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ABSTRACT

In this thesis we present a multimodal text-dependent speaker identification system. The
objective is to improve the recognition performance over conventional unimodal or bimodal
schemes. The proposed system decomposes the information existing in a video stream into
three modalities: voice, face texture and lip motion. Lip motion between successive frames
is first computed in terms of eigenlip coefficients and then encoded as a feature vector. - The
feature vectors obtained along the whole stream are linearly interpolated to match the rate
of the speech signal and then fused with mel frequency cepstral coefficients (MFCC) of
the corresponding speech signal. The resulting joint feature vectors are used to train and
test a Hidden Markov Model (HMM) based identification system. Face texture images are
treated separately in eigenface domain and integrated to the system through decision-fusion.

Experimental results are also included for demonstration of the system performance.
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OZETCE

Bu tezde, metne bagl ¢oklu ortamlt bir konugmac: tamima sistemi tamtilmastir. Amag,
geleneksel tek ve ¢ift ortamli tanima sistemlerinin bagarimim arttirmaktir. Onerilen sis-
tem, bir video akiminda bulunan ii¢ temel ortam: birlegtirir: ses, yiiz dokusu ve du-
dak hareketi. Video akiminin her gergevesi arasindaki dudak hareketi 6zdudak katsayilar:
ile hesaplandiktan sonra bu katsayilar bir 6znitelik vektoriine doniigtiiriiliir. Elde edilen
Oznitelik vektoérleri, tiim akim boyunca dogrusal aradegerlenerek ses isaretinin oram ile
eslegtirildikten sonra mel-frekans kepstral katsayilarla (MFCC) birlegtirilir. Sonugta elde
edilen birlegik 6znitelik vektorleri, Sakli Markov modeli tabanlh bir tamima sisteminde egitim
ve sinama amactyla kullamlir. Yiiz dokusu ise bir 6zyiiz etki y6resinde ayrica islenerek karar
flizyonu agamasinda sisteme katilir. Deneysel sonuglar sistem bagariminin gosterilmesi icin

teze eklenmigtir.
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Chapter 1

INTRODUCTION

Biometric person recognition technologies include recognition of faces, fingerprints, voice,
signature strokes, iris and retina scans, and gait. Person recognition in general encompasses
two different, but closely related tasks: Identification and verification. The former refers to
identification of a person from her/his biometric data from a set of candidates, while the
latter refers to verification of a person’s biometric data. It is generally agreed that no single
biometric technology will meet the needs of all potential recognition applications. Although
the performance of several of these biometric technologies have been studied individually,
there is relatively little work reported in the literature on the fusion of the results of various
biometric technologies [1].

A particular problem in multimodal biometric person identification, which has a wide
variety of applications, is the speaker identification problem where basically two sources
of information exist: audio signal (voice) and video signal. Speaker identification, when
performed over audio streams, is probably one of the most natural ways to perform person
identification. However, video stream is also an important source of biometric information,
in which we have still images of biometric features such as face and also the temporal motion
information such as lip movement, which is correlated with the audio stream. Most speaker
identification systems rely on audio-only data [2]. Even assuming ideal noiseless conditions,
such systems are far from being perfect for high security applications. The same observation
is also valid for systems using only visual data, where poor picture quality or changes in
lighting and pose can significantly degrade performance [3, 4].

A better alternative is the use of a combination of available modalities in a unified
identification scheme. The first question to answer in designing such a unified system is to
decide on which modalities to fuse. The word ”modality” actually refers to a specific type

of information that can be deduced from biometric signals. In this sense, speech, i.e. the
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content, and voice can be interpreted as two different, though correlated, modalities existing
in audio signals. Likewise, video signal can be split into different modalities, face and motion
being the major ones. The dominant modality in the motion of a speaking person is naturally
the lip movement which is highly correlated with audio whereas gesture (or gait) could also
be interpreted as a different but less significant modality in the case of speaker identification.
The second problem to address in a multimodal scheme is how to represent the raw biometric
data for each modality with a meaningful set of features and, in conjunction with this, to
find the best matching metric in the resulting feature space for classification. This step also
includes a training phase through which each class is represented with a statistical model or
a representative feature set. Curse of dimensionality, computational efficiency, robustness,
invariance and discrimination capability are the most important criteria in selection of the
feature set and the classification methodology for each modality. The third, and the final
issue in a multimodal scheme is how to fuse different biometric signals. Different strategies
are possible: One possible way is so-called ”early integration” in which modalities are fused
at data or feature level whereas in ”late integration” decisions or scores resulting from
each unimodal classification are combined for final conclusion [3]. When more than two
modalities are available, a better alternative, that has not been addressed in the literature,
is to make use of both strategies, i.e. to employ early integration and/or late integration
where appropriate for bimodal fusion of different modality couples.

In this thesis, we will develop a multimodal speaker identification scheme that improves
the performance of conventional unimodal systems. In doing this, we will address the issues
and problems mentioned above in the previous paragraph. In the remaining part of this
chapter, we will give a brief summary of the relevant past research and our contribution.
Then in Chapter 2, we will develop a theoretical framework that the whole thesis work
will be based on. Chapter 3 address the unimodal identification problem, more specifically
audio-only and face-only identification respectively; the problem of selecting appropriate
feature set and the classification metric for each of the two modalities is considered in this
chapter. The question "how to fuse” is addressed in Chapter 4. In this chapter, we describe
a bimodal identification scheme that integrates the audio information with the lip motion
modality. The overall multimodal scheme that incorporates finally the face texture is again

presented in Chapter 4. Experimental results are given in Chapter 5 and the conclusions in
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Chapter 6.

1.1 State of the art

A multimodal identification system can be thought of as integration of separate unimodal
schemes; in our case these modalities are speech, face and lip movement. The choice of
features to represent each modality and that of individual classification methodologies have a
lot to do with previous research on especially speech-only and face-only recognition schemes.
In this section we will briefly summarize the relevant unimodal and multimodal fusion

literature so as to position our work with the others.

1.1.1 Unimodal Systems

Speaker identification through speech or voice appears to be one of the most natural and
mature fields of biometric technology. In the last two decades strong and effective statistical
tools have been developed, mainly for speech recognition, such as Hidden Markov Models
(HMM) and Artificial Neural Networks (ANN) [5]. The same statistical tools are also used
effectively for speaker identification problem [2]. In general we can consider two possible sce-
narios for speaker identification; text-dependent or text-independent. In the text-dependent
scenario user-customized passwords are used for the identification task, where statistical
tools such as HMM characterize temporal properties of the audio stream as well as the
voice. In the text-independent scenario as the input is any free-text speech signal, voice
can be characterized statistically using Gaussian Mixture Models (GMM), which are single
state HMM structures. The spectral features of the speech signal need to be extracted to
represent speech/voice in a statistical recognition system. The mel-scaled cepstral coeffi-
cients (MFCC) are known to be robust and effective features to represent the speech signal
for speech recognition and speaker identification tasks [2].

The choice of features in face recognition is more controversial as compared to speech.
Two broad categories exist in the literature: Geometry-based and intensity-based features
[6]. Geometry-based features are in general more immune to changes in lighting and pose.
However, they require image analysis for accurate extraction and localization of face features
such as eyes, mouth, nose and eyebrows, that brings in certain robustness and computa-

tional problems. Thus techniques based on extraction of geometric features usually impose



Chapter 1: Introduction 4

constraints and assumptions on the general appearance and orientation of the face to be
detected and recognized. Although they seem to be invariant to lighting and orientation,
variations in these conditions perturb already the analysis task itself. On the other hand,
intensity-based features are much easier to obtain. Since relevant techniques work simply on
intensity values, they do not involve any analysis or localization task for the identification
process. Although these techniques are very robust and computationally efficient, they are
in general quite sensitive to lighting conditions and pose. A remedy for this drawback is
the normalization of the lighting and pose prior to the identification phase, that requires
as well, though not as intensively as geometric feature-based techniques, an image analysis
process. Among many others, three popular approaches exist for the use of intensity-based
features: Eigenface technique, elastic matching and neural networks [7]. Elastic matching
handles better variations in lighting and pose but in turn computational cost is high. In
general eigenface and elastic matching outperform neural net-based systems. Due to its
efficiency, eigenface technique seems to be more preferable of these three approaches for
practical implementations. The drawback associated with the invariance issues may not
be very severe when the acquisitions are performed in relatively controlled environments
for lighting and pose. Otherwise, such variations should be taken into account during the
training of the eigenface classifier, or computationally less efficient techniques such as elastic
matching should be employed. Another alternative is not to rely totally on the face image
information but to support the identification process with other modalities such as speech

if available; hence the need for multimodal identification schemes.

1.1.2  Multimodal systems

Existing multimodal speaker identification systems are mostly bimodal, integrating audio
and face information as in [8, 9, 10], audio and lip information as in [11, 12, 13, 14, 15]
or face and lip shape as in [16]. In [10], Sanderson et.al. present an audio-visual person
verification system that integrates voice and face modalities and compares concatenative
data-fusion with adaptive and non-adaptive decision fusion techniques, where adaptation
takes into account the acoustic noise level of speech signal. Later in [8], enhanced PCA for
face representation and fusion using SVMs and confidence measures are presented. Another

audio-visual person identification system proposed in [9] uses a Maximum Likelihood Linear
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Transformation (MLLT) based data-fusion technique. These related works do not address
lip-motion as a biometric modality for person identification and they all do emphasize on
the performance of data and decision fusion in separate. In an eigenface-based person
identification system, Kittler et.al. use the lip-shape to classify face images to enhance the
face recognition performance [16].

Another recent trend in bimodal fusion literature is to enforce the audio-only identifi-
cation with the visual lip motion information. The information inherent in lip movement,
which is a natural by-product of the speaking act, has so far been exploited mostly for the
speech recognition problem, establishing a one-to-one correspondence with the phonemes
of speech and the visemes of lip movement. It is quite natural to assume that lip move-
ment would also characterize the identity of an individual as well as what the individual is
speaking. In [17], it was demonstrated that lip movement also contained information about
a person’s identity. Lip movements while uttering the same phrase vary significantly from
individual to individual, but they remain relatively consistent for the same person. Only
few articles published so far in the literature incorporate lip information for the speaker
identification problem [11, 12, 14, 15]. Although these works demonstrate some improve-
ment over unimodal techniques, they use a decision-fusion strategy and hence do not fully
exploit the mutual dependency between lip movement and speech.

In [14], audio features composed of cepstral coeflicients are combined with visual features
representing the motion of lip contours, to achieve speaker identification. The combination,
or so-called multisensor data fusion, is done using principal component analysis or linear
discriminant analysis which are accepted as pixel-based representation techniques. The
implementation given in [15] uses the time variation of the lip height and width as visual
features and the LPC coefficients as the audio features. The visual and audio features are
then combined to form a single feature vector, with weighting that depends on the acoustic
background noise. The weighting is chosen so that the weight assigned to the audio features
gets smaller as the acoustic background noise level becomes higher. In order to match the
sequence of extracted features to the database, dynamic time warping is performed. If
the distance between the captured features and the prestored features after dynamic time
warping falls below a prescribed threshold, a match is declared and the user is identified.

The threshold is chosen so that the false acceptance rate and the false rejection rate are



Chapter 1: Introduction 6

approximately equal.

Both systems reported in [14] and [15] take an early integration approach, i.e., the
audio features and the visual features are integrated before they are feed into the matching
algorithm. In [18], a late integration approach is taken, in which the visual and audio
features are first matched separately, and then the scores of the two matching modules are
combined together to form the final decision for person identification.

The only work in the literature that addresses a multimodal speaker identification sys-
tem, using speech, face and lip motion is the one presented in [19]. In this paper, the infor-
mation coming from voice, lip-motion and face modalities are assumed to be independent
of each other and thus the multimodal fusion is achieved by a simple decision mechanism.
The face-only module involves a quite deal of image analysis to normalize and to extract
salient features of the face whereas the lip movement is represented by DCT coefficients
of the corresponding optical flow vectors in the lip region. Face and lip features are then
stored as biometric templates and classified through a set of algorithms so-called synergetic
computer. The acoustic information on the other hand is represented by cepstral coefficients

that are then classified by vector quantization using a minimum distance classifier.

1.2 System Overview and Contribution

In this thesis we propose a robust text-dependent multimodal speaker identification scheme
using speech, lip motion and face texture. An early integration of audio and visual features
takes place by feature-fusion of speech and lip motion. The fused feature vector includes
the lip motion features that are characterized by eigenlip coeflicients transformed into an
eigenspace domain and the speech features that are represented by mel frequency cepstral
coefficients. The visual texture information, i.e. face images, is expressed in eigenface
domain and integrated to the system through decision-fusion.

The thesis has two main contributions to the multimodal speaker identification problem:

1. Three modalities, i.e. speech, lip motion and face texture, are integrated to achieve a
multimodal identification system in which a joint data/decision fusion scheme is used

80 as to exploit the correlations existing between different modalities.

2. A probabilistic framework is presented for decision fusion of independent modalities,
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that uses M-best likelihoods resulting separately from each modality in proportion to

the reliability of the individual classification task.
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Chapter 2

THEORETICAL FRAMEWORK

A major problem of the biometric identification is the time varying nature of some key
modalities, such as voice, face, etc. One possible solution to cope with this limitation is
to combine several biometrics in a multimodal identity verification system. In a decision
fusion approach, an identification system needs to fuse the partial decisions coming from
different individual modalities [20].

The fusion of redundant information from different sources can reduce overall uncertainty
and increase the accuracy of a classification system. Fusion can take place at two different
stages in the recognition process. In early integration techniques the data is combined
and then recognition is performed on this combined data. The most common method of
early fusion is to concatenate the feature vectors from the different modes. This technique
involves aligning and synchronizing the data so as to form one combined data stream. This
fusion technique is called data fusion and can be implemented at the feature or signal level.
In late integration techniques, the decisions which take the form of some sort of score or
classification of each stream (for example a posterior probability or log likelihood) from each
of independent classifiers are combined to produce a classification of the sequence. This kind

of fusion is called decision fusion [3].

2.1 Unimodal Identification

The speaker identification problem is often formalized by using probabilistic approach:
Given a feature vector f representing the sample data of an unknown individual, com-
pute the a posteriori probability P(A,|f) for each class \,, i.e. for each speaker’s model.
The sample feature vector is then assigned to the class A* that maximizes the a posteriori
probability:

A" = argmax P(A,| f) (2.1)
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Since P(An|f) is usually difficult to compute, one can rewrite (2.1) in terms of class-

conditional probabilities. Using Bayes Rule, we have

P(£An)P(An)
P(f)

Since P(f) is class independent and assuming equally likely class distribution, [P(\,;) =

P(Alf) = (2:2)

2N, (2.1) is equivalent to

Af = argn/l\axP(fl)\n) (2.3)

Computation of class-conditional probabilities P(f|\,) needs a prior modelling step,
through which a probability density function of feature vectors is estimated for each class
by using available training data. This modelling step is also referred to as training phase.

In a speaker identification scheme, a reject mechanism is also required due to possible
impostor identity claims. The class-conditional probability, or the likelihood, P(f|\*) in
(2.3) in fact gives a measure of how likely the feature vector f results from class A*. A
possible reject strategy is thus to apply a constant threshold: if the resulting likelihood is
larger than a predetermined threshold, the speaker’s claim is accepted otherwise a reject
decision is given. However, the optimal threshold value also depends on the likelihood of the
claim being an impostor; thus rather than the likelihood itself, a likelihood ratio p(f|An) in

log domain is used for the accept or reject decision [21]:

pUTTA) =108 SRR =108 P(£le) ~ log P(f13) (2.4)

where A\ denotes the imposter class or anti-class for A,. Ideally, the imposter class model
should be constructed by using all possible imposter observations for class n, which is
practically infeasible to achieve. Thus in practice, two approaches are usually employed for
approximating the imposter class model. The first one uses the universal background model
which is estimated by using all available training data regardless of which class they belong
to. The second approach is more accurate but less efficient and referred to as background
model which cover all training data but those belonging to the underlying class n. Both
approximations yield a kind of average model and thus the likelihood of being an imposter
is expected to decrease as the unknown feature vector gets further to this average model in

the feature space. The final decision strategy can be stated as follows:

if p(FIX*) 27  accept (2.5)

otherwise reject



Chapter 2: Theoretical Framework 10

Figure 2.1: A typical ROC curve presenting EER, FAR and FRR.

where 7 is the optimal threshold which is usually determined experimentally to achieve the
desired false accept or false reject rate [22].

False accept and false reject are defined to accept an impostor (FA) and to reject a true
client (FR) where they are the main performance variables for the person identification

system. False accept rate (FAR) and false reject rate (FRR) are computed as:

FAR — nuxnl?er of FA . (2.6)
number of impostor claims
FRR = number of FR, (2.7)

number of client claims
One can easily observe that FAR and FRR are indirectly proportional for varying thresh-
old values 7. Equal error rate (EER) is used as another important performance hacker,
where it yields the operating point FAR equals FRR with the proper selection of threshold
value 7. A sample receiving operating curve (ROC) is depicted in Fig 2.1, which plots FAR
vs FRR for varying values of the threshold 7. EER is also located on this sample ROC

curve.

2.2 Bimodal fusion

‘When two or more modalities exist, the selection of the appropriate fusion technique,
whether data or decision fusion, should take into account how these modalities are cor-

related to each other.
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2.2.1 Decision Fusion

Let f, and f, represent the unknown feature vectors corresponding to two different modal-

ities. Then the joint class-conditional probability is given by [23]

P(f1. o) = 2P £ PUFlA) + (ol FOP(I M (28)

If f; and f, are independent, we can write

P(f1l>\mf2) = P(.fll}‘n)
P(faldn, £1) = P(falln)

and thereby (2.8) reduces to the product of separate likelihoods:

P(f17f2|)‘n) :P(fll)‘n)P(f2')‘n) (2-9)

Equation (2.9) can then be expressed in terms of log-likelihood ratios as the sum of the

individual ratios:

p(f1, Faldn) = p(F11An) + p(F2lAn) (2.10)

One critical issue here is that individual class-conditional probabilities, and the log-likelihood
ratios as well, usually results in values with different ranges, with different means and vari-
ances. Thus prior to the fusion process, a common practice is to apply a normalization
on resulting likelihoods, such as sigmoid normalization, and that is basically why decision
fusion is sometimes referred to as opinion fusion.

Another issue is reliability of each likelihood contributing to final decision, that is not
necessarily equal. One source of information may be more noisy than the other depending
on the acquisition equipment and environment, or one modality may be more discriminative

than the other. Thus commonly, a weighted sum of likelihoods is used:

p(f1, Faldn) = w1p(F1|An) +w2p(FalAn) (2.11)

where w; and wy are weighting coefficients to be determined. There are various methods
to estimate these coefficients which are ideally feature and class dependent such as noise
estimation or measuring the experimental or statistical discriminative capability of each

decision [24].
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Looking back to (2.8), if £, and f, are correlated, we observe that (2.9) is no longer

valid. In this case, (2.8) can be rewritten as

P(f1, folAn) = anP(f11An) + B P(F22n) (2.12)

where

tn = 3PFiln, o)

bn = 5P(Falhn 1)

Exact computation of the joint feature densities P(f, f2|\) as formulated above is difficult
to obtain since it requires a large amount of training data. A rough approximation of the
weighting parameters ay, and 3, can be obtained by assuming that these parameters are

only class-dependent and through the use of associative maps as described in [23].

2.2.2 Fusion using M -best Likelihoods

An important issue in multimodal fusion is to exploit all the information provided by each
modality and the corresponding individual identification task. Recall that each identification
task results in N likelihood scores for a population of N people. The common strategy is to
fuse only the decisions with the best match, i.e. with the highest likelihood score, resulting
from individual classifiers. However in the case of multimodal fusion, not only the highest
score but the others as well may also carry useful information. Thus a better strategy is to
let all the scores contribute to the final multimodal decision in proportion to their confidence
levels.

When the total population N is very large however, processing all N likelihoods result-
ing from each modality identification becomes computationally inefficient, which is in fact
not necessary at all. The likelihood ratios are mostly too small to really contribute to the
decision and therefore can be neglected without any significant information loss. The strat-
egy that we use is to arrange the list of scores resulting from each individual identification
process in descending order and then let only the M-best matches, e.g. M = 3, contribute
to the final multimodal decision.

Let M and M be the sets that separately include the M-best model matches of the
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features f; and f,, respectively. The weighted sum of likelithoods is given as:

wlp(fllkn) +w2p(f2|>\n) if A, € M1 and A\, € Mo,
p(fla FalAn) = wlp(fll/\n) if A\, € My and A, & M,
Q)2p(f2|)\n) if Ap ¢ M, and A\, € M,,.

The final weighted likelihood includes contributions from one or two sources depending on

the presence of the source in the M-best list.

2.2.8 Data Fusion

In the early stages of processing when modalities are at signal or feature level, one can
combine different modalities into one signal or feature. We call this information combining
as data fusion. Data fusion is generally considered when the sources of information are cor-
related to each other, either in spectral or temporal domain. Data fusion can be simply the
concatenation of different information sources if there is only a temporal correlation between
sources, or one can further process the fused information to remove spectral correlations, if
any.

In order to compute joint class-conditional feature probabilities P(f;, fa|An) by employ-

ing data fusion, the concatenated feature density functions must be directly computed:
P(f1, FalAn) = P(£12]An) (2.13)

where f15 = [f;, fal-
As it is expected, data-fusion-based methods better exploit the temporal correlation of

audio-video streams for robust performances, especially in the presence of environmental
noise. But such systems do not always guarantee the overall performance to remain at
least as good as the unimodal performance under low noise levels. On the other hand, the
problem of curse of dimensionality may arise, that should be handled carefully and that may
result in performance degradation. Data fusion generally is considered more appropriate for
closely coupled and synchronized modalities, such as speech and lip movements. However,
such a system tends not to generalize as well if it consists of modes that differ substantially
in the time scale characteristics of their features, as is the case with speech and gesture
inplit. Modelling complexity, computational intensity, and training difficulty typically are

other problems associated with the data fusion approach. Due to the high dimensionality
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of input features and high degree of freedom of system models, a large amount of training

data is also required for building this type of system.

2.2.4 Bayesian Decision

In the unimodal scenario, a decision is taken based on the log likelihood ratio test as stated
in Equation 2.5. In this decision mechanism, the desired FAR and FRR values could be
reached by setting a proper threshold 7. It’s also stated that a ROC curve that plots FAR
vs FRR, could be extracted for varying values of 7. If one tries to find the proper threshold
7* that achieves EER, that is FAR equals FRR operating point, ROC curve could be traced
by incremental threshold values until the EER point is reached. A possible algorithm is
given in Table 2.1 that finds the threshold value 7 and EER value.

Once a likelihood ratio test threshold 7 is set, one can claim that if the log likelihood ratio
p(fIX*) is much larger or much smaller than 7, the confidence of the decision is stronger.
Hence the absolute value of the difference between the likelihood ratio p(f|A*) and the
threshold 7 could be used as a measure of confidence (C f)’

Cp = Ip(FIN") = . (214)

In the bimodal scenario, the confidence measure could be used beneficially in the decision
fusion if we have enough a priori information on the two different modality streams. Let us
define a bimodal scenario with two different modalities, f; and f,. There are two streams of
log likelihood ratios p(f;|A*) and p(f,|A\*), correspondingly. If we have a priori information
such that the identification performance of first modality f; is much better than the second
modality fo under controlled conditions (such as low acoustic noise, frontal face stream,
ete.), then the weighted use of the decision that is coming from first modality would be
beneficial for the decision fusion. Keeping this fact in mind a Bayesian decision system is
built. In this system decision is taken in two stages. In the first stage, a decision is taken
if the the confidence measure C £ that is coming from the reliable modality £, is high
enough, otherwise a decision is taken with respect to the second modality f, in the second
stage. The algorithm for the bimodal Bayesian decision fusion that finds the EER. and the
corresponding thresholds is given in Table 2.2.

In speaker identification systems, performance of voice identification is superior when
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for each 7 in a threshold range
{
init TA=FA=FR=TR =0
for kK =1 to Number of subjects
{
if p(f*(A*) 2 7
if f* € A
True Accept TA++
else
False Accept FA++
else if p(f*¥A*) < T
if f* e a*
False Reject FR++
else
True Reject TR++
}
FAR=FA /Number of subjects
FRR=FR/Number of subjects
if FAR=FRR
7" =7, EER = FAR

Table 2.1: Finding EER and the threshold value that achieves EER using unimodal likeli-
hood ratio test.

there is no acoustic noise. But this is not the case in general. In such noisy environments,
audio-visual stream may help us as the second source of information. Although visual data
are sensitive to rotation, image size and light conditions, the overall performance of the
audio-visual system is superior than audio-only performance when there is heavy acoustic
noise in the environment. In our bimodal Bayesian decision fusion algorithm, practically,
S refers to voice stream and f, refers to audio-visual stream. A typical ROC curve for this
scheme is depicted in Fig 2.2. In this figure FAR and FRR represents two different surfaces,
where their intersection forms an EER line in this space. An optimal EER could be picked

as the minimum on this line.
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n=0
for each 71 in a threshold range

{
TA=FA=TR=FR=0, I'| | = {0}

for each 72 in 71 — 6 < 72 < 71 + & such that & runs from 0 to A

{

for k = 1 to Number of subjects
ifp(FIN) 21 +6
if ffen
True Accept TA++-
else
False Accept FA++
dseif i — 6 < p(FEA) <1+ 8
if p(F5IA") 2
if fke
True Accept TA++
else
False Accept FA++
else = p(FEIN) < 72
if f5ca
False Reject FR++
else
True Reject TR++
else = p(F¥A\*) <7 — 6
if frex ,
False Reject FR4+-
else
True Reject TR++
}
FAR=FA /Number of subjects
FRR=FR/Number of subjects
if FAR=FRR {
Tln] = [r1, 7]
ER[n + +] = FAR
}
}
EER= min; ER[{]
I'™* = I'[arg min; (ER[4])]

Table 2.2: Bimodal Bayesian Decision Algorithm.
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Figure 2.2: A typical ROC surface
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Chapter 3

UNIMODAL SPEAKER IDENTIFICATION

Speaker identification through speech and face is one of the natural and mature technology
that tries to mimic human’s perception system for person identification. In the last two
decades strong and effective tools have been developed for both speaker and face recogni-
tion, such as Hidden Markov Models (HMM), Artificial Neural Networks (ANN), Eigenface
approach and elastic matching [5, 7]. In this chapter the theory of HMM for speaker recog-
nition and the theory of Eigenface for face recognition is covered. The proposed multimodal
speaker identification systems will be based on these audio and video based unimodal sys-

tems.

3.1 Audio-Only Speaker Identification

Template-based approaches to speaker identification suffer from variation in speech signal’s
spectral properties. The number of reference patterns needed to cover all the variations
during a speech is too hard to handle. That’s why statistical approaches stand more efficient
in speaker identification problems.

Today the Hidden Markov Model (HMM) based statistical approaches are dominating,.
HMM is a special case of Markov chains. It can be described as a doubly stochastic process,
where the sequence of one stochastic process is observed and the other is not (it is the hidden
part which gives the name of Hidden). The identification task addresses the problem of
finding the most probable path or sequence of the hidden stochastic process, given an
observation sequence and HMM parameters. Since it is able to provide a mathematical
framework for sequentially evolving pattern recognition tasks, HMM can fit to speaker

identification problem.
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8.1.1 Speaker Identification Using HMMs

Hidden Markov Models [25] are reliable structures to model human hearing system, and
thus they are widely used for speech recognition and speaker identification problems 5, 25,
2, 26]. The temporal characterization of an audio-video stream can successfully be modelled
using an HMM structure, where state transitions model temporal correlations and in each
state Gaussian classifiers model signal characteristics. Considering a left-to-right continuous

density HMM structure, an HMM can be defined by the following parameter set:

e N is the number of states, where states are denoted by S = {s1,82,---,sn5}-

A = {a4;} is the matrix of state transition probabilities where a;; is the probability of
making a transition from state i to j, such that a;; = P(gr+1 = Sj|g- = S;) , where
g- is the state at time 7. The state transition probabilities are assumed to be tine

independent.

B = {b;(f)} is the vector of observation probabilities associated with each emitting

state j, with bj(f) = P(flg- = Sj).

IT = {m;} is the vector with the initial state probabilities of entering the model at

state ¢ such that m; = P(q1 = S;).

A HMM can now be represented by the compact parameter set A = (A, B,II). Since
the speech signal evolves forward in time, the transition probability matrix A is normally
constrained to only allow self-loops, by residing in the same state for several consecutive

frames, or transitions from left to right.

The likelihood function for the temporal characterization, that is the probability of observing
feature vector sequence F = (f, fa, .-, Fx), given the model X is defined as,
P(F\) = > P(F.q|\), (3.1)
all @

where q = (q1,42, ..., k) is a possible state transition sequence. Further we can write the

joint probability of the observation sequence and the state transition sequence given the
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bi(0) by(o) by(0)

dpi aij

Figure 3.1: A Hidden Markov Model with three emitting states and continuous output
distributions

model as,

P(F,q|\) = P(Fl|g, \)P(q|)), (3.2)

where

P(Flg,\) = by (f1)be;(f2) - bex(fx), and
P(QI’\) = Tq1Qqig2Qq2q3 """ Ogx_19x-

The resulting likelihood function from Equation 3.1 will be in the form of,
P(Fl/\) = Z T blh (fl)aq1q2qu (fz)aqzqs e b‘lK—l(fK—l)aQK—l‘IKb‘IK(fK)’ (3'3)
all g
in which observation symbol probabilities b;(f) are modelled using Gaussian mixture den-

sities as,
L
bi(Fr) = > waN (Frr 11 Zi1) (3.4)
=1

where for each state j feature vector probabilities are represented as the weighted sum of L
Gaussian mixture densities with means p;;, covariance matrices X;; and weights wj;, such
that >3, w; =1and 0 <wy < 1.

In this work a word-level continuous-density HMM structure is built for the speaker
identification task using the HTK library [27]. Each speaker in the database population
is modelled using a separate HMM and is represented with the feature sequence that is
extracted over the audio-video stream while uttering the secret phrase. First a world or
universal background HMM model ) is trained over the whole training data of the popu-
lation. Then using the world HMM model as the initial state, each HMM associated to a
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speaker A, is trained over some repetitions of the audio-video utterance of the corresponding
speaker.

In the identification process, hypothesis testing is performed between the best match
of the population and the world model for the given audio-video utterance of an unknown
subject. The subject is either rejected or identified to be the speaker with the best match
based on a likelihood ratio test. The likelihood ratio for the identification of n-th person

can be derived from Equation 2.4 and is given as,

p(F[A\n) = log P(F|)\,) — log P(F|X). (3.5)

3.1.2 The Three Basic Problems of HMM

Given the HMM structure, there are three basic problems that need to be solved to effec-

tively address real-world applications. These are:

o Given the observation sequence ¥ = (£, fo, ..., fx), and a model A = (A, B,II), how
do we efliciently compute P(F|X), the probability of the observation sequence, given

the model?

e Given the observation sequence and the model A\, how do we choose a correspond-
ing state sequence g = (g1, ¢2...gx ) that is optimal in some sense (best explains the

observations)?

e How do we adjust the model parameters A = (A, B,II), to maximize P(F|\)?

First problem is the evaluation problem. We can also view the problem as one of scoring how
well a given model matches a given observation sequence. Problem 2 is the one in which we
attempt to uncover the hidden part of the model, that is, to find the correct state sequence.
For practical situations, we usually use an optimality criterion to solve this problem as best
as possible. Viterbi algorithm [28] presents an effective solution for this problem. The last
problem is the one in which we attempt to optimize the model parameters to best describe
how a given observation sequence comes about. The observation sequence used to adjust
the model parameters is called a training sequence as it is used in the training phase of the

HMM. The training problem is the crucial one for most applications of HMMs, because it
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allows us to optimally adapt model parameters to observed training data. The solutions of

these three problems can be found in [5].

3.1.8 Audio Features

Feature extraction converts the speech waveform to some type of parametric representa-
tion (at a considerably lower information rate) for further analysis and processing which is
referred as the signal-processing front end.

The speech signal is a slowly time-varying signal (called quasi-stationary). When ex-
amined over a sufficiently short period of time (5 ~ 100 ms), its characteristics are fairly
stationary. However, over long periods of time (on the order of 1/5 seconds or more) the
signal characteristic change to reflect the different speech sounds being spoken. Therefore,
the short-time spectral analysis is the most common way to characterize the speech signal.

A wide range of possibilities exist for parametrically representing the speech signal for the
speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency Cepstrum
Coefficients (MFCC), and others. Mel frequency cepstral coefficients (MFCC) give good
discrimination of speech data; hence they are widely used to represent audio streams in
HMM-based speech recognition and speaker identification systems. In our system, the
speech signal which is sampled at 16 kHz is analyzed on 25 ms frame basis by frame shifts of
10 ms. Each frame is first multiplied with a Hamming window and transformed to frequency
domain using Fast Fourier Transform (FFT). Mel-scaled triangular filter-bank energies are
calculated over the square magnitude of the spectrum and represented in logarithmic scale
[5]. The resulting MFCC features are derived using discrete cosine transform over log-scaled

filter-bank energies e;:

N, .
1 EM . jm ,
Cj = N_M 2 €; COS |:(l - 05)@'} s fOT' 7= 0, 1, ceey L—-1 (36)

where Ny is the number of mel-scaled filter banks and L is the number of MFCC features
that are extracted. The MFCC feature vector for the k-th frame is defined as,

ce=lcger - er1]T. (3.7

It has been known that instantaneous changes in the spectrum yields valuable information

for the recognition and identification tasks [2, 5]. The first delta MFCC feature vector Ac



Chapter 3: Unimodal Speaker Identification 23

for the k-th frame is defined to incorporate the instantaneous changes in the spectrum,

D
Ay, = == dktd. (3.8)
Ya=-p &

where the second delta MFCC feature vector AAcy is defined as the first delta of Acy
vector. The audio feature vector f¥ for the k-th frame is formed as a collection of MFCC

feature vectors including the first and the second delta MFCCs [2]:

fjf = [Ck Ack AAC]C]‘ (3.9)

3.2 Face-only Speaker Identification

One of the major tasks in achieving a multimodal speaker identification system is to exploit
the visual information in the video signal of a speaking person as well as the audio informa-
tion. Motion, more specifically lip movement, is one of the modalities that can be extracted
from the face sequence. We will consider lip motion as a separate modality in Chapter 4.
Now in this chapter, we will focus on the texture modality and describe our methodology
to identify the face of a speaking person from a set of still images sampled from her face
texture sequence. Our methodology will be based on the well known eigenface technique

and the theoretical framework presented in Chapter 2.1.

8.2.1 Figenface Method

The eigenface technique [4], or more generally principal component analysis [29], has proven
itself as an effective and powerful tool for recognition of still faces. The core idea is to reduce
the dimensionality of the problem by obtaining a smaller set of features than the original
dataset of intensities. Every image is expressed as a linear combination of some basis vectors,
i.e. eigenimages that best describe the variation of intensities from their mean. These basis
vectors define an eigenspace with reduced dimension.

The eigenspace of face images is calculated by identifying the eigenvectors of the covari-
ance matrix derived from a set of training images. The eigenvectors corresponding to non-
zero eigenvalues of the covariance matrix form an orthonormal basis for the N-dimensional
eigenspace. The mathematical procedure is as follows:

Each image is first stored in a vector of size N:

@ =[xz ] (3.10)



Chapter &: Unimodal Speaker Identification 24

The image vectors are then mean centered by subtracting the mean from each image vector:

T =al-m (3.11)
where
1 ¥ .
— J 12
m MjE=1m (3.12)

The vectors Z’ are combined, side-by-side, to create a data matrix of size N x M, where
M is the number of images:
X = [ZZ? - [#M] (3.13)

The N x N covariance matrix € of the data matrix X given by

Q=xx7T (3.14)
has up to N eigenvectors v; associated with N eigenvalues such that

QV = AV (3.15)
where V is the N x N matrix of eigenvectors:

V = [vy]|vg]--- |un] (3.16)

and A is the N x N diagonal matrix of the associated eigenvalues. The eigenvectors are
sorted, high to low, according to their associated eigenvalues. The eigenvectors with the
largest p eigenvalues, p € N, are the eigenfaces, i.e. the basis vectors of the eigenspace of
dimension p. When a given image is projected onto this lower dimensional eigenspace, a set
of p eigenface coefficients is obtained, that gives a parameterization for the distribution of
the signal.

The classification is performed in the eigenface feature domain. Once the eigenspace is
created by using all the images in the training set as described above, each image &’ of the

training set is projected onto the eigenspace by
fi=vTz (8.17)

and the resulting projection f7 becomes the feature vector representing the corresponding
speaker class A;, assuming that each speaker class has one single face image in the training

set.
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In order to classify an unknown face image y, the image is first centered by subtracting
the mean image evaluated in Eq. 3.12 and then projected onto the same eigenspace defined
by V:

F=viy-m) (3.18)

The test image ¥ is assigned to the class \* with the feature vector f7 that is found to be

the closest to f in the feature space:
X = argmin || f — £7]] (3.19)
g

where (| - || is the Euclidean distance metric.

3.2.2 Identification from Face Sequences

In the case of speaker identification, rather than a single image, a sequence of face images
is available for an unknown speaker to be recognized. A number of images, say K;, can
be sampled from this sequence and can be used to enforce the identification process. The
eigenface coefficients wy, I = 1, ..., p, when computed for every image 4 of a given sequence,
constitute the face texture feature vector(subscript ¢ denotes the word texture ) that we

will denote by fi,i=1,..., Ki:
fﬁ = w1, wy, -, Wp). (3.20)

The face images in the training set are all used first to obtain the eigenspace. Note that the
training set contains a number of images as well, say Ky, from each speaker class A,. Let

{n, j =1,..., K, denote the feature vectors of these images belonging to the class A\, in
the training set. Then the minimum distance d,, between these two sets of feature vectors

can be used for hypothesis testing of the unknown person with the speaker class A,:
dn = min||f; = £1")| (3.21)

The distance metric defined in (3.21) can also be modelled with probabilistic approach by
making use of Gibbs distribution [30]: Given the face texture feature vector set {fi}, the

class conditional probability of the feature set can be written as

PUfi} ) = o=l (3:22)
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where K =), e~%? and o is the decay coefficient of the Gibbs distribution function.

The log likelihood ratio as defined in Equation 2.2 requires the definition of a universal
background class. For this, we will adapt the faceness measure defined by the authors in [4].
According to this measure, the distance of the eigenspace origin to the eigenface coefficient
vector for a given image determines how likely the image is a face. Thus in our case, the
eigenspace origin will be used as the representative feature vector of the face universal
background class. By using (3.22), we can now define the log likelihood ratio:

p({Fi}H ) = d—;ﬁ (3.23)

where d is the distance of the feature vector Fi (that yields the minimum distance dy,) to
the universal background model. The constant ¢ can normally be set to 1. But we will
use this constant later in Chapter 4 during decision fusion for normalization of individual
likelihood scores. Note for the moment that log likelihood ratio p; for face texture takes
values in the interval [0, (fmax/ o], assuming d> dn, and Jmax is the maximum value of d
that can be determined experimentally using the training data.

The log likelihood ratio in (3.23) is computed for each class Ay,. In the case of unimodal
face-only identification, the class that gives the maximum likelihood is the best match, and
if this best-match ratio remains above a certain threshold, the unknown speaker can be
assigned to the corresponding class, otherwise rejected. These likelihood ratios will later be

used in the multimodal fusion process in Chapter 4.

3.2.8 Discussion

As an appearance-based approach, eigenface recognition method has several advantages.
First raw intensity data are used directly for learning and recognition without any sig-
nificant low-level or mid-level processing. Second, no knowledge of geometry of faces is
required which increases the complexity of the algorithm. On the other hand, data com-
pression is achieved by the low-dimensional subspace representation. These advantages
reflect the power of eigenface approach in ease of implementation. However, the experimen-
tal results also demonstrate some serious limitations of eigenface representation method for
face recognition under different conditions.

First, the method is very sensitive to scale, therefore, a low-level preprocessing is still

necessary for scale normalization. Secondly, since the eigenface representation is a pixel-
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based approach, in a least-squared sense, its recognition rate decreases under varying pose
and illumination. Third, though the eigenface approach is shown to be robust when dealing
with expression and glasses, these experiments were made only with frontal views. The
problem can be far more difficult when there exists extreme change in pose as well as in
expression and disguise. Fourth, since the face images tested in the experiments are taken
with different backgrounds, this will seriously deteriorate the recognition performance. In
such cases, a segmentation process has to be considered.

Additionally, the eigenface recognition method bears some common disadvantages due
to its “appearance-based” nature. First, learning is very time-consuming, which makes it
difficult to update the face database. Second, recognition is efficient only when the number
of training data is large enough. The variations in pose and illumination in the training
dataset also make the system more reliable and robust.

In controlled environments, as in our case, the consequences of the above disadvantages
of the eigenface technique may not be very dramatic. In other cases however, eigenface-only
identification is not reliable alone; hence the need for using other available modalities, such
as audio and motion, in a multimodal fusion scheme to improve the overall system reliability.
Instead of a single face image, using a number of images from the same individual, as in our
case, may also serve for enforcing the identification process under changing light and pose

conditions.
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Chapter 4

MULTIMODAL SPEAKER IDENTIFICATION

No speaker identification system is error free. The reason for this may be various. Errors,
i.e. false accept or false alarms, may source from inadequate acquisition, noise interference
or due to discrimination incapability of the selected features. The motivation behind a
multimodal system is to compensate such errors specific to a given modality and to enforce
the overall decision. When audio is missing or corrupted by noise, visual information can
be used as the dominant modality or visa versa.

There has been considerable research on speaker recognition with audio-only features.
In Chapter 3 we have presented an audic-only HMM-based speaker identification system.
However, the performance of such a unimodal system can be improved with the integration
of visual data, which is relatively a new research area necessitating new fusion and feature
representation techniques. In this chapter, we will address the fusion of audio information
with lip movement. Lip movement, being part of the visual data, is highly correlated
with speech and carries useful information about the identity of a speaking individual.
Afterwards, a multimodal fusion and identification scheme will be proposed that integrates
the face texture modality to this audio-lip bimodal system.

Two problems will be addressed for the audio-lip bimodal system: What features to use
for representing lip movement and how to fuse them with audio information. In this respect,
we will propose an eigenlip based feature representation technique in which lip images are
transformed onto a lip space obtained by training a huge set of lip frames corresponding to
each speaking individual. The advantage of this representation as compared to geometric
techniques in the literature is its high correlation with the audio features. In order to extract
lip frames during a speaking act, we propose a face and lip detection mechanism which is

based on optical flow method for motion analysis of image sequences.
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4.1 Optical flow for Motion Analysis

A fundamental problem in the processing of image sequences is the measurement of optical
flow (or image velocity). The optical flow is a vector field which is defined as the apparent
motion of the brightness pattern [33]. The goal is to compute the 2-D motion field from
spatiotemporal patterns of image intensity. The optical flow in this sense is an approxima-
tion of the motion field which can be computed from time-varying image sequences. The
error of this approximation is small at points with high spatial gradient and exactly zero
only for translational motion or for any rigid motion such that the illumination direction
is parallel to the angular velocity. Once this approximated motion field is computed, the

measurements of image velocity can be used for a wide variety of tasks.

4.1.1 Optical Flow Computation

Optical flow computation techniques devised by the computer vision community can roughly
divided into two major classes: differential techniques and matching techniques. Differential
techniques are based on the spatial and temporal variations of the image brightness at all
pixels, and can be regarded as methods for computing optical flow. Matching techniques,
instead, estimate the disparity of special image points between successive frames [33]. Dif-
ferential techniques compute velocity from spatiotemporal derivatives of image intensity or
filtered versions of the image(using low-pass or band-pass filters).

Optical flow is defined as an apparent motion of image brightness, I(x,y,t), that changes

in time to provide an image sequence, then two main assumptions can be made:

1. Brightness I{z,y,t) depends on coordinates x, y in greater part of the image.

2. Brightness of every point of a moving or static object does not change in time.

Let some object in the image, or some point of an object, move and after time dt the object
displacement is (dz,dy). Using Taylor series for brightness I(z,y,t) gives the following:

oI oI oI
Iz +dz,y +dy,t + dt) = I{z,y,t) + ggdx + 29—ydy + adtq- . (4.1)

According to the second assumption, Equation: 4.1 becomes:

Iz + dz,y + dy,t + dt) = I(z,y,1t) (4.2)
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and

ol oI oI

If we divide Equation 4.3 by dt and define % = u and % = v, we obtain the following

equation which is called optical flow constraint equation:

ol 381 or

Here v and v are components of optical flow field in z and y coordinates respectively. Since

Equation 4.4 has more than one solution, more constraints are required.

Lucas-Kanade Method

Using the optical flow equation for group of adjacent pixels and assuming that all of them
have the same velocity, we can make a system of linear equations. In a non-singular system
for two pixels we can compute a velocity vector to solve the system. However, combining
equations for more than two pixels is more effective. We might get a system that has no
solution; yet we can solve it roughly, using the least square method. We will use weighted

combination of equations. This method involves the solution of 2x2 linear system.

Z Wz, y) I Iyu + Z W(z, y)Igv =— Z Wz, y)I,1;

Y Y zy
SN Wiz, y)2u+> Wiz, y)lolyv=—> W(z,y) L1
z,9 Y EY)

where W(z,y) is the Gaussian window. I, I and I; are the partial derivatives of I with
respect to z, y and ¢ respectively. The Gaussian window may be represented as a compo-
sition of two separable kernels with binomial coefficients. Iterating through the system can
vield even better results. That is, retrieved offset is used to determine a new window in the

second image from which the window in the first image is subtracted while I; is calculated.

4.2 Face and lip detection

The first step in extracting visual features is to detect face and lip regions. We assume that
the acquired images contain the face of a speaking person with a stationary background.
A possibility here would be using a simple change detection algorithm. Such simple al-

gorithms are computationally attractive; however they are usually very sensitive to noise,
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changing light and possible small camera movements. Thus we propose an optical flow
based detection technique that gives more accurate and reliable results. Optical flow vec-
tors are first computed between successive frames of the video sequence [34], as described
in Section 4.1.1. The magnitudes of these vectors are accumulated in a buffer and then
thresholded. The rectangular region enclosing the pixels survived after thresholding gives
the face frame. Once face is detected, then in this region we search for the lip, assuming that
the lip constitutes the largest portion of the face that dominates the overall movement. A
second thresholding of optical flow vector magnitudes in the detected face region, followed
by morphological processing to fill up small holes and eliminating small isolated regions
clears out the most moving parts, possibly the lip area. Around the center of gravity of
these partial lip regions, we construct a fixed size window frame that we label as the lip
region. The average error is observed as 11 pixel among our current database. In Fig. 4.1,
we demonstrate the performance of our detection method on a video sequence from our
current database. The stages of lip and face detection process is shown in Fig. 4.2

The described lip detection technique relies only on the motion information which is
much more reliable as compared to texture which may show large discrepancies in terms of
color, brightness and shape from one person to another. Thus, the resulting accuracy of
localization is not as high as other detection techniques incorporating also texture informa-

tion. But in turn, the technique seems quite general and robust.

4.3 Extraction of Lip Features

In this section, we will consider the so-called “eigenlip” representation as a visual represen-

tation methods to characterize lip movement.

4.8.1 Eigenlips

An efficient alternative to optical flow based representation technique is the eigenlip tech-
nique [32]. Eigenlips, just like eigenfaces, are appearance-based or pixel-based features that
can be used to characterize the appearance of the lip of a speaking individual. Obtaining
principal components of a lip image, i.e. eigenlips, can be thought of as the eigenvalue
problem that we have briefly described in Section 3.2.1. Each lip image extracted from the

video signal is represented by a set of eigenlip coefficients. These eigenlip coefficients, when
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Figure 4.1: Lip and face detection performance

computed for every frame of the lip sequence, constitute the feature vector that can be used
in place of the lip feature vector.

As opposed to geometry based features, each eigenlip feature vector represents only the
appearance, i.e. the lip texture; the motion information is only inherent in the eigenlip
sequence that should further be exploited by modelling the temporal relations between
eigenlips of successive lip frames.

The advantage of the eigenlip approach is that it works simply on intensity values. This
improves the robustness and the computational efliciency of the overall scheme as compared
to techniques that require more sophisticated methods such as lip tracking for extraction of
some geometric features, e.g. lip contours as in [11]. With the eigenlip approach, it suffices
to employ a simple lip detection process for extracting lip frames from face images. The
disadvantage of this approach is that it is generally sensitive to translation, rotation and

lighting conditions, though small rigid motions of the head and small changes in illumination
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(b)

(c) (d)

Figure 4.2: (a) Optical flow vectors (b) Accumulated vector magnitudes (brighter regions
correspond to fast-moving parts) (c) Thresholded image after vector accumulation (d) Elim-
ination of isolated small regions and filling up small holes by applying morphological oper-
ations

can be tolerated up to a certain measure.

4.4 Feature Fusion by Interpolation and Concatenation

Recalling that speech and lip movement are highly correlated, the proposed audioc-motion
fusion scheme is based on the early integration model where the integration is performed
in the feature space to form a composite feature vector of audio and lip motion features.
Classification is implemented by using these composite vectors. The audio features f, and
the motion features f,, are combined to form the joint audio-motion features. That will
better exploit the temporal correlation of audio-video streams for robust performance.

As the audio features are extracted at a rate of 100 fps and the lip motion features are
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extracted at a rate of 15 fps, a rate synchronization should be performed prior to the data
fusion. Let the audio and the visual motion features be represented at time instants kﬁ

and z% seconds, respectively, i.e.,

B L
.fa, - fa(kloo

fi = fm(i1—15) for i=0,1,2,.... (4.6)

) for k=0,1,2,... (4.5)

The visual motion features can be computed using linear interpolation over the ffn sequence
to match the 100 fps rate,

1

where i* = L%J and oy = % — i*. Hence the joint audio-motion feature f¥,. is formed by

combining the MFCCs, the first and second delta MFCCs and the interpolated lip motion

features ffn for the k-th audio-visual frame:

~k
Fom=1f Ful- (4.8)
4.5 Multimodal Speaker Identification System

As observed from Fig.4.3, the proposed overall scheme consists of two independent iden-
tification tasks: One performed with audio-motion information fused in feature space and
the other with face-only texture features. Assuming that face texture is uncorrelated with
speech and lip movement, the two individual decisions obtained in this way are combined by
late integration. The fusion of audio and motion features is basically a data fusion process
and the joint feature vector f’;m, for every audio-visual frame %, is the concatenation of
the audio features f’; and the interpolated motion features ]’fn as given in Eq. 4.8. The
audio features are MFCCs and the motion features are eigenlip coeflicients, as explained
in Chapter 4. The HMM-based classifier described in Section 3 is first trained with these
concatenated feature vectors extracted from the training dataset for each speaker class A,.
For identification of an unknown speaker, the HMM-based classifier results in N likelihood
ratios {pam(An)}, where A, denotes the nth HMM speaker class model and N is the number
of the population. These ratios can then be combined with the N likelihood ratios {p:(An)}
provided separately by the face identification process presented in Chapter 3.
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Figure 4.3: Multimodal speaker identification scheme.

4.5.1 Normalization

One issue to be addressed before proceeding with details of the overall system is normaliza-
tion of the likelihood ratios resulting from different modalities. This is necessary to be able
to use Equation 2.2 for decision fusion of audio-motion and texture likelihood scores, that
we denote pg, and p; respectively. Each of these scores covers a different range and thus
they have to be normalized so as to be in the same scale. Recall from Chapter 3.2.2 that the
value of p; ranges in the interval [0, cimax /o] and the choice of ¢ in the Gibbs distribution
function was arbitrary (see Eq 3.22). Similarly, recalling Equation 2.4, pgy, takes values in
‘ the interval [0, prmax] Where pyax and cimax are to be determined experimentally by using the

| training data. Thus for normalization it is sufficient to choose o as

o = Gmex (4.9)
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4.5.2  Multimodal Fusion

With the normalized likelihood ratios {pum (M) -y and {p:(A\,)}X_; in hand, we can now
compute the likelihood ratios {pamt(Mn)}-; of audio-motion-texture fusion by weighted
summation as in Eq. 2.11. For each speaker class A, we obtain the following log likelihood
ratio:

pamt()‘n) = WamPam ()\'n,) + wtpt()‘n) (4'10)

where the weights wg,, and w; determine the contribution of each modality. Then the

unknown speaker can be assigned to the class A with the highest likelihood score:
X =arg max pome(An) (4.11)
and recalling Equation 2.5 the corresponding accept-reject strategy is as follows:

if p(A)>7 accept (4.12)

otherwise reject

The weights wqm and w; in (4.10) should each normally reflect the reliability of the cor-
responding likelihood score. As stated before, there are different, adaptive or nonadaptive,
ways of determining these weights. The most straightforward and efficient way of doing this
comes with the assumption that reliability and discrimination capability are closely related
issues since the feature sets are selected accordingly and if the feature set corresponding to a
modality fails to discriminate and classify a given speaker among different classes, one may
conclude that there is something wrong with the data itself and thus that it is not reliable.
An easy way of measuring how much a given feature set is discriminative is to measure the

difference between the two highest likelihood scores:

Wem = Ipam()\i)_pam()‘j)l

we = |pe(A) — pe(Ro)]

where (A, A;) and (A, A;) are the best two matches for audio-motion modality and face
modalities, respectively. Note that wg, + w: is not necessarily equal to 1. When the
difference between the two highest likelihood scores for both modalities comes out to be
very small, the weights wy,, and w;, and thus the likelihood score becomes also very small

and the unknown speaker is rejected regardless of the individual likelihood ratios.
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In multimodal speaker identification, M-best likelihood mechanism is used to increase

performance. The details of decision fusion using M-best likelihoods is given in Section 2.2.2.

4.6 Discussion

In our HMM-based speaker identification system, joint use of the lip sequence and the audio
signal of a speaking individual with early integration of audio and visual features is the key
point that considers the correlation between lip motion and speech. We have considered
the eigenlip technique which is an appearance-based approach, to implement visual feature
representation.

The appearance-based eigenlip technique is an effective and computationally efficient
method; however it characterizes the lip texture rather than the motion. As our multimodal
system integrates the face texture as a separate modality, using lip texture here seems in fact
redundant and the lip movement is indirectly taken into account during the HMM-based
classification phase. Moreover, eigenlips are very sensitive to lighting conditions and pose
(rotation, translation and scale).

The information in a video signal can be decomposed into three source of information.
The first one is the audio signal which is extracted from the most natural act of speaking.
The second is the texture information extracted from face or a portion of face. And the
third one is the motion characteristics of the speech. All these sources involve spatial and
temporal characteristics that can be exploited for any identification or recognition task.
For instance, the temporal changes around the lip area of a speaking individual can be
represented in terms of intensity itself or with some geometric sources of information such
as optical flow motion vectors. Image intensities may be used as a correlated source of
information with audio data if it is thought as a temporal sequence of images during a
speech or an uncorrelated source if some of frames are used independently as done in our
face-only scheme.

The advantage of using audio and visual sources jointly is the flexibility it provides in
case a problem occurs in one of these sources. The fused system must still perform well if
the audio or video of an individual is missing or very noisy. In our final proposed system,
the feature concatenation of eigenlips and audio data is combined with texture-based face

recognition at decision-fusion level. Although this scheme performs well with our database,
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a separate audio-only identification task could be added to the system through decision
fusion as well; in case the video is missing or noisy, the audio-only identification scores
alone may remain still reliable. Such a system may increase the overall performance at the

cost of system complexity.
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Chapter 5

EVALUATION OF MULTIMODAL SPEAKER IDENTIFICATION
SYSTEMS

In this chapter after presenting a brief introduction to the database and to the test
environment, we will evaluate the performances of the multimodal speaker identification
systems. Considering unimodal, bimodal and multimodal systems, the EER and ROC

characteristics will be presented at varying levels of acoustic noise conditions.

5.1 Database and Test Environment

The audio-visual database have been acquired using a Sony DSR-PD150P video camera
at Multimedia Vision and Graphics Laboratory (MVGL) of Ko¢ University. The data
acquisition system built in MVGL can be seen in Fiig 5.1. The speaker identification database
{(MVGL-SID) includes 50 subjects where 8 of them are females. Each subject in the database
utters 10 repetitions of her/his name and the fixed six-digit number. A set of impostor data
is also collected with each subject uttering five different names from the population. The
training and testing are performed over two independent data sets. A view of the variation

in our database is presented in Fig 5.2.

Figure 5.1: Data acquisition system in Kog¢ University.
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Figure 5.2: Sample subjects from the MVGL-SID database.

The temporal characterization of the audio and the audio-visual modalities are per-
formed by HMM structures. The HMM structures are implemented using the HTK tool
version 3.0, where each speaker is represented by a 6-state left-to-right HMM structure.
The acquired video data is first split into segments of secret phrase utterances. The audio
and visual streams are then separated into two parallel streams, where the visual stream
has gray-level video frames of size 720 x 576 pixels containing the frontal view of a speaker’s
head at a rate of 15 fps and the audio stream has 16 kHz sampling rate. The acoustic
noise, which is added to the speech signal to observe the identification performance under
adverse conditions, is picked to be a mixture of office and babble noise. The audio stream is
processed over 10 msec frames centered on 25 msec Hamming window. The MFCC feature
vector, ¢, is formed from 13 cepstral coefficients including the Oth gain coefficient using 26
mel frequency bins. The resulting audio feature vector, f’g of size 39, includes the MFCC
vector along with the first and the second delta MFCC vectors.

Each video stream is at most 1 second in duration and results in 15 individual face
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and lip frames of sizes 370 x 460 and 120 x 128, respectively. The motion feature vectors

fn, which are used in both training and testing of the HMM-based classifier, are obtained
as described in Chapter 4 with p = 20. As for the extraction of face feature vectors, an
eigenspace of dimension r = 20 is computed using 5 pictures from each video sequence of

the training set.

5.2 Performance of the Bimodal Bayesian Decision Fusion

In the bimodal Bayesian decision fusion algorithm, which is presented in Section 2.2.4, two
sources of information are used. The more reliable information source f, is taken to be
the audio stream, which is known to out-perform under noise-free environments but its
performance degrades rapidly under noisy conditions. The second source of information f,
is taken to be the eigenlip based audio-visual stream fused with the face texture.

The flow of the bimodal Bayesian decision fusion system is given in Fig 5.3. The pro-
posed scheme consists of two independent identification tasks performed with audio-only and
audio-motion-texture features. For the final decision a Bayesian classifier is incorporated to
combine the two decisions obtained in this way. The likelihood ratios of audio-motion data,
fusion process, pam, and the face identification task, p; are described in Chapter 4. The
likelihood score of audio-motion-texture fusion, py, is obtained by the weighted average of

the two individual likelihood ratios,
pe = Gpam + (1 —G)p; (5.1)

where the weight G, 0 < G < 1 determines the contribution of each modality. Note that
for G = 0, the second source of information turns out to be only face texture and similarly
for G = 1, it turns out be only audio-motion stream.

The identification results are shown in Table 5.1, where we observe the equal error rates
at varying levels of acoustic noise for name scenario. In the training phase 5 repetitions
of each name utterance are used and in the testing phase each subject utters 5 repetitions
of her/his name and they also utter 5 different names to cover the imposter data. The
first two rows display the equal error rates obtained for audio-only and audio fused with
lip motion (audio-motion). The third row presents the equal error rate for the face texture

only identification system that is based on the eigenface method. Finally, the last five rows
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Figure 5.3: Bimodal Bayesian decision system.

display the equal error rates obtained after the Bayesian decision fusion of the audio-only
and the audio-motion-texture identification results, at varying values of G. The best equal
error rate results are obtained when G is 0.75, that is when audio-motion and texture-
only schemes have 75% and 25% contributions to the decision fusion of likelihood ratios,
respectively.

In the audio-only case the identification performance degrades rapidly with decreasing
SNR. However, when lip motion is fused with audio, the identification performance improves
at the low SNR values due to the correlation existing between lip movement and speech.
But some performance degradation is observed at high SNR values. This is mostly due
to the uncertainty introduced by the lip motion modality. The Bayesian decision fusion
is introduced to overcome this performance degradation at high SNR levels. The overall
performance is improved significantly using the Bayesian decision fusion at all SNR levels.
Thus this system seems less sensitive to noise level and the incorporation of the Bayesian
classifier guarantees the overall performance to remain at least as good as the audio-only

performance [36].
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EER (%)
Source Noise Level (dB SNR)
Modality || clean | 25 [ 20 [ 15 [ 10 | 5 | o
Audio 2.3 3.0 4.3 7.0 | 104 | 19.0 | 23.6
Audio-Lip 8.4 114 | 12.2 | 13.0 | 13.9 | 145 | 14.7
Eigenface 4.1

Bayesian Decision Fusion

G =1.00 1.8 2.5 4.2 6.8 8.9 9.9 | 11.2
G =0.75 1.5 26 | 39 | 65 | 87 | 9.3 [ 9.8
G = 0.50 1.7 28 | 40 | 6.7 | 9.0 | 13.1 | 13.2
G =0.25 1.7 2.8 4.2 6.8 9.7 | 14.1 | 14.1
G =0.00 1.8 2.9 4.2 7.0 | 10.2 | 145 | 14.6

Table 5.1: Speaker identification results of Bayesian Decision Fusion scenario.

5.3 Performance of the Multimodal Speaker Identification System

The proposed multimodal identification system includes audio, lip-motion and face texture
modalities, where audio and lip-motion are considered for data fusion and all possible like-
lihood streams are considered for decision fusion. The M-best scores contribute to the final
multimodal decision fusion with weighted confidence levels as described in Chapter 4.

Performance evaluations are done over two scenarios; each subject either utters her/his
name or fixed 6-digit number (348572). We have used 5 repetitions for training, 10 rep-
etitions for testing in which 5 of them are collected as impostor test data for the name
scenario. For the digit scenario 4 repetitions are used as training data and 6 repetitions are
used as test data. Note that in digit scenario all the utterances not belonging to the subject
are used as impostor data.

For the proposed multimodal system we have used different combinations of modali-
ties to find out an optimal fusion strategy. While presenting the performance figures, the
abbreviations in Table 5.2 are used to easily follow the various fusion strategies.

The performance of the multimodal identification system is presented in terms of equal
error rates and some selected ROC curves at varying levels of acoustic noise. The unimodal

(video-only and audio-only), bimodal (audio-visual data fusion) and multimodal equal error
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Symbol | Description

A Audio-only scenario
F Face-only scenario (Eigenface)
L Eigenlip scenario (automatic lip region detection)

Ly Eigenlip scenario (hand labelled)
+ Multimodal M-best decision fusion

©] Data fusion at feature level

Table 5.2: Modality abbreviations for multimodal scenarios.

rates are displayed on the same table to better observe the improvement obtained by multi-
modal identification system. For the purpose of checking the lip detection performance we
run our system for lip frames extracted either by hand-labelling or by applying our optical
flow based detection algorithm. The results of name and digit scenarios are given in Table
5.3 and Table 5.4, respectively.

In Table 5.3 and Table 5.4, the first four rows display the equal error rates obtained
for unimodal scenarios (audio-only and video-only). Next two rows display the equal error
rates obtained for bimodal scenarios (audio fused with lip motion). Finally the last nine
row presents the equal error rates for the scenarios designed according to the proposed
multimodal system which is based on M-best match criteria.

In the audio-only case the identification performance degrades rapidly with decreasing
SNR. However, by fusing eigenlip features with MFCCs, the identification performance
improves significantly at the low SNR, values, due to the correlation existing between lip
movement and speech. But for high SNR levels, an improvement is not observed after fusing
visual features. In such cases audio-only scenario performs better than the fused systems.
The ROCs of audio-only and audio-visual scenarios for varying acoustic noise levels are
given in Figures 5.5 and 5.6.

The overall performance is further improved at all noise levels using the multimodal
Bayesian decision fusion which is introduced in Chapter 4. Thus the multimodal system
seerns less sensitive to noise level and the incorporation of the M-best likelihoods significantly
improves the overall system for both scenarios. This significant improvement is the result

of contributing the scores of different identification tasks where each modality carries useful
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EER (%)
Source Noise Level (dB SNR)
Modality cean | 25 [ 20 | 15 [ 10| 5 | 0
Unimodal
23 | 30 | 43 | 70 | 104 [ 190 | 236
F 6.5
L 10.4
Lu 7.2
Bimodal Data Fusion
LwA 8.4 114 | 12.2 | 13.0 | 13.9 | 14.5 | 14.7
IywA 4.9 5.8 6.0 6.8 8.2 9.4 | 10.0
Multimodal Fusion
LwA+F 7.0 11.0 | 12.0 | 12.8 | 12.9 | 13.2 | 13.8
A+LWA+F 2.7 3.1 4.5 5.8 7.7 {1 10.5 | 11.8
A+L+LWA+F 2.5 3.0 4.1 5.2 7.3 9.1 9.7
A+I+4F 2.7 3.6 5.3 6.5 | 104 | 186 | 19.2
A+F 2.5 3.1 4.2 6.3 9.5 | 18.6 | 23.0
A+L+LwA 2.8 3.2 54 6.0 9.5 | 11.3 | 12.2
A+LbA 2.9 3.2 5.3 6.1 9.7 | 12.0 | 12.6
A+L 4.1 5.6 7.2 9.2 | 126 | 209 | 21.1
L+F 8.8

Table 5.3: Speaker identification results of proposed multimodal system for the name sce-
nario.

information about the speaking individual.

In Figure 5.7 and 5.8, the ROC curves for top running fusion combinations are pre-
sented in loglog scale for a better comparison with the audio-only ROC curve. The decision
fusion between the audio-motion and the face texture (LWA+F) out-performs the decision
fusion of audio, lip-motion and face texture (L+A-+F). Hence this observation supports
the fact that the correlatién between audio and lip-motion helps to better discriminate
speakers. Although the decision fusion between audio, lip-motion, audio-motion and face
texture (A+L+LWA+F) performs slightly better than the candidate system LWA+F, this

performance difference is not that significant.
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EER (%)
Source Noise Level (dB SNR)
Modality cean | 25 [ 20 | 15 [ 10| 5 | 0
Unimodal
A 33 | 38 | 54 | 84 | 126|213 250
8.2
L 154
Ly 13.8
Bimodal Data Fusion
LwA 101 | 128 | 139 | 148 | 150 | 172 | 17.8
LuwA 77 | 80 | 83 | 91 | 110 12.4 | 131
Multimodal Fusion
LWA+F 83 | 117|133 | 141 | 149 | 168 | 17.2
A+LWA+F 33 | 40 | 51 | 64 | 89 | 105 | 121
A+L+LWA+F || 34 | 39 | 47 | 59 | 84 | 95 | 105
A+L+F 34 | 39 | 53| 79 |124]183] 209
A+F 36 | 41 | 50 | 63 | 11.5 | 185 | 235
A+L+LWA 35 | 41 | 53 | 66 | 9.6 | 113 | 12,9
A+LwA 35 | 42 | 55 | 7.2 | 100 117 | 135
A+L 44 | 49 | 77 | 98 | 146 | 205 | 232
L+F 13.6

Table 5.4: Speaker identification results of proposed multimodal system for the digit sce-
nario.

The overall performance of the name scenario is better than the fixed 6-digit number
scenario in which identification task is expected to be harder since all impostor speakers
utter the same 6-digit number. This is mainly due to the different sensitivities of these two
scenarios to the true client since in the name scenario case the HMM structure models not
only the personal biometric voice and lip movements but also the voice and lip movements
corresponding to the speech content.

The lip detection performance can be evaluated from the visual-only EERs. In our
experiments we have used optical flow based face and lip detection method. In order to

check the detection performance we also run our unimodal and bimodal system for lip
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regions which are extracted by hand-labelling. The detection performance can be observed

in Figure 5.4.
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Figure 5.4: Receiving operating curves for visual-only scenarios
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Figure 5.5: Receiving operating curves for bimodal decision Fusion at various acoustic noise
levels (Name scenario)
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Chapter 6

CONCLUSIONS

Biometric person identification technologies focus on voice, face, iris and retina scans,
signature strokes, fingerprint and gait as distinguishing source of personal information. All
suggested conventional techniques for unimodal scenarios which are based on these biomet-
rics do not perform well enough to obtain a robust identification system. The promising
attempt to build more reliable and robust identification systems appears to be the fusion
of individual modalities by means of data or decision fusion. It is clear that there exists
a correlation between voice and lip of a speaking individual. The audio information of
a speech and the temporal and visual characterization of lip constitute more information
about the speaking person. This correlation could be represented by fusing the features of
both modalities. On the other hand the visual data of a person may not be correlated with
audio data if only a face recognition scheme is taken into consideration. Such modalities do
not carry motion information but appearance-based characteristics. In order to integrate
the decision resulting from any uncorrelated data source, decision fusion algorithms are
used. Decision fusion algorithms do not care about the feature-level fusion but the likeli-
hoods or scores obtained from different identification systems. In recent developments both
data and decision fusion mechanisms are used to improve the performance of audio-visual
speaker identification systems as we applied a similar strategy in our proposed multimodal
system.

Our proposed multimodal system integrates three sources of information to improve the
identification performance over unimodal schemes. The data fusion of audio and lip motion
information has availed us the possibility of fully exploiting the correlations existing between
two modalities. Since the reliability of each individual source of information (audio, lip,
face) may vary under different light and acoustic conditions, our multimodal decision fusion
strategy which uses audio, motion and texture characteristics of a speaking individual,

significantly improves the overall performance. On the other hand the use of confidence
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measure which is applied beneficially in the Bayesian decision fusion is another advantage
of our system since we have a priori information on different modality streams. The fusion of
the decisions with the highest matches (highest likelihood scores) resulting from individual
classifiers and weighting these decisions with their confidence levels make the proposed
speaker identification system more reliable. We have considered 3-best match scores and
checked the difference between these scores in order to observe the reliability of the modality.
In our proposed system we have used eigenlip coefficients as the motion features. Since
eigenlip coefficients are pixel-based features, the temporal changes around the lip area can
be easily represented. Such a representation avoids inevitable robustness problems of the
systems relying rather on geometric features that require sophisticated and mostly unreliable
image analysis tasks, such as segmentation and lip tracking. The face texture information
decoupled from the video stream is also incorporated into the decision fusion mechanism
to further improve the performance. The disadvantage of using eigenlips and eigenfaces is
their highly dependency on the different light and pose conditions as well as image quality.

In this thesis we give the theoretical framework of fusion techniques which are widely
used in speaker identification systems. We have considered the formulation of reject-accept
mechanism and background theory for unimodal, bimodal data and decision fusion methods.
We give a brief explanation of Bayesian decision fusion approach. We also discuss a more
robust decision fusion algorithm which is based on the fusion of M-best likelihoods. Using
the M-best likelihoods resulting from each modality is far more computationally effective
than applying regular additive decision fusion, especially when the number of subjects in
the database is large.

‘We discuss the theory of Hidden Markov Models which is used in text-dependent speaker
identification systems. We briefly explain how HMM models the temporal characterization
of an audio or even an audio-video stream. We also present MFCCs as audio features.

Later, we focus on the widely used Principal Component Analysis method which extracts
the visual information of a speaking individual. We present the eigenface method which is
then adapted to lip images and named as eigenlip approach. We also propose a method of
speaker identification from the face sequences in an audio-visual system.

In Chapter 4, we first give the theoretical background of optical low method. Optical

flow vectors are used for the purpose of motion detection which is observed mostly in face and
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lip regions of a speaking individual. After the extraction of lip area, the eigenlip coefficients
are calculated as the visual feature vectors. The resulting eigenlip-based visual features
are then interpolated and fused by audio features by concatenating these two sources of
information.

There are further issues to be addressed. First, the training and test database should
be enriched both in terms of total population and variety for a more reliable performance
analysis. The variety in database refers mainly to changing environmental conditions such
as lighting and background, and to including video sequences where the head of the speaker
may undergo arbitrary rigid motion. This would allow us to better measure the tolerance of
our system to head rotation and changing illumination. In this respect, methodologies that
would enforce the overall scheme for better invariance to such properties has to be explored.
Secondly, the decision fusion mechanism can be improved, noting that there are many other
ways of combining information coming separately from audio, motion and texture parts of

the video sequence of a speaking person. All these issues should be further investigated.
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