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A B S T R A C T 

Campaign planning is one of the important decisions to make while dealing 

with determining routes, schedule of the activities, and accommodation 

planning. The campaign planner is required to plan the schedule of the visits 

to the customers, to satisfy time constraints, and to organize activities at its 

best with a proper decision on the scheduling and routing. In this study, we 

investigate a new problem the goal of which is to determine daily tours for a 

traveling salesman (referred to as the campaigner) who collects rewards from 

various cities during a campaign period. We call this new problem the roaming 

salesman problem (RSP) motivated by various real-world applications 

including election logistics, touristic trip planning, and marketing campaigns. 

RSP can be characterized as a combination of the traditional periodic TSP and 

the prize-collecting TSP with static edge costs and time-dependent vertex 

rewards. RSP seeks a closed or open tour for each day of a campaign period 

with the objective of maximizing the net benefit which is defined as the sum 

of all collected rewards minus the traveling costs. The campaigner is not 

required to visit all cities, and the daily tours do not have to start and end at 

the same city. Moreover, he/she can stay overnight in any city to start the 

tour of the next day. In particular, each city is associated with a base reward 

and a fixed activity duration. In addition, he/she cannot stay outside the 

campaign center for more than a given number of consecutive days and the 

total length of the activities and travel times between cities on the same day 

cannot exceed a certain maximum tour duration.  

We develop a MILP formulation for this problem in which we adopt 

existing routing constraints and introduce an entirely new class of constraints 

and binary variables. As an application of RSP in election logistics, we 

introduce the multi-period traveling politician problem (MPTPP). The problem 
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is tackled efficiently by adapting analytical model and an extensive scenario 

analysis. Commercial solvers are capable of solving small-size instances of the 

RSP to near optimality in a reasonable time. To tackle large-size instances we 

propose a two-phase matheuristic where the first phase deals with the city 

selection while the second phase focuses on the route generation. The latter 

capitalizes on an integer program to construct an optimal route among selected 

cities. The proposed matheuristic decomposes the RSP basically into as many 

subproblems as the number of campaign days.  

We also introduce a new hybrid metaheuristic algorithm for the RSP, 

called granular skewed variable neighborhood tabu search (GSVNTS). It 

consists of a Granular Tabu Search which is embedded in a Skewed Variable 

Neighborhood Search algorithm. The suggested method is experimentally 

tested on the real-life instances including 81 cities and 12 towns in Turkey with 

actual travel distances. The computational results show that GSVNTS can 

generate optimal or near-optimal solutions in a small amount of CPU time. 

Using effective analytical models, the two-phase matheuristic, and GSVNTS, 

we show that promising results can be obtained to hopefully assist campaign 

planners in their strategic decision making. 
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Chapter 1 

INTRODUCTION 

1. INTRODUCTION 

In this study, we study a logistical problem arising in promotion and marketing 

campaigns where the campaigner and his/her team needs to plan an efficient 

schedule through the campaign period to maximize the total reward by visiting 

appropriate cities. This logistical problem has a wider range of applications 

including election logistics, touristic trip planning, marketing campaign 

planning, promotion of a new product launch, and planning of client visits by 

company representatives, among others. We refer to this new problem as the 

roaming salesman problem (RSP).  

RSP has some similarities with a multi-period extension of the prize 

collecting traveling salesman problem (PCTSP) with time-dependent rewards 

and multiple visits. It is however very important to stress that the RSP does 

not involve a fixed central node designated as ‘the depot’. This implies that a 

daily tour may or may not terminate at the same node where it has started. In 

other words, the tour does not have to be a round-trip plus a node may be 

visited either in transit or for the purpose of an activity. In the latter case, the 

campaigner (i.e. the roaming salesman) spends a node-specific activity time 

and consequently collects a reward associated with that node. There are two 

types of rewards, namely a base reward and a depreciated reward. The base 

reward has been defined a priori for each node according to its characteristics. 
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However, the actual reward that can be claimed is subject to twofold 

depreciation: 

(a) It decreases linearly with the activity date. The later the activity, the 

smaller the collectible reward. 

(b) It decreases linearly with the recency of the past activity in the same 

node. The lesser the number of days that passed since the previous 

activity, the smaller the reward.  

Especially nodes of exorbitant size or significance may observe multiple 

visits. The second type of reward depreciation circumvents successive activities 

in such nodes within short time intervals.  

The goal in the RSP is to find an optimal or the ‘best’ schedule of daily 

visits for a campaigner who seeks to maximize his/her net benefit throughout 

a given number of periods (days). The net benefit is defined as the sum of all 

collected rewards minus the traveling costs incurred by the salesman. The RSP 

can be therefore classified as a rich traveling salesman problem (TSP) with the 

following six properties which together make this problem rather unique. For 

an overview of rich routing problems, see Lahyani et al. (2015). 

(i) Multi-period. RSP generalizes the TSP by extending the planning horizon 

to n days, thereby forming a multi-period problem. 

(ii) Time-constrained. In each period, i.e. on each day, the salesman is allowed 

to “roam” for no more than a certain number of hours. We refer to this 

time limit as the maximum tour duration constraint.  

(iii) Selective. The salesman needs to decide which nodes to visit so as to 

realize an activity. In other words, not every node is visited and not every 

node hosts an activity.  



 

 

Chapter 1: Introduction  3 

 

 

 

(iv) Absence of a fixed depot node, co-existence of open and closed tours. 

Tours do not have to start and end at the same node. The only requirement 

is that today’s tour originates where yesterday’s tour terminated. Hence, 

the salesman has also to decide where to stay overnight at the end of each 

day.  

(v) Time-dependent rewards. Each node is associated with a time-dependent 

reward which changes linearly according to the day of the hosted activity 

in that node and the recency of the previous activity in the same node. This 

is a challenging issue which is mainly attributed to this problem. 

(vi) Multiple visits. There exist a subset of nodes which may host more than 

one activity during the campaign, hence can be visited more than once. 

The RSP can be defined as follows. Consider a set of cities  {0,1,..., }nN  

including a fictitious city (indexed 0), a set of cities  {1,..., }nV  including a 

starting city (indexed as 1) and a set of days  {1,..., }.T  On each day t T

, any city i V  can be visited either to collect the associated reward from it 

or while in transit without reward. A nonnegative prize of i  called base reward 

is specified for each city i V . The base reward can depend on several factors 

such as the city population. Moreover, the actual reward earned by having an 

activity in city i  on day t  depends on two other factors:  

Factor 1.  The number of remaining days denoted by (  t ) until the end 

of the campaign, i.e. until the election day. 

Factor 2. In case a city hosts more than one activity, the number of days 

passed since the previous activity in the same city, denoted by s  

where   1 1s t . 
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The traveling cost between each pair of cities is known and given by ijc , 

 ,i j V  where ijc  denotes the cost of driving (or flying where applicable) 

from city i to city j. The traveling time between each pair of cities is also 

known with certainty and given by  , ,ijd i j V . The time spent by the 

salesman (also referred to as the campaigner in the sequel) for an activity in 

city i V  is shown by  ,  .i i V  The maximum tour duration applicable to 

the tour of each day is denoted by max.T  This time limit imposes an implicit 

threshold on the number of cities that can be visited in any given day.  

There is also an explicit limit   on the number of activities that can be 

realized per day. For the fictitious city  0i , the activity duration, the base 

reward, the traveling costs and times are all set to zero. The campaign period 

starts in the central city  1i  in the morning of day  1t  and ends in the 

evening of day t . At the end of a day t T , the campaigner stays 

overnight in some city  .i V  Note that waking up or staying overnight in city 

i  does not necessarily mean that there will be a reward collection in that city. 

One final remark should be made about periodic returns to the campaign base 

 1i . The salesman cannot be away from the campaign base for more than   

consecutive days. 

A distinctive feature of the RSP is that there are three possible types of 

daily tours during the campaign.  

Type 1 tours: Multi-city closed tour   

The campaigner starts the day (wakes up) 

in city i  on day t , leaves i  and visits at least 

one more city scheduled for that day. At the end 

of the day, he returns to the same city i to stay 

 i 

j, k, l,… 

Figure 1.1  Type 1 tour 
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overnight. Type 1 tour is a closed tour starting and ending at city i , and 

involving at least one more city other than city i  (see Figure 1.1). 

Type 2 tours: Single-city tour   

The campaigner wakes up in city i  on day t , 

spends the whole day in the same city collecting the 

reward and stays overnight in the same city. In Type 

2 tour, we assume that the campaigner goes from city 

i  to a fictitious city denoted by ‘0’ and returns from 

‘0’ to i . This tour is therefore treated as a closed tour starting and ending at 

city i  (see Figure 1.2). 

Type 3 tours: Multi-city open tour  

The campaigner wakes up in city i  

on day t , and goes to another city j . In 

between cities i  and j , he may visit one 

or more cities, or may directly travel from 

i  to j  where he stays overnight. Type 3 

tour is an open tour starting in city i  and 

ending in city j , as shown in Figure 1.3. 

In order to highlight the importance of having both open and closed routes 

during the campaign, we build a toy instance containing six cities, two days, 

and a daily maximum tour duration of 14 hours as illustrated in Figure 1.4. 

The travel times in italic and the activity times are written on the arcs and 

next to the nodes, respectively, both in hours. As shown in Figure 1.4, the tour 

of the first day starts in city ,i and includes three activities in cities i , j , and 

k . The campaigner returns to the starting city i  at the end of day 1 without 

 i 

0 

Figure 1.2  Type 2 tour 

k, l, m,… 
 j 

 i 

Figure 1.3  Type 3 tour 
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having any more activities there. The return to city i  on day 1 grants him/her 

enough time to visit more than one far city (m  and n ) the next day. 

 

 

Figure 1.4  An instance with both closed and open tours 

By ignoring the meeting times i , taking the campaign duration as   1,  

and setting the maximum tour duration and each city’s base reward to 

sufficiently large values, e.g. 
 

 
  

max{ } max{ }i ij ji
j j

d d
N N

 and 



max
,  
max { }
i j

T n dij
N

, a given TSP instance can be reduced to the associated 

MPTPP instance in polynomial time. TSP is a well-known NP-hard 

combinatorial optimization problem (Garey and Johnson, 1979). This leads to 

the conclusion that the MPTPP is also NP -hard, and thus cannot be solved 

in polynomial time to optimality.  

Motivated by this challenge, we propose for the RSP a simple but efficient 

two-phase matheuristic method which we call Finding Daily Optimal Routes 

(FDOR). For each period of the planning horizon, FDOR decomposes the RSP 
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into a pair of subproblems, namely a city selection problem in Phase I and a 

modified prize-collecting TSP to be solved optimally in Phase II. We 

experimented with three different city selection approaches so as to arrive at 

an effective, yet efficient selection scheme. Our proposed matheuristic can 

provide for medium- and large-size RSP instances a promising bundle of 

accommodation and meeting schedules that are complemented by daily routing 

plans. Actually, FDOR achieves this in remarkably short solution times. This 

way it can greatly facilitate campaign planners’ decision-making in their 

election logistics efforts.  

To improve the solution of FDOR, we adapt the basic variable 

neighborhood search (VNS) algorithm to RSP.  We propose another solution 

methodology to address RSP and its application in election logistics. We call 

this method granular skewed variable neighborhood tabu search (GSVNTS). 

VNS is a recently developed metaheuristic for tackling combinatorial 

optimization problems. The main idea is to change neighborhoods within local 

search in a systematic way (Hansen and Mladenović, 2001). VNS 

metaheuristics have been successfully implemented in different combinatorial 

optimization problems and their real-life applications, e.g., the vehicle routing, 

the traveling salesman, and the p-median (García-López et al. 2002). We 

modify the basic VNS by incorporating the granularity and the skewness in it. 

FDOR constructs the initial feasible solution. In the local search step, a tabu 

search heuristic is used to avoid cycles. We also consider a variety of rich 

neighborhood structure to explore as many solutions as possible. The detailed 

descriptions of FDOR and GSVNTS are given in Section 5 and Section 6.  

To the best of our knowledge, this is the first time the RSP is explored in 

depth and tackled. Our contribution is fivefold:  
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1. The investigation of a new logistical problem arising in several areas 

including election logistics.  

2. The development of a novel mixed-integer linear programming (MILP) 

formulation for this new problem.  

3. A real-life application of the problem to election logistics covering 81 

provinces and 12 highly populated towns of Turkey, supported by an 

extensive scenario analysis. 

4. The development of a new two-phase matheuristc to solve large-size 

instances. 

5. The development of a granular skewed variable neighborhood search 

complemented with a tabu search to find optimal or near to optimal 

solutions for RSP. 

The remainder of this thesis is organized as follows. In Section 2 we review 

the related literature. In Section 3, we present the mathematical formulation 

of RSP. In Section 4 we investigate the application of RSP in election logistics. 

The scenario analysis is discussed in Section 5. In Section 6 we present the 

proposed two-phase matheuristic approach FDOR. The proposed metaheuristic 

is presented in Section 7. We discuss our computational results in Section 8 on 

the basis of a case study involving a lot of cities and towns from Turkey. 

Finally, Section 9 summarizes our results and recommends future research 

directions. 
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Chapter 2 

LITERATURE REVIEW 

2. LITERATURE REVIEW 

In this chapter, we survey the studies related with roaming salesman problem 

where we point out the differences between our problems and the related 

studies. Moreover, we survey the matheuristics introduced to similar problems. 

Furthermore, we address the studies which utilize VNS as a solution 

methodology.  

2.1 Traveling salesman problem variants 

RSP has been introduced to the literature recently by Shahmanzari et al. 

(2018). It is derived from the well-known traveling salesman problem (TSP) 

which is probably the most famous and oldest NP-hard combinatorial 

optimization problem in the literature. A widely accepted and often cited 

classification of TSP and its variants has been presented in Gutin and Punnen 

(2007).  

The first TSP variant that is closely related to RSP is the periodic 

traveling salesman problem (PTSP). Many variations of TSP assume that 

traveling occurs in one period only. However, PTSP relaxes this assumption 

by expanding the travel period to m days such that each city is visited at least 

once, while some cities require multiple visits. There is only one salesman 

available every day. The goal is to generate a tour for each of m days that will 
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meet the visit frequency of each city and minimize the total traveling distance 

throughout the whole planning horizon. The first mathematical formulation of 

PTSP can be found in Cordeau et al. (1997).  

The other TSP variants resembling RSP include the prize collecting 

traveling salesman problem (PCTSP), the profitable tour problem (PTP), and 

the orienteering problem (OP). We briefly describe these three variants here. 

They are jointly referred to as the generic class of TSP with profits (TSPP). 

Problems belonging to TSPP class have been surveyed systematically in the 

seminal paper by Feillet et al. (2005) where the name TSPP was coined for the 

first time. The authors stated that TSPPs arise in a wide range of situations, 

including realistic TSPs, job scheduling, freight transportation, or they occur 

indirectly as a subproblem in solution approaches dedicated to other routing 

problems. TSPP is by definition the monocriterion version of a bicriteria 

extension of TSP where the two criteria are the maximization of a profit 

measure and the minimization of travel costs. The basic characteristics of this 

generic problem are as follows.  

(i). There is a value (like a profit or prize) associated with each vertex of 

the underlying graph.  

(ii). A feasible solution is not required to visit all vertices.  

(iii). A vertex can be visited at most once.  

(iv). The distance (cost) matrix is nonnegative and satisfies the triangle 

inequality. 

Being the first member of this class, PCTSP was originally introduced by 

Balas and Martin (1985) and formally defined in Balas (1989) to model the 

scheduling of the daily operations of a steel rolling mill. In PCTSP there is a 

traveling salesman who travels between vertices i and j at cost cij, earns a prize 

pk from every visited vertex k and pays a penalty h  for each unvisited vertex 
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h. The aim is to find a circuit, i.e. a tour that minimizes the sum of travel costs 

and penalties while collecting a total profit at least as high as a preset minimum 

value min . Here, a feasible circuit either in PCTSP or in the other TSPP 

variants visits each vertex at most once. The minimum profit collection 

constraint can be viewed as a knapsack-like constraint. Feillet et al. (2005) 

note that the majority of PCTSP papers deal with problems which have zero 

penalty terms.  

Another name coined for PCTSP is the quota TSP (QTSP) which was 

first studied in Awerbuch et al. (1998). Structural properties of PCTSP related 

to TSP polytope and to the knapsack polytope were presented by Balas (1989, 

1995) where families of facet-inducing inequalities were identified. Bounding 

procedures based on different relaxations were developed by Fischetti and Toth 

(1988) and Dell’Amico et al. (1995). The lower bound obtained according to 

the latter paper was used in a follow-up study by Dell’Amico et al. (1998) as 

the starting point of a Lagrangian heuristic which is capable of finding a 

feasible upper bound to the problem. A branch-and-cut algorithm was proposed 

for the undirected PCTSP in Bérubé et al. (2009). The authors adapted and 

implemented some classical polyhedral results for PCTSP and derived 

inequalities from cuts designed earlier for OP.  

The second member of the generic TSPP class is PTP. It derives directly 

from the PCTSP when the objective becomes the maximization of the net 

profit defined as the difference between the collected prizes and the travel costs. 

In the presence of nonzero penalties for unvisited vertices, the sum of incurred 

penalties is also deducted from the total amount of collected prizes to yield the 

net profit. PTP was introduced first by Dell’Amico et al. (1995). Fischetti et 

al. (2007) called the same problem the simple cycle problem (SCP). Archetti et 

al. (2009) formulated a multi-tour version of the PTP with multiple identical 
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and capacitated vehicles, which they referred to as the capacitated PTP 

(CPTP).  

The third problem in TSPP class is OP which is evidently the most 

extensively studied variant. OP seeks to find a circuit or a path on a graph 

with n  vertices that maximizes the sum of collected prizes while containing 

traveling costs under a preset value minC  or the total travel time within a 

preset limit maxT . Vansteenwegen et al. (2011) argue that OP can be viewed 

in this regard as a combination between the knapsack problem (KP) and TSP. 

Feillet et al. (2005) point to the equivalence between the path-seeking and 

circuit-seeking versions of the problem. Mansini et al. (2006) designate the 

circuit-seeking version as the tour orienteering problem (TuOP).  

As mentioned in Chao et al. (1996b), the name “orienteering problem” 

originates from the treasure hunt game of orienteering in which individual 

competitors start at an initial control point, try to visit as many checkpoints 

as possible and return to the control point within a given time frame. Each 

checkpoint has its own reward and the objective is to maximize the collected 

rewards. Pioneering studies of OP can be found in Hayes and Norman (1984), 

Tsiligirides (1984), Golden et al. (1987) and Golden et al. (1988) among others. 

OP was researched in the literature also under different titles such as the 

selective TSP (STSP) (see Laporte and Martello, 1990; Gendreau et al., 1998; 

Thomadsen and Stidsen, 2003), the maximum collection problem (MCP) (see 

Kataoka and Morito, 1988; Butt and Cavalier, 1994) and the bank robber 

problem (BRP) (see Arkin et al., 1998). OP was shown to be NP-hard by 

Golden et al. (1987) and by Larporte and Martello (1990) with separate proofs 

based on simple reductions to TSP and to the Hamiltonian circuit problem, 

respectively.  
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Applications in the literature of this selective routing problem span a wide 

range of areas. Several examples are orienteering competitions, routing 

technicians to service customers at geographically distributed locations, time-

restricted fuel delivery to households with different urgency scores, athlete 

recruiting from high schools for a college team, pickup or delivery services with 

private fleets requiring the selection of only a subset of available customers, 

trip planning for tourists visiting a city or a region, and fish scouting where a 

subset of fishing grounds are sampled to maximize the value of catch rate 

assessments.  

A well-studied multi-vehicle extension of OP is the team orienteering 

problem (TOP). The problem first appeared in a paper by Butt and Cavalier 

(1994) under the name multiple tour maximum collection problem (MTMCP) 

where all tours have an identical starting and terminal node designated as the 

depot. The authors proposed a greedy construction heuristic for its solution. 

The first exact solution method developed to tackle TOP is due to Butt and 

Ryan (1999). The authors were able to solve problems with up to 100 vertices 

using a column generation-based procedure when the number of vertices in 

each tour remains relatively small. Another exact algorithm is due to Boussier 

et al. (2007). The authors proposed a branch-and-price scheme that starts with 

column generation and couples it with branch-and-bound. For performance 

enhancement, they applied a heuristic tree-search method derived from 

constraint programming and different pre-processing rules that can be 

interpreted as branching rules specifically adapted to the problem. Boussier et 

al.’s exact algorithm is capable of solving TOP instances with 100 vertices in 

under two hours where each vehicle selects up to 15 vertices to visit. The 

authors modified their exact solution technique so as to solve also to the 

selective vehicle routing problem with time windows (SVRPTW).  
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The first heuristic method for TOP was proposed by Chao et al. (1996a). 

The first metaheuristics were proposed by Tang and Miller-Hooks (2005) and 

Archetti et al. (2007). The former authors developed a tabu search heuristic 

embedded in an adaptive memory procedure; the latter developed two variants 

of a tabu search heuristic (one using only feasible solutions, the other one 

accepting also infeasible solutions) and a pair of slow and fast variable 

neighborhood search (VNS) methods. These pioneering metaheuristics were 

soon followed by Ke et al. (2008)’s ant colony optimization (ACO) approach 

which was capable of outperforming the previous algorithms in both solution 

speed and accuracy. The speed factor of the state of the art of the TOP has 

been improved dramatically by the guided local search (GLS) framework of 

Vansteenwegen et al. (2009a) and later by the skewed VNS framework of 

Vansteenwegen et al. (2009b) both of which relied on a combination of 

intensification and diversification procedures. A number of variants of the OP 

and TOP have been introduced to the routing literature in the past decade. 

They address additional diverse aspects ranging from time windows to time-

dependent or stochastic travel times to capacitated vehicles to stochastic 

profits and to a combination thereof. The reader is referred to Gunawan et al. 

(2016) for an inclusive review of the studies of the OP, its extensions and 

applications that were published after 2009. 

Within the generic class of TSPPs, the variant that seems most relevant 

and similar to our MPTPP is the multi-period OP with multiple time windows 

(MuPOPTW) introduced by Tricoire et al. (2010) for a real-world sales 

representative planning problem. A software distribution company which sells 

decision support systems for salesman and marketing departments needs to 

plan the visits to existing and potential customers by each representative over 

a one-week period. There is a list of mandatory customers who should be visited 
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on a regular basis and another list of optional customers located nearby who 

should be also considered and probably integrated into the schedules of the 

sales representatives. The authors solve MuPOPTW for a given representative 

with the aim of determining which of the mandatory and optional customers 

to visit on which day. Some of the customers have one or two time windows 

per day which restrict the timing of the visit, and there exist even a few 

customers who have a different time window for every day.  

MuPOPTW in Tricoire et al. (2010) resembles our MPTPP in that each 

day of the planning horizon is associated with a separate tour. MPTPP differs 

from MuPOPTW considerably due to the following aspects:  

(a) In MuPOPTW the tour of each day starts and ends at the same central 

node. The mathematical model proposed by the authors can handle also 

the case where the representative makes a several-day trip across the 

country and stops every night in previously fixed hotels such that the 

ending point for day t  matches the same location as the starting point for 

day  1t . However, even in that case, the terminal node (i.e. the depot) of 

each tour is known in advance. In contrast, in the RSP this is unknown.  

(b) In MuPOPTW, a customer node is visited at most once whereas RSP allows 

certain nodes to be visited more than once.   

(c) Moreover, rewards collected from customer nodes in MuPOPTW do not 

change over time while in RSP their magnitude depends on the day and 

frequency of the visit.  
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2.2 Matheuristics  

Recent progress in CPU technologies and commercial solvers results in solving 

different mixed integer linear programming models to optimality or near to 

optimality in a small amount of CPU time. This leads to design matheuristic 

approaches, a heuristic that incorporate stages where mathematical 

programming models are solved.  

In the literature, there are a couple of articles that use matheuristic 

methods in order to solve TSP variants. A unified matheuristic approach based 

on the variable neighborhood search is proposed by Lahyani et al. (2017) for 

solving multi-constrained traveling salesman problems with profits. Their 

method combines different removal and insertion routing neighborhoods. In 

Prins et al. (2007) a matheuristic approach is proposed where the original 

problem is decomposed into two phases; location decisions and routing. The 

location decision problem is solved as a facility location problem. Then a tabu 

search builds the routes using the given facility sets.  

Halvorsen-Weare and Fagerholt (2013) propose a routing and scheduling 

problem emerging in naval logistics. Their method separates the scheduling 

decisions from the routing decisions. The routing problem is solved through a 

local search heuristic and the scheduling problem is solved through the exact 

solution of a MILP formulation. Cacchiani et al. (2014) propose a two-phase 

matheuristc approach for the problem of determining the size of the waste bins 

located on the streets and planning the daily routes of waste collector vehicles. 

They propose a different solution method where a variable neighborhood search 

heuristic finds the daily route and an MILP model solves the problem of 

determining the optimal size of the waste bins. A review of different heuristic 

methods including matheuristics can be found in Salhi, (2017). 
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2.3 Variable Neighborhood Search 

The variable neighborhood search (VNS) is introduced by Mladenović and 

Hansen (1997) for solving large instances of combinatorial optimization 

problems. It represents a dynamic framework for constructing heuristics by 

systematically changing neighborhood structures during the search procedure. 

In other heuristic methods such as simulated annealing, genetic algorithm, and 

tabu search, specific strategies are considered to escape the local optimum in 

the search space. This is in VNS done by changing the neighborhood structures 

repeatedly. VNS lie in three simple facts: (i) A local optimum with respect to 

one neighborhood structure is not necessarily a local optimum with respect to 

another neighborhood structure. (ii) A global optimum is a local optimum with 

respect to all neighborhood structures. (iii) Based on many empirical pieces of 

evidence, it is shown that a large majority of the local optima are slightly close 

to each other local optima for many problems (Kirkpatrick and Toulouse, 

1985).  

In the literature, VNS is used for several TSP variants. The first VNS 

with its basic implementation for Euclidean TSP can be found in Hansen and 

Mladenović (1999). Guided VNS method is introduced by Burke et al. (2001) 

for the Asymmetric TSP (ATSP). Carrabs et al. (2007) apply VNS for the 

Pickup and Delivery TSP. The influence of the neighborhood structures for 

VNS method in Generalized TSP is studied by Hu and Raidl (2008). Mansini 

and Tocchella (2009) develop a multi-start VNS for the traveling purchaser 

problem under budget constraints. 

VNS is also used to solve the standard versions of the vehicle routing 

problems (VRP). Crispim and Brandao (2001) solve the VRP with backhauls 

(VRPB) using a variable neighborhood descent (VND). It is a variant of VNS 
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where exploration of different neighborhood structures is performed in a 

deterministic way. Its benefit is again based on the fact that various 

neighborhood structures do not have the same local minimum in most cases. 

Therefore, the problem of trapping in the local optima can be resolved by 

changing the neighborhoods in a deterministic way. Rousseau et al. (2002) 

apply a VND by taking advantage of various neighborhood structures to VRP. 

Bräysy (2003) develop a reactive VNS for the VRP with time windows. Polacek 

et al. (2004) propose a VNS for the multi depot vehicle routing problem 

(MDVRP) with time windows.  

In many applications, VNS performs better when it is combined with 

another metaheuristic. Melechovsky et al. (2005) merge VNS with Tabu Search 

(VNTS) for the location-routing problem (LRP). Repoussis et al. (2006) apply 

a greedy randomized VNTS for the VRP with time windows (VRPTW). An 

effective VNS is proposed by Kytöjoki et al. (2007) for large-scale instances of 

VRP. Geiger and Wenger (2007) propose VNS complemented with an 

interactive resolution method for VRP. Fleszar et al. (2009) develop a VNS 

method for the open vehicle routing problem (OVRP). Liu and Chung (2009) 

propose a VNTS for VRPB with inventory. Polat et al. (2015) propose a 

perturbation-based VNS for solving VRP with simultaneous pickup and 

delivery with a time limit. Todosijevic et al. (2017) propose a general VNS for 

the swap-body vehicle routing problem. A VNS algorithm for production 

routing problems is introduced by Qiu et al. (2018). 

In the literature, there are a couple of extensions for VNS. The first 

extension is the reduced VNS (RVNS). The main goal in RVNS is to reduce 

the calculation time of the local search step by selecting random neighborhood 

structures and updating them, if a better solution is found. The RVNS is shown 

to be significantly efficient when a quick solution is needed, regardless of its 
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distance from the global optimum (Hansen et al. 2010). Another extension of 

VNS is the variable neighborhood decomposition search (VNDS). It includes a 

sequential approximation method where the local search procedure is not 

applied within the whole solution space (Hansen and Mladenović, 2001).  The 

skewed VNS (SVNS) method is another extension of VNS. It addresses the 

problem of exploring valleys far from the incumbent solution. (Hansen and 

Mladenović, 2001)  In fact, SVNS enhances the exploration of faraway valleys 

by modifying the objective function value with an evaluation function.  
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Chapter 3 

NOTATION AND FORMULATION 

3. NOTATION AND FORMULATION 

In this section, we study the mathematical formulation of the Roaming 

Salesman Problem (RSP). The RSP described in Section 1 can be formulated 

as a mixed integer linear program. We first provide the notation followed by 

the formulation and the explanation of the new constraints which we devised. 

3.1 Notation 

Index Sets: 

 {0,..., }nN  Set V  joined by city ‘0’ which denotes a fictitious city with all 

associated costs, rewards and meeting duration being zero. 

 \{0}V N  The set of cities to be considered for collecting rewards 

throughout the campaign period where city  1i  denotes the 

campaign base. 

 {1,..., }T  The set of   days comprising the campaign period. 

Parameters: 

ijc  Traveling cost from city i  to j  where  0.iic  
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ijd  Traveling time from city i  to city j  where  0.iid  

i  The base reward of city i . 

i  The activity duration in city i . 

  Maximum number of activities allowed each day. 

maxT   Maximum tour duration (in hours) in each daily tour. 

   Maximum number of consecutive days during which the campaigner is 

allowed to be away from the campaign base. 

K   The base reward depreciation coefficient (factor) applied in successive 

activities held in the same city. 

K   Normalization coefficient multiplied with the collected rewards to make 

traveling costs and daily rewards compatible. 

Decision Variables: 

ijtX  Binary variable indicating if arc ( , )i j  is traversed on day t  

 ( , ,  )i j tN T  with  0.iitX  

itL  Binary variable indicating if the campaigner does not enter, but only 

leaves city i  in day .t  

If  1itL , then the campaigner departs from city i  on day t  and does 

not come back. This indicates that the tour on day t  is Type 3 with 

i as the starting city (source) of the tour.  

itE   Binary variable indicating if the campaigner does not leave, but 

only enters city i  in day .t   
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If  1itE , then the campaigner enters city i  on day t  and does not 

leave again. This means the tour on day t  is Type 3 with i  being 

the ending city (terminal) of the tour. 

itS   Binary variable indicating if the campaigner stays overnight (sleeps) 

in city i  by the end of day .t  Note that 10 1S  since the campaign 

starts in the base city ‘1’.  

itZ  Binary variable indicating if the campaigner holds an activity in city 

i  on day t  and collects the associated reward.  

itFM  Binary variable indicating if the first activity in city i  is performed 

on day .t  

itsR  Binary variable indicating if city i accommodates two consecutive 

activities on day t  and day ( )t s  with no other activity in between. 

Since   1 s t , we have  0itsR  for   .t s  

itU  A continuous nonnegative variable used in the Modified Lifted Miller-

Tucker-Zemlin subtour elimination constraints (referred to as ML-

MTZ inequalities). It is used to determine the order of visit for city i  

on day .t  

3.2 Mixed integer linear programming formulation  

The RSP can be formulated as follows: 
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The MILP model in (3.1)-(3.40) has     
1 112 2
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+ 3n n n  binary 

variables, ( 1)n  continuous variables and 
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3 4n n n n n n  constraints. 

Note that the meeting indicator variables itZ , itFM  and itsR  are defined for 

i V  since the fictitious city cannot host a meeting. The objective function 

(3.1) seeks to maximize the difference between the collected rewards and the 

incurred routing costs. After consulting with campaign executives, we assume 

that the rewards are linearly depreciated as we get closer to the end of the 

campaign. The set of constraints (3.2)-(3.6) and (3.40) are adopted from the 

TSP literature (Öncan et al., 2009). However, the remaining constraints (3.7)

-(3.39) are novel constraints which we developed specifically for this problem. 

A brief on these constraints is provided here; more details on the new 

constraints will be discussed in the next subsection.  

Constraints (3.2)-(3.6) and (3.40) adopted from the literature 

The set of inequalities (3.2) and (3.3) are typical selective TSP equations 

limiting the numbers of incoming and outgoing arcs to one for each node in N. 

Constraints (3.4) impose an explicit upper bound   on the total number of 

daily activities  ( ).n  Constraints (3.5) force the campaigner to perform at 

least one activity on each day t . Constraints (3.6) ensure the maximum daily 

tour duration is not violated. Binary integrality and nonnegativity constraints 

on the respective decision variables are defined in (3.40). 

A brief on the new constraints (3.7)-(3.39) 

Equality constraints (3.7) ensure that the first activity indicator variable 

and the activity indicator variable for day 1 must be equal. Constraints (3.8) 

set an upper bound for itFM , thereby establish the coupling between FM  and 

.Z Due to the maximization sense of optimization in the objective, the model 



 

 

Chapter 3: Notation and formulation  27 

 

 

 

will try to set all itFM  variables to 1 as much as possible. Thus, there is no 

need for loose upper bound constraints on .itFM  Constraints (3.9) guarantee 

that if the first activity in city i  was held on day t , then there cannot be an 

activity on an earlier day ,  u u t .  

Constraints (3.10) couple the binary decision variables X , L  and E . 

Constraints (3.11) ensure that if the campaigner enters a city i  on day t  and 

does not leave it the same day, then  1itE  and  0.itL  Likewise, if he exits 

a city i  on day t  and does not return to it the same day, then  0itE  and 

 1.itL  According to constraints (3.12) the sum of the variables L  and E  over 

all cities on a given day cannot exceed two. In fact, this sum will be two only 

in a tour of Type 3, i.e. in an open tour.  

Constraints (3.13) and (3.14) force the campaigner to stay overnight in 

the source i  on day t  if there is a closed tour that day. Constraints (3.15) 

make sure that terminal cities for days t  and ( 1)t  will be the same if there 

is a closed tour on day .t  Constraints (3.16) set the variables 0tS  to zero since 

the campaigner can never stay overnight in the fictitious city ‘0’. Constraints 

(3.17)-(3.18) are added to prevent the inclusion of the fictitious city in Type 1 

and Type 3 tours. Along with constraints (3.19) they capture the presence of 

a Type 2 tour as follows: When the campaigner ‘goes’ from city i  to the 

fictitious city (namely city 0) on a given day t , then he directly ‘returns’ from 

there the same day (  0 0 1i t itX X ). Then he must also stay overnight in city 

i  in both days t  and ( 1).t  In other words, the tours of both days must 

terminate in city i . This way the campaigner actually spends the whole day t  

in city i  which points to the presence of a Type 2 tour.  
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The set of constraints (3.20) ensure that if the campaigner enters city i  

on day t  and does not depart from there the same day, then he must stay 

overnight (sleep) in city i . This means that i  must be the terminal city of the 

tour on day t . Constraints (3.21) guarantee that if the campaigner sleeps in 

city i  on day t , he must depart from there the next day. Equalities (3.22) 

ensure that the campaigner can sleep in only one city every night. Constraints 

(3.23) prevent the campaigner from being away from the campaign base (city 

‘1’) for more than   consecutive days. The set of inequalities (3.24) and (3.25) 

assure that in order for a city i  to host an activity on a given day t  it must 

be visited that day in either of the three types of tours. When there is no visit 

to i , there is no activity in i  either.  

Constraints (3.26)-(3.33) are Modified Lifted Miller-Tucker-Zemlin 

inequalities (ML-MTZ) for subtour elimination adapted to RSP. The 

disaggregated constraints (3.34)-(3.35) provide the logical coupling between the 

binary variables itsR  and itZ . When  1itsR , city i  has to host an activity in 

both days t  and ( ).t s  If either day holds no activity in city i , then itsR  will 

be forced to zero. Inequalities (3.36) ensure that if city i  accommodates two 

activities in days t  and ( )t s  and no other activity in between (i.e. if 

 1),itsR  then all corresponding ikZ variables for k  days in the interval 

  [ 1,  1]t s t  should be zero.  

Constraints (3.37) signify the domain restriction on the definition of the 

variables .itsR  Constraints (3.38) make sure that if the first activity in city i  

is held on day t , then there cannot be a pair of activities on days u  and ( )u s  

where u  comes after t  and ( )u s  comes before .t  The lower bounds on the 

variables itsR  in (3.39) may seem unnecessary since their coefficients in the 

objective function to be maximized are all strictly positive. However, (3.39) 
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serve as valid inequalities and contribute affirmatively to the solution speed of 

the model.  

3.3 More details on the newly-developed constraints 

We will elaborate some of the constraints which we introduced to model the 

real-life logistic problem RSP.  

Type 1 Tour Constraints: (3.10)-(3.12) and (3.13)-(3.14) 

As discussed in Section 1, there are three 

possible types of daily tours. Type 1 indicates 

closed tours where the campaigner wakes up in 

city i  in day t , visits and collects rewards in 

other cities (or in the starting city), comes back 

to city i  and stays there overnight.  So, city i  

becomes both the source and the terminal node 

of the tour, see Figure 3.1. Constraints (3.10) 

couple the logical binary variables itE  (enter 

the city and do not leave it the same day) and itL  (leave the city and do not 

return to it the same day) with the binary routing variables ijtX , and ensure 

linear dependence between L  and E . Constraints (3.11) guarantee that either 

itE  or itL  can be nonzero, but not both.  As a result, constraints (3.10), (3.11) 

and (3.12) together ensure that if the campaigner enters a city i , but does not 

leave it, then we have  1itE  and  0itL . In addition, they ensure that if the 

campaigner exits, but does not re-enter city i  on the same day, then we have 

 0itE  and  1.itL  Constraints (3.10) can be interpreted as the following: 

 
 

 
 

i 

 

 

Figure 3.1  Type 1 tours 
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( ) ( )outgoing degree -  incoming degree -i i it itL E . If the campaigner enters 

and then exits city i , or if he does not visit city i  at all on day t , then both  

itL and itE  will be zero.  Consequently, on a given day t  one can at most leave 

one city and enter another city.  

Constraints (3.13) and (3.14) ensure that the starting city (source) is the 

same as the ending city (terminal) in day t  if the tour of day t  is a closed 

tour.  Also the term 





 2
jt jt

j

L E

N

 being zero means that there is a loop, i.e. a 

closed tour in day t . The existence of a loop means that the campaigner begins 

his tour in city i  in the morning and comes back to the same city by the end 

of the day. So, constraints (3.13) and (3.14) say that if there is a closed tour, 

the campaigner stays overnight exactly in the same city which he stayed in 

overnight the day before. That is to say that constraints (3.13) enforce  1itS  

if the campaigner wakes up in city i  in day t , and returns to i  to sleep there. 

In that case, all itL  and itE  will become zero leading to a closed tour which 

begins and terminates in city i  in day t . If there is no closed tour, there will 

be only one city i  that the campaigner exits and does not enter, thus  1itL . 

Likewise, there will be only one city j  that he enters and does not exit, thus 

 1jtE . Consequently, the values of itL  and itE  for all other cities will be 

equal to zero due to (3.12), and we will have 




 1

2
jt jt

j

L E

N

.  

Type 2 Tour Constraints: (3.16)-(3.19) 

To model specific days in which the campaigner does not travel to any 

city, we define a fictitious city ‘0’. All rewards and costs associated with this 
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city are set to zero. Constraints (3.16) prevent the campaigner from staying 

overnight in this city. Constraints (3.19)  force him to exit the fictitious city 

‘0’ in case he has entered it. Constraints (3.17) and (3.18) are considered for 

the cases where the campaigner wakes up in city i , realizes an activity there 

and sleeps in the same city without leaving it. These two sets of constraints 

ensure that if he goes from city ‘0’ to city i  (or from i  to ‘0’), then he must 

sleep in city i . 

Type 3 Tour Constraints: (3.20)-(3.21) 

In Type 3 tours the campaigner wakes 

up in city i  in day t , possibly visits several 

other cities, and sleeps in another city j , 

see Figure 3.2. The set of constraints (3.20)

-(3.21) ensure that if the campaigner does 

not leave city i  in day ( 1)t , i.e. if the 

outgoing degree of city i  is zero, then he 

cannot have slept in i  in day t  (the day before). He may go to the fictitious 

city, but should depart from the starting city i  under any circumstance. 

Subtour Elimination Constraints: (3.26)-(3.33) 

In order to ensure that every feasible route contains only one sequence of 

visited cities, we introduce constraints (3.26)-(3.33) for the purpose of subtour 

elimination. We do not consider lasso subtours in our model. In order to 

formulate Lifted Miller-Tucker-Zemlin subtour elimination constraints (L-

MTZ) originally proposed by Desrochers and Laporte (1991), we consider two 

alternatives. 

 

j 

 
 

i

 

 i 

Figure 3.2  Type 3 tours 
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Alternative 1 

For day t  suppose there is an open tour starting in city 0i . In this case, 

the corresponding values of the decision variables are set as follows: 





    
0 0 0 0 0( 1) 1,  0,  0,  0  and  1.i t i t i t ji t i t

j

S S E X L

N

 Note that by 

setting 
0

1i tL , both 




0 0

 and i t ji t
j

E X

N

 become equal to 0. We use this 

information as well as the information acquired in the closed tour alternative 

to incorporate a new dummy variable into the L-MTZ. 

Alternative 2 

For day t suppose there is a closed tour starting in city 0i . In this case, 

the corresponding known values of variables are as follows: 



 

      
0 0 0 0 0 0, 1 , , ,1,  1,  0,  0  and  2.i t i t i t i t i jt ji t

j j

S S E L X X

N N

  

We assume that the campaigner can visit at most n  cities in each day. 

itU  becomes k  if city i  is the kth visited city  

( , 1,2, , ).i k n  The inequalities (3.26) are L-MTZ subtour elimination 

constraints which state that there should be only a single tour covering visited 

cities and not two or more disjointed tours that only collectively cover these 

cities. They also guarantee that if there is an arc between cities i  and j  while 

city j  is not the starting city, jtU  will be greater than itU  by 1 unit only. 
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Reward Function Constraints: (3.34)-(3.39) 

Note that after defining constraints (3.34) and (3.35), we actually do not 

need the constraints (3.38), as the set of constraints (3.9) and (3.35)  guarantee 

that if the first activity is held on day t , no previous activity may be performed 

before day t . In order to verify the equations (3.34)-(3.39), let us consider the 

following possibilities. Suppose that the first activity in city i  was held on day 

t , i.e.  1itFM  and hence (i)    0  for  1 1itsR s t  according to (3.38). 

This is also guaranteed by constraints (3.9) and (3.35). If  1,itFM then there 

cannot be an earlier activity on day ( ).t s  This leads to (ii) 

   0  for  1 1iuZ u t  due to (3.9). Again if  1,itFM  then there cannot 

be an activity on an earlier day  ,  1.u u t   

Eventually, we have (iii)  0iusR  for      2 1,  1 1.u t s u  The 

equalities (iii) also follow from constraints (3.9) and (3.35). Finally, if  1itFM  

again, then there cannot be a pair of activities on days u  and ( )u s  where u  

comes after t  and ( )u s  comes before ,t  i.e. (iv) 

        0  for  1 1,  1 1iusR t u u s t . This is the same domain 

definition as the one in constraints (3.38). In other words, the equalities (iv) 

are implied also by constraints (3.38).  

3.4 An alternative formulation for satisfying maximum tour duration 

constraint  

An alternative way of satisfying the maximum daily tour duration is to 

introduce the continuous decision variable itA  which indicates the arrival time 

to city i on day t. Such a formulation is especially useful for problems with 

time-windows. Such a formulation can also be important if the schedule of 



 

 

Chapter 3: Notation and formulation  34 

 

 

 

coaches or flights are incorporated into the model or the time slots of the day 

are considered in the reward function. However, based on our preliminary 

empirical testing of both formulations, it was found that constraints (3.6) 

provides better results, see Section 8.  


 max ( 1)(1 )it i tA T S   ,  \ {1}i tV T  (3.41) 




     max ( 1)(1 )jt it i it ij ijt j tA A Z d T X S   , ,  \ {1}i j tV T  (3.42) 




     max ( 1)(1 )jt it i it ij ijt j tA A Z d T X S   , ,  \ {1}i j tN T  (3.43) 

  max0 it i itA T Z   ,  i tN T  (3.44) 




     max ( 1)(2 )it i it ij j t jtA Z d T M S S   ,  \ {1}i tV T  (3.45) 

 

  max( )it jit ijt
j j

A T X X

V V

  ,  i tV T  (3.46)                                                                         

The set of constraints (3.41) ensure that the arrival time for city i on day 

t will be zero if the salesman stays overnight on day t-1.  Upon arrival in city 

j, the travel time between city i and city j and the activity time in city j are 

considered in constraints (3.42) and (3.43). Inequalities (3.44) impose the lower 

and upper bounds of itA . Constraints (3.45) are the general maximum tour 

duration definition. These are binding for open tours. The set of constraints 

(3.46) are also binding for closed tours. 
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3.5 Added valid inequalities 

In addition to the original constraints of the problem, we include the following 

valid inequalities: 



 1it
t

FM

T

 i V        (3.47) 


  ( 1)2it i t itL S S   ,  i tN T   (3.48) 


  ( 1)2it i t itE S S   ,  i tN T  (3.49) 

   1ijt jit it jtX X S S    ,  ( ) ,  i j i j tN T  (3.50) 

Valid inequalities (3.47) ensure that the first activity for each city can 

occur at most once during the campaign period. Valid inequalities (3.48) and 

(3.49) state that if the campaigner stays overnight in the same city on days t   

and ( 1)t , then the tour on day t  will be a closed tour; hence, the 

corresponding variables itL  and itE  must be zero. Valid inequalities (3.50) 

guarantee that if cities i  and j  are not terminal cities on day t , there should 

not be a cyclic tour between them. These constraints are proved to be 

significantly effective. We provided the computational evidence in Section 8.  

3.6 An arc-based formulation for subtour elimination 

We also tested an arc-based TSP model for our problem RSP. It is adopted 

from the single-commodity flow formulation originally developed by Gavish 

and Graves (1978) for TSP. Their formulation uses nonnegative flow variables 

to indicate the amount of goods flowing from node i  to node j  after collecting 

or dropping the load at i . We found that the node-based formulation built 
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upon the L-MTZ is relatively faster than the arc-based formulation of Gavish 

and Graves. Details on the CPU time comparison between the two models are 

not reported here but can be collected from the author if required. The arc-

based formulation for subtour elimination is provided below.  

Single Commodity Flow Formulations: 

New decision variable: 

:ijtF   A continuous variable used in Modified Gavrish-Grave Subtour 

Elimination constraints indicating the flow on arc i-j on day t, ijtF R  

. Note that  0.iitF  

  



 

     , 11jit ijt i t it
j j

F F nS S

N N

     ,  \ {1}i tN T  (3.51) 



 

     , 11jit ijt i t it
j j

F F nS S

N N

     ,  \ {1}i tN T   (3.52) 



  (1 )ijt it
j

F n S

N

                                       ,  \ {1}i tN T   (3.53) 






   , 1(2 )jit i t t
j

F n S

N

                        ,  \ {1}i tN T    (3.54) 

The main idea in the arc-based formulation is to benefit from the flow 

among nodes for eliminating subtours. In case city i is visited, the outflow of 

this city should be higher than its inflow ( ( ) (i)ioutflow - inflow 1 ). Therefore, 

Open Tour 

Closed Tour 
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constraints (3.51)-(3.54) also verify the before-mentioned statement when the 

salesman does not sleep in city i the previous night (day t-1). 


  , 1ijt ijt i tF X S   , ,  i j tN T  (3.55) 

Constraints (3.55) set the lower bound for flow ijtF R such that, if the 

salesman goes from city i to city j, the flow should be equal to at least 1. 

 ( 1)ijt ijtF n X   , ,  i j tN T  (3.56) 


   , 11 (2 )jit i t ijtF n S X   , ,  i j tN T      (3.57) 

Constraints (3.56) and (3.57) ensure that flow ( ijtF ) cannot exceed the 

number of total visited arcs each day. 

 0ijtF   , ,  i j tN T          (3.58) 

Equations (3.58) are the non-negativity constraint. 
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Chapter 4 

AN APPLICATION TO ELECTION LOGISTICS 

4. AN APPLICATION TO ELECTION LOGISTICS 

The Roaming Salesman Problem has several applications in logistics and 

scheduling problems. One of the most suitable contexts for the application of 

RSP is election logistics. The problem proposed and solved here deals with 

determining daily routes for a traveling party leader (the politician) who 

speechifies in various cities during a given campaign period until elections. This 

is a new problem that we call the “Multi-Period Traveling Politician Problem” 

(MPTPP), motivated by extensive real-world applications.  

MPTPP which we investigate in this study can be considered a novel 

version of the Roaming Salesman Problem (RSP). Reminiscent of the 

salesperson in the RSP, the MPTPP revolves around a politician who holds 

meetings in various cities during a given campaign period. Both problems can 

be considered to generalize the classical version of the traveling salesman 

problem (TSP) by extending the planning horizon to days; hence, they both 

correspond to a multi-period problem. 

MPTPP can be described as follows. On a graph with static edge costs 

and time-dependent vertex profits, the MPTPP seeks a closed or open tour for 

each day of a campaign period with the objective of maximizing the net benefit. 

The party leader is not required to visit all cities making the problem selective. 

Moreover, s/he can stay overnight in any city to start the tour of the next day. 
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This means that, similarly to RSP, there are no any fixed departure (central) 

nodes in daily tours. 

We consider the 80 cities (provinces) of Turkey plus a campaign center, 

namely the capital city Ankara as well as 12 towns. At the time of the June 

2015 election, Turkey had 81 cities and 85 electoral zones where İstanbul was 

comprised of three zones, İzmir and Ankara of two zones each. Each city is 

associated with a dynamic base reward and a fixed meeting duration. During 

the campaign period, the party leader cannot be out of the campaign center 

for more than   consecutive days. In addition, the total length of the talks 

and travel times between cities on the same day cannot exceed maxT  hours. 

The proposed model utilizes a multifaceted reward function. The reward 

of a meeting in a city is linearly depreciated according to the meeting date and 

the recency of the preceding meeting in the same city. The reward function 

determines the reward of each city considering four factors: i.) Population of 

that city. ii.) The party’s vote rate in the previous election and the criticality 

of the city. iii.) The number of remaining days until the election. iv.) The 

number of days passed since the previous meeting in the same city. As we get 

closer to the election day, the reward of crowded cities decreases significantly. 

On the other hand, successive meetings in a city are severely depreciated. This 

prevents the crowded cities from being visited multiple times within short time 

intervals. 

We first present an example followed by the data collection and the way 

the rewards are computed. 
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Figure 4.1  A simple example presented to illustrate the problem structure. 

4.1 A real case example 

To further explain the MPTPP setting, we present a simple example of a “one-

day” tour as illustrated in Figure 4.1. In this example, we assume that the 

politician wakes up in İzmir (source city). The daily available hours are 

assumed to be from 09:00 a.m. to 10:00 p.m. meaning that the maximum tour 

duration is 13 hours.  The base reward amount and the meeting duration of 

each city are provided in Figure 4.1.  

For this simple example, we show a feasible schedule to explain the 

settings of the problem. At the beginning of the day (i.e. at 09:00 a.m.), the 

politician holds a meeting in İzmir and leaves the source city at 11:00 a.m. with 

a collected reward of 1295. Next, he/she visits Muğla at 01:30 p.m. by passing 

through Ayd n without holding a meeting. The politician leaves Muğla at 02:30 
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p.m. while the net benefit is 1710 (1295 – 225 + 640) and arrives in Denizli at 

04:07 p.m. The leaving time there is 05:07 p.m. where collected net benefit is 

2225 (1710 – 145 + 660). Finally, the politician arrives in Antalya at 07:35 

p.m. where the talk duration is 90-minute. At 09:05 p.m. the daily tour is 

finished by collecting a total net benefit of 2938. Since there is no time left to 

visit neighbor cities, the politician stays overnight in Antalya. The next 

morning, he/she starts the tour by leaving Antalya (most probably with 

holding no meeting there due to the penalty imposed by the reward function) 

to roam other cities.  

4.2 Data collection and analysis 

The time limit maxT  which is 14 hours (12 hours) in the summer (in the winter) 

imposes an implicit threshold on the number of cities that can be visited in 

any given day. Each city can accommodate at most one meeting a day. There 

can be an upper bound (such as two or three) on the total number of meetings 

held in each city during the campaign period. The meeting durations including 

preparation and holding times range from 60 to 120 minutes depending on the 

population of the host city. For the three biggest cities, namely İstanbul, 

Ankara and İzmir, it is 120 minutes. For cities with less than a million 

population it is 60 minutes, and for all other ones, this duration is 90 minutes. 

Another point that needs mentioning is the periodic returns to the campaign 

base Ankara. The politician cannot be away from the capital city for more than 

  consecutive days where we choose  {4,5,6,7}.  
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4.3 Preprocessing of the symmetric time/cost matrix 

We assume that the politician can travel either by bus or by airplane. 

The unit of traveling on the road by bus is assumed 1.50 TL/km where TL 

refers to Turkish Lira. For those cities with an airport and a bus travel time 

of more than 270 minutes (4½ hours) from one another, the faster travel option 

(either airplane or party bus) is chosen. In the calculation of the traveling costs 

between those origin/destination pairs for which flying proves to be a faster 

option, we assume that the politician flies with at least four other party 

executives. We determined the cheapest available ticket prices accordingly. 

The travel cost and time matrices have been computed after the investigation 

of the road travel and flight times as well as the ticket prices in Google Maps 

and TurkishAirlines.com, respectively.  

We computed the parameters ijc  and ijd  to avoid defining a new binary 

variable to capture the mode of travel, as this would dramatically increase the 

complexity of the mathematical model. We define three new city sets and four 

new parameters for the preprocessing of the symmetric cost/time matrix. 

HI :   The set of cities with hub airport. 

NAI : The set of cities with no airport. 

NHAI : The set of cities with non-hub airport. 

:road
ijt  Time required in minutes for driving from city i  to city j . 

:fly
ijt  Time required in minutes for flying between the airports of 

cities i  and j .   

cos ( ), ( ) :cc i A it   Cost of going from the city center to the airport of city i .  
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( ), ( ) :cc i A it   Time required in minutes for going from the city center to 

the airport of city i . 

Step 1 

If there is a direct flight from city i to city j and if   270road
ijt , then we 

calculate actual flight times actualijt  as follows: 

   ( ), ( ) ( ), ( )     actual fly delay
ij cc i A i ij A j cc jt t t t t  with delayt  included to 

consider possible delays. 

Step 2 

Suppose  NHAk I  and  NAj I  where  270.road
kjt  We calculate 

 , ( ) ( ),  alt actual road
kj k i j i j jt t t   where i(j) is the nearest city with hub airport to j, i.e. 





H

( ) argmin{ }.road
ij

i
i j t

I
 If alt road

kj kjt t , then we set new alt
kj kjt t  and

cos = cos = cos cos cos ( ), ( ) , ( ) ( ),  new alt
kj kj cc k A k k i j i j jt t t t t  as the new travel 

times and costs in our symmetric cost/time matrix.  

Computation of the objective function 

A simple normalization coefficient is used to make the rewards and 

traveling costs compatible in the objective function (3.1). Given the index sets 

and the decision variables in Section 3, the depreciation in (3.1) is defined as 

 1m t

m
. The actual reward accruing from meetings are calculated according to 

the following rules. Further details are provided in the next section. 

Rule 1: The earlier a meeting in the campaign period, the higher its reward. 
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Rule 2: The shorter the time difference between two successive meetings in 

the same city, the lower the reward earned from the latter meeting.  

Rule 3: The sooner there is a follow-up (repeat) meeting in the same city, the 

more its actual reward is depreciated.  

4.4 Time-dependent rewards  

In this section we explain the reward calculation and the categorization of cities 

in Turkey from the main opposition party’s perspective.  

The proposed model utilizes a multifaceted reward function. Initially, a 

nonnegative prize of i  (base reward) is specified for holding a meeting in each 

city i V  where i  depends on two factors:  

Factor 1: Population of city i V  ( ).iPop  

Factor 2: Ratio of votes of the politician’s party (PP). 

In addition, the actual reward earned in city i N  on day t T  is based on 

two further factors: 

Factor 3: Number of remaining days denoted by ( )m t  until the end of the 

campaign. 

Factor 4: Number of days passed since the previous meeting in the same city, 

denoted by s  where   1 1s t .  

The first two factors directly affect the base reward i  whereas the 

remaining two make the reward time-dependent.  Each factor is explained 

below. 
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4.4.1 Factor 1: Population 

Population is one of the most decisive factors in determining the importance 

of a city in an election campaign. A base reward of 100 is assigned to all cities 

initially. Each city’s population is divided by the minimum population of all 

cities and multiplied by a city-dependent multiplier. This multiplier is taken 

as 3.0 for the top seven (most populated cities), but 2.0 for İstanbul to close 

the drastic gap between the reward of İstanbul and other cities. The remaining 

cities are assigned a value of 5.0. The result is then multiplied by a Criticality 

Factor ( )iCF  where the operator ⟦∙⟧ rounds its argument to the nearest integer 

number.  

 
.

100( )
Popi

i i iMin.Pop
=CF × + ×Multiplier  (4.1) 

Figure 4.2 represents the population of all 81 provinces in Turkey. 

4.4.2 Factor 2: Ratio of votes and Criticality Factor 

A useful information is to incorporate the importance of a given city given its 

previous voting pattern. We define four criticality categories to label the 

importance of a city from the perspective of the PP. Different towns or electoral 

zones of a given city are mutually assigned to the same criticality category. We 

introduce the Criticality Factor given for city i ( )iCF . Categories are defined 

as follows:  
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Figure 4.2  Population of 81 provinces in Turkey 

 

Category 1: Noncritical Cities  

These are the cities in which the number of seats won by the PP would 

not change even when the number of its votes changes by 20%. We set 

 2iCF  for   .i Noncritical Cities  

Category 2: Negative Critical Cities 

In these cities, a 20% increase in the PP votes does not affect its seat 

number in the parliament (the number of PP deputies elected from those 
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cities). However, a 20% decrease would cause PP to lose at least one seat. We 

set  3iCF  for   .i Negative Critical Cities  

Category 3: Positive Critical Cities 

In positive critical cities, PP would gain at least one more seat in the 

event of a 20% increase in the vote count of the past election. However, there 

exists no risk of losing any seat in the event of a 20% loss in the votes. We set 

 4iCF  for   .i Positive Critical Cities  

Category 4: Positive-and-Negative Critical Cities 

The situation is most sensitive in cities of category 4 where both a 20% 

increase and a 20% decrease in the vote count would impact the party’s current 

seat number in the parliament. Hence we set  5iCF  for 

 - -  .i Positive and Negative Critical Cities  

The motivation for choosing these CF values is to assign high rewards to 

highly populated cities, but doing so at a decreasing rate. Another motivation 

is to close the enormous gap between metropolitan cities and other midsize 

cities of Turkey. For instance, İstanbul, despite its ~15 million population, 

should not earn thrice as much base reward as Ankara just because of having 

thrice as much population. 

4.4.2.1 Criticality Analysis 

In order to find the effect of variation in the number of votes on the 

number of deputies in the parliament, the data of June 2015 election has been 

analyzed for all cities. In our criticality analysis, we first simulated the election 

procedure according to the actual vote counts registered in the election of June 

2015. We were able to reproduce exactly the same seat distributions in all 85 
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electoral zones of Turkey which shows the validity of the implemented 

simulation. Next, we evaluated each city by decreasing and increasing the votes 

of PP in that city by 20%. Finally, we categorized cities as discussed above. 

The reward statistics are provided in Table 4.1. 

Table 4.1  Statistics of rewards in criticality categories 

 Noncritical 
Negative 

Critical 

Positive 

Critical 

Positive-and-

Negative critical 

# of cities 42 19 11 9 

Avg Reward 268 444 564 1,193 

Min. Reward 210 315 460 800 

Max Reward 440 675 680 2,370 

To illustrate the effect of the CF let us consider for example Samsun and 

Kastamonu in the Black Sea Region. We have   540Samsun  and 

  500Kastamonu  although Samsun’s population is more than three times 

Kastamonu’s population. The base reward of Kastamonu almost catches up 

with Samsun because Kastamonu is a positive-critical city whereas Samsun is 

a negative-critical city. We include only those cities of Turkey which have a 

base reward value i  higher than 300 in the set  {1,..., }nV  where the 

minimum is 210 as listed in Table 4.1. This leads to  51n  cities to be 

considered in our MPTPP model. As highlighted earlier, MPTPP has obviously 

a selective nature where not all cities in  {0,1,..., }nN  need to be included in 

the meeting plan. The base rewards of all 81 cities of Turkey are illustrated in 

Figure 4.3 below. 
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Figure 4.3  Base rewards (i  values) of all 81 provinces. 

4.4.3 Factor 3: Number of remaining days until the election day 

We assume that as we get closer to the end of the campaign, the influence 

of meetings will decrease. In order to inflate the base rewards with the 

increasing number of remaining days until the elections, we develop the 

following formula to represent the reward.  

            
 


1

( )i i
m t

Reward t
m

               ,  i tN T    (4.2) 

If PP decides to reverse the effect of Factor 3, one can modify the formula 

in (4.2) by setting ( )i i

t
Reward t

m
. The actual reward of a meeting would 

then be the lowest on the first day and the highest on the last day of the 

campaign.  
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4.4.4 Factor 4: Number of days passed since the previous meeting 

In order to prevent the model from visiting highly-rewarded cities 

frequently, we severely penalize repeat meetings. To inflate the base rewards 

with the increasing number of days passed since the last meeting, the following 

formula is adopted.  

 
 

 
1

( , )i i
m t s

Reward t s
m Km

               ,  i tN T  (4.3) 

where s  represents the number of days passed since the last meeting and 

 ( 1)K K  is a prespecified depreciation factor for repeat meetings. Note that 

the criterion of depreciation is not the number of meetings held in city i   so 

far, but the recency of the previous meeting.  

4.5 Supplementary assumptions in MPTPP 

In this section, we introduce several operational assumptions pertinent to the 

meeting tours in MPTPP. We propose the associated constraint equations (4.4)

-(4.6) below, which have not been included in the original RSP model in (3.1)

-(3.40).  

 



 1it
i BigCities
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The first supplementary assumption formulated in (4.4) is that a daily 

tour cannot involve more than one big city where the description ‘big city’ 

applies to İstanbul, Ankara and İzmir—namely the top three cities with respect 

to population size. The second assumption gives rise to the constraints (4.5) 

which state that it is not permitted to make two meetings in the same city on 

two consecutive days. The third assumption brings about a maximum number 

of meetings allowed in a given city i  during the entire campaign period. This 

maximum number is denoted by the parameter i  in (4.6) 
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Chapter 5 

SCENARIO ANALYSIS 

5. SCENARIO ANALYSIS 

In order to highlight the unique features of MPTPP, we test our model on 

different scenarios. In this chapter, we present the details of the developed 

scenarios. In Section 5.1, we describe the details of four developed extreme 

scenarios. In Section 5.2, we describe the scenario with an alternative reward 

function.  

5.1 Scenario analysis level 1: Extreme scenarios 

We investigated the following four scenarios with max 14T  hours as the 

maximum tour duration (Shahmanzari et al. 2018). 

Scenario 1: All-inclusive base scenario, referred to as the base scenario. 

Scenario 2: The base scenario with the additional restriction of at most one 

meeting in each candidate city throughout the campaign. This 

additional restriction is actually a relaxation on Scenario 1. 

Scenario 3: The base scenario where the objective function involves only 

collected rewards and no traveling costs. In addition, the politician 

needs not to return to the capital city periodically.  

Scenario 4: The base scenario with only closed daily tours originating and 

terminating at the capital city every day.  
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5.1.1 Scenario 1: Model Full-MILP (Base Scenario) 

The politician’s campaign starts and ends in Ankara. Thus party leader starts 

his campaign in Ankara in the morning of day 1. For simplicity, we treat day 

0 as the fictitious day. 

-    Party leader cannot be away from Ankara for more than   5  days in a 

row. In other words, s/he returns to Ankara at least once every  +1 days. 

-    Other than starting and ending in Ankara on day 1 and day  , 

respectively, there is no restriction as to where to end up (sleep) the tour at a 

given day and start the tour of the next day (wake up). Thus, the tour of a 

given day t can comprise either an open route or a closed route.  

-    Each day accommodates one daily tour only. Starting the daily tour in a 

city i, holding a meeting there, and staying in the same city overnight is also 

an option. This is modeled as a closed route from city i to the fictitious city 

(city 0) and back to city i with no traveling costs.  

-    There is a “hard” maximum tour duration ( maxT ) constraint in place 

which prohibits daily tours in excess of 14 hours.  

-    When the travel time from city i to city j does not exceed 1
2

4  hours, the 

party leader will be transferred by bus. Otherwise, the transfer happens by 

airplane.  We calculate the time of air travel as the sum of actual flight time, 

one hour for VIP check-ins, and the travel time by bus between the departure 

and arrival city centers and their respective operational airports.  

 The resulting travel time is compared to the travel time by party bus. 

Whichever option takes shorter is chosen as the preferred mode of 

transfer. The travel cost from city i to city j is calculated according to 
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the chosen mode of transfer. In case the airplane option is chosen, we 

multiply the ticket fare of the economy class by 5 assuming that party 

leader flies with four other party executives every time s/he boards an 

airplane. 

·    Candidate cities are divided into three segments: Big Cities (Istanbul, 

Ankara, and Izmir) where the number of meetings hosted is limited to three, 

two and one, respectively (parameter i ). These count values may change after 

discussion with other party leaders and other party technocrats in charge of 

party campaign planning. 

 A daily tour cannot involve more than one Big City. 

 Two meetings in the same city on two consecutive days are also 

forbidden leading to valid inequality. 

 There cannot be any day without a meeting. 

 The number of meetings held each day is limited to four, i.e.   4  

in the original RSP constraints (3.4). 

 As the problem is selective, not all cities have to be included in the 

campaign program.  

-    The objective function is the same as (3.1). The earlier the meeting, the 

higher the reward. We have computed base reward for each city i according to 

the city’s population and the so-called criticality factor (CFi). The latter factor, 

namely CF is derived from the sensitivity of the number of seats (deputies in 

the Grand National Assembly of Turkey) party has won from each city in the 

previous two general elections. CF is namely a quantitative measure for the 

sensitivity to a possible change by ±20% in the number of votes received. 

 If the meeting in city i is held on day 1, then we collect Full i  from 

city i. Otherwise, i  is depreciated linearly with time. Hence, if the 
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meeting is held on day   (the last day of the campaign), the 

collected RP will be only ( /i ). The depreciation factor for a 

meeting held on day t is therefore equal to 



  1t

. 

 Likewise, repeat meetings are also depreciated. Here the depreciation 

criterion is not the number of meetings held in city i  so far, but the 

recency of the previous meeting. The lesser the number of days 

passed since the previous meeting in city i, the higher the 

depreciation of the reward that can be collected from a repeat 

meeting. Accordingly, if the prior meeting in the same city was 

held s days ago, the depreciation factor is s/ . 

5.1.2 Scenario 2: Model Full-1Meet 

Scenario 2 is derived from Scenario 1 by revoking the option of multiple 

meetings in big and midsize cities. Since each city can host at most one meeting 

during the campaign, the model simplifies drastically as follows: All 2-index 

binary variables representing first meetings and all 3-index binary variables 

representing repeat meetings are now void. The definition and coupling 

constraints involving those variables also become void. The model diminishes 

to   2 + 4 3n n  binary variables and 

        
3 492 222
2 2

7 4n n n n  constraints. The net benefit definition 

comprising the objective function is simplified as shown in (5.1). It is worth 

noting that the optimal solutions (thus the optimal objective values) 

of Scenario 1 and Scenario 2 may be identical.  
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5.1.3 Scenario 3: Model Rew-Only 

Scenario 3 is derived from Scenario 1 by two modifications: (i) The necessity 

to periodically return to the capital Ankara at least once every   days is 

lifted.  The politician has full freedom to hop from one city to another as he/she 

sees fit. He/she can stay overnight in any city. Yet the campaign is still going 

to start in Ankara on day 1. (ii) Traveling costs are discarded from the 

objective function. This fundamental change motivates the politician to roam 

between all candidate cities without worrying about the cost of traveling. 

5.1.4 Scenario 4: Model Alt-1Depot 

Scenario 4 is derived from Scenario 1 by a fundamental paradigm shift in which 

the politician wakes up in the capital city Ankara every morning and returns 

there to sleep by the end of every day. This implies that each daily trip is going 

to be a closed tour with Ankara being the depot of the trip.  

We adapt the single-commodity flow formulation of Gavish and Graves 

(1978) to this scenario as follows: Node-based load variables itU  indicating the 

order of visit to each city are replaced by arc-based continuous variables ijtF  

indicating the flow from one city i  to another city j  on day .t  The reason for 

using single commodity flow-based formulation only in scenario 4 is due to the 

fact that all daily tours are closed tour in this scenario and there is a single 

known depot. This reduces the problem to a multi-period selective TSP with a 

single depot which is the campaign base. Based on the results of the pilot tests, 
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the flow-based formulation finds a better solution compared with the node-

based formulation. 

 

  

 

Figure 5.1  Different tours in the first three scenarios. 
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Flow balance equations and tight bounds on the flow variables are 

incorporated into the new model, which serve as subtour elimination 

constraints. They replace the ML-MTZ inequalities (3.26)-(3.33) in the 

proposed MPTPP model. The newly introduced binary variables 

,  and it it itE L S  which keep track of open and closed tours are also dismissed. 

Consequently, the related coupling constraints that involve these variables 

become void.  

Note that Alt-1Depot is a much more restrictive model than Full-MILP 

since it does not allow open tours and requires the politician to return to 

Ankara at the end of every day. Clearly, the optimal objective value of Alt-

1Depot is a valid lower bound on Full-MILP. 

5.2 Scenario analysis level 2: Alternative reward function 

Thus far we assumed that earlier meetings produce higher rewards. In an 

alternative scenario, we reverse the direction of the reward function such that 

the actual reward increases as we approach the election day, i.e. the end of the 

campaign period. In this case, the objective function formulation will change 

as follows: 
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Chapter 6 

THE PROPOSED TWO-PHASE MATHEURISTIC 

6. THE PROPOSED TWO-PHASE MATHEURISTIC 

The idea of using a matheuristic approach to tackle large-size instances is 

motivated by observing the results of the variable fixation scenario. In this 

scenario, for those instances where we were able to solve them to optimality, 

we convert the optimal values of the binary decision variables , ,andit it itS L E

to parameters with the values equal to the optimal value. The decision variable 

itS  indicates if the politician stays overnight in the city i  by the end of day 

.t   Binary variable itL  indicates if the politician does not enter, but only leaves 

the city i  in the day t  where binary variable itE  indicates if the politician 

does not leave, but only enters the city i  in day t . For the remaining instances, 

we convert the values of the best feasible solutions of the mentioned variables 

to parameters. After performing this conversion, we solve the model again. The 

results are presented in Table 6.1. Boldface figures point to proven optimality 

achieved by the commercial solver GUROBI. 

We observe that the CPU time of the variable fixation scenario has been 

reduced significantly. It can be comprehended that the difficulty of this 

problem is much more related to the scheduling and accommodation part 

rather than the routing part. Therefore, we decided to design a two-phase 

method where scheduling and accommodation part of the problem is solved 
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out of the mathematical formulation. In such approach, the mathematical 

formulation will take care of the routing part only. 

Table 6.1  Comparison of original MPTPP and Variable Fixation Scenario 

  MPTPP  Variable Fixation Scenario 

Instance  Best Gap(%) CPU(s)  Best Gap(%) CPU(s) 

15C7D  17240 0.0 551.3  17240 0.0 0.1 

15C10D  18759 0.0 30458.5  18759 0.0 0.1 

21C7D  19138 0.0 6705.3  19138 0.0 0.8 

21C10D  21904 6.9 86400.0  21904 0.0 1.1 

30C7D  29427 0.0 20670.3  29427 0.0 5.3 

30C10D  35013 6.0 86400.0  35013 0.0 3.5 

40C7D  30086 4.1 86400.0  30195 0.0 25.0 

40C10D  36409 12.6 86400.0  36409 0.0 211.3 

51C7D  41087 9.9 86400.0  41182 0.0 95.8 

51C10D  45667 22.4 86400.0  45810 0.0 424.6 

 

To solve MPTPP, we tested the model on small instances where the 

commercial solvers are able to find the optimal solution in a reasonable amount 

of time. To deal with large-size instances we propose a two-phase matheuristic, 

which is named Finding Daily Optimal Routes method (FDOR). This 

matheuristic consists of two primary components; a city selection and a route 

generation. The route generation phase utilizes an integer program to build 

optimal route among selected cities. FDOR is an integer programming based 

heuristic which decomposes the original mixed-integer linear programming 

formulation into as many subproblems as the number of days, where using each 
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subproblem depends on how frequently the campaign base is to be visited 

throughout the campaign duration. Therefore, for those days where the 

politician requires to visit the campaign center, FDOR model 1 (FDORM1) 

will be used and for remaining days FDOR model 2 (FDORM2) will. 

The main idea in FDOR is to select a (sub)set of candidate cities to be 

solved by either FDOMR1 or FDORM2 using one of the three city selection 

approaches, namely the deterministic approach, the greedy approach, and the 

pseudo-random approach. The high-level algorithm of FDOR is provided in  

Algorithm 1.  

Algorithm 1 The high-level definition of FDOR 

Do the following for each day of the planning horizon 

Phase 1: 

(a) Sort the cities in the decreasing order of their updated rewards. 

(b) Choose λ cities using one of the following city selection strategies: 

- Deterministic City Selection (DCS): Select all available cities. 

- Greedy City Selection (GCS): Select top λ cities. 

- Pseudo-Random City Selection (PCS): Select λ cities pseudo-

randomly. 

Phase 2: 

(a) Solve a TSPP for the given cities of Phase 1: 

- FDORM1: Politician should stay overnight in the campaign 

base. 

- FDORM2: Regular days. 

(b) Update the rewards. 

  



 

 

Chapter 6: The proposed two-phase matheuristic  62 

 

 

 

We will explain these approaches in the next subsection. Once the 

candidate cities are selected for each day, FDOR solves a daily Selective Prize 

Collecting Travelling Salesman Problem (SPCTSP) using either FDORM1 or 

FDORM2. The detailed pseudo code of the FDOR is explained in Algorithm 

2. The new notations are first provided below: 

 

Additional Notation  

tC : Set of candidate cities for day t T .  

 : Number of candidate cities.   

t : Set of updated rewards of day t T . 

K : The base reward depreciation coefficient.  

t : Depot (starting) node of day t T . 

t : Terminal (ending) node of day t T . 

 : Campaign base. 

i : Number of meetings in city i N  during campaign period. 

is : Number of days since the last meeting in city i N . 

tS : Solution of day t . 

*S : Solution of the whole campaign. 

( )tB S : The Net Benefit of solution tS . 

*( )B S : The total Net Benefit of the original problem. 
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Algorithm 2 The pseudo code of FDOR 

Initialization: 

1:  *S , *( ) 0B S ,   t ,  0i  

2: Reward calculation: 

3: For  1 :t   

4: If   1t  Then 

5:  t  ← i  // Every city gets its own base reward. 

6:   t  // Campaign starts from campaign base. 

7: Else If 

8: If   0i  then  // This is the first meeting in city i. 

9:   



 


1

i i
t

 

10: Else If  // This is a repeated meeting in city i. 

11:   


 
 

 
1 i

i i
st

K
  

12:  t  ← i  

13: End If 

14:  


 1t t    //Depot node of day t  is equal to terminal node of day 

 1t .  

15: End If 

16: Phase 1: 

17: tC ←City Selection Approach( , t ) // Select cities from N.  

18: Phase 2: 

19: If     
  

 1 2, ,...,t t t  Then  //Force the politician to visit   as a 

terminal node. 

20: FDORM1   ( , , , )t t tC  →  ( ), , ,t t t iB S S     

21: Else If // Solve a SPCTSP. 

22: FDORM2  ( , , )t t tC  →  ( ), , ,t t t iB S S  
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23: End If 

24: *S  ← tS  

25:  * *( ) ( ) ( )tB S B S B S   

26: End For 

27: Return *( )B S and *S  as the best objective value and the best feasible 

solution of MPTPP, respectively. 

28: Output: A feasible solution comprised of  daily tours. 

Algorithm 2 describes the components of FDOR. Updated rewards and 

number of meetings in each city are initialized as zero. Afterward, the reward 

of each city is calculated by taking into account the current meeting day t and 

the recency of previous meetings which may have been held before day t. Once 

rewards of all cities are updated, one of three city selection methods is called 

to select a subset of cities to be considered for the second phase. 

As discussed, in FDOR, we develop two mathematical formulations and 

call them iteratively to solve daily SPCTSPs.  The first model is called when 

the politician needs to return to the campaign base. The second model is called 

on regular days where the politician is free to start from and end up the daily 

tours in any node. FDORM1 is designed to generate daily routes where the 

starting city is any city including campaign base (the city that politician needs 

to visit every  days) and the campaigner is required to stay overnight in 

campaign base as well at the end of that day. The routes of such days can be 

either an open tour or closed tour. FDORM2, on the other hand, is developed 

for those days where the politician is not required to return the campaign base.  

The feasibility of the solution is guaranteed both with respect to the 

Maximum Tour Duration constraint, the Maximum Single Trip Time and also 
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with respect to the Maximum count of daily meetings. In the sequel, we present 

a mixed integer linear programming (MILP) formulation for FDORM1 and 

FDORM2. 

6.1 Mathematical formulation of FDORM1 and FDORM2 

Decision variables: 

ijX : Binary variable indicating if arc (i,j) is traversed, where  0.iiX  

iZ : Binary variable indicating if city i hosts a meeting. 

iU : A continuous nonnegative variable used in the lifted Miller-Tucker-

Zemlin Subtour Elimination Constraints (referred to as MTZ 

inequalities) determining the order of visit for city i. 
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{0,1}ijX  ,i j N  (6.14) 

{0,1}iZ  i N  (6.15) 

 0iU  i N  (6.16) 

In the above formulation, the objective function (6.1) maximizes the net 

benefit of a tour while deducting travel costs from collected rewards. Constraint 

(6.2)  ensures that the length of the tour does not exceed the maximum tour 

duration. The set of constraints (6.3) guarantee that if the politician enters 

any city, except the depot and the campaign base, he/she should leave there. 

Constraints (6.4) and (6.5) are typical selective TSP inequalities which impose 

the incoming and outgoing degree of each node. The set of constraints (6.6) 

and (6.7) are node-based MTZ sub-tour elimination constraints (Miller, et al., 

1960). The lower bound and upper bound of continuous variable U are 

determined in constraints (6.8) and (6.9). Equalities (6.10) and (6.11) force the 

politician to leave the depot and to stay overnight in the campaign base. The 

inequalities (6.12) couple binary decision variable Z and X and ensure that 
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there will be no meeting in non-visited cities. Such a definition results in 

holding a meeting in every city that politician enters, except depot. Constraint 

(6.13) ensures that there will be no more than   meetings. Finally, binary 

integrality and nonnegativity constraints on the respective decision variables 

are defined in (6.14)  (6.16). 

Compared to the original formulation of the MPTPP, FDORM1 is a 

significantly easier problem. Since the day of the meetings and the recency of 

them are calculated in the reward calculation step of FDOR, there is no need 

to include extra binary decision variables like FM and R (in the original 

formulation of the MPTPP) to capture either first or repeated meetings. Also, 

the starting node of each period is known due to the fact that the terminal 

node of the previous period is known. Therefore, there is no need for binary 

decision variables L, E and S (in the original formulation of the MPTPP) to 

track the terminal node of the previous day. Excluding these variables results 

in a simple yet effective model.  

The mathematical formulation of FDORM2 is similar to FDORM1 except 

for that constraints (6.10) and (6.11)are replaced by: 





 , 1j
j

X

N

 (6.17) 

 

 ij ki
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X X
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j j

X X Z
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 i N  (6.19) 

Constraint (6.17) ensures that the politician leaves the depot. Constraints 

(6.18) allow the model to generate either an open tour or a closed tour. Finally, 
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the constraint (6.19) couples binary decision variables X and Z. In the 

formulation of both FDORM1 and FDORM2, we couple binary decision 

variables X and Z using equations (6.12).  

FDORM1 has 2n  binary variables, n  continuous variables, and 

 22 7 2n n  constraints. FDORM2 has 2n  binary variables, n  continuous 

variables, and 22 9n n  constraints. Such a decomposition results in a 

significant reduction in terms of the number of variables and the number of 

constraints as shown in Table 6.2. 

Table 6.2 Reduction of original MILP formulation by using FDORM1 and FDORM2 

 Original Formulation FDORM1 FDORM2 

# of 

binary 

variables 

    
1 112 2
2 2

+ 3n n n  2n  2n  

# of 

continuous 

variables 

( 1)n  n  n  

# of 

constraints 

   

  

  

     

1 3 623 2 22
6 2 3

45 1 2 2
2 2

3 4

n n n n

n n
  22 7 2n n  22 9n n  

Compared with the number of decision variables and constraints in the 

original formulation of the problem, FDORM1 and FDORM2 are relatively 

and significantly easier problems to solve. Such a reduction is achieved by 
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decomposing the original formulation of the problem into as many subproblems 

as the number of the planning time horizon. 

6.2 City selection approaches 

We investigated the following three selection strategies: 

(i) Simply choose  | |N ,(i.e.   and , .t t n tC N C T ) 

(ii) Select the   cities with the highest updated rewards. 

(iii) Pseudo-randomly select the   cities based on their updated reward. 

Choosing an appropriate set of the cities for the second phase of the 

algorithm is the most important step in FDOR to produce a high-quality 

solution. The most straightforward strategy would be selecting all cities in N ; 

However, by increasing the number of cities, this strategy may increase the 

computational complexity of the second phase significantly. Another strategy 

can be sorting all the cities in N  in the decreasing order of their updated 

rewards at the beginning of each period. Next, select top   cities from this list 

and pass it to the second phase. Such a method requires a sensitivity analysis 

of choosing an appropriate value for the parameter  . The last strategy would 

be a pseudo-random city selection approach, where   cities are selected from 

the list of the cities depending on their updated reward. Below we explain 

mentioned strategies in details. 
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6.2.1 Deterministic City Selection 

In Deterministic City Selection (DCS) approach, all cities in the set N  are 

selected to be considered in the second phase of the FDOR at every iteration. 

Therefore, the value of the parameter   is equal to .n Consequently, the City 

Selection Approach( )  returns tC  where  and .t t nC N C  

6.2.2 Greedy City Selection 

The main idea in Greedy City Selection (GCS) approach is to sort all cities in 

the decreasing order of their updated reward in phase 1. Once the sorted list 

of the cities is generated, the algorithm select top   cities from this list. 

Algorithm 3 presents the pseudo-code of GCS. 

Algorithm 3 The pseudo code of GCS 

New 

Notation Definition 

 t : List of the cities in the decreasing order of their reward. 

Input:  , t  

Output: tC  

1:  t← Sorted list of the cities in N  in the decreasing order of their reward 

2:  {}tC  

3: while tC  do 

4:    [1]ti   

5:  tC ← i 

6:      / { }t t i   

7: end while 
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The value of the parameter  , which indicates the number of the cities 

that should be selected from the sorted list of the cities at the beginning of 

each day, is set to 15. We came up with this value by performing a 

comprehensive sensitivity analysis of parameter . The results of the sensitivity 

analysis are provided in the section 8. 

6.2.3 Pseudo-random city selection 

Selection of the cities in GCS approach is based on their updated reward, which 

is a logical selection criterion that results in choosing highly-rewarded cities at 

each iteration. On the other hand, due to the dynamic property of the objective 

function, which makes the rewards time-dependent and recency dependent, 

such a selection may not result in finding the optimal solution.  

Obviously, the random selection of the cities does not result in achieving 

an optimal or a high-quality solutions as well. It may even lead to an infeasible 

solution, where the travel times of all cities from depot violate the maximum 

tour duration constraint. One moderate approach to consider these challenges 

is to select cities pseudo-randomly. Algorithm 4 presents the pseudo-code of 

Pseudo-random city (PCS) selection. 
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Algorithm 4 The pseudo code of PCS 

New 

Notation Definition 

ip : The weighted probability of city i .   

P : Array of weighted probabilities of cities. 

 : a random number between 0 and 



 i
i

p

N

  

Input:  , t  

Output: tC  

1:  {}tC  

2: for  1 : ni  do 

3:  








i

i
i

i

p

N

 

4:  P← ip  

5: end for 

6: while tC  do 

7:  i← Pseudo-random selection (  ,P ) 

8:  tC ← i 

9:   ← 



(0, )i
i

uniform p

N

 

10: end while 

The PCS approach randomly selects   cities from N  where each city has 

a known probability of selection. All probabilities of the cities together sum to 

1. Once the probability vector is generated, PCS computes the discrete 

cumulative density function (CDF) of rewards which corresponds to the vector 

of cumulative sums of the rewards. Next, a random number in the range 
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between 0 and the sum of all probabilities (in this case, 1) is generated. The 

corresponding value of this random number in the discrete CDF array is the 

weighted random city. 

If PCS is used in the city selection step of the FDOR, we need to repeat 

the algorithm for iter  times and pick the best solution and objective value to 

ensure solution diversity of FDOR. The necessary modifications in the main 

body of the FDOR are shown in Algorithm 5. 

Algorithm 5 The pseudo code of FDORPCS 

New 

Notation Definition 

allZ : Set of objective values. 

allS : Set of all solutions.  

iterS : Solution of the thiter  iteration. 

( )iterZ S : Objective value of the thiter  iteration. 

Output: A feasible solution comprised of  daily tours. 

1: t  ← Reward calculation 

2: while  _iter Max Iter  do 

3:       for  1 :t  

4:               {}tC  

5:        Phase 1: 

6:             tC ← PCS( , t )   

7:        Phase 2: 

8:          if    
  

1 2, ,..., !t t t  then  

9:                FDORM1   ( , , , )t t tC  →  ( ), , ,t t t iZ S S     
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10:          else if  

11:                FDORM2  ( , , )t t tC  →  ( ), , ,t t t iZ S S  

12:          end if 

13:           iterS ← tS  

14:            ( ) ( )iter tZ S Z S   

15: end for 

16:  allZ ← ( )iterZ S  

17:  allS ← iterS  

18:   iter   

19: end while 

20: *( ) ( )allZ S Max Z  

21: * ,iterS S where  *( )iterZ Z S  

22: Return *( )Z S and *S  as the best objective value and the best feasible 

solution of MPTPP, respectively. 

The FDORPCS method generates iter  solutions and pick the best one 

as the ultimate output of the algorithm. The value of iter  is set to 5 in our 

experiments. We will explain the computational results in Section 8. 
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Chapter 7 

A GRANULAR SKEWED VARIABLE NEIGHBORHOOD 

TABU SEARCH 

7. A GRANULAR SKEWED VARIABLE NEIGHBORHOOD 

TABU SEARCH 

The roaming salesman problem is a generalization of the well-known traveling 

salesman problem (TSP). Garey and Johnson (1979) prove that TSP is a 

strongly NP-hard combinatorial optimization problem. The roaming salesman 

problem (RSP) is also NP-hard since it is more complex than the traditional 

TSP. Therefore, it cannot be solved in polynomial time to optimality. 

Motivated by this challenge, we propose a hyper-heuristic algorithm that can 

solve the large size instances of the problem in a reasonable amount of CPU 

time. When we survey the literature, we observe that the variable 

neighborhood search (VNS) algorithm is very successful in solving routing 

problems, see Polacek et al. (2007), Liu et al. (2009),  Polacek et al. (2008), 

Hemmelmayr et al. (2009), Polat et al. (2015), Sarasola et al. (2016), and 

Todosijevic et al. (2017). In most of these studies, an extended version of VNS 

is used, rather than using a basic version of VNS. Since the RSP is a large-

scale optimization problem, we are motivated to propose an extended VNS 

complemented with a Tabu Search (TS) algorithm. Furthermore, to the best 

of our knowledge, the VNS has not been applied to the RSP in the literature 

since it is a new problem. 
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This section describes the primary steps of the implemented algorithm. 

First, we explain the basic VNS. Then, we introduce a greedy algorithm to 

construct an initial feasible solution and compare it with the proposed two-

phase matheuristic. Next, the general framework of the proposed approach is 

explained. Finally, the granularity and the skewness used in the approach is 

discussed. 

7.1 Variable Neighborhood Search 

The variable neighborhood search (VNS) was proposed by Mladenović and 

Hansen (1997). It is a metaheuristic approach which is applied to different 

combinatorial optimization problems. The basic idea in VNS is to change the 

neighborhoods in a systematic way within a local search procedure. It searches 

for the best solution among different neighborhood structures. VNS method 

heavily relies upon the following fact:  

Fact 1 A local optimum of one neighborhood structure is not necessarily 

a local optimum for another neighborhood structure.  

Fact 2 A global optimum is the local optimum with respect to all 

neighborhood structures.  

Fact 3 In many combinatorial optimization problems, the local optima 

with respect to one or multiple neighborhoods are fairly close to each 

other.  

Let us denote with  max,( 1,..., ),kN k k  a set of pre-defined neighborhood 

structures, and with ( )kN x , a set of solutions in the thk   neighborhood of x . 
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Unlike many local search heuristics where max 1k , VNS uses multiple 

neighborhood structures.  

Once the neighborhood structures are determined, the main steps of the 

algorithm start. Starting from any initial feasible solution, a random solution 

is generated in the first step, which is called shaking. This is followed by 

applying a local search method. Once a new incumbent solution is obtained, 

the procedure starts with the first neighborhood again; otherwise, the local 

search is performed with the next neighborhood structure.  

Typically, the neighborhoods are nested, which means the next 

neighborhood is larger than the previous one and it contains the previous one. 

The pseudo code of the basic VNS is shown in Figure 7.1, where 

 max,( 1,..., ),kN k k  is the set of pre-selected neighborhoods. Figure 7.1 

illustrates the basic VNS scheme.  

The stopping criteria can be an explicit time limit, a threshold on the 

number of iterations, or a limit on the number of iterations without 

improvements. Interested readers are advised to read Mladenović and Hansen 

(1997) and Hansen and Mladenović (2001) for a more detailed explanation of 

the basic VNS.  
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Initialization. Select the set of neighborhood structures  max,( 1,..., ),kN k k   

                   that will be used in the search; 

                   Find an initial solutionx ; 

                   Choose a stopping condition;    

Repeat the following until the stopping condition is met :  

    (1) Set  1k ; 

    (2) Repeat  maxthe following steps until k k : 

        (a) Shaking. Generate a point  at random from  neighborhood of thx k x  

                          ( ( ));kx N x   

        (b) LocalSearch. Apply some local search method with x  as initial 

                               solution; 

                               Denote with  the so obtained local optimum;x   

         (c) Move or not. If this local optimum  is better than the incumbent,x         

                                or if some acceptance criterion is met , move there   

                                ,x x  

                                and continue the search with  1 1 ;N k  otherwise,  

                                set    1;k k   

Figure 7.1 Steps of the Basic VNS (Hansen and Mladenović, 2001) 

 

“Shaking”, “Local Search”, and “Moving” are the main three blocks of 

the VNS. In the ‘shaking’ step, a random solution is generated from the 

neighborhood of the current solution. Next, the local search follows. In the 

Moving step, the objective value of the current solution is compared with the 

objective value of the incumbent solution. If there is an improvement, this 

solution is accepted and the algorithm goes back to the first step; otherwise, 
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the algorithm goes to the shaking step with using the next neighborhood 

structure. 

 

Figure 7.2 Basic VNS scheme (Hansen et al. 2010) 

Our proposed approach consists of the following components: 

• Initial solution construction, 

• Neighborhood structures, 

• Granular neighborhoods, 

• Shaking procedure, 

• Local search, 

• Strategic oscillation, 

• Acceptance decision criteria (Skewed moves),  

• Termination criteria. 
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In the next subsections, we elaborate on the different components of the 

proposed VNS for the RSP. 

7.2 Solution Representation 

Since RSP involves both costs and rewards, we employ a vector-based 

representation which indicates the order of the visited cities in the sequence 

with the corresponding meetings. Specifically, we represent a solution in the 

VNS method in two two-dimensional arrays. The first  ( 1) array represents 

the order of the visits for the cities each day. For instance, [5,8,1,9] means 

the tour of the day is started with city 5. Then, city 8 is visited. Then, city 1 

is visited. Finally, the tour is finished by visiting city 9. The second  ( 1) 

array represents the meetings held at each period. The order of the meetings 

within a day does not affect the collected rewards.  

As an example, consider a campaign period with  20n  and   4 . The 

following matrices represent a solution of RSP: 

 
 
 


 
 
  

[6, 15, 5,10 ]

[10, 4, 14,9 ]

[9, 12, 1,13 ]

[13, 8, 7,19 ]

routesa  

 
 
 


 
 
  

[6, 15, 5 ]

[10, 4, 14 ]

[9, 12, 1,13 ]

[ 8, 7,19 ]

meetingsa  

routesa indicates that the order of the visits for four days is [6, 15, 5,10 ] , 

[10, 4, 14,9 ], [9, 12, 1,13 ] , and [13, 8, 7,19 ], respectively. meetingsa  indicates 
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that the meetings of the first day are held in cities [6, 15, 5 ], the meetings of 

the second day is held in cities [10, 4, 14 ], etc. 

7.3 Initial solution 

We first propose a greedy approach to generate the initial feasible solution. 

After comparing the results of this greedy method with the two-phase 

matheuristic proposed in Section 6, we employ the latter one to construct an 

initial solution. The reason for choosing the two-phase matheuristc lies in the 

fact that the quality of the initial solution heavily affects the performance of 

the VNS (Hansen et al. 2010). Based on the experimental evidence, it can be 

said that a better initial solution significantly decreases the CPU time of the 

VNS. The details of the greedy approach are discussed in the next subsection. 

The initial feasible solution is represented with 0S  in the main algorithm. 

7.3.1 Exhaustive search of the candidate cities  

In this algorithm, the initial feasible solution is produced quickly and will be 

fed to the main loop of the VNS algorithm to make the improvements in the 

next steps. We seek to assign the cities to the days rapidly. The main idea is 

to assign the highly-rewarded cities to the early days of the campaign due to 

the characteristics of the reward function. To assign the cities to the days, we 

perform an exhaustive search. Therefore, we call this algorithm the Exhaustive 

Search of the Candidate Cities for each day (ESCC).  

In ESCC, a sorted list of all cities is created where the sorting is with 

respect to the updated rewards of cities at the beginning of each day. Then, a 

feasible route is generated such that the maximum possible net benefit is 
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achieved considering limitations like maximum tour duration and necessity to 

return to the campaign base periodically. Then, a feasibility restoration 

function is utilized to make the solution feasible.  The detailed pseudo code of 

the construction of the initial feasible solution using ESCC is described in 

Algorithm 6. 

Algorithm 6 The pseudo code of ESCC 

1: Initialization       

2: T ←    

3: MaxSingleTripTime ← 300 

4: MaxTourDuration ← maxT   

5: DailyMax ←    

6: WakeupCity(1) ←    

7: For t=1:T 

8:     If  t=1 Then 

9:         Rewards ←    

10:     Else If   

11:         Calculate the reward of each city by taking into account the current 

        meeting day t and the recency of the previous meetings which 

        may have been held before day t. 

12:     End If 

13:     Sort all cities eligible for hosting a meeting on day t in descending 

        order of their rewards into the array HRCt 

                                               // HRC stands for Highest Reward Cities 

14:     WakeupCity(t) i  ; 
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15:     Top6={i}; 

16:     k1; 

17:     While |Top6|<6 Do 

18:         j  HRCt[k]; 

19:         If i=j OR tij>MaxSingleTripTime Then 

20:             kk+1; 

21:             continue; 

22:         End If 

23:         Top6Top6 ⋃ {j}; 

24:         kk+1; 

25:     End While 

26:     Step 2: 

27:     Given Top6, permute all 5!=120 possible tours and select the one with 

    the lowest total traveling cost. Break ties arbitrary. 

                //each possible permutation represents an open tour for day t. 

28:     Call the selected tour BestTour(t)=[1*,2*,3*,4*,5*,6*]         

// 1* is going to be the wakeup city i. 

29:     If BestTour(t) is infeasible w.r.t. MaximumTourDuration then 

30:         Crop BestTour(t) from its right and starting at city 6* until it 

        becomes time-feasible 

31:     End If 

32:     Set WakeupCity(t+1)=last visited city in BestTour; 

33: End For 

34: Output: A feasible initial solution comprised of T daily tours where the tour 

of day 1 starts in    
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In the ESCC, we assume that there will be a meeting in every visited city 

of daily tour other than the wakeup city. The wakeup city of day t never hosts 

a meeting; However, being the sleeping city of day (t - 1), it always hosts a 

meeting in day (t - 1). We also assume that each daily tour is either of Type-

1 or Type-3 tours. Therefore, no closed tour are allowed in this algorithm. As 

discussed, all cities but the wakeup city visited during a daily tour host a 

meeting. The feasibility of the ESCC solution is guaranteed with respect to the 

Maximum Tour Duration constraint, the Maximum Single Trip Time and also 

with respect to the Maximum count of daily meetings.  

7.4 Neighborhood structures 

In VNS method, the decision of choosing an appropriate neighborhood 

structure, and the way they are arranged play a significant role in the success 

of the algorithm. Apparently, the search space of neighborhoods influences the 

efficiency of the approach. Most probably, a large neighborhood includes the 

global optima while a small neighborhood may not cover the global optima. 

On the other hand, the computational effort increases while the neighborhoods 

are enlarged.  

We conduct preliminary experiments to choose neighborhood structures 

where various neighborhood structures along with different sequences are 

tested.  We employ eleven neighborhood structures for VNS algorithm: 1−Add, 

1−Drop, Drop-Add, 1-1 Exchange Non-Visited, 1-1 Exchange Intra Route, 1−0 

Relocate, 2−0 Relocate, 1−1 Swap, 2−2 Swap, 1−1−1 Swap (Triple Rotation) and 

1−1−1−1 Swap (Quadruple Rotation). The first four neighborhoods resemble the 

selective nature of the problem, thus, are called city selection neighborhoods. 

The 1-1 Exchange Intra Route is called Intra-Route Neighborhood. The 
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remaining neighborhoods are called Inter-Route Neighborhoods since they 

include different routes of various days. In the following, we describe each 

neighborhood structure in details. 

1−Add 

Given a city not included in any route of the current solution, the city is 

inserted in the best position using the cheapest insertion approach.  The city 

will be positioned in the first possible day as it may result in obtaining higher 

objective value. This position can be before the depot node, between two nodes, 

or after the terminal node. An example of 1-Add operator is depicted in 

Figure 7.3. 

 

1−Drop 

Given a city included in the current solution, it is removed from the route. If 

this city is the last visited city of the campaign, it will be simply removed. If 

the city is a depot node, the chain feasibility of the whole tour ensures the 

connectivity between daily tours. If the city is a transient city, the predecessor 

and successor of this city are connected. The primary candidates for removal 

are the visited cities with the lowest reward. See Figure 7.4. 
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Figure 7.3 The 1-Add operator 
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Drop-Add 

Given a randomly-selected route, The Drop-Add operator drops one node from 

that route. Then, a non-visited city is added to another randomly-selected 

route. See Figure 7.8. 

1-1 Exchange Non-Visited 

Given a randomly-selected route, a node is selected at random and its position 

is interchanged with a non-visited city. This move is illustrated visually in 

Figure 7.6. 
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Figure 7.4 The 1-Drop operator 
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Figure 7.6 The 1-1 Exchange Non-Visited operator 

Figure 7.5 The Drop Add operator 
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1-1 Exchange Intra route  

Given a randomly-selected route, two nodes are randomly selected and their 

positions are interchanged. The selected nodes can be depot node, terminal 

node, or transient node. See Figure 7.7.  

 

 

 

1−0 Relocate  

In this operator, given a daily route, a randomly-selected city is relocated from 

one daily route to another daily route between two consecutive cities, as a 

depot node or as a terminal node. See Figure 7.8. 

2−0 Relocate 

In this move, a randomly-selected node and its successor are removed from 

their positions and inserted in a different route. This move is represented 

visually in Figure 7.9. 
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Figure 7.7 The 1-1 Exchange Intra Route operator 
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1−1 Swap  

Given two cities from two different daily routes, their positions are swapped. 

Figure 7.10 illustrates this move. 
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Figure 7.9 The 2-0 Relocate operator 
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Figure 7.8 The 1-0 Relocate operator 
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2−2 Swap 

Given two cities on different daily routes, the positions of the first city and its 

successor are exchanged by the second city and its successor. 2-2 Swap is 

represented visually in Figure 7.11.  
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Figure 7.10. The 1-1 Swap operator 
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Figure 7.11 The 2-2 Swap operator 
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Triple Rotation (1−1−1 Swap) 

Given three cities in different daily routes, it executes a sequence of three moves 

where every city is relocated to the location of the next in line. See Figure 7.12. 

Quadruple Rotation (1−1−1−1 Swap) 

Given four cities in different daily routes, it executes a sequence of four moves 

where every city is relocated to the location of the next in line. See Figure 7.13. 
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Figure 7.12 The Triple Rotation operator 
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7.5 Granular neighborhoods 

The neighborhoods of the GSVNTS algorithm is fairly large and exploration of 

all of them leads to a cumbersome task. GSVNTS requires to explore all 

discussed neighborhood structures at each iteration for obtaining a high-quality 

solution. Such an exploration inevitably increases the CPU time of the 

algorithm. Toth and Vigo (2003) introduce a successful method to reduce 

computing time while exploring the neighborhoods. They suggest the granular 

neighborhoods that speed up the search procedure severely. The main idea is 
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Figure 7.13 The Quadruple Rotation operator 
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to explore a certain subset of promising moves while a significant number of 

unpromising moves are eliminated. In our implementation of GSVNTS, we 

capitalize on the similar idea with some modifications. 

Granular Neighborhoods reduce the size of the candidate neighborhoods 

by depriving non-promising moves during the search procedure. In order to 

reduce the computing time of neighborhood search in the shaking procedure 

and in the local search procedure, we proposed two effective strategies, which 

results in a significant reduction of the computing time. 

a) Tabu Moves  

While inserting a city into a daily route, if the daily tour is a closed route: 

Calculate the distance of the candidate city i for insertion in terms of 

travel time with the depot j ( ijt ). 

If         ijt then 

 CONTINUE; 

Else 

Try another city; 

Where   is the Tabu Move Threshold. If the travel time is higher than 

Tabu Move Threshold, ignore this move, as this insertion will most 

probably lead to a time infeasible solution. 

If the daily tour is an open tour:  

Calculate the minimum distance of the candidate city i for insertion in 

terms of travel time with the depot node j and terminal node k.  

IF     ,        j ikimin t t Then 

 CONTINUE; 
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 Else 

Try another city; 

If  ,  kij imin t t  is higher than the Tabu Move Threshold, ignore this 

move, as such an exchange will most probably lead to a time infeasible 

solution. 

b) Permanent Tabu Matrix 

While swapping two cities in different daily tours, it is important to consider 

the time- and the cost-efficiency of this exchange. For instance, in the daily 

route of “Istanbul – Bursa – Balıkesir”, the “Bursa  Adana” swap is not a 

promising move because it is too far from the candidate route. Therefore, we 

developed an Adjacency Matrix to handle similar scenarios. First, we develop 

a two-dimensional adjacency matrix with 0 – 1 values. In this matrix, city i 

and j are adjacent if and only if there is not any candidate city k that can be 

inserted between i and j. Therefore, most of the neighbor cities are considered 

as adjacent. If city k is close enough to both city i and j such that there is a 

possibility of generating sub-route “i – k – j”, then city i and j are considered 

as non-adjacent cities. The symmetric two-dimensional adjacency matrix is 

significant as it is the basis of developing three-dimensional “Matrix of 

Eligibility for Insertion”. 

Next, a three-dimensional adjacency matrix with 0 – 1 values is developed 

to evaluate all possible insertion patterns. Let us call the two-dimensional 

matrix A and that three-dimensional matrix M. The purpose is to keep track 

of promising and eligible insertions of cities in between a pair of other cities. 

Cell M[i,j,k] of the three-dimensional matrix will be 1 if and only if city i is 

eligible to be inserted between cities j and k. The primal property of the three-

dimensional matrix is being symmetric with respect to j and k, 
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i.e. M[i,j,k] =  M[i,j,k] for each arc (j,k). We calculate the values of this matrix 

as follows. 

 



 
 

 





, ,   1       ,          

,  0,   0   .

ij jkM i j k if min t t GranularityThreshold Value

A j k otherwise
  

Considering the mentioned rule, city i can be inserted into the arc of (in 

between) cities j and k if and only if both of the following conditions are 

satisfied. The parameter ,  i jt shows the symmetric travel time between cities i 

and j. 

 i. Cities j and k are known to be nonadjacent. This is checked via two-

dimensional symmetric adjacency matrix at this point. 

ii. City i which is a candidate for insertion is close enough to at least one 

of the depots of the edge (j,k). 

The benefit of the three-dimensional matrix of eligibility for insertion is 

to speed up the neighborhood search within the GSVNTS algorithm by a great 

deal. Thanks to the two-dimensional matrix A and three-dimensional 

matrix M, we will eliminate unnecessary and non-promising moves to progress 

from the current solution to the next solution in the steps of the GSVNTS. 

For instance, we do not consider inserting Istanbul in between Kırklareli 

and Tekirdağ. Although Istanbul is close enough to both of them, it cannot be 

cost- and time-saving to visit Istanbul while going from Kırklareli to Tekirdağ, 

because Kırklareli and Tekirdağ are adjacent cities. The same logic applies 

while inserting Hatay in between Antalya and Alanya. 

Figure 7.14 represents another example of granular moves. Suppose we 

want to exchange Balıkesir with another city. We eliminate the move Balıkesir–
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Van since the two cities are too far from each other. On the other hand, we 

permit the evaluation of Balıkesir – Tekirdağ move as it seems a promising 

move. 

7.6 Shaking 

Shaking procedure in the proposed GSVNTS method is responsible for 

generating a new starting point for the local search procedure. A neighborhood 

of an incumbent solution is determined by an operator. On the one hand, the 

goal of the operator is to adequately perturb the solution while keeping the 

good segments of it. In the basic VNS, one random solution is obtained by 

shaking procedure; however, in GSVNTS, multiple random solutions are 

generated and the best solution among them is selected to be used as an initial 

point of the local search procedure. This is basically the diversification strategy 

of our method. 

Figure 7.14 An example of granular neighborhoods 
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The set of neighborhoods used for shaking is not necessarily the same as 

the local search neighborhoods. The neighborhoods used in shaking procedure 

must normalize the trade-off between keeping good variables of the incumbent 

solution and perturbing it. We consider the city selection neighborhoods for 

the shaking procedure. We explained the details of the neighborhoods in 

Section 7.4. Such neighborhoods allow the shaking procedure to explore 

solutions far from the incumbent more and more. 

7.7 Local Search 

The generated solution by the shaking is submitted to the local search approach 

to obtain a locally optimal solution. Recently, several local search procedures 

have been introduced to the routing literature which extend the scheme of 

iterative improvement in various ways and avoiding being trapped in a local 

optimum. The most well-known research of these methods can be found in 

Holland (1975), Kirkpatrick et al. (1983), Glover (1989,1990), Glover and 

Laguna (1998). 

The local search procedure used in the second step of GSVNTS by 

carrying out a sequence of local changes in the solution obtained from the 

shaking procedure. The local search improves the objective value of this 

solution each time until a local optimum is found. To this end, an improved 

solution x  in the neighborhood ( )N x  of the current solution x is obtained at 

each iteration, until no more improvement is obtained.  

In many local search approaches, non-improving moves are allowed to 

avoid termination at a local minimum. Such a move is called hill climbing. 

However, non-improving moves increase the risk of cycling. Tabu Search (TS) 

uses a short-term memory to prevent moves that might result in revisiting the 
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recently-explored solutions. The basic VNS tries to escape from local optimum 

by changing the neighborhood structures as well.  

We incorporate the TS into both local search and shaking steps to 

regulate the intensification and diversification of the approach. The local search 

examines all the non-tabu moves. The shaking procedure consists of applying 

random moves. The shaking method is allowed to generate infeasible solutions. 

Then, the local search is permitted to make the best non-tabu move among 

those that decrease the infeasibility of the solution. Hence, the local search 

consists of selecting the best non-tabu move.  

The tabu search used in GSVNTS is based on the neighborhoods defined 

in Section 7.4 and 7.5. The pseudocode of the local search procedure is provided 

in Algorithm 7.  

We describe the details of the algorithm in the following. A maximum of 

_iter max  iterations are done during this search. The tabu search works with 

neighborhood kN  where k  is provided by the outer loop of the GSVNTS. Once 

the complete neighborhood kN  is constructed, the best solution of kN  is 

given. Next, the tabu status of this solution is checked. If the solution is a tabu, 

the second best solution from kN  is extracted. This process continues until all 

solutions from kN  being examined; otherwise, the best-known solution is used 

as the new solution.  
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Algorithm 7 Local search based on TS with steepest descent strategy 

Input: 

    _iter max  

    0S  

    0( )kN S   

1.  0iter ; 

2.   Improve true ;  

3. While   Improve true  or  _iter iter max  Do  

4.       Improve false ; 

5.       1iter iter ;  

6.     _Tabu List null ;  

7.     Select the best solution *S  from 0( ) \ _kN S Tabu List ; 

8.     If *
0( ) ( )Z S Z S  Then 

9.          *S S ; 

10.         Update _Tabu List ; 

11.           Improve true ; 

12.     End If  

13.  End While  

14.  Return *S   

15.  End 
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Our local search integrates the tabu conditions to avoid cycling. Such 

conditions enforce the search procedure to explore different regions of the 

solution space. These tabu tools are more powerful than the usual tabu moves 

since by considering a short list of tabu elements, a significant number of moves 

are forbidden. To this end, we create the tabu conditions for every 

neighborhood structure once the current solution is updated. The tabu 

conditions of the neighborhood structures are explained below: 

1−Add: The added city cannot be dropped from the routing/meeting 

schedule. 

1−Drop: The dropped city cannot be added to the routing/meeting 

schedule. 

Drop-Add: The dropped city cannot be added to the routing/meeting 

schedule and the added city cannot be dropped from the routing/meeting 

schedule. 

1-1 Exchange Non-Visited: Visited and non-visited cities whose positions 

are changed by 1-1 Exchange Non-Visited cannot be re-interchanged by 

the same move. 

1-1 Exchange Intra Route: Cities on the same day whose positions are 

swapped by 1-1 Exchange Intra Route cannot be re-swapped by the same 

move. 

1−0 Relocate: A city whose position is changed by 1−0 Relocate cannot be 

dislocated by the same move. 
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2−0 Relocate: The cities whose positions are changed by 2−0 Relocate 

cannot be dislocated by the same move. 

1−1 Swap: Cities whose positions are exchanged by 1-1 Swap cannot be 

re-swapped by the same move. 

2−2 Swap: The swapped chain of two cities by 2−2 Swap cannot be re-

swapped by the same move.  

1−1−1 Swap (Triple Rotation): The swapped chain of three cities by 1−1−1 

Swap cannot be re-swapped by the same move. 

1−1−1−1 Swap (Quadruple Rotation): The swapped chain of four cities by 

1−1−1-1 Swap cannot be re-swapped by the same move. 

Our TS approach has one aspiration criterion which consists of revoking 

tabu conditions for a move if it results in a higher objective value than the 

current incumbent. In this case we override the tabu condition and perform 

the move. 

7.8 Penalty value for strategic oscillation 

At each iteration of the local search procedure, several feasibility checks are 

performed to ensure the validity of the solution. The performed feasibility 

checks are explained below: 
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(a) Chain feasibility 

Except for the last period, the terminal city of each day should be as 

same as the starting city of the next period. In other words, each tour 

must start from the terminal node of the previous day. 

(b) Maximum tour duration feasibility 

The total length of each tour should not exceed the maximum tour 

duration. 

(c) Return to campaign base feasibility 

The campaign base must be visited as a terminal node at least once 

every   days. 

(d) Maximum number of meetings for different city categories 

There cannot be more than three meetings in big cities. This limitation 

reduces to two for regular cities. The remaining cities can host at most 

one meeting during the whole campaign. 

(e) No repeated meetings of the same city on the same day (No 

Subtour) 

Each city can host at most one meeting every day. 

(f) No meetings of Big Cities on the same day 

If there is a meeting in one of the big cities, there cannot be another 

meeting for the remaining big cities on the same day. 

(g) Maximum number of meetings per day 

There cannot be more than   meetings each day 
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In GSVNTS approach, some solutions generated during the exploration of the 

neighborhoods may turn out infeasible with respect to maximum tour duration 

constraint. We prevent infeasible solutions with respect to the all constraints above 

except the maximum tour duration constraint since the restoration of the other 

infeasibilities is a computationally expensive task. In case a solution turns out 

infeasible with respect to maximum tour duration, GSVNTS computes a new objective 

value that includes the original objective value as well a penalty associated with the 

infeasibility. For a given solution S the new objective function with penalties is 

expressed as: 

  ( ) ( ) ( ),Z S Z S F S  (7.1) 

where 
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 (7.2) 

( )F S  represents the violation in the time constraint.   is a positive parameter, and 

function  
    max 0, . If a given solution S  is time feasible, then 

 ( ) ( ).Z S Z S  Adjusting the values of the penalty parameter   is crucial since 

selecting too high penalty parameter value prevents the algorithm from visiting 

infeasible solutions, whereas too low penalty parameter value will fall short of 

detecting feasible solutions on the GSVNTS steps. In this regard, the best option is 

to proceed with an adaptive update mechanism in which the penalty parameter is to 

be updated after each iteration in order to find feasible and infeasible solutions as 



 

 

Chapter 7: A Granular Skewed Variable Neighborhood tabu search  104 

 

 

 

much equally often as possible. In our GSVNTS implementation, if the current 

solution S  after each iteration is time-infeasible, we set    (1 ) ; if it is time-

feasible, we set    / (1 ) .  A reasonable value for   is 0.5  as suggested in 

Cordeau et al. (1997). The initial value of    is set to 1 in the first iteration. 

7.9 Skewed moves 

Once the local search procedure found a local optimum, the decision of 

accepting or rejecting should be made. Thus, this solution must be compared 

to the incumbent solution. In the basic VNS, the acceptance criterion is 

straightforward. It accepts only improving moves. Although this strategy is 

simple and easy to implement, the search procedure may get stuck in a local 

optima easily. Therefore, we need an alternative strategy to accept non-

improving moves which seems to be promising.  

Instead of the basic VNS, we propose to incorporate the so-called Skewed 

Variable Neighborhood Search (SVNS) strategy introduced by Hansen and 

Mladenović (2001) where the problem of the exploring valleys far from the 

incumbent solution is considered. In SVNS, not only the objective value of a 

solution is evaluated but also its distance to the incumbent solution is also 

evaluated, favoring faraway solutions.   

In this approach, the function  ( , )S S  calculates the distance between 

the incumbent solution S  and the local optima S , where solutions in the far 

distance are favorable. This means that GSVNTS accepts the new non-

improving solution if the following condition is satisfied: 

   ( ) ( , ) ( ),Z S S S Z S  (7.3) 
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where S  is the best-found solution so far, and S  is the current solution. 

The function  ( , )S S  denotes the distance between solutions S  and S . This 

distance is expressed as the number of uncommon cities between S  and S . 

The selection of a proper value for parameter   is crucial since the 

decision of accepting exploration of the distant valleys from incumbent solution 

depends on it. After detailed testing, we assign the value of 0.05  to parameter

 . 

Other acceptance decisions are also proposed in the literature. Polacek et 

al. (2004) implemented SVNS in different routing problems where the threshold 

accepting is used instead of the basic SVNS’s acceptance criteria. 

Vansteenwegen (2009b) used SVNS to solve different Team Orienteering 

Problems.  

7.10 Termination criteria 

Various termination criterions are used in the VNS implementations. The 

frequently used termination criteria in VNS methods are: (i) a fixed number of 

iterations, (ii) reaching a threshold CPU time, (iii) reaching a specific objective 

value and (iv) a fixed number of iterations without improvement. Among these 

criterions, the latter one is the most widely used. In our implementation, we 

used two termination criteria. As soon as one of the following termination 

criteria is met, the algorithm terminates:  

 A fixed number of iterations without improvement.  

 Reaching a pre-defined CPU time (3 hours).  

The first criteria depends on the topology of the instance. For a small size 

instance, we can increase the number of iterations with non-improving solutions 
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since implementing rich neighborhood structures does not require high 

computational effort in small size problems, but in large problems spending 

more time on non-improving solutions is not rational. We set this number as 

specified in Table 7.1.  

Table 7.1 Termination criteria of GSVNTS 

# of days    Maximum # of non-improving iterations 

   7  1000 

 7 <   15  400 

 15    30  200 

30   100 

 

7.11 Granular Skewed Variable Neighborhood Tabu Search 

The proposed GSVNTS algorithm gets its principles from the basic VNS; 

however, some features are added to the basic approach. As discussed, the basic 

VNS was introduced by Mladenović and Hansen (1997) with the fundamental 

idea of the systematic change of the neighborhoods within a possibly 

randomized local search algorithm to solve a wide range of combinatorial 

optimization problems.  

Unlike many metaheuristics approaches, VNS uses multiple neighborhood 

structures for improving the initial solution. The systematic change of 

neighborhood structures is performed with the hope of finding better solutions 

in the other neighborhood structure of the current solution. Usually, successive 

neighborhoods are nested and their sequence should be such that each 

neighborhood covers a larger search space compared to the previous one.  



 

 

Chapter 7: A Granular Skewed Variable Neighborhood tabu search  107 

 

 

 

Toth and Vigo (2003) introduce the granular neighborhoods for routing 

problems and embed it in a tabu search algorithm. The concept of granularity 

is added to GSVNTS algorithm to prevent non-promising moves and to reduce 

the computing time of neighborhood search accordingly. Granular 

neighborhood search is based on the use of limited neighborhoods to avoid 

moves that do not belong to the good feasible solution most probably. We 

explained the details of granularity in Section 7.5.  

Another modification of the basic VNS used in GSVNTS is the concept 

of skewed VNS (SVNS) introduced by Hansen and Mladenović (2001). It 

modifies the basic approach to explore far neighborhoods of the incumbent 

solution. In SVNS, step 2(c) of the basic VNS has been modified. Thus, instead 

of moving to only better local optimums, SVNS accepts non-improving moves 

if the new solution is far enough to the incumbent solution. This strategy helps 

the algorithm to explore non-visited areas of solution space. The details of 

skewed moves are explained in Section 7.9. 

In GSVNTS, the strategy of changing neighborhoods is in a deterministic 

way. That is to say, neighborhoods change in sequence. There is another 

variant of basic VNS where neighborhoods are changed randomly, called 

Randomized VNS (Repoussis et al. 2006). Unlike to Randomized VNS, we used 

the deterministic change of neighborhoods in our implementation.  

The pseudo code of GSVNTS method is described in Algorithm 8.  
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Algorithm 8. GSVNTS Method  

1. Input:  

2.      A set of neighborhood structures  max( 1,2,..., )kN k k  to be used 

     in the shaking procedure; 

3.      A set of neighborhood structures  max( 1,2,..., )lN l l  to be used in 

     the local search procedure; 

4. Parameters: _Max Time , MaxNonImp , maxk , maxl , , , 

                       ShakingTimeThreshold 

5. Initialization:  

6.      Find an initial feasible solution 0S  generated by FDOR–DCS with 

     the objective value of 0( )Z S  

7.        *
0S S  

8.        *
0( ) ( )Z S Z S  

9.       0_Non Imp  

10.         0ShakingTime  

11.      ShakingTimeThreshold   

12.         1l  

13.         1k  

14. While () _CPUTime Max Time  and _    Non Imp MaxNonImp  Do 

15.        ShakingSolutions = {(. , .)} 

16.        While ShakingTime < ShakingTimeThreshold Do       //shaking 

17.               ShakingSolutions  * *(Shaking( , ),Objective( , ))S k S k  

18.        End While 
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19.           


 

* *: Objective( , ) Objective( ),
( , ( )) ShakingSolutions

S S k S
S Z S

  

20.          *S S (   ( )kS N S ) 

21.          ( , )S LocalSearch S l                  //Best improvement local search 

22.        If   *( ) ( )Z S Z S  Then                                     //move or not 

23.        *S S  

24.        *( ) ( )Z S Z S  

25.         0_Non Imp ;  

26.                      1k ; 

27.                      1l  

28.        Else 

29.                    _ _ 1Non Imp Non Imp  

30.              If    * *( ) ( , ) ( )Z S S S Z S  Then             //skewed moves 

31.              *S S  

32.      *( ) ( )Z S Z S  

33.                              1k  

34.                              1l  

35.              Else 

36.        1k k  

37.                               1l l  

38.              End If  

39.        End If 

40. End While 

41. Output: A feasible solution S* with objective value Z(S*) 
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Chapter 8 

COMPUTATIONAL RESULTS 

8. COMPUTATIONAL RESULTS  

We test the performance of GSVNTS approach computationally. In this 

section, the details of the computational studies along with the results are 

reported.  

8.1 Data sets 

Since the MPTPP constraints are unique, well-known VRP and TSP instances 

cannot be used. Therefore, we generated 3 set of instances:  

(i) Presidential Elections I (PE.I): it includes 22 instances where the 

smallest instance includes 6 cities and 2 days and the real-world 

instance includes 93 cities and 40 days. The criteria for selection of 

cities is their base rewards.  

(ii) Presidential Elections II (PE.II): it includes 20 instances where the 

cities have been selected based on their distance with each other.  

(iii) Local Election (LE): it consists of three instances with 39 towns of 

Istanbul.  

All 45 instances were generated with real-world distances and travel times 

among all cities and some towns of Turkey. We assume symmetric travel costs 
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and symmetric travel times. The naming convention of instances sheds light 

on the sizes of the 45 test instances and their types. An instance name ‘ PE.I. 

nC D  ‘ tells that the problem relates to presidential elections and it has n 

cities (excluding the fictitious city) and a planning horizon of   days.  

All instances are available at http://shahmanzar.ir/RSP.html. The 

details of instances for both dominant party and the main opposition party is 

represented in Appendix A. 

8.2 Computational Platform and Solver specifications 

Our computational tests were performed on a Dell Precision T7810 model PC 

equipped with one Intel Xeon® E5-2690 v4 2.60 GHz processor and 32 GBytes 

of ECC DDR3 type random access memory (RAM). Our algorithms are coded 

in Python 3.6. 4 (64-bit version). For the model solution and the second phase 

of the FDOR, among available commercial MILP solvers, we employed 

GUROBI 8.0.1 which is called from inside Python.  

The solver specific options applied to all runs are presented in Table 8.1. 

The reader is referred to GUROBI User’s Manual (2018) for a more thorough 

explanation of these options. 
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Table 8.1 List of GUROBI specific options applied to all runs. 

GUROBI specific options used in Python codes 

MIPGap = 0.000 

TimeLimit = 86400 

IterationLimit = 1.e9 

NodeLimit = 5.0e8 

Nodefilestart = 6.5 

Threads = 0 

Concurrentmip = 3 

NumericFocus = 3 

DualReductions = 0 

InfUnbdInfo = 1 

The relative optimality criterion (MIPGap) is set to zero as we seek 

proven optimality (i.e. zero gap between the best feasible and best possible 

solutions). MIPGap is computed as  100%BFS BPS BFS  where BFS  

and BPS  stand for the best feasible and best possible solutions, namely the 

tightest lower and upper bounds in a maximization problem, respectively. The 

CPU time limit (TimeLimit) is set to 86,400 seconds (24 hours).  

The iteration limit (IterationLimit) is set to one billion. So the solution 

procedure will terminate after one billion iterations or 24 hours, whichever 

happens first. NodeLimit limits the number of nodes to be explored in the 

branch-and-bound tree. Nodefilestart limits the memory usage of the solver 

(measured in GBytes).  

The options Threads and Concurrentmip turn on the multithreading 

(concurrent optimization) capabilities of GUROBI. When Threads is set to 

zero, the computing load is distributed onto all available fourteen cores (28 

threads) of the processor. On the other hand, when Concurrentmip is set to 

three, the solver divides available threads evenly between three independent 
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MILP solve operations and performs them in parallel. Optimization terminates 

when the first solve operation completes.  

In order to compare multithreading options, we tested the performance of 

GUROBI under different concurrent optimization configurations. We observed 

that Concurrentmip=3 outperforms other configurations and finds the best 

feasible solution as well as the best possible solution achieving thereby the 

smallest optimality gap. Thus, we proceeded in our experiments with 

Concurrentmip=3. We discuss the configuration of Concurrentmip in more 

details in Section 8.2.1. 

NumericFocus controls the degree to which the code attempts to detect 

and manage numerical issues. It is set to 3 since the right-hand side values of 

the constraint equations are relatively large in our model. DualReductions 

determines whether dual reductions are performed in the presolve step. It also 

helps to find out the actual status of the model solution. Finally, InfUnbdInfo 

specifies whether the LP solver will compile additional information when a 

model is determined to be infeasible or unbounded. 

8.2.1 Cuncurrent MIP configuration 

In order to compare the multithreading options, we analyze the performance 

of different concurrent optimization configurations of the MILP solver. When 

threads are set to zero, the computing load is allocated on all available cores 

of the processor. On the other hand, when Concurrentmip is set to 3, the solver 

splits all available threads evenly between 3 independent MILP solve 

operations and executes them in parallel. Optimization aborts when the first 

solve operation finishes. Table 8.2 illustrates the performance report of different 
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Concurrentmip configurations in Gurobi and Cplex (Concurrentmip 1, 

Concurrentmip 2, and Concurrentmip 3) on the same instance. We observe 

that when Concurrentmip is set to 3, the runtime of the Gurobi decreases 

significantly compared to other configurations.  

Table 8.2 Comparison of Cplex with different CONCURRENTMIP configurations of 

Gurobi 

   CPLEX CONCURRENT 

MIP 1 

CONCURRENT 

MIP 2 

CONCURRENT 

MIP 3 

Final UB 29512.39 27640.00 27724.00 27713.50 

Final LB 20811.00 17867.00 20251.00 21146.50 

Final Absolute Gap 8701.39 9773.00 7473.00 6567.00 

Final Relative Gap (%) 0.29 0.35 0.26 0.23 

BFS Finalize Time (sec) -  31803     43224      68542  

 

Concurrentmip 3 outperforms other configurations by finding the best 

feasible solution, best possible solution and the smallest gap. Therefore, we 

report our experimental findings with Concurrentmip 3. 

8.3 Comparison of the original formulation with the alternative formulation 

The comparison between alternative Maximum Tour Duration (MTD) 

formulation (3.41)-(3.46) and MTD constraints (3.6) is summarized in 

Table 8.3. 

It can be seen from Table 8.3 that using the MTD constraints (3.6) 

improves the CPU time for all developed instances. This can be attributed to 

the continuous variable A that saves arrival times for all cities. In all cases, 
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using constraints (3.6) reduces the CPU time to solve the problem without 

compromising the final solution. This result led us, in this class of problems, 

not to pursue the alternative formulation any further. 

Table 8.3 Comparison of two MTD formulation 

Instance 

PE.I 

MTD constraints 

 (3.41)-(3.46) using itA  

MTD constraints (3.6)  

Gap(%)      CPUa(s)  Gap(%)      CPUa(s)  

5C2D  0.0 3.5 0.0 0.1 

5C3D 0.0 3.8 0.0 0.1 

7C2D 0.0 4.3 0.0 0.2 

7C3D 0.0 4.7 0.0 0.4 

7C4D 0.0 5.4 0.0 0.4 

9C2D 0.0 15.3 0.0 0.3 

9C3D 0.0 166.2 0.0 0.5 

9C4D 0.0 640.7 0.0 1.3 

12C3D 7.1 3600.0 0.0 5.2 

12C4D 9.0 3600.0 0.0 5.8 

12C5D 14.3 3600.0 0.0 6.0 

15C3D 7.6 3600.0 0.0 32.1 

15C4D 11.2 3600.0 0.0 214.8 

15C5D 15.8 3600.0 0.0 409.5 

aIntel®Core™i5-4310U @2GHz 2.60 GHz. 
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8.4 Speeding up GUROBI using the results of FDOR  

The commercial solvers such as GUROBI and CPLEX assume the initial values 

of all binary decision variables as zero. On the other hand, we know that some 

greedy-like and heuristic methods are used inside the black box of these solvers, 

especially in the pre-processing step. When we are dealing with a mixed integer 

linear programming problem, it is possible to assist the commercial solver to 

find an initial solution, by for instance including values of variables, known as 

a warm start. In other words, a warm start can be supplied by a feasible 

problem that has been previously solved. Since we have a high-quality feasible 

solution generated by FDOR, which executes in a small amount of CPU time, 

we feed the best solution of the FDOR as an initial starting solution of the 

original MPTPP model.  

This high-quality initial solution may help the solver to start solving the 

problem from a better initial solution which may, though not always true, 

result in finding the optimal solution faster than before. Note that in large 

instances of MPTPP, GUROBI fails, after 24 hours, to generate a feasible 

solution as a lower bound of the problem. Here, the optimal values of the binary 

decision variables X, Z, R, FM, S, L, and E are extracted from FDOR solutions 

and inserted into the original MPTPP model as initial values.  

In order to define these values, we only take care of those variables which 

their corresponding optimal value of FDOR method is equal to one. The initial 

values of the remaining decision variable are set to zero by default. The new 

results are presented in Table 8.4.  
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Table 8.4  The results of setting initial values of MPTPP to optimal values of FDOR 

We observe that the solution quality is increased in almost all instances. 

For those instances where GUROBI was able to find the optimal solution, the 

CPU time is significantly decreased leading to an average improvement of 

30.4%. There are, however, two instances (12C5D and 15C7D) where, the CPU 

time increased which could be due to restricting the search. It is also worth 

noting that in one instance (40C7D), GUROBI was not able to solve it to 

optimality, but, this variant obtained the optimal solution in less than one day. 

For the remaining instances, the best feasible solution is improved by 

 MPTPP 
 MPTPP with FDOR solution as the initial 

solution 

Instance    LB   UB   Gap(%)  CPU(s)       LB          UB Gap(%)    CPU(s) 

PE.I           

12C5D 14575 14575 0.0 6.0   14575 14575 0.0 6.8 

15C7D 17240 17240 0.0 551.3   17240 17240 0.0 572.5 

15C10D 18759 18759 0.0 30458.5   18759 18759 0.0 20630.7 

21C7D 19138 19138 0.0 6705.3   19138 19138 0.0 5311.0 

21C10D 21904 23413 6.9 86400.0   21684 23143 6.7 86400.0 

30C7D 29427 29427 0.0 20670.3   29427 29427 0.0 14071.7 

30C10D 35013 37102 6.0 86400.0   35197 37226 5.7 86400.0 

40C7D 30086 31317 4.1 86400.0   30122 30122 0.0 77160.8 

40C10D 36409 41008 12.6 86400.0   34763 40960 17.8 86400.0 

51C7D 41087 45166 9.9 86400.0   41442 44684 7.8 86400.0 

51C10D 45667 55890 22.4 86400.0   46971 56169 19.5 86400.0 

51C30D 47279 135554 186.7 86400.0   59885 120014 100.0 86400.0 

Average   20.7 55365.9     13.1 53012.7 
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approximately 4.3% on average. Finally, the actual gap of the MPTPP model 

is improved by 58.7% on average. 

8.5 Linear relaxation of the binary decision variables 

We investigated four types of relaxations on a fairly large instance including 

39 cities and 15 days. The best feasible solution (the lower bound on the true 

optimal solution) of the problem is reported as 21146.5 by GUROBI; However, 

considering the 23% relative gap, we examined whether we can find a tighter 

upper bound. To this end, we investigated four types of relaxations:  

i) Linear Relaxation of binary decision variables (LR),  

ii) Partial Linear Relaxation of the binary routing decision variable X 

(PLR1),  

iii) Semi-Full LP Relaxation with S, FM, and Z forced to be binary and 

all other originally binary decision variables relaxed between 0 and 1 

(SFLR),  

iv) Partial Linear Relaxation of the binary decision variable S (PLR2).  

The comprehensive non-relaxed model (denoted as Full Milp) has 22782 

binary decision variables after the reductions performed by Gurobi at the root 

node of the branch and bound tree before the iterations commence. By relaxing 

the binary decision variable X, this number reduced to 2885 for the Partial 

Linear Relaxation (PLR1) version of the full model.  

Table 8.5 presents the test results obtained from the five models discussed 

above.  



 

 

Chapter 8: Computational Results  119 

 

 

 

Table 8.5 Comparison of different solutions of the same instance with 39 cities and 

15 days 

Model 
MIP   

Solution 

LP 

Solution 

Best 

possible 

Absolute 

gap 

Relative 

gap (%) 
CPUa (s) 

Full MILP 21146.5 - 27713.5 6567.0 0.23 86435.54 

LR - 65585.8 - - - 38.06 

PLR1 26125.3 - 29143.9 3018.6 0.10 3791.84 

SFLR 25345.3 - 29596.6 4251.4 0.14 43216.80 

PLR2 57431.7 - 58744.2 1312.5 0.02 35537.92 
aIntel®Core™i5-4310U @2GHz 2.60 GHz. 

 

As we observe in Table 8.5, the final upper bound for PLR1 is 291439.9 

which is worse than the final upper bound of the MILP model (which is 

27713.5). The lower bound of SFLR at the end of 11 hours is as high as 57431.7 

and the UB is 58744.17. These are also extremely loose bounds. Therefore, the 

FULL MILP upper bound is found to be the tightest bound we could obtain 

so far. 

8.6 Effect of the added valid inequalities (VI) on solution quality 

Table 8.6 displays the lower and upper bounds found by GUROBI 8.0.1 and 

the corresponding CPU time (in seconds) for the models without VIs, with 

partial VI (with VI except for constraints (3.50)) and with all VI. The optimal 

solutions are shown in bold where the remaining figures display the best 

solution. 
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Table 8.6 Comparison of the models with and without valid inequalities 

 All VIs OFF All VIs ON except 

(3.50) 

All VIs ON 

Instance 

Obj. 

Val. 

Gap 

(%) CPU  

Obj. 

Val. 

Gap 

(%) CPU 

Obj. 

Val. 

Gap 

(%) CPU  

PE.I          

12C3D 12620 0.0 1.4 12620 0.0 0.9 12620 0.0 1.1 

12C4D 16584 0.0 5.5 16584 0.0 2.7 16584 0.0 2.3 

12C5D 14575 0.0 38.5 14575 0.0 7.3 14575 0.0 6.0 

15C3D 12620 0.0 2.4 12620 0.0 1.7 12620 0.0 1.6 

15C4D 14210 0.0 10.4 14210 0.0 5.9 14210 0.0 4.3 

15C5D 15446 0.0 113.1 15446 0.0 37.3 15446 0.0 14.4 

15C7D 17240 0.0 2477.1 17240 0.0 1528.0 17240 0.0 551.3 

15C10D 18719 5.5 86400.0 18759 0.0 35355.0 18759 0.0 30458.5 

21C7D 19138 0.0 17290.9 19138 0.0 5296.1 19138 0.0 6705.3 

21C10D 21727 11.2 86400.0 21792 7.4 86400.0 21904 6.9 86400.0 

30C7D 29427 0.0 19736.3 29427 0.0 7421.5 29427 0.0 20670.3 

30C10D 32803 18.8 86400.0 33281 14.0 86400.0 35013 6.0 86400.0 

Average 18759 2.9  18807 1.7  18961 1.0  

 

According to Table 8.6, the formulation of MPTPP is more compact when 

all valid inequalities are used.  Based on these positive results, we opted to 

include all valid inequalities in our experiments. This led to an improvement 

in the average objective value and a reduction in the average gap. The 

deviation reduces from nearly 3% to just a 1% on average and the largest % 

deviation is just below 7%, a massive drop from the previous value of 11.2%. 
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8.7 Changing values of   

In all computational experiments, the default value of   is set to 4. We 

compare the performance of the developed mathematical formulation in terms 

of the different values of  . The results are listed below in Table 8.7. For each 

instance set, we indicate the number of nodes and number of days. For each 

value of   we list the CPU time in seconds as well as optimality gap.  

Table 8.7 Results of the instances for different values of   

Instance   1    2   3  

Gap(%) CPU Gap(%) CPU Gap(%) CPU 

5C2D  0.0 3.5 0.0 3.3 0.0 3.4 

5C3D 0.0 3.4 0.0 3.5 0.0 3.5 

7C2D 0.0 3.5 0.0 3.7 0.0 3.7 

7C3D 0.0 3.7 0.0 3.8 0.0 3.8 

7C4D 0.0 4.2 0.0 4.5 0.0 4.2 

9C2D 0.0 3.7 0.0 3.7 0.0 3.6 

9C3D 0.0 4.9 0.0 4.7 0.0 4.8 

9C4D 0.0 9.4 0.0 9.4 0.0 9.5 

12C3D 0.0 4.5 0.0 4.3 0.0 4.4 

12C4D 0.0 14.8 0.0 15.4 0.0 16.0 

12C5D 0.0 35.2 0.0 36.1 0.0 36.9 

15C3D 0.0 6.1 0.0 6.2 0.0 6.2 

15C4D 0.0 29.8 0.0 30.7 0.0 31.0 

15C5D 0.0 34.1 0.0 35.3 0.0 36.5 

21C5D 11.0 600.0 11.1 600.0 11.0 600.0 

21C7D 11.1 600.0 13.7 600.0 13.8 600.0 

21C10D 15.2 600.0 17.2 600.0 18.5 600.0 
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The results in Table 8.7 indicate that increasing the maximum number of 

meetings allowed to be held each day does not significantly affect the solution 

time. The obtained best gaps are also very close in large-sized instances.  

8.8 Computational results of scenario analysis level 1  

The results of the four different scenarios described above are presented in 

Table 8.8. The naming convention in the leftmost column of the table sheds 

light on the sizes of the 10 test instances. Boldface figures in the first column 

of each scenario in Table 8.8 point to proven optimality achieved by the 

commercial solver GUROBI.  

Table 8.8 consists of four segments where each segment corresponds to a 

scenario and reports the optimal or best feasible objective value (BFS), the 

number of meetings held during the planning horizon (m) and the final gap 

reported by GUROBI. The CPU time limit in all runs was applied as 24 hours. 

In the first scenario Full-MILP, we also report the CPU time that elapsed until 

the lower bound on the value of the maximization objective, namely the BFS 

reached its final level. The average gap and CPU time are 6.19% and 29504.3 

seconds, respectively. This implies MPTPP is a large-scale optimization 

problem even for small size instances.  

In Full-1Meet (Scenario 2), the computational complexity of the problem 

is greatly reduced due to the removal of the binary variables itFM  and iusR  

from the model and due to the simplified net benefit definition shown in (5.1)

. This simplification helps the solver find better solutions within the CPU time 

limit of 24 hours compared to Full-MILP (Scenario 1). The average gap 

decreases to 7.20%.  
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Objective values obtained in Rew-Only (Scenario 3) are not comparable 

with the ones obtained in the other scenarios since the traveling costs in the 

definition of net benefit are ignored. However, except in three instances, namely 

40C-7D, 51C-7D and 51C-10D, the count of meetings realized in this scenario 

is either higher than or equal to the others. This can be ascribed to having a 

larger feasible solution space which occurs because of lifting the necessity to 

visit the campaign base every   days.  

Similarly, the politician in this scenario has more freedom to travel to 

remote cities that he would not visit in the base scenario due to the net benefit 

being negative after the deduction of traveling expenses. The average gap in 

Scenario 3 is 6.07%. 

The results of Alt-1Depot (Scenario 4) are also interesting, as this scenario 

bears the most similar conditions to the current campaign policy of the PP. In 

comparison to Full-MILP, the commercial solver GUROBI in this scenario was 

able to attain optimality in one more instance (51C-7D). Table 8.8 reports an 

overall lesser number of meetings in Scenario 4.  

It is apparent that the requirement to return to the capital city Ankara 

at the end of every day prevents some of the meetings which were realized in 

the base scenario Full-MILP. The average gap reported by GUROBI in this 

scenario is 7.78%. 
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Table 8.8 Results of the four scenarios. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Instance 

PE.I 

Full-

MILP m 

Gap  

(%) 
a

BFSt   

Full-

1Meet m 

Gap 

(%) 

Rew- 

Only m 

Gap 

(%) 

Alt-

1Depot m 

Gap 

(%) 

15C7D 17240 14 0.0 451 16000 13 0.0 22561 16 0.0 11539 10 0.0 

15C10D 18759 17 0.0 10556 16299 15 0.0 26061 20 0.0 11170  13 15.4 

21C7D 19138 16 0.0 2521 18117 16 0.0 23932 17 0.0 13779 12 0.0 

21C10D 21904 21 6.9 24431 20850 20 0.0 28927 23 3.8 14498 15 14.6 

30C7D 29427 18 0.0 9785 27576 17 3.3 33638 18 0.0 20774 13 0.0 

30C10D 35013 24 6.0 61308 32210 24 9.0 38148 24 10.0 24520 17 15.9 

40C7D 30086 20 4.1 11280 27023 18 16.4 32586 19 9.5 20893 13 7.1 

40C10D 36409 25 12.6 44758 32210 24 9.0 39876 25 13.7 25324 18 19.7 

51C7D 41087 31 9.9 71322 33366 23 17.6 33123 19 11.0 31154 19 0.0 

51C10D 45667 36 22.4 58631 35314 26 16.7 41325 28 12.7 37373 26 5.1 

a CPU time in seconds spent until the reporting of the best feasible solution by 

GUROBI. 
* The value of the best feasible solution (BFS) is provided where GUROBI is not able 

to prove optimality in 24 hours. 

8.9 Computational results of scenario analysis level 2  

The importance of holding meetings in the early days or in the last days of the 

campaign period should be decided by party executives indeed. Despite this 

fact, we present in Table 8.9 the comparison between the original and the 

alternative reward functions on 14 small size test instances using the base 

scenario Full-MILP. All instances are solved to proven optimality under each 

net benefit function. The column with the header ‘CPU (s)’ indicates the 

solution times in seconds reported by GUROBI. 
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Table 8.9 Comparison of new and original reward function. 

Instances 

PE.I 

Full-MILP with original reward 

function (3.1) 

Full-MILP with alternative reward 

function (5.2) 

Obj. Value Gap (%) CPU (s) Obj. Value Gap (%) CPU (s) 

6C2D 7110 0.0 0.1 17441 0.0 0.1 

6C3D 8181 0.0 0.1 22272 0.0 0.2 

7C2D 9629 0.0 0.1 22172 0.0 0.2 

7C3D 10939 0.0 0.2 26778 0.0 0.4 

7C4D 11597 0.0 0.4 30339 0.0 0.7 

9C2D 9695 0.0 0.3 22172 0.0 0.1 

9C3D 10939 0.0 0.5 28572 0.0 0.9 

9C4D 11668 0.0 1.3 32149 0.0 1.8 

12C3D 12620 0.0 1.1 31726 0.0 1.3 

12C4D 13584 0.0 2.3 37076 0.0 3.6 

12C5D 14575 0.0 6.0 40382 0.0 60.4 

15C3D 12620 0.0 1.6 32750 0.0 2.9 

15C4D 14210 0.0 4.3 39496 0.0 6.1 

15C5D 15446 0.0 14.4 43533 0.0 159.8 

According to Table 8.9 the solution times obtained with the original 

reward function are better in 13 out of 14 instances. The objective values are 

unfortunately not comparable due to different rewards being assigned to each 

city in different days. The decision which reward function to adopt is to be 

made by the politician. Based on the results shown in Table 8.9, it can be 

comprehended that using the alternative reward function in (5.2) increases the 

computational complexity of the problem. 
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8.10 Tightening scheme 

As shown in previous sections, the average gap of Full MILP model was too 

high. For larger instances like 51C 30D, the commercial solver was not able 

even to generate a feasible solution after 24 hours. Therefore, we need to 

produce the upper bound and lower bound for the problem using alternative 

methods. Since the objective function of MPTPP is maximization, the lower 

bound is produced by any feasible solution and the upper bound is produced 

by any type of relaxation of the original problem.  

We use the procedure described in Figure 8.1 to tighten the actual optimal 

value of the main problem (51 city and 30 days). To obtain a valid upper 

bound, we tested different relaxation schemes (full linear relaxation of all 

binary variables and partial linear relaxation of some variables) as discussed in 

Section 8.5. The partially linear relaxation (PLR) scenario where the binary 

decision variable X is relaxed turns out to be the best upper bound.  

Full MILP with  

M-MTZ 

PLR of Full MILP with  

M-MTZ 

 (X and R Relaxed) 

Min. 

Net Benefit 

[Valid LB, Valid UB] 

ALT_1Depot with GG  

Best UB Best UB 

Valid UB (BPS) 

Best LB 
Valid LB (BFS) 

Best LB 

(not found) 

Max

. 

Figure 8.1 Procedure for tightening the optimal value of main problem 
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The actual upper bound of the problem is produced by selecting the 

minimum of the best upper bounds achieved by the partial linear relaxation of 

the Full MILP and the main problem. The valid lower bound is produced by 

choosing the maximum of the best lower bound of alternative one depot model 

and main problem. The gap is reduced to 0.68% after performing this scheme 

for 24 hours. 

8.11 Omitting binary decision variables and parameters 

In order to analyze the effect of variables FM and R on the performance of the 

model solution, we omit these variables from the original formulation of the 

problem. Then, we employ the binary decision variable Z in the objective 

function. Therefore, the objective function (which maximizes the time-

dependent reward as a function of Z) is changed as follows: 





    



 
    

max.
1

i
i it ij ijt

t i j t

NET BENEFIT
t
Z K c X

N T N N T

 (8.1) 

Obviously, such a formulation leads to frequent visits to highly-rewarded 

cities. Thus, we add the following constraints to the model accordingly: 



 2it
t

Z

T

 i N  (8.2) 

The set of constraints (8.2) impose a limit on the number of the meetings 

for any city during the total campaign period. Therefore, the party leader is 
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forced to proceed by visiting other cities as well. Another variation is to make 

all costs between each pair of cities equal to zero. Since we do not assume 

budget constraints in our model, this assumption will definitely improve the 

optimal value of the problem. The comparison results are presented in 

Table 8.10. 

Table 8.10 Comparison of the original reward function with the reward function 

without binary variable FM and Z 

Instance 

PE.I 

Full Model with FM 

and R 

 Full Model without FM 

and R 

Obj. Gap CPU  Obj. Gap CPU 

6C2D 7008 0.0 3.5   7008 0.0  3.5 

6C3D 7846 0.0 3.9   9038 0.0  3.5 

7C2D 7678 0.0 3.6   7678 0.0  3.7 

7C3D 8947 0.0 4.4   9942 0.0  3.8 

7C4D 9630 0.0 4.9   11898 0.0  4.9 

9C2D 7678 0.0 3.8   7678 0.0  3.7  

9C3D 8947 0.0 5.2   9942 0.0  4.7  

9C4D 10297 0.0 10.2   11912 0.0  8.8 

12C3D 9755 0.0 15.8   9942 0.0  8.7 

12C4D 11437 0.0 39.5   12155 0.0  79.5 

12C5D 12541 0.0 233.0   14165 0.0  563.2 

15C3D 9897 0.0 32.1   10242 0.0  36.5 

15C4D 11855 0.0 214.8   12578 0.0  491.5 

15C5D 12738 2.1 600.0   15653 2.1  600.0 
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As expected, from Table 8.10 we find that as we omit binary variables 

FM and R from the original formulation of the problem, the corresponding 

objective value improves. This increase in the objective value is due to not 

penalizing repetitive meetings in highly-rewarded cities. 

8.12 Performance of FDORDCS 

Table 8.11 illustrates the results of the FDORDCS on PE.I instances. The 

column with the header ‘CPU (s)’ indicates the solution times in seconds. In 

all computational results, the boldface figures point to proven optimality 

achieved by either commercial solver GUROBI or developed algorithms.  

The results of Table 8.11 indicate that FDORDCS is able to generate 

very efficient solutions in a significantly small amount of CPU time compared 

to the commercial solver GUROBI.  

The average gap between the optimal solution (or the best known feasible 

solution) of the MILP and the net benefit of the FDORDCS is 5.03% where 

the average CPU time decreased considerably from 45854.27 seconds to 6.55 

seconds. In other words, FDORDCS requires a tiny fraction, approximately 

0.014% of the original algorithm. 
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Table 8.11  Computational Results of FDORDCS  ( )n   

Instance MPTPP Gap(%) CPU (s)  FDORDCS  Gap(%) CPU (s) 

PE.I        

6C2D 7110 0.0 0.1  7110 0.0 0.08 

6C3D 8181 0.0 0.1  8181 0.0 0.14 

7C2D 9629 0.0 0.2  9629 0.0 0.08 

7C4D 11597 0.0 0.4  11457 1.2 0.20 

9C3D 10939 0.0 0.5  10788 1.4 0.13 

9C4D 11668 0.0 1.3  11268 3.4 0.15 

12C5D 14575 0.0 6.0  12906 11.5 0.30 

15C7D 17240 0.0 551.3  16132 6.4 0.52 

15C10D 18759 0.0 30458.5  17356 7.5 0.70 

21C7D 19138 0.0 6705.3  17325 9.5 0.99 

21C10D 21904 6.8 86400.0  20673 5.6 1.22 

30C7D 29427 0.0 20670.3  27474 6.6 1.72 

30C10D 35013 5.9 86400.0  32213 8.0 2.26 

40C7D 30086 4.0 86400.0  28821 4.2 3.74 

40C10D 36409 12.6 86400.0  34672 4.8 4.97 

51C7D 41087 9.9 86400.0  36942 10.1 8.40 

51C10D 45667 22.3 86400.0  43212 5.4 11.38 

51C30D 47279 186.7 86400.0  59890 −26.7 14.56 

70C15D   86400.0  46818  16.64 

70C40D   86400.0  58408  22.26 

93C30D   86400.0  68174  26.61 

93C40D   86400.0  73574  27.12 
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According to Table 8.11, for those instances where the commercial solver 

was able to find the optimal solution, the FDORDCS finds significantly quick 

solutions with the average gap of 4.31%. For the remaining instances, where 

the commercial solver was not able to find the optimal solution after 24 hours, 

the average gap of FDORDCS solutions with the best feasible solution is 

6.35%. In four instances, namely 70C15D, 70C40D, 93C30D, and 93C40D 

GUROBI was not able to generate a feasible solution even after 24 hours of 

CPU time whereas FDORDCS finds an effective solution in 23.15 seconds on 

average.  

The high-quality feasible solution generated by FDORDCS is exploited 

next to tighten the actual gap of the original problem. It can also be used as 

an initial feasible solution of the original problem. Another observation from 

Table 8.11 is that by increasing the number of cities and the number of days, 

the CPU time of FDORDCS increases exponentially, which may take a 

significantly long time to solve large-scale instances. Therefore, two other 

approaches FDORGCS and FDORPCS are investigated here. 

8.13 Performance of FDORGCS 

Our approach to the FDORDCS exploits the ability of FDOR to solve daily 

prize-collecting TSPs in a small amount of CPU time.  Such a performance 

may not be reachable in the large instances. On the other hand, providing all 

cities as the candidate cities for phase 2 is not guaranteed to produce better 

solutions compared with choosing a subset of cities. The reason lies in the fact 

that visiting some low reward cities as the terminal node may result in 

exploring a better solution space on the next day which was not possible to 

reach in the current day due to the maximum tour duration constraint.   
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In FDORGCS, all cities are sorted in the decreasing order of their 

updated reward at the beginning of each day. Next, the top    cities with the 

highest rewards are selected as the candidate cities for phase 2. This strategy 

of city selection yields obtaining high-quality solutions by guaranteeing that 

high rewards cities are always included within the candidate cities.  

Table 8.12 depicts the solutions for the medium-sized and large-sized 

instances with FDORGCS possessing different values of . In GUROBI 

results, boldface figures point to proven optimality achieved by the commercial 

solver GUROBI and in FDORGCS results, boldface figures point to the best 

solution achieved for every instance.  

As it is shown in Table 8.12, for every  and each instance, the best-

achieved solution and corresponding CPU time are reported. By increasing the 

parameter, in most cases, the objective value of the solutions are improved 

while the increase in CPU time is not significant. After   18 , there are some 

improvements in the objective values of some instances but the CPU time 

increases significantly. This increase is much more apparent in large instances. 

For instance, taking 93C40D instance into account, by   21 the CPU time 

increases by almost 30% compared to the case   18 . Therefore, considering 

the best-obtained gaps and the runtimes of the algorithm, in most instances 

the best solution and CPU time obtained with   18 .  

The average gap in FDORGCS is 4.97% for those PE.I instances where 

there is a (best)known solution. The rightmost column in Table 8.12  indicates 

the CPU time of the best-obtained solution in seconds. The average gaps and 

average CPU times are reported at the last row where the smallest gap is 

obtained by   18  
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8.14 Performance of FDORPCS 

The results in Table 8.13 provide the solutions of FDORPCS with different 

Max_Iter values. As the parameter Max_Iter increases, the CPU time is 

multiplied by its value. The best-obtained gaps are achieved by 

_ 20Max Iter  where the average CPU time increases up to 47.27 seconds. 

The boldface figures under FDORPCS point to the best objective value for 

every instance. 

 

 

 

 



 

 

 

Table 8.12 Computational Results of FDORGCS 

 GUROBI  FDORGCS     

      10     13     15     18     21   
Best 

Obj. 

Best 

Gap 

(%) 

BestCPU 

(s) 
Instance 

PE.I 

Best 

Obj. 

CPU 

(s) 
 

Best 

Obj. 

CPU 

(s) 
 

Best 

Obj. 

CPU 

(s) 
 

Best 

Obj. 

CPU 

(s) 
 

Best 

Obj. 

CPU 

(s) 
 

Best 

Obj. 

CPU 

(s) 
 

12C5D 14575 6.0  12906 0.39              12906 11.45 0.39 

15C7D 17240 551.3  16132 0.44  16132 0.48  16132 0.57        16132 6.43 0.44 

15C10D 18759 30458.5  17356 0.42  17356 0.45  17356 0.52        17356 7.48 0.42 

21C7D 19138 6705.3  17324 0.38  17324 0.49  17324 0.59  17324 0.66  17324 0.85  17324 9.48 0.38 

21C10D 21904 86400.0  20673 0.49  20673 0.69  20673 0.71  20673 0.85  20673 1.04  20673 5.62 0.49 

30C7D 29427 20670.3  27963 0.38  27963 0.51  27963 0.58  27963 0.75  27474 1.01  27963 4.98 0.38 

30C10D 35013 86400.0  32427 0.49  32427 0.65  32427 0.81  32427 1.03  32427 1.38  32427 7.39 0.49 

40C7D 30086 86400.0  28071 0.39  28074 0.59  28074 0.82  28114 1.08  28114 1.46  28114 6.55 1.08 

40C10D 36409 86400.0  31656 0.59  31890 0.78  32654 1.20  34278 1.49  34278 2.05  34278 5.85 1.49 

51C7D 41087 86400.0  34429 0.46  35119 0.90  36446 0.95  36446 1.33  36446 1.98  36446 11.30 0.95 

51C10D 45667 86400.0  40391 0.60  42119 1.04  41538 1.23  42406 1.89  42273 2.55  42406 7.14 1.89 

51C30D 47279 86400.0  53623 1.68  54336 2.42  56232 2.18  58587 3.49  56348 4.28  58587 -23.92 3.49 

70C15D  86400.0  41946 0.70  40974 1.16  43556 1.54  44911 1.90  45752 2.36  45752  2.36 

70C40D  86400.0  46723 2.13  49942 3.62  52979 2.95  53747 6.31  54235 7.60  54235  7.60 

93C30D  86400.0  58833 2.04  60476 3.17  62926 3.92  63247 5.93  63085 8.03  63085  8.03 

93C40D  86400.0  61390 2.34  62016 3.96  64819 4.72  65746 6.87  68307 9.94  68307  9.94 

    

Avg. 

Gap 

(%) 

Avg. 

CPU 

(s) 

 

Avg. 

Gap 

(%) 

Avg. 

CPU 

(s) 

 

Avg. 

Gap 

(%) 

Avg. 

CPU 

(s) 

 

Avg. 

Gap 

(%) 

Avg. 

CPU 

(s) 

 

Avg. 

Gap 

(%) 

Avg. 

CPU 

(s) 

  

 

 

   7.24 0.87  6.17 1.39  5.43 1.55  3.82 2.58  4.56 3.42     



 

 

 

Table 8.13 Computational Results of FDORPCS 

 GUROBI  FDORPCS 

    Max_Iter=5  Max_Iter=10  Max_Iter=15  Max_Iter=20     

Instance 

PE.I 

Best 

Obj. 
CPU (s)  

Best  

Obj. 
CPU (s) 

Avg 

Obj 
 

Best  

Obj. 
CPU (s) 

Avg 

Obj 
 

Best  

Obj. 
CPU (s) 

Avg 

Obj 
 

Best  

Obj. 
CPU (s) 

Avg 

Obj 

 Best  

Obj. 

Best 

Gap (%) 

Best CPU 

(s) 

12C5D 14575 6.0  12906 1.47 12906  12906 2.94 12906  12906 4.32 12906  12906 5.76 12906  12906 11.45 1.47 

15C7D 17240 551.3  16103 1.72 15913  16103 3.41 15909  16103 7.44 16103  16103 9.91 16103  16103 6.60 1.72 

15C10D 18759 30458.5  17234 2.34 17154  17182 6.72 17182  17182 9.96 17182  17234 9.30 16975  17234 8.13 2.34 

21C7D 19138 6705.3  17324 3.86 17293  17324 7.49 17324  17324 11.29 17303  17324 14.64 17322  17324 9.48 3.86 

21C10D 21904* 86400.0  20673 5.07 20673  20673 10.05 20673  20673 15.18 20530  20673 20.34 20549  20673 5.62 5.07 

30C7D 29427 20670.3  27046 4.32 26036  27474 8.10 26205  27963 12.24 26420  27533 16.8 26267  27963 4.98 12.24 

30C10D 35013* 86400.0  31321 5.87 30258  32427 11.91 30499  32368 17.26 31181  32533 23.51 31085  32533 7.08 23.51 

40C7D 30086* 86400.0  26313 5.10 24728  27308 8.72 26050  27927 14.18 25852  27627 17.49 26102  27927 7.18 14.18 

40C10D 36409* 86400.0  31047 7.92 29576  33233 14.67 31550  33107 20.80 31056  32766 30.59 31013  33233 8.72 14.67 

51C7D 41087* 86400.0  33446 5.85 31356  34635 11.67 32283  36077 17.29 32218  36218 22.47 33241  36218 11.85 22.47 

51C10D 45667* 86400.0  40670 7.49 39630  42165 15.59 39025  40896 23.34 39129  41362 30.73 39029  42165 7.67 15.59 

51C30D 47279* 86400.0  58633 18.53 57848  59081 37.25 56921  58904 59.24 55811  59745 105.71 57157  59745 -26.37 105.71 

70C15D  86400.0  40750 9.85 38061  41988 18.48 38964  40848 41.09 39163  43116 54.85 39726  43116  54.85 

70C40D  86400.0  51854 36.54 50022  53392 71.68 50122  54809 103.38 50831  54589 142.51 50242  54809  103.38 

93C30D  86400.0  56972 27.13 53991  58458 53.72 54494  58451 82.95 54070  58493 108.73 55158  58493  108.73 

93C40D  86400.0  61867 34.69 59258  62090 69.21 59681  64118 106.12 58701  61958 143.07 59145  62090  69.21 

    
Avg. 
Gap  
(%) 

Avg. 
CPU 

(s) 
  

Avg. 
Gap 
(%) 

Avg. 
CPU 

(s) 
  

Avg. 
Gap 
(%) 

Avg. 
CPU 

(s) 
  

Avg. 
Gap 
(%) 

Avg. 
CPU 

(s) 
 

 
 

  

    7.73 11.10   5.99 21.97   5.70 34.13   5.66 47.27      
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8.15 Comparison of performances of FDORDCS, FDORGCS, and 

FDORPCS 

Table 8.14 presents the comparison of different city selection approaches in 

FDOR for PE.I instances. For the FDORGCS and the FDORPCS, the 

objective value of the best-achieved solution and its corresponding CPU time 

is provided. The FDORDCS outperforms other city selection approaches in 

most instances. In two instances, namely 30C7D and 30C10D, FDORGCS 

finds better solutions with higher objective values. In three other instances, 

15C7D, 15C10D and 21C10D, FDORGCS finds the same solution as 

FDORDCS with smaller CPU time.  

In general, FDORDCS spends more time on the second phase by 

considering all available cities. FDORGCS and FDORPCS consider a subset 

of cities, which are selected in a greedy way or pseudo-random way, to ensure 

solution diversity. FDORDCS with an average gap of 4.40% for the main set 

of instances, including 12 test instances with best known objective values, 

outperforms FDORGCS and FDORPCS with average gaps of 4.97% and 

5.19%, respectively. These three selection rules were tested thoroughly using 

various values of   for FDORGCS and several maximum iterations. The 

results show that FDORDCS is still outperforming others.  

Given the good performance of FDORDCS, in the rest of our 

experiments, we just focus on this particular variant. Figure 8.2 recapitulates 

the information in Table 8.14 to depict the differences between the commercial 

solver’s results and FDOR with different selection rules. 
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Table 8.14.  Comparison of FDORDCS, FDORGCS, and FDORPCS 

Instance GUROBI  FDORDCS  FDORGCS  FDORPCS 

PE.I Best 
Gap 

(%) 

CPU  

(s) 
 

Obj. 

Val. 

CPU 

(s) 
 

Obj. 

Val. 

CPU 

(s) 
 

Obj. 

Val. 

CPU 

(s) 

12C5D 14575 0.0 6.0  12906 0.30  12906 0.39  12906 1.47 

15C7D 17240 0.0 551.3  16132 0.52  16132 0.44  16103 1.72 

15C10D 18759 0.0 30458.5  17356 0.70  17356 0.42  17234 2.34 

21C7D 19138 0.0 6705.3  17325 0.99  17324 0.38  17324 3.86 

21C10D 21904 6.8 86400.0  20673 1.22  20673 0.49  20673 5.07 

30C7D 29427 0.0 20670.3  27474 1.72  27963 0.38  27963 12.24 

30C10D 35013 5.9 86400.0  32213 2.26  32427 0.49  32533 23.51 

40C7D 30086 4.0 86400.0  28821 3.74  28114 1.08  27927 14.18 

40C10D 36409 12.6 86400.0  34672 4.97  34278 1.49  33233 14.67 

51C7D 41087 9.9 86400.0  36942 8.40  36446 0.95  36218 22.47 

51C10D 45667 22.3 86400.0  43212 11.38  42406 1.89  42165 15.59 

51C30D 47279 186.7 86400.0  59890 14.56  58587 3.49  59745 105.71 

70C15D   86400.0  46818 16.64  45752 2.36  43116 54.85 

70C40D   86400.0  58408 22.26  54235 7.60  54809 103.38 

93C30D   86400.0  68174 26.61  63085 8.03  58493 108.73 

93C40D   86400.0  73574 27.12  68307 9.94  62090 69.21 

 Average  4.40% 8.96  4.97% 2.48  5.19% 34.93 
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Figure 8.2  Comparison of FDORDCS, FDORGCS, and FDORPCS 

Table 8.15 presents the comparison of routes generated by FDORDCS 

algorithm and the optimal solution for the instance 30C7D. We specify 

“Holding a Meeting” by (M). 
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Table 8.15  Comparison of routes of FDORDCS and optimal solution 

 Routes 

O
p
ti

m
al

 S
ol

u
ti

on
 

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun) 

Day 2: Wakeup in İskenderun → Adana (M) → Istanbul (M) → Antalya (Sleep in Antalya) 

Day 3: Wakeup in Antalya (M) → Denizli (M) → Aydin (M) → Izmir (Sleep in Izmir) 

Day 4: Wakeup in Izmir (M) → Balıkesir (M) → Bursa (M) (Sleep in Bursa) 

Day 5: Wakeup in Bursa → Istanbul (M) → Gebze (M) → Ankara (Sleep in Ankara) 

Day 6: Wakeup in Ankara (M) → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş) 

Day 7: Wakeup in Kahramanmaraş → Hatay (M) → Adana (M)  (Sleep in Adana) 

F
D

O
R

D

C
S
 

Day 1: Wakeup in Ankara (M) → Hatay (M) → İskenderun(M) (Sleep in İskenderun)  

Day 2: Wakeup in İskenderun → Istanbul (M) → Bursa (M) (Sleep in Bursa) 

Day 3: Wakeup in Bursa → Izmir (M) → Aydin (M) (Sleep in Aydin) 

Day 4: Wakeup in Aydin → Denizli (M) → Antalya (M) → Alanya (M) (Sleep in Alanya) 

Day 5: Wakeup in Alanya → Isparta (M) → Ankara (M) (Sleep in Ankara) 

Day 6: Wakeup in Ankara → Gaziantep (M) → Kahramanmaraş (M) (Sleep in Kahramanmaraş) 

Day 7: Wakeup in Kahramanmaraş → Adana (M) → Istanbul (M) (Sleep in Istanbul) 

In order to illustrate the efficiency of the FDORDCS, we compared the 

daily net benefit (collected daily rewards minus daily travel costs) of the 

MPTPP optimal solution with FDORDCS solution for 30C7D instance in 

Figure 8.3. In day 1, FDORDCS generates the same route as the optimal 

solution and in day 2 and day 7, it was able to obtain higher net benefits for 

the same days in the optimal solution. 
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Figure 8.3  The comparison of the net benefit of FDOR and MPTPP 

8.16 Comparison of GUROBI and FDORDCS for all three set of instances 

Since it was found that FDORDCS finds better solutions compared to 

FDORGCS and FDORPCS in PE.I instances, for completeness, we 

compared the results of the commercial solver and FDOR-DCS for all 45 

instances. Table 8.16 displays the objective value of all instances for both 

GUROBI and FDOR-DCS along with CPU times in seconds. 
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Table 8.16 Comparison of GUROBI with FDORDCS for all instances 

Instance  GUROBI  FDORDCS  Instance  GUROBI  FDORDCS 

 Best CPU Gap(%)  Obj.Val CPU Gap (%)   Best  CPU Gap(%)  Obj.Val CPU Gap (%) 

PE.I         PE.II        

6C2D 7110 0.1 0.0  7110 0.1 0.0  20C5D 25118 239.2 0.0  24196 0.6 3.7 

6C3D 8181 0.1 0.0  8181 0.1 0.0  20C7D 27523 1995.9 0.0  25419 0.6 7.6 

7C2D 9629 0.2 0.0  9629 0.1 0.0  30C5D 16635 709.9 0.0  16052 1.5 3.5 

7C4D 11597 0.4 0.0  11457 0.2 1.2  30C7D 18855 28216.8 0.0  17997 1.8 4.6 

9C3D 10939 0.5 0.0  10788 0.1 1.4  30C10D 21251 86400.0 5.9  19577 2.0 7.9 

9C4D 11668 1.3 0.0  11268 0.1 3.4  40C7D 32811 86400.0 20.1  31748 3.0 3.2 

12C5D 14575 6.0 0.0  12906 0.3 11.5  40C10D 37851 86400.0 3.8  34267 3.6 9.5 

15C7D 17240 551.3 0.0  16132 0.5 6.4  50C7D 32829 86400.0 1.6  33101 6.9 −0.8 

15C10D 18759 30458.5 0.0  17356 0.7 7.5  50C10D 38098 86400.0 11.8  37389 8.5 1.9 

21C7D 19138 6705.3 0.0  17325 0.9 9.5  50C15D 44098 86400.0 35.6  41687 11.0 5.5 

21C10D 21904 86400.0 6.8  20673 1.2 5.6  60C7D 40480 86400.0 2.5  38105 13.8 5.9 

30C7D 29427 20670.3 0.0  27474 1.7 6.6  60C10D 48270 86400.0 7.0  45446 18.8 5.8 

30C10D 35013 86400.0 5.9  32213 2.2 8.0  60C20D 50559 86400.0 80.1  62869 22.8 −24.3 

40C7D 30086 86400.0 4.0  28821 3.7 4.2  70C10D 42474 86400.0 13.9  40201 26.1 5.3 

40C10D 36409 86400.0 12.6  34672 4.9 4.8  70C20D 43705 86400.0 112.3  51055 34.9 −16.8 

51C7D 41087 86400.0 9.9  36942 8.4 10.1  70C30D − − −  57065 36.2 − 



 

 

 

Instance  GUROBI  FDORDCS  Instance  GUROBI  FDORDCS 

 Best CPU Gap(%)  Obj.Val CPU Gap (%)   Best  CPU Gap(%)  Obj.Val CPU Gap (%) 

51C10D 45667 86400.0 22.3  43212 11.3 5.4  80C10D 40808 86400.0 22.2  38423 38.6 5.8 

51C30D 47279 86400.0 186.7  59890 14.5 −26.7  80C20D 50777 86400.0 75.1  53270 41.9 −4.9 

70C15D  86400.0   46818 16.6   80C30D − − −  57285 50.0 − 

70C40D  86400.0   58408 22.2   80C40D − − −  62576 48.7 − 

93C30D  86400.0   68174 26.6   Average 36008 67903.6   39386 18.5 1.37 

93C40D  86400.0   73574 27.1           

Average  23094 45854.2   29682 6.5 5.03  LE        

         39C7D 22361 86400.0 4.7  22164 11.7 0.8 

         39C10D 26774 86400.0 18.5  27191 13.5 -1.5 

         39C14D 30214 86400.0 57.5  31757 15.9 -4.8 

         Average 26449 86400   27037 13.7 -1.8 
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8.17 Results for GSVNTS 

We conducted computational experiments for GSVNTS with the instance sets 

discussed in Section 8.1 and present our results in this section. We compare 

our results with the results of the commercial solver. The results of GSVNTS 

are tabulated in Table 8.17. Since there is an uncertainty inside the algorithm, 

we run GSVTNS for 5 times and report the average objective value and average 

run time. 

GSVNTS algorithm outperforms the commercial solvers in each instance size 

of each election groups, as represented in Table 8.17.  



 

 

 

Table 8.17 Comparison of GUROBI with GSVNTS for all instance sizes 

Instance  GUROBI  GSVNTS  Instance  GUROBI  GSVNTS 

 Best CPU Gap(%)  Obj.Val CPU Gap (%)   Best  CPU Gap(%)  Obj.Val CPU Gap (%) 

PE.I         PE.II        

6C2D 7110 0.1 0.0  7110 0.1 0.0  20C5D 25118 239.2 0.0  25118 40.0 0.0 

6C3D 8181 0.1 0.0  8181 0.1 0.0  20C7D 27523 1995.9 0.0  27523 31.4 0.0 

7C2D 9629 0.2 0.0  9629 0.1 0.0  30C5D 16635 709.9 0.0  16635 35.2 0.0 

7C4D 11597 0.4 0.0  11597 2.4 0.0  30C7D 18855 28216.8 0.0  18855 52.8 0.0 

9C3D 10939 0.5 0.0  10939 3.2 0.0  30C10D 21251 86400.0 5.9  21972 847.3 -3.3 

9C4D 11668 1.3 0.0  11668 6.5 0.0  40C7D 32811 86400.0 20.1  35360 554.2 -7.7 

12C5D 14575 6.0 0.0  14575 10.3 0.0  40C10D 

 

37851 86400.0 3.8  38205 1095.0 -0.9 

15C7D 17240 551.3 0.0  17240 25.6 0.0  50C7D 32829 86400.0 1.6  33156 810.2 −0.8 

15C10D 18759 30458.5 0.0  18759 70.1 0.0  50C10D 38098 86400.0 11.8  39225 1271.3 -2.9 

21C7D 19138 6705.3 0.0  19138 39.5 0.0  50C15D 44098 86400.0 35.6  48604 2371.6 -10.2 

21C10D 21904 86400.0 6.8  21612 680.0 0.1  60C7D 40480 86400.0 2.5  40290 957.8 0.4 

30C7D 29427 20670.3 0.0  29427 70.1 0.0  60C10D 48270 86400.0 7.0  48936 1581.0 -1.3 

30C10D 35013 86400.0 5.9  35001 1045.2 0.0  60C20D 50559 86400.0 80.1  65640 2863.5 −29.8 

40C7D 30086 86400.0 4.0  29315 864.5 2.5  70C10D 42474 86400.0 13.9  42152 2433.4 0.7 

40C10D 36409 86400.0 12.6  35614 1281.9 2.1  70C20D 43705 86400.0 112.3  56730 3174.2 −29.8 

51C7D 41087 86400.0 9.9  42018 822.4 −2.2  70C30D − − −  61573 5824.4 − 

51C10D 45667 86400.0 22.3  47259 1554.0 −3.4  80C10D 40808 86400.0 22.2  40825 2951.6 0.0 



 

 

 

Instance  GUROBI  GSVNTS  Instance  GUROBI  GSVNTS 

 Best CPU Gap(%)  Obj.Val CPU Gap (%)   Best  CPU Gap(%)  Obj.Val CPU Gap (%) 

51C30D 47279 86400.0 186.7  63955 3475.2 −35.2  80C20D 50777 86400.0 75.1  65294 4830.9 −28.5 

70C15D  86400.0   51878 3108.1   80C30D − − −  59425 3574.1 − 

70C40D  86400.0   60422 7150.8   80C40D − − −  64740 6383.1 − 

93C30D  86400.0   69940 5394.6   Average 36008 67903.6   42513 2084.1 -6.71 

93C40D  86400.0   78685 8450.5           

Average  23094 45854.2   31544 1547.9 -2.00 

 

 LE        

         39C7D 22361 86400.0 4.7  22805 718.3 -0.1 

         39C10D 26774 86400.0 18.5  28059 1158.0 -4.7 

         39C14D 30214 86400.0 57.5  34732 2390.5 -14.9 

         Average 26449 86400   28532 1422.2 -6.56 
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8.18 Performance of GSVNTS 

Contrary to Gurobi, GSVNTS performs in a fairly robust fashion. The performance 

and average runtime of GSVNTS for all instance sets are represented in Figure 8.4 - 

Figure 8.9. 

 

Figure 8.4 Performance of GSVNTS (PE.I)
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Figure 8.5 Average runtime of GSVNTS (PE.I) 

 

Figure 8.6 Performance of GSVNTS (PE.II) 
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Figure 8.7 Average runtime of GSVNTS (PE.II) 

 

 

Figure 8.8 Performance of GSVNTS (LE) 
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Figure 8.9 Average runtime of GSVNTS (LE) 

8.19 Comparison of GSVNTS with Party’s actual meeting plan 

To assess the quality of the solutions proposed by GSVNTS, it is useful to 

compare the objective values of GSVNTS solutions for the real-life instance 

70C-40D with the political party’s actual plans as well. Moreover, in order to 

show the efficiency of GSVNTS, the results of deterministic mathematical 

models are proposed. Such a comparison highlight the actual need to tackle 

this problem. To do this, we retrieved the main opposition party’s realized 

meetings prior to the general election in June 2015 in Turkey. In the light of 

these meetings, we created our large size instance with 70 cities and a campaign 

period of 40 days.  

In order to make a fair comparison, we also define a “Reward-Only” 

scenario where we ignore the traveling costs and relax the following three 

0

20000

40000

60000

80000

100000

39C7D 39C10D 39C14D

A
ve

ra
ge

 R
u
n
ti
m

e

Instances size

Gurobi GSVNTS



 

 

Chapter 8: Computational Results  150 

 

 

 

constraints in our assumptions. The first constraint was forcing the politician 

to hold at least one meeting every day. However, in the actual meeting schedule 

of the party, there were two meeting-free days. The second constraint was 

forcing the politician to end the campaign at the campaign base. We also 

relaxed this constraint since the actual campaign of the party back in June 

2015 had not been completed in Ankara. The last constraint forced the 

politician to the campaign base frequently. Table 8.18 illustrates the results of 

GSVNTS, MPTPP and actual party’s plan on the 70C-40D instance. It shows 

that Gurobi is not able to find an optimal solution in three days. However, the 

best feasible MPTPP solution reported by GUROBI bears a net benefit that 

is about 90% greater than the net benefit accrued by the end of the actual 

campaign plan of the party.  

In the actual plan there are three meetings in Istanbul, Ankara, and 

Mersin each, two meetings in Izmir, and one meeting in the remaining cities 

each. However, the best feasible MPTPP solution prescribes three meetings in 

İstanbul, Ankara, İzmir, and Mersin each, two meetings in the majority of 

midsize cities such as Adana, Balıkesir, Bursa, Çanakkale, Hatay, Konya, 

Zonguldak, Uşak, etc., and one meeting in the remaining cities. The results 

highlight the massive advantage of solving the MPTPP for the maximization 

of the net benefit obtained from an election campaign that spans an extended 

period. 
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Table 8.18 Comparison of GSVNTS with Party’s actual meeting plan 

 
 

A real-life instance of 70C40D 

  Obj. Val. Gap(%) # of Meetings CPU(s) 

 MPTPP LB = 46640 

UB = 

117427 

60.3 75 259200 

(3 days)  GSVNTS 58408  96 22.26 

 Party’s Plan 24534  77 n/a 

Rew-

Only 

MPTPP LB = 68399 

UB = 

106802 

56.1 65 259200 

(3 days) GSVNTS 94044  102 34.15 

Party’s Plan  64124  77 n/a 

For the reward-only scenario of the problem under study, both MPTPP 

and GSVNTS outperform the actual party’s plan. Considering the number of 

meetings as a performance measure, the solution obtained by GSVNTS holds 

19 more meetings compared with the party’s plan. This difference is more 

significant in the reward-only scenario where GSVNTS holds 25 more meetings. 

Note that in both cases, the objective values obtained by GSVNTS in less than 

35 seconds are much better than the one of the party’s plan which indicates 

the effectiveness of the scheduling and routing in the proposed algorithm. 
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Chapter 9 

CONCLUSIONS AND FUTURE WORK 

9. CONCLUSIONS AND FUTURE WORK   

In this study, we introduce a novel logistical problem which we call the 

Roaming Salesman Problem (RSP). This problem can be classified as a multi-

period version of the prize-collecting traveling salesman problem with dynamic 

profits, repeat visits to certain customer nodes, arbitrary depot nodes, and 

three types of time restricted tours. In addition, the campaigner can stay 

overnight in any arbitrary city and resume his/her daily tour there the next 

morning. This extraordinary feature adds another level of complexity to the 

model of the problem. This problem arises in election logistics where there exist 

no fixed depots and daily tours do not have to start and end at the same city. 

We propose an innovative MILP formulation followed by an extensive 

scenario analysis. We also suggest an effective two-phase matheuristic 

approach consisting of two primary components: a city selection step and a 

route generation step. The proposed matheuristic (FDOR) decomposes the 

original mixed-integer linear programming formulation into as many 

subproblems as the number of days, where each subproblem depends on how 

frequently the campaign base is to be visited throughout the campaign 

duration. This decomposition strategy has led to generating next period’s route 

without the need to track the route of each day which reduces the 

computational complexity of the problem massively. We tested three city 

selection approaches followed by associated parameter calibration experiments. 
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Computational results suggest that FDOR provides high-quality solutions in a 

significantly small amount of time.  

We also present a Variable Neighborhood Search (VNS) complemented 

with Tabu Search (TS) for RSP. Two initial feasible solution construction 

algorithms are introduced. Next, this solution is improved using the proposed 

local search procedure. The concept of granularity is incorporated into the 

developed algorithm to prevent non-promising moves and thereby reduce the 

computing time of the neighborhood search. On the other hand, the concept of 

skewness modifies the basic VNS so as to explore deeper neighborhoods of the 

current solution by accepting nonimproving moves which lead to far enough 

neighboring solutions. At each iteration of the local search procedure, several 

feasibility checks are performed to ensure the validity of the solution. 

Therefore, the so-called chain feasibility of the solution is guaranteed at each 

iteration, which means the starting node of tomorrow’s tour must match the 

terminal node of today’s tour. The proposed GSVNTS algorithm gives 

competitive and acceptable results for real-world instances of RSP and its 

application in election logistics. 

We consider a set of 95 cities and towns in Turkey and a campaign period 

of 40 days as our largest problem instance. Computational results using actual 

distance and travel time data show that the developed algorithm can find 

optimal and near-optimal solutions in a reasonable CPU time. 

This work can be extended in many directions. RSP can be applied in 

different similar contexts (e.g. nurse routing problem, scheduling of music band 

auditions, and touristic trip planning) where the rewards are time-dependent 

and it is required to have different tour types during the planning horizon. 

Additionally, the decomposition approach we used in the proposed 
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matheuristic can be generalized for solving other hard combinatorial problems 

that could be too difficult to tackle otherwise. A relevant topic is the inclusion 

of rival party’s meetings in the calculation of the rewards. Alternative objective 

functions can be evaluated as well. For instance, the party executives may 

want to simply hold as many meetings as possible. Another example is 

considering equal number of visits to the east and west sides of country. Time-

windows can be considered as well to add a more realistic aspect to the 

problem. Moreover, alternative formulations can be investigated to improve 

the model solution. Finally, other powerful heuristics can be developed to 

improve the solution quality of the algorithm. 

 



 

 

Bibliography  155 

 

 

 

 

BIBLIOGRAPHY 

Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team 

orienteering problem. Journal of Heuristics, 13(1), 49-76. 

Archetti, C., Feillet, D., Hertz, A., & Speranza, M. G. (2009). The capacitated 

team orienteering and profitable tour problems. Journal of the 

Operational Research Society, 60(6), 831-842. 

Arkin, E. M., Mitchell, J. S., & Narasimhan, G. (1998, June). Resource-

constrained geometric network optimization. In Proceedings of the 

Fourteenth Annual Symposium on Computational Geometry (pp. 307-

316). ACM. 

Awerbuch, B., Azar, Y., Blum, A., & Vempala, S. (1998). New approximation 

guarantees for minimum-weight k-trees and prize-collecting salesmen. 

SIAM Journal on Computing, 28(1), 254-262. 

Balas, E. (1989). The prize collecting traveling salesman 

problem. Networks, 19(6), 621-636. 

Balas, E., & Martin, G. (1985). ROLL-A-ROUND: Software package for 

scheduling the rounds of a rolling mill, ©Balas and Martin Associates, 

104 Maple Heights Road, Pittsburgh, USA.  



 

 

Bibliography  156 

 

 

 

Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). An exact ϵ-constraint 

method for bi-objective combinatorial optimization problems: 

Application to the Traveling Salesman Problem with Profits. European 

journal of operational research, 194(1), 39-50. 

Boussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team 

orienteering problems. 4or, 5(3), 211-230. 

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time 

windows, Part II: Metaheuristics. Transportation science, 39(1), 119-

139. 

Burke, E. K., Cowling, P. I., & Keuthen, R. (2001, April). Effective local and 

guided variable neighbourhood search methods for the asymmetric 

travelling salesman problem. In Workshops on Applications of 

Evolutionary Computation (pp. 203-212). Springer, Berlin, Heidelberg. 

Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour 

maximum collection problem. Computers & Operations Research, 21(1), 

101-111. 

Butt, S. E., & Ryan, D. M. (1999). An optimal solution procedure for the 

multiple tour maximum collection problem using column 

generation. Computers & Operations Research, 26(4), 427-441. 

Cacchiani, V., Hemmelmayr, V. C., and Tricoire, F. (2014). A set-covering 

based heuristic algorithm for the periodic vehicle routing 

problem. Discrete Applied Mathematics, 163, 53-64. 



 

 

Bibliography  157 

 

 

 

Carrabs, F., Cordeau, J. F., & Laporte, G. (2007). Variable neighborhood 

search for the pickup and delivery traveling salesman problem with 

LIFO loading. INFORMS Journal on Computing, 19(4), 618-632. 

Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic 

for the orienteering problem. European journal of operational 

research, 88(3), 475-489. 

Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic 

for periodic and multi‐depot vehicle routing problems. Networks, 30(2), 

105-119. 

Crispim, J., & Brandao, J. (2001, July). Reactive tabu search and variable 

neighborhood descent applied to the vehicle routing problem with 

backhauls. In Proceedings of the 4th Metaheuristics International 

Conference, Porto (Vol. 1101, pp. 631-636). 

Dell'Amico, M., Maffioli, F., & Sciomachen, A. (1998). A lagrangian heuristic 

for the prize collectingtravelling salesman problem. Annals of 

Operations Research, 81, 289-306. 

Dell'Amico, M., Maffioli, F., & Värbrand, P. (1995). On prize‐collecting tours 

and the asymmetric travelling salesman problem. International 

Transactions in Operational Research, 2(3), 297-308. 

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the 

Miller-Tucker-Zemlin subtour elimination constraints. Operations 

Research Letters, 10(1), 27-36. 



 

 

Bibliography  158 

 

 

 

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems 

with profits. Transportation Science, 39(2), 188-205. 

Fischetti, M., Salazar-González, J. J., & Toth, P. (2007). The generalized 

traveling salesman and orienteering problems. In: Gutin, G., & Punnen, 

A. P. (Eds.). The Traveling Salesman Problem and Its Variations (pp. 

609-662). Combinatorial Optimization Vol. 12. Springer 

Science+Business Media, LLC. 

Fischetti, M., & Toth, P. (1988). An additive approach for the optimal solution 

of the prize collecting traveling salesman problem. Vehicle routing: 

Methods and studies, 231, 319-343. 

Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A variable neighbourhood 

search algorithm for the open vehicle routing problem. European 

Journal of Operational Research, 195(3), 803-809. 

García-López, F., Melián-Batista, B., Moreno-Pérez, J. A., & Moreno-Vega, J. 

M. (2002). The parallel variable neighborhood search for the p-median 

problem. Journal of Heuristics, 8(3), 375-388. 

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide 

to the Theory of NP-Completeness (Series of Books in the Mathematical 

Sciences, Vol. 29). New York: W. H. Freeman. 

Gavish, B., & Graves, S. C. (1978). The travelling salesman problem and 

related problems. 



 

 

Bibliography  159 

 

 

 

Geiger, M. J., Wenger, W., & Habenicht, W. (2007, April). Interactive utility 

maximization in multi-objective vehicle routing problems: a" decision 

maker in the loop"-approach. In Computational Intelligence in 

Multicriteria Decision Making, IEEE Symposium on (pp. 178-184). 

IEEE. 

Gendreau, M., Laporte, G., & Semet, F. (1998). A branch-and-cut algorithm 

for the undirected selective traveling salesman problem. Networks, 32(4), 

263-273. 

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 

190-206. 

Glover, F. (1990). Tabu search—part II. ORSA Journal on computing, 2(1), 4-

32. 

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial 

optimization (pp. 2093-2229). Springer, Boston, MA. 

Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval 

Research Logistics, 34(3), 307-318. 

Golden, B. L., Wang, Q., & Liu, L. (1988). A multifaceted heuristic for the 

orienteering problem. Naval Research Logistics, 35(3), 359-366. 

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: 

A survey of recent variants, solution approaches and 

applications. European Journal of Operational Research, 255(2), 315-

332. 



 

 

Bibliography  160 

 

 

 

Gurobi Documentation (May 19, 2018). Version 7.5. Gurobi Optimization, 

LLC. Houston, USA. < http://www.gurobi.com/documentation/> 

(accessed May 2018). 

Gutin, G., & Punnen, A. P. (Eds.). (2007). The Traveling Salesman Problem 

and Its Variations. Combinatorial Optimization Vol. 12. Springer 

Science+Business Media, LLC. 

Halvorsen-Weare, E. E., and Fagerholt, K. (2013). Routing and scheduling in 

a liquefied natural gas shipping problem with inventory and berth 

constraints. Annals of Operations Research, 1-20. 

Hansen, P., & Mladenović, N. (1999). An introduction to variable 

neighborhood search. In Meta-heuristics (pp. 433-458). Springer, 

Boston, MA. 

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles 

and applications. European journal of operational research, 130(3), 449-

467. 

Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood 

search: methods and applications. Annals of Operations 

Research, 175(1), 367-407. 

Hayes, M., & Norman, J. M. (1984). Dynamic programming in orienteering: 

route choice and the siting of controls. Journal of the Operational 

Research Society, 35(9), 791-796. 



 

 

Bibliography  161 

 

 

 

Hemmelmayr, V. C., Doerner, K. F., & Hartl, R. F. (2009). A variable 

neighborhood search heuristic for periodic routing problems. European 

Journal of Operational Research, 195(3), 791-802. 

Holland, J. H. (1975). Adaptation in natural and artificial systems: an 

introductory analysis with applications to biology, control, and artificial 

intelligence. 

Hu, B., Leitner, M., & Raidl, G. R. (2008). Combining variable neighborhood 

search with integer linear programming for the generalized minimum 

spanning tree problem. Journal of Heuristics, 14(5), 473-499. 

Kataoka, S., & Morito, S. (1988). An algorithm for single constraint maximum 

collection problem. Journal of the Operations Research Society of Japan, 

31(4), 515-531. 

Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering 

problem. Computers & Industrial Engineering, 54(3), 648-665. 

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by 

simulated annealing. science, 220(4598), 671-680. 

Kirkpatrick, S., & Toulouse, G. (1985). Configuration space analysis of 

travelling salesman problems. Journal de Physique, 46(8), 1277-1292. 

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient 

variable neighborhood search heuristic for very large scale vehicle 

routing problems. Computers & operations research, 34(9), 2743-2757. 



 

 

Bibliography  162 

 

 

 

Lahyani, R., Khemakhem, M., and Semet, F. (2017). A unified matheuristic 

for solving multi-constrained traveling salesman problems with 

profits. EURO Journal on Computational Optimization, 5(3), 393-422. 

Lahyani, R., Khemakhem, M., and Semet, F. (2015). Rich vehicle routing 

problems: From a taxonomy to a definition. European Journal of 

Operational Research, 241(1), 1-14. 

Laporte, G., & Martello, S. (1990). The selective travelling salesman problem. 

Discrete Applied Mathematics, 26(2-3), 193-207. 

Liu, S. C., & Chung, C. H. (2009). A heuristic method for the vehicle routing 

problem with backhauls and inventory. Journal of Intelligent 

Manufacturing, 20(1), 29. 

Mansini, R., Pelizzari, M., & Wolfer, R. (2006). A granular variable 

neighbourhood search heuristic for the tour orienteering problem with 

time windows. Technical Report R.T 2006-02-52, University of Brescia, 

Italy. 

Mansini, R., & Tocchella, B. (2009). The traveling purchaser problem with 

budget constraint. Computers & Operations Research, 36(7), 2263-2274. 

Melechovský, J., Prins, C., & Calvo, R. W. (2005). A metaheuristic to solve a 

location-routing problem with non-linear costs. Journal of 

Heuristics, 11(5-6), 375-391. 



 

 

Bibliography  163 

 

 

 

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming 

formulation of traveling salesman problems. Journal of the ACM 

(JACM), 7(4), 326-329. 

Mladenović, N., & Hansen, P. (1997). Variable neighborhood 

search. Computers & operations research, 24(11), 1097-1100. 

Öncan, T., Altınel, İ. K., & Laporte, G. (2009). A comparative analysis of 

several asymmetric traveling salesman problem formulations. Computers 

& Operations Research, 36(3), 637-654. 

Polacek, M., Doerner, K. F., Hartl, R. F., Kiechle, G., & Reimann, M. (2007). 

Scheduling periodic customer visits for a traveling 

salesperson. European Journal of Operational Research, 179(3), 823-

837. 

Polacek, M., Doerner, K. F., Hartl, R. F., & Maniezzo, V. (2008). A variable 

neighborhood search for the capacitated arc routing problem with 

intermediate facilities. Journal of Heuristics, 14(5), 405-423. 

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A variable 

neighborhood search for the multi depot vehicle routing problem with 

time windows. Journal of heuristics, 10(6), 613-627. 

Polat, O., Kalayci, C. B., Kulak, O., & Günther, H. O. (2015). A perturbation 

based variable neighborhood search heuristic for solving the vehicle 

routing problem with simultaneous pickup and delivery with time 

limit. European Journal of Operational Research, 242(2), 369-382. 



 

 

Bibliography  164 

 

 

 

Prins, C., Prodhon, C., Ruiz, A., Soriano, P., and Wolfler Calvo, R. (2007). 

Solving the capacitated location-routing problem by a cooperative 

Lagrangean relaxation-granular tabu search heuristic. Transportation 

Science, 41(4), 470-483. 

Qiu, Y., Wang, L., Xu, X., Fang, X., & Pardalos, P. M. (2018). A variable 

neighborhood search heuristic algorithm for production routing 

problems. Applied Soft Computing, 66, 311-318. 

Repoussis, P. P., Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. 

(2006, October). A reactive greedy randomized variable neighborhood 

tabu search for the vehicle routing problem with time windows. 

In International Workshop on Hybrid Metaheuristics (pp. 124-138). 

Springer, Berlin, Heidelberg. 

Rousseau, L. M., Gendreau, M., & Pesant, G. (2002). Using constraint-based 

operators to solve the vehicle routing problem with time 

windows. Journal of heuristics, 8(1), 43-58. 

Salhi, S (2017). Heuristic Search: The Emerging Science of Problem Solving. 

Cham, Switzerland, Springer. 

Sarasola, B., Doerner, K. F., Schmid, V., & Alba, E. (2016). Variable 

neighborhood search for the stochastic and dynamic vehicle routing 

problem. Annals of Operations Research, 236(2), 425-461. 



 

 

Bibliography  165 

 

 

 

Shahmanzari, M., Aksen, D., & Salhi, S. (2018). A formulation and 

matheuristic for the Roaming Salesman Problem: Application to election 

logistics. Manuscript sumbitted for publication. 

Shahmanzari, M., Aksen, D., & Salhi, S. (2018). Managing election campaigns 

with the power of analytical modeling. Manuscript sumbitted for 

publication. 

Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team 

orienteering problem. Computers & Operations Research, 32(6), 1379-

1407. 

Thomadsen, T., Stidsen, T. (2003). The quadratic selective travelling salesman 

problem. Informatics and Mathematical Modelling Technical Report 

2003-17, Technical University of Denmark. 

Todosijević, R., Urošević, D., Mladenović, N., & Hanafi, S. (2017). A general 

variable neighborhood search for solving the uncapacitated r-allocation 

p-hub median problem. Optimization Letters, 11(6), 1109-1121. 

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to 

the vehicle-routing problem. Informs Journal on computing, 15(4), 333-

346. 

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics 

for the multi-period orienteering problem with multiple time windows. 

Computers & Operations Research, 37(2), 351-367. 



 

 

Bibliography  166 

 

 

 

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of 

the Operational Research Society, 35(9), 797-809. 

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The 

orienteering problem: A survey. European Journal of Operational 

Research, 209(1), 1-10. 

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. 

(2009). A guided local search metaheuristic for the team orienteering 

problem. European journal of operational research, 196(1), 118-127. 

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. 

(2009). Iterated local search for the team orienteering problem with time 

windows. Computers & Operations Research, 36(12), 3281-3290.



 

 

Appendix A  167 

 

 

 

APPENDIX A 

Table A.1 Characteristics of the dominant party instances 

Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Adana 5 2183167 920 120 

Adıyaman 4 602774 420 90 

Afyonkarahisar 4 709015 580 90 

Ağrı 2 547210 270 60 

Aksaray 2 386514 250 60 

Amasya 2 322167 240 60 

Ankara 5 5270575 1505 120 

Antalya 5 2288456 935 120 

Ardahan 2 99265 210 60 

Artvin 2 168370 220 60 

Aydın 3 1053506 495 90 

Balıkesir 5 1186688 875 120 

Bartın 4 190708 440 90 

Batman 2 566633 270 60 

Bayburt 2 78550 210 60 

Bilecik 4 212361 460 90 

Bingöl 2 267184 230 60 

Bitlis 4 340449 480 90 

Bolu 4 291095 480 90 

Burdur 4 258339 460 90 

Bursa 5 2842547 1040 120 

Çanakkale 2 513341 270 60 

Çankırı 2 180945 220 60 

Çorum 4 525180 540 90 

Denizli 3 993442 495 90 
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Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Diyarbakır 4 1654196 820 90 

Düzce 5 360388 625 120 

Edirne 2 402537 250 60 

Elazığ 3 574304 405 90 

Erzincan 3 222918 345 90 

Erzurum 3 762321 450 90 

Eskişehir 3 826716 465 90 

Gaziantep 5 1931836 1125 120 

Giresun 4 426686 500 90 

Gümüşhane 2 151449 220 60 

Hakkari 2 278775 240 60 

Hatay 5 1533507 1000 120 

Iğdır 2 192435 220 60 

Isparta 4 421766 500 90 

İstanbul 5 14657434 2370 120 

İzmir 5 4168415 1295 120 

Kahramanmaraş 3 1096610 510 90 

Karabük 2 236978 230 60 

Karaman 2 242196 230 60 

Kars 3 292660 360 90 

Kastamonu 3 372633 375 90 

Kayseri 5 1341056 925 120 

Kilis 2 130655 220 60 

Kırıkkale 3 270271 345 90 

Kırklareli 2 346973 240 60 

Kırşehir 3 225562 345 90 

Kocaeli 5 1780055 1075 120 

Konya 5 2130544 905 120 

Kütahya 3 571463 405 90 

Malatya 5 772904 750 120 
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Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Manisa 3 1380366 570 90 

Mardin 3 796591 450 90 

Mersin 3 1745221 630 90 

Muğla 3 908877 480 90 

Muş 2 408728 250 60 

Nevşehir 3 286767 360 90 

Niğde 4 346114 480 90 

Ordu 3 728949 435 90 

Osmaniye 5 512873 675 120 

Rize 3 328979 360 90 

Sakarya 5 953181 800 120 

Samsun 5 1279884 900 120 

Şanlıurfa 3 1892320 660 90 

Siirt 2 320351 240 60 

Sinop 4 204133 460 90 

Şırnak 2 490184 260 60 

Sivas 4 618617 560 90 

Tekirdağ 3 937910 480 90 

Tokat 3 593990 420 90 

Trabzon 3 768417 450 90 

Tunceli 2 86076 210 60 

Uşak 2 353048 240 60 

Van 4 1096397 680 90 

Yalova 4 233009 460 90 

Yozgat 3 419440 375 90 

Zonguldak 5 595907 700 120 
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Table A.2 Characteristics of the main opposition party instances 

Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Adana 5 2183167 920 120 

Adıyaman 2 602774 280 60 

Afyonkarahisar 3 709015 435 90 

Ağrı 2 547210 270 60 

Aksaray 2 386514 250 60 

Amasya 3 322167 360 90 

Ankara 5 5270575 1505 120 

Antalya 5 2288456 935 120 

Ardahan 2 99265 210 60 

Artvin 2 168370 220 60 

Aydın 4 1053506 660 90 

Balıkesir 5 1186688 875 120 

Bartın 3 190708 330 90 

Batman 2 566633 270 60 

Bayburt 2 78550 210 60 

Bilecik 2 212361 230 60 

Bingöl 2 267184 230 60 

Bitlis 2 340449 240 60 

Bolu 3 291095 360 90 

Burdur 2 258339 230 60 

Bursa 5 2842547 1040 120 

Çanakkale 3 513341 405 90 

Çankırı 2 180945 220 60 

Çorum 2 525180 270 60 

Denizli 4 993442 660 90 

Diyarbakır 2 1654196 410 60 

Düzce 2 360388 250 60 

Edirne 4 402537 500 90 

Elazığ 2 574304 270 60 
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Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Erzincan 4 222918 460 90 

Erzurum 2 762321 300 60 

Eskişehir 3 826716 465 90 

Gaziantep 3 1931836 675 90 

Giresun 3 426686 375 90 

Gümüşhane 2 151449 220 60 

Hakkari 2 278775 240 60 

Hatay 5 1533507 1000 120 

Iğdır 2 192435 220 60 

Isparta 3 421766 375 90 

İstanbul 5 14657434 2370 120 

İzmir 5 4168415 1295 120 

Kahramanmaraş 4 1096610 680 90 

Karabük 2 236978 230 60 

Karaman 2 242196 230 60 

Kars 4 292660 480 90 

Kastamonu 4 372633 500 90 

Kayseri 2 1341056 370 60 

Kilis 2 130655 220 60 

Kırıkkale 2 270271 230 60 

Kırklareli 4 346973 480 90 

Kırşehir 2 225562 230 60 

Kocaeli 3 1780055 645 90 

Konya 2 2130544 362 60 

Kütahya 2 571463 270 60 

Malatya 2 772904 300 60 

Manisa 3 1380366 570 90 

Mardin 2 796591 300 60 

Mersin 3 1745221 630 90 

Muğla 5 908877 800 120 
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Cities 

Criticality 

factor ( )iCF   

Population in 

2015 ( )iPop   

Reward 

( )i  

Meeting Duration 

( )i   

Muş 2 408728 250 60 

Nevşehir 2 286767 240 60 

Niğde 3 346114 360 90 

Ordu 4 728949 580 90 

Osmaniye 2 512873 270 60 

Rize 2 328979 240 60 

Sakarya 3 953181 480 90 

Samsun 3 1279884 540 90 

Şanlıurfa 2 1892320 440 60 

Siirt 2 320351 240 60 

Sinop 3 204133 345 90 

Şırnak 2 490184 260 60 

Sivas 3 618617 420 90 

Tekirdağ 4 937910 640 90 

Tokat 2 593990 280 60 

Trabzon 2 768417 300 60 

Tunceli 3 86076 315 90 

Uşak 2 353048 240 60 

Van 2 1096397 340 60 

Yalova 3 233009 345 90 

Yozgat 2 419440 250 60 

Zonguldak 4 595907 560 90 
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APPENDIX B 

The shaded areas in Figure B.1 denote those cities of Turkey which are 

included in the 10-day-long campaign period. Full-MILP results on 40C-10D 

are provided in Figure B.2, where the dots and numbers on a city represent 

the number of meetings realized and day of meetings, respectively. Table B.1 

reveals the daily tours where (M) indicates a meeting. The best gap obtained 

for this particular instance was 12.6% in 24 hours of CPU time.  

 

 

Figure B.1 Geographical distribution of 40 cities (shaded areas) 
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Figure B.2 Cities with meetings 
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Table B.1 Daily tours of the instance 40C-10D 

Days Route 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Ankara (M) → Hatay (M) →  İskenderun (M)  

İskenderun → Adana (M) → Istanbul (M) 

Istanbul → Kocaeli (M) → Bursa (M) → Balıkesir (M)  

Balıkesir → Manisa (M) → İzmir (M) → Aydin (M) → Muğla 

Muğla (M) → Denizli (M) → Antalya (M) → Isparta 

Isparta (M) → Afyonkarahisar (M) → Eskişehir (M) → Ankara 

Ankara (M) → Gebze (M) → Istanbul 

Istanbul (M) → Gaziantep (M) → Kahramanmaraş (M)  

Kahramanmaraş → Hatay (M) → Adana (M) → Mersin 

Mersin (M)  

 


