

The Roaming Salesman Problem and its

Application to Election Logistics

by

Masoud Shahmanzari

A Dissertation Submitted to the

Graduate School of Business

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Operation Management and Information Systems

February 22, 2019

Koç University

Graduate School of Business

This is to certify that I have examined this copy of a doctoral’s thesis by

Masoud Shahmanzari

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Deniz Aksen

Prof. Zeynep Akşin Karaesmen

Assist. Prof. Hande Küçükayd n

Prof. Ahmet Faruk Aysan

Assist. Prof. Bar Y

 Date: February 22, 2019

iii

To my beloved family…

iv

A B S T R A C T

Campaign planning is one of the important decisions to make while dealing

with determining routes, schedule of the activities, and accommodation

planning. The campaign planner is required to plan the schedule of the visits

to the customers, to satisfy time constraints, and to organize activities at its

best with a proper decision on the scheduling and routing. In this study, we

investigate a new problem the goal of which is to determine daily tours for a

traveling salesman (referred to as the campaigner) who collects rewards from

various cities during a campaign period. We call this new problem the roaming

salesman problem (RSP) motivated by various real-world applications

including election logistics, touristic trip planning, and marketing campaigns.

RSP can be characterized as a combination of the traditional periodic TSP and

the prize-collecting TSP with static edge costs and time-dependent vertex

rewards. RSP seeks a closed or open tour for each day of a campaign period

with the objective of maximizing the net benefit which is defined as the sum

of all collected rewards minus the traveling costs. The campaigner is not

required to visit all cities, and the daily tours do not have to start and end at

the same city. Moreover, he/she can stay overnight in any city to start the

tour of the next day. In particular, each city is associated with a base reward

and a fixed activity duration. In addition, he/she cannot stay outside the

campaign center for more than a given number of consecutive days and the

total length of the activities and travel times between cities on the same day

cannot exceed a certain maximum tour duration.

We develop a MILP formulation for this problem in which we adopt

existing routing constraints and introduce an entirely new class of constraints

and binary variables. As an application of RSP in election logistics, we

introduce the multi-period traveling politician problem (MPTPP). The problem

v

is tackled efficiently by adapting analytical model and an extensive scenario

analysis. Commercial solvers are capable of solving small-size instances of the

RSP to near optimality in a reasonable time. To tackle large-size instances we

propose a two-phase matheuristic where the first phase deals with the city

selection while the second phase focuses on the route generation. The latter

capitalizes on an integer program to construct an optimal route among selected

cities. The proposed matheuristic decomposes the RSP basically into as many

subproblems as the number of campaign days.

We also introduce a new hybrid metaheuristic algorithm for the RSP,

called granular skewed variable neighborhood tabu search (GSVNTS). It

consists of a Granular Tabu Search which is embedded in a Skewed Variable

Neighborhood Search algorithm. The suggested method is experimentally

tested on the real-life instances including 81 cities and 12 towns in Turkey with

actual travel distances. The computational results show that GSVNTS can

generate optimal or near-optimal solutions in a small amount of CPU time.

Using effective analytical models, the two-phase matheuristic, and GSVNTS,

we show that promising results can be obtained to hopefully assist campaign

planners in their strategic decision making.

vi

vii

viii

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude and

appreciation to my supervisor Assoc. Prof. Dr. Deniz Aksen for his advice,

contribution, patience, and excellent support. His passion and positive attitude,

made me feel profoundly privileged. He was more than just an advisor; He was

a big brother for me.

I would like to thank Prof. Dr. Zeynep Akşin Karaesmen, Assist. Prof.

Dr. Hande Küçükaydın, Prof. Dr. Ahmet Faruk Aysan, and Assist. Prof. Dr.

Bar Y for taking part in my thesis committee and for their attention and

insightful feedback on this dissertation. In addition, my warm appreciation

goes to Prof. Dr. Zeynep Gürhan Canli, dean of the College of Administrative

Sciences and Economics for her continuous support. I would also like to thank

Didem Gürses for her attention and administrative support.

I would like to thank my friends Morteza, Sanam, Arezou, Siamak, and

Ba ak for their valuable and warm friendships during my Ph.D. studies at Koç

University.

I gratefully acknowledge Mr. Esmail Akbarpour Paydar for his generosity

and support.

I would like to thank Prof. Dr. Ahmet Faruk Aysan to give me the

opportunity to present my work in Istanbul City University.

My deepest gratitude is expressed to my parents Alireza and Tayyebeh,

and brother Ali for always believing in my success and trusting me all my life.

x

Finally, I would like to thank my wife Maryam Ekhtiari for loving and

taking care of me. Her continuous patience and superb support during my

graduate studies have been invaluable.

xi

xii

Table of Contents

List of Tables .. xvii

List of Figures .. xix

Nomenclature ... xxii

Chapter 1: Introduction ... 1

Chapter 2: Literature review ... 9

2.1 Traveling salesman problem variants ... 9

2.2 Matheuristics .. 16

2.3 Variable Neighborhood Search .. 17

 Chapter 3: Notation and formulation ... 20

3.1 Notation .. 20

3.2 Mixed integer linear programming formulation 22

3.3 More details on the newly-developed constraints 29

3.4 An alternative formulation for satisfying maximum tour duration

constraint .. 33

3.5 Added valid inequalities ... 35

3.6 An arc-based formulation for subtour elimination.................................. 35

 Chapter 4: An application to election logistics 38

xiii

4.1 A real case example ... 40

4.2 Data collection and analysis ... 41

4.3 Preprocessing of the symmetric time/cost matrix 42

4.4 Time-dependent rewards .. 44

4.4.1 Factor 1: Population .. 45

4.4.2 Factor 2: Ratio of votes and Criticality Factor 45

4.4.3 Factor 3: Number of remaining days until the election day 49

4.4.4 Factor 4: Number of days passed since the previous meeting 50

4.5 Supplementary assumptions in MPTPP .. 50

 Chapter 5: Scenario Analysis .. 52

5.1 Scenario analysis level 1: Extreme scenarios ... 52

5.1.1 Scenario 1: Model Full-MILP (Base Scenario) 53

5.1.2 Scenario 2: Model Full-1Meet ... 55

5.1.3 Scenario 3: Model Rew-Only .. 56

5.1.4 Scenario 4: Model Alt-1Depot .. 56

5.2 Scenario analysis level 2: Alternative reward function 58

 Chapter 6: The proposed two-phase matheuristic 59

6.1 Mathematical formulation of FDORM1 and FDORM2 65

6.2 City selection approaches ... 69

xiv

6.2.1 Deterministic City Selection ... 70

6.2.2 Greedy City Selection .. 70

6.2.3 Pseudo-random city selection ... 71

 Chapter 7: A Granular Skewed Variable Neighborhood tabu search . 75

7.1 Variable Neighborhood Search .. 76

7.2 Solution Representation .. 80

7.3 Initial solution .. 81

7.3.1 Exhaustive search of the candidate cities 81

7.4 Neighborhood structures ... 84

7.5 Granular neighborhoods ... 92

7.6 Shaking .. 96

7.7 Local Search ... 97

7.8 Penalty value for strategic oscillation .. 101

7.9 Skewed moves... 104

7.10 Termination criteria .. 105

7.11 Granular Skewed Variable Neighborhood Tabu Search 106

 Chapter 8: Computational Results ... 110

8.1 Data sets ... 110

8.2 Computational Platform and Solver specifications 111

xv

8.2.1 Cuncurrent MIP configuration ... 113

8.3 Comparison of original formulation with alternative formulation...... 114

8.4 Speeding up GUROBI using the results of FDOR 116

8.5 Linear relaxation of the binary decision variables 118

8.6 Effect of the added valid inequalities (VI) on solution quality 119

8.7 Changing values of ... 121

8.8 Computational results of scenario analysis level 1 122

8.9 Computational results of scenario analysis level 2 124

8.10 Tightening scheme ... 126

8.11 Omitting binary decision variables and parameters 127

8.12 Performance of FDORDCS .. 129

8.13 Performance of FDORGCS .. 131

8.14 Performance of FDORPCS .. 133

8.15 Comparison of performances of FDORDCS, FDORGCS, and

FDORPCS .. 136

8.16 Comparison of GUROBI and FDORDCS for all instances 140

8.17 Results for GSVNTS ... 143

8.18 Performance of GSVNTS ... 146

8.19 Comparison of GSVNTS with Party’s actual meeting plan 149

9. Conclusions and future work .. 152

xvi

Bibliography ... 155

Appendix A .. 167

Appendix B .. 173

xvii

LIST OF TABLES

Table 4.1 Statistics of rewards in criticality categories 48

Table 6.1 Comparison of the results of original MPTPP and Semi-Solved

Scenario ... 60

Table 6.2 Reduction of original MILP formulation by using FDORM1 and

FDORM2 .. 68

Table 7.1 Termination criteria of GSVNTS .. 106

Table 8.1 List of GUROBI specific options applied to all runs. 112

Table 8.2 Comparison of Cplex with different CONCURRENTMIP

configurations of Gurobi.. 114

Table 8.3 Comparison of two MTD formulation ... 115

Table 8.4 The results of setting initial values of MPTPP to optimal values of

FDOR ... 117

Table 8.5 Comparison of different solutions of the same instance with 39 cities

and 15 days ... 119

Table 8.6 Comparison of the models with and without valid inequalities ... 120

Table 8.7 Results of the instances for different values of 121

xviii

Table 8.8 Results of the four scenarios. ... 124

Table 8.9 Comparison of new and original reward function. 125

Table 8.10 Comparison of the original reward function with the reward function

without binary variable FM and Z .. 128

Table 8.11 Computational Results of FDORDCS ()n 130

Table 8.12 Computational Results of FDORGCS 134

Table 8.13 Computational Results of FDORPCS 135

Table 8.14. Comparison of FDORDCS, FDORGCS, and FDORPCS .. 137

Table 8.15 Comparison of routes of FDORDCS and optimal solution 139

Table 8.16 Comparison of GUROBI with FDORDCS for all instances 141

Table 8.17 Comparison of GUROBI with GSVNTS for all instance sizes ... 144

Table 8.18 Comparison of GSVNTS with Party’s actual meeting plan 151

xix

LIST OF FIGURES

Figure 1.1 Type 1 tour ... 4

Figure 1.2 Type 2 tour ... 5

Figure 1.3 Type 3 tour ... 5

Figure 1.4 An instance with both closed and open tours 6

Figure 3.1 Type 1 tours ... 29

Figure 3.2 Type 3 tours ... 31

Figure 4.1 A simple example presented to illustrate the problem structure. 40

Figure 4.2 Population of 81 provinces in Turkey ... 46

Figure 4.3 Base rewards (i values) of all 81 provinces. 49

Figure 5.1 Different tours in the first three scenarios. 57

Figure 7.1 Steps of the Basic VNS (Hansen and Mladenović, 2001) 78

Figure 7.2 Basic VNS scheme (Hansen et al. 2010) 79

Figure 7.3 The 1-Add operator ... 85

file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118369
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118370
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118371
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118373
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118374
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118381

xx

Figure 7.4 The 1-Drop operator .. 86

Figure 7.5 The Drop Add operator ... 87

Figure 7.6 The 1-1 Exchange Non-Visited operator 87

Figure 7.7 The 1-1 Exchange Intra Route operator 88

Figure 7.8 The 1-0 Relocate operator .. 89

Figure 7.9 The 2-0 Relocate operator .. 89

Figure 7.10. The 1-1 Swap operator .. 90

Figure 7.11 The 2-2 Swap operator ... 90

Figure 7.12 The Triple Rotation operator ... 91

Figure 7.13 The Quadruple Rotation operator .. 92

Figure 7.14 An example of granular neighborhoods 96

Figure 8.1 Procedure for tightening the optimal value of main problem 126

Figure 8.2 Comparison of FDORDCS, FDORGCS, and FDORPCS ... 138

Figure 8.3 The comparison of the net benefit of FDOR and MPTPP 140

Figure 8.4 Performance of GSVNTS (PE.I) .. 146

file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118382
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118383
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118385
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118386
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118387
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118388
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118389
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118390
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118391
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118392
file:///C:/Users/mshahmanzari/Desktop/Thesis_V1.6_Final.docx%23_Toc118393

xxi

Figure 8.5 Average runtime of GSVNTS (PE.I) ... 147

Figure 8.6 Performance of GSVNTS (PE.II) ... 147

Figure 8.7 Average runtime of GSVNTS (PE.II) .. 148

Figure 8.8 Performance of GSVNTS (LE) .. 148

Figure 8.9 Average runtime of GSVNTS (LE) .. 149

xxii

NOMENCLATURE

ACO Ant Colony Optimization

ATSP Asymmetric Traveling Salesman Problem

BFS Best Feasible Solution

BRP Bank Robber Problem

CDF Cumulative Density Function

CF Criticality Factor

CPTP Capacitated Profitable Tour Problem

CPU Central Processing Unit

DCS Deterministic City Selection

ESCC Exhaustive Search of the Candidate Cities for Each Day

FDOR Finding Daily Optimal Routes

FDORM Finding Daily Optimal Routes Model

GCS Greedy City Selection

GLS Guided Local Search

GSVNTS Granular Skewed Variable Neighborhood Tabu Search

HRC Highest Reward Cities

KP Knapsack Problem

L-MTZ Lifted Miller-Tucker-Zemlin

xxiii

LE Local Election

LR Linear Relaxation

LRP Location Routing Problem

MCP Maximum Collection Problem

MILP Mixed-Integer Linear Programming

ML-MTZ Modified Lifted Miller-Tucker-Zemlin

MPTPP Multi-Period Traveling Politician Problem

MTD Maximum Tour Duration

MTMCP Multiple Tour Maximum Collection Problem

MTZ Miller-Tucker-Zemlin

MuPOPTW Multi-Period Orienteering Problem with Multiple Time

 Windows

OP Orienteering Problem

OVRP Open Vehicle Routing Problem

PCS Pseudo-Random City Selection

PCTSP Prize Collecting Traveling Salesman Problem

PE Presidential Elections

PLR Partial Linear Relaxation

PP Politician’s Party

PTP Profitable Tour Problem

xxiv

PTSP Periodic Traveling Salesman Problem

QTSP Quota Traveling Salesman Problem

RAM Random Access Memory

RSP Roaming Salesman Problem

RVNS Reduced Variable Neighborhood Search

SCP Simple Cycle Problem

SFLR Semi-Full Linear Relaxation

SPCTSP Selective Prize Collecting Travelling Salesman Problem

STSP Selective Traveling Salesman Problem

SVNS Skewed Variable Neighborhood Search

SVRPTW Selective Vehicle Routing Problem with Time Windows

TOP Team Orienteering Problem

TS Tabu Search

TSP Traveling Salesman Problem

TSPP Traveling Salesman Problem with Profits

TuOP Tour Orienteering Problem

VI Valid Inequalities

VND Variable Neighborhood Descent

VNDS Variable Neighborhood Decomposition Search

VNS Variable Neighborhood Search

xxv

VRP Vehicle Routing Problems

VRPB Vehicle Routing Problem with backhauls

VRPTW Vehicle Routing Problem with Time Windows

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1. INTRODUCTION

In this study, we study a logistical problem arising in promotion and marketing

campaigns where the campaigner and his/her team needs to plan an efficient

schedule through the campaign period to maximize the total reward by visiting

appropriate cities. This logistical problem has a wider range of applications

including election logistics, touristic trip planning, marketing campaign

planning, promotion of a new product launch, and planning of client visits by

company representatives, among others. We refer to this new problem as the

roaming salesman problem (RSP).

RSP has some similarities with a multi-period extension of the prize

collecting traveling salesman problem (PCTSP) with time-dependent rewards

and multiple visits. It is however very important to stress that the RSP does

not involve a fixed central node designated as ‘the depot’. This implies that a

daily tour may or may not terminate at the same node where it has started. In

other words, the tour does not have to be a round-trip plus a node may be

visited either in transit or for the purpose of an activity. In the latter case, the

campaigner (i.e. the roaming salesman) spends a node-specific activity time

and consequently collects a reward associated with that node. There are two

types of rewards, namely a base reward and a depreciated reward. The base

reward has been defined a priori for each node according to its characteristics.

Chapter 1: Introduction 2

However, the actual reward that can be claimed is subject to twofold

depreciation:

(a) It decreases linearly with the activity date. The later the activity, the

smaller the collectible reward.

(b) It decreases linearly with the recency of the past activity in the same

node. The lesser the number of days that passed since the previous

activity, the smaller the reward.

Especially nodes of exorbitant size or significance may observe multiple

visits. The second type of reward depreciation circumvents successive activities

in such nodes within short time intervals.

The goal in the RSP is to find an optimal or the ‘best’ schedule of daily

visits for a campaigner who seeks to maximize his/her net benefit throughout

a given number of periods (days). The net benefit is defined as the sum of all

collected rewards minus the traveling costs incurred by the salesman. The RSP

can be therefore classified as a rich traveling salesman problem (TSP) with the

following six properties which together make this problem rather unique. For

an overview of rich routing problems, see Lahyani et al. (2015).

(i) Multi-period. RSP generalizes the TSP by extending the planning horizon

to n days, thereby forming a multi-period problem.

(ii) Time-constrained. In each period, i.e. on each day, the salesman is allowed

to “roam” for no more than a certain number of hours. We refer to this

time limit as the maximum tour duration constraint.

(iii) Selective. The salesman needs to decide which nodes to visit so as to

realize an activity. In other words, not every node is visited and not every

node hosts an activity.

Chapter 1: Introduction 3

(iv) Absence of a fixed depot node, co-existence of open and closed tours.

Tours do not have to start and end at the same node. The only requirement

is that today’s tour originates where yesterday’s tour terminated. Hence,

the salesman has also to decide where to stay overnight at the end of each

day.

(v) Time-dependent rewards. Each node is associated with a time-dependent

reward which changes linearly according to the day of the hosted activity

in that node and the recency of the previous activity in the same node. This

is a challenging issue which is mainly attributed to this problem.

(vi) Multiple visits. There exist a subset of nodes which may host more than

one activity during the campaign, hence can be visited more than once.

The RSP can be defined as follows. Consider a set of cities {0,1,..., }nN

including a fictitious city (indexed 0), a set of cities {1,..., }nV including a

starting city (indexed as 1) and a set of days {1,..., }.T On each day t T

, any city i V can be visited either to collect the associated reward from it

or while in transit without reward. A nonnegative prize of i called base reward

is specified for each city i V . The base reward can depend on several factors

such as the city population. Moreover, the actual reward earned by having an

activity in city i on day t depends on two other factors:

Factor 1. The number of remaining days denoted by (t) until the end

of the campaign, i.e. until the election day.

Factor 2. In case a city hosts more than one activity, the number of days

passed since the previous activity in the same city, denoted by s

where 1 1s t .

Chapter 1: Introduction 4

The traveling cost between each pair of cities is known and given by ijc ,

 ,i j V where ijc denotes the cost of driving (or flying where applicable)

from city i to city j. The traveling time between each pair of cities is also

known with certainty and given by , ,ijd i j V . The time spent by the

salesman (also referred to as the campaigner in the sequel) for an activity in

city i V is shown by , .i i V The maximum tour duration applicable to

the tour of each day is denoted by max.T This time limit imposes an implicit

threshold on the number of cities that can be visited in any given day.

There is also an explicit limit on the number of activities that can be

realized per day. For the fictitious city 0i , the activity duration, the base

reward, the traveling costs and times are all set to zero. The campaign period

starts in the central city 1i in the morning of day 1t and ends in the

evening of day t . At the end of a day t T , the campaigner stays

overnight in some city .i V Note that waking up or staying overnight in city

i does not necessarily mean that there will be a reward collection in that city.

One final remark should be made about periodic returns to the campaign base

 1i . The salesman cannot be away from the campaign base for more than

consecutive days.

A distinctive feature of the RSP is that there are three possible types of

daily tours during the campaign.

Type 1 tours: Multi-city closed tour

The campaigner starts the day (wakes up)

in city i on day t , leaves i and visits at least

one more city scheduled for that day. At the end

of the day, he returns to the same city i to stay

 i

j, k, l,…

Figure 1.1 Type 1 tour

Chapter 1: Introduction 5

overnight. Type 1 tour is a closed tour starting and ending at city i , and

involving at least one more city other than city i (see Figure 1.1).

Type 2 tours: Single-city tour

The campaigner wakes up in city i on day t ,

spends the whole day in the same city collecting the

reward and stays overnight in the same city. In Type

2 tour, we assume that the campaigner goes from city

i to a fictitious city denoted by ‘0’ and returns from

‘0’ to i . This tour is therefore treated as a closed tour starting and ending at

city i (see Figure 1.2).

Type 3 tours: Multi-city open tour

The campaigner wakes up in city i

on day t , and goes to another city j . In

between cities i and j , he may visit one

or more cities, or may directly travel from

i to j where he stays overnight. Type 3

tour is an open tour starting in city i and

ending in city j , as shown in Figure 1.3.

In order to highlight the importance of having both open and closed routes

during the campaign, we build a toy instance containing six cities, two days,

and a daily maximum tour duration of 14 hours as illustrated in Figure 1.4.

The travel times in italic and the activity times are written on the arcs and

next to the nodes, respectively, both in hours. As shown in Figure 1.4, the tour

of the first day starts in city ,i and includes three activities in cities i , j , and

k . The campaigner returns to the starting city i at the end of day 1 without

 i

0

Figure 1.2 Type 2 tour

k, l, m,…
 j

 i

Figure 1.3 Type 3 tour

Chapter 1: Introduction 6

having any more activities there. The return to city i on day 1 grants him/her

enough time to visit more than one far city (m and n) the next day.

Figure 1.4 An instance with both closed and open tours

By ignoring the meeting times i , taking the campaign duration as 1,

and setting the maximum tour duration and each city’s base reward to

sufficiently large values, e.g.

max{ } max{ }i ij ji
j j

d d
N N

 and

max
,
max { }
i j

T n dij
N

, a given TSP instance can be reduced to the associated

MPTPP instance in polynomial time. TSP is a well-known NP-hard

combinatorial optimization problem (Garey and Johnson, 1979). This leads to

the conclusion that the MPTPP is also NP -hard, and thus cannot be solved

in polynomial time to optimality.

Motivated by this challenge, we propose for the RSP a simple but efficient

two-phase matheuristic method which we call Finding Daily Optimal Routes

(FDOR). For each period of the planning horizon, FDOR decomposes the RSP

Chapter 1: Introduction 7

into a pair of subproblems, namely a city selection problem in Phase I and a

modified prize-collecting TSP to be solved optimally in Phase II. We

experimented with three different city selection approaches so as to arrive at

an effective, yet efficient selection scheme. Our proposed matheuristic can

provide for medium- and large-size RSP instances a promising bundle of

accommodation and meeting schedules that are complemented by daily routing

plans. Actually, FDOR achieves this in remarkably short solution times. This

way it can greatly facilitate campaign planners’ decision-making in their

election logistics efforts.

To improve the solution of FDOR, we adapt the basic variable

neighborhood search (VNS) algorithm to RSP. We propose another solution

methodology to address RSP and its application in election logistics. We call

this method granular skewed variable neighborhood tabu search (GSVNTS).

VNS is a recently developed metaheuristic for tackling combinatorial

optimization problems. The main idea is to change neighborhoods within local

search in a systematic way (Hansen and Mladenović, 2001). VNS

metaheuristics have been successfully implemented in different combinatorial

optimization problems and their real-life applications, e.g., the vehicle routing,

the traveling salesman, and the p-median (García-López et al. 2002). We

modify the basic VNS by incorporating the granularity and the skewness in it.

FDOR constructs the initial feasible solution. In the local search step, a tabu

search heuristic is used to avoid cycles. We also consider a variety of rich

neighborhood structure to explore as many solutions as possible. The detailed

descriptions of FDOR and GSVNTS are given in Section 5 and Section 6.

To the best of our knowledge, this is the first time the RSP is explored in

depth and tackled. Our contribution is fivefold:

Chapter 1: Introduction 8

1. The investigation of a new logistical problem arising in several areas

including election logistics.

2. The development of a novel mixed-integer linear programming (MILP)

formulation for this new problem.

3. A real-life application of the problem to election logistics covering 81

provinces and 12 highly populated towns of Turkey, supported by an

extensive scenario analysis.

4. The development of a new two-phase matheuristc to solve large-size

instances.

5. The development of a granular skewed variable neighborhood search

complemented with a tabu search to find optimal or near to optimal

solutions for RSP.

The remainder of this thesis is organized as follows. In Section 2 we review

the related literature. In Section 3, we present the mathematical formulation

of RSP. In Section 4 we investigate the application of RSP in election logistics.

The scenario analysis is discussed in Section 5. In Section 6 we present the

proposed two-phase matheuristic approach FDOR. The proposed metaheuristic

is presented in Section 7. We discuss our computational results in Section 8 on

the basis of a case study involving a lot of cities and towns from Turkey.

Finally, Section 9 summarizes our results and recommends future research

directions.

Chapter 2: Literature review 9

Chapter 2

LITERATURE REVIEW

2. LITERATURE REVIEW

In this chapter, we survey the studies related with roaming salesman problem

where we point out the differences between our problems and the related

studies. Moreover, we survey the matheuristics introduced to similar problems.

Furthermore, we address the studies which utilize VNS as a solution

methodology.

2.1 Traveling salesman problem variants

RSP has been introduced to the literature recently by Shahmanzari et al.

(2018). It is derived from the well-known traveling salesman problem (TSP)

which is probably the most famous and oldest NP-hard combinatorial

optimization problem in the literature. A widely accepted and often cited

classification of TSP and its variants has been presented in Gutin and Punnen

(2007).

The first TSP variant that is closely related to RSP is the periodic

traveling salesman problem (PTSP). Many variations of TSP assume that

traveling occurs in one period only. However, PTSP relaxes this assumption

by expanding the travel period to m days such that each city is visited at least

once, while some cities require multiple visits. There is only one salesman

available every day. The goal is to generate a tour for each of m days that will

Chapter 2: Literature review 10

meet the visit frequency of each city and minimize the total traveling distance

throughout the whole planning horizon. The first mathematical formulation of

PTSP can be found in Cordeau et al. (1997).

The other TSP variants resembling RSP include the prize collecting

traveling salesman problem (PCTSP), the profitable tour problem (PTP), and

the orienteering problem (OP). We briefly describe these three variants here.

They are jointly referred to as the generic class of TSP with profits (TSPP).

Problems belonging to TSPP class have been surveyed systematically in the

seminal paper by Feillet et al. (2005) where the name TSPP was coined for the

first time. The authors stated that TSPPs arise in a wide range of situations,

including realistic TSPs, job scheduling, freight transportation, or they occur

indirectly as a subproblem in solution approaches dedicated to other routing

problems. TSPP is by definition the monocriterion version of a bicriteria

extension of TSP where the two criteria are the maximization of a profit

measure and the minimization of travel costs. The basic characteristics of this

generic problem are as follows.

(i). There is a value (like a profit or prize) associated with each vertex of

the underlying graph.

(ii). A feasible solution is not required to visit all vertices.

(iii). A vertex can be visited at most once.

(iv). The distance (cost) matrix is nonnegative and satisfies the triangle

inequality.

Being the first member of this class, PCTSP was originally introduced by

Balas and Martin (1985) and formally defined in Balas (1989) to model the

scheduling of the daily operations of a steel rolling mill. In PCTSP there is a

traveling salesman who travels between vertices i and j at cost cij, earns a prize

pk from every visited vertex k and pays a penalty h for each unvisited vertex

Chapter 2: Literature review 11

h. The aim is to find a circuit, i.e. a tour that minimizes the sum of travel costs

and penalties while collecting a total profit at least as high as a preset minimum

value min . Here, a feasible circuit either in PCTSP or in the other TSPP

variants visits each vertex at most once. The minimum profit collection

constraint can be viewed as a knapsack-like constraint. Feillet et al. (2005)

note that the majority of PCTSP papers deal with problems which have zero

penalty terms.

Another name coined for PCTSP is the quota TSP (QTSP) which was

first studied in Awerbuch et al. (1998). Structural properties of PCTSP related

to TSP polytope and to the knapsack polytope were presented by Balas (1989,

1995) where families of facet-inducing inequalities were identified. Bounding

procedures based on different relaxations were developed by Fischetti and Toth

(1988) and Dell’Amico et al. (1995). The lower bound obtained according to

the latter paper was used in a follow-up study by Dell’Amico et al. (1998) as

the starting point of a Lagrangian heuristic which is capable of finding a

feasible upper bound to the problem. A branch-and-cut algorithm was proposed

for the undirected PCTSP in Bérubé et al. (2009). The authors adapted and

implemented some classical polyhedral results for PCTSP and derived

inequalities from cuts designed earlier for OP.

The second member of the generic TSPP class is PTP. It derives directly

from the PCTSP when the objective becomes the maximization of the net

profit defined as the difference between the collected prizes and the travel costs.

In the presence of nonzero penalties for unvisited vertices, the sum of incurred

penalties is also deducted from the total amount of collected prizes to yield the

net profit. PTP was introduced first by Dell’Amico et al. (1995). Fischetti et

al. (2007) called the same problem the simple cycle problem (SCP). Archetti et

al. (2009) formulated a multi-tour version of the PTP with multiple identical

Chapter 2: Literature review 12

and capacitated vehicles, which they referred to as the capacitated PTP

(CPTP).

The third problem in TSPP class is OP which is evidently the most

extensively studied variant. OP seeks to find a circuit or a path on a graph

with n vertices that maximizes the sum of collected prizes while containing

traveling costs under a preset value minC or the total travel time within a

preset limit maxT . Vansteenwegen et al. (2011) argue that OP can be viewed

in this regard as a combination between the knapsack problem (KP) and TSP.

Feillet et al. (2005) point to the equivalence between the path-seeking and

circuit-seeking versions of the problem. Mansini et al. (2006) designate the

circuit-seeking version as the tour orienteering problem (TuOP).

As mentioned in Chao et al. (1996b), the name “orienteering problem”

originates from the treasure hunt game of orienteering in which individual

competitors start at an initial control point, try to visit as many checkpoints

as possible and return to the control point within a given time frame. Each

checkpoint has its own reward and the objective is to maximize the collected

rewards. Pioneering studies of OP can be found in Hayes and Norman (1984),

Tsiligirides (1984), Golden et al. (1987) and Golden et al. (1988) among others.

OP was researched in the literature also under different titles such as the

selective TSP (STSP) (see Laporte and Martello, 1990; Gendreau et al., 1998;

Thomadsen and Stidsen, 2003), the maximum collection problem (MCP) (see

Kataoka and Morito, 1988; Butt and Cavalier, 1994) and the bank robber

problem (BRP) (see Arkin et al., 1998). OP was shown to be NP-hard by

Golden et al. (1987) and by Larporte and Martello (1990) with separate proofs

based on simple reductions to TSP and to the Hamiltonian circuit problem,

respectively.

Chapter 2: Literature review 13

Applications in the literature of this selective routing problem span a wide

range of areas. Several examples are orienteering competitions, routing

technicians to service customers at geographically distributed locations, time-

restricted fuel delivery to households with different urgency scores, athlete

recruiting from high schools for a college team, pickup or delivery services with

private fleets requiring the selection of only a subset of available customers,

trip planning for tourists visiting a city or a region, and fish scouting where a

subset of fishing grounds are sampled to maximize the value of catch rate

assessments.

A well-studied multi-vehicle extension of OP is the team orienteering

problem (TOP). The problem first appeared in a paper by Butt and Cavalier

(1994) under the name multiple tour maximum collection problem (MTMCP)

where all tours have an identical starting and terminal node designated as the

depot. The authors proposed a greedy construction heuristic for its solution.

The first exact solution method developed to tackle TOP is due to Butt and

Ryan (1999). The authors were able to solve problems with up to 100 vertices

using a column generation-based procedure when the number of vertices in

each tour remains relatively small. Another exact algorithm is due to Boussier

et al. (2007). The authors proposed a branch-and-price scheme that starts with

column generation and couples it with branch-and-bound. For performance

enhancement, they applied a heuristic tree-search method derived from

constraint programming and different pre-processing rules that can be

interpreted as branching rules specifically adapted to the problem. Boussier et

al.’s exact algorithm is capable of solving TOP instances with 100 vertices in

under two hours where each vehicle selects up to 15 vertices to visit. The

authors modified their exact solution technique so as to solve also to the

selective vehicle routing problem with time windows (SVRPTW).

Chapter 2: Literature review 14

The first heuristic method for TOP was proposed by Chao et al. (1996a).

The first metaheuristics were proposed by Tang and Miller-Hooks (2005) and

Archetti et al. (2007). The former authors developed a tabu search heuristic

embedded in an adaptive memory procedure; the latter developed two variants

of a tabu search heuristic (one using only feasible solutions, the other one

accepting also infeasible solutions) and a pair of slow and fast variable

neighborhood search (VNS) methods. These pioneering metaheuristics were

soon followed by Ke et al. (2008)’s ant colony optimization (ACO) approach

which was capable of outperforming the previous algorithms in both solution

speed and accuracy. The speed factor of the state of the art of the TOP has

been improved dramatically by the guided local search (GLS) framework of

Vansteenwegen et al. (2009a) and later by the skewed VNS framework of

Vansteenwegen et al. (2009b) both of which relied on a combination of

intensification and diversification procedures. A number of variants of the OP

and TOP have been introduced to the routing literature in the past decade.

They address additional diverse aspects ranging from time windows to time-

dependent or stochastic travel times to capacitated vehicles to stochastic

profits and to a combination thereof. The reader is referred to Gunawan et al.

(2016) for an inclusive review of the studies of the OP, its extensions and

applications that were published after 2009.

Within the generic class of TSPPs, the variant that seems most relevant

and similar to our MPTPP is the multi-period OP with multiple time windows

(MuPOPTW) introduced by Tricoire et al. (2010) for a real-world sales

representative planning problem. A software distribution company which sells

decision support systems for salesman and marketing departments needs to

plan the visits to existing and potential customers by each representative over

a one-week period. There is a list of mandatory customers who should be visited

Chapter 2: Literature review 15

on a regular basis and another list of optional customers located nearby who

should be also considered and probably integrated into the schedules of the

sales representatives. The authors solve MuPOPTW for a given representative

with the aim of determining which of the mandatory and optional customers

to visit on which day. Some of the customers have one or two time windows

per day which restrict the timing of the visit, and there exist even a few

customers who have a different time window for every day.

MuPOPTW in Tricoire et al. (2010) resembles our MPTPP in that each

day of the planning horizon is associated with a separate tour. MPTPP differs

from MuPOPTW considerably due to the following aspects:

(a) In MuPOPTW the tour of each day starts and ends at the same central

node. The mathematical model proposed by the authors can handle also

the case where the representative makes a several-day trip across the

country and stops every night in previously fixed hotels such that the

ending point for day t matches the same location as the starting point for

day 1t . However, even in that case, the terminal node (i.e. the depot) of

each tour is known in advance. In contrast, in the RSP this is unknown.

(b) In MuPOPTW, a customer node is visited at most once whereas RSP allows

certain nodes to be visited more than once.

(c) Moreover, rewards collected from customer nodes in MuPOPTW do not

change over time while in RSP their magnitude depends on the day and

frequency of the visit.

Chapter 2: Literature review 16

2.2 Matheuristics

Recent progress in CPU technologies and commercial solvers results in solving

different mixed integer linear programming models to optimality or near to

optimality in a small amount of CPU time. This leads to design matheuristic

approaches, a heuristic that incorporate stages where mathematical

programming models are solved.

In the literature, there are a couple of articles that use matheuristic

methods in order to solve TSP variants. A unified matheuristic approach based

on the variable neighborhood search is proposed by Lahyani et al. (2017) for

solving multi-constrained traveling salesman problems with profits. Their

method combines different removal and insertion routing neighborhoods. In

Prins et al. (2007) a matheuristic approach is proposed where the original

problem is decomposed into two phases; location decisions and routing. The

location decision problem is solved as a facility location problem. Then a tabu

search builds the routes using the given facility sets.

Halvorsen-Weare and Fagerholt (2013) propose a routing and scheduling

problem emerging in naval logistics. Their method separates the scheduling

decisions from the routing decisions. The routing problem is solved through a

local search heuristic and the scheduling problem is solved through the exact

solution of a MILP formulation. Cacchiani et al. (2014) propose a two-phase

matheuristc approach for the problem of determining the size of the waste bins

located on the streets and planning the daily routes of waste collector vehicles.

They propose a different solution method where a variable neighborhood search

heuristic finds the daily route and an MILP model solves the problem of

determining the optimal size of the waste bins. A review of different heuristic

methods including matheuristics can be found in Salhi, (2017).

Chapter 2: Literature review 17

2.3 Variable Neighborhood Search

The variable neighborhood search (VNS) is introduced by Mladenović and

Hansen (1997) for solving large instances of combinatorial optimization

problems. It represents a dynamic framework for constructing heuristics by

systematically changing neighborhood structures during the search procedure.

In other heuristic methods such as simulated annealing, genetic algorithm, and

tabu search, specific strategies are considered to escape the local optimum in

the search space. This is in VNS done by changing the neighborhood structures

repeatedly. VNS lie in three simple facts: (i) A local optimum with respect to

one neighborhood structure is not necessarily a local optimum with respect to

another neighborhood structure. (ii) A global optimum is a local optimum with

respect to all neighborhood structures. (iii) Based on many empirical pieces of

evidence, it is shown that a large majority of the local optima are slightly close

to each other local optima for many problems (Kirkpatrick and Toulouse,

1985).

In the literature, VNS is used for several TSP variants. The first VNS

with its basic implementation for Euclidean TSP can be found in Hansen and

Mladenović (1999). Guided VNS method is introduced by Burke et al. (2001)

for the Asymmetric TSP (ATSP). Carrabs et al. (2007) apply VNS for the

Pickup and Delivery TSP. The influence of the neighborhood structures for

VNS method in Generalized TSP is studied by Hu and Raidl (2008). Mansini

and Tocchella (2009) develop a multi-start VNS for the traveling purchaser

problem under budget constraints.

VNS is also used to solve the standard versions of the vehicle routing

problems (VRP). Crispim and Brandao (2001) solve the VRP with backhauls

(VRPB) using a variable neighborhood descent (VND). It is a variant of VNS

Chapter 2: Literature review 18

where exploration of different neighborhood structures is performed in a

deterministic way. Its benefit is again based on the fact that various

neighborhood structures do not have the same local minimum in most cases.

Therefore, the problem of trapping in the local optima can be resolved by

changing the neighborhoods in a deterministic way. Rousseau et al. (2002)

apply a VND by taking advantage of various neighborhood structures to VRP.

Bräysy (2003) develop a reactive VNS for the VRP with time windows. Polacek

et al. (2004) propose a VNS for the multi depot vehicle routing problem

(MDVRP) with time windows.

In many applications, VNS performs better when it is combined with

another metaheuristic. Melechovsky et al. (2005) merge VNS with Tabu Search

(VNTS) for the location-routing problem (LRP). Repoussis et al. (2006) apply

a greedy randomized VNTS for the VRP with time windows (VRPTW). An

effective VNS is proposed by Kytöjoki et al. (2007) for large-scale instances of

VRP. Geiger and Wenger (2007) propose VNS complemented with an

interactive resolution method for VRP. Fleszar et al. (2009) develop a VNS

method for the open vehicle routing problem (OVRP). Liu and Chung (2009)

propose a VNTS for VRPB with inventory. Polat et al. (2015) propose a

perturbation-based VNS for solving VRP with simultaneous pickup and

delivery with a time limit. Todosijevic et al. (2017) propose a general VNS for

the swap-body vehicle routing problem. A VNS algorithm for production

routing problems is introduced by Qiu et al. (2018).

In the literature, there are a couple of extensions for VNS. The first

extension is the reduced VNS (RVNS). The main goal in RVNS is to reduce

the calculation time of the local search step by selecting random neighborhood

structures and updating them, if a better solution is found. The RVNS is shown

to be significantly efficient when a quick solution is needed, regardless of its

Chapter 2: Literature review 19

distance from the global optimum (Hansen et al. 2010). Another extension of

VNS is the variable neighborhood decomposition search (VNDS). It includes a

sequential approximation method where the local search procedure is not

applied within the whole solution space (Hansen and Mladenović, 2001). The

skewed VNS (SVNS) method is another extension of VNS. It addresses the

problem of exploring valleys far from the incumbent solution. (Hansen and

Mladenović, 2001) In fact, SVNS enhances the exploration of faraway valleys

by modifying the objective function value with an evaluation function.

Chapter 3: Notation and formulation 20

Chapter 3

NOTATION AND FORMULATION

3. NOTATION AND FORMULATION

In this section, we study the mathematical formulation of the Roaming

Salesman Problem (RSP). The RSP described in Section 1 can be formulated

as a mixed integer linear program. We first provide the notation followed by

the formulation and the explanation of the new constraints which we devised.

3.1 Notation

Index Sets:

 {0,..., }nN Set V joined by city ‘0’ which denotes a fictitious city with all

associated costs, rewards and meeting duration being zero.

 \{0}V N The set of cities to be considered for collecting rewards

throughout the campaign period where city 1i denotes the

campaign base.

 {1,..., }T The set of days comprising the campaign period.

Parameters:

ijc Traveling cost from city i to j where 0.iic

Chapter 3: Notation and formulation 21

ijd Traveling time from city i to city j where 0.iid

i The base reward of city i .

i The activity duration in city i .

 Maximum number of activities allowed each day.

maxT Maximum tour duration (in hours) in each daily tour.

 Maximum number of consecutive days during which the campaigner is

allowed to be away from the campaign base.

K The base reward depreciation coefficient (factor) applied in successive

activities held in the same city.

K Normalization coefficient multiplied with the collected rewards to make

traveling costs and daily rewards compatible.

Decision Variables:

ijtX Binary variable indicating if arc (,)i j is traversed on day t

 (, ,)i j tN T with 0.iitX

itL Binary variable indicating if the campaigner does not enter, but only

leaves city i in day .t

If 1itL , then the campaigner departs from city i on day t and does

not come back. This indicates that the tour on day t is Type 3 with

i as the starting city (source) of the tour.

itE Binary variable indicating if the campaigner does not leave, but

only enters city i in day .t

Chapter 3: Notation and formulation 22

If 1itE , then the campaigner enters city i on day t and does not

leave again. This means the tour on day t is Type 3 with i being

the ending city (terminal) of the tour.

itS Binary variable indicating if the campaigner stays overnight (sleeps)

in city i by the end of day .t Note that 10 1S since the campaign

starts in the base city ‘1’.

itZ Binary variable indicating if the campaigner holds an activity in city

i on day t and collects the associated reward.

itFM Binary variable indicating if the first activity in city i is performed

on day .t

itsR Binary variable indicating if city i accommodates two consecutive

activities on day t and day ()t s with no other activity in between.

Since 1 s t , we have 0itsR for .t s

itU A continuous nonnegative variable used in the Modified Lifted Miller-

Tucker-Zemlin subtour elimination constraints (referred to as ML-

MTZ inequalities). It is used to determine the order of visit for city i

on day .t

3.2 Mixed integer linear programming formulation

The RSP can be formulated as follows:

Chapter 3: Notation and formulation 23

1

max.
1 1

it its
i t i

i
t s t

ij ijt
i j

i

t

NET BENEFIT
t t s
FM R

K

K c X

N T N T

N N T

 (3.1)

Subject to:

 1ijt
j

X

N

 , i tN T (3.2)

 1jit
j

X

N

 , i tN T (3.3)

 it
i

Z

V

 t T (3.4)

 1it
i

Z

V

 t T (3.5)

 max i it ij ijt
i i j

Z d X T

V N N

 t T (3.6)

1 1i iFM Z i V (3.7)

it itFM Z , \ {1}i tV T (3.8)

 1it iuFM Z , \ {1}, 1i t u tV T (3.9)

 ijt jit it it
j j

X X L E

N N

 , i tN T (3.10)

 1it itL E , i tN T (3.11)

 () 2it it
i

L E

N

 t T (3.12)

Chapter 3: Notation and formulation 24

 (1) 2

jt jt
i t it

j

L E
S S

N

 , \ {1}i tN T (3.13)

 (1)2

jt jt
i t it

j

L E
S S

N

 , \ {1}i tN T (3.14)

 (1)i t it itS L S , \ {1}i tV T (3.15)

0 0tS t T (3.16)

 0it i tS X , i tV T (3.17)

(1) 0i t i tS X , \ {1}i tV T (3.18)

0 0i t itX X , i tV T (3.19)

it itE S , i tV T (3.20)

 (1)it ij t
j

S X

N

 , 1i tV (3.21)

 1it
i

S

V

 t T (3.22)

 1 1
t

k
k t

S 1 t (3.23)

 it ijt it
j

Z X E

N

 , i tV T (3.24)

 it jit it
j

Z X L

N

 , i tV T (3.25)

 (1)(1) (1)(1) 1j t ijt jt itS X U U , () , \{1}i j i j tN T (3.26)

 1itU , i tN T (3.27)

Chapter 3: Notation and formulation 25

 1it jkt
j k

U X

N N

 , i tN T (3.28)

 (1)it i tU S , {1}i tN T\ (3.29)

 (1)(1)(1) 1i t itS U , \ {1}i tN T (3.30)

 it ijt
j

U X

N

 , i tN T (3.31)

 it it ijt
j

U S X

N

 , i tN T (3.32)

 (1) (1)it ijt jit
j j

U X X

N N

 , i tN T (3.33)

its itR Z , 2 , 1i t s tN (3.34)

 ()its i t sR Z , 2 , 1i t s tN (3.35)

1

1

(1)
t

ik its
k t s

Z s R , 3 , 2i t s tN (3.36)

 0itsR , , i t t sN T (3.37)

 1ius itR FM , \{1}, , i t t u u t s uV T (3.38)

1

()
1

 1
t

its i t s it k
k t s

R Z Z Z , 3 , 2i t s tV (3.39)

ijtX , itL , itE , itS , itZ , itFM , itsR {0,1} and 0itU (3.40)

The MILP model in (3.1)-(3.40) has
1 112 2
2 2

+ 3n n n binary

variables, (1)n continuous variables and

Chapter 3: Notation and formulation 26

1 3 62 45 13 2 2 2 22
6 2 3 2 2

3 4n n n n n n constraints.

Note that the meeting indicator variables itZ , itFM and itsR are defined for

i V since the fictitious city cannot host a meeting. The objective function

(3.1) seeks to maximize the difference between the collected rewards and the

incurred routing costs. After consulting with campaign executives, we assume

that the rewards are linearly depreciated as we get closer to the end of the

campaign. The set of constraints (3.2)-(3.6) and (3.40) are adopted from the

TSP literature (Öncan et al., 2009). However, the remaining constraints (3.7)

-(3.39) are novel constraints which we developed specifically for this problem.

A brief on these constraints is provided here; more details on the new

constraints will be discussed in the next subsection.

Constraints (3.2)-(3.6) and (3.40) adopted from the literature

The set of inequalities (3.2) and (3.3) are typical selective TSP equations

limiting the numbers of incoming and outgoing arcs to one for each node in N.

Constraints (3.4) impose an explicit upper bound on the total number of

daily activities ().n Constraints (3.5) force the campaigner to perform at

least one activity on each day t . Constraints (3.6) ensure the maximum daily

tour duration is not violated. Binary integrality and nonnegativity constraints

on the respective decision variables are defined in (3.40).

A brief on the new constraints (3.7)-(3.39)

Equality constraints (3.7) ensure that the first activity indicator variable

and the activity indicator variable for day 1 must be equal. Constraints (3.8)

set an upper bound for itFM , thereby establish the coupling between FM and

.Z Due to the maximization sense of optimization in the objective, the model

Chapter 3: Notation and formulation 27

will try to set all itFM variables to 1 as much as possible. Thus, there is no

need for loose upper bound constraints on .itFM Constraints (3.9) guarantee

that if the first activity in city i was held on day t , then there cannot be an

activity on an earlier day , u u t .

Constraints (3.10) couple the binary decision variables X , L and E .

Constraints (3.11) ensure that if the campaigner enters a city i on day t and

does not leave it the same day, then 1itE and 0.itL Likewise, if he exits

a city i on day t and does not return to it the same day, then 0itE and

 1.itL According to constraints (3.12) the sum of the variables L and E over

all cities on a given day cannot exceed two. In fact, this sum will be two only

in a tour of Type 3, i.e. in an open tour.

Constraints (3.13) and (3.14) force the campaigner to stay overnight in

the source i on day t if there is a closed tour that day. Constraints (3.15)

make sure that terminal cities for days t and (1)t will be the same if there

is a closed tour on day .t Constraints (3.16) set the variables 0tS to zero since

the campaigner can never stay overnight in the fictitious city ‘0’. Constraints

(3.17)-(3.18) are added to prevent the inclusion of the fictitious city in Type 1

and Type 3 tours. Along with constraints (3.19) they capture the presence of

a Type 2 tour as follows: When the campaigner ‘goes’ from city i to the

fictitious city (namely city 0) on a given day t , then he directly ‘returns’ from

there the same day (0 0 1i t itX X). Then he must also stay overnight in city

i in both days t and (1).t In other words, the tours of both days must

terminate in city i . This way the campaigner actually spends the whole day t

in city i which points to the presence of a Type 2 tour.

Chapter 3: Notation and formulation 28

The set of constraints (3.20) ensure that if the campaigner enters city i

on day t and does not depart from there the same day, then he must stay

overnight (sleep) in city i . This means that i must be the terminal city of the

tour on day t . Constraints (3.21) guarantee that if the campaigner sleeps in

city i on day t , he must depart from there the next day. Equalities (3.22)

ensure that the campaigner can sleep in only one city every night. Constraints

(3.23) prevent the campaigner from being away from the campaign base (city

‘1’) for more than consecutive days. The set of inequalities (3.24) and (3.25)

assure that in order for a city i to host an activity on a given day t it must

be visited that day in either of the three types of tours. When there is no visit

to i , there is no activity in i either.

Constraints (3.26)-(3.33) are Modified Lifted Miller-Tucker-Zemlin

inequalities (ML-MTZ) for subtour elimination adapted to RSP. The

disaggregated constraints (3.34)-(3.35) provide the logical coupling between the

binary variables itsR and itZ . When 1itsR , city i has to host an activity in

both days t and ().t s If either day holds no activity in city i , then itsR will

be forced to zero. Inequalities (3.36) ensure that if city i accommodates two

activities in days t and ()t s and no other activity in between (i.e. if

 1),itsR then all corresponding ikZ variables for k days in the interval

 [1, 1]t s t should be zero.

Constraints (3.37) signify the domain restriction on the definition of the

variables .itsR Constraints (3.38) make sure that if the first activity in city i

is held on day t , then there cannot be a pair of activities on days u and ()u s

where u comes after t and ()u s comes before .t The lower bounds on the

variables itsR in (3.39) may seem unnecessary since their coefficients in the

objective function to be maximized are all strictly positive. However, (3.39)

Chapter 3: Notation and formulation 29

serve as valid inequalities and contribute affirmatively to the solution speed of

the model.

3.3 More details on the newly-developed constraints

We will elaborate some of the constraints which we introduced to model the

real-life logistic problem RSP.

Type 1 Tour Constraints: (3.10)-(3.12) and (3.13)-(3.14)

As discussed in Section 1, there are three

possible types of daily tours. Type 1 indicates

closed tours where the campaigner wakes up in

city i in day t , visits and collects rewards in

other cities (or in the starting city), comes back

to city i and stays there overnight. So, city i

becomes both the source and the terminal node

of the tour, see Figure 3.1. Constraints (3.10)

couple the logical binary variables itE (enter

the city and do not leave it the same day) and itL (leave the city and do not

return to it the same day) with the binary routing variables ijtX , and ensure

linear dependence between L and E . Constraints (3.11) guarantee that either

itE or itL can be nonzero, but not both. As a result, constraints (3.10), (3.11)

and (3.12) together ensure that if the campaigner enters a city i , but does not

leave it, then we have 1itE and 0itL . In addition, they ensure that if the

campaigner exits, but does not re-enter city i on the same day, then we have

 0itE and 1.itL Constraints (3.10) can be interpreted as the following:

i

Figure 3.1 Type 1 tours

Chapter 3: Notation and formulation 30

() ()outgoing degree - incoming degree -i i it itL E . If the campaigner enters

and then exits city i , or if he does not visit city i at all on day t , then both

itL and itE will be zero. Consequently, on a given day t one can at most leave

one city and enter another city.

Constraints (3.13) and (3.14) ensure that the starting city (source) is the

same as the ending city (terminal) in day t if the tour of day t is a closed

tour. Also the term

 2
jt jt

j

L E

N

 being zero means that there is a loop, i.e. a

closed tour in day t . The existence of a loop means that the campaigner begins

his tour in city i in the morning and comes back to the same city by the end

of the day. So, constraints (3.13) and (3.14) say that if there is a closed tour,

the campaigner stays overnight exactly in the same city which he stayed in

overnight the day before. That is to say that constraints (3.13) enforce 1itS

if the campaigner wakes up in city i in day t , and returns to i to sleep there.

In that case, all itL and itE will become zero leading to a closed tour which

begins and terminates in city i in day t . If there is no closed tour, there will

be only one city i that the campaigner exits and does not enter, thus 1itL .

Likewise, there will be only one city j that he enters and does not exit, thus

 1jtE . Consequently, the values of itL and itE for all other cities will be

equal to zero due to (3.12), and we will have

 1

2
jt jt

j

L E

N

.

Type 2 Tour Constraints: (3.16)-(3.19)

To model specific days in which the campaigner does not travel to any

city, we define a fictitious city ‘0’. All rewards and costs associated with this

Chapter 3: Notation and formulation 31

city are set to zero. Constraints (3.16) prevent the campaigner from staying

overnight in this city. Constraints (3.19) force him to exit the fictitious city

‘0’ in case he has entered it. Constraints (3.17) and (3.18) are considered for

the cases where the campaigner wakes up in city i , realizes an activity there

and sleeps in the same city without leaving it. These two sets of constraints

ensure that if he goes from city ‘0’ to city i (or from i to ‘0’), then he must

sleep in city i .

Type 3 Tour Constraints: (3.20)-(3.21)

In Type 3 tours the campaigner wakes

up in city i in day t , possibly visits several

other cities, and sleeps in another city j ,

see Figure 3.2. The set of constraints (3.20)

-(3.21) ensure that if the campaigner does

not leave city i in day (1)t , i.e. if the

outgoing degree of city i is zero, then he

cannot have slept in i in day t (the day before). He may go to the fictitious

city, but should depart from the starting city i under any circumstance.

Subtour Elimination Constraints: (3.26)-(3.33)

In order to ensure that every feasible route contains only one sequence of

visited cities, we introduce constraints (3.26)-(3.33) for the purpose of subtour

elimination. We do not consider lasso subtours in our model. In order to

formulate Lifted Miller-Tucker-Zemlin subtour elimination constraints (L-

MTZ) originally proposed by Desrochers and Laporte (1991), we consider two

alternatives.

j

i

 i

Figure 3.2 Type 3 tours

Chapter 3: Notation and formulation 32

Alternative 1

For day t suppose there is an open tour starting in city 0i . In this case,

the corresponding values of the decision variables are set as follows:

0 0 0 0 0(1) 1, 0, 0, 0 and 1.i t i t i t ji t i t

j

S S E X L

N

 Note that by

setting
0

1i tL , both

0 0

 and i t ji t
j

E X

N

 become equal to 0. We use this

information as well as the information acquired in the closed tour alternative

to incorporate a new dummy variable into the L-MTZ.

Alternative 2

For day t suppose there is a closed tour starting in city 0i . In this case,

the corresponding known values of variables are as follows:

0 0 0 0 0 0, 1 , , ,1, 1, 0, 0 and 2.i t i t i t i t i jt ji t

j j

S S E L X X

N N

We assume that the campaigner can visit at most n cities in each day.

itU becomes k if city i is the kth visited city

(, 1,2, ,).i k n The inequalities (3.26) are L-MTZ subtour elimination

constraints which state that there should be only a single tour covering visited

cities and not two or more disjointed tours that only collectively cover these

cities. They also guarantee that if there is an arc between cities i and j while

city j is not the starting city, jtU will be greater than itU by 1 unit only.

Chapter 3: Notation and formulation 33

Reward Function Constraints: (3.34)-(3.39)

Note that after defining constraints (3.34) and (3.35), we actually do not

need the constraints (3.38), as the set of constraints (3.9) and (3.35) guarantee

that if the first activity is held on day t , no previous activity may be performed

before day t . In order to verify the equations (3.34)-(3.39), let us consider the

following possibilities. Suppose that the first activity in city i was held on day

t , i.e. 1itFM and hence (i) 0 for 1 1itsR s t according to (3.38).

This is also guaranteed by constraints (3.9) and (3.35). If 1,itFM then there

cannot be an earlier activity on day ().t s This leads to (ii)

 0 for 1 1iuZ u t due to (3.9). Again if 1,itFM then there cannot

be an activity on an earlier day , 1.u u t

Eventually, we have (iii) 0iusR for 2 1, 1 1.u t s u The

equalities (iii) also follow from constraints (3.9) and (3.35). Finally, if 1itFM

again, then there cannot be a pair of activities on days u and ()u s where u

comes after t and ()u s comes before ,t i.e. (iv)

 0 for 1 1, 1 1iusR t u u s t . This is the same domain

definition as the one in constraints (3.38). In other words, the equalities (iv)

are implied also by constraints (3.38).

3.4 An alternative formulation for satisfying maximum tour duration

constraint

An alternative way of satisfying the maximum daily tour duration is to

introduce the continuous decision variable itA which indicates the arrival time

to city i on day t. Such a formulation is especially useful for problems with

time-windows. Such a formulation can also be important if the schedule of

Chapter 3: Notation and formulation 34

coaches or flights are incorporated into the model or the time slots of the day

are considered in the reward function. However, based on our preliminary

empirical testing of both formulations, it was found that constraints (3.6)

provides better results, see Section 8.

 max (1)(1)it i tA T S , \ {1}i tV T (3.41)

 max (1)(1)jt it i it ij ijt j tA A Z d T X S , , \ {1}i j tV T (3.42)

 max (1)(1)jt it i it ij ijt j tA A Z d T X S , , \ {1}i j tN T (3.43)

 max0 it i itA T Z , i tN T (3.44)

 max (1)(2)it i it ij j t jtA Z d T M S S , \ {1}i tV T (3.45)

 max()it jit ijt
j j

A T X X

V V

 , i tV T (3.46)

The set of constraints (3.41) ensure that the arrival time for city i on day

t will be zero if the salesman stays overnight on day t-1. Upon arrival in city

j, the travel time between city i and city j and the activity time in city j are

considered in constraints (3.42) and (3.43). Inequalities (3.44) impose the lower

and upper bounds of itA . Constraints (3.45) are the general maximum tour

duration definition. These are binding for open tours. The set of constraints

(3.46) are also binding for closed tours.

Chapter 3: Notation and formulation 35

3.5 Added valid inequalities

In addition to the original constraints of the problem, we include the following

valid inequalities:

 1it
t

FM

T

 i V (3.47)

 (1)2it i t itL S S , i tN T (3.48)

 (1)2it i t itE S S , i tN T (3.49)

 1ijt jit it jtX X S S , () , i j i j tN T (3.50)

Valid inequalities (3.47) ensure that the first activity for each city can

occur at most once during the campaign period. Valid inequalities (3.48) and

(3.49) state that if the campaigner stays overnight in the same city on days t

and (1)t , then the tour on day t will be a closed tour; hence, the

corresponding variables itL and itE must be zero. Valid inequalities (3.50)

guarantee that if cities i and j are not terminal cities on day t , there should

not be a cyclic tour between them. These constraints are proved to be

significantly effective. We provided the computational evidence in Section 8.

3.6 An arc-based formulation for subtour elimination

We also tested an arc-based TSP model for our problem RSP. It is adopted

from the single-commodity flow formulation originally developed by Gavish

and Graves (1978) for TSP. Their formulation uses nonnegative flow variables

to indicate the amount of goods flowing from node i to node j after collecting

or dropping the load at i . We found that the node-based formulation built

Chapter 3: Notation and formulation 36

upon the L-MTZ is relatively faster than the arc-based formulation of Gavish

and Graves. Details on the CPU time comparison between the two models are

not reported here but can be collected from the author if required. The arc-

based formulation for subtour elimination is provided below.

Single Commodity Flow Formulations:

New decision variable:

:ijtF A continuous variable used in Modified Gavrish-Grave Subtour

Elimination constraints indicating the flow on arc i-j on day t, ijtF R

. Note that 0.iitF

 , 11jit ijt i t it
j j

F F nS S

N N

 , \ {1}i tN T (3.51)

 , 11jit ijt i t it
j j

F F nS S

N N

 , \ {1}i tN T (3.52)

 (1)ijt it
j

F n S

N

 , \ {1}i tN T (3.53)

 , 1(2)jit i t t
j

F n S

N

 , \ {1}i tN T (3.54)

The main idea in the arc-based formulation is to benefit from the flow

among nodes for eliminating subtours. In case city i is visited, the outflow of

this city should be higher than its inflow (() (i)ioutflow - inflow 1). Therefore,

Open Tour

Closed Tour

Chapter 3: Notation and formulation 37

constraints (3.51)-(3.54) also verify the before-mentioned statement when the

salesman does not sleep in city i the previous night (day t-1).

 , 1ijt ijt i tF X S , , i j tN T (3.55)

Constraints (3.55) set the lower bound for flow ijtF R such that, if the

salesman goes from city i to city j, the flow should be equal to at least 1.

 (1)ijt ijtF n X , , i j tN T (3.56)

 , 11 (2)jit i t ijtF n S X , , i j tN T (3.57)

Constraints (3.56) and (3.57) ensure that flow (ijtF) cannot exceed the

number of total visited arcs each day.

 0ijtF , , i j tN T (3.58)

Equations (3.58) are the non-negativity constraint.

Chapter 4: An application to election logistics 38

Chapter 4

AN APPLICATION TO ELECTION LOGISTICS

4. AN APPLICATION TO ELECTION LOGISTICS

The Roaming Salesman Problem has several applications in logistics and

scheduling problems. One of the most suitable contexts for the application of

RSP is election logistics. The problem proposed and solved here deals with

determining daily routes for a traveling party leader (the politician) who

speechifies in various cities during a given campaign period until elections. This

is a new problem that we call the “Multi-Period Traveling Politician Problem”

(MPTPP), motivated by extensive real-world applications.

MPTPP which we investigate in this study can be considered a novel

version of the Roaming Salesman Problem (RSP). Reminiscent of the

salesperson in the RSP, the MPTPP revolves around a politician who holds

meetings in various cities during a given campaign period. Both problems can

be considered to generalize the classical version of the traveling salesman

problem (TSP) by extending the planning horizon to days; hence, they both

correspond to a multi-period problem.

MPTPP can be described as follows. On a graph with static edge costs

and time-dependent vertex profits, the MPTPP seeks a closed or open tour for

each day of a campaign period with the objective of maximizing the net benefit.

The party leader is not required to visit all cities making the problem selective.

Moreover, s/he can stay overnight in any city to start the tour of the next day.

Chapter 4: An application to election logistics 39

This means that, similarly to RSP, there are no any fixed departure (central)

nodes in daily tours.

We consider the 80 cities (provinces) of Turkey plus a campaign center,

namely the capital city Ankara as well as 12 towns. At the time of the June

2015 election, Turkey had 81 cities and 85 electoral zones where İstanbul was

comprised of three zones, İzmir and Ankara of two zones each. Each city is

associated with a dynamic base reward and a fixed meeting duration. During

the campaign period, the party leader cannot be out of the campaign center

for more than consecutive days. In addition, the total length of the talks

and travel times between cities on the same day cannot exceed maxT hours.

The proposed model utilizes a multifaceted reward function. The reward

of a meeting in a city is linearly depreciated according to the meeting date and

the recency of the preceding meeting in the same city. The reward function

determines the reward of each city considering four factors: i.) Population of

that city. ii.) The party’s vote rate in the previous election and the criticality

of the city. iii.) The number of remaining days until the election. iv.) The

number of days passed since the previous meeting in the same city. As we get

closer to the election day, the reward of crowded cities decreases significantly.

On the other hand, successive meetings in a city are severely depreciated. This

prevents the crowded cities from being visited multiple times within short time

intervals.

We first present an example followed by the data collection and the way

the rewards are computed.

Chapter 4: An application to election logistics 40

Figure 4.1 A simple example presented to illustrate the problem structure.

4.1 A real case example

To further explain the MPTPP setting, we present a simple example of a “one-

day” tour as illustrated in Figure 4.1. In this example, we assume that the

politician wakes up in İzmir (source city). The daily available hours are

assumed to be from 09:00 a.m. to 10:00 p.m. meaning that the maximum tour

duration is 13 hours. The base reward amount and the meeting duration of

each city are provided in Figure 4.1.

For this simple example, we show a feasible schedule to explain the

settings of the problem. At the beginning of the day (i.e. at 09:00 a.m.), the

politician holds a meeting in İzmir and leaves the source city at 11:00 a.m. with

a collected reward of 1295. Next, he/she visits Muğla at 01:30 p.m. by passing

through Ayd n without holding a meeting. The politician leaves Muğla at 02:30

Chapter 4: An application to election logistics 41

p.m. while the net benefit is 1710 (1295 – 225 + 640) and arrives in Denizli at

04:07 p.m. The leaving time there is 05:07 p.m. where collected net benefit is

2225 (1710 – 145 + 660). Finally, the politician arrives in Antalya at 07:35

p.m. where the talk duration is 90-minute. At 09:05 p.m. the daily tour is

finished by collecting a total net benefit of 2938. Since there is no time left to

visit neighbor cities, the politician stays overnight in Antalya. The next

morning, he/she starts the tour by leaving Antalya (most probably with

holding no meeting there due to the penalty imposed by the reward function)

to roam other cities.

4.2 Data collection and analysis

The time limit maxT which is 14 hours (12 hours) in the summer (in the winter)

imposes an implicit threshold on the number of cities that can be visited in

any given day. Each city can accommodate at most one meeting a day. There

can be an upper bound (such as two or three) on the total number of meetings

held in each city during the campaign period. The meeting durations including

preparation and holding times range from 60 to 120 minutes depending on the

population of the host city. For the three biggest cities, namely İstanbul,

Ankara and İzmir, it is 120 minutes. For cities with less than a million

population it is 60 minutes, and for all other ones, this duration is 90 minutes.

Another point that needs mentioning is the periodic returns to the campaign

base Ankara. The politician cannot be away from the capital city for more than

 consecutive days where we choose {4,5,6,7}.

Chapter 4: An application to election logistics 42

4.3 Preprocessing of the symmetric time/cost matrix

We assume that the politician can travel either by bus or by airplane.

The unit of traveling on the road by bus is assumed 1.50 TL/km where TL

refers to Turkish Lira. For those cities with an airport and a bus travel time

of more than 270 minutes (4½ hours) from one another, the faster travel option

(either airplane or party bus) is chosen. In the calculation of the traveling costs

between those origin/destination pairs for which flying proves to be a faster

option, we assume that the politician flies with at least four other party

executives. We determined the cheapest available ticket prices accordingly.

The travel cost and time matrices have been computed after the investigation

of the road travel and flight times as well as the ticket prices in Google Maps

and TurkishAirlines.com, respectively.

We computed the parameters ijc and ijd to avoid defining a new binary

variable to capture the mode of travel, as this would dramatically increase the

complexity of the mathematical model. We define three new city sets and four

new parameters for the preprocessing of the symmetric cost/time matrix.

HI : The set of cities with hub airport.

NAI : The set of cities with no airport.

NHAI : The set of cities with non-hub airport.

:road
ijt Time required in minutes for driving from city i to city j .

:fly
ijt Time required in minutes for flying between the airports of

cities i and j .

cos (), () :cc i A it Cost of going from the city center to the airport of city i .

Chapter 4: An application to election logistics 43

(), () :cc i A it Time required in minutes for going from the city center to

the airport of city i .

Step 1

If there is a direct flight from city i to city j and if 270road
ijt , then we

calculate actual flight times actualijt as follows:

 (), () (), () actual fly delay
ij cc i A i ij A j cc jt t t t t with delayt included to

consider possible delays.

Step 2

Suppose NHAk I and NAj I where 270.road
kjt We calculate

 , () (), alt actual road
kj k i j i j jt t t where i(j) is the nearest city with hub airport to j, i.e.

H

() argmin{ }.road
ij

i
i j t

I
 If alt road

kj kjt t , then we set new alt
kj kjt t and

cos = cos = cos cos cos (), () , () (), new alt
kj kj cc k A k k i j i j jt t t t t as the new travel

times and costs in our symmetric cost/time matrix.

Computation of the objective function

A simple normalization coefficient is used to make the rewards and

traveling costs compatible in the objective function (3.1). Given the index sets

and the decision variables in Section 3, the depreciation in (3.1) is defined as

 1m t

m
. The actual reward accruing from meetings are calculated according to

the following rules. Further details are provided in the next section.

Rule 1: The earlier a meeting in the campaign period, the higher its reward.

Chapter 4: An application to election logistics 44

Rule 2: The shorter the time difference between two successive meetings in

the same city, the lower the reward earned from the latter meeting.

Rule 3: The sooner there is a follow-up (repeat) meeting in the same city, the

more its actual reward is depreciated.

4.4 Time-dependent rewards

In this section we explain the reward calculation and the categorization of cities

in Turkey from the main opposition party’s perspective.

The proposed model utilizes a multifaceted reward function. Initially, a

nonnegative prize of i (base reward) is specified for holding a meeting in each

city i V where i depends on two factors:

Factor 1: Population of city i V ().iPop

Factor 2: Ratio of votes of the politician’s party (PP).

In addition, the actual reward earned in city i N on day t T is based on

two further factors:

Factor 3: Number of remaining days denoted by ()m t until the end of the

campaign.

Factor 4: Number of days passed since the previous meeting in the same city,

denoted by s where 1 1s t .

The first two factors directly affect the base reward i whereas the

remaining two make the reward time-dependent. Each factor is explained

below.

Chapter 4: An application to election logistics 45

4.4.1 Factor 1: Population

Population is one of the most decisive factors in determining the importance

of a city in an election campaign. A base reward of 100 is assigned to all cities

initially. Each city’s population is divided by the minimum population of all

cities and multiplied by a city-dependent multiplier. This multiplier is taken

as 3.0 for the top seven (most populated cities), but 2.0 for İstanbul to close

the drastic gap between the reward of İstanbul and other cities. The remaining

cities are assigned a value of 5.0. The result is then multiplied by a Criticality

Factor ()iCF where the operator ⟦∙⟧ rounds its argument to the nearest integer

number.

.

100()
Popi

i i iMin.Pop
=CF × + ×Multiplier (4.1)

Figure 4.2 represents the population of all 81 provinces in Turkey.

4.4.2 Factor 2: Ratio of votes and Criticality Factor

A useful information is to incorporate the importance of a given city given its

previous voting pattern. We define four criticality categories to label the

importance of a city from the perspective of the PP. Different towns or electoral

zones of a given city are mutually assigned to the same criticality category. We

introduce the Criticality Factor given for city i ()iCF . Categories are defined

as follows:

Chapter 4: An application to election logistics 46

Figure 4.2 Population of 81 provinces in Turkey

Category 1: Noncritical Cities

These are the cities in which the number of seats won by the PP would

not change even when the number of its votes changes by 20%. We set

 2iCF for .i Noncritical Cities

Category 2: Negative Critical Cities

In these cities, a 20% increase in the PP votes does not affect its seat

number in the parliament (the number of PP deputies elected from those

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Population of 81 Provinces in Turkey (2015)

Chapter 4: An application to election logistics 47

cities). However, a 20% decrease would cause PP to lose at least one seat. We

set 3iCF for .i Negative Critical Cities

Category 3: Positive Critical Cities

In positive critical cities, PP would gain at least one more seat in the

event of a 20% increase in the vote count of the past election. However, there

exists no risk of losing any seat in the event of a 20% loss in the votes. We set

 4iCF for .i Positive Critical Cities

Category 4: Positive-and-Negative Critical Cities

The situation is most sensitive in cities of category 4 where both a 20%

increase and a 20% decrease in the vote count would impact the party’s current

seat number in the parliament. Hence we set 5iCF for

 - - .i Positive and Negative Critical Cities

The motivation for choosing these CF values is to assign high rewards to

highly populated cities, but doing so at a decreasing rate. Another motivation

is to close the enormous gap between metropolitan cities and other midsize

cities of Turkey. For instance, İstanbul, despite its ~15 million population,

should not earn thrice as much base reward as Ankara just because of having

thrice as much population.

4.4.2.1 Criticality Analysis

In order to find the effect of variation in the number of votes on the

number of deputies in the parliament, the data of June 2015 election has been

analyzed for all cities. In our criticality analysis, we first simulated the election

procedure according to the actual vote counts registered in the election of June

2015. We were able to reproduce exactly the same seat distributions in all 85

Chapter 4: An application to election logistics 48

electoral zones of Turkey which shows the validity of the implemented

simulation. Next, we evaluated each city by decreasing and increasing the votes

of PP in that city by 20%. Finally, we categorized cities as discussed above.

The reward statistics are provided in Table 4.1.

Table 4.1 Statistics of rewards in criticality categories

 Noncritical
Negative

Critical

Positive

Critical

Positive-and-

Negative critical

of cities 42 19 11 9

Avg Reward 268 444 564 1,193

Min. Reward 210 315 460 800

Max Reward 440 675 680 2,370

To illustrate the effect of the CF let us consider for example Samsun and

Kastamonu in the Black Sea Region. We have 540Samsun and

 500Kastamonu although Samsun’s population is more than three times

Kastamonu’s population. The base reward of Kastamonu almost catches up

with Samsun because Kastamonu is a positive-critical city whereas Samsun is

a negative-critical city. We include only those cities of Turkey which have a

base reward value i higher than 300 in the set {1,..., }nV where the

minimum is 210 as listed in Table 4.1. This leads to 51n cities to be

considered in our MPTPP model. As highlighted earlier, MPTPP has obviously

a selective nature where not all cities in {0,1,..., }nN need to be included in

the meeting plan. The base rewards of all 81 cities of Turkey are illustrated in

Figure 4.3 below.

Chapter 4: An application to election logistics 49

Figure 4.3 Base rewards (i values) of all 81 provinces.

4.4.3 Factor 3: Number of remaining days until the election day

We assume that as we get closer to the end of the campaign, the influence

of meetings will decrease. In order to inflate the base rewards with the

increasing number of remaining days until the elections, we develop the

following formula to represent the reward.

1

()i i
m t

Reward t
m

 , i tN T (4.2)

If PP decides to reverse the effect of Factor 3, one can modify the formula

in (4.2) by setting ()i i

t
Reward t

m
. The actual reward of a meeting would

then be the lowest on the first day and the highest on the last day of the

campaign.

0

500

1,000

1,500

2,000

2,500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

Population (×100,000)

 Ankara
Bursa

Antalya

 İzmir
 Hatay

 Istanbul

Chapter 4: An application to election logistics 50

4.4.4 Factor 4: Number of days passed since the previous meeting

In order to prevent the model from visiting highly-rewarded cities

frequently, we severely penalize repeat meetings. To inflate the base rewards

with the increasing number of days passed since the last meeting, the following

formula is adopted.

1

(,)i i
m t s

Reward t s
m Km

 , i tN T (4.3)

where s represents the number of days passed since the last meeting and

 (1)K K is a prespecified depreciation factor for repeat meetings. Note that

the criterion of depreciation is not the number of meetings held in city i so

far, but the recency of the previous meeting.

4.5 Supplementary assumptions in MPTPP

In this section, we introduce several operational assumptions pertinent to the

meeting tours in MPTPP. We propose the associated constraint equations (4.4)

-(4.6) below, which have not been included in the original RSP model in (3.1)

-(3.40).

 1it
i BigCities

Z t T (4.4)

 1 0itR , \ {1}i tV T (4.5)

 it i
t

Z

T

 i V (4.6)

Chapter 4: An application to election logistics 51

The first supplementary assumption formulated in (4.4) is that a daily

tour cannot involve more than one big city where the description ‘big city’

applies to İstanbul, Ankara and İzmir—namely the top three cities with respect

to population size. The second assumption gives rise to the constraints (4.5)

which state that it is not permitted to make two meetings in the same city on

two consecutive days. The third assumption brings about a maximum number

of meetings allowed in a given city i during the entire campaign period. This

maximum number is denoted by the parameter i in (4.6)

Chapter 5: Scenario Analysis 52

Chapter 5

SCENARIO ANALYSIS

5. SCENARIO ANALYSIS

In order to highlight the unique features of MPTPP, we test our model on

different scenarios. In this chapter, we present the details of the developed

scenarios. In Section 5.1, we describe the details of four developed extreme

scenarios. In Section 5.2, we describe the scenario with an alternative reward

function.

5.1 Scenario analysis level 1: Extreme scenarios

We investigated the following four scenarios with max 14T hours as the

maximum tour duration (Shahmanzari et al. 2018).

Scenario 1: All-inclusive base scenario, referred to as the base scenario.

Scenario 2: The base scenario with the additional restriction of at most one

meeting in each candidate city throughout the campaign. This

additional restriction is actually a relaxation on Scenario 1.

Scenario 3: The base scenario where the objective function involves only

collected rewards and no traveling costs. In addition, the politician

needs not to return to the capital city periodically.

Scenario 4: The base scenario with only closed daily tours originating and

terminating at the capital city every day.

Chapter 5: Scenario Analysis 53

5.1.1 Scenario 1: Model Full-MILP (Base Scenario)

The politician’s campaign starts and ends in Ankara. Thus party leader starts

his campaign in Ankara in the morning of day 1. For simplicity, we treat day

0 as the fictitious day.

- Party leader cannot be away from Ankara for more than 5 days in a

row. In other words, s/he returns to Ankara at least once every +1 days.

- Other than starting and ending in Ankara on day 1 and day ,

respectively, there is no restriction as to where to end up (sleep) the tour at a

given day and start the tour of the next day (wake up). Thus, the tour of a

given day t can comprise either an open route or a closed route.

- Each day accommodates one daily tour only. Starting the daily tour in a

city i, holding a meeting there, and staying in the same city overnight is also

an option. This is modeled as a closed route from city i to the fictitious city

(city 0) and back to city i with no traveling costs.

- There is a “hard” maximum tour duration (maxT) constraint in place

which prohibits daily tours in excess of 14 hours.

- When the travel time from city i to city j does not exceed 1
2

4 hours, the

party leader will be transferred by bus. Otherwise, the transfer happens by

airplane. We calculate the time of air travel as the sum of actual flight time,

one hour for VIP check-ins, and the travel time by bus between the departure

and arrival city centers and their respective operational airports.

 The resulting travel time is compared to the travel time by party bus.

Whichever option takes shorter is chosen as the preferred mode of

transfer. The travel cost from city i to city j is calculated according to

Chapter 5: Scenario Analysis 54

the chosen mode of transfer. In case the airplane option is chosen, we

multiply the ticket fare of the economy class by 5 assuming that party

leader flies with four other party executives every time s/he boards an

airplane.

· Candidate cities are divided into three segments: Big Cities (Istanbul,

Ankara, and Izmir) where the number of meetings hosted is limited to three,

two and one, respectively (parameter i). These count values may change after

discussion with other party leaders and other party technocrats in charge of

party campaign planning.

 A daily tour cannot involve more than one Big City.

 Two meetings in the same city on two consecutive days are also

forbidden leading to valid inequality.

 There cannot be any day without a meeting.

 The number of meetings held each day is limited to four, i.e. 4

in the original RSP constraints (3.4).

 As the problem is selective, not all cities have to be included in the

campaign program.

- The objective function is the same as (3.1). The earlier the meeting, the

higher the reward. We have computed base reward for each city i according to

the city’s population and the so-called criticality factor (CFi). The latter factor,

namely CF is derived from the sensitivity of the number of seats (deputies in

the Grand National Assembly of Turkey) party has won from each city in the

previous two general elections. CF is namely a quantitative measure for the

sensitivity to a possible change by ±20% in the number of votes received.

 If the meeting in city i is held on day 1, then we collect Full i from

city i. Otherwise, i is depreciated linearly with time. Hence, if the

Chapter 5: Scenario Analysis 55

meeting is held on day (the last day of the campaign), the

collected RP will be only (/i). The depreciation factor for a

meeting held on day t is therefore equal to

 1t

.

 Likewise, repeat meetings are also depreciated. Here the depreciation

criterion is not the number of meetings held in city i so far, but the

recency of the previous meeting. The lesser the number of days

passed since the previous meeting in city i, the higher the

depreciation of the reward that can be collected from a repeat

meeting. Accordingly, if the prior meeting in the same city was

held s days ago, the depreciation factor is s/ .

5.1.2 Scenario 2: Model Full-1Meet

Scenario 2 is derived from Scenario 1 by revoking the option of multiple

meetings in big and midsize cities. Since each city can host at most one meeting

during the campaign, the model simplifies drastically as follows: All 2-index

binary variables representing first meetings and all 3-index binary variables

representing repeat meetings are now void. The definition and coupling

constraints involving those variables also become void. The model diminishes

to 2 + 4 3n n binary variables and

3 492 222
2 2

7 4n n n n constraints. The net benefit definition

comprising the objective function is simplified as shown in (5.1). It is worth

noting that the optimal solutions (thus the optimal objective values)

of Scenario 1 and Scenario 2 may be identical.

Chapter 5: Scenario Analysis 56

1

(-)
1

i it ij ijt
i t i j t

NET BENEFIT Full Meet
t

Z K c X

N T N N T

 (5.1)

5.1.3 Scenario 3: Model Rew-Only

Scenario 3 is derived from Scenario 1 by two modifications: (i) The necessity

to periodically return to the capital Ankara at least once every days is

lifted. The politician has full freedom to hop from one city to another as he/she

sees fit. He/she can stay overnight in any city. Yet the campaign is still going

to start in Ankara on day 1. (ii) Traveling costs are discarded from the

objective function. This fundamental change motivates the politician to roam

between all candidate cities without worrying about the cost of traveling.

5.1.4 Scenario 4: Model Alt-1Depot

Scenario 4 is derived from Scenario 1 by a fundamental paradigm shift in which

the politician wakes up in the capital city Ankara every morning and returns

there to sleep by the end of every day. This implies that each daily trip is going

to be a closed tour with Ankara being the depot of the trip.

We adapt the single-commodity flow formulation of Gavish and Graves

(1978) to this scenario as follows: Node-based load variables itU indicating the

order of visit to each city are replaced by arc-based continuous variables ijtF

indicating the flow from one city i to another city j on day .t The reason for

using single commodity flow-based formulation only in scenario 4 is due to the

fact that all daily tours are closed tour in this scenario and there is a single

known depot. This reduces the problem to a multi-period selective TSP with a

single depot which is the campaign base. Based on the results of the pilot tests,

Chapter 5: Scenario Analysis 57

the flow-based formulation finds a better solution compared with the node-

based formulation.

Figure 5.1 Different tours in the first three scenarios.

Chapter 5: Scenario Analysis 58

Flow balance equations and tight bounds on the flow variables are

incorporated into the new model, which serve as subtour elimination

constraints. They replace the ML-MTZ inequalities (3.26)-(3.33) in the

proposed MPTPP model. The newly introduced binary variables

, and it it itE L S which keep track of open and closed tours are also dismissed.

Consequently, the related coupling constraints that involve these variables

become void.

Note that Alt-1Depot is a much more restrictive model than Full-MILP

since it does not allow open tours and requires the politician to return to

Ankara at the end of every day. Clearly, the optimal objective value of Alt-

1Depot is a valid lower bound on Full-MILP.

5.2 Scenario analysis level 2: Alternative reward function

Thus far we assumed that earlier meetings produce higher rewards. In an

alternative scenario, we reverse the direction of the reward function such that

the actual reward increases as we approach the election day, i.e. the end of the

campaign period. In this case, the objective function formulation will change

as follows:

2
1

max.
()

i it i its
i t i t s t

ijt ijt
i j t

NET BENEFIT
s tt

FM R
k

c X

N T N T

N N T

 (5.2)

Chapter 6: The proposed two-phase matheuristic 59

Chapter 6

THE PROPOSED TWO-PHASE MATHEURISTIC

6. THE PROPOSED TWO-PHASE MATHEURISTIC

The idea of using a matheuristic approach to tackle large-size instances is

motivated by observing the results of the variable fixation scenario. In this

scenario, for those instances where we were able to solve them to optimality,

we convert the optimal values of the binary decision variables , ,andit it itS L E

to parameters with the values equal to the optimal value. The decision variable

itS indicates if the politician stays overnight in the city i by the end of day

.t Binary variable itL indicates if the politician does not enter, but only leaves

the city i in the day t where binary variable itE indicates if the politician

does not leave, but only enters the city i in day t . For the remaining instances,

we convert the values of the best feasible solutions of the mentioned variables

to parameters. After performing this conversion, we solve the model again. The

results are presented in Table 6.1. Boldface figures point to proven optimality

achieved by the commercial solver GUROBI.

We observe that the CPU time of the variable fixation scenario has been

reduced significantly. It can be comprehended that the difficulty of this

problem is much more related to the scheduling and accommodation part

rather than the routing part. Therefore, we decided to design a two-phase

method where scheduling and accommodation part of the problem is solved

Chapter 6: The proposed two-phase matheuristic 60

out of the mathematical formulation. In such approach, the mathematical

formulation will take care of the routing part only.

Table 6.1 Comparison of original MPTPP and Variable Fixation Scenario

 MPTPP Variable Fixation Scenario

Instance Best Gap(%) CPU(s) Best Gap(%) CPU(s)

15C7D 17240 0.0 551.3 17240 0.0 0.1

15C10D 18759 0.0 30458.5 18759 0.0 0.1

21C7D 19138 0.0 6705.3 19138 0.0 0.8

21C10D 21904 6.9 86400.0 21904 0.0 1.1

30C7D 29427 0.0 20670.3 29427 0.0 5.3

30C10D 35013 6.0 86400.0 35013 0.0 3.5

40C7D 30086 4.1 86400.0 30195 0.0 25.0

40C10D 36409 12.6 86400.0 36409 0.0 211.3

51C7D 41087 9.9 86400.0 41182 0.0 95.8

51C10D 45667 22.4 86400.0 45810 0.0 424.6

To solve MPTPP, we tested the model on small instances where the

commercial solvers are able to find the optimal solution in a reasonable amount

of time. To deal with large-size instances we propose a two-phase matheuristic,

which is named Finding Daily Optimal Routes method (FDOR). This

matheuristic consists of two primary components; a city selection and a route

generation. The route generation phase utilizes an integer program to build

optimal route among selected cities. FDOR is an integer programming based

heuristic which decomposes the original mixed-integer linear programming

formulation into as many subproblems as the number of days, where using each

Chapter 6: The proposed two-phase matheuristic 61

subproblem depends on how frequently the campaign base is to be visited

throughout the campaign duration. Therefore, for those days where the

politician requires to visit the campaign center, FDOR model 1 (FDORM1)

will be used and for remaining days FDOR model 2 (FDORM2) will.

The main idea in FDOR is to select a (sub)set of candidate cities to be

solved by either FDOMR1 or FDORM2 using one of the three city selection

approaches, namely the deterministic approach, the greedy approach, and the

pseudo-random approach. The high-level algorithm of FDOR is provided in

Algorithm 1.

Algorithm 1 The high-level definition of FDOR

Do the following for each day of the planning horizon

Phase 1:

(a) Sort the cities in the decreasing order of their updated rewards.

(b) Choose λ cities using one of the following city selection strategies:

- Deterministic City Selection (DCS): Select all available cities.

- Greedy City Selection (GCS): Select top λ cities.

- Pseudo-Random City Selection (PCS): Select λ cities pseudo-

randomly.

Phase 2:

(a) Solve a TSPP for the given cities of Phase 1:

- FDORM1: Politician should stay overnight in the campaign

base.

- FDORM2: Regular days.

(b) Update the rewards.

Chapter 6: The proposed two-phase matheuristic 62

We will explain these approaches in the next subsection. Once the

candidate cities are selected for each day, FDOR solves a daily Selective Prize

Collecting Travelling Salesman Problem (SPCTSP) using either FDORM1 or

FDORM2. The detailed pseudo code of the FDOR is explained in Algorithm

2. The new notations are first provided below:

Additional Notation

tC : Set of candidate cities for day t T .

 : Number of candidate cities.

t : Set of updated rewards of day t T .

K : The base reward depreciation coefficient.

t : Depot (starting) node of day t T .

t : Terminal (ending) node of day t T .

 : Campaign base.

i : Number of meetings in city i N during campaign period.

is : Number of days since the last meeting in city i N .

tS : Solution of day t .

*S : Solution of the whole campaign.

()tB S : The Net Benefit of solution tS .

*()B S : The total Net Benefit of the original problem.

Chapter 6: The proposed two-phase matheuristic 63

Algorithm 2 The pseudo code of FDOR

Initialization:

1: *S , *() 0B S , t , 0i

2: Reward calculation:

3: For 1 :t

4: If 1t Then

5: t ← i // Every city gets its own base reward.

6: t // Campaign starts from campaign base.

7: Else If

8: If 0i then // This is the first meeting in city i.

9:

1

i i
t

10: Else If // This is a repeated meeting in city i.

11:

1 i

i i
st

K

12: t ← i

13: End If

14:

 1t t //Depot node of day t is equal to terminal node of day

 1t .

15: End If

16: Phase 1:

17: tC ←City Selection Approach(, t) // Select cities from N.

18: Phase 2:

19: If

 1 2, ,...,t t t Then //Force the politician to visit as a

terminal node.

20: FDORM1 (, , ,)t t tC → (), , ,t t t iB S S

21: Else If // Solve a SPCTSP.

22: FDORM2 (, ,)t t tC → (), , ,t t t iB S S

Chapter 6: The proposed two-phase matheuristic 64

23: End If

24: *S ← tS

25: * *() () ()tB S B S B S

26: End For

27: Return *()B S and *S as the best objective value and the best feasible

solution of MPTPP, respectively.

28: Output: A feasible solution comprised of daily tours.

Algorithm 2 describes the components of FDOR. Updated rewards and

number of meetings in each city are initialized as zero. Afterward, the reward

of each city is calculated by taking into account the current meeting day t and

the recency of previous meetings which may have been held before day t. Once

rewards of all cities are updated, one of three city selection methods is called

to select a subset of cities to be considered for the second phase.

As discussed, in FDOR, we develop two mathematical formulations and

call them iteratively to solve daily SPCTSPs. The first model is called when

the politician needs to return to the campaign base. The second model is called

on regular days where the politician is free to start from and end up the daily

tours in any node. FDORM1 is designed to generate daily routes where the

starting city is any city including campaign base (the city that politician needs

to visit every days) and the campaigner is required to stay overnight in

campaign base as well at the end of that day. The routes of such days can be

either an open tour or closed tour. FDORM2, on the other hand, is developed

for those days where the politician is not required to return the campaign base.

The feasibility of the solution is guaranteed both with respect to the

Maximum Tour Duration constraint, the Maximum Single Trip Time and also

Chapter 6: The proposed two-phase matheuristic 65

with respect to the Maximum count of daily meetings. In the sequel, we present

a mixed integer linear programming (MILP) formulation for FDORM1 and

FDORM2.

6.1 Mathematical formulation of FDORM1 and FDORM2

Decision variables:

ijX : Binary variable indicating if arc (i,j) is traversed, where 0.iiX

iZ : Binary variable indicating if city i hosts a meeting.

iU : A continuous nonnegative variable used in the lifted Miller-Tucker-

Zemlin Subtour Elimination Constraints (referred to as MTZ

inequalities) determining the order of visit for city i.

 max. Daily NET BENEFIT i i ij ij
i i j

Z c X

N N N

 (6.1)

Subject to:

 maxi i ij ij
i i j

Z d X T

N N N

 (6.2)

 ij ki
j k

X X

N N

 , ,i iN (6.3)

 , 1j i
j

X

N

 i N (6.4)

 , 1i j
j

X

N

 i N (6.5)

 (1)(1)j i ij ijU U X X , ,i j jN (6.6)

 1i jk
j k

U X

N N

 i N (6.7)

Chapter 6: The proposed two-phase matheuristic 66

 0 (1)i iU Z i N (6.8)

 1U (6.9)

 , , 0j j
j j

X X

N N

 (6.10)

 , , 2j j
j j

X X

N N

 (6.11)

 i ji
j

Z X

N

 ,i iN (6.12)

 i
i

Z

N

 (6.13)

{0,1}ijX ,i j N (6.14)

{0,1}iZ i N (6.15)

 0iU i N (6.16)

In the above formulation, the objective function (6.1) maximizes the net

benefit of a tour while deducting travel costs from collected rewards. Constraint

(6.2) ensures that the length of the tour does not exceed the maximum tour

duration. The set of constraints (6.3) guarantee that if the politician enters

any city, except the depot and the campaign base, he/she should leave there.

Constraints (6.4) and (6.5) are typical selective TSP inequalities which impose

the incoming and outgoing degree of each node. The set of constraints (6.6)

and (6.7) are node-based MTZ sub-tour elimination constraints (Miller, et al.,

1960). The lower bound and upper bound of continuous variable U are

determined in constraints (6.8) and (6.9). Equalities (6.10) and (6.11) force the

politician to leave the depot and to stay overnight in the campaign base. The

inequalities (6.12) couple binary decision variable Z and X and ensure that

Chapter 6: The proposed two-phase matheuristic 67

there will be no meeting in non-visited cities. Such a definition results in

holding a meeting in every city that politician enters, except depot. Constraint

(6.13) ensures that there will be no more than meetings. Finally, binary

integrality and nonnegativity constraints on the respective decision variables

are defined in (6.14) (6.16).

Compared to the original formulation of the MPTPP, FDORM1 is a

significantly easier problem. Since the day of the meetings and the recency of

them are calculated in the reward calculation step of FDOR, there is no need

to include extra binary decision variables like FM and R (in the original

formulation of the MPTPP) to capture either first or repeated meetings. Also,

the starting node of each period is known due to the fact that the terminal

node of the previous period is known. Therefore, there is no need for binary

decision variables L, E and S (in the original formulation of the MPTPP) to

track the terminal node of the previous day. Excluding these variables results

in a simple yet effective model.

The mathematical formulation of FDORM2 is similar to FDORM1 except

for that constraints (6.10) and (6.11)are replaced by:

 , 1j
j

X

N

 (6.17)

 ij ki
j k

X X

N N

 ,i iN (6.18)

 1ij ji i
j j

X X Z

N N

 i N (6.19)

Constraint (6.17) ensures that the politician leaves the depot. Constraints

(6.18) allow the model to generate either an open tour or a closed tour. Finally,

Chapter 6: The proposed two-phase matheuristic 68

the constraint (6.19) couples binary decision variables X and Z. In the

formulation of both FDORM1 and FDORM2, we couple binary decision

variables X and Z using equations (6.12).

FDORM1 has 2n binary variables, n continuous variables, and

 22 7 2n n constraints. FDORM2 has 2n binary variables, n continuous

variables, and 22 9n n constraints. Such a decomposition results in a

significant reduction in terms of the number of variables and the number of

constraints as shown in Table 6.2.

Table 6.2 Reduction of original MILP formulation by using FDORM1 and FDORM2

 Original Formulation FDORM1 FDORM2

of

binary

variables

1 112 2
2 2

+ 3n n n 2n 2n

of

continuous

variables

(1)n n n

of

constraints

1 3 623 2 22
6 2 3

45 1 2 2
2 2

3 4

n n n n

n n
 22 7 2n n 22 9n n

Compared with the number of decision variables and constraints in the

original formulation of the problem, FDORM1 and FDORM2 are relatively

and significantly easier problems to solve. Such a reduction is achieved by

Chapter 6: The proposed two-phase matheuristic 69

decomposing the original formulation of the problem into as many subproblems

as the number of the planning time horizon.

6.2 City selection approaches

We investigated the following three selection strategies:

(i) Simply choose | |N ,(i.e. and , .t t n tC N C T)

(ii) Select the cities with the highest updated rewards.

(iii) Pseudo-randomly select the cities based on their updated reward.

Choosing an appropriate set of the cities for the second phase of the

algorithm is the most important step in FDOR to produce a high-quality

solution. The most straightforward strategy would be selecting all cities in N ;

However, by increasing the number of cities, this strategy may increase the

computational complexity of the second phase significantly. Another strategy

can be sorting all the cities in N in the decreasing order of their updated

rewards at the beginning of each period. Next, select top cities from this list

and pass it to the second phase. Such a method requires a sensitivity analysis

of choosing an appropriate value for the parameter . The last strategy would

be a pseudo-random city selection approach, where cities are selected from

the list of the cities depending on their updated reward. Below we explain

mentioned strategies in details.

Chapter 6: The proposed two-phase matheuristic 70

6.2.1 Deterministic City Selection

In Deterministic City Selection (DCS) approach, all cities in the set N are

selected to be considered in the second phase of the FDOR at every iteration.

Therefore, the value of the parameter is equal to .n Consequently, the City

Selection Approach() returns tC where and .t t nC N C

6.2.2 Greedy City Selection

The main idea in Greedy City Selection (GCS) approach is to sort all cities in

the decreasing order of their updated reward in phase 1. Once the sorted list

of the cities is generated, the algorithm select top cities from this list.

Algorithm 3 presents the pseudo-code of GCS.

Algorithm 3 The pseudo code of GCS

New

Notation Definition

 t : List of the cities in the decreasing order of their reward.

Input: , t

Output: tC

1: t← Sorted list of the cities in N in the decreasing order of their reward

2: {}tC

3: while tC do

4: [1]ti

5: tC ← i

6: / { }t t i

7: end while

Chapter 6: The proposed two-phase matheuristic 71

The value of the parameter , which indicates the number of the cities

that should be selected from the sorted list of the cities at the beginning of

each day, is set to 15. We came up with this value by performing a

comprehensive sensitivity analysis of parameter . The results of the sensitivity

analysis are provided in the section 8.

6.2.3 Pseudo-random city selection

Selection of the cities in GCS approach is based on their updated reward, which

is a logical selection criterion that results in choosing highly-rewarded cities at

each iteration. On the other hand, due to the dynamic property of the objective

function, which makes the rewards time-dependent and recency dependent,

such a selection may not result in finding the optimal solution.

Obviously, the random selection of the cities does not result in achieving

an optimal or a high-quality solutions as well. It may even lead to an infeasible

solution, where the travel times of all cities from depot violate the maximum

tour duration constraint. One moderate approach to consider these challenges

is to select cities pseudo-randomly. Algorithm 4 presents the pseudo-code of

Pseudo-random city (PCS) selection.

Chapter 6: The proposed two-phase matheuristic 72

Algorithm 4 The pseudo code of PCS

New

Notation Definition

ip : The weighted probability of city i .

P : Array of weighted probabilities of cities.

 : a random number between 0 and

 i
i

p

N

Input: , t

Output: tC

1: {}tC

2: for 1 : ni do

3:

i

i
i

i

p

N

4: P← ip

5: end for

6: while tC do

7: i← Pseudo-random selection (,P)

8: tC ← i

9: ←

(0,)i
i

uniform p

N

10: end while

The PCS approach randomly selects cities from N where each city has

a known probability of selection. All probabilities of the cities together sum to

1. Once the probability vector is generated, PCS computes the discrete

cumulative density function (CDF) of rewards which corresponds to the vector

of cumulative sums of the rewards. Next, a random number in the range

Chapter 6: The proposed two-phase matheuristic 73

between 0 and the sum of all probabilities (in this case, 1) is generated. The

corresponding value of this random number in the discrete CDF array is the

weighted random city.

If PCS is used in the city selection step of the FDOR, we need to repeat

the algorithm for iter times and pick the best solution and objective value to

ensure solution diversity of FDOR. The necessary modifications in the main

body of the FDOR are shown in Algorithm 5.

Algorithm 5 The pseudo code of FDORPCS

New

Notation Definition

allZ : Set of objective values.

allS : Set of all solutions.

iterS : Solution of the thiter iteration.

()iterZ S : Objective value of the thiter iteration.

Output: A feasible solution comprised of daily tours.

1: t ← Reward calculation

2: while _iter Max Iter do

3: for 1 :t

4: {}tC

5: Phase 1:

6: tC ← PCS(, t)

7: Phase 2:

8: if

1 2, ,..., !t t t then

9: FDORM1 (, , ,)t t tC → (), , ,t t t iZ S S

Chapter 6: The proposed two-phase matheuristic 74

10: else if

11: FDORM2 (, ,)t t tC → (), , ,t t t iZ S S

12: end if

13: iterS ← tS

14: () ()iter tZ S Z S

15: end for

16: allZ ← ()iterZ S

17: allS ← iterS

18: iter

19: end while

20: *() ()allZ S Max Z

21: * ,iterS S where *()iterZ Z S

22: Return *()Z S and *S as the best objective value and the best feasible

solution of MPTPP, respectively.

The FDORPCS method generates iter solutions and pick the best one

as the ultimate output of the algorithm. The value of iter is set to 5 in our

experiments. We will explain the computational results in Section 8.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 75

Chapter 7

A GRANULAR SKEWED VARIABLE NEIGHBORHOOD

TABU SEARCH

7. A GRANULAR SKEWED VARIABLE NEIGHBORHOOD

TABU SEARCH

The roaming salesman problem is a generalization of the well-known traveling

salesman problem (TSP). Garey and Johnson (1979) prove that TSP is a

strongly NP-hard combinatorial optimization problem. The roaming salesman

problem (RSP) is also NP-hard since it is more complex than the traditional

TSP. Therefore, it cannot be solved in polynomial time to optimality.

Motivated by this challenge, we propose a hyper-heuristic algorithm that can

solve the large size instances of the problem in a reasonable amount of CPU

time. When we survey the literature, we observe that the variable

neighborhood search (VNS) algorithm is very successful in solving routing

problems, see Polacek et al. (2007), Liu et al. (2009), Polacek et al. (2008),

Hemmelmayr et al. (2009), Polat et al. (2015), Sarasola et al. (2016), and

Todosijevic et al. (2017). In most of these studies, an extended version of VNS

is used, rather than using a basic version of VNS. Since the RSP is a large-

scale optimization problem, we are motivated to propose an extended VNS

complemented with a Tabu Search (TS) algorithm. Furthermore, to the best

of our knowledge, the VNS has not been applied to the RSP in the literature

since it is a new problem.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 76

This section describes the primary steps of the implemented algorithm.

First, we explain the basic VNS. Then, we introduce a greedy algorithm to

construct an initial feasible solution and compare it with the proposed two-

phase matheuristic. Next, the general framework of the proposed approach is

explained. Finally, the granularity and the skewness used in the approach is

discussed.

7.1 Variable Neighborhood Search

The variable neighborhood search (VNS) was proposed by Mladenović and

Hansen (1997). It is a metaheuristic approach which is applied to different

combinatorial optimization problems. The basic idea in VNS is to change the

neighborhoods in a systematic way within a local search procedure. It searches

for the best solution among different neighborhood structures. VNS method

heavily relies upon the following fact:

Fact 1 A local optimum of one neighborhood structure is not necessarily

a local optimum for another neighborhood structure.

Fact 2 A global optimum is the local optimum with respect to all

neighborhood structures.

Fact 3 In many combinatorial optimization problems, the local optima

with respect to one or multiple neighborhoods are fairly close to each

other.

Let us denote with max,(1,...,),kN k k a set of pre-defined neighborhood

structures, and with ()kN x , a set of solutions in the thk neighborhood of x .

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 77

Unlike many local search heuristics where max 1k , VNS uses multiple

neighborhood structures.

Once the neighborhood structures are determined, the main steps of the

algorithm start. Starting from any initial feasible solution, a random solution

is generated in the first step, which is called shaking. This is followed by

applying a local search method. Once a new incumbent solution is obtained,

the procedure starts with the first neighborhood again; otherwise, the local

search is performed with the next neighborhood structure.

Typically, the neighborhoods are nested, which means the next

neighborhood is larger than the previous one and it contains the previous one.

The pseudo code of the basic VNS is shown in Figure 7.1, where

 max,(1,...,),kN k k is the set of pre-selected neighborhoods. Figure 7.1

illustrates the basic VNS scheme.

The stopping criteria can be an explicit time limit, a threshold on the

number of iterations, or a limit on the number of iterations without

improvements. Interested readers are advised to read Mladenović and Hansen

(1997) and Hansen and Mladenović (2001) for a more detailed explanation of

the basic VNS.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 78

Initialization. Select the set of neighborhood structures max,(1,...,),kN k k

 that will be used in the search;

 Find an initial solutionx ;

 Choose a stopping condition;

Repeat the following until the stopping condition is met :

 (1) Set 1k ;

 (2) Repeat maxthe following steps until k k :

 (a) Shaking. Generate a point at random from neighborhood of thx k x

 (());kx N x

 (b) LocalSearch. Apply some local search method with x as initial

 solution;

 Denote with the so obtained local optimum;x

 (c) Move or not. If this local optimum is better than the incumbent,x

 or if some acceptance criterion is met , move there

 ,x x

 and continue the search with 1 1 ;N k otherwise,

 set 1;k k

Figure 7.1 Steps of the Basic VNS (Hansen and Mladenović, 2001)

“Shaking”, “Local Search”, and “Moving” are the main three blocks of

the VNS. In the ‘shaking’ step, a random solution is generated from the

neighborhood of the current solution. Next, the local search follows. In the

Moving step, the objective value of the current solution is compared with the

objective value of the incumbent solution. If there is an improvement, this

solution is accepted and the algorithm goes back to the first step; otherwise,

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 79

the algorithm goes to the shaking step with using the next neighborhood

structure.

Figure 7.2 Basic VNS scheme (Hansen et al. 2010)

Our proposed approach consists of the following components:

• Initial solution construction,

• Neighborhood structures,

• Granular neighborhoods,

• Shaking procedure,

• Local search,

• Strategic oscillation,

• Acceptance decision criteria (Skewed moves),

• Termination criteria.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 80

In the next subsections, we elaborate on the different components of the

proposed VNS for the RSP.

7.2 Solution Representation

Since RSP involves both costs and rewards, we employ a vector-based

representation which indicates the order of the visited cities in the sequence

with the corresponding meetings. Specifically, we represent a solution in the

VNS method in two two-dimensional arrays. The first (1) array represents

the order of the visits for the cities each day. For instance, [5,8,1,9] means

the tour of the day is started with city 5. Then, city 8 is visited. Then, city 1

is visited. Finally, the tour is finished by visiting city 9. The second (1)

array represents the meetings held at each period. The order of the meetings

within a day does not affect the collected rewards.

As an example, consider a campaign period with 20n and 4 . The

following matrices represent a solution of RSP:

[6, 15, 5,10]

[10, 4, 14,9]

[9, 12, 1,13]

[13, 8, 7,19]

routesa

[6, 15, 5]

[10, 4, 14]

[9, 12, 1,13]

[8, 7,19]

meetingsa

routesa indicates that the order of the visits for four days is [6, 15, 5,10] ,

[10, 4, 14,9], [9, 12, 1,13] , and [13, 8, 7,19], respectively. meetingsa indicates

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 81

that the meetings of the first day are held in cities [6, 15, 5], the meetings of

the second day is held in cities [10, 4, 14], etc.

7.3 Initial solution

We first propose a greedy approach to generate the initial feasible solution.

After comparing the results of this greedy method with the two-phase

matheuristic proposed in Section 6, we employ the latter one to construct an

initial solution. The reason for choosing the two-phase matheuristc lies in the

fact that the quality of the initial solution heavily affects the performance of

the VNS (Hansen et al. 2010). Based on the experimental evidence, it can be

said that a better initial solution significantly decreases the CPU time of the

VNS. The details of the greedy approach are discussed in the next subsection.

The initial feasible solution is represented with 0S in the main algorithm.

7.3.1 Exhaustive search of the candidate cities

In this algorithm, the initial feasible solution is produced quickly and will be

fed to the main loop of the VNS algorithm to make the improvements in the

next steps. We seek to assign the cities to the days rapidly. The main idea is

to assign the highly-rewarded cities to the early days of the campaign due to

the characteristics of the reward function. To assign the cities to the days, we

perform an exhaustive search. Therefore, we call this algorithm the Exhaustive

Search of the Candidate Cities for each day (ESCC).

In ESCC, a sorted list of all cities is created where the sorting is with

respect to the updated rewards of cities at the beginning of each day. Then, a

feasible route is generated such that the maximum possible net benefit is

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 82

achieved considering limitations like maximum tour duration and necessity to

return to the campaign base periodically. Then, a feasibility restoration

function is utilized to make the solution feasible. The detailed pseudo code of

the construction of the initial feasible solution using ESCC is described in

Algorithm 6.

Algorithm 6 The pseudo code of ESCC

1: Initialization

2: T ←

3: MaxSingleTripTime ← 300

4: MaxTourDuration ← maxT

5: DailyMax ←

6: WakeupCity(1) ←

7: For t=1:T

8: If t=1 Then

9: Rewards ←

10: Else If

11: Calculate the reward of each city by taking into account the current

 meeting day t and the recency of the previous meetings which

 may have been held before day t.

12: End If

13: Sort all cities eligible for hosting a meeting on day t in descending

 order of their rewards into the array HRCt

 // HRC stands for Highest Reward Cities

14: WakeupCity(t) i ;

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 83

15: Top6={i};

16: k1;

17: While |Top6|<6 Do

18: j HRCt[k];

19: If i=j OR tij>MaxSingleTripTime Then

20: kk+1;

21: continue;

22: End If

23: Top6Top6 ⋃ {j};

24: kk+1;

25: End While

26: Step 2:

27: Given Top6, permute all 5!=120 possible tours and select the one with

 the lowest total traveling cost. Break ties arbitrary.

 //each possible permutation represents an open tour for day t.

28: Call the selected tour BestTour(t)=[1*,2*,3*,4*,5*,6*]

// 1* is going to be the wakeup city i.

29: If BestTour(t) is infeasible w.r.t. MaximumTourDuration then

30: Crop BestTour(t) from its right and starting at city 6* until it

 becomes time-feasible

31: End If

32: Set WakeupCity(t+1)=last visited city in BestTour;

33: End For

34: Output: A feasible initial solution comprised of T daily tours where the tour

of day 1 starts in

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 84

In the ESCC, we assume that there will be a meeting in every visited city

of daily tour other than the wakeup city. The wakeup city of day t never hosts

a meeting; However, being the sleeping city of day (t - 1), it always hosts a

meeting in day (t - 1). We also assume that each daily tour is either of Type-

1 or Type-3 tours. Therefore, no closed tour are allowed in this algorithm. As

discussed, all cities but the wakeup city visited during a daily tour host a

meeting. The feasibility of the ESCC solution is guaranteed with respect to the

Maximum Tour Duration constraint, the Maximum Single Trip Time and also

with respect to the Maximum count of daily meetings.

7.4 Neighborhood structures

In VNS method, the decision of choosing an appropriate neighborhood

structure, and the way they are arranged play a significant role in the success

of the algorithm. Apparently, the search space of neighborhoods influences the

efficiency of the approach. Most probably, a large neighborhood includes the

global optima while a small neighborhood may not cover the global optima.

On the other hand, the computational effort increases while the neighborhoods

are enlarged.

We conduct preliminary experiments to choose neighborhood structures

where various neighborhood structures along with different sequences are

tested. We employ eleven neighborhood structures for VNS algorithm: 1−Add,

1−Drop, Drop-Add, 1-1 Exchange Non-Visited, 1-1 Exchange Intra Route, 1−0

Relocate, 2−0 Relocate, 1−1 Swap, 2−2 Swap, 1−1−1 Swap (Triple Rotation) and

1−1−1−1 Swap (Quadruple Rotation). The first four neighborhoods resemble the

selective nature of the problem, thus, are called city selection neighborhoods.

The 1-1 Exchange Intra Route is called Intra-Route Neighborhood. The

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 85

remaining neighborhoods are called Inter-Route Neighborhoods since they

include different routes of various days. In the following, we describe each

neighborhood structure in details.

1−Add

Given a city not included in any route of the current solution, the city is

inserted in the best position using the cheapest insertion approach. The city

will be positioned in the first possible day as it may result in obtaining higher

objective value. This position can be before the depot node, between two nodes,

or after the terminal node. An example of 1-Add operator is depicted in

Figure 7.3.

1−Drop

Given a city included in the current solution, it is removed from the route. If

this city is the last visited city of the campaign, it will be simply removed. If

the city is a depot node, the chain feasibility of the whole tour ensures the

connectivity between daily tours. If the city is a transient city, the predecessor

and successor of this city are connected. The primary candidates for removal

are the visited cities with the lowest reward. See Figure 7.4.

j

e

Depot Terminal i

e

k

e

Depot Terminal i

e

k

e

j

e

Figure 7.3 The 1-Add operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 86

Drop-Add

Given a randomly-selected route, The Drop-Add operator drops one node from

that route. Then, a non-visited city is added to another randomly-selected

route. See Figure 7.8.

1-1 Exchange Non-Visited

Given a randomly-selected route, a node is selected at random and its position

is interchanged with a non-visited city. This move is illustrated visually in

Figure 7.6.

j

e

Depot Terminal i

e

k

e

Depot Terminal i

e

k

e

j

e

Figure 7.4 The 1-Drop operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 87

Figure 7.6 The 1-1 Exchange Non-Visited operator

Figure 7.5 The Drop Add operator

j

e

Depot Terminal i

e

k

e

Depot Terminal

Terminal

i

e

k

e

j

e

j′

'e

Depot

Depot

Terminal

Terminal

i′

e

k′

Depot Terminal i′

e

k′

j′

e

j

e

Depot Terminal i

e

k

e

Depot Terminal j

e

k

e

i

e

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 88

1-1 Exchange Intra route

Given a randomly-selected route, two nodes are randomly selected and their

positions are interchanged. The selected nodes can be depot node, terminal

node, or transient node. See Figure 7.7.

1−0 Relocate

In this operator, given a daily route, a randomly-selected city is relocated from

one daily route to another daily route between two consecutive cities, as a

depot node or as a terminal node. See Figure 7.8.

2−0 Relocate

In this move, a randomly-selected node and its successor are removed from

their positions and inserted in a different route. This move is represented

visually in Figure 7.9.

Depot

Depot

Terminal

Terminal

i j k

k j i

Figure 7.7 The 1-1 Exchange Intra Route operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 89

1−1 Swap

Given two cities from two different daily routes, their positions are swapped.

Figure 7.10 illustrates this move.

Depot Terminal i

e

k

e

Depot Terminal i′

j

e

j

e

i′

Depot Terminal k

Depot Terminal i

e

Figure 7.9 The 2-0 Relocate operator

Depot Terminal i k

Depot Terminal i′ k′

j

Depot Terminal i k

Depot Terminal i′ k′

j

Figure 7.8 The 1-0 Relocate operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 90

2−2 Swap

Given two cities on different daily routes, the positions of the first city and its

successor are exchanged by the second city and its successor. 2-2 Swap is

represented visually in Figure 7.11.

Depot Terminal i

e

k

e

j

e

Depot Terminal i′ k′ j′

Depot Terminal i

e

k

e

j

e

Depot Terminal i′ k′ j′

Figure 7.10. The 1-1 Swap operator

Depot Terminal i

e

k

e

j

e

Depot Terminal i′ k′ j′

Depot Terminal i

e

k

e

j

e

Depot Terminal i′ k′ j′

Figure 7.11 The 2-2 Swap operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 91

Triple Rotation (1−1−1 Swap)

Given three cities in different daily routes, it executes a sequence of three moves

where every city is relocated to the location of the next in line. See Figure 7.12.

Quadruple Rotation (1−1−1−1 Swap)

Given four cities in different daily routes, it executes a sequence of four moves

where every city is relocated to the location of the next in line. See Figure 7.13.

Depot Terminal i

e

k

e
Depot Terminal i′ k′ j′

Depot Terminal i″ k″ j″

Depot Terminal i

e

k

e

Depot Terminal i′ k′ j′

j″ Depot Terminal i″ k″

j

j

Figure 7.12 The Triple Rotation operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 92

7.5 Granular neighborhoods

The neighborhoods of the GSVNTS algorithm is fairly large and exploration of

all of them leads to a cumbersome task. GSVNTS requires to explore all

discussed neighborhood structures at each iteration for obtaining a high-quality

solution. Such an exploration inevitably increases the CPU time of the

algorithm. Toth and Vigo (2003) introduce a successful method to reduce

computing time while exploring the neighborhoods. They suggest the granular

neighborhoods that speed up the search procedure severely. The main idea is

Depot Terminal i

e

k

e

j

e
Depot Terminal i′ k′ j′

Depot Terminal i″ k″ j″

Depot Terminal i

e

k

e

Depot Terminal i′ k′ j′

j″ Depot Terminal i″ k″

j‴

Depot Terminal i‴ k‴

j

Depot Terminal i‴ k‴ j‴

Figure 7.13 The Quadruple Rotation operator

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 93

to explore a certain subset of promising moves while a significant number of

unpromising moves are eliminated. In our implementation of GSVNTS, we

capitalize on the similar idea with some modifications.

Granular Neighborhoods reduce the size of the candidate neighborhoods

by depriving non-promising moves during the search procedure. In order to

reduce the computing time of neighborhood search in the shaking procedure

and in the local search procedure, we proposed two effective strategies, which

results in a significant reduction of the computing time.

a) Tabu Moves

While inserting a city into a daily route, if the daily tour is a closed route:

Calculate the distance of the candidate city i for insertion in terms of

travel time with the depot j (ijt).

If ijt then

 CONTINUE;

Else

Try another city;

Where is the Tabu Move Threshold. If the travel time is higher than

Tabu Move Threshold, ignore this move, as this insertion will most

probably lead to a time infeasible solution.

If the daily tour is an open tour:

Calculate the minimum distance of the candidate city i for insertion in

terms of travel time with the depot node j and terminal node k.

IF , j ikimin t t Then

 CONTINUE;

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 94

 Else

Try another city;

If , kij imin t t is higher than the Tabu Move Threshold, ignore this

move, as such an exchange will most probably lead to a time infeasible

solution.

b) Permanent Tabu Matrix

While swapping two cities in different daily tours, it is important to consider

the time- and the cost-efficiency of this exchange. For instance, in the daily

route of “Istanbul – Bursa – Balıkesir”, the “Bursa Adana” swap is not a

promising move because it is too far from the candidate route. Therefore, we

developed an Adjacency Matrix to handle similar scenarios. First, we develop

a two-dimensional adjacency matrix with 0 – 1 values. In this matrix, city i

and j are adjacent if and only if there is not any candidate city k that can be

inserted between i and j. Therefore, most of the neighbor cities are considered

as adjacent. If city k is close enough to both city i and j such that there is a

possibility of generating sub-route “i – k – j”, then city i and j are considered

as non-adjacent cities. The symmetric two-dimensional adjacency matrix is

significant as it is the basis of developing three-dimensional “Matrix of

Eligibility for Insertion”.

Next, a three-dimensional adjacency matrix with 0 – 1 values is developed

to evaluate all possible insertion patterns. Let us call the two-dimensional

matrix A and that three-dimensional matrix M. The purpose is to keep track

of promising and eligible insertions of cities in between a pair of other cities.

Cell M[i,j,k] of the three-dimensional matrix will be 1 if and only if city i is

eligible to be inserted between cities j and k. The primal property of the three-

dimensional matrix is being symmetric with respect to j and k,

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 95

i.e. M[i,j,k] = M[i,j,k] for each arc (j,k). We calculate the values of this matrix

as follows.

, , 1 ,

, 0, 0 .

ij jkM i j k if min t t GranularityThreshold Value

A j k otherwise

Considering the mentioned rule, city i can be inserted into the arc of (in

between) cities j and k if and only if both of the following conditions are

satisfied. The parameter , i jt shows the symmetric travel time between cities i

and j.

 i. Cities j and k are known to be nonadjacent. This is checked via two-

dimensional symmetric adjacency matrix at this point.

ii. City i which is a candidate for insertion is close enough to at least one

of the depots of the edge (j,k).

The benefit of the three-dimensional matrix of eligibility for insertion is

to speed up the neighborhood search within the GSVNTS algorithm by a great

deal. Thanks to the two-dimensional matrix A and three-dimensional

matrix M, we will eliminate unnecessary and non-promising moves to progress

from the current solution to the next solution in the steps of the GSVNTS.

For instance, we do not consider inserting Istanbul in between Kırklareli

and Tekirdağ. Although Istanbul is close enough to both of them, it cannot be

cost- and time-saving to visit Istanbul while going from Kırklareli to Tekirdağ,

because Kırklareli and Tekirdağ are adjacent cities. The same logic applies

while inserting Hatay in between Antalya and Alanya.

Figure 7.14 represents another example of granular moves. Suppose we

want to exchange Balıkesir with another city. We eliminate the move Balıkesir–

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 96

Van since the two cities are too far from each other. On the other hand, we

permit the evaluation of Balıkesir – Tekirdağ move as it seems a promising

move.

7.6 Shaking

Shaking procedure in the proposed GSVNTS method is responsible for

generating a new starting point for the local search procedure. A neighborhood

of an incumbent solution is determined by an operator. On the one hand, the

goal of the operator is to adequately perturb the solution while keeping the

good segments of it. In the basic VNS, one random solution is obtained by

shaking procedure; however, in GSVNTS, multiple random solutions are

generated and the best solution among them is selected to be used as an initial

point of the local search procedure. This is basically the diversification strategy

of our method.

Figure 7.14 An example of granular neighborhoods

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 97

The set of neighborhoods used for shaking is not necessarily the same as

the local search neighborhoods. The neighborhoods used in shaking procedure

must normalize the trade-off between keeping good variables of the incumbent

solution and perturbing it. We consider the city selection neighborhoods for

the shaking procedure. We explained the details of the neighborhoods in

Section 7.4. Such neighborhoods allow the shaking procedure to explore

solutions far from the incumbent more and more.

7.7 Local Search

The generated solution by the shaking is submitted to the local search approach

to obtain a locally optimal solution. Recently, several local search procedures

have been introduced to the routing literature which extend the scheme of

iterative improvement in various ways and avoiding being trapped in a local

optimum. The most well-known research of these methods can be found in

Holland (1975), Kirkpatrick et al. (1983), Glover (1989,1990), Glover and

Laguna (1998).

The local search procedure used in the second step of GSVNTS by

carrying out a sequence of local changes in the solution obtained from the

shaking procedure. The local search improves the objective value of this

solution each time until a local optimum is found. To this end, an improved

solution x in the neighborhood ()N x of the current solution x is obtained at

each iteration, until no more improvement is obtained.

In many local search approaches, non-improving moves are allowed to

avoid termination at a local minimum. Such a move is called hill climbing.

However, non-improving moves increase the risk of cycling. Tabu Search (TS)

uses a short-term memory to prevent moves that might result in revisiting the

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 98

recently-explored solutions. The basic VNS tries to escape from local optimum

by changing the neighborhood structures as well.

We incorporate the TS into both local search and shaking steps to

regulate the intensification and diversification of the approach. The local search

examines all the non-tabu moves. The shaking procedure consists of applying

random moves. The shaking method is allowed to generate infeasible solutions.

Then, the local search is permitted to make the best non-tabu move among

those that decrease the infeasibility of the solution. Hence, the local search

consists of selecting the best non-tabu move.

The tabu search used in GSVNTS is based on the neighborhoods defined

in Section 7.4 and 7.5. The pseudocode of the local search procedure is provided

in Algorithm 7.

We describe the details of the algorithm in the following. A maximum of

_iter max iterations are done during this search. The tabu search works with

neighborhood kN where k is provided by the outer loop of the GSVNTS. Once

the complete neighborhood kN is constructed, the best solution of kN is

given. Next, the tabu status of this solution is checked. If the solution is a tabu,

the second best solution from kN is extracted. This process continues until all

solutions from kN being examined; otherwise, the best-known solution is used

as the new solution.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 99

Algorithm 7 Local search based on TS with steepest descent strategy

Input:

 _iter max

 0S

 0()kN S

1. 0iter ;

2. Improve true ;

3. While Improve true or _iter iter max Do

4. Improve false ;

5. 1iter iter ;

6. _Tabu List null ;

7. Select the best solution *S from 0() \ _kN S Tabu List ;

8. If *
0() ()Z S Z S Then

9. *S S ;

10. Update _Tabu List ;

11. Improve true ;

12. End If

13. End While

14. Return *S

15. End

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 100

Our local search integrates the tabu conditions to avoid cycling. Such

conditions enforce the search procedure to explore different regions of the

solution space. These tabu tools are more powerful than the usual tabu moves

since by considering a short list of tabu elements, a significant number of moves

are forbidden. To this end, we create the tabu conditions for every

neighborhood structure once the current solution is updated. The tabu

conditions of the neighborhood structures are explained below:

1−Add: The added city cannot be dropped from the routing/meeting

schedule.

1−Drop: The dropped city cannot be added to the routing/meeting

schedule.

Drop-Add: The dropped city cannot be added to the routing/meeting

schedule and the added city cannot be dropped from the routing/meeting

schedule.

1-1 Exchange Non-Visited: Visited and non-visited cities whose positions

are changed by 1-1 Exchange Non-Visited cannot be re-interchanged by

the same move.

1-1 Exchange Intra Route: Cities on the same day whose positions are

swapped by 1-1 Exchange Intra Route cannot be re-swapped by the same

move.

1−0 Relocate: A city whose position is changed by 1−0 Relocate cannot be

dislocated by the same move.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 101

2−0 Relocate: The cities whose positions are changed by 2−0 Relocate

cannot be dislocated by the same move.

1−1 Swap: Cities whose positions are exchanged by 1-1 Swap cannot be

re-swapped by the same move.

2−2 Swap: The swapped chain of two cities by 2−2 Swap cannot be re-

swapped by the same move.

1−1−1 Swap (Triple Rotation): The swapped chain of three cities by 1−1−1

Swap cannot be re-swapped by the same move.

1−1−1−1 Swap (Quadruple Rotation): The swapped chain of four cities by

1−1−1-1 Swap cannot be re-swapped by the same move.

Our TS approach has one aspiration criterion which consists of revoking

tabu conditions for a move if it results in a higher objective value than the

current incumbent. In this case we override the tabu condition and perform

the move.

7.8 Penalty value for strategic oscillation

At each iteration of the local search procedure, several feasibility checks are

performed to ensure the validity of the solution. The performed feasibility

checks are explained below:

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 102

(a) Chain feasibility

Except for the last period, the terminal city of each day should be as

same as the starting city of the next period. In other words, each tour

must start from the terminal node of the previous day.

(b) Maximum tour duration feasibility

The total length of each tour should not exceed the maximum tour

duration.

(c) Return to campaign base feasibility

The campaign base must be visited as a terminal node at least once

every days.

(d) Maximum number of meetings for different city categories

There cannot be more than three meetings in big cities. This limitation

reduces to two for regular cities. The remaining cities can host at most

one meeting during the whole campaign.

(e) No repeated meetings of the same city on the same day (No

Subtour)

Each city can host at most one meeting every day.

(f) No meetings of Big Cities on the same day

If there is a meeting in one of the big cities, there cannot be another

meeting for the remaining big cities on the same day.

(g) Maximum number of meetings per day

There cannot be more than meetings each day

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 103

In GSVNTS approach, some solutions generated during the exploration of the

neighborhoods may turn out infeasible with respect to maximum tour duration

constraint. We prevent infeasible solutions with respect to the all constraints above

except the maximum tour duration constraint since the restoration of the other

infeasibilities is a computationally expensive task. In case a solution turns out

infeasible with respect to maximum tour duration, GSVNTS computes a new objective

value that includes the original objective value as well a penalty associated with the

infeasibility. For a given solution S the new objective function with penalties is

expressed as:

 () () (),Z S Z S F S (7.1)

where

1

1 1
()

, and

it its
i t i t s t

ij ijt
i j t

i i
t t s

Z S FM R
K

K c X
N T N T

N N T

 max() i it ij ijt
t i i j

F S Z d X T

T V N N

 (7.2)

()F S represents the violation in the time constraint. is a positive parameter, and

function
 max 0, . If a given solution S is time feasible, then

 () ().Z S Z S Adjusting the values of the penalty parameter is crucial since

selecting too high penalty parameter value prevents the algorithm from visiting

infeasible solutions, whereas too low penalty parameter value will fall short of

detecting feasible solutions on the GSVNTS steps. In this regard, the best option is

to proceed with an adaptive update mechanism in which the penalty parameter is to

be updated after each iteration in order to find feasible and infeasible solutions as

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 104

much equally often as possible. In our GSVNTS implementation, if the current

solution S after each iteration is time-infeasible, we set (1) ; if it is time-

feasible, we set / (1) . A reasonable value for is 0.5 as suggested in

Cordeau et al. (1997). The initial value of is set to 1 in the first iteration.

7.9 Skewed moves

Once the local search procedure found a local optimum, the decision of

accepting or rejecting should be made. Thus, this solution must be compared

to the incumbent solution. In the basic VNS, the acceptance criterion is

straightforward. It accepts only improving moves. Although this strategy is

simple and easy to implement, the search procedure may get stuck in a local

optima easily. Therefore, we need an alternative strategy to accept non-

improving moves which seems to be promising.

Instead of the basic VNS, we propose to incorporate the so-called Skewed

Variable Neighborhood Search (SVNS) strategy introduced by Hansen and

Mladenović (2001) where the problem of the exploring valleys far from the

incumbent solution is considered. In SVNS, not only the objective value of a

solution is evaluated but also its distance to the incumbent solution is also

evaluated, favoring faraway solutions.

In this approach, the function (,)S S calculates the distance between

the incumbent solution S and the local optima S , where solutions in the far

distance are favorable. This means that GSVNTS accepts the new non-

improving solution if the following condition is satisfied:

 () (,) (),Z S S S Z S (7.3)

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 105

where S is the best-found solution so far, and S is the current solution.

The function (,)S S denotes the distance between solutions S and S . This

distance is expressed as the number of uncommon cities between S and S .

The selection of a proper value for parameter is crucial since the

decision of accepting exploration of the distant valleys from incumbent solution

depends on it. After detailed testing, we assign the value of 0.05 to parameter

 .

Other acceptance decisions are also proposed in the literature. Polacek et

al. (2004) implemented SVNS in different routing problems where the threshold

accepting is used instead of the basic SVNS’s acceptance criteria.

Vansteenwegen (2009b) used SVNS to solve different Team Orienteering

Problems.

7.10 Termination criteria

Various termination criterions are used in the VNS implementations. The

frequently used termination criteria in VNS methods are: (i) a fixed number of

iterations, (ii) reaching a threshold CPU time, (iii) reaching a specific objective

value and (iv) a fixed number of iterations without improvement. Among these

criterions, the latter one is the most widely used. In our implementation, we

used two termination criteria. As soon as one of the following termination

criteria is met, the algorithm terminates:

 A fixed number of iterations without improvement.

 Reaching a pre-defined CPU time (3 hours).

The first criteria depends on the topology of the instance. For a small size

instance, we can increase the number of iterations with non-improving solutions

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 106

since implementing rich neighborhood structures does not require high

computational effort in small size problems, but in large problems spending

more time on non-improving solutions is not rational. We set this number as

specified in Table 7.1.

Table 7.1 Termination criteria of GSVNTS

of days Maximum # of non-improving iterations

 7 1000

 7 < 15 400

 15 30 200

30 100

7.11 Granular Skewed Variable Neighborhood Tabu Search

The proposed GSVNTS algorithm gets its principles from the basic VNS;

however, some features are added to the basic approach. As discussed, the basic

VNS was introduced by Mladenović and Hansen (1997) with the fundamental

idea of the systematic change of the neighborhoods within a possibly

randomized local search algorithm to solve a wide range of combinatorial

optimization problems.

Unlike many metaheuristics approaches, VNS uses multiple neighborhood

structures for improving the initial solution. The systematic change of

neighborhood structures is performed with the hope of finding better solutions

in the other neighborhood structure of the current solution. Usually, successive

neighborhoods are nested and their sequence should be such that each

neighborhood covers a larger search space compared to the previous one.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 107

Toth and Vigo (2003) introduce the granular neighborhoods for routing

problems and embed it in a tabu search algorithm. The concept of granularity

is added to GSVNTS algorithm to prevent non-promising moves and to reduce

the computing time of neighborhood search accordingly. Granular

neighborhood search is based on the use of limited neighborhoods to avoid

moves that do not belong to the good feasible solution most probably. We

explained the details of granularity in Section 7.5.

Another modification of the basic VNS used in GSVNTS is the concept

of skewed VNS (SVNS) introduced by Hansen and Mladenović (2001). It

modifies the basic approach to explore far neighborhoods of the incumbent

solution. In SVNS, step 2(c) of the basic VNS has been modified. Thus, instead

of moving to only better local optimums, SVNS accepts non-improving moves

if the new solution is far enough to the incumbent solution. This strategy helps

the algorithm to explore non-visited areas of solution space. The details of

skewed moves are explained in Section 7.9.

In GSVNTS, the strategy of changing neighborhoods is in a deterministic

way. That is to say, neighborhoods change in sequence. There is another

variant of basic VNS where neighborhoods are changed randomly, called

Randomized VNS (Repoussis et al. 2006). Unlike to Randomized VNS, we used

the deterministic change of neighborhoods in our implementation.

The pseudo code of GSVNTS method is described in Algorithm 8.

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 108

Algorithm 8. GSVNTS Method

1. Input:

2. A set of neighborhood structures max(1,2,...,)kN k k to be used

 in the shaking procedure;

3. A set of neighborhood structures max(1,2,...,)lN l l to be used in

 the local search procedure;

4. Parameters: _Max Time , MaxNonImp , maxk , maxl , , ,

 ShakingTimeThreshold

5. Initialization:

6. Find an initial feasible solution 0S generated by FDOR–DCS with

 the objective value of 0()Z S

7. *
0S S

8. *
0() ()Z S Z S

9. 0_Non Imp

10. 0ShakingTime

11. ShakingTimeThreshold

12. 1l

13. 1k

14. While () _CPUTime Max Time and _ Non Imp MaxNonImp Do

15. ShakingSolutions = {(. , .)}

16. While ShakingTime < ShakingTimeThreshold Do //shaking

17. ShakingSolutions * *(Shaking(,),Objective(,))S k S k

18. End While

Chapter 7: A Granular Skewed Variable Neighborhood tabu search 109

19.

* *: Objective(,) Objective(),
(, ()) ShakingSolutions

S S k S
S Z S

20. *S S (()kS N S)

21. (,)S LocalSearch S l //Best improvement local search

22. If *() ()Z S Z S Then //move or not

23. *S S

24. *() ()Z S Z S

25. 0_Non Imp ;

26. 1k ;

27. 1l

28. Else

29. _ _ 1Non Imp Non Imp

30. If * *() (,) ()Z S S S Z S Then //skewed moves

31. *S S

32. *() ()Z S Z S

33. 1k

34. 1l

35. Else

36. 1k k

37. 1l l

38. End If

39. End If

40. End While

41. Output: A feasible solution S* with objective value Z(S*)

Chapter 8: Computational Results 110

Chapter 8

COMPUTATIONAL RESULTS

8. COMPUTATIONAL RESULTS

We test the performance of GSVNTS approach computationally. In this

section, the details of the computational studies along with the results are

reported.

8.1 Data sets

Since the MPTPP constraints are unique, well-known VRP and TSP instances

cannot be used. Therefore, we generated 3 set of instances:

(i) Presidential Elections I (PE.I): it includes 22 instances where the

smallest instance includes 6 cities and 2 days and the real-world

instance includes 93 cities and 40 days. The criteria for selection of

cities is their base rewards.

(ii) Presidential Elections II (PE.II): it includes 20 instances where the

cities have been selected based on their distance with each other.

(iii) Local Election (LE): it consists of three instances with 39 towns of

Istanbul.

All 45 instances were generated with real-world distances and travel times

among all cities and some towns of Turkey. We assume symmetric travel costs

Chapter 8: Computational Results 111

and symmetric travel times. The naming convention of instances sheds light

on the sizes of the 45 test instances and their types. An instance name ‘ PE.I.

nC D ‘ tells that the problem relates to presidential elections and it has n

cities (excluding the fictitious city) and a planning horizon of days.

All instances are available at http://shahmanzar.ir/RSP.html. The

details of instances for both dominant party and the main opposition party is

represented in Appendix A.

8.2 Computational Platform and Solver specifications

Our computational tests were performed on a Dell Precision T7810 model PC

equipped with one Intel Xeon® E5-2690 v4 2.60 GHz processor and 32 GBytes

of ECC DDR3 type random access memory (RAM). Our algorithms are coded

in Python 3.6. 4 (64-bit version). For the model solution and the second phase

of the FDOR, among available commercial MILP solvers, we employed

GUROBI 8.0.1 which is called from inside Python.

The solver specific options applied to all runs are presented in Table 8.1.

The reader is referred to GUROBI User’s Manual (2018) for a more thorough

explanation of these options.

Chapter 8: Computational Results 112

Table 8.1 List of GUROBI specific options applied to all runs.

GUROBI specific options used in Python codes

MIPGap = 0.000

TimeLimit = 86400

IterationLimit = 1.e9

NodeLimit = 5.0e8

Nodefilestart = 6.5

Threads = 0

Concurrentmip = 3

NumericFocus = 3

DualReductions = 0

InfUnbdInfo = 1

The relative optimality criterion (MIPGap) is set to zero as we seek

proven optimality (i.e. zero gap between the best feasible and best possible

solutions). MIPGap is computed as 100%BFS BPS BFS where BFS

and BPS stand for the best feasible and best possible solutions, namely the

tightest lower and upper bounds in a maximization problem, respectively. The

CPU time limit (TimeLimit) is set to 86,400 seconds (24 hours).

The iteration limit (IterationLimit) is set to one billion. So the solution

procedure will terminate after one billion iterations or 24 hours, whichever

happens first. NodeLimit limits the number of nodes to be explored in the

branch-and-bound tree. Nodefilestart limits the memory usage of the solver

(measured in GBytes).

The options Threads and Concurrentmip turn on the multithreading

(concurrent optimization) capabilities of GUROBI. When Threads is set to

zero, the computing load is distributed onto all available fourteen cores (28

threads) of the processor. On the other hand, when Concurrentmip is set to

three, the solver divides available threads evenly between three independent

Chapter 8: Computational Results 113

MILP solve operations and performs them in parallel. Optimization terminates

when the first solve operation completes.

In order to compare multithreading options, we tested the performance of

GUROBI under different concurrent optimization configurations. We observed

that Concurrentmip=3 outperforms other configurations and finds the best

feasible solution as well as the best possible solution achieving thereby the

smallest optimality gap. Thus, we proceeded in our experiments with

Concurrentmip=3. We discuss the configuration of Concurrentmip in more

details in Section 8.2.1.

NumericFocus controls the degree to which the code attempts to detect

and manage numerical issues. It is set to 3 since the right-hand side values of

the constraint equations are relatively large in our model. DualReductions

determines whether dual reductions are performed in the presolve step. It also

helps to find out the actual status of the model solution. Finally, InfUnbdInfo

specifies whether the LP solver will compile additional information when a

model is determined to be infeasible or unbounded.

8.2.1 Cuncurrent MIP configuration

In order to compare the multithreading options, we analyze the performance

of different concurrent optimization configurations of the MILP solver. When

threads are set to zero, the computing load is allocated on all available cores

of the processor. On the other hand, when Concurrentmip is set to 3, the solver

splits all available threads evenly between 3 independent MILP solve

operations and executes them in parallel. Optimization aborts when the first

solve operation finishes. Table 8.2 illustrates the performance report of different

Chapter 8: Computational Results 114

Concurrentmip configurations in Gurobi and Cplex (Concurrentmip 1,

Concurrentmip 2, and Concurrentmip 3) on the same instance. We observe

that when Concurrentmip is set to 3, the runtime of the Gurobi decreases

significantly compared to other configurations.

Table 8.2 Comparison of Cplex with different CONCURRENTMIP configurations of

Gurobi

 CPLEX CONCURRENT

MIP 1

CONCURRENT

MIP 2

CONCURRENT

MIP 3

Final UB 29512.39 27640.00 27724.00 27713.50

Final LB 20811.00 17867.00 20251.00 21146.50

Final Absolute Gap 8701.39 9773.00 7473.00 6567.00

Final Relative Gap (%) 0.29 0.35 0.26 0.23

BFS Finalize Time (sec) - 31803 43224 68542

Concurrentmip 3 outperforms other configurations by finding the best

feasible solution, best possible solution and the smallest gap. Therefore, we

report our experimental findings with Concurrentmip 3.

8.3 Comparison of the original formulation with the alternative formulation

The comparison between alternative Maximum Tour Duration (MTD)

formulation (3.41)-(3.46) and MTD constraints (3.6) is summarized in

Table 8.3.

It can be seen from Table 8.3 that using the MTD constraints (3.6)

improves the CPU time for all developed instances. This can be attributed to

the continuous variable A that saves arrival times for all cities. In all cases,

Chapter 8: Computational Results 115

using constraints (3.6) reduces the CPU time to solve the problem without

compromising the final solution. This result led us, in this class of problems,

not to pursue the alternative formulation any further.

Table 8.3 Comparison of two MTD formulation

Instance

PE.I

MTD constraints

 (3.41)-(3.46) using itA

MTD constraints (3.6)

Gap(%) CPUa(s) Gap(%) CPUa(s)

5C2D 0.0 3.5 0.0 0.1

5C3D 0.0 3.8 0.0 0.1

7C2D 0.0 4.3 0.0 0.2

7C3D 0.0 4.7 0.0 0.4

7C4D 0.0 5.4 0.0 0.4

9C2D 0.0 15.3 0.0 0.3

9C3D 0.0 166.2 0.0 0.5

9C4D 0.0 640.7 0.0 1.3

12C3D 7.1 3600.0 0.0 5.2

12C4D 9.0 3600.0 0.0 5.8

12C5D 14.3 3600.0 0.0 6.0

15C3D 7.6 3600.0 0.0 32.1

15C4D 11.2 3600.0 0.0 214.8

15C5D 15.8 3600.0 0.0 409.5

aIntel®Core™i5-4310U @2GHz 2.60 GHz.

Chapter 8: Computational Results 116

8.4 Speeding up GUROBI using the results of FDOR

The commercial solvers such as GUROBI and CPLEX assume the initial values

of all binary decision variables as zero. On the other hand, we know that some

greedy-like and heuristic methods are used inside the black box of these solvers,

especially in the pre-processing step. When we are dealing with a mixed integer

linear programming problem, it is possible to assist the commercial solver to

find an initial solution, by for instance including values of variables, known as

a warm start. In other words, a warm start can be supplied by a feasible

problem that has been previously solved. Since we have a high-quality feasible

solution generated by FDOR, which executes in a small amount of CPU time,

we feed the best solution of the FDOR as an initial starting solution of the

original MPTPP model.

This high-quality initial solution may help the solver to start solving the

problem from a better initial solution which may, though not always true,

result in finding the optimal solution faster than before. Note that in large

instances of MPTPP, GUROBI fails, after 24 hours, to generate a feasible

solution as a lower bound of the problem. Here, the optimal values of the binary

decision variables X, Z, R, FM, S, L, and E are extracted from FDOR solutions

and inserted into the original MPTPP model as initial values.

In order to define these values, we only take care of those variables which

their corresponding optimal value of FDOR method is equal to one. The initial

values of the remaining decision variable are set to zero by default. The new

results are presented in Table 8.4.

Chapter 8: Computational Results 117

Table 8.4 The results of setting initial values of MPTPP to optimal values of FDOR

We observe that the solution quality is increased in almost all instances.

For those instances where GUROBI was able to find the optimal solution, the

CPU time is significantly decreased leading to an average improvement of

30.4%. There are, however, two instances (12C5D and 15C7D) where, the CPU

time increased which could be due to restricting the search. It is also worth

noting that in one instance (40C7D), GUROBI was not able to solve it to

optimality, but, this variant obtained the optimal solution in less than one day.

For the remaining instances, the best feasible solution is improved by

 MPTPP
 MPTPP with FDOR solution as the initial

solution

Instance LB UB Gap(%) CPU(s) LB UB Gap(%) CPU(s)

PE.I

12C5D 14575 14575 0.0 6.0 14575 14575 0.0 6.8

15C7D 17240 17240 0.0 551.3 17240 17240 0.0 572.5

15C10D 18759 18759 0.0 30458.5 18759 18759 0.0 20630.7

21C7D 19138 19138 0.0 6705.3 19138 19138 0.0 5311.0

21C10D 21904 23413 6.9 86400.0 21684 23143 6.7 86400.0

30C7D 29427 29427 0.0 20670.3 29427 29427 0.0 14071.7

30C10D 35013 37102 6.0 86400.0 35197 37226 5.7 86400.0

40C7D 30086 31317 4.1 86400.0 30122 30122 0.0 77160.8

40C10D 36409 41008 12.6 86400.0 34763 40960 17.8 86400.0

51C7D 41087 45166 9.9 86400.0 41442 44684 7.8 86400.0

51C10D 45667 55890 22.4 86400.0 46971 56169 19.5 86400.0

51C30D 47279 135554 186.7 86400.0 59885 120014 100.0 86400.0

Average 20.7 55365.9 13.1 53012.7

Chapter 8: Computational Results 118

approximately 4.3% on average. Finally, the actual gap of the MPTPP model

is improved by 58.7% on average.

8.5 Linear relaxation of the binary decision variables

We investigated four types of relaxations on a fairly large instance including

39 cities and 15 days. The best feasible solution (the lower bound on the true

optimal solution) of the problem is reported as 21146.5 by GUROBI; However,

considering the 23% relative gap, we examined whether we can find a tighter

upper bound. To this end, we investigated four types of relaxations:

i) Linear Relaxation of binary decision variables (LR),

ii) Partial Linear Relaxation of the binary routing decision variable X

(PLR1),

iii) Semi-Full LP Relaxation with S, FM, and Z forced to be binary and

all other originally binary decision variables relaxed between 0 and 1

(SFLR),

iv) Partial Linear Relaxation of the binary decision variable S (PLR2).

The comprehensive non-relaxed model (denoted as Full Milp) has 22782

binary decision variables after the reductions performed by Gurobi at the root

node of the branch and bound tree before the iterations commence. By relaxing

the binary decision variable X, this number reduced to 2885 for the Partial

Linear Relaxation (PLR1) version of the full model.

Table 8.5 presents the test results obtained from the five models discussed

above.

Chapter 8: Computational Results 119

Table 8.5 Comparison of different solutions of the same instance with 39 cities and

15 days

Model
MIP

Solution

LP

Solution

Best

possible

Absolute

gap

Relative

gap (%)
CPUa (s)

Full MILP 21146.5 - 27713.5 6567.0 0.23 86435.54

LR - 65585.8 - - - 38.06

PLR1 26125.3 - 29143.9 3018.6 0.10 3791.84

SFLR 25345.3 - 29596.6 4251.4 0.14 43216.80

PLR2 57431.7 - 58744.2 1312.5 0.02 35537.92
aIntel®Core™i5-4310U @2GHz 2.60 GHz.

As we observe in Table 8.5, the final upper bound for PLR1 is 291439.9

which is worse than the final upper bound of the MILP model (which is

27713.5). The lower bound of SFLR at the end of 11 hours is as high as 57431.7

and the UB is 58744.17. These are also extremely loose bounds. Therefore, the

FULL MILP upper bound is found to be the tightest bound we could obtain

so far.

8.6 Effect of the added valid inequalities (VI) on solution quality

Table 8.6 displays the lower and upper bounds found by GUROBI 8.0.1 and

the corresponding CPU time (in seconds) for the models without VIs, with

partial VI (with VI except for constraints (3.50)) and with all VI. The optimal

solutions are shown in bold where the remaining figures display the best

solution.

Chapter 8: Computational Results 120

Table 8.6 Comparison of the models with and without valid inequalities

 All VIs OFF All VIs ON except

(3.50)

All VIs ON

Instance

Obj.

Val.

Gap

(%) CPU

Obj.

Val.

Gap

(%) CPU

Obj.

Val.

Gap

(%) CPU

PE.I

12C3D 12620 0.0 1.4 12620 0.0 0.9 12620 0.0 1.1

12C4D 16584 0.0 5.5 16584 0.0 2.7 16584 0.0 2.3

12C5D 14575 0.0 38.5 14575 0.0 7.3 14575 0.0 6.0

15C3D 12620 0.0 2.4 12620 0.0 1.7 12620 0.0 1.6

15C4D 14210 0.0 10.4 14210 0.0 5.9 14210 0.0 4.3

15C5D 15446 0.0 113.1 15446 0.0 37.3 15446 0.0 14.4

15C7D 17240 0.0 2477.1 17240 0.0 1528.0 17240 0.0 551.3

15C10D 18719 5.5 86400.0 18759 0.0 35355.0 18759 0.0 30458.5

21C7D 19138 0.0 17290.9 19138 0.0 5296.1 19138 0.0 6705.3

21C10D 21727 11.2 86400.0 21792 7.4 86400.0 21904 6.9 86400.0

30C7D 29427 0.0 19736.3 29427 0.0 7421.5 29427 0.0 20670.3

30C10D 32803 18.8 86400.0 33281 14.0 86400.0 35013 6.0 86400.0

Average 18759 2.9 18807 1.7 18961 1.0

According to Table 8.6, the formulation of MPTPP is more compact when

all valid inequalities are used. Based on these positive results, we opted to

include all valid inequalities in our experiments. This led to an improvement

in the average objective value and a reduction in the average gap. The

deviation reduces from nearly 3% to just a 1% on average and the largest %

deviation is just below 7%, a massive drop from the previous value of 11.2%.

Chapter 8: Computational Results 121

8.7 Changing values of

In all computational experiments, the default value of is set to 4. We

compare the performance of the developed mathematical formulation in terms

of the different values of . The results are listed below in Table 8.7. For each

instance set, we indicate the number of nodes and number of days. For each

value of we list the CPU time in seconds as well as optimality gap.

Table 8.7 Results of the instances for different values of

Instance 1 2 3

Gap(%) CPU Gap(%) CPU Gap(%) CPU

5C2D 0.0 3.5 0.0 3.3 0.0 3.4

5C3D 0.0 3.4 0.0 3.5 0.0 3.5

7C2D 0.0 3.5 0.0 3.7 0.0 3.7

7C3D 0.0 3.7 0.0 3.8 0.0 3.8

7C4D 0.0 4.2 0.0 4.5 0.0 4.2

9C2D 0.0 3.7 0.0 3.7 0.0 3.6

9C3D 0.0 4.9 0.0 4.7 0.0 4.8

9C4D 0.0 9.4 0.0 9.4 0.0 9.5

12C3D 0.0 4.5 0.0 4.3 0.0 4.4

12C4D 0.0 14.8 0.0 15.4 0.0 16.0

12C5D 0.0 35.2 0.0 36.1 0.0 36.9

15C3D 0.0 6.1 0.0 6.2 0.0 6.2

15C4D 0.0 29.8 0.0 30.7 0.0 31.0

15C5D 0.0 34.1 0.0 35.3 0.0 36.5

21C5D 11.0 600.0 11.1 600.0 11.0 600.0

21C7D 11.1 600.0 13.7 600.0 13.8 600.0

21C10D 15.2 600.0 17.2 600.0 18.5 600.0

Chapter 8: Computational Results 122

The results in Table 8.7 indicate that increasing the maximum number of

meetings allowed to be held each day does not significantly affect the solution

time. The obtained best gaps are also very close in large-sized instances.

8.8 Computational results of scenario analysis level 1

The results of the four different scenarios described above are presented in

Table 8.8. The naming convention in the leftmost column of the table sheds

light on the sizes of the 10 test instances. Boldface figures in the first column

of each scenario in Table 8.8 point to proven optimality achieved by the

commercial solver GUROBI.

Table 8.8 consists of four segments where each segment corresponds to a

scenario and reports the optimal or best feasible objective value (BFS), the

number of meetings held during the planning horizon (m) and the final gap

reported by GUROBI. The CPU time limit in all runs was applied as 24 hours.

In the first scenario Full-MILP, we also report the CPU time that elapsed until

the lower bound on the value of the maximization objective, namely the BFS

reached its final level. The average gap and CPU time are 6.19% and 29504.3

seconds, respectively. This implies MPTPP is a large-scale optimization

problem even for small size instances.

In Full-1Meet (Scenario 2), the computational complexity of the problem

is greatly reduced due to the removal of the binary variables itFM and iusR

from the model and due to the simplified net benefit definition shown in (5.1)

. This simplification helps the solver find better solutions within the CPU time

limit of 24 hours compared to Full-MILP (Scenario 1). The average gap

decreases to 7.20%.

Chapter 8: Computational Results 123

Objective values obtained in Rew-Only (Scenario 3) are not comparable

with the ones obtained in the other scenarios since the traveling costs in the

definition of net benefit are ignored. However, except in three instances, namely

40C-7D, 51C-7D and 51C-10D, the count of meetings realized in this scenario

is either higher than or equal to the others. This can be ascribed to having a

larger feasible solution space which occurs because of lifting the necessity to

visit the campaign base every days.

Similarly, the politician in this scenario has more freedom to travel to

remote cities that he would not visit in the base scenario due to the net benefit

being negative after the deduction of traveling expenses. The average gap in

Scenario 3 is 6.07%.

The results of Alt-1Depot (Scenario 4) are also interesting, as this scenario

bears the most similar conditions to the current campaign policy of the PP. In

comparison to Full-MILP, the commercial solver GUROBI in this scenario was

able to attain optimality in one more instance (51C-7D). Table 8.8 reports an

overall lesser number of meetings in Scenario 4.

It is apparent that the requirement to return to the capital city Ankara

at the end of every day prevents some of the meetings which were realized in

the base scenario Full-MILP. The average gap reported by GUROBI in this

scenario is 7.78%.

Chapter 8: Computational Results 124

Table 8.8 Results of the four scenarios.

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Instance

PE.I

Full-

MILP m

Gap

(%)
a

BFSt

Full-

1Meet m

Gap

(%)

Rew-

Only m

Gap

(%)

Alt-

1Depot m

Gap

(%)

15C7D 17240 14 0.0 451 16000 13 0.0 22561 16 0.0 11539 10 0.0

15C10D 18759 17 0.0 10556 16299 15 0.0 26061 20 0.0 11170 13 15.4

21C7D 19138 16 0.0 2521 18117 16 0.0 23932 17 0.0 13779 12 0.0

21C10D 21904 21 6.9 24431 20850 20 0.0 28927 23 3.8 14498 15 14.6

30C7D 29427 18 0.0 9785 27576 17 3.3 33638 18 0.0 20774 13 0.0

30C10D 35013 24 6.0 61308 32210 24 9.0 38148 24 10.0 24520 17 15.9

40C7D 30086 20 4.1 11280 27023 18 16.4 32586 19 9.5 20893 13 7.1

40C10D 36409 25 12.6 44758 32210 24 9.0 39876 25 13.7 25324 18 19.7

51C7D 41087 31 9.9 71322 33366 23 17.6 33123 19 11.0 31154 19 0.0

51C10D 45667 36 22.4 58631 35314 26 16.7 41325 28 12.7 37373 26 5.1

a CPU time in seconds spent until the reporting of the best feasible solution by

GUROBI.
* The value of the best feasible solution (BFS) is provided where GUROBI is not able

to prove optimality in 24 hours.

8.9 Computational results of scenario analysis level 2

The importance of holding meetings in the early days or in the last days of the

campaign period should be decided by party executives indeed. Despite this

fact, we present in Table 8.9 the comparison between the original and the

alternative reward functions on 14 small size test instances using the base

scenario Full-MILP. All instances are solved to proven optimality under each

net benefit function. The column with the header ‘CPU (s)’ indicates the

solution times in seconds reported by GUROBI.

Chapter 8: Computational Results 125

Table 8.9 Comparison of new and original reward function.

Instances

PE.I

Full-MILP with original reward

function (3.1)

Full-MILP with alternative reward

function (5.2)

Obj. Value Gap (%) CPU (s) Obj. Value Gap (%) CPU (s)

6C2D 7110 0.0 0.1 17441 0.0 0.1

6C3D 8181 0.0 0.1 22272 0.0 0.2

7C2D 9629 0.0 0.1 22172 0.0 0.2

7C3D 10939 0.0 0.2 26778 0.0 0.4

7C4D 11597 0.0 0.4 30339 0.0 0.7

9C2D 9695 0.0 0.3 22172 0.0 0.1

9C3D 10939 0.0 0.5 28572 0.0 0.9

9C4D 11668 0.0 1.3 32149 0.0 1.8

12C3D 12620 0.0 1.1 31726 0.0 1.3

12C4D 13584 0.0 2.3 37076 0.0 3.6

12C5D 14575 0.0 6.0 40382 0.0 60.4

15C3D 12620 0.0 1.6 32750 0.0 2.9

15C4D 14210 0.0 4.3 39496 0.0 6.1

15C5D 15446 0.0 14.4 43533 0.0 159.8

According to Table 8.9 the solution times obtained with the original

reward function are better in 13 out of 14 instances. The objective values are

unfortunately not comparable due to different rewards being assigned to each

city in different days. The decision which reward function to adopt is to be

made by the politician. Based on the results shown in Table 8.9, it can be

comprehended that using the alternative reward function in (5.2) increases the

computational complexity of the problem.

Chapter 8: Computational Results 126

8.10 Tightening scheme

As shown in previous sections, the average gap of Full MILP model was too

high. For larger instances like 51C 30D, the commercial solver was not able

even to generate a feasible solution after 24 hours. Therefore, we need to

produce the upper bound and lower bound for the problem using alternative

methods. Since the objective function of MPTPP is maximization, the lower

bound is produced by any feasible solution and the upper bound is produced

by any type of relaxation of the original problem.

We use the procedure described in Figure 8.1 to tighten the actual optimal

value of the main problem (51 city and 30 days). To obtain a valid upper

bound, we tested different relaxation schemes (full linear relaxation of all

binary variables and partial linear relaxation of some variables) as discussed in

Section 8.5. The partially linear relaxation (PLR) scenario where the binary

decision variable X is relaxed turns out to be the best upper bound.

Full MILP with

M-MTZ

PLR of Full MILP with

M-MTZ

 (X and R Relaxed)

Min.

Net Benefit

[Valid LB, Valid UB]

ALT_1Depot with GG

Best UB Best UB

Valid UB (BPS)

Best LB
Valid LB (BFS)

Best LB

(not found)

Max

.

Figure 8.1 Procedure for tightening the optimal value of main problem

Chapter 8: Computational Results 127

The actual upper bound of the problem is produced by selecting the

minimum of the best upper bounds achieved by the partial linear relaxation of

the Full MILP and the main problem. The valid lower bound is produced by

choosing the maximum of the best lower bound of alternative one depot model

and main problem. The gap is reduced to 0.68% after performing this scheme

for 24 hours.

8.11 Omitting binary decision variables and parameters

In order to analyze the effect of variables FM and R on the performance of the

model solution, we omit these variables from the original formulation of the

problem. Then, we employ the binary decision variable Z in the objective

function. Therefore, the objective function (which maximizes the time-

dependent reward as a function of Z) is changed as follows:

max.
1

i
i it ij ijt

t i j t

NET BENEFIT
t
Z K c X

N T N N T

 (8.1)

Obviously, such a formulation leads to frequent visits to highly-rewarded

cities. Thus, we add the following constraints to the model accordingly:

 2it
t

Z

T

 i N (8.2)

The set of constraints (8.2) impose a limit on the number of the meetings

for any city during the total campaign period. Therefore, the party leader is

Chapter 8: Computational Results 128

forced to proceed by visiting other cities as well. Another variation is to make

all costs between each pair of cities equal to zero. Since we do not assume

budget constraints in our model, this assumption will definitely improve the

optimal value of the problem. The comparison results are presented in

Table 8.10.

Table 8.10 Comparison of the original reward function with the reward function

without binary variable FM and Z

Instance

PE.I

Full Model with FM

and R

 Full Model without FM

and R

Obj. Gap CPU Obj. Gap CPU

6C2D 7008 0.0 3.5 7008 0.0 3.5

6C3D 7846 0.0 3.9 9038 0.0 3.5

7C2D 7678 0.0 3.6 7678 0.0 3.7

7C3D 8947 0.0 4.4 9942 0.0 3.8

7C4D 9630 0.0 4.9 11898 0.0 4.9

9C2D 7678 0.0 3.8 7678 0.0 3.7

9C3D 8947 0.0 5.2 9942 0.0 4.7

9C4D 10297 0.0 10.2 11912 0.0 8.8

12C3D 9755 0.0 15.8 9942 0.0 8.7

12C4D 11437 0.0 39.5 12155 0.0 79.5

12C5D 12541 0.0 233.0 14165 0.0 563.2

15C3D 9897 0.0 32.1 10242 0.0 36.5

15C4D 11855 0.0 214.8 12578 0.0 491.5

15C5D 12738 2.1 600.0 15653 2.1 600.0

Chapter 8: Computational Results 129

As expected, from Table 8.10 we find that as we omit binary variables

FM and R from the original formulation of the problem, the corresponding

objective value improves. This increase in the objective value is due to not

penalizing repetitive meetings in highly-rewarded cities.

8.12 Performance of FDORDCS

Table 8.11 illustrates the results of the FDORDCS on PE.I instances. The

column with the header ‘CPU (s)’ indicates the solution times in seconds. In

all computational results, the boldface figures point to proven optimality

achieved by either commercial solver GUROBI or developed algorithms.

The results of Table 8.11 indicate that FDORDCS is able to generate

very efficient solutions in a significantly small amount of CPU time compared

to the commercial solver GUROBI.

The average gap between the optimal solution (or the best known feasible

solution) of the MILP and the net benefit of the FDORDCS is 5.03% where

the average CPU time decreased considerably from 45854.27 seconds to 6.55

seconds. In other words, FDORDCS requires a tiny fraction, approximately

0.014% of the original algorithm.

Chapter 8: Computational Results 130

Table 8.11 Computational Results of FDORDCS ()n

Instance MPTPP Gap(%) CPU (s) FDORDCS Gap(%) CPU (s)

PE.I

6C2D 7110 0.0 0.1 7110 0.0 0.08

6C3D 8181 0.0 0.1 8181 0.0 0.14

7C2D 9629 0.0 0.2 9629 0.0 0.08

7C4D 11597 0.0 0.4 11457 1.2 0.20

9C3D 10939 0.0 0.5 10788 1.4 0.13

9C4D 11668 0.0 1.3 11268 3.4 0.15

12C5D 14575 0.0 6.0 12906 11.5 0.30

15C7D 17240 0.0 551.3 16132 6.4 0.52

15C10D 18759 0.0 30458.5 17356 7.5 0.70

21C7D 19138 0.0 6705.3 17325 9.5 0.99

21C10D 21904 6.8 86400.0 20673 5.6 1.22

30C7D 29427 0.0 20670.3 27474 6.6 1.72

30C10D 35013 5.9 86400.0 32213 8.0 2.26

40C7D 30086 4.0 86400.0 28821 4.2 3.74

40C10D 36409 12.6 86400.0 34672 4.8 4.97

51C7D 41087 9.9 86400.0 36942 10.1 8.40

51C10D 45667 22.3 86400.0 43212 5.4 11.38

51C30D 47279 186.7 86400.0 59890 −26.7 14.56

70C15D 86400.0 46818 16.64

70C40D 86400.0 58408 22.26

93C30D 86400.0 68174 26.61

93C40D 86400.0 73574 27.12

Chapter 8: Computational Results 131

According to Table 8.11, for those instances where the commercial solver

was able to find the optimal solution, the FDORDCS finds significantly quick

solutions with the average gap of 4.31%. For the remaining instances, where

the commercial solver was not able to find the optimal solution after 24 hours,

the average gap of FDORDCS solutions with the best feasible solution is

6.35%. In four instances, namely 70C15D, 70C40D, 93C30D, and 93C40D

GUROBI was not able to generate a feasible solution even after 24 hours of

CPU time whereas FDORDCS finds an effective solution in 23.15 seconds on

average.

The high-quality feasible solution generated by FDORDCS is exploited

next to tighten the actual gap of the original problem. It can also be used as

an initial feasible solution of the original problem. Another observation from

Table 8.11 is that by increasing the number of cities and the number of days,

the CPU time of FDORDCS increases exponentially, which may take a

significantly long time to solve large-scale instances. Therefore, two other

approaches FDORGCS and FDORPCS are investigated here.

8.13 Performance of FDORGCS

Our approach to the FDORDCS exploits the ability of FDOR to solve daily

prize-collecting TSPs in a small amount of CPU time. Such a performance

may not be reachable in the large instances. On the other hand, providing all

cities as the candidate cities for phase 2 is not guaranteed to produce better

solutions compared with choosing a subset of cities. The reason lies in the fact

that visiting some low reward cities as the terminal node may result in

exploring a better solution space on the next day which was not possible to

reach in the current day due to the maximum tour duration constraint.

Chapter 8: Computational Results 132

In FDORGCS, all cities are sorted in the decreasing order of their

updated reward at the beginning of each day. Next, the top cities with the

highest rewards are selected as the candidate cities for phase 2. This strategy

of city selection yields obtaining high-quality solutions by guaranteeing that

high rewards cities are always included within the candidate cities.

Table 8.12 depicts the solutions for the medium-sized and large-sized

instances with FDORGCS possessing different values of . In GUROBI

results, boldface figures point to proven optimality achieved by the commercial

solver GUROBI and in FDORGCS results, boldface figures point to the best

solution achieved for every instance.

As it is shown in Table 8.12, for every and each instance, the best-

achieved solution and corresponding CPU time are reported. By increasing the

parameter, in most cases, the objective value of the solutions are improved

while the increase in CPU time is not significant. After 18 , there are some

improvements in the objective values of some instances but the CPU time

increases significantly. This increase is much more apparent in large instances.

For instance, taking 93C40D instance into account, by 21 the CPU time

increases by almost 30% compared to the case 18 . Therefore, considering

the best-obtained gaps and the runtimes of the algorithm, in most instances

the best solution and CPU time obtained with 18 .

The average gap in FDORGCS is 4.97% for those PE.I instances where

there is a (best)known solution. The rightmost column in Table 8.12 indicates

the CPU time of the best-obtained solution in seconds. The average gaps and

average CPU times are reported at the last row where the smallest gap is

obtained by 18

Chapter 8: Computational Results 133

8.14 Performance of FDORPCS

The results in Table 8.13 provide the solutions of FDORPCS with different

Max_Iter values. As the parameter Max_Iter increases, the CPU time is

multiplied by its value. The best-obtained gaps are achieved by

_ 20Max Iter where the average CPU time increases up to 47.27 seconds.

The boldface figures under FDORPCS point to the best objective value for

every instance.

Table 8.12 Computational Results of FDORGCS

 GUROBI FDORGCS

 10 13 15 18 21
Best

Obj.

Best

Gap

(%)

BestCPU

(s)
Instance

PE.I

Best

Obj.

CPU

(s)

Best

Obj.

CPU

(s)

Best

Obj.

CPU

(s)

Best

Obj.

CPU

(s)

Best

Obj.

CPU

(s)

Best

Obj.

CPU

(s)

12C5D 14575 6.0 12906 0.39 12906 11.45 0.39

15C7D 17240 551.3 16132 0.44 16132 0.48 16132 0.57 16132 6.43 0.44

15C10D 18759 30458.5 17356 0.42 17356 0.45 17356 0.52 17356 7.48 0.42

21C7D 19138 6705.3 17324 0.38 17324 0.49 17324 0.59 17324 0.66 17324 0.85 17324 9.48 0.38

21C10D 21904 86400.0 20673 0.49 20673 0.69 20673 0.71 20673 0.85 20673 1.04 20673 5.62 0.49

30C7D 29427 20670.3 27963 0.38 27963 0.51 27963 0.58 27963 0.75 27474 1.01 27963 4.98 0.38

30C10D 35013 86400.0 32427 0.49 32427 0.65 32427 0.81 32427 1.03 32427 1.38 32427 7.39 0.49

40C7D 30086 86400.0 28071 0.39 28074 0.59 28074 0.82 28114 1.08 28114 1.46 28114 6.55 1.08

40C10D 36409 86400.0 31656 0.59 31890 0.78 32654 1.20 34278 1.49 34278 2.05 34278 5.85 1.49

51C7D 41087 86400.0 34429 0.46 35119 0.90 36446 0.95 36446 1.33 36446 1.98 36446 11.30 0.95

51C10D 45667 86400.0 40391 0.60 42119 1.04 41538 1.23 42406 1.89 42273 2.55 42406 7.14 1.89

51C30D 47279 86400.0 53623 1.68 54336 2.42 56232 2.18 58587 3.49 56348 4.28 58587 -23.92 3.49

70C15D 86400.0 41946 0.70 40974 1.16 43556 1.54 44911 1.90 45752 2.36 45752 2.36

70C40D 86400.0 46723 2.13 49942 3.62 52979 2.95 53747 6.31 54235 7.60 54235 7.60

93C30D 86400.0 58833 2.04 60476 3.17 62926 3.92 63247 5.93 63085 8.03 63085 8.03

93C40D 86400.0 61390 2.34 62016 3.96 64819 4.72 65746 6.87 68307 9.94 68307 9.94

Avg.

Gap

(%)

Avg.

CPU

(s)

Avg.

Gap

(%)

Avg.

CPU

(s)

Avg.

Gap

(%)

Avg.

CPU

(s)

Avg.

Gap

(%)

Avg.

CPU

(s)

Avg.

Gap

(%)

Avg.

CPU

(s)

 7.24 0.87 6.17 1.39 5.43 1.55 3.82 2.58 4.56 3.42

Table 8.13 Computational Results of FDORPCS

 GUROBI FDORPCS

 Max_Iter=5 Max_Iter=10 Max_Iter=15 Max_Iter=20

Instance

PE.I

Best

Obj.
CPU (s)

Best

Obj.
CPU (s)

Avg

Obj

Best

Obj.
CPU (s)

Avg

Obj

Best

Obj.
CPU (s)

Avg

Obj

Best

Obj.
CPU (s)

Avg

Obj

 Best

Obj.

Best

Gap (%)

Best CPU

(s)

12C5D 14575 6.0 12906 1.47 12906 12906 2.94 12906 12906 4.32 12906 12906 5.76 12906 12906 11.45 1.47

15C7D 17240 551.3 16103 1.72 15913 16103 3.41 15909 16103 7.44 16103 16103 9.91 16103 16103 6.60 1.72

15C10D 18759 30458.5 17234 2.34 17154 17182 6.72 17182 17182 9.96 17182 17234 9.30 16975 17234 8.13 2.34

21C7D 19138 6705.3 17324 3.86 17293 17324 7.49 17324 17324 11.29 17303 17324 14.64 17322 17324 9.48 3.86

21C10D 21904* 86400.0 20673 5.07 20673 20673 10.05 20673 20673 15.18 20530 20673 20.34 20549 20673 5.62 5.07

30C7D 29427 20670.3 27046 4.32 26036 27474 8.10 26205 27963 12.24 26420 27533 16.8 26267 27963 4.98 12.24

30C10D 35013* 86400.0 31321 5.87 30258 32427 11.91 30499 32368 17.26 31181 32533 23.51 31085 32533 7.08 23.51

40C7D 30086* 86400.0 26313 5.10 24728 27308 8.72 26050 27927 14.18 25852 27627 17.49 26102 27927 7.18 14.18

40C10D 36409* 86400.0 31047 7.92 29576 33233 14.67 31550 33107 20.80 31056 32766 30.59 31013 33233 8.72 14.67

51C7D 41087* 86400.0 33446 5.85 31356 34635 11.67 32283 36077 17.29 32218 36218 22.47 33241 36218 11.85 22.47

51C10D 45667* 86400.0 40670 7.49 39630 42165 15.59 39025 40896 23.34 39129 41362 30.73 39029 42165 7.67 15.59

51C30D 47279* 86400.0 58633 18.53 57848 59081 37.25 56921 58904 59.24 55811 59745 105.71 57157 59745 -26.37 105.71

70C15D 86400.0 40750 9.85 38061 41988 18.48 38964 40848 41.09 39163 43116 54.85 39726 43116 54.85

70C40D 86400.0 51854 36.54 50022 53392 71.68 50122 54809 103.38 50831 54589 142.51 50242 54809 103.38

93C30D 86400.0 56972 27.13 53991 58458 53.72 54494 58451 82.95 54070 58493 108.73 55158 58493 108.73

93C40D 86400.0 61867 34.69 59258 62090 69.21 59681 64118 106.12 58701 61958 143.07 59145 62090 69.21

Avg.
Gap
(%)

Avg.
CPU

(s)

Avg.
Gap
(%)

Avg.
CPU

(s)

Avg.
Gap
(%)

Avg.
CPU

(s)

Avg.
Gap
(%)

Avg.
CPU

(s)

 7.73 11.10 5.99 21.97 5.70 34.13 5.66 47.27

Chapter 8: Computational Results 136

8.15 Comparison of performances of FDORDCS, FDORGCS, and

FDORPCS

Table 8.14 presents the comparison of different city selection approaches in

FDOR for PE.I instances. For the FDORGCS and the FDORPCS, the

objective value of the best-achieved solution and its corresponding CPU time

is provided. The FDORDCS outperforms other city selection approaches in

most instances. In two instances, namely 30C7D and 30C10D, FDORGCS

finds better solutions with higher objective values. In three other instances,

15C7D, 15C10D and 21C10D, FDORGCS finds the same solution as

FDORDCS with smaller CPU time.

In general, FDORDCS spends more time on the second phase by

considering all available cities. FDORGCS and FDORPCS consider a subset

of cities, which are selected in a greedy way or pseudo-random way, to ensure

solution diversity. FDORDCS with an average gap of 4.40% for the main set

of instances, including 12 test instances with best known objective values,

outperforms FDORGCS and FDORPCS with average gaps of 4.97% and

5.19%, respectively. These three selection rules were tested thoroughly using

various values of for FDORGCS and several maximum iterations. The

results show that FDORDCS is still outperforming others.

Given the good performance of FDORDCS, in the rest of our

experiments, we just focus on this particular variant. Figure 8.2 recapitulates

the information in Table 8.14 to depict the differences between the commercial

solver’s results and FDOR with different selection rules.

Chapter 8: Computational Results 137

Table 8.14. Comparison of FDORDCS, FDORGCS, and FDORPCS

Instance GUROBI FDORDCS FDORGCS FDORPCS

PE.I Best
Gap

(%)

CPU

(s)

Obj.

Val.

CPU

(s)

Obj.

Val.

CPU

(s)

Obj.

Val.

CPU

(s)

12C5D 14575 0.0 6.0 12906 0.30 12906 0.39 12906 1.47

15C7D 17240 0.0 551.3 16132 0.52 16132 0.44 16103 1.72

15C10D 18759 0.0 30458.5 17356 0.70 17356 0.42 17234 2.34

21C7D 19138 0.0 6705.3 17325 0.99 17324 0.38 17324 3.86

21C10D 21904 6.8 86400.0 20673 1.22 20673 0.49 20673 5.07

30C7D 29427 0.0 20670.3 27474 1.72 27963 0.38 27963 12.24

30C10D 35013 5.9 86400.0 32213 2.26 32427 0.49 32533 23.51

40C7D 30086 4.0 86400.0 28821 3.74 28114 1.08 27927 14.18

40C10D 36409 12.6 86400.0 34672 4.97 34278 1.49 33233 14.67

51C7D 41087 9.9 86400.0 36942 8.40 36446 0.95 36218 22.47

51C10D 45667 22.3 86400.0 43212 11.38 42406 1.89 42165 15.59

51C30D 47279 186.7 86400.0 59890 14.56 58587 3.49 59745 105.71

70C15D 86400.0 46818 16.64 45752 2.36 43116 54.85

70C40D 86400.0 58408 22.26 54235 7.60 54809 103.38

93C30D 86400.0 68174 26.61 63085 8.03 58493 108.73

93C40D 86400.0 73574 27.12 68307 9.94 62090 69.21

 Average 4.40% 8.96 4.97% 2.48 5.19% 34.93

Chapter 8: Computational Results 138

Figure 8.2 Comparison of FDORDCS, FDORGCS, and FDORPCS

Table 8.15 presents the comparison of routes generated by FDORDCS

algorithm and the optimal solution for the instance 30C7D. We specify

“Holding a Meeting” by (M).

0

10000

20000

30000

40000

50000

60000

70000

80000

12
C

-5
D

15
C

-7
D

15
C

-1
0D

21
C

-7
D

21
C

-1
0D

30
C

-7
D

30
C

-1
0D

40
C

-7
D

40
C

-1
0D

51
C

-7
D

51
C

-1
0D

51
C

-3
0D

70
C

-1
5D

70
C

-4
0D

93
C

-3
0D

93
C

-4
0D

O
b
je

ct
iv

e
V

al
u
e

GUROBI FDOR-DCS FDOR-GCS FDOR-PCS

Chapter 8: Computational Results 139

Table 8.15 Comparison of routes of FDORDCS and optimal solution

 Routes

O
p
ti

m
al

 S
ol

u
ti

on

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)

Day 2: Wakeup in İskenderun → Adana (M) → Istanbul (M) → Antalya (Sleep in Antalya)

Day 3: Wakeup in Antalya (M) → Denizli (M) → Aydin (M) → Izmir (Sleep in Izmir)

Day 4: Wakeup in Izmir (M) → Balıkesir (M) → Bursa (M) (Sleep in Bursa)

Day 5: Wakeup in Bursa → Istanbul (M) → Gebze (M) → Ankara (Sleep in Ankara)

Day 6: Wakeup in Ankara (M) → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş)

Day 7: Wakeup in Kahramanmaraş → Hatay (M) → Adana (M) (Sleep in Adana)

F
D

O
R

D

C
S

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)

Day 2: Wakeup in İskenderun → Istanbul (M) → Bursa (M) (Sleep in Bursa)

Day 3: Wakeup in Bursa → Izmir (M) → Aydin (M) (Sleep in Aydin)

Day 4: Wakeup in Aydin → Denizli (M) → Antalya (M) → Alanya (M) (Sleep in Alanya)

Day 5: Wakeup in Alanya → Isparta (M) → Ankara (M) (Sleep in Ankara)

Day 6: Wakeup in Ankara → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş)

Day 7: Wakeup in Kahramanmaraş → Adana (M) → Istanbul (M) (Sleep in Istanbul)

In order to illustrate the efficiency of the FDORDCS, we compared the

daily net benefit (collected daily rewards minus daily travel costs) of the

MPTPP optimal solution with FDORDCS solution for 30C7D instance in

Figure 8.3. In day 1, FDORDCS generates the same route as the optimal

solution and in day 2 and day 7, it was able to obtain higher net benefits for

the same days in the optimal solution.

Chapter 8: Computational Results 140

Figure 8.3 The comparison of the net benefit of FDOR and MPTPP

8.16 Comparison of GUROBI and FDORDCS for all three set of instances

Since it was found that FDORDCS finds better solutions compared to

FDORGCS and FDORPCS in PE.I instances, for completeness, we

compared the results of the commercial solver and FDOR-DCS for all 45

instances. Table 8.16 displays the objective value of all instances for both

GUROBI and FDOR-DCS along with CPU times in seconds.

0

2000

4000

6000

8000

10000

12000

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

D
ai

ly

N
et

B
en

ef
it

MPTPP FDORDCS

Table 8.16 Comparison of GUROBI with FDORDCS for all instances

Instance GUROBI FDORDCS Instance GUROBI FDORDCS

 Best CPU Gap(%) Obj.Val CPU Gap (%) Best CPU Gap(%) Obj.Val CPU Gap (%)

PE.I PE.II

6C2D 7110 0.1 0.0 7110 0.1 0.0 20C5D 25118 239.2 0.0 24196 0.6 3.7

6C3D 8181 0.1 0.0 8181 0.1 0.0 20C7D 27523 1995.9 0.0 25419 0.6 7.6

7C2D 9629 0.2 0.0 9629 0.1 0.0 30C5D 16635 709.9 0.0 16052 1.5 3.5

7C4D 11597 0.4 0.0 11457 0.2 1.2 30C7D 18855 28216.8 0.0 17997 1.8 4.6

9C3D 10939 0.5 0.0 10788 0.1 1.4 30C10D 21251 86400.0 5.9 19577 2.0 7.9

9C4D 11668 1.3 0.0 11268 0.1 3.4 40C7D 32811 86400.0 20.1 31748 3.0 3.2

12C5D 14575 6.0 0.0 12906 0.3 11.5 40C10D 37851 86400.0 3.8 34267 3.6 9.5

15C7D 17240 551.3 0.0 16132 0.5 6.4 50C7D 32829 86400.0 1.6 33101 6.9 −0.8

15C10D 18759 30458.5 0.0 17356 0.7 7.5 50C10D 38098 86400.0 11.8 37389 8.5 1.9

21C7D 19138 6705.3 0.0 17325 0.9 9.5 50C15D 44098 86400.0 35.6 41687 11.0 5.5

21C10D 21904 86400.0 6.8 20673 1.2 5.6 60C7D 40480 86400.0 2.5 38105 13.8 5.9

30C7D 29427 20670.3 0.0 27474 1.7 6.6 60C10D 48270 86400.0 7.0 45446 18.8 5.8

30C10D 35013 86400.0 5.9 32213 2.2 8.0 60C20D 50559 86400.0 80.1 62869 22.8 −24.3

40C7D 30086 86400.0 4.0 28821 3.7 4.2 70C10D 42474 86400.0 13.9 40201 26.1 5.3

40C10D 36409 86400.0 12.6 34672 4.9 4.8 70C20D 43705 86400.0 112.3 51055 34.9 −16.8

51C7D 41087 86400.0 9.9 36942 8.4 10.1 70C30D − − − 57065 36.2 −

Instance GUROBI FDORDCS Instance GUROBI FDORDCS

 Best CPU Gap(%) Obj.Val CPU Gap (%) Best CPU Gap(%) Obj.Val CPU Gap (%)

51C10D 45667 86400.0 22.3 43212 11.3 5.4 80C10D 40808 86400.0 22.2 38423 38.6 5.8

51C30D 47279 86400.0 186.7 59890 14.5 −26.7 80C20D 50777 86400.0 75.1 53270 41.9 −4.9

70C15D 86400.0 46818 16.6 80C30D − − − 57285 50.0 −

70C40D 86400.0 58408 22.2 80C40D − − − 62576 48.7 −

93C30D 86400.0 68174 26.6 Average 36008 67903.6 39386 18.5 1.37

93C40D 86400.0 73574 27.1

Average 23094 45854.2 29682 6.5 5.03 LE

 39C7D 22361 86400.0 4.7 22164 11.7 0.8

 39C10D 26774 86400.0 18.5 27191 13.5 -1.5

 39C14D 30214 86400.0 57.5 31757 15.9 -4.8

 Average 26449 86400 27037 13.7 -1.8

Chapter 8: Computational Results 143

8.17 Results for GSVNTS

We conducted computational experiments for GSVNTS with the instance sets

discussed in Section 8.1 and present our results in this section. We compare

our results with the results of the commercial solver. The results of GSVNTS

are tabulated in Table 8.17. Since there is an uncertainty inside the algorithm,

we run GSVTNS for 5 times and report the average objective value and average

run time.

GSVNTS algorithm outperforms the commercial solvers in each instance size

of each election groups, as represented in Table 8.17.

Table 8.17 Comparison of GUROBI with GSVNTS for all instance sizes

Instance GUROBI GSVNTS Instance GUROBI GSVNTS

 Best CPU Gap(%) Obj.Val CPU Gap (%) Best CPU Gap(%) Obj.Val CPU Gap (%)

PE.I PE.II

6C2D 7110 0.1 0.0 7110 0.1 0.0 20C5D 25118 239.2 0.0 25118 40.0 0.0

6C3D 8181 0.1 0.0 8181 0.1 0.0 20C7D 27523 1995.9 0.0 27523 31.4 0.0

7C2D 9629 0.2 0.0 9629 0.1 0.0 30C5D 16635 709.9 0.0 16635 35.2 0.0

7C4D 11597 0.4 0.0 11597 2.4 0.0 30C7D 18855 28216.8 0.0 18855 52.8 0.0

9C3D 10939 0.5 0.0 10939 3.2 0.0 30C10D 21251 86400.0 5.9 21972 847.3 -3.3

9C4D 11668 1.3 0.0 11668 6.5 0.0 40C7D 32811 86400.0 20.1 35360 554.2 -7.7

12C5D 14575 6.0 0.0 14575 10.3 0.0 40C10D

37851 86400.0 3.8 38205 1095.0 -0.9

15C7D 17240 551.3 0.0 17240 25.6 0.0 50C7D 32829 86400.0 1.6 33156 810.2 −0.8

15C10D 18759 30458.5 0.0 18759 70.1 0.0 50C10D 38098 86400.0 11.8 39225 1271.3 -2.9

21C7D 19138 6705.3 0.0 19138 39.5 0.0 50C15D 44098 86400.0 35.6 48604 2371.6 -10.2

21C10D 21904 86400.0 6.8 21612 680.0 0.1 60C7D 40480 86400.0 2.5 40290 957.8 0.4

30C7D 29427 20670.3 0.0 29427 70.1 0.0 60C10D 48270 86400.0 7.0 48936 1581.0 -1.3

30C10D 35013 86400.0 5.9 35001 1045.2 0.0 60C20D 50559 86400.0 80.1 65640 2863.5 −29.8

40C7D 30086 86400.0 4.0 29315 864.5 2.5 70C10D 42474 86400.0 13.9 42152 2433.4 0.7

40C10D 36409 86400.0 12.6 35614 1281.9 2.1 70C20D 43705 86400.0 112.3 56730 3174.2 −29.8

51C7D 41087 86400.0 9.9 42018 822.4 −2.2 70C30D − − − 61573 5824.4 −

51C10D 45667 86400.0 22.3 47259 1554.0 −3.4 80C10D 40808 86400.0 22.2 40825 2951.6 0.0

Instance GUROBI GSVNTS Instance GUROBI GSVNTS

 Best CPU Gap(%) Obj.Val CPU Gap (%) Best CPU Gap(%) Obj.Val CPU Gap (%)

51C30D 47279 86400.0 186.7 63955 3475.2 −35.2 80C20D 50777 86400.0 75.1 65294 4830.9 −28.5

70C15D 86400.0 51878 3108.1 80C30D − − − 59425 3574.1 −

70C40D 86400.0 60422 7150.8 80C40D − − − 64740 6383.1 −

93C30D 86400.0 69940 5394.6 Average 36008 67903.6 42513 2084.1 -6.71

93C40D 86400.0 78685 8450.5

Average 23094 45854.2 31544 1547.9 -2.00

 LE

 39C7D 22361 86400.0 4.7 22805 718.3 -0.1

 39C10D 26774 86400.0 18.5 28059 1158.0 -4.7

 39C14D 30214 86400.0 57.5 34732 2390.5 -14.9

 Average 26449 86400 28532 1422.2 -6.56

Chapter 8: Computational Results 146

8.18 Performance of GSVNTS

Contrary to Gurobi, GSVNTS performs in a fairly robust fashion. The performance

and average runtime of GSVNTS for all instance sets are represented in Figure 8.4 -

Figure 8.9.

Figure 8.4 Performance of GSVNTS (PE.I)

O
b
je

ct
iv

e
V

al
u
e

Instances Size

Chapter 8: Computational Results 147

Figure 8.5 Average runtime of GSVNTS (PE.I)

Figure 8.6 Performance of GSVNTS (PE.II)

0

20000

40000

60000

80000

100000

6C
2D

6C
3D

7C
2D

7C
4D

9C
3D

9C
4D

12
C

5D

15
C

7D

15
C

10
D

21
C

7D

21
C

10
D

30
C

7D

30
C

10
D

40
C

7D

40
C

10
D

51
C

7D

51
C

10
D

51
C

30
D

70
C

15
D

70
C

40
D

93
C

30
D

93
C

40
D

A
ve

ra
ge

 R
u
n
 t

im
e

Instances size

Gurobi GSVNTS

0

10000

20000

30000

40000

50000

60000

70000

20
C

5D

20
C

7D

30
C

5D

30
C

7D

30
C

10
D

40
C

7D

40
C

10
D

50
C

7D

50
C

10
D

50
C

15
D

60
C

7D

60
C

10
D

60
C

20
D

70
C

10
D

70
C

20
D

70
C

30
D

80
C

10
D

80
C

20
D

80
C

30
D

80
C

40
D

O
b
je

ct
iv

e
V

al
u
e

Instances size

Gurobi GSVNTS

Chapter 8: Computational Results 148

Figure 8.7 Average runtime of GSVNTS (PE.II)

Figure 8.8 Performance of GSVNTS (LE)

0

20000

40000

60000

80000

100000

20
C

5D

20
C

7D

30
C

5D

30
C

7D

30
C

10
D

40
C

7D

40
C

10
D

50
C

7D

50
C

10
D

50
C

15
D

60
C

7D

60
C

10
D

60
C

20
D

70
C

10
D

70
C

20
D

70
C

30
D

80
C

10
D

80
C

20
D

80
C

30
D

80
C

40
D

A
ve

ra
ge

 R
u
n
ti
m

e

Instances size

Gurobi GSVNTS

0

10000

20000

30000

40000

39C7D 39C10D 39C14D

O
b
je

ct
iv

e
V

al
u
e

Instances size

Gurobi GSVNTS

Chapter 8: Computational Results 149

Figure 8.9 Average runtime of GSVNTS (LE)

8.19 Comparison of GSVNTS with Party’s actual meeting plan

To assess the quality of the solutions proposed by GSVNTS, it is useful to

compare the objective values of GSVNTS solutions for the real-life instance

70C-40D with the political party’s actual plans as well. Moreover, in order to

show the efficiency of GSVNTS, the results of deterministic mathematical

models are proposed. Such a comparison highlight the actual need to tackle

this problem. To do this, we retrieved the main opposition party’s realized

meetings prior to the general election in June 2015 in Turkey. In the light of

these meetings, we created our large size instance with 70 cities and a campaign

period of 40 days.

In order to make a fair comparison, we also define a “Reward-Only”

scenario where we ignore the traveling costs and relax the following three

0

20000

40000

60000

80000

100000

39C7D 39C10D 39C14D

A
ve

ra
ge

 R
u
n
ti
m

e

Instances size

Gurobi GSVNTS

Chapter 8: Computational Results 150

constraints in our assumptions. The first constraint was forcing the politician

to hold at least one meeting every day. However, in the actual meeting schedule

of the party, there were two meeting-free days. The second constraint was

forcing the politician to end the campaign at the campaign base. We also

relaxed this constraint since the actual campaign of the party back in June

2015 had not been completed in Ankara. The last constraint forced the

politician to the campaign base frequently. Table 8.18 illustrates the results of

GSVNTS, MPTPP and actual party’s plan on the 70C-40D instance. It shows

that Gurobi is not able to find an optimal solution in three days. However, the

best feasible MPTPP solution reported by GUROBI bears a net benefit that

is about 90% greater than the net benefit accrued by the end of the actual

campaign plan of the party.

In the actual plan there are three meetings in Istanbul, Ankara, and

Mersin each, two meetings in Izmir, and one meeting in the remaining cities

each. However, the best feasible MPTPP solution prescribes three meetings in

İstanbul, Ankara, İzmir, and Mersin each, two meetings in the majority of

midsize cities such as Adana, Balıkesir, Bursa, Çanakkale, Hatay, Konya,

Zonguldak, Uşak, etc., and one meeting in the remaining cities. The results

highlight the massive advantage of solving the MPTPP for the maximization

of the net benefit obtained from an election campaign that spans an extended

period.

Chapter 8: Computational Results 151

Table 8.18 Comparison of GSVNTS with Party’s actual meeting plan

A real-life instance of 70C40D

 Obj. Val. Gap(%) # of Meetings CPU(s)

 MPTPP LB = 46640

UB =

117427

60.3 75 259200

(3 days) GSVNTS 58408 96 22.26

 Party’s Plan 24534 77 n/a

Rew-

Only

MPTPP LB = 68399

UB =

106802

56.1 65 259200

(3 days) GSVNTS 94044 102 34.15

Party’s Plan 64124 77 n/a

For the reward-only scenario of the problem under study, both MPTPP

and GSVNTS outperform the actual party’s plan. Considering the number of

meetings as a performance measure, the solution obtained by GSVNTS holds

19 more meetings compared with the party’s plan. This difference is more

significant in the reward-only scenario where GSVNTS holds 25 more meetings.

Note that in both cases, the objective values obtained by GSVNTS in less than

35 seconds are much better than the one of the party’s plan which indicates

the effectiveness of the scheduling and routing in the proposed algorithm.

Chapter 9: Conclusions and future work 152

Chapter 9

CONCLUSIONS AND FUTURE WORK

9. CONCLUSIONS AND FUTURE WORK

In this study, we introduce a novel logistical problem which we call the

Roaming Salesman Problem (RSP). This problem can be classified as a multi-

period version of the prize-collecting traveling salesman problem with dynamic

profits, repeat visits to certain customer nodes, arbitrary depot nodes, and

three types of time restricted tours. In addition, the campaigner can stay

overnight in any arbitrary city and resume his/her daily tour there the next

morning. This extraordinary feature adds another level of complexity to the

model of the problem. This problem arises in election logistics where there exist

no fixed depots and daily tours do not have to start and end at the same city.

We propose an innovative MILP formulation followed by an extensive

scenario analysis. We also suggest an effective two-phase matheuristic

approach consisting of two primary components: a city selection step and a

route generation step. The proposed matheuristic (FDOR) decomposes the

original mixed-integer linear programming formulation into as many

subproblems as the number of days, where each subproblem depends on how

frequently the campaign base is to be visited throughout the campaign

duration. This decomposition strategy has led to generating next period’s route

without the need to track the route of each day which reduces the

computational complexity of the problem massively. We tested three city

selection approaches followed by associated parameter calibration experiments.

Chapter 9: Conclusions and future work 153

Computational results suggest that FDOR provides high-quality solutions in a

significantly small amount of time.

We also present a Variable Neighborhood Search (VNS) complemented

with Tabu Search (TS) for RSP. Two initial feasible solution construction

algorithms are introduced. Next, this solution is improved using the proposed

local search procedure. The concept of granularity is incorporated into the

developed algorithm to prevent non-promising moves and thereby reduce the

computing time of the neighborhood search. On the other hand, the concept of

skewness modifies the basic VNS so as to explore deeper neighborhoods of the

current solution by accepting nonimproving moves which lead to far enough

neighboring solutions. At each iteration of the local search procedure, several

feasibility checks are performed to ensure the validity of the solution.

Therefore, the so-called chain feasibility of the solution is guaranteed at each

iteration, which means the starting node of tomorrow’s tour must match the

terminal node of today’s tour. The proposed GSVNTS algorithm gives

competitive and acceptable results for real-world instances of RSP and its

application in election logistics.

We consider a set of 95 cities and towns in Turkey and a campaign period

of 40 days as our largest problem instance. Computational results using actual

distance and travel time data show that the developed algorithm can find

optimal and near-optimal solutions in a reasonable CPU time.

This work can be extended in many directions. RSP can be applied in

different similar contexts (e.g. nurse routing problem, scheduling of music band

auditions, and touristic trip planning) where the rewards are time-dependent

and it is required to have different tour types during the planning horizon.

Additionally, the decomposition approach we used in the proposed

Chapter 9: Conclusions and future work 154

matheuristic can be generalized for solving other hard combinatorial problems

that could be too difficult to tackle otherwise. A relevant topic is the inclusion

of rival party’s meetings in the calculation of the rewards. Alternative objective

functions can be evaluated as well. For instance, the party executives may

want to simply hold as many meetings as possible. Another example is

considering equal number of visits to the east and west sides of country. Time-

windows can be considered as well to add a more realistic aspect to the

problem. Moreover, alternative formulations can be investigated to improve

the model solution. Finally, other powerful heuristics can be developed to

improve the solution quality of the algorithm.

Bibliography 155

BIBLIOGRAPHY

Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team

orienteering problem. Journal of Heuristics, 13(1), 49-76.

Archetti, C., Feillet, D., Hertz, A., & Speranza, M. G. (2009). The capacitated

team orienteering and profitable tour problems. Journal of the

Operational Research Society, 60(6), 831-842.

Arkin, E. M., Mitchell, J. S., & Narasimhan, G. (1998, June). Resource-

constrained geometric network optimization. In Proceedings of the

Fourteenth Annual Symposium on Computational Geometry (pp. 307-

316). ACM.

Awerbuch, B., Azar, Y., Blum, A., & Vempala, S. (1998). New approximation

guarantees for minimum-weight k-trees and prize-collecting salesmen.

SIAM Journal on Computing, 28(1), 254-262.

Balas, E. (1989). The prize collecting traveling salesman

problem. Networks, 19(6), 621-636.

Balas, E., & Martin, G. (1985). ROLL-A-ROUND: Software package for

scheduling the rounds of a rolling mill, ©Balas and Martin Associates,

104 Maple Heights Road, Pittsburgh, USA.

Bibliography 156

Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). An exact ϵ-constraint

method for bi-objective combinatorial optimization problems:

Application to the Traveling Salesman Problem with Profits. European

journal of operational research, 194(1), 39-50.

Boussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team

orienteering problems. 4or, 5(3), 211-230.

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time

windows, Part II: Metaheuristics. Transportation science, 39(1), 119-

139.

Burke, E. K., Cowling, P. I., & Keuthen, R. (2001, April). Effective local and

guided variable neighbourhood search methods for the asymmetric

travelling salesman problem. In Workshops on Applications of

Evolutionary Computation (pp. 203-212). Springer, Berlin, Heidelberg.

Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour

maximum collection problem. Computers & Operations Research, 21(1),

101-111.

Butt, S. E., & Ryan, D. M. (1999). An optimal solution procedure for the

multiple tour maximum collection problem using column

generation. Computers & Operations Research, 26(4), 427-441.

Cacchiani, V., Hemmelmayr, V. C., and Tricoire, F. (2014). A set-covering

based heuristic algorithm for the periodic vehicle routing

problem. Discrete Applied Mathematics, 163, 53-64.

Bibliography 157

Carrabs, F., Cordeau, J. F., & Laporte, G. (2007). Variable neighborhood

search for the pickup and delivery traveling salesman problem with

LIFO loading. INFORMS Journal on Computing, 19(4), 618-632.

Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic

for the orienteering problem. European journal of operational

research, 88(3), 475-489.

Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic

for periodic and multi‐depot vehicle routing problems. Networks, 30(2),

105-119.

Crispim, J., & Brandao, J. (2001, July). Reactive tabu search and variable

neighborhood descent applied to the vehicle routing problem with

backhauls. In Proceedings of the 4th Metaheuristics International

Conference, Porto (Vol. 1101, pp. 631-636).

Dell'Amico, M., Maffioli, F., & Sciomachen, A. (1998). A lagrangian heuristic

for the prize collectingtravelling salesman problem. Annals of

Operations Research, 81, 289-306.

Dell'Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize‐collecting tours

and the asymmetric travelling salesman problem. International

Transactions in Operational Research, 2(3), 297-308.

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the

Miller-Tucker-Zemlin subtour elimination constraints. Operations

Research Letters, 10(1), 27-36.

Bibliography 158

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems

with profits. Transportation Science, 39(2), 188-205.

Fischetti, M., Salazar-González, J. J., & Toth, P. (2007). The generalized

traveling salesman and orienteering problems. In: Gutin, G., & Punnen,

A. P. (Eds.). The Traveling Salesman Problem and Its Variations (pp.

609-662). Combinatorial Optimization Vol. 12. Springer

Science+Business Media, LLC.

Fischetti, M., & Toth, P. (1988). An additive approach for the optimal solution

of the prize collecting traveling salesman problem. Vehicle routing:

Methods and studies, 231, 319-343.

Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A variable neighbourhood

search algorithm for the open vehicle routing problem. European

Journal of Operational Research, 195(3), 803-809.

García-López, F., Melián-Batista, B., Moreno-Pérez, J. A., & Moreno-Vega, J.

M. (2002). The parallel variable neighborhood search for the p-median

problem. Journal of Heuristics, 8(3), 375-388.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide

to the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences, Vol. 29). New York: W. H. Freeman.

Gavish, B., & Graves, S. C. (1978). The travelling salesman problem and

related problems.

Bibliography 159

Geiger, M. J., Wenger, W., & Habenicht, W. (2007, April). Interactive utility

maximization in multi-objective vehicle routing problems: a" decision

maker in the loop"-approach. In Computational Intelligence in

Multicriteria Decision Making, IEEE Symposium on (pp. 178-184).

IEEE.

Gendreau, M., Laporte, G., & Semet, F. (1998). A branch-and-cut algorithm

for the undirected selective traveling salesman problem. Networks, 32(4),

263-273.

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3),

190-206.

Glover, F. (1990). Tabu search—part II. ORSA Journal on computing, 2(1), 4-

32.

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial

optimization (pp. 2093-2229). Springer, Boston, MA.

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval

Research Logistics, 34(3), 307-318.

Golden, B. L., Wang, Q., & Liu, L. (1988). A multifaceted heuristic for the

orienteering problem. Naval Research Logistics, 35(3), 359-366.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem:

A survey of recent variants, solution approaches and

applications. European Journal of Operational Research, 255(2), 315-

332.

Bibliography 160

Gurobi Documentation (May 19, 2018). Version 7.5. Gurobi Optimization,

LLC. Houston, USA. < http://www.gurobi.com/documentation/>

(accessed May 2018).

Gutin, G., & Punnen, A. P. (Eds.). (2007). The Traveling Salesman Problem

and Its Variations. Combinatorial Optimization Vol. 12. Springer

Science+Business Media, LLC.

Halvorsen-Weare, E. E., and Fagerholt, K. (2013). Routing and scheduling in

a liquefied natural gas shipping problem with inventory and berth

constraints. Annals of Operations Research, 1-20.

Hansen, P., & Mladenović, N. (1999). An introduction to variable

neighborhood search. In Meta-heuristics (pp. 433-458). Springer,

Boston, MA.

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles

and applications. European journal of operational research, 130(3), 449-

467.

Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood

search: methods and applications. Annals of Operations

Research, 175(1), 367-407.

Hayes, M., & Norman, J. M. (1984). Dynamic programming in orienteering:

route choice and the siting of controls. Journal of the Operational

Research Society, 35(9), 791-796.

Bibliography 161

Hemmelmayr, V. C., Doerner, K. F., & Hartl, R. F. (2009). A variable

neighborhood search heuristic for periodic routing problems. European

Journal of Operational Research, 195(3), 791-802.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial

intelligence.

Hu, B., Leitner, M., & Raidl, G. R. (2008). Combining variable neighborhood

search with integer linear programming for the generalized minimum

spanning tree problem. Journal of Heuristics, 14(5), 473-499.

Kataoka, S., & Morito, S. (1988). An algorithm for single constraint maximum

collection problem. Journal of the Operations Research Society of Japan,

31(4), 515-531.

Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering

problem. Computers & Industrial Engineering, 54(3), 648-665.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by

simulated annealing. science, 220(4598), 671-680.

Kirkpatrick, S., & Toulouse, G. (1985). Configuration space analysis of

travelling salesman problems. Journal de Physique, 46(8), 1277-1292.

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient

variable neighborhood search heuristic for very large scale vehicle

routing problems. Computers & operations research, 34(9), 2743-2757.

Bibliography 162

Lahyani, R., Khemakhem, M., and Semet, F. (2017). A unified matheuristic

for solving multi-constrained traveling salesman problems with

profits. EURO Journal on Computational Optimization, 5(3), 393-422.

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing

problems: From a taxonomy to a definition. European Journal of

Operational Research, 241(1), 1-14.

Laporte, G., & Martello, S. (1990). The selective travelling salesman problem.

Discrete Applied Mathematics, 26(2-3), 193-207.

Liu, S. C., & Chung, C. H. (2009). A heuristic method for the vehicle routing

problem with backhauls and inventory. Journal of Intelligent

Manufacturing, 20(1), 29.

Mansini, R., Pelizzari, M., & Wolfer, R. (2006). A granular variable

neighbourhood search heuristic for the tour orienteering problem with

time windows. Technical Report R.T 2006-02-52, University of Brescia,

Italy.

Mansini, R., & Tocchella, B. (2009). The traveling purchaser problem with

budget constraint. Computers & Operations Research, 36(7), 2263-2274.

Melechovský, J., Prins, C., & Calvo, R. W. (2005). A metaheuristic to solve a

location-routing problem with non-linear costs. Journal of

Heuristics, 11(5-6), 375-391.

Bibliography 163

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming

formulation of traveling salesman problems. Journal of the ACM

(JACM), 7(4), 326-329.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood

search. Computers & operations research, 24(11), 1097-1100.

Öncan, T., Altınel, İ. K., & Laporte, G. (2009). A comparative analysis of

several asymmetric traveling salesman problem formulations. Computers

& Operations Research, 36(3), 637-654.

Polacek, M., Doerner, K. F., Hartl, R. F., Kiechle, G., & Reimann, M. (2007).

Scheduling periodic customer visits for a traveling

salesperson. European Journal of Operational Research, 179(3), 823-

837.

Polacek, M., Doerner, K. F., Hartl, R. F., & Maniezzo, V. (2008). A variable

neighborhood search for the capacitated arc routing problem with

intermediate facilities. Journal of Heuristics, 14(5), 405-423.

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A variable

neighborhood search for the multi depot vehicle routing problem with

time windows. Journal of heuristics, 10(6), 613-627.

Polat, O., Kalayci, C. B., Kulak, O., & Günther, H. O. (2015). A perturbation

based variable neighborhood search heuristic for solving the vehicle

routing problem with simultaneous pickup and delivery with time

limit. European Journal of Operational Research, 242(2), 369-382.

Bibliography 164

Prins, C., Prodhon, C., Ruiz, A., Soriano, P., and Wolfler Calvo, R. (2007).

Solving the capacitated location-routing problem by a cooperative

Lagrangean relaxation-granular tabu search heuristic. Transportation

Science, 41(4), 470-483.

Qiu, Y., Wang, L., Xu, X., Fang, X., & Pardalos, P. M. (2018). A variable

neighborhood search heuristic algorithm for production routing

problems. Applied Soft Computing, 66, 311-318.

Repoussis, P. P., Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G.

(2006, October). A reactive greedy randomized variable neighborhood

tabu search for the vehicle routing problem with time windows.

In International Workshop on Hybrid Metaheuristics (pp. 124-138).

Springer, Berlin, Heidelberg.

Rousseau, L. M., Gendreau, M., & Pesant, G. (2002). Using constraint-based

operators to solve the vehicle routing problem with time

windows. Journal of heuristics, 8(1), 43-58.

Salhi, S (2017). Heuristic Search: The Emerging Science of Problem Solving.

Cham, Switzerland, Springer.

Sarasola, B., Doerner, K. F., Schmid, V., & Alba, E. (2016). Variable

neighborhood search for the stochastic and dynamic vehicle routing

problem. Annals of Operations Research, 236(2), 425-461.

Bibliography 165

Shahmanzari, M., Aksen, D., & Salhi, S. (2018). A formulation and

matheuristic for the Roaming Salesman Problem: Application to election

logistics. Manuscript sumbitted for publication.

Shahmanzari, M., Aksen, D., & Salhi, S. (2018). Managing election campaigns

with the power of analytical modeling. Manuscript sumbitted for

publication.

Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team

orienteering problem. Computers & Operations Research, 32(6), 1379-

1407.

Thomadsen, T., Stidsen, T. (2003). The quadratic selective travelling salesman

problem. Informatics and Mathematical Modelling Technical Report

2003-17, Technical University of Denmark.

Todosijević, R., Urošević, D., Mladenović, N., & Hanafi, S. (2017). A general

variable neighborhood search for solving the uncapacitated r-allocation

p-hub median problem. Optimization Letters, 11(6), 1109-1121.

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to

the vehicle-routing problem. Informs Journal on computing, 15(4), 333-

346.

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics

for the multi-period orienteering problem with multiple time windows.

Computers & Operations Research, 37(2), 351-367.

Bibliography 166

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of

the Operational Research Society, 35(9), 797-809.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The

orienteering problem: A survey. European Journal of Operational

Research, 209(1), 1-10.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D.

(2009). A guided local search metaheuristic for the team orienteering

problem. European journal of operational research, 196(1), 118-127.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D.

(2009). Iterated local search for the team orienteering problem with time

windows. Computers & Operations Research, 36(12), 3281-3290.

Appendix A 167

APPENDIX A

Table A.1 Characteristics of the dominant party instances

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Adana 5 2183167 920 120

Adıyaman 4 602774 420 90

Afyonkarahisar 4 709015 580 90

Ağrı 2 547210 270 60

Aksaray 2 386514 250 60

Amasya 2 322167 240 60

Ankara 5 5270575 1505 120

Antalya 5 2288456 935 120

Ardahan 2 99265 210 60

Artvin 2 168370 220 60

Aydın 3 1053506 495 90

Balıkesir 5 1186688 875 120

Bartın 4 190708 440 90

Batman 2 566633 270 60

Bayburt 2 78550 210 60

Bilecik 4 212361 460 90

Bingöl 2 267184 230 60

Bitlis 4 340449 480 90

Bolu 4 291095 480 90

Burdur 4 258339 460 90

Bursa 5 2842547 1040 120

Çanakkale 2 513341 270 60

Çankırı 2 180945 220 60

Çorum 4 525180 540 90

Denizli 3 993442 495 90

Appendix A 168

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Diyarbakır 4 1654196 820 90

Düzce 5 360388 625 120

Edirne 2 402537 250 60

Elazığ 3 574304 405 90

Erzincan 3 222918 345 90

Erzurum 3 762321 450 90

Eskişehir 3 826716 465 90

Gaziantep 5 1931836 1125 120

Giresun 4 426686 500 90

Gümüşhane 2 151449 220 60

Hakkari 2 278775 240 60

Hatay 5 1533507 1000 120

Iğdır 2 192435 220 60

Isparta 4 421766 500 90

İstanbul 5 14657434 2370 120

İzmir 5 4168415 1295 120

Kahramanmaraş 3 1096610 510 90

Karabük 2 236978 230 60

Karaman 2 242196 230 60

Kars 3 292660 360 90

Kastamonu 3 372633 375 90

Kayseri 5 1341056 925 120

Kilis 2 130655 220 60

Kırıkkale 3 270271 345 90

Kırklareli 2 346973 240 60

Kırşehir 3 225562 345 90

Kocaeli 5 1780055 1075 120

Konya 5 2130544 905 120

Kütahya 3 571463 405 90

Malatya 5 772904 750 120

Appendix A 169

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Manisa 3 1380366 570 90

Mardin 3 796591 450 90

Mersin 3 1745221 630 90

Muğla 3 908877 480 90

Muş 2 408728 250 60

Nevşehir 3 286767 360 90

Niğde 4 346114 480 90

Ordu 3 728949 435 90

Osmaniye 5 512873 675 120

Rize 3 328979 360 90

Sakarya 5 953181 800 120

Samsun 5 1279884 900 120

Şanlıurfa 3 1892320 660 90

Siirt 2 320351 240 60

Sinop 4 204133 460 90

Şırnak 2 490184 260 60

Sivas 4 618617 560 90

Tekirdağ 3 937910 480 90

Tokat 3 593990 420 90

Trabzon 3 768417 450 90

Tunceli 2 86076 210 60

Uşak 2 353048 240 60

Van 4 1096397 680 90

Yalova 4 233009 460 90

Yozgat 3 419440 375 90

Zonguldak 5 595907 700 120

Appendix A 170

Table A.2 Characteristics of the main opposition party instances

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Adana 5 2183167 920 120

Adıyaman 2 602774 280 60

Afyonkarahisar 3 709015 435 90

Ağrı 2 547210 270 60

Aksaray 2 386514 250 60

Amasya 3 322167 360 90

Ankara 5 5270575 1505 120

Antalya 5 2288456 935 120

Ardahan 2 99265 210 60

Artvin 2 168370 220 60

Aydın 4 1053506 660 90

Balıkesir 5 1186688 875 120

Bartın 3 190708 330 90

Batman 2 566633 270 60

Bayburt 2 78550 210 60

Bilecik 2 212361 230 60

Bingöl 2 267184 230 60

Bitlis 2 340449 240 60

Bolu 3 291095 360 90

Burdur 2 258339 230 60

Bursa 5 2842547 1040 120

Çanakkale 3 513341 405 90

Çankırı 2 180945 220 60

Çorum 2 525180 270 60

Denizli 4 993442 660 90

Diyarbakır 2 1654196 410 60

Düzce 2 360388 250 60

Edirne 4 402537 500 90

Elazığ 2 574304 270 60

Appendix A 171

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Erzincan 4 222918 460 90

Erzurum 2 762321 300 60

Eskişehir 3 826716 465 90

Gaziantep 3 1931836 675 90

Giresun 3 426686 375 90

Gümüşhane 2 151449 220 60

Hakkari 2 278775 240 60

Hatay 5 1533507 1000 120

Iğdır 2 192435 220 60

Isparta 3 421766 375 90

İstanbul 5 14657434 2370 120

İzmir 5 4168415 1295 120

Kahramanmaraş 4 1096610 680 90

Karabük 2 236978 230 60

Karaman 2 242196 230 60

Kars 4 292660 480 90

Kastamonu 4 372633 500 90

Kayseri 2 1341056 370 60

Kilis 2 130655 220 60

Kırıkkale 2 270271 230 60

Kırklareli 4 346973 480 90

Kırşehir 2 225562 230 60

Kocaeli 3 1780055 645 90

Konya 2 2130544 362 60

Kütahya 2 571463 270 60

Malatya 2 772904 300 60

Manisa 3 1380366 570 90

Mardin 2 796591 300 60

Mersin 3 1745221 630 90

Muğla 5 908877 800 120

Appendix A 172

Cities

Criticality

factor ()iCF

Population in

2015 ()iPop

Reward

()i

Meeting Duration

()i

Muş 2 408728 250 60

Nevşehir 2 286767 240 60

Niğde 3 346114 360 90

Ordu 4 728949 580 90

Osmaniye 2 512873 270 60

Rize 2 328979 240 60

Sakarya 3 953181 480 90

Samsun 3 1279884 540 90

Şanlıurfa 2 1892320 440 60

Siirt 2 320351 240 60

Sinop 3 204133 345 90

Şırnak 2 490184 260 60

Sivas 3 618617 420 90

Tekirdağ 4 937910 640 90

Tokat 2 593990 280 60

Trabzon 2 768417 300 60

Tunceli 3 86076 315 90

Uşak 2 353048 240 60

Van 2 1096397 340 60

Yalova 3 233009 345 90

Yozgat 2 419440 250 60

Zonguldak 4 595907 560 90

Appendix B 173

APPENDIX B

The shaded areas in Figure B.1 denote those cities of Turkey which are

included in the 10-day-long campaign period. Full-MILP results on 40C-10D

are provided in Figure B.2, where the dots and numbers on a city represent

the number of meetings realized and day of meetings, respectively. Table B.1

reveals the daily tours where (M) indicates a meeting. The best gap obtained

for this particular instance was 12.6% in 24 hours of CPU time.

Figure B.1 Geographical distribution of 40 cities (shaded areas)

Appendix B 174

Figure B.2 Cities with meetings

Appendix B 175

Table B.1 Daily tours of the instance 40C-10D

Days Route

1

2

3

4

5

6

7

8

9

10

Ankara (M) → Hatay (M) → İskenderun (M)

İskenderun → Adana (M) → Istanbul (M)

Istanbul → Kocaeli (M) → Bursa (M) → Balıkesir (M)

Balıkesir → Manisa (M) → İzmir (M) → Aydin (M) → Muğla

Muğla (M) → Denizli (M) → Antalya (M) → Isparta

Isparta (M) → Afyonkarahisar (M) → Eskişehir (M) → Ankara

Ankara (M) → Gebze (M) → Istanbul

Istanbul (M) → Gaziantep (M) → Kahramanmaraş (M)

Kahramanmaraş → Hatay (M) → Adana (M) → Mersin

Mersin (M)

