için bu maddelerin dinamiği, taşınma mekanizması, yerelleşmeleri, metabolizması ve yıkılımı zamanın bir fonksiyonu olarak çalışabilir.

Radyoformakoloji bilim dalında toplanılan bu çalışmalar tıpta fizyolojik problemlerin aydınlatılmasına yardımcı olur. Radyoformasötiklerin gelişmesine paralel pozitron kamera, tek-foton emisyon tomografisi gibi hayli gelişmiş bilgisayarlı cihazlar da piyasaya sürülmüştür. Wagner tarafından (radyoizotopların bedene girdikten sonra hangi dokularda ve ne konsantrasyonda biriktiklerini gösteren) "biyolojik dağılım bilimi" olarak tarif edilen nükleer tıp, hem bölgesel, hem de global fonksiyon imajlaması yönünde gelişmektedir (Wagner, Heidelberg, 1980).

Medikal amaçlarla kullanılan radyoizotoplar genellikle hızlandırıcılarda ve reaktörlerde üretilmektedir. Radyoizotopların hangi yöntem ile üretileceğini, üretimde kullanılan ışınlayıcı parçacıkların enerjisi ve hedef çekirdek belirler. Nükleer tıpta kullanılan radyoizotopların hemen hemen hepsi yapaydır. Radyoizotopların üretimi üç farklı yoldan gerçekleştirilmektedir. Bunlar nükleer reaktörler, hızlandırıcılar ve radyoizotop jeneratörleridir. Radyoizotop üretimindeki en önemli kriter zamandır. Kısa yarı ömürlü izotoplar kullanılacakları yerlere zamanında ulaştırılamayabilirler, bu nedenle üretim noktasından uzakta bulunan ve özellikle kısa yarı ömürlü radyoizotop ihtiyacı olan tesislerin taleplerini karşılamak için radyoizotop jeneratörleri kullanılmaktadır.

Nükleer tıpta kullanılan radyonüklidler üretim şekline göre şöyle sınıflandırılabilir.

- a) Siklotron ürünleri
 - Siklotron ürünleri : ${}^{11}C$, ${}^{13}N$, ${}^{15}O$, ${}^{18}F$
 - Gamma yayınlayan izotoplar : 57 Co , 67 Ga , 111 In , 123 I , 201 Tl
- b) Jeneratör ürünleri : 68 Ga , 81m Kr , 82 Ru , 99m Tc , 113m In
- c) Nükleer reaktör ürünleri : 133 Xe , 99 Mo , 131 I

2.7. Radyoizotopların Kullanım Alanları

Tıpta ve endüstride kullanılan radyoizotoplar reaktör ve hızlandırıcılar kullanılarak üretilmektedir. Ticari anlamda SPECT ve PET radyoizotoplarının üretimi için hızlandırıcı olarak siklotronlar yaygın bir şekilde kullanılmaktadır. Hem PET hem de SPECT radyoizotopları katı, sıvı veya gaz formundaki hedeflerin, siklotrondan hızlandırılan parçacık veya iyonlarla (p,d,³H,³He,⁴He) bombardıman edilmesi sonucunda elde edilmektedir.

2.7.1 Tek Foton Yayınlamalı Bilgisayarlı Tomografi (SPECT)

SPECT'in temeli 1917 yılında Avusturyalı matematikçi J. Radon tarafından yayınlanan bir makale ile atılmıştır. Bu yayında J. Radon iki ya da üç boyutlu bir objenin çeşitli açılar altındaki görünümlerinin yeniden elde edilebileceğini vurgulamıştır.

1922'de radyolojide x-ışını tüpü hasta üzerinde döndürülerek tomografi denemeleri yapılmıştır. Fakat objenin üç boyutlu yapısının oluşturulması ancak bilgisayarlı tomografinin geliştirilmesi ile anlam kazanmıştır. J. Radon'un yayınının klinik uygulamaya geçebilmesi Oldendorf'un 1961'de ¹³¹I ile gama ışınlarının transmisyon görüntülerinin alınmasına kadar sürmüştür. 1963'de Kuhl ve Edvard emisyon tomografisini geliştirmişlerdir. Bu araştırmacılar 1966' da osiloskop kamera ile elde ettikleri projeksiyon görüntülerini depolamayı başardılar. Buna rağmen görüntülerin yeniden elde edilmesi (imaj rekonstrüksiyon) modern bilgisayarların geliştirilmesine kadar mümkün olmadı. Gama kamerayı icat eden Hal Anger 1967' de hastanın etrafında dönebilen bir kamera tezini ortaya attı. Bu düşüncenin uygulamaya geçebilmesi de 10 yıllık bir zaman aldı (Cantez, Gorpe, 1992).

SPECT teknikleri, Şekil xxx'de görüldüğü gibi, iki boyutlu görüntülerin her setinde üç boyutlu görüntülerin elde edilmesine olanak sağlar. Kamera hastanın etrafında döndükçe planer imajın oluşumuna yarayan bilgileri toplayarak bilgisayara gönderir. Bu veriler her dönüş açısında toplanır. Elde edilen veriler sayısal değerlere çevrilerek piksellere kaydedilir.

Şekil 2.8 Tek Foton Yayınlamalı Bilgisayarlı Tomografi (SPECT) cihazının genel görünümü

2.7.2 Pozitron Yayınlamalı Tomografi (PET)

PET, nükleer tıp görüntüleme yöntemleri içinde en gelişmiş olanıdır. PET'de görüntüleme maddesi olarak radyoaktif bileşikler (radyofarmosötik) veya bir radyoaktif maddenin kendisi (radyonüklid), görüntülenecek yere uygun bir şekilde verilerek görüntüleme yapılır. Radyonüklidlerin üretildiği hızlandırıcı, genellikle bir siklotron, görüntülemenin yapıldığı alet ise PET tarayıcısıdır. PET, daha çok kanser hastalarının teşhisinde, kanserin evresinin saptanmasında ve tedavisinin takibinde kullanılmaktadır. Bunun yanı sıra bazı santral sinir sistemi ve kalp-damar sistem hastalıklarının teşhisinde de PET tetkikinden faydalanılmaktadır.

Şekil 2.9 Pozitron Yayınlamalı Tomografi (PET) cihazının genel görünümü

Son yıllarda ülkemizde teşhis amacıyla nükleer tıpta kullanılmakta olan PET görüntüleme tekniği yaygınlaşmaktadır. Bu görüntüleme tekniği özellikle tekrarlanan kanser vakalarının erken teşhisi başta olmak üzere beyin ve kalp ile ilgili çalışmalarda kullanılmaktadır. Günümüzde özellikle PET uygulamaları için ¹⁸F, ¹¹C, ¹³N, ¹⁵O pozitron yayan izotopları üretilmektedir. Ancak son zamanlarda ise ⁵⁵Co, ⁶⁰Cu, ⁶¹Cu, ⁶⁴Cu ve ⁶⁷Cu gibi diğer kısa yarı ömürlü radyoizotopların kullanılmasına ilişkin çalışmalar da artarak devam etmektedir. Bu radyoizotoplardan ⁵⁵Co, kanser tedavisinde kullanılan ilaçların etiketlenmesinde ve ayrıca PET tekniği ile kalp ve beynin görüntülenmesinde; ⁶⁰Cu ve ⁶¹Cu radyoizotopları tümörün yapısında bulunan

hipoksik dokular ile beyin ve kalbin görüntülenmesinin yanı sıra protein ve peptitlerin etiketlenmesinde; ⁶⁴Cu beyin ve kalp perfüzyon çalışmalarında PET tekniği ile görüntülemede ve ⁶⁷Cu' nun ise endoterapi amaçlı kullanılmasına ilişkin çalışmalar devam etmektedir. ⁵⁷Co ise gama spektrometreleri ve SPECT (tek foton emisyon tomografisi) sistemleri için kalibrasyon kaynağı olarak yaygın bir şekilde kullanılan bir radyoizotoptur.

Nükleer tıp alanında kullanılan bazı radyoizotopların yarı ömürleri ve uygulama alanları Çizelge 2.1' de gösterilmiştir.

İZOTOP	YARI ÖMÜR	UYGULAMA ALANLARI
⁷² As 26 saat	26 spat	Düzlemsel görüntüleme, SPECT veya PET
	uygulaması.	
⁷⁴ As	17,8 gün	Pozitron yayınlayıcı izotop.
¹⁹⁸ Au	2,69 gün	Karaciğer incelemesi, prostat ve beyin kanseri tedavisi
⁷⁵ Br	98 dakika	Düzlemsel görüntüleme, SPECT veya PET
		uygulaması.
⁷⁷ Br	57 saat	Hücre dışı sıvı miktarı tayini.
¹¹ C 20,3 dal	20.3 dakika	Beyin fonksiyonlarının incelenmesinde kullanılan
	20,5 dakika	PET uygulamalarında.
¹⁴ C	5730 yıl	Göğüs kanseri tümörlerinin belirlenmesi.
⁴⁷ Ca	4,7 gün	Kalsiyum metabolizması.
⁵¹ Cr 27,7 gün	27.7 gün	Kan hacminin tayini, kırmızı yuvarların ömrünün
	tayini, dalak sintigrafisi.	
⁶¹ Cu	3,35 saat	Düzlemsel görüntüleme, SPECT veya PET
		uygulaması.
⁶² Cu	4,7 dakika	Pozitron yayınlayıcısı, beyin ve kalpteki kan akışının
		izlenmesi
⁶⁴ Cu	12,7 saat	Hormon metabolizmasında yağların sindiriminin
Cu		incelenmesi.

Çizelge 2.1 Nükleer Tıp alanında kullanılan bazı radyoizotoplar

Çizelge 2.1. (devam)

⁶⁷ Cu	61,9 saat	Kanser teşhis ve tedavisi.
¹⁸ F	110 dakika	Beyin ile ilgili uygulamalarda iz izotopu olarak.
⁶⁶ Ga	9,49 saat	Pozitron yayınlayıcı.
¹²³ I	13,1 saat	Beyin, tiroid, böbrek ve kalp görüntüleme.
¹²⁴ I	4,17 gün	Tiroid ve karaciğer tümörlerinin belirlenmesi.
¹¹¹ In	2,81 gün	Kalp hastalıklarının ve beyaz kan hücrelerinin görüntülenmesi, tümörlerin teşhis edilmesi.
⁶³ Zn	38,47 dakika	Beyin ve kalpteki kan akışının izlenmesi.

3. MATERYAL VE YÖNTEM

Nükleonlarla oluşturulan reaksiyon tesir keşitleri özellikle nükleer fizikte ve radyoizotop üretim programlarında önemli yer tutar. Bu tür reaksiyonların oluşturulması sırasında materyallerin yapısını etkileyecek değişimler oluşabilmektedir. Bu problemlerin öneminin anlaşılabilmesi ve sorunların giderilebilmesi için tesir kesitlerinin ve yayınlanma spektrumlarının deneysel olarak ölçülmesi ve önceden oluşabilecek durumların belirlenebilmesi için de teorik hesaplamaların yapılabilmesi gerekir. Örnek olarak, gönderilen parçacığa göre hangi enerji aralığında maksimum tesir kesiti olabileceğini, ya da gönderilen parçacığın enerjisinin hangi aralıkta olması gerektiğini görmek için bu hesaplamaların önemi ortaya çıkmaktadır. Diğer bir açıdan da, nükleer fiziğin sahip olduğu temel problemlerinin aşılabilmesi için bu modellerin nükleer reaksiyonlarda oynadığı rolü teorik olarak kestirmek ve denevsel olarak gözlemek gereklidir. Nükleer reaksiyonların daha detaylı olarak enerji bağımlılığı bilinmediğinden çok sayıdaki farklı enerjiler için tesir kesitlerinin ve spektral yayınlanma şeklinin incelenmesi önemlidir. Örneğin, reaktörlerde üretilen geçici çekirdekler genellikle kısa yarı ömürlüdür. Dolayısıyla, bu çekirdeklerin tesir kesitlerinin ve yayınlanma spektrumlarının doğrudan ölçülmesi pek mümkün olamamaktadır. Bu sebeple, zaman kazanılması açısından yapılacakların en önemlisi bu tesir kesitlerinin teorik olarak önceden hesaplanmasıdır.

Nükleer fizik biliminin uygulama alanları hayatımızda önemli yerlere sahip olması nedeniyle bu bilim üzerine araştırmalar her geçen gün artmaktadır. Teoriksel çalışmaların da katkısıyla (önceden tahmin etme, beklenen değerlerin bilinmesi ve deneysel çalışmalara yön verme gibi), nükleer uygulama alanları artmakta ve hayatımızı kolaylaştırmaya devam etmektedir.

Bu tez çalışmasında, denge–öncesi nükleer reaksiyon modelleri kullanılarak 119 Sn(p,n) 119 Sb, 169 Tm(p,n) 169 Yb, 61 Ni(p,n) 61 Cu, 124 Te(p,n) 124 I, 111 Cd(p,n) 111 In, 18 O(p,n) 18 F, 64 Ni(p,n) 64 Cu, 66 Zn(p,n) 66 Ga, 75 As(n,2n) 74 As, 198 Hg(n,p) 198 Au, 63 Cu(n,2n) 62 Cu reaksiyonları yoluyla üretilebilen 119 Sb, 169 Yb, 61 Cu, 124 I, 111 In, 18 F, 64 Cu, 66 Ga, 74 As, 198 Au ve 62 Cu medikal radyoizotopların üretim tesir kesitleri

22

hesaplanmıştır. Hesaplamalarda, literatürde güvenirliği kabul edilmiş olan ALICE/ASH ve TALYS 1.2 bilgisayar programları kullanılmıştır. Tezde ele alınan her bir reaksiyon için deneysel tesir kesiti verileri Uluslar arası Atom Enerjisi Kurumu (IAEA)'nun EXFOR kütüphanesinden alınmıştır. ALICE/ASH ve TALYS 1.2 bilgisayar programları ile yapılan tesir kesiti hesapları, EXFOR kütüphanesinden alınan deneysel tesir kesiti verileri ile karşılaştırılmıştır.

ALICE/ASH ve TALYS 1.2 bilgisayar programlarının özellikleri aşağıda kısaca özetlenmiştir.

3.1. ALICE/ASH Bilgisayar Program

ALICE/ASH (Broeders, 2006) programı ALICE program ailesinin geliştirilmiş ve değiştirilmiş bir sürümüdür. ALICE/ASH-2006 programı, 300 MeV' lik gelme enerjisine kadar, uyarılma fonksiyonu, ikincil parçacıkların açısal dağılımı ve enerjisi hesaplamaları için uygulanabilir. Başlangıç exciton sayısı $n_0 = 3$ olarak alınır ve *n*-exciton durumundaki v tipi parçacık sayısı X_v^n , gelen nötron için,

$${}_{3}X_{n} = 2 \frac{(\sigma_{np} / \sigma_{nn})Z + 2N}{2(\sigma_{np} / \sigma_{nn})Z + 2N},$$

$${}_{3}X_{p} = 2 - {}_{3}X_{n}$$

$$(3.1)$$

ve gelen proton için

 $_{3}X_{n} = 2 - _{3}X_{p}$

$${}_{3}X_{p} = 2 \frac{(\sigma_{pn} / \sigma_{pp})Z + 2N}{2(\sigma_{pn} / \sigma_{pp})Z + 2N}$$
(3.2)

şeklindedir.

3.2. TALYS 1.2 Bilgisayar Programı

TALYS 1.2 (Koning, Hilaire ve Duijvestijn, 2009), Linux işletim sisteminde çalışan ve fortran programlama diline sahip, nükleer reaksiyonların analizi ve tahmini için oluşturulmuş bir bilgisayar programıdır. Simülasyon reaksiyonlarda, nötron, proton, döteryum, trityum, 3-He, α parçacıkları ve gama ışınımları 1 keV – 200 MeV enerji bölgesinde çalışabilir. Hedef çekirdek kütleleri için 12 ve daha ağır kütleli olması şarttır (Koning ve Duijvestijn, 2007).

TALYS çıktı dosyalarında,

- Esnek, esnek olmayan ve toplam tesir kesiti,
- Elastik saçılma açısal dağılımlar,
- Kesikli seviyelerde açısal dağılımlar,
- İzormerik ve taban durum tesir kesiti,
- Toplam parçacık (n,xn), (n,xp) v.b enerji ve çift katlı diferansiyel tesir kesitleri,
- Tekli ya da çoklu emisyon tesir kesitleri,
- Ürün çekirdeklerin oluşum tesir kesitleri,
- Ürün çekirdeklerin oluşum tesir kesiti sonuçları

elde edilebilir.
4. ARAŞTIRMA BULGULARI

Bu çalışmada; ¹¹⁹Sn(p,n)¹¹⁹Sb, ¹⁶⁹Tm(p,n)¹⁶⁹Yb, ⁶¹Ni(p,n)⁶¹Cu, ¹²⁴Te(p,n)¹²⁴I, ¹¹¹Cd(p,n)¹¹¹In, ¹⁸O(p,n)¹⁸F, ⁶⁴Ni(p,n)⁶⁴Cu, ⁶⁶Zn(p,n)⁶⁶Ga, ⁷⁵As(n,2n)⁷⁴As, ¹⁹⁸Hg(n,p)¹⁹⁸Au, ⁶³Cu(n,2n)⁶²Cu reaksiyonlarının tesir kesitleri hesaplandı. Hesaplamalar ALICE/ASH ve TALYS 1.2 programları kullanılarak yapıldı. ALICE/ASH programı ile yapılan hesaplamalarda tesir kesitlerinin seviye yoğunluk parametresine olan bağlılığı da incelendi. Her bir reaksiyon için ALICE/ASH programının kabul ettiği varsayılan a=A/9 değerinin yanı sıra a=A/18 değeri için de hesaplamalar yapıldı. Bu hesaplamalarda, Hibrid Model ve Geometri Bağımlı Hibrid Model öngörüleri dikkate alındı. Elde edilen tüm teorik sonuçlar literatürden alınan deneysel verilerle karşılaştırıldı.

4.1. ¹¹⁹Sn(p,n)¹¹⁹Sb Reaksiyonu

Yarı ömrü 8,9 saat olan ¹¹⁹Sb çekirdeği, yüksek dozda radyasyon ile tümör hücreleri üzerinde kanser tedavisine olanak sağlar. Bu tedavide aynı zamanda normal dokudaki hasar en aza indirgenir. β^+ ve elektron yakalaması yoluyla kararlı olan ¹¹⁹Sn izotopuna bozunur.

Çizelge 4.1 ¹¹⁹Sn(p,n)¹¹⁹Sb Reaksiyonu' nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik	
Çekirdek	Parçacık	Çekirdek	Parçacık	(MeV)	Enerjisi(MeV)	
¹¹⁹ Sn	р	¹¹⁹ Sb	n	-1,373	1,384	

¹¹⁹Sb izotopunun bozunum şeması Şekil 4.1'de gösterilmiştir.

Şekil 4.1¹¹⁹Sn radyoizotopunun bozunum şeması

¹¹⁹Sn(p,n)¹¹⁹Sb reaksiyonu için hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması Şekil 4.2'de gösterilmiştir.

Şekil 4.2 ¹¹⁹Sn(p,n)¹¹⁹Sb reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS1.2 ile yapılan hesaplamalar birbirlerine oldukça yakın sonuçlar vermiştir. Ve deneysel sonuçlarla da iyi bir uyum sağlanmıştır. Maksimum tesir kesitine çıkıldığında ALICE/ASH ve TALYS 1.2 ile yapılan teorik hesaplamalar, deneysel verilere göre biraz düşük sonuçlar vermiştir. Ancak Şekil 4.2' de görüldüğü gibi teorik hesaplamalar, spektrum olarak deneysel veriler ile gayet uyumlu sonuçlar göstermiştir. Edinilen bilgilerin değerlendirilmesi ile ¹¹⁹Sb üretimi için en uygun enerji aralığının 6-13 MeV arası olduğu görülmüştür. Bu da ¹¹⁹Sb'nin düşük enerjili bir siklotronda elde edilebilir olduğunu göstermiştir.

4.2. ¹⁶⁹Tm(p,n)¹⁶⁹Yb Reaksiyonu

Yarı ömrü 32.018 gün olan ¹⁶⁹Yb çekirdeği , beyin omurilik sıvısı incelemelerinde ve gerekli olan yüksek kalitede röntgen elde edilmesinde kullanılır. β^+ ve elektron yakalaması yoluyla kararlı olan ¹⁶⁹Tm izotopuna bozunur.

Çizelge 4.2 ¹⁶⁹Tm(p,n)¹⁶⁹Yb Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik
Çekirdek	Parçacık	Çekirdek	ÇıkanQ-DeğeriParçacık(MeV)n-1,692		Enerjisi(MeV)
¹⁶⁹ Tm	р	¹⁶⁹ Yb	n	-1,692	1,702

¹⁶⁹Yb izotopunun bozunum şeması Şekil 4.3'de gösterilmiştir.

Şekil 4.3¹⁶⁹Yb radyoizotopunun bozunum şeması

¹⁶⁹Tm(p,n)¹⁶⁹Yb reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.4' de gösterilmiştir.

Şekil 4.4 ¹⁶⁹Tm(p,n)¹⁶⁹Yb reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirlerine yakın sonuçlar vermiştir. Deneysel sonuçlarla iyi bir uyum gözlenmesine karşın, ALICE/ASH GDH (Geometri Bağımlı Hibrid) Model hesabı yüksek enerjilerde diğer hesaplamalara göre az da olsa yüksek sonuçlar verdiği görülmüştür. Maksimum tesir kesitinde ise hesaplamalar, I.Spahn (2005) deneysel verileri ile spektrum olarak uyuşsa da daha düşük sonuçları göstermiştir. ¹⁶⁹Yb radyoizotopunun üretimi için en uygun enerji aralığı 8-13 MeV aralığında olduğundan orta ölçekli bir siklotronda gerçekleştirilebileceği görülür.

4.3. ⁶¹Ni(p,n)⁶¹Cu Reaksiyonu

Yarı ömrü 3.33 saat olan ⁶¹Cu çekirdeği SPECT veya PET uygulamaları ile birlikte düzlemsel görüntülemede kullanılan bir izotoptur. β^+ ve elektron yakalaması yoluyla kararlı olan ⁶¹Ni izotopuna bozunur.

Çizelge 4.3 ⁶¹Ni(p,n)⁶¹Cu Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik		
Çekirdek	Parçacık	Çekirdek	Parçacık	Enerjisi(MeV)			
⁶¹ Ni	р	⁶¹ Cu	n	-3,019	3,069		

⁶¹Cu radyoizotopunun bozunum şeması Şekil 4.5' de gösterilmiştir.

Şekil 4.5 ⁶¹Cu radyoizotopunun bozunum şeması

⁶¹Ni(p,n)⁶¹Cu reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.6' da gösterilmiştir.

Şekil 4.6 ⁶¹Ni(p,n)⁶¹Cu reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirlerine yakın sonuçlar vermiştir. TALYS 1.2 teorik hesabı Şekil 4.6' da görüldüğü gibi ALICE/ASH hesaplamalarına göre biraz daha düşük sonuçları göstermiştir. ⁶¹Cu

radyoizotopunun üretimi için en uygun enerji aralığının 8-12 MeV aralığında olduğu ve bununda orta ölçekli bir siklotronda gerçekleştirilebileceği görülmektedir.

4.4. ¹²⁴Te(p,n)¹²⁴I Reaksiyonu

¹²⁴I radyoizotopu yarı ömrü 4,17 gün olan pozitron yayınlayıcı bir izotoptur.Troid ve karaciğer tümörlerinin belirlenmesinde, kan hacminin tayininde kullanılır. $β^+$ ve elektron yakalaması yoluyla kararlı olan ¹²⁴Te izotopuna bozunur.

Çizelge 4.4 ¹²⁴Te(p,n)¹²⁴I Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik	
Çekirdek	Parçacık	Çekirdek	ÇıkanQ-DeğerParçacık(MeV)n-3,941		Enerjisi(MeV)	
¹²⁴ Te	р	124 I	n	-3,941	3,973	

¹²⁴I radyoizotopunun bozunum şeması Şekil 4.7' de gösterilmiştir.

Şekil 4.7 ¹²⁴I radyoizotopunun bozunum şeması

¹²⁴Te(p,n)¹²⁴I reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.8' de gösterilmiştir.

Şekil 4.8 ¹²⁴Te(p,n)¹²⁴I reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirlerine yakın sonuçlar vermiştir. Teorik hesaplamalar, deneysel sonuçlarla iyi bir uyum sağlamakla birlikte özellikle 15-30 MeV enerjileri arasında teorik hesapların ve deneysel sonuçların birbirleri ile uyumunun daha iyi olduğu gözlenmiştir. ¹²⁴I

izotopunun üretimi için en uygun enerji aralığı 8-12 MeV aralığında olduğundan bununda orta ölçekli bir siklotronda üretilebileceği görülmektedir.

4.5. ¹¹¹Cd(p,n)¹¹¹In Reaksiyonu

Yarı ömrü 2,8 gün olan ¹¹¹In radyoizotopu, kalp hastalıklarının ve beyaz kan hücrelerinin görüntülenmesinde, tümörlerin teşhisinde kullanılır. β^+ ve elektron yakalaması yoluyla kararlı olan ¹¹¹Cd izotopuna bozunur.

Çizelge 4.5¹¹¹Cd(p,n)¹¹¹In Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik		
Çekirdek	Parçacık	Çekirdek	Parçacık	Q-DeğeriEşik(MeV)Enerjisi(M-1,6441,659			
¹¹¹ Cd	р	¹¹¹ In	n	-1,644	1,659		

¹¹¹I radyoizotopunun bozunum şeması Şekil 4.9' da gösterilmiştir.

Şekil 4.9¹¹¹In radyoizotopunun bozunum şeması

¹¹¹Cd(p,n)¹¹¹In reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.10' da gösterilmiştir.

Şekil 4.10 ¹¹¹Cd(p,n)¹¹¹In reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar, birbirleri ile aynı olacak derecede yakın sonuçlar vermiştir. Ayrıca teorik hesaplamalar tüm spektrum boyunca deneysel sonuçlar ile birebir uyum içerisindedir. ¹¹¹In üretimi için

en uygun proton enerji aralığı 8-18 MeV aralığında olduğu için orta ölçekli bir siklotronda üretilebileceği görülmektedir.

4.6. ¹⁸O(p,n)¹⁸F Reaksiyonu

Yarı ömrü 110 dakika olan ¹⁸F çekirdeği, beyin ile ilgili uygulamalarda iz izotopu olarak kullanılır. β^+ ve elektron yakalaması yoluyla kararlı olan ¹⁸O izotopuna bozunur.

Çizelge 4.6 ¹⁸O(p,n)¹⁸F Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik	
Çekirdek	Parçacık	Çekirdek	Parçacık	(MeV)	Enerjisi(MeV)	
¹⁸ O	р	¹⁸ F	n	-2,437	2,574	

¹⁸F izotopunun bozunum şeması Şekil 4.11' de gösterilmiştir.

Şekil 4.11 ¹⁹F izotopunun bozunum şeması

¹⁸O(p,n)¹⁸F reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.12' da gösterilmiştir.

Şekil 4.12 ¹⁸O(p,n)¹⁸F reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirleri ile yakın ve deneysel verilerle de uyumlu bir sonuç elde etmiştir. Ortalama 2 – 10 MeV enerjileri arasında TALYS 1.2 programı ile hesaplanan veriler, ALICE/ASH hesaplarına göre biraz daha yüksek sonuçlar göstermiştir. Ayrıca, ortalama 5 – 7 MeV enerjileri arasında deneysel verilerin daha yüksek tesir kesitlerine ulaştığı da gözlenmiştir.

4.7. ⁶⁴Ni(p,n)⁶⁴Cu Reaksiyonu

Yarı ömrü 12,7 saat olan ⁶⁴Cu izotopu hormon metabolizmasında, yağların sindiriminin incelenmesinde kullanılır. β^+ ve elektron yakalaması yoluyla kararlı olan ⁶⁴Ni izotopuna bozunur.

Çizelge 4.7 ⁶⁴Ni(p,n)⁶⁴Cu Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik
Çekirdek	Parçacık	Çekirdek	ÇıkanQ-DeğeriParçacık(MeV)Enen-2,457		Enerjisi(MeV)
⁶⁴ Ni	р	⁶⁴ Cu	n	-2,457	2,496

⁶⁴Cu izotopunun bozunum şeması Şekil 4.13' de gösterilmiştir.

Şekil 4.13 ⁶⁴Cu izotopunun bozunum şeması

⁶⁴Ni(p,n)⁶⁴Cu reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.14' de gösterilmiştir.

Şekil 4.14 ⁶⁴Ni(p,n)⁶⁴Cu reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile hesaplanan veriler birbirleri ile oldukça yakın sonuçlar göstermişlerdir. V.N. Levkovskij (1991) deneysel verilerine göre biraz daha düşük sonuçları gösteren teorik hesaplar, diğer deneysel verilerle iyi bir uyum elde etmiştir.

4.8. ⁶⁶Zn(p,n)⁶⁶Ga Reaksiyonu

Yarı ömrü 9,49 saat olan ⁶⁶Ga bir pozitron yayınlayıcısıdır. β^+ ve elektron yakalaması yoluyla kararlı olan ⁶⁶Zn izotopuna bozunur.

Çizelge 4.8 ⁶⁶Zn(p,n)⁶⁶Ga Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik
Çekirdek	Parçacık	Çekirdek	Parçacık	Q-DeğeriEşilk(MeV)Enerjisi(-5,9576,04	
⁶⁶ Zn	р	⁶⁶ Ga	n	-5,957	6,048

⁶⁶Ga izotopunun bozunum şeması Şekil 4.15' da gösterilmiştir.

Şekil 4.15⁶⁶Ga izotopunun bozunum şeması

⁶⁶Zn(p,n)⁶⁶Ga reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.16' de gösterilmiştir.

Şekil 4.16 ⁶⁶Zn(p,n)⁶⁶Ga reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirleri ile çok yakın sonuçlar göstermiştir. Tüm spektrum boyunca deneysel verilerle iyi bir uyum elde edilmiştir. Özellikle yüksek enerjilere çıkıldığında F. Szelecsenyi (2005) deneysel değerleri ile teorik değerler birbirine çok yakın sonuçlar göstermiştir.

4.9. ¹⁹⁸Hg(n,p)¹⁹⁸Au Reaksiyonu

Yarı ömrü 2,69 gün olan ¹⁹⁸Au izotopu , karaciğer incelemelerinde , prostat ve beyin kanseri tedavilerinde kullanılır. β^{-} bozunumu ile ¹⁹⁸Hg izotopuna bozunur.

Çizelge 4.9 ¹⁹⁸Hg(n,p)¹⁹⁸Au Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik
Çekirdek	Parçacık	Çekirdek	Parçacık	an Q-Değeri E acık (MeV) Enerjis -0,589 0,5	
¹⁹⁸ Hg	n	¹⁹⁸ Au	р	-0,589	0,593

¹⁹⁸Au izotopunun bozunum şeması Şekil 4.17' de gösterilmiştir.

Şekil 4.17¹⁹⁸Au izotopunun bozunum şeması

 198 Hg(n,p) 198 Au reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.18'de gösterilmiştir.

Şekil 4.18 ¹⁹⁸Hg(n,p)¹⁹⁸Au reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirleri ile yakın sonuçlar göstermiştir. Teorik hesaplamalarla deneysel değerler birbirlerine yakın sonuçlar vermiştir.

4.10. ⁶³Cu(n,2n)⁶²Cu Reaksiyonu

Yarı ömrü 9.67 dakika olan ⁶²Cu , pozitron yayınlayıcı bir radyoizotop olup beyin ve kalpteki kan akışının izlenmesinde kullanılır. β^+ ve elektron yakalaması yoluyla ⁶²Ni izotopuna bozunur.

Çizelge 4.10⁶³Cu(n,2n)⁶²Cu Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik	
Çekirdek	Parçacık	Çekirdek	Parçacık (MeV)		Enerjisi(MeV)	
⁶³ Cu	n	⁶² Cu	2n	-10,853	11,027	

⁶²Cu izotopunun bozunum şeması Şekil 4.19' de gösterilmiştir.

Şekil 4.19⁶²Cu izotopunun bozunum şeması.

⁶³Cu(n,2n)⁶²Cu reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.20'de gösterilmiştir.

Şekil 4.20 ⁶³Cu(n,2n)⁶²Cu reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar birbirleri ile yakın sonuçlar vermişlerdir. Tüm spektrum boyunca teorik hesaplamalar deneysel veriler ile uyumlu sonuçlar göstermiştir.

4.11. ⁷⁵As(n,2n)⁷⁴As Reaksiyonu

Yarı ömrü 17,8 gün olan ⁷⁴As pozitron yayınlayıcı bir radyoizotoptur. β^+ ve elektron yakalaması yoluyla ⁷⁴Ge izotopuna , β^- ve elektron yakalaması yoluyla da ⁷⁴Se izotopuna bozunur.

Çizelge 4.11 ⁷⁵As(n,2n)⁷⁴As Reaksiyonu'nun Q değeri ve eşik enerjisi

Hedef	Gelen	Ürün	Çıkan	Q-Değeri	Eşik
Çekirdek	Parçacık	Çekirdek	Parçacık	kanQ-DeğeriEacık(MeV)Enerjisn-10,24310,	
⁷⁵ As	n	⁷⁴ As	2n	-10,243	10,381

⁷⁴As izotopunun bozunum şeması Şekil 4.21 ve 4.22' da gösterilmiştir.

⁷⁵As(n,2n)⁷⁴As reaksiyonu için hesaplanan uyarılma fonksiyonlarının deneysel verilerle karşılaştırılması Şekil 4.23'de gösterilmiştir.

Şekil 4.23 ⁷⁵As(n,2n)⁷⁴As reaksiyonuna ait hesaplanan tesir kesitlerinin deneysel verilerle karşılaştırılması. Deneysel veriler EXFOR'dan alınmıştır.

ALICE/ASH ve TALYS 1.2 programları ile yapılan hesaplamalar, deneysel verilerle iyi bir uyum sağlamıştır. TALYS 1.2 ve ALICE/ASH GDH (Geometri Bağımlı Hibrid) Model hesaplamaları birbirine çok yakın sonuçlar göstermekle birlikte, deneysel verilerle en iyi uyumu göstermiştir.

5. TARTIŞMA VE SONUÇ

Günümüzde, yaklaşık olarak 15000 parçacık hızlandırıcısı, değişik alanların hizmetinde faaliyet göstermektedir. Bunlardan yaklaşık 5000 adeti radyoterapi amaçlı olarak tasarlanmış hızlandırıcılardır. Tıbbi izotop üretiminde kullanılan siklotron hızlandırıcı sayısı 200 civarındadır. Her geçen gün bu sayılar artmaya devam etmektedir.

Dünyada olduğu gibi Türkiye'de de radyoizotopların tıpta teşhis ve tedavi amaçlı kullanımı yaygınlaşmaktadır. Ülkemizde kullanılan radyoizotopların neredeyse tümünün ithalat yoluyla temin ediliyor olması ülkemizde ciddi parasal kayba neden olmakta ayrıca önemli bazı radyoizotopların yarı ömürlerinin çok kısa olması nedeniyle ithal edilememesiyle karşı karşıya kalınmaktadır. Bu nedenle TAEK tarafından ülkemizde kurulmuş olan 30 MeV'lik siklotron tipi proton hızlandırıcısı, kısa yarı ömürlü ve sağlıkta etkin olarak kullanılan birçok radyoizotopun ülkemiz kaynaklarıyla üretilmesini sağlayarak ülkemize önemli hizmetlerde bulunacaktır.

Bu çalışmada; radyoizotop üretiminde kullanılan nükleon girişli bazı nükleer reaksiyonların tesir kesitleri hesaplanmıştır. Hesaplamalar ALICE/ASH ve TALYS 1.2 bilgisayar programları ile yapılmıştır. Hesaplamalarda elde edilen sonuçlar, Uluslararası Atom Enerjisi Ajansının Deneysel Nükleer Reaksiyon Verileri kütüphanesinden (Experimental Nuclear Reaction Data <u>www.nndc.bnl.gov/exfor/</u>) ve literatürden alınan deneysel verilerle karşılaştırılmıştır.

Grafiklere bakıldığında ALICE/ASH ve TALYS 1.2 bilgisayar programları ile yapılan hesaplamaların, birbirine yakın sonuçlar verdikleri ve deneysel değerlerle de uyumlu sonuçlar gösterdikleri görülmüştür.

Bu çalışmada incelenen nükleon girişli nükleer reaksiyonların Q değerleri, eşik enerjileri, üretilebilecek radyoizotopların maksimum tesir kesitleri ve en uygun enerji aralıkları Çizelge 5.1'de gösterilmektedir. Bu çizelgeye bakıldığında teze konu olan ¹¹⁹Sb, ¹⁶⁹Yb, ⁶¹Cu, ¹²⁴I, ¹¹¹In, ¹⁸F, ⁶⁴Cu, ⁶⁶Ga, ⁷⁴As, ¹⁹⁸Au ve ⁶²Cu medikal radyoizotopların üretilmesindeki azami tesir kesitleri için en uygun nükleon enerji

55

aralıklarının 6–22 MeV olduğu görülür. Bu sonuçlara göre, bu izotopların üretilebilirliğinin orta ölçekli bir siklotronda gerçekleştirilebileceği söylenebilir.

Çizelge	5.1	Bu	çalışmada	inc	elenen	nükleo	on	girişli	nükleer	reaksiyonların	Q
		değ	erleri, e	şik	enerjil	eri i	le	üretile	ebilecek	radyoizotopla	rın
		mal	maksimum tesir kesitleri				nur	m enerji	aralıklar	1	

Hedef Çekirdek	Gelen Parçacık	Ürün Çekirdek	Çıkan Parçacık	Q-Değeri (MeV)	Eşik Enerjisi (MeV)	Maksimum Tesir Kesiti (mb)	Optimum Enerji Aralığı (MeV)
¹¹⁹ Sn	р	¹¹⁹ Sb	n	-1.373	1.384	705,673	6-13
¹⁶⁹ Tm	р	¹⁶⁹ Yb	n	-1.692	1.702	153.484	8-13
⁶¹ Ni	р	⁶¹ Cu	n	-3.019	3.069	539,182	8-12
¹²⁴ Te	р	¹²⁴ I	n	-3.941	3.973	763,475	8-12
¹¹¹ Cd	р	¹¹¹ In	n	-1.644	1.659	755,061	8-18
¹⁸ O	р	¹⁸ F	n	-2.437	2.574	305	5-7
⁶⁴ Ni	р	⁶⁴ Cu	n	-2.457	2.496	801,416	6-12
⁶⁶ Zn	р	⁶⁶ Ga	n	-5.957	6.048	580	10-15
¹⁹⁸ Hg	n	¹⁹⁸ Au	р	-0.589	0.593	27	18-25
⁶³ Cu	n	⁶² Cu	2n	-10.853	11.027	896,405	14-22
⁷⁵ As	n	⁷⁴ As	2n	-10.243	10.381	1291,65	14-22

En uygun enerji aralıklarının belirlenmesi, bir radyoizotopun üretilebilirliğinin belirleyen tek faktör değildir. Aynı zamanda, bahsedilen enerji aralığı için izotopik kirliliğin, kullanılacak hedefin kalınlığının, üretim aktivitesinin de incelenmesi gerekmektedir. Bundan sonra yapılacak olan çalışmalarda, bahsedilen bu parametrelerin de dikkate alınması gereklidir.

KAYNAKLAR

- Acerbi, E., Birattari, C., Castiglioni, M., Resmini, F., Villa, M., Production of 123-I for Medical Purposes at The Milan AVF Cyclotron., Applied Radiation and Isotopes Vol.26, p.741., 1975.
- Adam Rebeles, R., Van Den Winkel, P., Hermanne, A., Tarkanyi, F., New measurement and evaluation of the excitation function of 64Ni(p,n) reaction fort he production of 64Cu., Nucl. Instrum. Methods in Physics Res., Sect.B Vol.267, p.457., 2009.
- Al-Abyad, M., Sudar, S., Comsan, M.N.H., Qaim, S.M., Cross sections and isomeric cross-section ratios in the interactions of fast neutrons with isotopes of mercury., Physical Review, Part C, Nuclear Physics Vol.73, p.064608, Nuclear Science and Engineering Vol.88, p.143, Private communication, 2006.
- Avila-Rodriguez, M.A., Nyeb, J.A., Nickles, R.J., Simultaneus production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei., Applied Radiation and Isotopes Vol.65, p.1115., 2007.
- Blann, M., Vonach, H.K, Phys. Rev., C28, 1475, 1983.
- Blann, M., Mignerey, A., Scobel, W., Nukleonika, 21, 335, 1976.
- Blann, M., Phys Rev. Lett., 21, 1357, 1968.
- Blann, M., Phys. Rev. Lett., 27, 337, 1971.
- Blann, M., Vonach, H.K., Phys. Rev., C28, 1475, 1983.
- Blann, M., Mignerey, A., Scobel, W., Nukleonika, 21, 335, 1976.
- Blaser, J.P., Boehm, F., Marmier, P., Scherrer, P., Excitation functions of the (p,n) reaction for light elements., Helvetica Physica Acta Vol.24, p.465, Helvetica Physica Acta Vol.22, p.598., 1952.

- Bormann, M., Behrend, A., Riehle, I., Vogel, O., -Measurement of (n,2n) Excitation Functions-in German., Reports from Euratom-countries + Euratom to EANDC No.76., Reports from Euratom-countries + Euratom to EANDC No.89U., 1968.
- Broeders, C.H.M., Konobeyev, A.Yu., Korovin, Yu.A., Lunev, V.P., Blann, M.,
 ALICE/ASH Pre-compound and Evaporation Model Code System for
 Calculation of Excitation Functions, Energy and Angular Distributions of
 Emitted Particles in Nuclear Reactions at Intermediate Energies.
 Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft
 Wissenschaftliche Berichte FZKA 7183, 2006.
- Blaser, J.P., Boehm, F., Marmier, P., Anregungsfunctionen und Wirkungsquerschnitte der (p,n)-Reaktion (II), Helvetica Physica Acta., 1951.
- Curie, I., Foliot, F., "The absorption and translocation of lead by plants", Biochem. J. 17:439, 1923.
- Colobetti, L.G., "Radiopharmacology", La Ricerca Clin. Lab., 9:281-291, 1979.
- Cantez, S., Gorpe, A., "Pratik Nükleer Tıp", (İstanbul Üniversitesi Vakfı) Tayf Ofset Basım, İstanbul, 266-276, 1992.
- Cline, C.K., Nucl. Phys., A193, 417, 1972.
- Cline, C.K., Nucl. Phys., A195, 353, 1972.
- Ercan, A., "I. Uluslararası Parçacık Hızlandırıcıları ve Uygulamaları Kongresi", TAEK ANKARA, 25-26 Ekim, 2001.
- EXFOR/CSISRS (Experimental Nuclear Reaction Data File), Brookhaven National Laboratory National Nuclear Data Center. İnternet Sitesi. <u>http://www.nndc.bnl.gov/nndc/exfor/</u>. Erişim tarihi: 01/02/2012.
- Fu, C.Y., Nucl. Sci. And Eng., 86, 1984.
- Griffin, J.J., Phys. Lett., 17, 478, 1966.

- Hevesy, V.G., "The absorption and translocation of lead by plants", Biochem. J. 17:439, 1923.
- Hess, E., Takacs, S., Scholten, B., Tarkanyi, F., Coenen, H.H., Qaim, S.M., Excitation function of the 18O(P,N)18F nuclear reaction from threshold up to 30 MeV., Radiochimica Acta Vol.89, p.357., 2001.
- Hauser, W., Feshblach, H., "The inelastic scattering of neutrons", Phys. Rev. 87:366-373, 1952.
- Howe, H.A., (P,N) Cross Sections of Copper and Zinc., Physical Review Vol.109, p.2083., 1958
- Johnson, C.H., Blair, J.K., Jones, C.M., Penny, S.K., Smith, D.W., p-wave resonances observed by the (p,n) reaction for 2.6- to 7-MeV protons incident on isotopes of Sn, Physical Review, Part C, Nuclear Physics Vol.15, p.196., 1977.
- Kasugai, Y., Maekawa, F., Ikeda, Y., Takeuchi, H., Measurement of activation cross sections for mercury isotopes in the neutron energy range between 13.4 and 14.9 MeV., Jour. Of Nuclear Science and Technology Vol.38, Issue.12, p.1048., 2001.
- Krane, K.S., Nükleer Fizik I-II, Çeviri Editörü: Başar ŞARER, Palme Yayıncılık, ANKARA, 2001.
- Kitwanga, S.W., Leleux, P., Lipnik, P., Vanhorenbeeck, J., Production of O-14,15, F-18 and Ne-19 radioactive nuclei from (P,N) reactions up to 30-MeV., Physical Review, Part C, Nuclear Physics Vol.42, p.748., 1990
- Koning, A. and Duijvestijn, M., New Nuclear Data Evaluations for Ca and Sc Isotopes, Journal of Nucl. Sci. And Tech., Vol.44, No.6, pp. 823-837., 2007.
- Koning, A.J., Hilaire, S. and Duijvestijn, M., TALYS 1.2 A Nuclear Reaction Program, NRG – Nuclear Research and Consultancy Group, Netherlands., 2009.
- Kondo, K., Lambrecht, R.M., Wolf, A.P., Iodine-123 Production For Radiopharmaceuticals Excitation Functions of the Te-124(P,2N)I-123 and Te-124(P,N)I-124 Reactions and the Effect of Target Enrichment on Radionuclidic Purity., Applied Radiation and Isotopes Vol.28, p.395., 1977
- Levkovskij, V.N., Activation cross section nuclides of average masses (A=40-100) by protons and alpha-particles with average energies (E=10-50 MeV)., Levkovskij, Act. Cs. By Protons and Alphas, Moscow, 1991.
- Lovchikova, G.N., Sal'nikov, O.A., Simakov, S.P., Trufanov, A.M., Kotel'nikova, G.V., Pilz, V., Streil, T., Investigation of Mechanism of the Reactions 94-Zr(P,N)94-Nb, 119-Sn(P,N)119-Sb, 122-Sn(P,N)122-Sb In the Proton Energy Region 6-9 MeV., Yadernaya Fizika Vol.31, p.1., Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. Vol.48, p.1982., 1977.
- Marten, M., Schuring, A., Scobel, W., Preequilibrium Neutron Emission In AG-109(HE3,XN) and CD-111(P,XN) Reactions., Zeitschrift fuer Physik A, Hadrons and Nuclei Vol.322, p.93., 1985.
- Mannhart, W., Schmidt, D., Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV., Report: Phys. Techn. Bundesanst., Neutronenphysik Reports No.53, Conf.: Conf. On Nucl. Data for Sci. and Techn., Santa Fe 2004 p.609., Journ.: Nuclear Science and Engineering Vol.106, p.308., 2007.
- Oblozinsky, P., Ribansky, I., Acta Phys. Slov., 24, 103, 1974.
- Prestwood, R.J., Bayhurst, B.P., (n,2n) Excitation Functions Of Several Nuclei From 12.0 to 19.8 MeV., Physical Review Vol.121, p.1438., 1961.
- Raut, R., Crowell, A.S., Fallin, B., Howell, C.R., Huibregtse, C., Kelley, J.H., Kawano, T., Kwan, E., Rusev, G., Tonchev, A.P., Tornow, W., Vieira, D.J., Wilhelmy, J.B., Cross-section measurements of neutron-induced reactions on GaAs using monoenergetic beams from 7.5 to 15 MeV., Physical Review, Part C, Nuclear Physics Vol.83, p.044621., 2011.

Ribansky, I., Oblozinsky, P., Betak, E., Nucl. Phys., A205, 545, 1973.

- Ruth, T.J., Wolf, A.P., Absolute Cross Sections for Production of 18F via the 18O(P,N)18F Reaction., Radiochimica Acta Vol.26, p.21., 1979.
- Sakane, H., Kasugai, Y., Shibata, M., Iida, T., Takahashi, A., Fukahori, T., Kawade, K., Measurement of activation cross-sections for (n,2n) reactions producing short-lived nuclei in the energy range between 13.4 and 14.9 MeV., Annals of Nuclear Energy Vol.28, p.1175., Conf. Rep.: JAERI-M Reports No.86,039, p.393., 2001.
- Spahn, I., Takacs, S., Shubin, Yu.N., Tarkanyi, F., Coenen, H.H., Qaim, S.M., Cross-Section measurement of the 169Tm(p,n) reaction fort he production of the therapeutic radionuclide 169-Yb and comparison with its reactor-based generation., Applied Radiation and Isotopes Vol.63, p.235., 2005.
- Scholten, B., Kovacs, Z., Tarkanyi, F., Qaim, S.M., Excitation functions of Te-124(p,xn)I-123, 124 reactions from 6 to 31 MeV with special reference to the production of I-124 at a small cyclotron., Applied Radiation and Isotopes Vol.46, p.255., 1995.
- Singh, B.P., Sharma, Manoj K., Musthafa, M.M., Bhardwaj, H.D., Prasad, R., A study of pre-equilibrium emission in some proton and alpha-induced reactions., Nucl. Instrum. Methods in Physics Res., Sect.A Vol.562, p.717., 2006.
- Skakun, E.A., Kljucharev, A.P., Rakivnenko, Yu.N., Romanij, I.A., Excitation functions of (p,n)- and (p,2n)- reactions on cadmium isotopes., Izv. Rossiiskoi Akademii Nauk, Ser. Fiz. Vol.39, p.24., Bull. Russian Academy of Sciences – Pysics Vol.39, Issue.1, p.18., 1975.
- Szelecsenyi, F., Blessing, G., Qaim, S.M., Excitation functions of proton induced nuclear reaction on enriched Ni-61 and N,-64: possibility of production of nocarrier-added Cu-61 and Cu-64 at a small cyclotron., Applied Radiation and Isotopes Vol.44, p.575., 1993.
- Szelecsenyi, F., Steyn, G.F., Kovacs, Z., Van Der Walt, T.N., Suzuki, K., Okada, K., Mukai, K., New cross-section data fort he 66Zn(p,n)66Ga, 68Zn(p,3n)66Ga, natZn(p,x)66Ga, 68Zn(p,2n)67Ga and nat Zn(p,x)67Ga nuclear reactions up

to 100 MeV., Nucl. Instrum. Methods in Physics Res., Sect.B Vol.234, Issue.4, p.375., 2005.

- Tagesen, S., Vonach, H., Strohmaier, B., Evaluation of the cross-sections for the reactions Mg-24(n,p)Na-24, Zn-64(n,p)Cu-64, Cu-63(n-2n)Cu-62 and Zr-90(n,2n)Zr-89., Physik Daten/Physics Data, Series, Karlsruhe p.13-1., 1979.
- Tarkanyi, F., Szelecsenyi, F., Kopecky, P., Molnar, T., Ando, L., Mikecz, P., Toth, Gy., Rydl, A., Cross section of proton induced nuclear reaction on enriched Cd-111 and Cd-112 for the production of in-111 for use in nuclear medicine., Applied Radiation and Isotopes Vol.45, p.239., Conf on Nucl. Data for Sci. And Technol., Juelich 1991 p.603., 1994.
- Tarkanyi, F., Hermanne, A., Takacs, S., Ditroi, F., Spahn, I., Ignatyuk, A.V., Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range., Applied Radiation and Isotopes., 2011.
- Tanaka, S., Furukawa, M., Chiba, M., Nuclear Reactions of Nickel with Protons up to 56 MeV., Journal of Inorganic and Nuclear Chemistry Vol.34, p.2419., 1972.
- Thisgaard, H., Jensen, M., Production of the Auger emitter Sb-119 for targeted radionuclide therapy using a small PET-cyclotron., Applied Radiation and Isotopes Vol.67, p.34., 2008.
- Uwamino, Y., Sugita, H., Kondo, Y., Nakamura, T., Measurement of neutron activation cross sections of energy up to 40 MeV using semimonoenergetic p-Be neutrons., Nuclear Science and Engineering Vol.111, p.391., 1992.
- Wagner, H.N.Jr., "New perspectives in nuclear medicine", Int. Symp. Med. Radionuclide Img. IAEA, Heidelberg, F.R.G., 1-5 sept. 1980, Extended Synopses, 212-213, 1980.
- Williams, F.C., Nucl. Phys., A166, 231, (1971).
- Yalçıner, E.G., "Proton hızlandırıcılarının nükleer uygulama alanları ile protonlarla oluşturulan nükleer reaksiyon tesir kesitlerinin incelenmesi.", Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 132, Ankara, 2008.