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ABSTRACT 

 

In vitro ovarian follicle culture is a new frontier in assisted reproductive technology 

with tremendous potential, especially for fertility preservation. Folliculogenesis within 

the ovary is a complex process requiring interaction between somatic cell components 

and the oocyte. Conventional two-dimensional culture of ovarian follicles disrupts 

spherical growth and spatial arrangements between oocyte and surrounding granulosa 

cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to 

complete the maturation process. Recognition of the importance of these arrangements 

between cells has lead to research in to three-dimensional culture system. In the present 

work preantral follicles isolated from 14-day-old immature mouse ovaries were cultured 

either 3 dimensionally using matrigel or using 2D conventional culture. The result 

suggests that matrigel culture provides better milieu for growth and maturation of 

mouse preantral follicles.



 

ÖZET 

 

In vitro over folikül kültürü, yardımcı üreme teknikleri teknolojisinde çok büyük 

potansiyel teşkil etmektedir. Yumurtalık içerisindeki folikülogenez, somatik hücre ve 

oosit arasında etkileşim gerektiren karmaşık bir süreçtir. Geleneksel 2 boyutlu kültür 

ortamı, oosit ve çevresinde yer alan granüloza hücreleri arasındaki küresel büyümeyi 

destekleyememektedir. Granüloza hücrelerinin bozulması ve göç etmesi oositi çıplak 

bırakmakta ve olgunlaşma sürecini bozmaktadır. Hücrelerin arasındaki bu düzenin 

öneminin tanınması üç boyutlu folikül kültürü ortamının araştırılmasına yol açmıştır. 

Bu çalışmada 14 günlük fare yumurtalıklarından izole edilen preantral foliküller 

kullanılmıştır. Bu foliküller iki boyutlu ve üç boyutlu kültür ortamında büyütülmeye 

çalışılmıştır. Bu çalışmanın sonucu üç boyutlu, matrigel, kültür ortamının preantral 

foliküllerin olgunlaşıp MII oosit olması için daha iyi bir ortam sağladığını 

göstermektedir.
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Chapter 1 

 

       INTRODUCTION 

 

Infertility is commonly defined as inability to conceive after one year of vaginal 

intercourse without use of protection. Infertility is a growing worldwide problem 

affecting 10% of all couples at fertile age. Over the last decades, patients resorting to in 

vitro fertilization clinics have been tremendously increased. One of the major sources of 

infertility is the side effects of radiotherapy and chemotherapy for cancer, which can 

cause the loss of gametes [1, 2, 3, 4]. As the survival rates of anti-cancer treatments 

increase, more and more patients depend on assisted fertilization techniques to get 

pregnant. 

Since late 1950’s, man have the option of cryopreserving their sperm [5]. With the 

cryopreservation technique male patients had the opportunity to preserve their sperm 

prior to start of their cancer therapy. Today, cryopreservation is available for women as 

well. Current tools to conserve a women’s fertility include cryopreservation of embryos, 

mature and immature oocytes and ovarian tissues. The last approach is the only 

procedure that can be applied to prepubertal girls. 

Since pre-mature follicles are the ones that constitute big part of the ovarian reserve 

it is important to find a technique to in vitro grow these follicles in to antral stage.  

In this study a in vitro growth milieu has been developed in which a preantral 

follicle can be grown to a mature oocyte with a polar body.  

Chapter 2 provides necessary background and literature review on female 

reproductive biology. The female ovarian structure, hormones and growth factors 

required for healthy oocyte growth are reviewed. 
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Chapter 3 describes the study conducted to find a better milieu for the growth of 

preantral follicles. Research conducted to find this milieu, methodology that is used and 

results together with discussion is given at this chapter.  

The thesis is concluded with a short discussion on the possible future research work. 
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    Chapter 2 

    

 LITERATURE REVIEW 

  

2.1 Human Ovary and Its Structure 

Ovaries are part of the mammalian female reproductive system. They are a pair 

of oocyte-producing glands that are homologous to the testes in the male reproductive 

system. There are two almond shaped ovaries located in the pelvis of every women; one 

on the right and the other on the left side. They are approximately 2cm wide and 4cm 

long with weight of 2 to 4 grams. They sit just above the fallopian tubes on the area 

called ovarian fossa, lateral wall of the pelvis. Each ovary is attached to a fallopian tube 

through fimbria. Right under the outermost layer of ovarian stromal epithelium is a 

dense connective tissue called tunica albuginea. The follicles, surrounding fibers of 

collagen, elastin and fibroblasts form the ovarian cortex which is situated just under the 

tunica albugenia. Under the ovarian cortex there is ovarian medulla, which contains 

lymphatic and blood vessels.  

The ovarian cortex of young girls is consisted of many ovarian follicles whereas 

in the cortex of older women these follicles are replaced by fibers as a result of 

ovulation and atresia. The number of follicles is highest prior to birth and declines 

gradually until menopause.   
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Figure 1: Human ovary structure and hormone cycle during ovulation. Credit 

Encyclopedia Britannica.  

 

Ovaries have two different functions; producing ova and producing female 

hormones. Every month either left or right ovary will produce a single mature oocyte 

for fertilization. Although only one oocyte will be fully mature, during the ovulation 

period, every month approximately ten to twenty ovarian follicles will begin the 

maturation process. 

After the mature oocyte is released, it begins its journey in the oviducts where it 

travels into the uterus. The mature oocyte moves in fallopian tube with the help of 

wave-like contractions. Inside of the fallopian tube is covered with cilia which helps the 

sperm to move towards the egg. The fertilization occurs inside the fallopian tubes close 

to the ovary. It takes five to six days for the fertilized egg to reach the uterus where it is 

implanted. 
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Figure 2: Basic morphological components of ovary. 

 

2.2 Oogenesis 

 The creation of an ovum (egg cell) is called oogenesis. The process involves 

several procedures including oocytogenesis and ootidogenesis. Oogenesis starts in 

embryonic life as primordial germ cells are starting to form in embryonic epiblast. At 

around 5 to 6 weeks of gestation, under the influence of cytokines such as transforming 

growth factor β (TGFβ) and kit-ligand (KL), germ cells migrate to the genital ridge 

where they develop into oogonia. Here, primordial oocytes continue to expand through 

mitotic cell division before they enter meiosis and become oocytes. At this point, the 

oocyte is surrounded in one layer of pre-granulosa cells enclosed by a basal membrane 

and referred to as a primordial follicle [7]. As the oocyte enters meiosis it becomes 
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arrested in the prophase stage of the first mitotic division and, as a result, transformed to 

a primary oocyte. Here, the oocyte is surrounded by a single layer of squamous 

granulosa cell. Following puberty, at each menstrual cycle 15 to 20 primary follicles 

enter to the growing pool. They progress through meiosis I and become arrested at the 

metaphase stage of meiosis II. Meiosis II is completed after fertilization. 

Oocytogenesis is the process in which oogonia is transformed into primordial 

oocyte. This stage is completed before birth, with approximately 6 million immature 

oocytes being produced by the 20
th

 week of gestation. Most of these primordial oocytes 

undergo apoptosis, leaving approximately 2 million follicles at the time of birth. By the 

time of puberty approximately 400,000 primordial oocytes will be left in the ovary [7, 

8]. 

Ootidogenesis is the development of a primordial oocyte into a primary oocyte. 

It involves dictyate, a prolonged resting phase in oogenesis until puberty. The process 

starts at prenatal age. The primary oocyte remains in this state until menarche, first 

menstrual cycle, when a few of these oocytes are recruited into the growing pool and 

become secondary oocyte. This stage involves completion of the first meiosis by the 

expulsion of the first polar body, disappearance of the nucleus, immediate entry in to a 

second round of meiosis and arrest at the metaphase of meiosis II until fertilization, and 

extrusion of the second polar body. 

There are two mechanisms of oocyte maturation; the long cytoplasmic 

maturation and the short nuclear maturation. Both mechanisms are crucial to acquire a 

mature and competent oocyte. 
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2.2.1 Cytoplasmic Maturation  

Cytoplasmic maturation is made up of several events that are necessary to 

prepare the oocyte for fertilization and later the embryonic development. This process 

includes cytoplasmic reorganization, accumulation of mRNAs and proteins, and 

epigenetic modifications.  

During oocyte maturation, a great amount of RNA is stored in the cytoplasm. 

The total RNA amount in human germinal vesicle is 2.0ng [9]. This makes-up nearly 

8% of the total amount of RNA, which is more than in a somatic cell [10]. Large 

amount of mRNA gets degraded during maturation, leaving the mRNA content of MII 

oocyte at 40% less than the germinal vesicle (GV) [11].  

During the oocyte growth, large amounts of cytoplasmic organelles are formed 

and reorganized. Since cytoplasmic inheritance to the zygote comes almost exclusively 

from the egg, DNA replication of mitochondria must be done with great accuracy. 

During the growth phase, mitochondria become more vacuolated, which is a sign for 

low activity, and also the number of mitochondria and ribosomes increases which is a 

sign for the accumulation of mRNA proteins [12]. Oocyte stores granules, lipids and 

proteins that are required for the formation of new membranes in cytoplasm post 

fertilization [13, 14].  

As the oocyte matures, zona pellucida is formed. ZP is a 15µm thick layer which 

is consisted of three proteins (ZP-I, ZP-II, ZP-III) and surrounds the oocyte [15]. ZP-III 

acts as a primary sperm receptor by binding the sperms head and starting acrosome 

reaction [16]. Afterwards, ZP-II aids the sperm penetration by acting as a secondary 

receptor. These two dimmers are non-covalently linked by ZP-I dimmers [17].  
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2.2.2 Nuclear Maturation 

Germ cells (oocytes and sperm) are produced through meiotic cell divisions 

where genetic information contained in each daughter cell is divided equally. Although 

two nuclear divisions are completed, only replication of a single nuclear DNA takes 

place.  

Prior to first meiotic division, the oocyte is called germinal vesicle oocyte and 

the nucleus it contains is called germinal vesicle. Nuclear maturation is defined by the 

germinal vesicle break down, in which germinal vesicle oocyte turns into metaphase I 

oocyte. Subsequently, first meiotic division happens; the polar body disintegration 

which leads to the formation of the mature metaphase II oocyte. 

At GV, the cytoplasm reaches maturity but the nucleus is still immature. The 

nuclear maturation is obtained through the finalization of the meiosis I, which is 

moderated by the activation of M-phase promoting factor (MPF). The MPF activity is 

low in GV oocyte but increases during the first meiosis with its peak at MI. 

Consequently, it decreases during the first meiotic division and increases and remains 

high during metaphase II arrest [18, 19]. 

The final maturation of the oocyte, including the second polar body extrusion, 

occurs immediately after fertilization. The entire process is called nuclear maturation. 
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Table 1: The relationship between the developing follicles and oocytes in relation to 

physiological status of the female.  

 

2.2.3 Ovarian Reserve 

 The female reproductive system contains a fixed number of non-renewable germ 

cells that are established prior to birth. Although this dogma has been challenged by 

Johnson, where it is suggested that there are germ stem cells originating from the 

circulation and bone marrow cells, this hypothesis has not been confirmed by others 

[20, 21].   

According to the traditional standpoint, the oocyte number reaches its peak 

number around 20 weeks of gestation with approximately six million follicles. The 

oocyte reserve starts decreasing at fetal life until the women enters menopause. At the 

time of birth, number of follicles is decreased to around two million and at the time of 
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puberty only 300,000 follicles will be left. When the women enters menopause at an 

average age of 50 only 1000 follicles will remain in the ovary [7]. During the life span 

of a woman, approximately 450 oocytes will be ovulated. The progressive decline in 

follicle number with age is due to a natural breakdown process called follicular atresia 

which affects 99% of follicles at all stages. 

 

2.3 Folliculogenesis 

The process of ovarian follicle development is called folliculogenesis and 

involves two major processes: recruitment of the follicle into the growing pool and the 

proliferation and differentiation of the theca and granulosa cells. The recruitment of 

follicles is regulated by autocrine and paracrine signals, which are produced by the 

ovary itself, while the proliferation and differentiation of theca and granulosa cells is 

controlled by endocrine signals from outside the ovary in addition to the internal 

autocrine/paracrine signaling.  

In order to become a mature oocyte, an ovarian follicle must pass through the 

primordial (resting), primary, secondary (pre-antral), tertiary (antral) and pre-ovulatory 

(Graafian) stages. Although at the antral stage most follicles go through atresia, under 

the influence of gonadotropins few of them reach the Graafian stage. Following the 

gonadotropin surge, only the dominant follicle will survive and release the mature 

oocyte. This follicle will be ready for fertilization [22]. 

The folliculogenesis begins with the primordial follicle, which is an oocyte 

surrounded by a single layer of squamous granulosa cells surrounded by a thin basal 

lamina. Once primordial follicle gets recruited into the growing phase, it grows into a 

primary follicle. At this stage zona pellucida is formed while granulosa cells change 

shape and become cuboidal. 
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Secondary follicle is surrounded by several layers of granulosa cells. With the 

production of proliferating cell nuclear antigen (PCNA) granulosa cell proliferation has 

started. As the granulosa cells continue to proliferate, theca interna and theca externa 

are formed with capillaries in-between the two layers. With the vessels, the follicle 

starts to gain blood supply and thereby it is exposed to any factor circulating in the 

bloodstream [23]. 

 During the follicular development, proliferating granulosa cells provide 

necessary nutrients and molecular signals to the oocyte. While the oocyte increase in 

size, the proliferation and differentiation of the granulosa cells result in the formation of 

the fluid filled cavity, antrum. At the antral (Graafian) stage, under the influence of 

gonadotropins, pre-ovulatory follicle is formed. The communication between the 

surrounding granulosa cells and the oocyte gives result to a mature fertilizable oocyte. 

 

2.3.1 Stages of Follicular Development 

Primordial follicles contain an immature oocyte surrounded by single layer of 

flat, squamous granulosa cells. The follicle is separated from the surrounding somatic 

cells by a basal membrane [10]. A primordial follicle has a diameter of approximately 

30µm. The process by which primordial follicles wake up is known as initial 

recruitment. The initial recruitment is mediated by various locally produced growth 

factors and stimulatory and inhibitory hormones [24]. 
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Figure 3: Primordial follicles under light microscope. 

 

As the primordial follicles are recruited to the growing pool, the GCs grow 

larger and become cuboidal while they continue to surround oocyte as a single layer. 

This change marks the beginning of primary follicle. As the primordial follicle grows 

into a primary follicle the oocyte genome gets activated and genes become transcribed. 

Paracrine signaling pathways that are necessary for communication between the follicle 

and the oocyte are formed.  

Although at this time follicles are gonadotropin independent, primary follicles 

develop receptors for follicle stimulating hormone. However, research has shown that 

the presence of FSH contributes follicle growth in vitro. 

With the primary follicular stage, zona pellucida is formed around the oocyte. It 

separates the oocyte from surrounding granulosa cells. The ZP, which stays with the 

oocyte after ovulation, binds spermatozoa and is required for acrosome reaction. 
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Figure 4: Primary (upper) and primordial (lower) follicle under light microscope. 

 

As the primary follicle grows into the secondary and pre-antral follicle, the 

granulosa cells proliferate and form multiple layers around the oocyte. At this stage, 

theca cells are recruited by oocyte secreted signals. Theca cells surround the basal 

lamina and undergo cytodifferentiation to become theca interna and theca externa. The 

differentiation of theca cells into theca interna and theca externa is thought to be 

promoted by LH. A network of capillaries is formed between the two layers resulting in 

blood circulation from and to the follicle. The diameter of the follicle is now 

approximately 100-200µm.  
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Figure 5: Secondary follicle under light microscope. 

 

The formation of antrum, fluid filled cavity adjacent to the oocyte, designates 

the follicle as antral or Graffian follicle. The large antrum is a characteristic feature of 

the mature follicle. These follicles contain two types of GCs; mural granulosa cells and 

cumulus granulosa cells. Mural granulosa cells are the ones that form a thin layer along 

the periphery of the follicle while cumulus granulosa cells are the ones surrounding the 

oocyte.  The basement membrane separates these GCs from theca interna and theca 

externa. At this stage the diameter of the follicle is approximately 20mm. 

 

 

Figure 6: Graffian follicle under light microscope.  
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2.4 Gonadotropins and other Hormones 

 

2.4.1 FSH & LH 

Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are 

glycoproteins that are produced by anterior pituitary. They are released after stimulation 

of gonadotropin releasing hormone (GnRH) produced by hypothalamus.  

Until late secondary to early antral stage, follicle development is FSH 

independent; starting from secondary stage follicle depends on gonadotropins for 

further development. In humans, follicle stimulating hormone receptor (FSH-R) is 

expressed in 33% of the primary and secondary follicles [25]. In ovaries with FSH-R 

mutation, follicles beyond primary stage are barely seen [26]. 

LH is produced by gonadotrope cells in anterior pituitary gland. An acute rise of 

LH triggers the ovulation and development of the corpus luteum. In human females, LH 

supports theca cells that provide androgens and hormonal pre-cursors for production of 

estradiol. Binding sites for LH was discovered on rat theca cells using labeled hCG, 

since hCG binds to the same receptor as LH [27]. During menstruation, FSH initiates 

follicular growth. With the rise of estrogen level, LH-R is also expressed on the mature 

follicle, which leads it to produce more estradiol. When the follicle is fully mature, a 

spike in hydroxyprogesterone by the follicle arrests the production of estrogen which 

leads to a decrease in negative feedback of GnRH, which than stimulates the release of 

LH from anterior pituitary. The increase of LH production lasts for 24-48 hours and 

triggers ovulation. This increase is necessary for the luteal function during the first two 

weeks of menstrual cycle.  

Starting from preantral stage, follicles start to depend on FSH secretion from 

anterior pituary. During the growth phase, which takes approximately 85 days for a 

follicle to grow from preantral to ovulatory stage, the follicles depend on gonadotropin 
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fluctuations happening during menstrual cycles. According to two-cell two-

gonadotropin theory, both FSH and LH are essential for the production of steroid 

hormones. 

 

 

 

Figure 7: FSH, LH, estrogen and progesterone levels during menstrual cycle. 
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2.4.2 Estrogen 

The production of estrogen, mainly E2 (estradiol-17β), starts to increase when 

gonadotropins act on the granulosa and theca cells. The production reaches its 

maximum level in the preovulatory follicle [28]. One of the main actions of estrogen is 

the negative feedback mechanism over the hypothalamus-pituitary-ovarian axis. This 

mechanism works by down regulating the release of gonadotropin releasing hormone 

from the hypothalamus which causes the plasma gonadotropin levels to decrease. 

Estrogen, in combination with IGF-1 and FSH, increases differentiation and 

growth of granulosa cells [29, 30]. Furthermore, estrogen, in combination with FSH, 

decreases apoptosis of GCs, induces LH-R on GCs and inhibits androgen synthesis in 

theca cells [31, 32, 33].  

Estrogen signals through two different estrogen receptors: ERα and ERβ. Both 

receptors are expressed in the ovary. Knockout ERα mice are infertile and have 

hyperemic ovaries without corpus luteum [34]. The ERβ knockout mice have small 

ovaries that are partially arrested in follicular development with increased numbers of 

primordial follicles [35]. Therefore, it is hypothesized that the proliferative actions of 

E2 is dependent on ERα while the anti-proliferative effects and differentiation is 

mediated by ERβ [36].  

 

Figure 8: Estrogen and progesterone levels during menstrual cycle. 
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2.4.3 Progesterone 

Progesterone, P4, is a C-21 steroid hormone which is important for ovulation, 

implantation and maintenance of the pregnancy. Progesterone production takes place in 

granulosa cells. It starts just before the gonadotropin surge and increases with the 

corpus luteum. This production is suggested to be crucial for ovulation [37]. It increases 

the production of proteolytic enzymes [38].  

There are two different progesterone receptors: PR-A and PR-B. PR-A knockout 

mice fail to ovulate and is infertile, while PR-B knockout mice is ovulatory and 

produces viable offspring [39, 40]. These receptors are expressed in large follicles and 

expression is increased by the LH surge [41]. Progesterone amplifies the effect of FSH 

on GCs by increasing cAMP and it inhibits FSH induced estradiol production [42, 43, 

44].  It, also, inhibits transition from primordial to primary follicles in newborn rats and 

inhibits insulin dependent granulosa cell mitosis [45, 46, 47].  

 

2.4.4 Androgen 

Androgen receptors are localized on granulosa cells, theca cells and stromal 

cells of the human ovary [48]. The principal androgens are androstenedione and 

testosterone. The productions of these hormones are in the theca cells and induced by 

luteinizing hormone. During the different stages of folliculogenesis, androgen receptor 

(AR) expression goes up and down. This is assumed to be under control of oocyte 

derived factors [49, 50]. Activated ARs proliferates GCs by enhancing the growth 

promoting action of GDF-9 [51]. In contrast to growth-promoting actions, it is also 

shown that androgens can cause follicular atresia in immature mice primed with PMSG 

(pregnant mare serum gonadotropin) [52]. It has also shown that apoptosis of rat GCs 

was induced by androgen [53].  
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2.5 Growth Factors 

 

2.5.1 Transforming Growth Factor β Superfamily 

Many of the growth factors influencing the growth and development of follicles 

are members of the transforming growth factor β superfamily [54]. The TGF-β 

superfamily is a large group of proteins that exhibit similar structural motifs, including 

7 cysteine residues [55]. These proteins are widely distributed in the body and function 

as extracellular ligands involved in several physiological processes during pre and post-

natal life [56]. Many of these proteins are produced in the ovary and are important local 

regulators for follicular development and oocyte maturation. Members of this 

superfamily can be classified into several subfamilies: TGF-β subfamily (TGF-β1, 

TGF-β2, TGF-β3), the activin/inhibin subfamily (including activins A, AB, B, inhibins 

A, B), an extensive bone morphogenetic protein subfamily (BMP) with approximately 

20 members and several additional members such as anti-Müllerian hormone (AMH) 

and nodal. 
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Table 2: The TGF-β activated signaling pathway. 

 

2.5.1.1 Growth Differentiation Factor-9(GDF-9) and GDF-9B/BMP15 

Growth differentiation factor 9 was discovered in 1993 [57]. The expression was 

first localized to oocyte but later it was found in testis, pituitary, hypothalamus, uterus 

and bone marrow [58]. In humans this factor plays essential role during folliculogenesis 

[59]. GDF-9 enhances the survival rate, growth rate and recruitment of follicles [60]. 

Mutations of the GDF-9 gene might be associated with pre-mature ovarian failure [61]. 

GDF-9 mRNA and its corresponding protein are present in oocytes located in primary 

follicles [62]. 

Growth differentiation factor 9B (GDF-9B) is also known as BMP15. It is 

expressed progressively in oocytes from primary stage onwards throughout 

folliculogenesis and is a regulator for follicular growth. 
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Both GDF-9 and GDF-9B have mitogenic effects on theca and granulosa cells 

[63, 64, 65, 66, 67, 68]. Also, they have the ability to inhibit gonadotropin stimulated 

progesterone production from GCs [69, 70, 71, 72]. Moreover, recent studies show that 

GDF-9 and GDF-9B have a positive effect on oocyte quality in in vitro cultured 

oocytes. In bovine oocytes, these factors resulted in increased blastocyst formation 

whereas in mice addition of GDF-9 to the culture resulted in double rate of survival [73, 

74].  

 

2.5.1.2 Activins and Inhibins  

Activins and inhibins are two members of the TGF-β family which takes part in 

the oocyte maturation and follicular development. Inhibins, produced by GCs in the 

ovary, take its name due to its negative effects on FSH secretion. They are heterodimers 

that contain one α- and one β-subunit. Inhibin B secretion is high during the follicular 

phase and drops after the LH surge [75]. Inhibin can be used as a marker for ovarian 

reserve as reproductive age results in lower amounts of circulating inhibin and thereby 

increased FSH levels [76].  

Activins are homo- and heterodimers that are consisted of two different inhibin 

β-subunits; covalently linked βA and βB [77]. Activin A the most common form of the 

activins. Its production takes place in GCs. Receptors Act-RI and Act-RII and the 

Smads necessary for signaling are present in GCs and oocytes in humans and rodents 

[78]. This shows the paracrine signaling between the granulosa cells and oocyte. 

Activin induces proliferation in human granulosa lutein cells [79].  
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2.5.1.3 Anti Müllerian Hormone 

In contrast to stimulatory actions of the most other members of the TGF-β 

superfamily, anti-Müllerian hormone (AMH) is suggested to inhibit the follicular 

recruitment and progression of early stages of follicular development [80]. Originally 

AMH is named Müllerian inhibitory substance (MIS) due to its role in male fetal sex 

differentiation during embryonic development [81].   

It is produced by GCs of human females from after birth until menopause. AMH 

expression is first observed at the primary stage of follicle development and persists 

until the antral stage and later the expression disappears in the dominant follicle [82, 

83]. Immunohistochemical analysis of the adult human ovary consisting monoclonal 

antibody against human AMH has showed no staining for primordial follicles while 

GCs of 74% of the primary follicles presented expression for this protein [84]. Pre-

antral follicles were the most intensely stained while follicles bigger than 5 mm had 

almost no staining. On the basis of these findings it has been suggested that growing 

follicles produce AMH as negative regulator for follicle recruitment in a paracrine way. 

AMH knockout mice showed decrease in primordial follicles and increase in growing 

follicles, this revealed that AMH plays a role in inhibiting follicular development [80].   

 

2.5.2 Growth Hormone 

Growth hormone plays important role in folliculogenesis and maturation of 

oocytes. Although it is primarily synthesized in the pituitary gland, growth hormone 

mRNA in bovine GCs and oocytes has been indicated that this hormone is also 

synthesized locally in the ovary and act in autocrine and paracrine way [85]. Growth 

hormone receptors have been identified in rat ovaries, in bovine GCs, cumulus cells and 

oocytes, and in human GCs of antral follicles and corpus luteum which indicates a 

direct GH effect in the ovary [86, 87, 88, 89].  
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The GH-R knockout mice showed delayed sexual maturation and gave birth to 

abnormally small litters with high mortality [30]. These effects appear to be due to the 

defect of the ovary, rather than the pituitary gland. Furthermore, the IGF-I expression in 

the ovary of the knockout mice was not impaired, showing that its expression in the 

ovary is GH independent [90]. 

In vitro studies showed that GH stimulates growth and follicular cell 

proliferation of murine preantral follicles. It shows a direct inhibitory effect on 

apoptosis in both rat and bovine follicles at early stages of their development [91, 92]. 

Furthermore, over-expression of bovine GH on a transgenic mouse strain decreases 

apoptosis in the mouse ovarian follicles [93]. In addition, in vitro studies show that GH 

has direct inhibitory affect on the apoptosis of early bovine and rat follicles [94, 95, 96]. 

In rats, GH deficiency is associated with low LH responsiveness [97]. Since binding 

sites for GH are missing on the atretic follicles in pigs and GH-R deficient bovine have 

mal-development of the dominant follicle it can be disputed that growth hormone might 

also be involved in the selection of the dominant follicle [98, 99]. 

It is showed that GH stimulates the differentiation and proliferation of luteinized 

GCs and production of estrogen in humans [100, 101]. The expression of steroid 

hormones is modulated by GH by increased up-regulation of enzymes involved in 

steroid synthesis [102]. As a result, GH acts in synergy with the gonadotropins to 

increase the steroid production [103, 104].  

 

2.5.3 Kit Ligand/ Stem Cell Factor 

Kit ligand (KL), also known as stem cell factor (SCF) or steel factor, is a ligand 

for the c-Kit protooncogene receptor tyrosine kinase. It is a pluripotent growth factor 

which is in most species involved in the growth and differentiation of hematopoetic 
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stem cells, melanoblasts and neuroblasts [105]. Its receptor is expressed in theca cells, 

primordial germ cells (PGC) and oocytes while KL is expressed by GCs [106].  

In human oocytes kit ligand receptor is weekly expressed in the primordial 

oocytes in fetal ovaries [107]. The expression continues to increase through primary, 

secondary and pre-antral follicles and it drops at antrum formation [108, 109]. In fetal 

human ovaries KL is expressed at GCs of primordial, pre-antral and early antral 

follicles [107]. In adult human ovaries, KL is expressed in GCs of primary follicles 

[110].  

In rodent ovary KL is expressed in GCs and its receptor is detected in theca 

interna cells and oocytes [111, 112, 113, 114, 115, 116]. Blocking the kit ligand 

receptor in mouse impairs follicular recruitment [117, 118]. 
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Chapter 3 

 

Mouse Preantral Growth in 2D vs. 3D In Vitro Culture Model 

 

 

3.1 Aim of the Study 

In vitro ovarian follicle culture is a new frontier in assisted reproductive 

technology with tremendous potential, especially for fertility preservation. 

Folliculogenesis within the ovary is a complex process requiring interaction between 

somatic cell components and the oocyte. Conventional two-dimensional culture of 

ovarian follicles disrupts spherical growth and spatial arrangements between oocyte and 

surrounding granulosa cells. Granulosa cell attachment and migration can leave the 

oocyte naked and unable to complete the maturation process. Recognition of the 

importance of these arrangements between cells has lead to research in to three-

dimensional culture system. In the present work preantral follicles isolated from 14-

day-old immature mouse ovaries were cultured either 3-dimensionally using matrigel or 

using 2D conventional culture. The result suggests that matrigel culture provides better 

milieu for growth and maturation of mouse preantral follicles. 

 

3.2 Materials and Methods 

 

3.2.1 Reagents 

Alpha-minimum essential media (α-MEM) and Dulbecco’s modified eagle’s 

medium–F12 (DMEM-F12) were purchased from Gibco (Invitrogen, Carlsbad, CA). 
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Bovine serum albumin (BSA) and insulin transferin selenite (ITS+3), collagenase (from 

clostridium histolyticum type IA; cat no. 9891), laminin (purified from Engelbreth-

Holm-Swarm murine sarcoma; cat no. L2020), poly-L-lysine (cat no. P4707), Dnase-I 

(from bovine pancreas; cat no. D4263), Hoechst 33342 (cat no. B2261), and benzly 

benzoate (cat no. B6630) were purchased from Sigma (St Louis, MO). Recombinant 

FSH was obtained from Serono (Rockland, MA). Growth factor– reduced (GFR) 

matrigel (a solubilized basement membrane preparation extracted from Engelbreth- 

Holm-Swarm mouse sarcoma, a tumor rich in ECM proteins, whose major component 

is laminin, followed by collagen 4, heparan sulfate proteoglycans, and entactin; cat no. 

356230) and fibronectin (from human plasma; cat no. 354008) were purchased from BD 

Bioscience (San Jose, CA). Collagen type 4 (purified from Engelbreth-Holm-Swarm 

murine sarcoma; cat no. 3410-010-01) was from Trevigen (Gaithersburg, MD). Human 

recombinant activin-A (cat no. 114700) was from Calbiochem (EMD Biosciences, San 

Diego, CA). 

 

3.2.2 Animals and Follicle Isolations 

Immature 14-day-old SV129/B6 mice were used in all experiments. The ovaries 

were removed after euthanasia and minced into 2 or 3 pieces in pre-equilibrated and 

HEPES-buffered DMEM-F12 culture medium. Then the pieces were digested with 

collagenase type IA, Dnase-I in DMEM-F12 supplemented with 5% BSA for 30 

minutes at 37° C as described previously. Preantral follicles were mechanically isolated 

using 28- to 30-gauge needles under stereomicroscope (Olympus SZX12), and those 

with intact basal membrane and theca cells were chosen for culture. 
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3.2.3 Culture Medium 

A defined serum-free culture medium was prepared using α-MEM supplemented 

with 100 mIU/mL recombinant FSH, 3 mg/mL BSA, ITS+3 (insulin 10 µg/mL, 

transferin 5.5 µg/mL, selenite 5 ng/mL) and 100 U/mL penicillin-G, 100 µg/mL 

streptomycin, 0.25 µg/mL amphotericin-B at 37 C, and 5% CO2 in air. Half of the 

culture media was replaced every other day. 

 

3.2.4 Follicle Culture on ECM, Polylysine, and Standard Plates 

Follicles were cultured on 12mm glass cover slips coated overnight at 4°C with 

fibronectin (15 µg/mL), collagen 4 (15 µg/mL), laminin (15 µg/mL), or polylysine (15 

µg/mL) covered with mineral oil. All matrix proteins and polylysine were dissolved in 

phosphate-buffered saline and filtered through 20 µm filters before use. The ECM 

components and polylysine were refreshed by adding the same concentrations in the 

media every other day. Follicles that were cultured in standard plates were placed in 

microdroplets of 30 µL culture media under mineral oil in 6cm culture plates. 

Conventional tissue culture plastic has a net negative surface charge produced by 

plasma treatment of the polystyrene, a nonbiological plasma. Polylysine surface 

treatment improves adhesive properties by altering the charge on the vessel surface 

from negative to positive. Therefore, both treatments facilitate cell attachment by ionic 

forces rather than ECM-integrin coupling. 

 

3.2.5 Culture in 3-Dimensional Basement Membrane Matrix (Matrigel) 

First, GFR matrigel was allowed to liquefy at 4°C and was then diluted with the 

culture medium in a 1:1 ratio (100 µL from each) and placed in 8-well-format chamber 

slides. Following the transfer of isolated follicles into them, the chamber slides were put 
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in the incubator to allow the matrigel to polymerize for 30 minutes; subsequently, 100 

µL of culture media was added on the top of the solidified matrigel. 

 

3.2.6 Follicle Measurements and Evaluation of Survival 

Follicles were imaged every other day using Olympus IX 70 inverted 

microscope with digital imager under 300X and 150X magnifications. Follicle diameter 

was measured by calculating the mean of 2 perpendicular measurements including the 

theca layer. The percentage follicular growth was calculated according to the formula 

[(follicle diameter on day 7 – diameter day 0) X 100/follicle diameter on day 0]. 

Follicles with disrupted basal lamina or somatic cell layers; extruded, damaged, or 

misshapen oocytes; and those that did not attach to culture plates in the first 24 hours of 

the culture period were excluded from the analysis. 

 

3.2.7 Three-Dimensional Imaging of Follicles Using Confocal Microscopy 

Isolated preantral follicles cultured in matrigel and Standard plates were treated 

with fluorochrome DNA stain Hoechst 33342 (10 µM) for an hour and fixed in situ 

with 4% paraformaldehyde for 1 hour. Then, the follicles were dehydrated using a 

series of graded ethanol (70%, 85%, 95%, and 100% every 15 minutes) and cleared 

with a 1:2 benzyl alcohol/benzyl benzoate mixture for 30 minutes at room temperature 

before scanning. The follicles were then serially scanned at 0.5-µm thickness, and 

images were obtained using a Leica 5410 inverted confocal microscope. 
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3.2.8 Statistical Analysis 

Follicular growth was expressed as the percentage of the mean growth ± 

standard error of mean (SEM) of 3 independent experimental replicates. For 

comparison of growth, t test, ANOVA, or the Kruskal-Wallis test were used where 

appropriate. If a significant P value was reached, then the groups were compared with 

post hoc tests. The survival of each group for the indicated time points was created 

using the Kaplan-Meier method. Survival rates and curves were compared using X² and 

long-rank tests, respectively. P<0.05 was considered significant. 

 

3.3 Results and Discussion 

In this study it is shown for the first time that immature murine preantral 

follicles cultured in matrigel with FSH had the highest growth and survival rates 

compared to other tested culture conditions. Furthermore, by analyzing 3-dimensional 

confocal images it is determined that follicles preserved their structure better in matrigel 

than conventional 2-dimensional culture environment.  

Previous works has showed that follicles cultured in 2-dimensional conventional 

cultures become flattened structures which are characterized by the disruption of their 

basal lamina. The paracrine communication between oocyte and somatic cells gets 

impaired [119]. In an attempt to keep the 3-dimensional follicular structure, other 

researchers have used different in vivo culture conditions such as collagen gels or 

collagen alginate capsules [120, 121, 122]. In other studies, follicles were cultured in 

membrane inserts or inside treated microwells to prevent follicle attachment and 

flattening [123,124]. Some other researchers have tried daily transfer of follicles in to 

new wells [125]. However, no quantitative evidence for a better maintenance of 

follicular structure was provided. 
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The early stages of the mammalian folliculogenesis are less understood than the 

antral stages of the follicle development. The significance of integrins and ECM in 

follicular growth initiation and development has been discussed in other studies. For 

example, prepubertal mouse ovaries cultured with collagen and laminin have 

significantly higher number of follicles initiating growth than the ovaries cultured on 

polylysine [126]. 

It is observed that FSH enhanced growth and survival of follicles during 7 days 

of culture in matrigel. Follicles cultured in matrigel without FSH had better growth and 

survival rates than those cultured in 2-dimensional culture plate. These findings suggest 

that even without the positive effects of growth hormones, matrigel provides a better 

milieu for preantral follicles than 2-dimensional culture conditions. At this study with 

Matrigel environment we had a mature MII oocyte with polar body. 

 

 

Figure 9: Preantral mouse follicle cultured in matrigel to MII stage. 
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Table 3: Follicle growth and survival after 7 day culture. 

 

Another important finding of this study is that preantral follicles from immature 

mice could be grown to antral stage for up to 8 days in a serum-free defined medium. 

Even though growth and antrum formation have been reported for bovine preantral 

follicles using a serum free medium supplemented with insulin-like growth factor, in 

rodent models isolated rat preantral follicles became atretic, as evidenced by a 

substantial increase in internucleosomal DNA fragmentation after 24 hours in serum 

free culture [119, 127]. Other studies could not grow murine preantral follicles in vitro 

[128]. 

In conclusion, it is shown that 3-dimensional matrigel culture conditions provide 

a better in vitro environment for growth and survival of preantral follicles in immature 

mice. The maintenance of the 3-dimansional structure of the follicle can be explained in 

part by the resemblance of matrigel to follicle basement membrane.  
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Figure 10: Confocal microscopy of preantral murine follicles grown in matrigel and 

standard plate conditions. 

 

 

Figure 11: Preantral follicle culture in matrigel and standard plate conditions for 7 

days. 
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Table 4: Survival rates of preantral murine follicles cultured in standard 2-dimensional 

plate vs. matrigel conditions. 

 

 

Figure 12: Preliminary experiences in human preantral follicle culture. 
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3.4 Future Perspectives 

The matrigel model enables us to determine the effects of different drugs on preantral 

follicle growth in vitro.  

Human primordial and primary follicle culture that will yield a healthy MII oocyte and 

live birth in future may revolutionize infertility treatment. 
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