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ABSTRACT

This thesis proposes an exact algorithm for the integrated vehicle routing and warehouse location problem,
known as WLRP. WLRP helps the supply chain managers to make strategic level decisions, and may be
used in a supply chain environment at different industrial sectors. Previous work on WLRP emphasized
heuristic and metaheuristic solution approaches that do not guarantee optimality. In search of optimality,
other related and well-studied problems are investigated and it is concluded that there is a close
relationship between the vehicle routing problem with time windows (VRPTW) and WLRP. Therefore,
first the VRPTW is studied extensively as a foundation to WLRP. Recent studies on VRPTW call attention
to column generation methods together with the branch and bound algorithm. The column generation
algorithm with dynamic programming is used and in this thesis a new dynamic programming formulation
is presented. Furthermore, for heterogeneous fleet problems, a new variant of vehicle routing problem
(VRP) is formulated which is named as the vehicle routing problem with time windows and discrete
capacities (VRPTWDC); and the dynamic program is modified for this problem. The WLRP is formulated
as a set partitioning problem and column generation technique is applied. The dynamic program is
extensively modified to handle the problem more effectively, the bounds are tightened using 2-path cuts
and the subtours are eliminated using a separation algorithm. Finally, branch and bound method is applied
to solve WLRP optimally. All benchmark problems in WLRP literature are solved and it is illustrated that

the proposed algorithm yields better solutions compared to algorithms reported in the literature.
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Chapter 1

INTRODUCTION

The definition of logistics management according to The Council of Logistics Management is: “The
process of planning, implementing and controlling the efficient and cost-effective flow and storage
of raw-materials, in-process inventory finished goods and related information from point of origin to
point of consumption for the purpose of conforming to customer requirements”[1]. While flow of
material and information between the suppliers and manufacturing unit forms the Inbound Logistics
Function, the same flow between the customers and the manufacturing units forms the Outbound
Logistics Function. The flow of materials and information within the manufacturing unit constitutes
the Internal Logistics Function. The Outbound Logistics functions can further be classified
according to the level of decisions. Among these levels, routing of raw materials or products and
location of production or inventory holding facilities both correspond to the strategic level decisions.
Detailed information on the logistics management issues is given in Ghosh and Raychaudhuri[2].
The logistics operations show highly dynamic behavior due to changing demand patterns that
require the optimization of the location of the facilities and routes the customers are served. The
warehouse location problem alone is not sufficient for strategic level decisions in supply chain;
because the customers are assigned on a straight-and-back basis that is each customer is served
directly by a vehicle from the warehouse. This assumption in the warehouse location problem
neglects routing and therefore even the optimal solutions to this problem can be improved by
routing. On the other hand, the classical vehicle routing problem assumes that the sites of the
warehouses are known. For this reason, even if the minimum cost is achieved, a better solution can
still be achieved by changing the locations of the warehouses. These important drawbacks of
addressing the warehouse location and vehicle routing problems separately force the researchers and
practitioners to study the integration of these two problems effectively in order to achieve better

solutions.
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1.1 Literature Survey

Early studies on the warehouse location and vehicle routing problem (WLRP) include the work by
Perl[3] and Perl and Daskin[4]. WLRP is first formulated in [3,4] as a mixed integer linear program
with capacity and maximum route distance constraints for a three level supply chain where there are
the suppliers, warehouses, and customers. The WLRP is modified to include only the warehouses
and customers by eliminating the suppliers from the supply chain in (MWLRP)[4]. The MWLRP
contains subtour elimination constraints to remove cycles that are added for every possible
combination of customers. The prohibitively large number of subtour elimination constraints, even
for small-scale problems, makes the MWLRP impossible to be solved within acceptable computing
times. Thus, Perl and Daskin[4] developed a heuristic method to solve MWLRP by decomposing the
problem into three phases: multi-depot vehicle dispatch problem (MDVDP), warehouse location-
allocation problem (WLAP), and multi-depot routing-allocation problem (MDRAP). This method
solves each problem iteratively and generates good solutions; however, it does not guarantee
optimality. Hansen et al.[5] studied the WLRP and proposed a new formulation to handle the
subtour elimination constraints by employing continuous variables. Although this formulation can be
solved optimally, the lower bound for the problem is so low that only small problems can be solved
in reasonable time. Hansen et al.[5] modified the heuristic method of Perl and Daskin and improved
solutions to benchmark problems significantly. A very recent contribution to WLRP is done by Wu
et al.[6]. In this paper, a different heuristic method was proposed in which WLRP is decomposed
into a location-allocation problem (LAP) and a vehicle routing problem (VRP). New search methods
are selected for the LAPs and VRPs using simulated annealing (SA).

The complexity of the problem has often forced the researchers to use approximation methods
through repetitive problem solving. One of the earliest studies is done by Burness and White[7], who
defined the traveling salesman location problem to locate a single new facility. Or and Pierskalla[8],
Jacobsen and Madsen[9] proposed new formulations and algorithms using some side constraints
such as capacity limit and maximum cost/tour-length restriction. Laporte and Nobert[10] proposed
an integer programming problem to minimize routing and operating costs and solved the problem by

relaxing the constraints. Nambiar et al.[11] and Nambiar et al.[12] studied the problem of improving
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the collection, processing and marketing of the Malaysian rubber industry and solved this location
routing problem with heuristics. Laporte et al.[13] studied the Hamiltonian cycles and the subtour
constraints for the routing-location problem. Madsen[14] and Min et al.[15] made extensive
literature survey on the solution of the routing-location problems. Drezner et al.[16] concentrated on
locating facilities using the rectilinear distances. Bookbinder and Reece[17] formulated a multi-
commodity, capacitated distribution planning model as a non-linear mixed integer program and
solved the problem using a generalized assignment type problem based on Benders decomposition.
Laporte et al.[18] imposed a branch and bound algorithm on the multi-depot vehicle routing and
location-routing problems after modifying the problems with graph representation and graph
extension. Laporte et al.[19] and Chan et al.[20] worked on stochastic programming of the location-
routing problems by decomposing the problems into location-allocation type problems. Srivastava
and Benton[21] worked on the physical distribution system design of location-routing problems and
investigated the effects of the ratio of location to routing costs. The location routing model of
hazardous materials was addressed by Revelle et al.[22]. Srivastava[23] proposed three new
location-routing problems and solved these problems by savings based heuristics. Tuzun and
Burke[24] applied the tabu search method for the location-routing problems. The applications of the
routing location problem included flow-interception problems, location-routing problems with
uncertainty, environmental impacts of simultaneous location and routing, and logistics of hazardous
materials. Detailed review of these applications together with analysis of the warehouse location
problem can be found in Drezner[25].

Efficient routing and scheduling of vehicles can result in important savings for government
agencies and industries at different sectors. The vehicle routing problem with time windows
(VRPTW) arises in a wide range of practical decision-making problems, such as school bus routing,
mail delivery, newspaper delivery, fuel oil delivery, and municipal waste collection.

VRPTW has become one of the most popular problems in logistics for two decades. Tan et
al.[26] made a literature survey on VRPTW. In this work, the use of customer interchange method to
improve solutions using local search algorithm as well as hybrid simulated annealing (SA) and tabu
search (TS) is investigated. Furthermore, a hybrid genetic algorithm (GA) and local search method is

also proposed. For all these heuristics, the initial solution of VRPTW is obtained from push forward
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insertion heuristic (PFIH). This heuristic is a straightforward and constructive algorithm to obtain
initial solutions for all the problems presented in Solomon[27]. Previous work of Hax and
Candea[28] involves routing a fleet of vehicles, with limited capacities, from a central depot to a set
of geographically dispersed customers with known demands and predefined time window
constraints. The route cost of a vehicle is the total distance it traveled, and the objective is to
minimize the total cost of all routes with minimum number of vehicles without violating any
constraints. A detailed information on the metaheuristics for the vehicle routing problem with time
windows can be found in Gendreau et al.[29].

Survey on classifications and applications of VRPTW can be found in Osman[30], Laporte[31]
and Bodin et al.[32]. Heuristic methods often produce near optimal solutions in a reasonable amount
of computational time. Many researchers currently working on new heuristic methods for solving the
VRPTW include Kontoravdis and Bard[33], Kohl and Madsen[34], Thompson and Psaraftis[35] or
Kolen et al.[36]. Kolen et al.[36] presented the a heuristic branch and bound method, which is
among the first optimization algorithms for VRPTW. The method calculates lower bounds using
dynamic programming and state space relaxation. Branching decisions are taken on route-customer
allocations. Lau et al.[37] developed a heuristic method by defining an upper bound on the number
of vehicles to be used to solve the VRPTWDC. In this study, an upper bound on the number of
vehicles is employed and heuristic solution methods to solve also heterogeneous fleet VRPTW are
used.

The optimal solution to the VRPTW is investigated by various researchers, which frequently
employed decomposition methods. Kohl and Madsen[34] used Lagrangean relaxation, Desrochers,
Desrosiers and Solomon[38] investigated the Dantzig-Wolfe decomposition and Halse[39] has
studied the variable splitting.

Most recent studies in the VRPTW include the work of Kohl, Desrosiers, Madsen, Solomon and
Soumis[40]. In this work, several decomposition algorithms are reviewed and Dantzig-Wolfe
decomposition algorithm is used. Valid inequalities are inserted using the 2-path cut techniques
together with the decomposition algorithm. The proposed MINLP formulation finds the subsets of
customers that violate k-path inequalities using the results of the relaxed problems tightening the

bounds and reducing the solution time. Two different methods are also presented to find the subsets
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those have been proposed; the first is a heuristic, which is proved to find all the subsets whereas the
other is an optimal separation algoﬁthm. Another recent study is by Rich[41] that used 2-path cuts as
well as 3-path cuts. Furthermore, a set partitioning model is formulated and an effective separation
routine for k-path cuts is presented. Detailed information on the column generation approach to the
VRPTW can be found in Larsen[42]. In this work, column generation approach is used by defining
the master problem as a set partitioning problem and the subproblem as a shortest path problem with
time windows. In the subproblem, feasible routes with negative reduced costs are generated using
dynamic programming following the basic principles of Dijkstra’s algorithm. A similar method with
slight variations in the dynamic programming algorithm is used in this thesis. One of the most recent
contributions to the VRPTW include the work by Irnich et al.[43], the Dantzig-Wolfe decomposition
algorithm was used and several methods to improve the dynamic programming algorithm was
investigated. The work Bazaraa et al.[44] contains detailed information and introduction to the
Dantzig-Wolfe decomposition. The work of Cordeau et al[45] is useful in learning more on the
application of the column generation algorithm on VRPTW. Furthermore, detailed information on

the theory of valid inequalities can be found in Nemhauser and Wolsey[46].

1.2 Outline of the Thesis

The aim of the thesis is to solve the vehicle routing and warehouse location problem WLRP. In order
to solve the WLRP effectively, a good routing optimization algorithm is needed. Therefore, the
vehicle routing problem with time windows is also addressed. The contributions to the VRPTW are

as follows:

i. A new mixed integer formulation is presented with significantly reducing the number of
variables and number of constraints. Previous formulations of the VRPTW model the flow
constraints using three indices. In this thesis, the flow constraints are modeled using two
different variables each with two indices that reduce the number of integer variables
significantly. Furthermore, constraint aggregation is employed to the constraint sets which

link two or more different types of integer variables.



Chapter 1: Introduction 6

ii. Three preprocessing methods are applied to tighten the time windows and eliminate
several arcs prior to optimization.

iii. Column generation algorithm is applied to the VRPTW and the dynamic programming
algorithm for the subproblem is changed. For each label in the dynamic program,
information on the previous customer nodes is recorded as a vector. This recording
process provides the elimination of k-cycles and therefore, increases the lower bound of
the master problem and decreases the number of branch and bound nodes.

iv. The optimality gap is reduced due to the elimination of k-cycles, in many benchmark

problems.

The VRPTW assumes that each vehicle has the same capacity. However, in many real problems
heterogeneous fleet of vehicles is present. In order to solve heterogeneous fleet problems a new
problem is formulated; the vehicle routing problem with time windows and discrete vehicle

capacities (VRPTWDC). The contributions to the VRPTWDC are as follows:

i. A new two-index integer formulation is presented. This formulation reduces the number of

constraints and variables as in the case of VRPTW.

it. The new column generation algorithm for the VRPTW is modified for the VRPTWDC
that includes fixed capacities of the vehicles in the route costs. Furthermore, at each
iteration of the column generation, the dynamic problem is solved for each vehicle
capacity and the results for each capacity are combined prior to the next iteration. The
dynamic program eliminates k-cycles as in the case of VRPTW.

iii. The separation algorithm that is used for the VRPTW is modified for the VRPTWDC and
is applied for each vehicle capacity.

iv. The branching priorities are set as in the VRPTW.

After obtaining efficient optimization algorithms for both homogenous and heterogeneous fleet

routing problems, the WLRP is studied. The contributions to the WLRP are as follows:
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il.

iil.

iv.

A new two-index formulation is presented. Previous formulations modeled both the flow
variables and the load variables using three indices. The flow variables are replaced with
two two-index variables as in VRPTW and the load variables are replaced with one-index
variables by adding several constraints. Although, several constraints are added the
number of variables constraints are also reduced. The number of constraints is further
reduced by constraint aggregation.

Column generation algorithm is applied. The master problem is formulated as a set

‘partitioning problem with side constraints and allocation variables for the warehouses. A

new dynamic programming algorithm is proposed which uses different dual variables
from the master problem at each run. The proposed dynamic program is run for each
warehouse and vehicle type and it eliminates the k-cycles.

The separation algorithm for the 2-path and subtour cuts is modified for the WLRP. The
algorithm is run for each vehicle type.

The branching priorities are set in order to reduce the number of nodes in the branch and
bound tree.

Optimal solutions for benchmark problems are found.

In this thesis, the VRPTW and its slight modification, vehicle routing problem with time

windows and discrete capacities (VRPTWDC) are considered as the first steps to generate exact

methods to solve the WLRP. In Chapter 2, two-index formulations for the VRPTW and VRPTWDC

are introduced. Furthermore, the sequential algorithm, namely, iterative solution of column

generation, 2-path cuts generation, and branch and bound algorithms are reconsidered and a new

dynamic programming algorithm for the column generation is presented in Chapter 2. A two index

model for the WLRP is formulated using disjunctive programming and propositional logic in

Chapter 3. The sequential algorithm for VRPTW is modified for the WLRP and presented in

Chapter 4. The results of benchmark problems and an illustrative example are presented in Chapter

5. Computational complexity of the proposed algorithm is discussed, the conclusions are

summarized and the possible future directions on WLRP are elaborated in Chapter 6.
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Chapter 2

VEHICLE ROUTING WITH TIME WINDOWS AND DISCRETE VEHICLE
CAPACITIES

2.1 Problem Definition

The vehicle routing problem with time windows (VRPTW) is a special case of the vehicle routing
problem with time windows and discrete vehicle capacities (VRPTWDC). When only a single
vehicle capacity is considered VRPTWDC is reduced to VRPTW with a single warehouse and
multiple customers. The locations (or the Euclidean distances between) of the customers and the
warehouse are given. The orders given by the customers include quantities and time limitations such
as the service times (loading and unloading), the latest and earliest arrival times. Furthermore, the

capacities for all vehicle types are given.

There are several assumptions in the routing. These can be listed as follows:
i. A customer can only be allocated on a single route.
ii. A vehicle cannot be used for two different routes.
iii. The velocity of the trucks is constant at 60 km/hr.
iv. There are no capacity constraints for the warchouse.
v. The fleet contains infinite number of vehicles.

vi. Early and late times are defined on the basis of work hours

The problem is defined on a graph as in Fig. 2.1:
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X

Figure 2.1: Graphical representation of VRPTWDC

In Fig. 2.1 the circles represent the customers (the demand points) and the square represents the
warehouse. Using the locations in the x-y graph, the distance matrix is obtained and the problem is

defined as a network representation for eliminating subtours and cycles.

Figure 2.2: Network representation of VRPTWDC

In the network representation, the warehouse is represented by two squares. The white square is
numbered as O and all routes originate from this point. Furthermore, the gray square is numbered as
N+1 and all routes end at this point. For consistency in the representation, the warehouse (both the

origin and the final destination) and the customers are named as nodes and all the routes as arcs.

The mathematical formulation of the VRPTWDC is given as follows:
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Indices

Variables

Parameters

N

Nodes (Customers and the warehouse) 0,1,2,K ,N,N +1
Nodes (Customers and the warehouse) 0,1,2,K ,N,N +1
Vehicles 1,2,K ,K

Vehicle types 1,2,K ,V

Arrival time at node {
Waiting time at node i

1 If node i precedes j
0 otherwise

1 If vehiclek is used
0 otherwise

1 If customer i is assigned to vehicle
0 otherwise

Total number of customers
Total number of vehicles

Total number of vehicle types

Euclidean distance between node i and j
Demand at node §

Capacity of vehicle type v

Earliest arrival time at node i

Latest arrival time at node {

Service time at node {

Maximum work time allowed for vehicle &
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vel Velocity of vehicle
feu Fixed cost of using vehicle type v
iy Equals to 1 if vehicle k is of type v, otherwise it equals O
tc Traveling cost
M_, A large number
N+1 N+ v K
Minimize > D teedy X+ fe, | Yony, Y,
i=0 j=0, j#i v=l k=1
Subject to:
N+l
ZXii =0
i=0
N+1
Y X, =1 ie LK N}
7=0.j#i
N+l
Yx, =1 ie{,K,N}
J=0.j#i
K
Yz, =1 ie{l.k,N}
k=1
N v
Zmi'zﬂc SZYk "By q, Vk
i=] v=l
N v
zmi Ly 2 zYk Ry G Vk
i=1 v=l
T].~T,.—W,.—fi-—;e—l——M]Xij2-M1 Vi,Vj,j#0
X, +Z,-Z, <1 i,je{LK ,N}Vk
Xy +Zy—Zy <1 Vj,Vk
Xiver T2y = Zyy S1 Vi, Vk
Zo T2y —2Y, =0 Vk

2.1

(2.2)

(2.3)

Q.4)

(2.5)

2.6)

2.7

(2.8)
2.9)
(2.10)
(2.11)

(2.12)
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N+]

YZ,<N-Y, Vk (2.13)
=0

N+l

Yz, =Y, Vk (2.14)
i=0

T, +W, <, Vi (2.15)
T.+W, >e, Vi (2.16)
N K

DX =2Y (2.17)
J=1 k=1

N+l

Y X, =0 (2.18)
i=0

N+l

D Xy, =0 (2.19)
J=0 '

Xoye =0 (2.20)
q,=0 (2.21)
X, efol} Vi, Vj (2.22)
v, efo1} vk (2.23)
Z, {1} Vi, Vk (2.24)
T.20 ,W, >0 Vi (2.25)

The indices 0 and N +1in i and j represent the warehouse. Constraints (2.2) state that a node
cannot precede itself. According to the constraints (2.3) one and only one node can be visited after
any customer i. Constraints (2.4) restrict the problem in such a way that a customer i can only be
visited by one node. Constraints (2.5) state that each customer is assigned to a single vehicle.
Constraints (2.6) and (2.7)" state that the demands of the customers at any route must be between the
capacities of vehicle types v and v-1, if that route is used. Constraints (2.8) give the time balance
around the customer. The time balance argund a‘customer is given by the following propositional

logic in Fig. 2.3.

U This constraint works if and only if the vehicle type capacities are listed in an ascending order
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d,
If customer j follows i, then T, =T, =W, — f, — —il >0,
ve

otherwise T;,7; and W, can be any positive number

H

d, d, N N
X, =T, -T,-W,—f,——L-20 A =X, =T,~-T,-W,—f ——2- ZZdU%]

vel YT vel =<
d,; N N N N
Tj_Ti—VVi_‘fi__—j—_ if ZZ(du\)+lO Z_ZZ(dux)—lO
vel =0 5=0 u=0 5=0

Figure 2.3: Logical description of the time balance constraints

R N N
where M, = Zz (d,,)+1, is alarge enough number.
u=0 s=0

The constraints (2.9) are important since they link the two binary variables. The propositional

logic that is used in the constraint is.as follows:
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If customer j follows customer i )
customer j must also be allocated on

A that same route
If customer i is allocated on route k

(X, 72Z,)=>2,
X, ~2Z,)vZ,
—X,v—-Z,VvZ,
=X, +1-Z, +Z, >1

X, +Z,-Z,<1 Vi,i#0,Vj, j#0,Vk

An alternative formulation for this constraint can be obtained if the sum over the

vehicles is taken:
K

Xijiinb+2k(zik—ij)SZEnb, Vi,i #0,j, j #0,Vk
k=1

k=1 v=l k=1 v=1

K Vv
where n, is a large enough number.
kv
k=1 v=l

Figure 2.4: Logical description of constraints linking X, Z, and Z ,

ij ’

Constraints (2.10) and (2.11) are the modified cases of the previous constraint for the warehouse.

The constraints (2.12) specify that any route leaving the warehouse must end in the same warehouse.

The following constraints (2.13) and (2.14) relate the two binary variables, Z; and Y, to each other.

They are formulated using the following propositional logic:



Chapter 2: Vehicle Routing with Time Windows and Discrete Vehicle Capacities 15

N+1
Zzik < Yk
i=0)
N+l N+l
ZZ,.‘,=>Y‘, Y, :>2Zik
i=0 i=0
N+l N+l
-y Z, VY, -Y, vy Z,
i=() i=0
N+l N+l
1-¥Z, +N-Y, 21 1-Y, +Y Z, 21
i=0 i=0
N+l N+l
Yz, <N-Y, Yz, v,
i=0 i=(}

Figure 2.5: Logical description of constraints linking Z, and Y,

These linking constraints state that if a vehicle is not used then no nodes can be assigned to that
vehicle. On the other hand, if a vehicle is used there must be at least one node assigned to that
vehicle. Constraints (2.15) and (2.16) specify the earliest and latest time limitations for the
deliveries. The constraints (2.17) state that the number of arcs originating from the warehouse equal
the number of vehicles used. Constraints (2.18), (2.19), (2.20) and (2.21) set the limitations of the
variables for the warehouse and the remaining constraints (2.22), (2.23), (2.24) and (2.25) specify
the type of the variables.

The formulation of the VRPTW can be obtained from this representation when the fixed costs in
the objective function are removed and constraints (2.6) and (2.7) are replaced with the following

constraints:

N
Sm Zy <q,-Y, Vk 2.6)
i=1

where g, is the capacity of the single vehicle type.
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2.2 Solution Method for VRPTW

-

Find customers {
& j such that

Preprocessing <
X, =0

Find customers i, j, k &
I such that

X;+X, +X,<2

Find customers i,
j & k such that

X, +X, <1

R

Y

Vv

Assign routes

Solve the set
artltlomng ‘problem

0—>i—>N+1,VieN
olve the subproblem (SPPTW)
golumnﬁ < w1th dynamic programming
eneration
New Yes 1f rdcost,, <0 for
Subspace any ce Col
& Yes
 Path Cuts Solve TSPTW Find sets S such that
9 if ¥ Y, =1 is infeasible [€————] D ZX <2
keK ieNIS jeS
7 No
b( Solution integer U
Branch &
ound <
¢ ‘ Branch on number of No
vehicles If number of
vehicles is
] Branch on flow Integer
\ variables Yes

Optimal Solution

Figure 2.6: The

solution procedure for VRPTW
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Although an effective integer formulation is presented in the previous section, the VRPTW and
VRPTWDC still require major computation time for solving even small problems. The number of
variables quickly increases and that makes it impossible to solve this problem within a reasonable
time. Therefore, the following exact algorithm is used.

The solution procedure is shown in Fig. 2.4. The problem starts with preprocessing where some
information is gathered before solving the optimization problem. Following the preprocessing,
column generation, subtour and 2-path cuts generation, and branch and bound algorithms are
employed using an iterative procedure. First, the relaxed problem is solved. Second, the subsets that
violate the inequalities are found. After the iterative procedure, the MILP formulation is solved

using branch and bound.

2.2.1 Preprocessing

Preprocessing is very crucial in VRPTW and VRPTWDC that enables the reduction in the
number of variables prior to the solution of the optimization problem. First the time windows are
reduced by defining new limits for each customer according to possible earliest arrival and latest
departure times. The method decribed in Desrosiers et al [46] is used in reducing the time windows.
Then, three different preprocessing methods are introduced to fix certain variables. The aim of first

method is to identify the customers that are visited directly after the warehouse.
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Preprocessing #1

Travel time: d il vel
d,; /vel

Earliest acceptance time at i = e,

Latest acceptance time at [ = /,

Service time at node j = f,

d,; "
Earliest arrival time to i by j = —Z + f+—
vel vel

d,. d,
Forany i,if 2L+ f +-L>[ Vi=X, =1
vel 7 vel

0i

Figure 2.7: Preprocessing |

For any customer I there are two possibilities; either it is visited directly after the warehouse or

it is visited after other customer(s). If only customer j is visited before i, the earliest arrival time to

. d.
the customer i is —% + f ; +~"l. This earliest arrival time, which only considers the traveling times
ve ve

and the service time at the customer j, does not include the waiting times. Therefore, if this earliest

arrival time is greater than the latest acceptance time at customer I, it can be concluded that

customer j is not visited in between customer i and the warehouse. Furthermore, if this is true for
all j, then it is deduced that customer i is visited directly after the warehouse.

The second preprocessing method is indeed the reverse of the first method. As shown in Fig.
2.8.
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Preprocessing #2

Travel time: d i /vel
d; y, 1vel

Earliest departure time at i: e, + f;

Latest departure time at i: [, + f,

d;lvel Service time at node j: f;

d. d.
e+ f+—L+ f, +—L2-
vel vel

JiN+1

d;
- . if
Forany i,if e, + f, +—+ f, +

i— >l/v+1 v] :>XiN+l=O
vel '

Earliest arrival time to the warehouse by j:

Figure 2.8: Preprocessing 2

In this method, it is observed whether ; is the last customer on the route or not. There are two

possibilities for the routes which depart from i. First, the vehicle can go directly to the warehouse

and second, another customer j may be visited in between. If any customer j is visited, the earliest

d, d;
arrival time to the warehouse from customer i is e; + f, +—"l-+ I +4Ailf]—. Thus, if this time is
ve

ve

greater than the latest acceptance time of the warehouse for all customers ( j ’s), it can be stated that

customer I is the last customer on a route.

The final preprocessing method is shown in the Fig. 2.9.
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Earliest departure time from i : e, + f;

. dy lvel . Latest acceptance time at j : /,
d,
Ife+f+—~>1, =x,=0
vel

J ij

Figure 2.9: Preprocessing # 3

This method is applied to any two customers. The earliest departure time from customer i is

e, + f, and the latest acceptance time at customer j is /,. Thus, if the minimum traveling time

from customer i to j is greater than the time difference [, —e,, it can be concluded that customer

J does not follow customer i. This last method is called the arc elimination. Although this arc
elimination is performed between two customers, it can also be applied for 3 or more customers can
also be done using the same logic. For example, if it is proved that three specific customers 1, 2 and

3 cannot follow each other, it can be modeled as: X, + X,; <1.

2.2.2  Column Generation — The Master Problem

Although preprocessing heli)s to remove significant number of arcs, there is still a need for better
lower bounds for the problem. Larsen[42] and Kohl[40], showed that column generation proved to
be successful in generating feasible paths and therefore in obtaining a tight lower bound. Column
generation technique is employed on linear programming models with large number of variables.

Here, the formulation for the VRPTW can be modeled as a set partitioning problem:
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Indices

Variables

XR,

Parameters

Minimize
éubject to
Y5, XR, =1
xR ={o1}

Customers 1,2,K ,N
Paths 1,2,K ,R

1 if path r is used, O otherwise

Total number of customers

Total number of feasible paths

1 if customer § is on path r

Total cost of the path r

i c.XR,
r=l

Vie {LK ,N}
Vre R

(2.26)

(2.27)
(2.28)

This formulation of the VRPTW as a set partitioning model depends on the generation of the set

R;. This formulation finds the optimal cost of the problem if all feasible sets are generated. In this

formulation, the sequence of customers is not represented; however, the cost of the path ¢, is

calculated according to the sequence of customers. The number of feasible paths is usually large in

many of the problems, which forces to relax the integrality constraints, and solve the problem as an

LP. Thus, the set partitioning problem is defined as the master problem, and the set of feasible paths

are to be generated in the subproblem for the column generation process.

The master problem for the VRPTW can be changed to VRPTWDC by changing the route costs

only which now include the fixed costs of the vehicles.
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The procedure starts with the initialization phase where depot — i — depot routes are formed

for every customer. Thus, the initial set of R contains N routes, and this gives the upper bound to the

original problem. As the master problem is solved, the dual variables associated with the constraints

2.27), l]j are stored for the subproblem to generate feasible routes.

2.2.3  Column Generation - The Subproblem

As the assignment type constraints are handled in the master problem, the subproblem is reduced to
a shortest path problem with time windows with capacity constraints. The formulation of the

subproblem is as follows:

N+l N+l A

Minimize Y Ya,x, (2.29)
=0 j=0,j#i

Subject to:

N+l

> X, =0 (2.30)
Yom > X, <q, (2.31)
i=1 =0

d; — — N,
T, =T, =W, = fi == =M X, 2-M, Vi,Vj,j#0 (2.32)
’ ve

T, +W, <1, Vi (2.33)
T, +W, 2e, Vi (2.34)
N+}

2 X, =0 (2.35)
i

Y Xy, =0 (2.36)
j=0

Xy =0 (2.37)
X, =0, Vi, Vj (2.38)

T,20 , W, 20 Vi (2.39)
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It can be seen from the constraint (2.31), this formulation is valid for a single vehicle type.

Therefore, in VRPTW ¢, = ¢, since there is only a single vehicle type, whereas for VRPTWDC

this problem must be solved for each vehicle type independently at each call to the subproblems.

The objective function of the subproblem is to minimize the reduced cost of the master problem and

therefore d; =d; — l'j is the modified distance. The parameter ),'j is associated with the customer j

in constraints (2.27). Solving this problem gives a short path with the most negative reduced cost for
the master problem and requires a large computing time. An effective dynamic programming
algorithm was presented in Larsen[42], which follows the Dijkstra’s Algorithm. In this work, a
slightly different algorithm is proposed for solving the VRPTW which reduces the computation
time.

The dynamic program is formulated using the basic concepts of Dijkstra’s algorithm. The

following information is known for each label:

i. the current node (DYN,)

i1. the modified cost (DYN,)

iii. arrival time to the current node (DYN,)

iv. predecessors of the current node in vector form (DYN,)
v. current load on the vehicle (DYN,)

vi. type of the label (DYN,)

A label can only be strongly dominant (DYN,=1) or weakly dominant (DYN,=2), where for each
weakly dominant label the information on possible successors is kept in vector form (DYN,). Then

the labels can be represented as follows:

For VRPTWDC , the initial label for a vehicle type v are:

DYN,[0]=0 (2.40)
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DYN. [0]= fe,. (2.41)
DYN.[0]=0 (2.42)
DYN,[0]=0 (2.43)
DYN [0]=1 (244)
DYN [0]= {1000}, (2.45)
DYN [o]= {1000} (2.46)

Other labels are generated using the following recursive formula:

DYN, [Ib]= j (2.47)
DYN [ib] = DYN 16+ d ow, 11, (2.48)
DYN, [ip]= max{DYN, ]+ ii"—‘”vvi-[lf”—']i,e ,} (2.49)
DYN, [ib]= DYN, [Ib']+m, (2.50)
DYN, [1b]={DYN, [1] DYN,lib'] 1000} 2.51)

The vector {1000} contains elements that are equal to 1000, and DYN , [lb'] represents the
vector of elements of DYN, [lb’] that are less than 1000. Note that DYN | [lb] and DYN, [lb] have

not been explained yet. For each label a type is assigned that determines whether the label is strongly

or weakly dominant. The dominance means: for any two labels [b' and b, if:

[DYN, [i6']= DYN, 1] & [DYN, [ib']< DYN, 1] & [DYN, [ip']< DYN, [b]] &
[pyn, ip)< DYN [Ib]) (2.52)
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Then it can be said that label [b' dominates label [b . The domination property is very important
because some of the dominated labels can be discarded and this speeds up the column generation
significantly. The reason is that any successor of the dominated label is dominated by the same
successor of the dominating label. The labels are discarded using the knowledge on elimination of 2-

cycles which are well studied in Irnich[23]. If /b" dominates label b, [b can be discarded if:

1) If Ib' is a weakly dominated label

2) If it is not possible to revisit the predecessor node of [b' due to either
a. time windows or
b. capacity constraints

3) If it is possible to revisit the predecessor node of [b' and

a. If the predecessor node of [b' is not accessible from [b by either,
i.  time windows constraints or

ii.  capacity constraints or
ili.  if the predecessor node of Ib' is already visited by b

b. If Ib is dominated by other labels that have different predecessor nodes than [b'

If a label is dominated and not discarded then it becomes a weakly dominant label and it can

only be extended to the intersection of the predecessors of the dominating labels and the elements of
this intersection set are placed in DYN [lb]. The code written in OPL Studio 3.5 for the dynamic

programming problem is given in Fig. 2.10.



Chapter 2: Vehicle Routing with Time Windows and Discrete Vehicle Capacities 26

Bestn:=0;Bestc:=FC[v];Bestt:=0;Bestd:=0;Besty:=1;
forall(j2 in 1..N){Bestpl[j2]1:=1000;Bestx[j2]:=1000;}
forall(i in [1..N+1]){cntlb[i]:=0;}start:=0;

while ((sum(i in [1..N+1]) (entlb[i])>0)V start=0) do {start:=1;
forall(il in 1..N+1){
if(il<>Bestp[l..N] A
(Besty=2Ail=Bestx[1l..N)then{
if (Bestn<>il &
Bestt+d[Bestn,il]l/vel<=1[il]&
ew Bestd+m[il] <= g[v]) then { //Label is Feasible//
Labels cntlb(il] :=cntlb[il]+1;
newdynt:= max(Bestt+d[Bestn,il]/vel,e[il]);
//Place the label in an ascending order according to demands//
forall(iil in 1..cntlb[il]:newdynt>=dynt[il,1il]){
place:=iil;break;}
dynn[il,place] :=il;
dync[il,place] :=Bestc+d[Bestn,il]-dual[il];
dynt[il,place] :=max (Bestt+d[Bestn,il]l/vel,e[il]);
dynd[il,place] :=Bestd+m[il];
dyny[il,place] :=1;
dynp[il,place,l..N]:=Bestp[l..N] UBestn;

11}
forall(i in [1..N+11){
forall (i10 in 1..cntlb[il){
forall(ill in 1..cntlb[i] A i11<il0){
if(dynn[i,i10]=dynn[ill] A dyncl[i,il0]l<=dync[i,i10] A
dynt([i,i10]<=dynt[i,i10] A dynt[i,110]<=dynt[i,110])
then{dyny(i,111]:=2;
if(dyny[i,1i10]1=2 Vv
dynp(i,i110,1..N]Udynp[i,ill,1..N]l=dynp[i,i10,1..N] &
Dominance |dynp[i,1101..N] Udynpli,ill,1..N]=dynp[i,110,1..N])then{
Criterion cntlbli] :=cntlb[i]-1; //Discard label il11//
else
dynx[i,111,1..N]:=dynp[i,i10,1..N]

Y111} .
forall(i20 in [1..N+1]){
if(dynt[i20,1] = min(i21 in 1..N+1){(dynt[i21,1]1)) then ¢
Bestn:=il;Bestc:=dync[i20,1];
Best Bestt:=dynt[120,1];Bestd:=dynd[120,1];
[.abe] | Besty:=dyny[i20,1];
Bestp[l..N] :=dynp[i20,1];
Bestx[1l..N]:=dynx[120,1];
cntlb[i20] :=cntlb[i20]1-1; //Discard Label i20//1}}}

Figure 2.10: Dynamic Programming code for solving the SPPTW
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2.24  2-Path Cuts

Insertion of valid inequalities to VRPTWDC reduces the solution time significantly. Previous work
on the insertion of valid inequalities includes 2-path cuts method that aims to find some sets of
customers that require a minimum of two vehicles whereas the solution to the relaxed problem states
that the customers are satisfied with less than two customers. Therefore, the purpose of the 2-path

cuts is the insertion of the following constraint:

> Y X, 22 (2.53)

ieNIS jes
where, the flow into the set is found to be less than 2 in the relaxed problem. The solution approach
of the 2-path cuts is an iterative procedure; the relaxed problem is solved first, the results of the relax
problem is evaluated next. Note that the 2-path cuts algorithm is only executed at the root node for

practical reasons.

The next step is to find the sets where 2 ZX 7 <2 . These sets are found using an iterative
ieN/S je§

procedure named as the 2-path cut separation algorithm. In the previous work of Kohlf40], a
heuristic procedure is applied to find these sets. However, it is more efficient to consider the intra-
route sets, since for the customers that are distributed in different routes the flow into the set is

always greater than or equal to 2. The separation algorithm evaluates the customers according to

nearest neighbor basis and continues to add customers into a subset until is z 2 X; <2 violated,
ieN/S je§

and the last customer is removed from the set.
Following this step, these sets are examined whether their TSPTW problem is infeasible or not

with a single vehicle. Thus, the following property is investigated:

> X, >1 (2.54)

iNTS jes
If the TSPTW problem for the subset is infeasible with one vehicle, then it can be deduced that
this set is suitable for 2-path cuts.
After the cuts are found using the separation algorithm they are added to the master problem.
This addition is done by employing new constraints (4.23) and (4.24) in the master problem. These

constraints are explained in detail in section 4.2,
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2.2.5 Branch and Bound

The final step is the optimization of the MILP that is formulated in section 2. Previous steps in the

proposed method enabled the bounds to be tightened and therefore, the solution time of the branch

and bound algorithm will be reduced. Although there are several branching decisions that can be

applied to branch and bound, probably the most effective one is the best bound search. After the

column generation and 2-path cuts the solution is usually fractional. It is shown that branching on

the total number of vehicles is the most successful method. Therefore, two child nodes are created
R R

and the constraints 2 XR, =|_kJ and Z XR, =|_k-| are added to the two child nodes, respectively.
r=l r=l

The new solution is then returned to the column generator and iterations continue until LB = Z *. In

the case where the total number of vehicles is integer, the branching continues with the flow

variables.
2.3 Ilustrative Example

It is best to describe the results with an example for the VRPTWDC. The following example is R205
with 25 customers from Solomon’s benchmark problems (Solomon[27]). The upper bound on the
number of vehicles is set at 3 for each vehicle type. The customer data for the problem is given in
detail in Appendix A. Using the locations, 26x26 distance matrix is formed by using Euclidean

distance measure”. The vehicle data and the other parameters are as follows:

Table 2.1: Other parameters for R205
Number of Vehicle Types 3
Average velocity (km/h) 60

? Buclidean distance: Distance = ‘/ (X, =X,V +(,-Y,)" where X and Y are the coordinates
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Table 2.2: Vehicle Data for VRPTWDC

Vehicle Type Capacity Fixed Cost
1 150 50
2 200 75
3 250 100
( R205 With 25 Customers
70
60 * ¢ . ¢ *
&
50 * .
B 40 . . *
i~ . .
€ 304 e . . u
g 20 - ® * * * .
10 - * .
. *
0 T T T T T T
0 10 20 30 40 50 60 70
X-Coordinate

Figure 2.11: Warehouse and demand point locations of the illustrative example

The VRPTW only considers a single type of vehicle with a capacity of 200. The solution for the
VRPTW is shown in Fig. 2.12.
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R205 With 25 Customers

Y-Coordinate
3

0 10 20 30 40 50 60 70
X-Coordinate

Figure 2.12: VRPTW solution of R205.025

In this solution three vehicles are used and the distance cost sums up to 393.00. Only one of the
vehicles has a capacity greater than 150, hence the objective function of this solution according to
VRPTWDC equals 393.00+50.00+50.00+75.00 = 568.00. However, this is not the optimal value for
the VRPTWDC problem. The dotted line in Fig. 2.12 is an arc linking the two customers, and the
customer on the center is not visited by this arc. The optimal solution for the problem is given in Fig.

2.13.
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The objective function of this problem is 551.80 which is less than the solution obtained by the
VRPTW. Two vehicles are used in this solution with vehicle capacities 150 and 200. Thus, it is
shown that the VRPTWDC problem can be used in the cases where the fleet is heterogeneous. The

Figure 2.13: VRPTWDC solution of problem R205

comparison of the results is as follows:

Table 2.3: Comparison of the results for R205 with VRPTWDC cost function

Problem LB, LB, IP Opt gap Veh Node VI Sub
VRPTW 568.00 568.00 568.00 0.0 3 1 0 89
VRPTWDC 527.08 536.27 551.80 0.05 2 11 9 112

In the VRPTW case the solution is obtained at the root node without generating the cuts.
However, the lower bound of the VRPTWDC solution is lower than the optimal solution. In order to
reduce the branch and bound nodes, 2-path cuts are examined at the root node. The total number of
valid inequalities at the root node sums up to 9, and some of the optimality gap is closed prior to

branch and bound. In the final solution of the master problem the problem size is represented as

follows:
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Table 2.4: Problem size for R205

Number of Variables 1956
Number of Constraints 2114
Number of Nodes 11

2.4 Computational Results

The problems solved for the VRPTWDC are modified from the Solomon benchmark problems,
Solomon[27]. Since VRPTWDC can also be used for strategic level decisions higher solution times
are tolerable. Furthermore, the original Solomon Benchmark Problems are used for the VRPTW
problems. These problem sets are classified into three groups. The R-problems contain customers
that are randomly located in a certain region. The C-problems contain customers which are located
in clusters. Finally, in the RC-problems the customers are located both randomly and in clusters,
indeed, a mixture of the two distributions. The results of some of the problems are shown in Table

2.5.

Table 2.5: Results of some VRPTW problems

Problem LB, LB, 1P Opt gap Veh Node VI Sub
R101.025 617.10 617.10 617.10 0.0 8 I 0 7

R101.050 1043.37 1044.00 1044.00 0.1 12 1 8 20
R101.100 1631.15 1633.85 1637.70 04 20 23 11 124
R104.025 416.90 416.90 416.90 0.0 4 1 0 13
R107.025 424.30 424.30 424.30 0.0 4 1 0 27
C101.025 191.30 191.30 191.30 0.0 3 1 0 16
C101.050 362.40 362.40 362.40 0.0 5 1 0 4]

C101.100 827.30 827.30 827.30 0.0 10 1 0 53
C103.025 190.30 190.30 190.30 0.0 3 1 0 35
C103.050 361.40 361.40 361.40 0.0 5 1 0 77
C107.025 19130 191.30 191.30 0.0 3 1 0 25




Chapter 2: Vehicle Routing with Time Windows and Discrete Vehicle Capacities

33

Problem LB, LB, 1P Opt gap Veh Node VI Sub
C107.050 362.40 362.40 362.40 0.0 5 1 0 51

C107.100 827.30 827.30 827.30 0.0 10 1 0 130
RC101.025 406.63 452.08 461.10 13.4 4 7 11 29
RC101.050 892.61 931.11 944.00 6.2 8 19 49 60
RC101.100 1584.09 1610.82 1619.80 23 15 40 74 158
RC105.025 410.95 410.95 411.30 0.1 4 3 0 21
RC105.050 754.44 850.41 855.30 134 8 21 17 159
RC106.025 345.50 34550 345.50 0.0 3 1 0 71

R205.025 393.00 393.00 393.00 0.0 3 1 0 89

In this table, LB, shows the objective function obtained at the root node, LB, shows the

improved objective after the addition of the cuts at the root node, IP shows the integer optimal

values, opt gap states the optimality gap between LB, and IP as a fraction, Veh stands for the

number of vehicles used in the problem, Node shows the number of nodes in the branch and bound

tree, VI shows the number of valid inequalities inserted and Sub shows the number of subproblems

solved in the solution. For some of the problems, the LB, is obtained as the as the IP solutions. This

is the most important contribution of this work. This improvement is due to the elimination of the 3-

cycles which are explained in the next section.

Table 2.6: Results of some VRPTWDC problems

Problem Qv LB, LB, 1 Optgap | Veh | Node | VI | Sub
RI101.025 150-200-250 | 1017.00 | 1017.00 | 1017.00 0.00 8 1 0 29
R104.025 150-200-250 | 61690 | 61690 | 616.90 0.00 4 1 0 74

| R107.025 150-200-250 | 62430 | 624.30 | 624.30 0.00 4 1 0 86
C101.025 150-200-250 | 337.19 | 338.50 | 341.30 0.02 3 11 4 80
C103.025 150-200-250 | 340.30 | 340.30 | 340.30 0.00 3 1 0 66
C107.025 150-200-250 | 340.67 | 341.30 | 341.30 0.01 3 1 8 39
RC101.025 150-200-250 | 636.63 | 661.10 | 661.10 0.04 4 1 37 44




Chapter 2: Vehicle Routing with Time Windows and Discrete Vehicle Capacities 34

Problem qy LB, LB, 1P Optgap | Veh | Node | VI | Sub
RC105.025 -150-200-250 | 602.82 | 604.15 | 611.30 0.02 4 27 6 107
RCl1 06.025 150-200-250 | 487.29 | 487.29 | 495.50 0.0t 3 36 0 90
R205.025 150-200-250 527.08 | 536.27 | 551.80 0.05 2 11 9 112

2.5 Conclusions

In this section two routing problems are considered in depth. The formulated VRPTWDC problem is
an extended version of the previous vehicle routing problems and contains specific vehicle capacity
constraints which differentiate VRPTWDC from VRPTW. It considers the time windows and it also
provides operational level decisions on the vehicle capacities for routing. Decision on the vehicle
capacities has a positive effect on the problems and they prove to find better solutions than the
traditional VRPTW problems when the fixed costs of vehicles are considered.

The formulation of the problem contains several assumptions. The first assumption is very
common in the vehicle routing problems that any customer is located on a single vehicle (route).
This assumption avoids multi travels to a customer and thus, the order can be traveled in a single
routing. Moreover, it is logical in the cases where the warehouse is located far away from the
customers and where the customers are clustered. The reason is that it is intuitively feasible to
satisfy the customer need in a single routing rather than replenishing more than once. Another
assumption is that any vehicle can be used only once. This assumption is also logical if the customer
orders are evaluated at the decision center daily. The reason is that usually when the trucks return to
the warehouse there is not enough time for it to make another delivery in day times. The velocity of
the trucks is taken as 60km/hr. This is indeed an average value for trucks which is logical. However,
for better definitions it would be better of having different velocities, since the average speed can
increase to 80-90km/hr in highways or it can decrease up to 30-40km/hr in narrow country roads.
The final assumption is that the warehouse contains unlimited unit and unlimited vehicles of each
vehicle types. The problem VRPTWDC does not take into account the supplier and/or the
manufacturer side and therefore that any order can be satisfied from the warehouse at any given

time.



Chapter 2: Vehicle Routing with Time Windows and Discrete Vehicle Capacities 35

Using these assumptions the mathematical model of the problem is presented in section 2.
Considerable effort is performed in forming the constraints and the logical expressions; thus, the
resulting formulation is an MILP formulation.

The solution procedure is composed of the preprocessing part, column generation, 2-path cuts
generation, and branch and bound. The preprocessing methods help to identify the first and the last
customers on a route. Furthermore, it can also be deduced from the preprocessing that certain pairs
of customers cannot be adjacent. Thus, by gathering this information the number of the variables is
reduced significantly. The preprocessing proves to be more effective if the time windows is tight that
is, if the constraints on the time limitations are strict, the preprocessing reduces more variables.

After the preprocessing and arc elimination, the column generation method is applied. Here, the
master problem is defined as a set partitioning problem and the subproblem is defined as an
elementary shortest path problem with time windows. The master problem is solved using LP and
the subproblem is solved by a dynamic programming algorithm. This algorithm differs from the
previous programs in the literature, in the way that it does not allow k-cycles that mean eliminating

visits to a node twice in a specific route at the i th and k+i th positions. An example of a 2-cycle is
i, > i, —1i,. In the previous studies, researchers could find a way to eliminate 2-cycles by

employing types to each label and by reconsidering the dominance criteria. However, 3-cycle or
more cycles cannot be eliminated. The presence of such routes decreases the lower bound at the
column generation and thus increases the optimality gap. In the proposed method the predecessors of
each node are kept as a vector and by using the dominance rules the k-cycles are not allowed in the
dynamic programming algorithm. This proved to be very successful such that in some of the
problems the optimality gap is reduced without increasing the computational complexity. There are
several important points in the discussion of the column generation and the dynamic programming
algorithm. The dynamic programming algorithm usually takes long CPU times in the solutions of
the problems and several parameters that are described in Chapter 6, are used to stop the algorithm
when certain conditions are satisfied.

The next step is to determine valid inequalities. The theory of valid inequalities is handled by

employing 2-path cuts. Generation of 2-path cuts prove to be successful when certain sets of
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customers are found. The flow into these sets of customers must be less than two from the results of
the relaxed problem and also the set must be infeasible when its TSPTW problem is solved. As
shown in the illustrative example, the 2-path cuts strengthen the bounds significantly.

Finally the branch and bound algorithm is applied. According to the branching priorities, first
the number of vehicles is branched. After several iterations, when the total number of vehicles
becomes integer, branching is applied on the flow variables.

Another contribution is the two index formulation of the VRPTW. The model of the integer
program is formulated using propositional logic. All the previous models on the VRPTW uses the

adjacency variable as X, . However, in this work the adjacency variable is formulated by
employing two binary variables X and Z,, and by adding a new constraint which logically relates

these two variables. Thus, for a 100 customer problem the variables due to X reduces from 100,000

to 11,000 where 10,000 of the variables are from X and 1000 variables from Z, . New constraints
are added for relating the two integer variables, X, and Z,. Two formulations are presented for

this relation by the Eqns. (2.9), (2.10) and Fig. 2.4. Although, the formulation that includes Eqn.
(2.9) generates more constraints, it covers the convex hull of the problems more efficiently.
Therefore, the solution time is reduced by employing the initial formulation. Another important
property of the model is that it contains only linear constraints. In the previous work by Tan[26] and
Kohl[40], the problem is presented as nonlinear programming problem due to the time balance
around the customers. The TSPTW problem that is used in the 2-path cuts is the same model without

the capacity constraints.
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Chapter 3

DESCRIPTION OF WLRP

The definition of the WLRP is first given in Perl[3], this formulation is changed to MWLRP in Perl
and Daskin[4]. Hansen et al.[5] proposed a new formulation by discarding the subtour constraints by
using a flow variable and finally Wu et al.[6] formulated the same problem with auxiliary variables.
All of the above formulations use three-index variables. Hansen’s[5] formulation is given below for

comparison with the formulation given in this thesis:

Indices
i Customers /,2,...,.N
j Depots N+1,N+2,...N+M
g Nodes 1,2,....N+M
h Nodes 1,2,...N+M
k Vehicles 7,2,...,K
Variables
X 1 If node g precedes /4 on route k
# 10 otherwise
v 1 If customer i is allocated to depot j
g 0 otherwise
2 1 If depot jis established
g 0 otherwise
77 1 If node his assignted to route k
" |0 otherwise
F . TThe truck load between node g and customer i on route k
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Parameters
N Number of customers
M Number of potential depots
K Allowed number of vehicles
don Distance between node g and node &
gy Demand of node g
Jc Fixed cost of establishing depot j
ve; Variable cost per unit throughput at depot j
t Maximum throughput at depot j
Ck Capacity of vehicle k
cm Cost per mile
. N+M N+M N K N+MN+M
Min 3 (fe;-Z,)+ Y Yle,-q,-,)+> (m-d,-x,,) 3.1)
j=N+1 j=N+1 =l k=1 g=1 h=l
Subject to:
K N+M
> Y X, =l Vi (3.2)
k=l =L hei
N
Naq 7z, <c, Vk (3.3)
';’1+M N+M
2 X = Z X g =0 Vh,Vk (3.4)
g=l.g#h g=l.g#h
N
Sa,¥,~1,-2, <0 v 65
i=l
727, +7Z, -Y,; <1 Vi, Vj,Vk (3.6)
Y,-Z,<0 Vi, Vj 3.7)
N+M
ZZy - > X =0 Vh,Vk (3.8)
g=l.g#h
N+M .
Yy, =1 Vi (3.9)
j=N 1
ZZ, -z,<0 Vj,Vk (3.10)
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N+M N .

Y Fu- YF,—-2Z,-q,=0 Vi, Vk (3.11)
g=lg#i r=lrei

Foy—X (e, —q,)<0 Vi,Vg,Vk,g #i (3.12)
N N+M
> >Y,=N (3.13)
i=l j=N+1

X 4 =0,1 Vg,Vh,Vk (3.14)
Y, =0, Vi, Vj (3.15)
Z,=0]1 vj (3.16)
7z, =0, Vh,Vk (3.17)
F, 20 Vg, Vi, Vk,g #i (3.18)

This WLRP formulation is efficient only for small problems. The subtour elimination constraints
in Perl’s[3] formulation are handled wisely by implementing the truck load variables F. Since this
formulation contains a lot of redundant constraints and variables, a new formulation that eliminates
these redundancies is developed in this chapter.

The first redundancy appears in the new variables F,, such that these variables contain
information about the destination and the route of the truck; however, this information is already
available in variables X, Thus, it is proposed to model F,y, as F, and use the destination and the

route information of X, in the constraints. This change would lead to a decrease in the number of
variables from K(N +M)* to N+M .

Another redundancy is seen in the allocation variables Y; that are required in Hansen’s
formulation for modeling the capacity constraints for each warehouse in Eqn. (3.5). However, Y is
obtained directly from the flow variables X, and hence it is proposed to remove Y; and use a
combination of X and Fy to model the capacity constraints of the warehouses. However, it is seen
that it is impossible to model the truck load out from each warehouses with a single index and the
variables £, are changed to F; and FWj. Together with this change, the variables Y;; are removed.

The final redundancy is seen in the flow variables Xgn that contain allocation information for
each pair of customers. However the allocation variables ZZ, are already present in Hansen’s

formulation, containing the allocation information for each node, and thus it is proposed to discard
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the last index in Xy and model it as X, Thus, the proposed formulation becomes a two-index

formulation for the WLRP, and the number of variables are reduced from

DK(N+MY +NM +K(N+M)+M 1o (N+M)P +M +K(N+M)+N + KM where

for the 85-customer, 7-warehouse and 15-vehicle problem this decrease is from 204842 to 9744.

The proposed formulation is as follows:

Indices

Ji

= 300 3

Variables

X

gh

Z.

¥l

zz

hk

F,

1

FW.

Sk

Parameters
N
M
K

dg/z
e
fe;,

Ve,

r,

K

Ck

Customers /,2,...,.N

Departure depots N+1,N+2,...N+M
Arrival depots N+M+ I, N+M+2,...N+2M
Nodes 1,2,....N+2M

Nodes 1,2,...,.N+2M

Vehicles 1,2,....K

1 If node g precedes &
{0 otherwise
1 If depot j, is established
{O otherwise
1 If node A is assignted to route k
{0 otherwise
The truck load carried out from customer {
The truck load carried out from depot j; on route &

Number of customers
Number of potential depots
Allowed number of vehicles

Distance between node g and node 4
Demand of node g

Fixed cost of establishing depot j;

Variable cost per unit throughput at depot j,
Maximum throughput at depot j,

Capacity of vehicle &
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cm Cost per mile
N+M N+M K N+M N+M
min 'Z(fcj'zj)—ih 2 Z(ch'Fij)+ 2 Z(Cm'dgh'xgh)
J=N+l j=N+1 k=] =l k=l
subject to
N+2M
Yx, =1 . Vi
b=l st
N
zq,' ZZ; Sc, Vk
=1
N+2M N+M
ZX/Iy_ ZXgh:O hE{l,K,N+M}
g=lg#h g=l.g#h
N+2M
>zz, <1 Vk
=N+
K
K'Xih"'zk'(zzik_zzhk)SK Vi,Vh
k=1
K
K'Xh;"'zk'(zzik_zzhk)SK Vi,Vh
.
>X,->2Z, =0 je{N+1K ,N+2M}
i= k=1
K
Z‘ZZJ'II"._-'K.Z/] ,_<__.0 vj]
k=1
£
272, -7, 20 Vi
k=1
X
>z, =1 Vi
k=l
N N
fi. ﬁfi: _qiin,iz _Xi,iz 'un 2"2% Vi],Vi2
u=l u=l
N+2M N N )
( 2 X, ]’(un)ﬂ”,- <4, Vi
J=aN+M 4! y=l u=l
N+M N
z FWj,k_Zq,"ZZik:O Vk
J=N+ i=1

U
FW, -4, 72, <0 Vi, Vk

=l

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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K

YFW, ~t,-Z, <0 vj, (3.34)
k=]
22 =22y, =0 vj, (3.35)
N+2M N+M
1 I%IX&J =0 (3.36)
g=l j=N+
N+2M  N+2M .
) X1 =0 (3.37)
§= Jy=N+M+
X, =01 Vg, Vh (3.38)
Z, =0, v, (3.39)
2z, =0]1 Vh,Vk (3.40)
F; 20 Vi (3.41)
FW,, 20 V), Vk (3.42)

Constraints (3.20) state that each customer must be followed by exactly one node. The sum of
the capacities of customers in each route must be less than or equal to the vehicle capacity, and this
is handled in constraints (3.21). Constraints (3.22) restrict that every node entered by the vehicle
should be left by the same vehicle. Constraints (3.23) require that for every route there can be at
most one warehouse assigned. Constraints (3.24) and (3.25) link the allocation and routing

components using the propositional logic given in Figs. 3.1, 3.2 and 3.3.

2, NZZ, =Y,
72, N7Z, =Y,
—|(ZZ,.k ANZ,, )v Y,
—LL,N—ZL, VY,
(1-zz,)+(-2z,)+Y, 21

ZZ,+7Z, ~Y, <1

Figure 3.1: Logical description of the constraints linking the variables ZZ, , ZZ i and ¥,
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However, in the proposed formulation the variables ¥, are removed in order to reduce the

number of variables. Therefore the allocation variables ZZ, are tied with the flow variables X ,,

following the logic:

(x,

ih

vX,)ANZZ, =7Z,

~1[(Xih v X )/‘ 2z, ]V zz,

hi

'ﬁ(Xih v Xhi)v_'ZZik v Zth

(_1Xih /\""Xhi)v (_'ZZik v Zth)

(—'Xih v —ZZ, VZth)/\ (—'Xhi v —ZZ, VZth)
-x,)+0~zz,)+722, 21 & (-X,)+0-22,)+7Z, =1

hk =

X,+22,-7Z, <1 & X,+Z7ZZ,6 -7Z, <1 Vi,Vh,Vk

Figure 3.2: Logical description of the constraints linking the variables ZZ,, ZZ, and X,

However, if these constraints are added to the problem the number of constraints would increase
by 2N (N +M )K . This increase would lead to large computing times in the relaxation phase of the
branch and bound, therefore these constraints are aggregated over the vehicles to form the
constraints (3.24) and (3.25). For example, consider two customers i, and i, such that i, follows

iy . In this case the Boolean variable x;, must have a value of Yes.
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Kxi,iz +klzzi,k, _k2zzizk2 <K

Kx,, +kyzz,, —kzz, <K

iy

K)C~- +kZZZ,~2k2 —kIZZilkl S K

hiz

&» : +k]ZZ,IkI _k2zzizk2 S K

laly
leading to
k, Ly, _kzzzizk2 <0

k22, —kyzzy, 20

irky

Therefore, customers i, and i, can only be placed

at the same vehicle (meaning that k, and k, must

be equal).

Figure 3.3: Validation of the constraints (3.24) and (3.25)

Constraints (3.26), (3.27) and (3.28) tie the allocation and routing variables for the warehouses,
stating that every warehouse that is used must be assigned to a route. Although constraints (3.26)
seem to be redundant for the IP, it provides better bounds in the LP relaxation phase of the branch

and bound. Constraints (3.29) state that each customer must be assigned to a route. Constraints

(3.30) specify the load distribution between two customers i, and i, such that if customer i,

follows i, then the sum of the outflow from i, and i,’s demand equals to the outflow from i,.

Constraints (3.31) state that the outflow from the last customer in the route must be zero. Constraints
(3.32) require that the outflow from the warehouse must be equal to the total load on the vehicle for
each vehicle. Constraints (3.33) tie the allocation and outflow variables such that if a vehicle is not
used then the outflow from the warehouse on that route must be zero. The constraints (3.34) state
that the total outflow from each warehouse must be less than the warehouse capacity. The
constraints (3.35) link the departure and arrival depots such that each route starts and ends at the
same depot. Constraint (3.36) stipulates that there can be no arcs to a departure depot and constraint

(3.37) states that there can be no arcs originating from the arrival depots.
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Although this WLRP formulation reduces the problem size for integer programming, it is still
impossible to solve the problem directly. An efficient exact algorithm is presented in the next

chapter.
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Chapter 4

SOLUTION MEHOD FOR WLRP

The solution method for the WLRP is given below:

If YR, is integer for
any j

Yes

)

-
Assign routes 'O —>i—->N+1, Solve the st
Vie N partmomng problem
Column
Generation <
Solve SP for Solve SP for Solve SP for
wh 1 wh 2 wh ]
> SI:eW A rdcost, <0 for
ubspace \ any ce Col
2-Path Cuts
< . . Find sets S such that
if p Y, =lis Check TSP
; ) — easibility [€— 3 x, <2
. ; feasibility if
infeasible for any S iENIS jeS
> No
Solution IP?
Igranch & Yes No
ound Update Update
< Z* LB
No

s>

No

Optimal Solution

Figure 4.1: Solution method for WLRP
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The algorithm initializes itself by assigning a single customer to a route that starts and ends in

the same depot (i.e. depot s i — depot ;)- Next, the master problem is solved and using the

values of the dual variables of the master problem, the subproblem is solved for each warehouse
independently. The column generation scheme continues until no more feasible routes are found and
the objective value of the master problem at this stage specifies the lower bound for the problem. At
this point, the 2-path cuts and subtour cuts are generated and the solution is again returned to the
column generation algorithm. If the solution to the master problem is not integer, then branch and
bound algorithm is employed to find integer solutions. The priority in the selection of branching
variables is given to the warehouse allocation variables since these variables may result in larger
variation in the objective function values. If all allocation variables are integer then the total number

of vehicles is branched and finally, flow variables XR are selected as branches.

4.1 Column Generation

Like VRPTW, WLRP can be solved using the column generation method. In order to implement the
column generation the WLRP must be decomposed effectively to a master problem and a
subproblem. When the proposed formulation is examined it can be seen that there are two types of

assignment variables: variables for assignment of node pairs X, and variables for assignment of
nodes to vehicles ZZ . The constraints (3.22), (3.24), (3.25) and (3.26) satisfy the assignment

constraints for the WLRP and they are independent from the other constraints.

4.1.1 The Master Problem

Using the independence of the assignment constraints and flow constraints, the WLRP can be
decomposed into an assignment problem and a shortest path problem. The assignment problem can
be formulated as a set partitioning problem and it becomes the master problem. The formulation is

as follows:

Indices
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i

Customers /,2,...,.N

j Depots N+I,N+2,...N+M
r Paths 1,2,..,R
Variables
XR, 1 if path r is used, 0 otherwise
YR; 1 if depot j is established
Parameters
N Total number of customers
M Total number of warehouses
R Total number of feasible paths
d, 1 if customer i is on path r
u, 1 if depot j is on path r
c, Total cost of the path r
e, Fixed cost of establishing depot j
by Maximum throughput at depot j
lw Trivial lower bound on the number of depots
R N+M
Minimize Y. c.XR + Y fc,YR,
r=l j=N+
Subject to
R
Y 8, XR, =1 Vie N
r=l1

R
(N+M)YR -3y, XR 20

r=l
R
YR, - i, XR, <0
r=l

N+M
D YR, 21w

J=N+1

N+M
> U, YR, —XR, 20

j=N+1

Vie{N+,N+M}

Vie{N+1,N+M}

Vre R

4.1

(42)

4.3)

4.4)

(4.5)

(4.6)
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R A
Yu, q,-XR <t, YR, Vie{N+LN+M}. 4.7)
r=l
XR, ={0.1} Vre R (4.8)
YR, ={0,1} Vie {IN+LN+M} (4.9)

The objective function (4.1) represents the objective function of the original WLRP. The fixed
costs of establishing depots fc; are exactly the same in the formulation of WLRP. The costs c,
include the traveling cost of the route r and the variable cost of assigning route r to depot j which
depends on the amount of load carried by the vehicle that is assigned to this route. The constraints
(4.2) stipulate that each customer is visited exactly once. Constraints (4.3) and (4.4) link the
variables YR; and XR, such that if XR, is 1 (meaning that if the route  is used), then the depot j that is

assigned to the route in the subproblem must be used (i.e. YR, =1). Constraint (4.5) imposes a lower

bound for the number of warehouses used depending on the capacities of the vehicles. Constraints
(4.6) further link the variables YR; and XR, . Although constraints (4.6) seem redundant they are
added to the problem because they provide better lower bounds in the relaxation phase. Constraints
(4.7) specify that the sum of the capacities of the routes assigned to a specific depot j must be less
than or equal to the warehouse capacity.

This set partitioning formulation of the WLRP, again, depends on the generation of the set R.
The difference between the VRPTW and the WLRP is that the costs ¢, include the variable costs for
the warehouses in the WLRP. The logic behind the column generation follows the logic presented in
section 2.2.3 such that if all feasible sets are generated this formulation finds the optimal cost of the
problem. However, due to the large number of feasible paths this problem cannot be solved as an
integer problem and thus the integrality constraints (4.8) and (4.9) are relaxed.

The algorithm starts by assigning every customer to a different route that starts and ends from
every depots similar to the initialization of the proposed algorithm for VRPTW. Therefore, there are
N XM routes initially in the set R, and this gives the upper bound to the original problem. As the

master problem is solved, the dual variables associated with the constraints (4.2), (4.3), (4.4) and
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(4.7) are stored for the subproblem to generate feasible routes and are named as dual;, dual; ,

dual f and dualz respectively.

4.1.2  The Subproblem

The master problem handles the assignment constraints and the warehouse capacity constraints.
Other capacity constraints remain in the subproblem and reducing the subproblem to a shortest path

problem with capacity constraints. Formulation of the subproblem for any warehouse j is as follows:

Nuj Nuj A
Minimize Z ngh-Xg,, (4.8)
g=1 h=lh#g
Subject to:
NuUj
2. X, =0 (4.9)
g=1
Nuj Nuj
2.4, 2 X, <c (4.10)
g=t =1
X, =01 Vege{Nujivhe{N U j} 4.11)

The nodes in this formulation include only a single warehouse j, and therefore this problem must
be solved for each warehouse. Moreover, this problem is for a single vehicle type as in VRPTW.

The objective function of the subproblem is to minimize the reduced cost of the master problem and

A

d, =d, —dual 2 is the modified distance. Solving this problem gives a single short path with the

most negative reduced cost for the master problem in a significantly large computing time. Another
dynamic programming algorithm is formulated for this problem similar to the dynamic programming
formulation in section 2.2.3. The subproblem is solved using Dijkstra’s Algorithm without the time

constraints. Since the time constraints are not included in this problem, several issues appear that

must be handled properly.
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For each label the following information are known: the current node (DYN,), its modified cost
(DYN,), its predecessors in vector form (DYN,,), current load on the vehicle (DYN,) and the type of
the label (DYN,). A label can only be strongly dominant (DYN,=1) or weakly dominant (DYN,=2).
as in the VRPTW. The information on possible successors is kept in vector form (DYN,} for each
weakly dominant label. Then the labels can be represented as follows:

For WLRP, the initial label for a warehouse j are:

DYN, [0]=0 (4.12)
DYN,[0]=dual’ + dual!, (4.13)
DYN,[0]=0 (4.14)
DYN, [o]=1 (4.15)
DYN, [0]= {1000}, (4.16)
DYN _[0]= {1000} (4.17)

Other labels are generated using these recursive formulas

DYN, [Ib]=g (4.18)
DYN [ib]= DYN [I6']}+ d ow, 11, + VC ;+q, —dual] - q, (4.19)
DYN,[ib]= DYN,[ib']+q, (4.20)
DYN, [ib]={DYN, 5] DYN [v] 1000} (4.21)

The vector {1000} contains elements that are equal to 100, and DYN ,[Ib'] represents the
vector of elements of DYN [16']that are less than 1000. DYN ’ [ib] and DYN, [1b] carry the same

information as in the VRPTW case. Each label has a type and it determines whether the label is
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strongly or weakly dominant. The dominance rules for any two labels [b' and I[b are slightly
different from the VRPTW case. If:

DYN [Ib'|= DYN, [Ib] & DYN,[Ib'|< DYN,[Ib] & DYN [Ib'|< DYN [ib] (4.22)

Then label Ib' dominates label [b. As in VRPTW, the domination property is very crucial
because some of the dominated labels can be discarded and this speeds up the column generation
significantly. Any successor of the dominated label is dominated by the same successor of the
dominating label as in the VRPTW case. The conditions for discarding is slightly different from the
VRPTW. If [b' dominates label [b, Ib can be discarded if:

1) If Ib' is a weakly dominated label

2) If it is not possible to revisit the predecessor node of [b' due to capacity constraints

3) If it is possible to revisit the predecessor node of /5" and

a. If the predecessor node of [b' is not accessible from [b by either,
i.  capacity constraints or
ii.  if the predecessor node of [b' is already visited by /b

b. If Ib is dominated by other labels that have different predecessor nodes than [b'.

If a label is dominated and not discarded then it becomes a weakly dominant label and it can

only be extended to the intersection of the predecessors of the dominating labels which is

represented by the vector DYN [lb].

A label is said to be processed in the dynamic program if new labels are generated from this
label. Among the unprocessed labels, the label with the minimum demand is chosen to be processed.
This is named as the best label algorithm and it differs from the algorithm in the VRPTW since the

unprocessed label with the minimum time is chosen in VRPTW.
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For praétical reasons all the labels are classified in terms of their current nodes and they are
ordered lexicographically by their demands in an ascending fashion. Therefore, a it is impossible for
a label with a higher label number to dominate a label with a lower number.

The code of the dynamic programming can be given in Fig. 4.2 as follows:
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Bestn:=0;Bestc:=dual3[j]+duald[j];Bestd:=0;

Besty:=1;cntbest:=0;start:=0;
forall (j2 in 1..N) {Bestp[j2]:=1000;Bestx[j2]:=1000;}
forall (i in [1..N+M]) {cntlb[i]l:=0;}

while ((sum(i in [1..N+M]) (cntlb[i])>0)V start=0) do {start:=1;
forall{(il in 1..N+M:1il<=N Vv 1il=7){

if(il<>Bestpl[l..N] A (Besty=2A i1l=Bestx[1l..N])then({
if (Bestn<>il & Bestd+qg[il] <= C) then ¢

cntlb[il] :=centlb[il]+1;
New //Place the label in an ascending order according to demands//
ILabels forall(iil in 1..cntlb{il]:Bestd+g[il]l>=dynd[il,ii1]){

place:=iil;break;}
dynn[il,place] :=il;
dync[il,place] :=Bestc+d[Bestn,il]-
dual[il]l+g[Bestn] * (VC[jl-dual7[j]1);

dynd[il,place] :=Bestd+qg[il];
dyny[il,place] :=1;
dynplil,place,l..N]:=Bestp[l..N] UBestn;

1}

forall(i in [1..N+M]){

forall (110 in 1..cntlb([i]){

forall(ill in 1..cntlb[i] A 111<i10){
if(dynn(i,i10]=dynn[i,i11] A dync[i,il0]<=dyncli,il0] A

dynd[i,110]<=dynd[i,110]) then{
dyny[i,111]:=2;
if{dyny[i,1101=2 V

— {(dynp[i,110,1..N]Udynp(i,ill,1..N] = dynp[i,110,1..N] A
Dominance dynp[i,110,1..N] Udynpli,i11,1..Nl=dynp[i,i10,1..N]))then{
Criterion | cnelb[i]:=cntlb(i]-1; //Discard label i11//

else
dynx[i,i11,1..N]:=dynpl[i,i10,1..N]
IR

forall (120 in [1..N+M1){
1f(dynd[i20,1] = min{(i2l in [1..N+M]) (dynd[i21,11)) then {
cntbest:=cntbest+1;Bestn[cntbest] :=1i1;
Bestc:=dync[120,17];
Best Bestd:=dynd[i20,1];
T.abel | Besty:=dyny[i20,1];
Bestp([l..N]:=dynpl(i20,1];
Bestx[1l..N]:=dynx[i20,1];
cntlb[i20] :=cntlb[i20]1-1; //Discard Label i20//

113

Figure 4.2: Dynamic Programming code for solving SPP
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4.2  2-Path Cuts

Finding and implementing valid inequalities reduce the solution time significantly, as in
VRPTWDC. The 2- path cuts and subtour cuts are the most important strong valid inequalities.
Description of the 2-path cuts can be found in detail in section 2.2.3. The separation algorithm for
the WLRP is the same algorithm that is used for VRPTW and VRPTWDC. However, there is no

need to solve TSP problem since there are no time windows; therefore only the capacity constraints

remain. Thus, if sets satisfying 2 Z X ; <2 are found and if the total demand of the customers of
ieNIS jeS

the set exceeds the vehicle capacity, then it is concluded that a 2-path cut is generated. After the 2-

path cuts and the subtours are found the following constraints are added to the master problem:

R
3.1, XR, 21 Vs, € S, (4.23)
r=l

yn,,XR, 22 Vs, e S, (4.24)

where the set S, represents the routes that contribute to the subtour sets, S, represents the routes

that contribute to the 2-path cut sets and 77, takes an integer value which specifies the number of

arcs that enter the set s in route r. For example, consider that the following set is found using the

separation algorithm (without paying attention to the sequence of nodes):
2.6 11 24 30 53}
Furthermore, consider these four routes with the given sequence of nodes:

Route 186:  [58 19 20 3 44 32 36 58]
Route 477:  [59 16 24 28 59]
Route 510:  [58 15 30 31 46 47 53 51 58]
Route 581:  [61 37 11 2 49 21 23 6l]
Route 186 does not contain any of the nodes in the cut, therefore 77,,,, = 0. Route 477 contains

only node 24 and therefore 1),,,, =1. Route 510 contains nodes 30 and 53, and the arcs to both of
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these originate from nodes outside the set, for this reason, 1 5;,, = 2 . Finally, although the route 581

contains two of the nodes in the cut (2 and 11), there is only a single arc that originates from nodes

outside the cut (from 37), hence 1), =1.

The cut generation is only performed in the root node for computational reasons and the

following column generation iterations include the constraints (4.23) and (4.24). The dual variables

associated with these constraints are a'ualfI * and dual’*. However, for the dynamic programming

7, cannot be used directly and therefore @, is defined as the following:

Sy

Oy = zk“nsl, -dual? +i in -dual?* (4.25)

5=1 r=l,(g.h)sol, sa=lr=l(g. h)esol,
This means that if node 4 follows node g in any route r, then the sum of the dual variables of

every cut that includes the route r becomes the dual variable that corresponds to & o - Lherefore, the

dynamic programming changes and the calculation of the cost becomes:

A

d, =d, —dual -0, (4.26)

gh

4.3 Branch and Bound

The final step is the optimization of the MILP is the branch and bound algorithm as in VRPTW. The
solution is usually fractional after the column generation and 2-path cuts. Thus, good branching
decisions must be made. In this work, it is observed that branching priorities on the variables that

model warehouse locations, namely the variables YR,, proved to be successful. The branching
variable is selected to eliminate the largest infeasibility, that is, the variable YR ; that has the closest

value to 0.5. After branching on the warehouse location variables, branching is done on the total
number of vehicles is the most successful method. Therefore, two child nodes are created and the
constraints

i XR, =|k | and i XR, =[k] (4.27)

r=l
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are added to the two child nodes, respectively. As this constraint is added to the master problem, the

dual variable associated with this constraint dual® is considered in the subproblem. Therefore the

initialization becomes:
DYN,[0]= dual’ + dual} - dual” 4.13")

The new solution is then returned to the column generator and iterations continue until no more
columns are generated. Finally, the branching decisions are specified on the flow variables. The

logic behind the implementation of the constraints for these branches are similar to the 2-path cuts.
When the current solution is examined there are several fractional arcs (g,%) which are found by

summing up the values of the routes that contain this arc. Since none of the routes contain a specific

arc twice, the following constraint is added to the master problem:

Y XR =land Y XR =0 (4.28)

r=1,(g .k esolp[r] r=I,(g,h)E.m/p[r]

Two child nodes are obtained after adding these constraints. The dual variables associated with

this constraint dual™ is subtracted each time in the dynamic programming algorithm the label is

extended from node g to node 4.
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Chapter 5
RESULTS OF WLRP PROBLEMS

Although there are several studies on the WLRP, there are only a few benchmark problems. Perl[3]
generated three problems and these are the only problems that are solved by the following studies.

Thus, in this work these three problems are studied and the results are compared with the previous

studies.

5.1 Hlustrative example

As an illustrative example Perl’s test problem with 12 customers and 2 possible warehouse sites is

selected. The locations of the warehouses and the customers are shown in Fig. 5.1:

PERL -12
35
* . .

30 . ’
g 25 ¢ . ¢
*é . *
g 207 [ |
E . .
8 15 7 Y
>'_‘ 10 - *

5 .

0 T T T T T T

0 5 10 15 20 25 30 35
X-Coordinate

Figure 5.1: Location data for the small test problem Perl-12

The full data of this problem can be found in Appendix A. After the column generation at the

root node the fractional solution of the problem can be represented in a flowchart as given in Fig.
5.2
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Figure 5.2: Solution obtained after column generation at the root node

The objective value of this solution is 351.5446. The first part of the algorithm ends after
obtaining this result. The next step is to apply the separation algorithm to find subtours and 2-path
cuts. The separation algorithm finds only one 2-path cut which is the set enclosed by the shaded
rectangle shown in Fig. 5.2. There are three arcs entering the set and the sum of the fractional
solutions of these arcs is less than 2. However, the sum of the demands of the nodes in the set
exceeds the twice of the vehicle capacity. Therefore, this set requires more than 2 vehicles and the
routes that contain any arc entering the set must be added in the cut with suitable coefficients. The
values of these coefficients can be calculated using the knowledge in section 4.2.

After the cuts generation at the root node, branch and bound algorithm is employed. According

"to the branching priorities, first branching is done on the warehouses and YR,, =1. Setting this
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variable, the problem is again solved using column generation and the optimal solution is found

immediately after also setting YR, =0. The solution of the problem is given in Fig. 5.3:

PERL - 12

Y-Coordinate

0 i T T T T T
0 5 10 15 20 25 30 35

X-Coordinate

Figure 5.3: Integer solution to the small test problem Perl-12

According to this solution, only one of the warehouses is used with 2 routes. The nodes that are

used in these routes are given in Table 5.2

5.2 Results for benchmark Problems

Results of the benchmark problems are given in Table 5.1. For the problem with 12 customers, the
lower bound found at the root node is increased by finding a valid inequality. The solution is
obtained at the first branching where two child nodes are obtained. The dynamic program is
executed 14 times to obtain the solution. For the second problem, the fractional optimality gap is less
than the first problem and 12 valid inequalities are generated at the root node. The optimal solution

of the problem uses only three of the fifteen possible warehouse sites and the nodes that are used in
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the problem are shown in Table 5.3. The fractional optimality gap is the largest in the third problem

and therefore, the problem can be solved after 76 nodes are generated in the branch and bound tree.

The nodes that are used in the routes are shown in Fig. 5.4.

Table 5.1: Results for benchmark problems

VI

Problem LB, LB, IP Optgap | Wh | Veh | Node Sub
Perl - 12 351.5446 | 352.3629 | 355.5825 0.020 | 2 2 1 14
Perl - 55 5438.6451 | 5450.8122 | 5478.700 0.010 3 10 40 12 78
Perl — 85 7422.2786 | 7448.1002 | 7517.6000 0.029 3 11 76 23 117

Table 5.2: Route information of the 12 customer problem

Perl -12
Route |

13-9-8-6-1-2-3-7-13
13-4-5-11-10-12-13

Route 2

Table 5.3 Route information of the 55 customer problem

Perl-55

Routc 1 | 60-30-19-31-7-3-8-60
Route 2 | 65-9-4422-1-13-65
Route 3 65-11-5-65

Route 4 | 67-36-35-24-26-18-15-67
Route5 | 67-25-48-49-20-41-67
Route 6 | 60-34-43-55-39-54-38-60
Route7 | 65-47-3751-21-10-6.65
Route 8 | 60-29-23-28-12-17-33-60
Route | 60-45-32-16-27-14-22-60
Route 10| 65-53-50-52-40-46-44-65

Table 5.4 Route information of the 85 customer problem
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Perl-85
Route 1 89-5-1-44-46-43-34-3-8-89
Route 2 87-32-38-2-45-30-33-87
Route 3 87-22-17-28-75-23-29-19-87
Route 4 87-63-14-70-71-73-74-12-72-87
Route 5 91-49-76-51-79-13-67-83-82-91
| Route 6 89-9-6-15-85-31-7-42-4-89
Route 7 91-48-35-26-84-18-36-25-41-91
Route 8 89-47-53-50-81-80-52-64-11-89
Route 9 91-60-10-77-37-78-21-20-24-91
Route 10 | 87-62-61-65-66-68-69-27-16-87
Route 11 87-54-59-58-39-56-57-40-55-87

As it can be seen that the optimal values are found for each of these benchmark problems. There
are no other benchmark problems that are solved by researchers and therefore, different location
routing problems are generated in all studies usually using uniform distribution. Furthermore, these
problems are listed without giving the detailed data of the problems. Since there is no basis for
comparison no further problems are solved in this thesis. The previous results on these problems are

as follows:

Table 5.5: Benchmark problems on WLRP

Perl[3] Hansen[5] Wu[6] Proposed
Wh | Rt | Cost Wh | Rt | Cost Wh | Rt | Cost Wh | Rt | Cost
Perl12 | 1 2 | 355.58 1 2 355.58 1 2 355.58 1 2 355.58
Perl 55 10 | 5795.62 4 10 | 5617.67 | 3 10 | 553228 |3 10 | 5517.25
Perl 85 11 | 7789.96 3 11 755161 |3 12 | 778128 | 3 11 7517.6

Wi w

For the 55 customer problem the optimal solution found in this thesis is lower than all

the previous results. The optimal solution required 10 vehicles as in Wu’s[6] work,



Chapter 6: Conclusions

63

however, the cost is lower due to the routing. The optimal solution is also less for the
problem with 85 customers. The optimal solution contained only eleven routes as in
Hansen’s[5] work, however the routing algorithm in this thesis helps to find better routes

than Hansen’s[5] heuristics.
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Chapter 6
CONCLUSIONS

WLRP is a strategic level decision problem aiming to satisfy the demands of a given number of
customers. The location decisions are as important as the routing decisions and thus, forced the
researchers to emphasize on the integration of the two well known problems, the vehicle routing
problem and the warehouse location problem. The need for exact methods expanded the scope of
this thesis and the vehicle routing problem with time windows is studied. In this thesis there are
significant contributions to VRPTW, VRPTWDC and WLRP. New formulations are presented. For
all these problems Furthermore, the dynamic algorithm is modified for the VRPTW and
VRPTWDC. The method that is used for the VRPTW and VRPTWDC is also applied to WLRP and

important results are obtained.

6.1 Integer Formulations

For both VRPTW and WLRP there are valuable studies and both of the problems are formulated
as integer programs. Although it is known that these formulations cannot be solved directly by
traditional mixed-integer programming algorithms such as the branch and bound, they require
attention such that there are many redundant constraints and variables to be reconsidered. For both
of the problems, the programs are changed from three-index formulation to two-index formulation.

Logically this can be stated as in the previous works, the flow variables are represented as X,

ik
meaning that for each node i, the successor node i, and the vehicle k are known. Furthermore, it is

also known from X,  that the successor of node i,and the vehicle are known. However, this

second variable is redundant in a way that if node i, follows i, and if node i, is assigned to vehicle
k, then it is also known that i, is assigned to vehicle k. Thus, the formulation of X, is replaced

with X.

wi,» Ly, and Z, - (for WLRP these variables are X,, , ZZ,, and ZZ,, ). This replacement

itk iy ®

requires new constraints that tie these two integer variables which are also aggregated over the
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vehicles using propositional logic. Thus, the number of variables in each problem is reduced
significantly and the number of constraints is also reduced by constraint aggregation.

Another variable Y, is removed from the WLRP formulation, since the new variables ZZ, are

able carry the information of ¥, .

Direct implementation of these formulations could only solve small problems, and the number
of variables quickly enlarges as the problem size increases. Before applying the column generation
algorithm, the WLRP is tried to be solved by relaxation of the formulation. This is done in an
iterative manner such that first the problem is relaxed and then the separation algorithm for the 2-
path cuts is run. Although there are several cuts that can be generated at the initial relaxation, the
number of 2-path cuts and the subtour cuts quickly decreases in the next iterations. For these
reasons, the bound of the problem does not rise significantly and the problem again becomes hard to

solve.

6.2 Column Generation — The Master Problem

The studies on the VRPTW started by examining an exact solution method, which is also named as
the Dantzig-Wolfe decomposition technique. The column generation algorithm for VRPTW is
examined in order to apply an exact algorithm for the WLRP. According to the Dantzig-Wolfe
decomposition method the VRPTW is decomposed into two subproblems; the master problem is
defined as a set partitioning problem which is an allocation type problem and the subproblem
becomes the elementary shortest path problem with time windows. Although the master problem is
defined as an integer program, the integrality constraints are relaxed and the set partitioning problem
is solved as a linear problem.

The column generation algorithm is in the core of this exact algorithm since most of the
computational resources are required in this step. The linear master problem is solved easily as a
linear programming problem using CPLEX solver that is called from OPL Studio version 3.5. As the
number of feasible routes increase the solution time required for the solution time of the master

problem increases; however, it is almost always negligible compared to the column generation step.
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The reduction in the computing time of the master problem is accomplished by removing some of
the unused columns at every iteration as discussed in section 6.2.
The master problem for the VRPTW includes the constraints for the customers alone initially,

whereas for the WLRP, the problem contains a different variable YR i and therefore the logical

constraints that tie these variables with XR_. Moreover, the WLRP contains the capacity constraints

for the warehouses. The objective of the master problem is to generate the dual variables for each
customer (and for each warehouse in the WLRP), so that the subproblem can be solved to find
feasible routes.

There are also other constraints added to the problem as the procedure enters the cuts generation
and branch and bound phases. The cuts and the branches are applied in special constraints that are

explained in previous sections.

6.3 Column Generation - The Subproblem

The subproblem is used for generating feasible columns, i.e. routes, by using the dual variables
associated with the constraints in the master problem. The subproblem is defined as a SPP (for
VRPTW the subproblem is SPPTW) and formulated as an integer program. The solution of the
subproblem by the pure integer formulation is again NP-Hard and thus requires another exact
method. Furthermore, the solution of the integer problem would give only the “best” route with the
minimum reduced cost. However, usually a lot of “good” routes are required for fast convergence to
the lower bound of the selected subspace. Therefore, a dynamic programming algorithm is used for
the generation of routes.

The algorithm starts from the warehouse node and continues to the other nodes without violating
the capacity constraints (for the VRPTW there also the time constraints that must be satisfied). This
extension to the nodes is executed by using labels. Each label contains specific information on the
current node. In the previous works the labels only contained information on the current node,
current demand and the predecessor of the node. Moreover, in order to speed up the column
generation, dominance rules are generated which eliminate 2-cycles only. That is, these rules do not

allow the labels to return to their predecessors when certain conditions are satisfied. However, there
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is a possibility for k 23 k-cycles, and the presence of these cycles decrease the lower bound. This
reduction in the lower bound causes to have many nodes in the branch and bound at later phases of
the algorithm.

In this thesis, not only the predecessor but all the preceding nodes are recorded with the same
dominance rules. Thus, the sequence of the previous nodes is stated in a predecessor vector for each
label. This application of the predecessor vector not only eliminates all k-cycles but also does not
affect the computational complexity of the problem.

The solution of the subproblem may take a considerable computing time if certain parameters
are not handled correctly. These parameters usually stop the program when certain conditions are

satisfied.

6.3.1  The maxcol parameter

There are many important issues that require attention in the dynamic programming algorithm. The
algorithm is usually stopped before the best route is found. This is because usually a given number
of columns are sufficient for improvement in the objective function of the master problem. For this
application a parameter is used for the maximum number of columns generated, maxcol. In all
problems maxcol is set to 20, and thus at the initial iterations of the column generation, the
subproblems are solved very quickly. After certain iterations, the maxcol parameter no longer stops

algorithm since there are usually less columns generated.

6.3.2  The maxbestlb parameter

Furthermore, the generation of labels is stopped after a given number of best labels are generated.
These best labels are the labels to be extended to the next nodes. This procedure is stated as the
forced early stop in the previous works. The maxbestlb parameter is useless in the starting iterations
of the column generation because the problem is usually stopped by the maxcol parameter. However,
as the change in objective function value of the master problem starts to slow down, the maxbestlb
parameter becomes important. However, there is no unique maxbestlb parameter that works well for

each problem. As the problem size increases maxbestlb must also be increased proportionally.
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However, at the final iteration, the maxbestlb parameter is always removed so that every feasible

route is detected.

6.3.3 The remcol parameter

Another important factor is the removal of columns. This is established in such a way that at each
iteration of the column generation, the columns that are not used in the previous remcol iterations
are removed. The reason for this is that many routes that are generated at the initial iterations, do not
enter the basis in the latter iterations of the column generation. Moreover, each new route is checked
with the previous routes in order to detect and eliminate if these routes are found before. Thus, by
removing the columns that are not used in consecutively remcol iterations, the solution time of the
dynamic programming decreases. Although some of the removed columns are regenerated at the

later iterations, the number of such routes is negligible.

6.4 Cuts Generation

Although, the new dynamic programming algorithm reduces the optimality gap for many problems,
non-integer solutions are encountered at the root node of the branch and bound tree for some
problems. Therefore, cuts are employed in order to reduce the branch and bound nodes. These cuts
are detected using a separation algorithm that checks every possible set of nodes and tries to find the
total flow into these node sets. If the total flow into any set is less than 1, then these sets are added to
the master problem as subtour constraints. For 2-path cuts, the sets with a total inflow of less than 2
are required. However, these sets are only added if their TSP (for VRPTW, TSPTW is solved)
problem is infeasible for a single vehicle. The addition of the cuts increases the lower bound

significantly for most of the problems and the number of branch and bound nodes decrease.

6.5 Branch and Bound

Branch and bound algorithm is applied for the problems that cannot be solved at the root node. The

priorities set for the branching directions proved to have good results in the previous work by
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Larsen[42]. The first priority is among the warehouse establishment variables, YR, . Afterwards, the

branching decisions are taken on the total number of vehicles and finally on the flow variables.
Within each prioritized group, the branches are selected according to the best bound method. For the
WLRP, branching on the warehouses affects the solution significantly, thus, this prioritization is
quite efficient. The bound generated in the branch and bound are added to the master problem using
the constraints explained in previous sections and the dual variables associated with each of these

new constraints are handled in the dynamic algorithm of the subproblem.

6.6 Contributions

The contributions to the problems can be listed.

i. New MILP models are formulated for VRPTW, VRPTWDC and WLRP
a. Variable and constraint redundancies are eliminated
b. Two-index variables are used
ii. New dynamic programming algorithm for VRPTW is proposed
a. Predecessor nodes are stored in arrays
b. k-cycles are eliminated
iii. A set partitioning problem is formulated for VRPTWDC
a. Costs include the fixed costs of vehicles
iv. New dynamic programming algorithm for VRPTWDC is proposed
a. Fixed costs of vehicles are included in cost calculations
b. Predecessof nodes are stored in arrays
c. k-cycles are eliminated
d. Executed for every vehicle type
v. Branching priorities are specified for VRPTWDC
vi. A new set partitioning problem is formulated for WLRP
a. Warehouse establishment variables are modeled

b. Warehouse capacity constraints are modeled
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c. Variable and fixed costs of establishing warehouses are considered in the objective
function
vii. A new dynamic programming algorithm for WLRP is proposed
a. Fixed and variable costs of warehouses are considered in cost calculations
b. Dual variables for the constraints in the master problem are handled
c. Predecessor nodes are stored in arrays
d. k-cycles are eliminated

viii. Branching priorities are specified for WLRP

6.7 Future Work

The proposed method for the WLRP is quite effective and guarantees optimality. However, the
computational complexities faced in the column generation may sometimes lead to changes in the
parameters.

Furthermore, the WLRP can be enriched with several other side constraints. One such constraint
would be the addition of maximum route length. This constraint can be handled in the dynamic
programming algorithm and, indeed, it can reduce the computation time since it forces the program
to stop at a time limit.

The WLRP proposed in this problem considers only the warehouses and the customers. This
two-level supply chain can be enlarged to a three-level supply chain by adding the locations of the
plants. This problem can decide on which warehouse to be supplied by which plant and thus, gains a
more important role in the strategic level decisions.

The method for the VRPTW is solved using parallelization techniques in Larsen[42]. This
property in VRPTW can also be applied to WLRP. This is an important property since the dynamic
programming algorithm can easily solved as independent programs. In the proposed method the
dynamic programming is solved for each warehouse (and if the vehicle types would be different, for
each vehicle type). Thus, at each iteration of the column generation several independent problems

need to be solved. Each problem can be solved by a computer and their results can be collected in a
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master computer at each iteration. The problem faced with this method is that quickly one of the

slave computers become bottleneck and this is an area of future progress.
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APPENDIX A
DETAILED DATA FOR ILLUSTRATIVE EXAMPLES

Table A.1: Customer data for R205

Cust. No| Xcoord | Ycoord | Demand R(?ady I?ue Sex.'v1ce
Time Time Time
0 35 35 0 0 1000 0
1 41 49 10 658 898 10
2 35 17 7 93 333 10
3 55 45 13 436 676 10
4 55 20 19 620 860 10
5 15 30 26 20 260 10
6 25 30 3 345 585 10
7 20 50 5 251 491 10
8 10 43 9 323 563 10
9 55 60 16 329 569 10
10 30 60 16 485 725 10
11 20 65 12 146 386 10
12 50 35 19 167 407 10
13 30 25 23 639 879 10
14 15 10 20 32 272 10
15 30 5 8 118 358 10
16 10 20 19 203 443 10
17 5 30 2 682 922 10
i8 20 40 12 286 526 10
19 15 60 17 204 444 10
20 45 65 9 504 744 10
21 45 20 11 153 393 10
22 45 10 18 332 572 10
23 55 5 29 146 386 10
24 65 35 3 656 896 10
25 65 20 6 716 956 10
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Table A.2: Customer data for the small test problem Perl-12

Cust. No| Xcoord | Ycoord | Demand
1 34 31 20
2 29 32 20
3 24 33 20
4 17 29 20
5 8 28 20
6 33 27 20
7 24 25 20
8 31 23 20
9 30 17 20
10 16 16 20
11 10 14 20
12 15 9 20

Table A.3: Warehouse data for the small test problem Perl-12

WH No. | Xcoord | Ycoord Capacity Fixed Cost Variable Cost
13 25 19 280 100 0.74
14 14 24 280 100 0.74

Table A.4: Other parameters for the small test problem Perl-12

Vehicle Capacity

140

Cost per mile

0.75




