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ABSTRACT

Microscanners produced using MEMS technology enable light manipulation at a size,
precision, and speed that is far beyond the limits of conventional machining. Microscanners
that utilize 1D, 2D, and even 3D scanning are gaining popularity and have found many
applications in display, imaging, and telecommunication applications. Accurate modeling,
effective testing and characterization of dynamic behavior of these devices are becoming
increasingly important to reduce the design time and cost while optimizing performance.

This thesis focuses on developing new modeling and experimental characterization
techniques for torsional microscanners that are energized using an array of parallel-plate
electrostatic actuators called comb-actuators. Models developed in the thesis are then applied
to design a novel Fourier Transform Spectrometer (FTS) based on a tunable rectangular
diffraction grating, which is formed using an out-of-plane comb-actuator.

Major accomplishments of this research include (a) development of numerical models for
analysis of hysteretic frequency response, parametric and subharmonic resonances, damping
effects, and stability regions of comb-driven microscanners; (b) development of analytical
models for predicting nonlinear system characteristics listed in (a) under small harmonic
excitation condition; (c) development of experimental setups for microscanner

characterization and validation of numerical and analytical models.

Keywords: Microscanner, comb actuator, parametric resonance, numerical modeling,
analytical modeling
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OZET

MEMS teknolojisi ile iiretilen mikro-tarayicilar isifin standart liretim teknikleri ile
firetilen yapilarin ulagabileceginin ¢ok Otesindeki boyut, hassasiyet ve hizlarda
yonlendirilebilmesini saglamaktadir. Tek boyutlu, iki boyutlu ve hatta ti¢ boyutlu tarama
yapabilen mikro-tarayicilar giderek daha c¢ok ilgi cekmekte ve bagta goriintii alma, g6riintii
olusturma ve haberlesme olmak iizere bir ¢ok yeni uygulama alam bulmaktadir. Bu yapilarin
dinamik davramglarinin deneysel olarak tanimlanmasi ve dogru bir gekilde modellenmesi,
mikro-tarayici temelli sistemlerin tasarim siire ve maliyetlerinin azaltilip performanslarmin
olabildigince arttirilmasi agisindan giderek daha fazla 6nem kazanmaktadir,

Bu tez, tarakh erisim diizenegi (comb actuator) adi verilen bir dizi paralel-levha
elektrostatik erigim diizenegi (electrostatic actuator) vasitastyla harekete gegirilen burulma-

"modu (torsional mode) mikro-tarayicilar igin yeni modelleme ve deneysel karakterize etme
yontemleri lizerine yogunlagmaktadir. Tez kapsaminda gelistirilen modelleme teknikleri
diizlem-dig1 moda ¢aligan tarakli erigim diizeneklerini ayarlanabilir dafilma 1zgarasi
(diffraction grating) olarak kullanan yeni bir Fourier Déniigtimii Tayfblceri tasarmi igin
kullanilmigtir.

Bu aragtirmanin dnemli bilimsel sonuglari §dyle siralanabilir: (a) tarak-tahrikli (comb-
actuated) mikro-tarayicilarin histerik frekans davramiglan, parametrik ve alt-harmonik
rezonanslan, soniimlenme etkileri ve kararliliklar i¢in sayisal modellerin geligtirilmesi; (b) ilk
sikta bahsi gecen dogrusal olmayan sistem ozelliklerinin diigik -genlikli harmonik tahrik
kosulu altinda analitik olarak modellenmesi; (¢) mikro-tarayicilarin test ve karakterize

edilmesi ve sayisal-analitik modellerin dogrulanmasi amagh deney diizeneklerinin kurulmasi.

Anahtar kelimeler: Mikrotarayici, tarakh erisim diizenegi, parametrik rezonans, sayisal

modelleme, analitik modelleme.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Integration of optics with Micro-Electro-Mechanical Systems (MEMS) gave birth to a new
engineering discipline called Micro-Opto-Electro-Mechanical Systems (MOEMS), which gave
engineers many new opportunities for light manipulation using precisely machined
micromechanical devices. Recent improvements in the microfabrication technologies, together
with the cheaper and faster opto-electronic devices, capabilities of MOEMS significantly
increased. Today, with increasing interest and investments from industry and research
foundations, MOEMS are becoming an established engineering field, whose major impact ié
soon to be seen in many fields, like telecommunications, display and imaging systems,
medicine, optical lithography, spectroscopy and etc.

This thesis mainly deals with resonant MOEMS microscanners developed for display and
imaging applications that use comb-drive actuation. Main contributions of this thesis are in
modeling of the actuator dynamics, development of a number of MEMS metrology tools for
microscanner experimental characterization and design of a novel MOEMS spectrometer. To
give a general overview of the microscanners as an active field of research and development,
Section 1.1 describes various microscanner applications and Section 1.2 describes different

microscanner actuation mechanisms. The outline of this thesis is discussed in Section 1.3.

1.1 Applications of Microscanuners

Micromirror and Microscanner technologies are a major part of the MOEMS discipline
today. A microscanner is a tiny movable mirror that can scan or steer a laser beam in 1D, 2D or
3D. Due to their promising mechanical, optical and electrical properties, there has been a
significant amount of research and development efforts on microscanner and micromirror
technologies. As a result, microscanners have been one of the first MOEMS devices that are
used in commercial products. Today, these systems offer effective solutions for problems from
different engineering professions. Some of the major application areas of micromirror and

microscanner technologies are given below.
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Display and Imaging: The fundamental application field of MEMS microscanners is the
display and imaging systems. Fast scanning speeds and high scan angles achieved by the
microscanner technologies make them a good candidate for this type of applications. There are
a wide variety of display applications that utiliie MEMS micromirrors and microscanners.
Some of those technologies even led to very successful commercial products.

Texas Instruments' Digital Light Processor® (DLP) technology is the most famous and
successful commercial MOEMS product aimed at projection display market. DLP is a MEMS
chip with an array of about 1 million movable micromirrors that operate digitally (ON-OFF),
instead of continuous scanning [1]. There are many projection displays in the market that uses

the DLP as the main display unit.

Figure 1.1-1: The Texas Instruments DLP®: Mirror arrays and pixel structure (Photo courtesy
of Texas Instruments)

A second MOEMS display product example is the Retinal Scanning Display (RSD). This is
a head mounted micro-display developed by Microvision, Inc. The device utilizes a single two-
dimensional MEMS microscanner for scanning video data onto the retina of the user [2]. Itisa
see-through display that augments the displayed image onto what is actually seen by the user.
Performance constraints for a microscanner based high-resolution display system like RSD
require a very careful design of the microscanner. The trade-offs and critical issues of

microscanner design for display systems are challenging, and have been the subject of several
articles [3-4].
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Figure 1.1-2: Retinal Scanning Display Technology of Microvision, Inc uses a 2D MEMS
microscanner. (Photo courtesy of Microvision, Inc)

In addition to the mentioned display applications, microscanner technologies are also
utilized in imaging systems. Barcode reading is maybe the most important imaging application
of today’s microscanner technologies. They offer effective solutions for reading both regular
1D and new 2D barcodes. Higher scanning frequency and lower power consumption of
microscanners compared to conventional technologies make microscanners an attractive choice

for compact, hand-held barcode readers [5].

Figure 1.1-3: Hand-held barcode readers are potential applications of MEMS microscanners

One major issue about barcode scanners may be the mechanical reliability, since a hand-
held device may experience high shocks due to dropping, hitting, etc.

In addition to the mentioned devices, there are various other technologies that use
microscanners for display and imaging applications [6-10].

Optical Switching:  Another major application field of optical MEMS is the

telecommunications industry. There has been an enormous interest and investment on fiber-
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optic switching technologies during the exceptional growth of telecommunications market in
the late 90’s. However, market conditions since 2000 slowed down the progress in this area.
Despite this drawback, optical MEMS are still very attractive and promising technology for the
telecommunications infrastructure of the future.

As a good tool for manipulating the direction of propagation of light, microscanners play an
important role in optical switching of fiber-optic data lines. Optical switching is significantly
advantageous, since it allows optical routing of signals at nodes, without having to convert the
signal into electrical than back into optical signal, thereby maintaining high data bandwidths
during transmission. Typical switching times for optical switches are in the order of few msec.
There are many different applications that employ a stand-alone or an array of MEMS
microscanners. Single mirrors are generally used for routing for one-to-N fiber coupling, while
array of mirrors are very suitable for optical cross connects (OXCs). Figure 1.1-4 shows a stand
alone microscanner designed for optical switching; Figure 1.1-5 describes two popular

architectures for N-to-N fiber OXCs using micromirror arrays.

Figure 1.1-4: A stand alone two-axis microscanner for optical switching applications (photo
courtesy of Lucent Technologies, Inc.)

Aading signala
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Figure 1.1-5: Two common structures for N-to-N OXC. (a) An N-to-N OXC with N mirrors.
(b) An N-to-N OXC with 2N mirrors (picture taken from [11]).
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There has been an enormous amount of research going on to develop fast, reliable and high
capacity optical switching MEMS devices. A list of publications reporting some of the most
successful devices for telecommunications applications can be found in the references section
[11-14].

Diversity of MOEMS and microscanner applications is increasing day-by-day. Some other
crucial applications of MEMS microscanners and micromirrors that were not mentioned here
include endoscopic optical coherence tomography [15], optical storage [16], adaptive optics
[17], and interferometry [18].

1.2 Actuation of Microscanners
Microscanners are generally categorized based on their actuation mechanism, which is the

energy conversion mechanism used to convert a certain form of energy into mechanical
motion. There are many different actuators that exploit different physical principles. A good
actuator should have a high efficiency in this energy conversion, in order to induce enough
amount of mechanical motion. A number of common actuation mechanisms utilized in MEMS
microscanners are overviewed here. More detailed information on the design and operation

principles of these actuators can be found in the corresponding references.

1.2.1 Electrostatic Actuation

This type of actuation is also known as capacitive actuation, since the operation principle
depends on the capacitance variation in a microsystem. Figure 1.2-1 is a sketch of a capacitive
actuator in its simplest form.

/(1177

Mechanical Spring

Figure 1.2-1: Simplest capacitive actuator: Parallel plate actuator

Total stored energy in a capacitive actuator of any geometry is given as
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W, =%CV(t)2 (1.1)

where, C is the total capacitance and V(%) is the time varying potential on the actuator. Then,

the actuation force produced by a capacitive actuator can be written as

oW, 1dC
F= e =P} 1.2
= 5 "2 I ® (1.2)

where x is the displacement of the actuator along the fundamental degree-of-freedom. (1.2)
implies that for maximizing the produced force, the total capacitance of the actuator should be
very high. Comb-drive capacitive actuators are a good solution for increasing the effective
capacitance between complementary surfaces. Figure 1.2-2 shows a typical comb drive
actuator. The microscanners investigated throughout this thesis are actuated with this type of

structures.

Figure 1.2-2: Comb drive capacitive actuators on a silicon micromirror. Comb drives increase
the force produced by electrostatic actuators by increasing the effective electrostatic interaction
area (photo courtesy of Fraunhofer, IPMS).

Electrostatic actuation is the most popular actuation mechanism for microscanners, since it
allows the designer to integrate the actuator to the actual device in a compact manner. There
are microscanners actuated with parallel plate [19-20] or comb-drive [21-22] capacitive

actuators.

1.2.2 Electromagnetic Actuation

A certain amount of force is exerted on a current carrying conductor placed in a magnetic
field (Lorentz Force). This force is proportional to the magnetic field intensity, the current
passing through the conductor and the length of the conductor inside the magnetic field. There
are various microscanners reported in the literature that uses this electromagnetic principle for
device actuation [23-24].
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Figure 1.2-3: A one dimensional electromagnetic microscanner

Figure 1.2-3 shows the layout of a typical electromagnetic microscanner. The permanent
magnets on the sides create a constant magnetic field. When a current is passed through the
coils on the moving plate, an in-plane electromagnetic force is exerted on the mirror, which
leads to torsional deflection. High current density on the mirror and powerful magnets are
required for torque maximization. There are also other electromagnetic actuation techniques
which are not as popular, such as moving permanent magnet actuators {25], and permalloy
actuators [26-27].

1.2.3 Thermal Actuation

When two materials of different thermal expansion coefficients are put together as a
bimorph structure — cantilever or a plate- , a change in the temperature will bend this structure.
This is the same principle that is used in thermostats. There are numerous applications that
utilize this principle for a microscanner actuation [28-29]. Most important design challenge for
such a structure is to maximize the thermal coefficient mismatch between the two materials of
the bimorph structure. This requires a good material selection in the design phase. Two major
drawbacks of thermal actuators are the high response times, and the sensitivity to thermal
noise. Figure 1.2-4 shows a typical thermally actuated microscanner.
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Figure 1.2-4: Cross section of a thermally actuated microscanner. The cantilever beam holding
the silicon mirror is bimorph consisting of two materials with different thermal expansion
coefficients [28]. Heating and cooling of the device bends the cantilever beam and actuates the
INIrror.

1.2.4 Piezoelectric Actuation

“Crystals which acquire a charge when compressed, twisted or distorted are said to be
piezoelectric. This provides a convenient transducer effect between electrical and mechanical
oscillations [30]”. With proper mechanical design this transducer effect can be utilized for
microscanner design [31]. Piezoelectric actuators provide high precision motion, however they
require very high potentials for small deflection amounts. There are examples of microscanners
that use deposited PZT piezoelectric films and take advantage of high mechanical gain in

resonant scanners to obtain good performance [32].

1.3 Main Contributions and Thesis Outline

This thesis focuses on the dynamic characterization of electrostatic comb-driven torsional
microscanners. The project was carried out as a collaboration of Koc University-Optical
Microsystems Laboratory, Fraunhofer Institute for Photonic Microsystems (IPMS), Germany,
and Microvision, Inc., USA. Fraunhofer IPMS developed the comb-drive actuated torsional
microscanners and shared their know-how on experimental test and characterization of
microscanners. Microvision, Inc. provided some of the test and measurement equipment used
in the experimental characterization works. The work in this thesis resulted in one journal
article (submitted to Journal of Microelectromechanical Systems) and three conference articles.
Full articles are included in Appendix D.

Main contributions of the thesis can be summarized as:

e An analytical and a numerical model for predicting the dynamic behavior of torsional

comb-driven microscanners is built for the first time

e Various optical measurement methods for full characterization of MOEMS

microscanners are presented
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In Chapter 2, structural and operational properties of the microscanners fabricated by
Fraunhofer IPMS are investigated. IPMS scanners are comb-drive actuated devices and they
are designed to operate in the torsional mode. However, comb actuators are multi degree-of-
freedom structures, and they can induce motion in different orientations. Actuation mode of the
comb-drives is determined by the excitation scheme and modal frequencies of the device.
Chapter 2 focuses on the finite element and analytical modal analyses of microscanners to
determine the natural frequencies of oscillations in different orientations. The driving
characteristics of the comb actuators in different modes are also investigated using FEA,
numerical and analytical analysis methods. This chapter also explores other microscanner
properties such as damping, electrical isolation, microfabrication, etc.

The investigation of the dynamic behavior of comb-driven microscanners in torsional mode
is given in Chapter 3. This chapter also presents the numerical model, which is based on the
device characteristics examined in Chapter 2. Frequency-domain, time-domain and voltage-
domain responses of the device are explored separately. For behavior in each domain,
numerical and experimental characterization results are given together for model validation.

In Chapter 4, an analytical treatment of the dynamic behavior of IPMS scanners is
presented. In 4.2, the solution for the simplest case —no damping, no nonlinearity- is
encountered. Following sections introduce those omitted effects into the solution and
comments on the impact of those effects on the dynamic behavior. The model built with this

treatment is utilized to predict the stability characteristics of the microscanners.
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Chapter 2

OPERATIONAL AND STRUCTURAL PROPERTIES OF COMB-DRIVEN
MICROSCANNERS

2.1 Introduction

Analytical, numerical, and experimental studies in this thesis explore the characteristics of
microscanners fabricated by Fraunhofer Institute for Photonic Microsystems (IPMS), Dresden-
Germany [33-35]. IPMS microscanners are promising candidates for various display and
imaging applications, since they can reach very high deflection angles with relatively low
voltages. Moreover, the electrostatic actuation principle of these devices provides very low
power consumption, which is a crucial issue in hand-held portable device applications, such as
barcode readers.

In this chapter a detailed insight on the structural and electrical properties of these devices
is presented. Section 2.2 explains the general structure and design variations of microscanners.
Basics of the operation principle are given in 2.3. In 2.4, the microfabrication process is
summarized. Although IPMS microscanners are designed to be operated in torsional mode,
with proper excitation schemes, other mechanical modes of the devices can be excited. The
natural frequencies of these modes are of great importance, since a poor modal separation may
lead to malfunctioning devices. Section 2.5 explores the modal characteristics of
microscanners. Finite Element Analysis (FEA) results and analytical mode frequency
estimations are presented in this section. Damping mechanism in the microscanners is an
important issue that strongly affects the dynamic behavior. Section 2.7 presents an
investigation of the damping characteristics of the device.

2.2 Device Structure

All IPMS microscanners have a single-crystalline silicon structure. Flexure beams, comb
fingers, and isolation trenches are defined on a silicon wafer using silicon etching techniques.

Figure 2.2-1 show the general layout for one and two dimensional microscanners.
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(@)

Figure 2.2-1: General layout for (a) 1D, (b) 2D comb-driven microscanners (Figure 2.2-1b
taken from [33]). The axis convention in (a) will be addressed frequently in the following
sections.

The key structural elements of one-dimensional (1D) microscanners are the aluminum-
coated, movable, reflective mirror, the fixed and movable comb-fingers, and the torsional
flexure beams that suspend the moving mirror to the outer fixed frame. In two-dimensional
(2D) devices, another gimbal-mounted frame is built around the moving mirror to provide
another axis of rotation. The movable mirror is coated with aluminum to enhance optical
reflectivity. Size and shape of the mirror may vary for different device design. IPMS have
fabricated many microscanners that are square, round or elliptical in shape, and range from 300
pm x 300 um to 2 mm x 2 mm in size.

Capacitance change due to rotation of the comb-fingers generates the necessary torque for
actuation of the reflective mirror around the flexure axis. In order to produce torque (or force,
depending on the mechanical operation mode) out of the actuators, complementary comb
fingers should be of different electrostatic potential. It is the isolation trenches that provide
electrical isolation between different areas of the device. The shape of these trenches is shown
in Figure 2.2-2. Since these devices operate in relatively high frequencies and deflect
significantly from their rest positions, high inertial forces are exerted on them during operation.
In order to enbance the mechanical stability of the 2D microscanners, and prevent a possible
breakdown during operation, the isolation trenches of this type of devices are designed in a
zigzag shape.
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Figure 2.2-2: Structure of the isolation trenches of 2D microscanners. The zigzag structure of
the trenches enhances mechanical stability (picture taken from [33]).

One of the main advantages of IPMS microscanners is the integrated compact actuators that
can produce high torque. Figure 2.2-3 shows the structure of these comb fingers. The fingers of
the driving electrode have a width of 3.6 um, the fingers of the mirror plate are 2 pm wide. The
bright area is a part of the Al-coated silicon mirror plate. On the right hand side of the mirror
plate the silicon layer is perforated to reduce the damping by the surrounding gas.

s

Figure 2.2-3: Photograph of the ¢lectrode combs [34].

Modeling efforts in this thesis are valid for all comb-driven microscanners. However, for
the sake of brevity, modeling results of only one specific scanner will be presented in the
following chapters, which is a boxed shape microscanner with a code number E201. Figure
2.2-4 defines the dimensional parameters of a box-shaped microscanner. Table 2-1 lists of

dimensional parameter values for E201.

Flexure cross-section

Figure 2.2-4: Dimensional parameters of a box-shaped microscanner.
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Table 2-1: Dimensions of E201 microscanner

Parameter Symbol | Value
Mirror Length Lm |2.00E-03
Mirror Width Dm | 2.00E-03
Thickness tm | 3.00E-05
Flexure Half Width a 7.30E-06
Flexure Half Thickness b 1.50E-05
Flexure Length Lf |5.89E-04
Comb Finger Length Ic |6.57E-05
Comb Thickness We | 2.20E-06
Gap Between Fingers g 2.20E-06

2.3 Device Operation

In the fundamental mode (torsional mode), the mirror plate of 1D scanners rotate around
the axis passing through the flexure beams (horizontal scanning). In 2D devices, in addition to
the movable mirror plate, the mirror frame is also suspended to another fixed frame via two-
flexure beams directed perpendicular to the mirror flexures. This movable frame also has comb
actuators, and can be rotated along the axis passing through its own flexures (vertical
scanning). The natural frequencies of vertical and horizontal scans are chosen to be sufficiently
away from each other; therefore mechanical coupling between two axes is prevented. This is a
critical issue for imaging and display applications, where independent 2D scanning of different

horizontal and vertical frequencies is necessary.

Figure 2.3-1: Driving schemes for (a) 1D, (b) 2D microscanners.

Figure 2.3-1 shows the driving schemes for both 1D and 2D scanners. Different areas of the

devices that are of different electrical potential are isolated from each other by isolation
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trenches. These trenches are fabricated by first etching a 1um thick channel on the silicon
structural layer using ASE™ process, then covering the side walls of the channel by 90 nm
thick insulating oxide, and at last filling the channel with LPCVD-polysilicon. Due to the low
thickness of these trenches, maximum allowed driving potential is about 40 V. Potentials
beyond this limit permanently damages the trench structure and the device ceases to operate.
The actuation principle is based on the capacitance change in the comb-drives; therefore a
slight difference between the mechanical and electrical rest positions is required to start the
oscillations from stationary position. Required asymmetry is so slight that even process
variations in microfabrication is enough to start the oscillations. Figure 2.3-2 illustrates the
mirror rotation and the driving signal at fundamental resonance. Electrostatic torque in the
system is present only if the driving voltage is in the ON state, and it pulls the device towards
rest position together with the spring force. In the fundamental resonance, mirror oscillation
frequency is half the excitation frequency and oscillations in this regime are called

subharmonic oscillations, which are discussed in detail in subsequent chapters.
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Figure 2.3-2: Oscillation and excitation waveform. The solid line represents the deflection
angle 0 of the mirror plate and the dashed line represents the square-wave excitation waveform.

2.4 Microfabrication

Both 1D and 2D scanning-micromirrors are fabricated in a CMOS compatible process
starting with a (100)-SOI-wafer with a top layer thickness of 30 pm. The buried oxide layer
serves as an eich stof). Therefore, the thickness of the mechanical elements is well defined. The
fabrication sequence is detailed in Figure 2.4-2 for a cross-section along C-D as shown in
Figure 2.4-1. For the generation of the filled isolation trenches in the mechanical active areas, 1
pm wide trenches with almost perpendicular sidewalls are etched in the 30 um thick top layer
using the ASE™.-process. Due to the selectivity of the process etching stops at the buried oxide
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layer (Figure 2.4-2a). The sidewalls of the trenches are wet-oxidized at a temperature of 960 C
resulting in a 90 nm thick isolation layer. After that the trenches are filled with LPCVD (Low
pressure Chemical Vapor Deposition) -polysilicon. The 900 nm thick polysilicon layer on the
wafer surface is removed by chemical mechanical polishing (CMP). The 90 nm-oxide is etched
back in a HF-solution (Figure 2.4-24b). As a consequence of this sequence the polysilicon
filling is 90 nm embossed on the wafer surface (not shown in Figure 2.4-2). An oxide and a
metal layer are deposited for the formation of the wiring (not shown in Figure 2.4-2). On the
backside of the wafer, a hard mask consisting of an oxide and a nitride layer is patterned for the
anisotropic etch later in the process. Further, a 50 nm thick layer of aluminum is deposited on
the silicon mirror plate to enhance the reflectivity (Figure Figure 2.4-2c). The substrate
underneath the mechanical elements is removed in a TMAH-solution at a temperature of 75°C
(Figure 2.4-2d). After that the buried oxidé is etched in a HF solution. Finally, the mechanical
elements, the electrode comb and the anchors of the movable frame are defined by a deep
silicon etch (ASE™) process [33].

D

Figure 2.4-1: Schematic view of the 2D scanner device defining the cross-section C-D for the
fabrication sequence of Fig. 4. The line starts at C, passes the open isolation trench defining
the anchor of the movable frame, the electrode gap of the mirror plate, the filled isolation
trench defining the anchor of the mirror plate, the electrode gap of the movable frame and ends
at D [33]

WS S0, GplySi MAl W Simiside

Figure 2.4-2: Process flow for the microfabrication of a 2D microscanner along the cross
section of Fig. 2.4.1. [34]
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2.5 Natural Vibration Modes

Basic one-axis torsional scanner geometry and the first five fundamental vibration modes
are illustrated in Figure 2.5-1. The figure presents the FEA (ANSYS®) modal analysis results
for the 1D E201 scanner. Two-axis scanners can be obtained by cascading two scan frames,
one inside the other. Mirror vibration frequency requirements determine the flexure beam
dimensions that suspend the mirror. Thus, predicting the frequencies for the torsion and other
fundamental vibration modes is critical. If torsion is the desired mode, which is the case for
microscanners, other modes are often undesired and should be well separated from the torsional

mode frequency and its harmonics.

Horizontat sliding (top view) Horizontal rocking (top view)

Vertical sliding (side view) Vertical rdcking (side view)
Figure 2.5-1: Five fundamental vibration modes of a box shaped microscanner.
One can calculate the natural frequencies of each vibration mode by using appropriate
displacement or rotation angle variable, spring constant, and effective mass or effective mass

moment of inertia terms [36]. As an example, the natural frequency for the out-of-plane

torsional mode with angular frequency (@=27f) can be calculated by:
7 @’0=0 2.1)
o=27f =,/Ks /I, 2.2)

where K; is the spring constant for the mode and I,, is the total mass moment of inertia of the

scan mirror for the particular vibration mode. A set of analytical expressions for the spring
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stiffness, effective mass/mass moment of inertia and natural frequency of the first five natural
modes of a box and elliptical shaped micromirrors are given in Appendix B. Those expressions
give a powerful way to perform quite accurate modal analysis without time consuming FEA

simulations. Table 2-2 presents a comparison of mode frequency calculations for E201 scanner.

Table 2-2: Mode Frequencies of E201 — Comparison of analytical, experimental and FEA

results.
Mode Analytical FEA Experimental
Torsional 1049 1266 1069
Horizontal Sliding 3746 3723 -
Horizontal Rocking 7698 6610 -
Vertical Sliding 5986 5908 -
Verical Rocking 17509 15525 -

A setup was built in the laboratory to experimentally measure the higher mechanical modes
of the microscanner. Detailed information on the layout and operation of the setup is given in
Appendix A.3. The heart of the setup is a Polytec PDV100 Laser Doppler Vibrometer. The
maximum frequency measurable with PDV100 was 22 KHz. Although this range was enough
to measure first five modes of E201, the scanner was broken by the time the setup was built.
Another microscanner (code number: SL28), which is a 1D device with round mirror, was used

in measurements. Table 2-3 gives the measurement results of SL.28 together with the analytical

and FEA simulation data.
Table 2-3: Mode Frequencies of SL28 — Comparison of analytical, experimental and FEA
results
Mode Analytical FEA Experimental

Torsional 203 240 270
Horizontal Sliding 1237 1345 -

Horizontal Rocking 1976 1934 -

Vertical Sliding 20613 16580 16420

Vertical Rocking 46807 39876 -

The microscanners are designed to be operated in the torsional mode. However, due to
multiple degrees of freedom of the comb-drive actuators, they can also be excited in other
modes. Next section discusses the details of comb-drive actuation.
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2.6 Actuation Mechanism

2.6.1 Characteristics of Comb-Drive Actuators
Electrostatic actuation has always been an attractive choice for microsystems. Simple

operation principle of this type of actuators enabled engineers to employ integrated and
compact actuation structures in microsystems. However, electrostatic actuators had a major
drawback. Due to the very small size of the microsystems, effective capacitances between the
surfaces to be actuated were very small. Therefore, very high operation voltages were required
to get sufficient displacement. Comb-drive actuators are a good solution for this problem. The
large number of comb-like fingers in this type of actuators significantly increase
capacitance within a small area, which leads to a drastic decrease in the o - n voltages. For
many occasions, the use of comb-drives pulled operation voltages down to standard CMOS
compatible range, which is an extremely important advantage in the sense of design flexibility
and cost. Today comb-driven electrostatic actuation is commonly used in different
microelectromechanical systems, such as tunable capacitors [37], mechanical filters [38-40],

and optical switches [41].

As in all electrostatic actuators, the total force (torque) produced by a set of comb actuators is
given by the following formulas:

1dC 2
Flx)=2N——V1t
W= 1 Ly

1dC @3)
M(0)=2N=-"=v(t)
2deo
where x is the displacement in sliding modes, 6 is the angular displacement in torsional modes,

dC/dx(d@) is the rate of change of capacitance with respect to the displacement variable, N is

the total number of comb fingers and V(#)’ is the periodic driving signal. The characteristic of
actuator’s force (torque) function is the fundamental factor that determines the dynamic
behavior of the comb-driven device; therefore capacitance-displacement characteristics of the
actuator at different oscillation modes should be accurately determined for successful
modeling. For the first four mechanical modes of E201, capacitance-displacement and
capacitance-change—displacement plots are given below. An additional mode, which is not
within the first five modes of microscanners is also investigated. This mode corresponds to
translation along x- axis, and may lead to lateral pull-in. We have run Finite Element Analysis
simulations using FEMLAB® to obtain capacitance-deflection characteristics. To obtain the
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displacement derivative of capacitances, first a high order polynomial was fitted to the
capacitance data, and then this fitting polynomial is differentiated using MATLAB.
Simulations were run for a single comb finger, for the sake of computational efficiency. For a

set of fingers, the curves should be multiplied by the number of fingers.

Torsional Mode (rotation around y- axis): This is the fundamental operation mode of
microscanners. FEMLAB simulation results for this mode are given in Figure 2.6-1.
Capacitance is the highest in the rest position, and begins to drop quickly as tilt angle increases.
This fast decrease in the capacitance slows down after the fingers disengage from each other.
Beyond disengagement, capacitance is only due to the fringing fields. Capacitance change rate
in this mode depends heavily on the angular displacement; therefore the force is also
displacement dependant. This dependence has a significant effect on the dynamic behavior of
torsional comb-driven devices, which will be explored in details in the following chapters.
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Figure 2.6-1: Capacitance-deflection and capacitance-change—deflection characteristics of a
torsional mode comb-drive actuator.

Horizontal Sliding Mode (translation along —y axis): Simulation results for this mode are

presented in Figure 2.6-2. There are two capacitive effects that determine the shape of the
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capacitance-deflection curve of this mode. When the fingers are almost completely engaged
(left-hand-side of the plot), the capacitance between the tip of the finger and the frame is
dominant, due to very low gap. As fingers disengage, this capacitance shrinks exponentially
and becomes negligible when compared to the side-wall capacitances. Beyond that point, the
decrease in the capacitance is linear with the displacement. This means that, except a short
range where fingers are almost completely engaged, the rate of change of capacitance is
independent of displacement. When comb actuators are designed to be operated in this region,
the associated device exhibit simple harmonic oscillatory behavior. Hence, comb actuators in
this mode are very appropriate for applications like tunable capacitors, mechanical filters or

resonators, where linearity is a desired property.
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Figure 2.6-2: FEA results of Capacitance-deflection analysis of horizontal sliding mode

Horizontal Rocking Mode (rotation around z- axis): Figure 2.6-3 gives the FEA results for
horizontal rocking inode. Capacitance-deflection curve for this mode is an even function. Due
to the exponential increase in the capacitance change with increasing deflection, motion in this
mode may cause pull-in, which means the sticking of the complementary fingers. Details of

this phenomenon are discussed at the end of this section.
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Figure 2.6-3: Capacitance-deflection and capacitance-change—deflection characteristics of a
horizontal rocking mode comb-drive actuator.

Vertical Sliding Mode (translation along — axis): This mode is also called out-of-plane
translation mode. As Figure 2.6-4 reveals, characteristics of this mode is very similar to the
torsional mode. Due to this similarity, dynamic behaviors of these two modes are very alike.
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Figure 2.6-4: Capacitance-deflection and capacitance-change—deflection characteristics of a
verical sliding mode comb-drive actuator.
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In-plane Lateral Mode (translation along x- axis): This mode is difficult to excite in [PMS
microscanners, since the flexures have very high stiffness in longitudinal direction. However,
some other comb-driven MEMS devices may easily be excited in this mode. Capacitance-

deflection characteristic in this mode is plotted in Figure 2.6-5.
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Figure 2.6-5 Capacitance-deflection and capacitance-change—deflection characteristics of an
in-plane lateral mode comb-drive actuator.

Comparison of Figure 2.6-3 and Figure 2.6-5 shows that, characteristics of the horizontal
rocking and in-plane lateral mode comb actuators are similar. In both modes, electrostatic force
increases unboundedly with increasing displacement. This leads to a problem called lateral DC
pull-in. When lateral pull-in occurs, complementary comb fingers stick together and create a
short circuit, which causes device breakdown. In a good microscanner design, the spring
stiffness along these modes of motion should be as high as possible, so that no pull-in occurs at

moderate operation voltages. Next, the lateral DC pull-in phenomenon is discussed.

2.6.2 DC Pull-In Instability:
Pull-in is a crucial issue in electrostatic actuation. Especially, for gap-closing parallel-plate

capacitive actuators, pull-in is the limiting factor of travel range. There have been extensive
studies on understanding and suppressing this drawback of electrostatic actuators [42-43].
Generally, comb actuated devices do not suffer from pull-in, since the fundamental degree-of-
freedom is not in gap closing direction. However, for some comb-driven devices with suitable

spring structures, lateral pull-in may also occur. Figure 2.6-6 shows the forces acting on a
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laterally moving comb finger. When fringing effects are neglected, the net electrostatic force

on a single comb finger is given by

e4v 1 1
Fe2)=

2 [g-xf (g+2)
where ¢ is the permittivity of air, 4 is the total overlap area between the fingers, V is the DC

F,=(F,- (2.4)

potential between the complementary fingers, g is the initial gap between the fingers, and x is
the lateral displacement. This lateral displacement produces a restoring force due to the springs,
which is given by the expression

F,=Kx 2.5)
where K is the spring stiffness along the displacement. Figure 2.6-7 plots these functions for
two different DC drive signals.

Figure 2.6-6: Electrostatic forces acting on a comb finger moving in in-plane lateral mode.
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Figure 2.6-7: Mechanical and electrostatic forces in a in-plane lateral mode mode comb
actuator at three different voltage levels.
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For relatively low voltages, electrostatic and mechanical forces have three equilibrium
points, one of which is the rest position (x=0), as expected. When the system is at rest, a small
change in the position (due to fabrication tolerances, shock or electrical noise) will disturb the
equilibrium state. Since in the neighborhood of this equilibrium point mechanical force is
stronger than electrostatic attraction, the system will again reach equilibrium. Therefore, the
rest position is a stable equilibrium point. The situation is different when the system is at other
two equilibrium states, since a small increase in the displacement will increase the electrostatic
force more than the mechanical restoring force, and lead to pull-in. Thus, those states are
unstable equilibriums. As the DC potential between the fingers is increased, unstable
equilibriums come closer to the rest position. At a critical voltage, which is called pull-in
voltage (Vpy), the rest position becomes the single equilibrium, which is unstable. At V=Vp;
slope of the electrostatic force at x=0 is equal to the slope of the mechanical force; in other
words, two curves are tangent to each other. Beyond the pull in voltage, the system is always
unstable. Figure 2.6-7 illustrates the graphical relation between the mechanical and electrostatic
forces for three different voltages.

2.7 Damping Mechanism
Alike all MEMS devices, dynamic behavior of a microscanner is significantly affected by

the amount of damping. Thus, it is a critical issue to accurately determine the amount and
characteristics of the damping mechanism in a microscanner. Damping is the dominant factor
that limits the oscillation amplitude of a comb-driven microscanner. The air between the comb
fingers and beneath the moving mirror plate exerts an opposite force to the moving device. This
resistive force grows together with increasing mirror velocity, and limits the maximum mirror
displacement. In vacuum environments, the amount of damping is very low and the
microscanner can reach very high scan angles; however, due to difficult manufacturing
processes and low reliability, it is not desirable to operate microscanners in vacuum.

A widely used figure of merit for the amount of damping present in a microsystem is the
quality factor (Q). The relation between the quality factor and the damping constant in the
equation of motion is given by

b: Imwo

Q

2.6)
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(2.6) implies that the higher the quality factor is, the lower is the damping. Two different
experimental techniques were utilized to measure the damping in microscanners. The details of
these techniques are given in Appendices A.l and A.2. Measured quality factor values of the
microscanners that were available are given in the following table:

Table 2-4: Measured quality factors of different microscanners. All devices mentioned in the
table are comb-driven microscanners manufactured by Fraunhofer IPMS. They possess the 2D

microscanner structure mentioned earlier in this chapter. All devices, except E201, have
circular mirrors of radius 1.5mm.

Scanner Code Quality Factor Natural Frequency
E201 22 2140 Hz
CBO02 (2D) Horizontal 30 3426 Hz
DA63 (1D) 6 805 Hz
DAG63 (2D)-Vertical 25 2615 Hz

For comb-driven microscanners, the fundamental contribution to the damping is from the
comb fingers. Due to the thin gaps between the fingers, a significant viscous damping is
present there. However, since the gap between the fingers is different when the fingers are
completely engaged or disengaged during torsional operation, the damping is not constant
throughout the entire oscillation range. The constant quality factor measured in the experiments
is a value that averages out the damping mechanism. A recent work by Fraunhofer IPMS gives
a model for the damping in comb driven microscanners. Figure 2.7-1 shows the dependence of

the damping to the deflection angle of the mirror.

Figure 2.7-1 shows that damping changes with deflection angle, however this dependence
is not drastic. Therefore, the constant damping approximation is a good way to incorporate the
effects of damping into a numerical or analytical model, without introducing further

complexity.
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Figure 2.7-1: Decay rate of free oscillations vs. Deflection angle for various IPMS scanners
(figures taken from [44])
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Chapter 3

DYNAMIC BEHAVIOR: EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS

3.1 Introduction

Dynamic behavior of a MEMS device refers to the characteristics of system response to
excitations of various time and frequency domain characteristics. Regardless of the type of
specific application, design of a microscanner based system always requires good
understanding and modeling of the dynamic behavior. Device models that are capable of
predicting the device response within sufficient accuracy provide a powerful intuition that
saves significant amount of design and engineering effort. For instance a 2D microscanner that
is to be employed in a display application should have a very high D (maximum scan angle x
scanner size) product and definite horizontal and vertical scanning frequency for high
performance operation. A good model for a microscanner would tell the designer how
promising a specific device design is in satisfying the demands of such an application.

It was shown in the previous chapter, that the nature of the force (torque) produced by the
comb-drive actuators depends on the operation mode of the device. In in-plane sliding mode,
the force induced by the actuator is independent of the displacement of the combs, and the
actuator exhibits a simple harmonic oscillatory (SHO) behavior. As all other second order
harmonic oscillators, in-plane mode comb actuators have their fundamental resonance at the
mechanical natural frequency of the system. Detailed study of this type of comb-driven devices
is available in the literature [45-49]. Due to the displacement dependent torque, time and
frequency domain behavior of a torsional comb-driven microscanner is significantly different
from the dynamics of a linear resonant oscillator. In this chapter, a numerical model for
torsional, comb-driven microscanners is presented. This model is utilized to predict different
frequency and time domain characteristics of a 2mm x 2mm square-mirror IPMS microscanner
(IPMS code: E201). Numerical results in this chapter are given together with experimental

measurement results for model validation. Various experimental setups were built as a part of
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this thesis work for microscanner characterization. Appendix A gives comprehensive
information on the schematics and operation principles of those setups.

The organization of this chapter is as follows: Section 3.1 explores the basics of the
numerical model, and how to perform simulations with it. Following section deals with the
frequency-domain characteristics of the device. Experimental and simulation data on the
response of the device to various excitation schemes is presented. Transient and steady-state
responses are explored in 2.4. In section 2.5, the relation between the angular displacement and
driving voltage amplitude is investigated. The last section of this chapter deals with the
stability characteristics.

3.2 Numerical Modeling Basics

First step of numerical modeling is forming the equation of motion. The equation of motion

for the torsional microscanner was given in Chapter II, and is also repeated here.

d*e . de
I,—+b—+K . 0=M(0 3.1

where, I, is mass moment of inertia, b is the damping constant, K is the torsional stiffness of
the springs, and M(z,0) is the time and displacement dependant torque function. Although this
equation is written specifically for the torsional mode of the microscanner, equations of motion
for the other modes are also in the same form. However, this single degree-of-freedom model
requires that the natural frequencies for the mechanical modes are sufficiently away from each
other. Modal analysis results presented in the previous chapter showed that this condition is
satisfied for the microscanner of interest.

Numerical simulations are performed by numerically solving the equation of motion using
MATLAB® ODE solvers. In order to be able to obtain accurate numerical results, values of the
parameters in (3.1) should be computed accurately. For determining the mass moment of
inertia and spring stiffness of different modes, some analytical expressions are available. The
numerical analyses in this thesis utilize those expressions, which are listed in Appendix B.
Another way to determine the stiffness and moment of inertia is to run Finite Element (FEA)
simulations. This technique may give more accurate results than analytical expressions;
however, FEA simulations are very time-consuming. Analysis of damping mechanism in
microscanners is done in Chapter II. Although the damping in these devices is not constant, but
depends on the angular displacement, an average resultant damping term can be experimentally

determined. Details of the experimental damping measurement procedure are given in
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Appendix A.1 and A.2. Last feature to be determined in (3.1) is the torque function. Force or
torque produced by the comb actuators in various modes of operation were also investigated in
the preceding chapter. A twentieth order polynomial fitted to the capacitance—tilt-angle
function in order to obtain close form expression of torque function. Figure 3.2-1 plots the

capacitance-change—deflection function once more as a reminder.
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Figure 3.2-1: Capacitance vs. deflection and capacitance change vs. deflection plots of a
torsional comb-driven microscanner

Table 3-1 lists the equation of motion parameters computed in two different ambient

pressures.

Table 3-1: Coefficients of equation of motion of E201 at two different ambient pressure levels.
Moment of inertia and spring stiffness are calculated using analytical expressions given in
Appendix B; damping constant and the quality factor are determined experimentally.

Pressure(Torr) In(kgm) |b(N.s/m) | Ks(N/m) Q
760 Torr 9.32E-14 | 4.21E-13 [ 4.28E-06 [22
30 mTorr 9.32E-14 | 2.87E-11 | 4.28E-06 1250

For numerical methods, the choice of initial conditions of the system parameters is of great
importance. For nonlinear systems, this dependence on the initial conditions may be drastic.
Therefore, the numerical simulations should have appropriate initial conditions. Figure 3.2-2
shows that the behavior of a typical torsional microscanner when the input frequency is steadily
increased or decreased is significantly different. Between two jump frequencies, there exist two
stable solutions of the system, and it is the initial conditions that determine which one is the

actual solution that the oscillations will converge to. An initial For decreasing sweep
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simulations, the initial condition is larger than the maximum scan angle, and the simulation

converged to the solution with larger oscillation amplitude.
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Figure 3.2-2: Typical hysterical frequency response curve for a torsional microscanner.

3.3 Frequency Domain Characteristics

Experimental results presented in this section are obtained by using the Dynamic
Microscanner Characterization Setup. Detailed information on the design and operation of this

setup is given in Appendix A.1.

3.3.1 Excitation with a Rooted- Sinusoid

The square dependence of torque to excitation implies that when the microscanner is driven
by a sinusoidal potential of period 7, the equation of motion would have periodic coefficients
of periods T and 2T. Therefore, in order to remove the second harmonic terms from the

equation of motion, the excitation signal should be a square-rooted sinusoid (¥ = 4/cos(wr)+1).
During experiments, an arbitrary signal generator (Agilent 33250A) was used to obtain the

square-rooted sinusoidal signal.

Due to the nonlinear parametric nature of the microscanners, the amount of deflection at a
certain frequency depends on the initial conditions. Therefore, the frequency of the excitation
has been increased or decreased quasi-statically to scan the appropriate part of the spectrum.
Figure 3.3-1a and Figure 3.3-1b show the frequency response curves for rooted-sine excitation
at atmospheric pressure (760 Torr), and at 30 mTorr, respectively. Figure 3.2-1 focuses into the
first parametric resonance of Figure 3.3-1 and plots the numerical simulations results on top of

the experimental data. The curves are significantly different from the frequency response of a
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typical harmonic oscillator, which has a single resonance near the natural frequency of the
system. Most remarkable feature of the frequency response of the microscanners is the
hysterical behavior. The path traced on the tilt-angle ()—drive-frequency (f) curve when
frequency is increased quasi-statically from a lower frequency is different than the case, in
which the frequency is swept down from a higher frequency. The interval between the two
jump frequencies f; and f; is called the unstable region of the response curve, since the
oscillations in this region can be triggered if and only if the frequency is swept down from a
higher frequency, but not from rest position. In other words, if the device is somehow stopped
within this region, the oscillations can not be restored. Jump in the oscillation amplitude at the
boundaries of the unstable region (f; and f3) is extremely abrupt; sharper than 10~ Hz, which

was the measurement resolution.
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Figure 3.3-1: Experimental frequency response data at (a) atmospheric pressure (760 Torr), (b)
at 30 mTorr. Excitation signal is a square-rooted sine with 20 Vp-p for both plots
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Figure 3.3-2 Comparison of simulation (dashed line) and experimental (solid line) results for
the 1st order parametric resonance in atmospheric pressure.

Figure 3.3-1a indicates that in atmospheric pressure, the device has two scparate
resonances, of which the fundamental one is located around twice the mechanical resonance
frequency (f7). At 30 mTorr, the number of observed resonances is increased to five. Moreover,
the maximum oscillation amplitude is also increased by four times. The reason behind the
change in the frequency response at lower pressures is the decrease in the viscous air damping.
The effect of damping on the dynamic behavior of the torsional microscanners will be
investigated extensively in the next chapter. Despite the change in the frequency and amount of
deflections, all orders of resonances exhibit hysterical characteristics. The locations of these
resonances are not random. They are located around 2f/n, n=1, 2, 3.... However, oscillation
frequency of the device is always close to f;, regardless of the order of the resonance. In the first
resonance region, which is called the primary resonance, the oscillation frequency is half the
excitation frequency. Thus oscillations in this resonance are called subharmonic oscillations.
Within the second resonance range, oscillation frequency follows the excitation frequency, as it

is in the simple harmonic oscillator case.

3.3.2 Square-wave Excitation

Figure 3.3-3 is the frequency response curve of the device for square wave excitation.
Number of observable parametric resonances is more than the square-root excitation case.
Figure 3.3-3 shows 8 parametric resonances at atmospheric pressure. However, monotonous
decrease in the maximum oscillation amplitude as the order of resonances grows is also not
present with square-wave excitation. This reveals that wider harmonic content of the square-

wave signal gives rise to some other resonances. Hysterisys in the response curve is also
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present for all 8 resonances, but the jump frequencies are different than the harmonic excitation

case.
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Figure 3.3-3: Experimental frequency response data at 760 Torr (1 Atm) and with 20 Vp-p
square wave excitation. Number of observable parametric resonances is 8, due to the higher
harmonics in the square wave excitation.

Although the amplitude of the excitation remained intact (20 ¥},), maximum oscillation
amplitude of the microscanner is higher when the system is driven by a square waveform. This
is due to the higher amount of energy that is coupled to the oscillator.

In rooted-sinusoid excitation case, as the resonance order is increased, the maximum
oscillation amplitude shrinks. However, this is not the case in square-wave excitation.
Especially the third and fifth orders have very higher peak values compared to the second and
fourth orders, respectively.

Alike the frequency domain characteristics, time domain behavior of the torsional
microscanners also exhibits interesting and uncommon properties. In the next subsection, we

present experimental and numerical data on time-domain behavior of the device.

3.4 Time Domain Characteristics

For time-domain characterization of the microscanners, a two-dimensional Position Sensing
Device (PSD) based optical characterization setup was implemented. The details on the
experimental setup are given in Appendix A.2.

3.4.1 Transient Response

Figure 3.4-1 and Figure 3.4-2 show the behavior of the output amplitude until the system
reaches steady state. Excitation signal is a square-rooted sinusoid for both Figure 3.4-1 and
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Figure 3.4-2, but the drive-frequencies are different. Figure 3.4-1shows the transient response
of the device, when it is driven with a frequency f greater than f;. Unlike linear systems,
oscillation amplitude grows with in a positive exponential manner, until it reaches a maximum
value. However, the oscillations do not settle immediately, but show a damped oscillatory
behavior. If the drive frequency is very close to the boundary between the stable and unstable
regions (f~f;) damped oscillatory behavior in the output amplitude diminishes, and the device
reaches steady-state immediately after the exponential growth.
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Figure 3.4-1: Transient response of the device, when fox >f2 (stable region). (a) Experimental
data (b) Simulation result.

-

Figure 3.4-2: Experimental transient response of the device, when fe, ~f2 (boundary of the
stability curve).

3.4.2 Steady State Response

In steady-state, there is not a linear relationship between the drive signal and oscillation
amplitude. The relation between the frequencies of drive and output depends on the order of
resonance in which the device is operated. Oscillations in the 1% parametric resonance are
called subharmonic oscillations, since the drive frequency is twice the oscillation frequency.

For the 2™ order resonance, the device oscillations follow the drive signal frequency-wise. For
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all other resonance orders, drive signal has a lower frequency than the actual oscillations.
Figure 3.4-3 shows the input-output relations for the first two orders of resonances.
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Figure 3.4-3: Excitation and device response (a) in the first order resonance; (b) in the second
order resonance

When driven by a square waveform, the frequency relation between input and output for
the first two orders of resonances is similar to those given in Figure 3.4-3. However, at higher
order resonances, the response is not a pure sinusoid. Scan wave shows an unusual behavior
and changes oscillation frequency and amplitude at each half cycle of the square wave. When
excitation is in the OFF state (meaning that no torque is present in the system), the system
makes free oscillation at its natural resonant frequency, when the excitation is in the ON state,
the mirror oscillates at a hjghef frequency, which can be calculated using the excitation and
natural frequencies. This phenomenon is called alternating oscillation frequency. In Figure

3.4-4 simulated waveforms for alternating frequency behavior can be seen together with the

experimental data.
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Figure 3.4-4: Alternating oscillation phenomenon at higher order resonances with 590Hz
square wave excitation. (a) Experimental result; (b) Simulation results
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3.5 Voltage Domain Characteristics

Voltage domain behavior refers to the response of the device to changes in the excitation
amplitude. The dynamic mirror characterization setup that is used for frequency domain
measurements can also be used for voltage domain characterizations of the microscanners.
Figure 3.5-1 is the plot that shows the relationship between the maximum mechanical
deflection angle and the excitation amplitude. The deflection values are measured at the peak
of the first order resonance of the microscanner. Regardless of the waveform of the excitation,

maximum deflection angle grows linearly with the increasing excitation amplitude.
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Figure 3.5-1: Maximum scan angle vs. excitation amplitude with square-wave, sinusoidal and
square-root sine excitation. Experimental results belong to E201.

Similar experimental results on voltage domain behavior of IPMS microscanners are also
given in some publications of Fraunhofer IPMS for microscanners of various size and shape.
Figure 3.5-2 gives the experimental data on voltage domain behavior of different various round
microscanners. Figure 3.5-2a shows how the frequency response of the device is changed with
different excitation amplitudes. Figure 3.5-2b, on the other hand, compares voltage domain
behavior of round microscanners with different comb finger orientations. All devices has a
linear mechanical deflection—excitation amplitude characteristics, and validate the numerical

and experimental results obtained in our laboratory.
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Figure 3.5-2: Voltage domain characteristics of IPMS scanners. (a) Effect of excitation voltage
on frequency response. (b) Maximum scan angle vs. excitation amplitude characteristics of
different IPMS scanners. Both results are taken form IPMS papers. [44]

3.6 Conclusions

Frequency response of a torsional comb-driven microscanner deviates significantly from
linear system behavior. With rooted-sine excitation, up to five different orders of resonances
were observed in vacuum measurements. When the devices excited with a square waveform,
eight resonance orders were seen in atmospheric pressure. Each of those resonances show
hysterical behavior, and abrupt changes in the output, when excitation frequency is swept
downwards or upwards. All of the mentioned behaviors are typical for parametric systems,
which bave time varying coefficients in their equation of motion. As pointed out before, the
equation of motion of a torsional microscanner has time varying coefficient, therefore the
device is actually a parametric oscillator. In the next section, nature of parametric systexﬁs will
be explored in detail.

Multiple parametric resonances and very sharp hysterisys jumps in the frequency response
curves make this device a potential candidate for various applications. Due to higher order
resonances, the device may be excited with frequencies far from the natural frequency. This is
an important advantage, since this phenomenon can be exploited in some electrical applications
to isolate electrical signals from input and output ports. A more promising aspect of the
frequency response is the very abrupt jump in the output amplitude at some points. For
instance, if such a system is biased at its resonance peak, a very slight change in the
environmental conditions will lead to a collapse in the oscillations. This phenomenon is used

for parametric amplification [50-51], mass sensor [52-53], impact detectors, etc.
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Chapter 4
DYNAMIC BEHAVIOR: ANALYTICAL MODELING

4.1 Introduction

Experimental and numerical investigation of dynamic behavior of torsional comb-driven
microscanners in the Chapters 2 and 3 revealed the non-trivial dynamic nature of these devices.
Multiple resonances, hysterical frequency response, subharmonic and superharmonic
oscillations and frequency switching behavior of these devices set them apart from the simple
2™ order harmonic oscillators. A torsional comb-driven microscanner is a “Parametrically
Excited System”. An analytical insight on this type of oscillators is given in this chapter.

A parametrically excited system is governed by a 2™ order differential equation, in which
the time-dependent excitations appear as coefficients (parameters) of the equation. In simple
harmonic systems, a small excitation cannot create a large response unless the excitation
frequency is close to the resonance frequency of the system (primary resonance). However, a
small parametric excitation can produce a large response when frequency of the excitation is
close to twice the natural frequency (f;) of the system (principal parametric resonance) [54].
Moreover, a parametric system may also produce relatively large response, if the excitation
frequency is close to an integer fraction of twice the natural frequency. The resonance around
2f/n is called the nth order parametric resonance. The response to excitations of same
amplitude shrinks as n grows. Generally, for macroscopic structures, only the principal
parametric resonance is observable in the atmospheric pressure, due to high air damping. The
first scientist to observe and report the parametric resonance phenomenon is Faraday. He
reported that the surface waves in a fluid-filled cylinder under vertical excitation exhibited
twice the period of the excitation itself. This phenomenon is now called subharmonic
oscillation, and is a characteristic property of parametric systems. It was Strutt who provided a
theoretical basis for understanding the observations of Faraday, Melde, etc. A detailed history
on the improvements in the study of parametric systems and an extensive list of references on
the subject is given in [54]. Today, parametric resonance phenomenon is frequently observed in
different areas of science and engineering, such as photonic crystals [55], optical cavities [56],

plate vibrations [57], and nano-scale devices [58].
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In this chapter, a detailed analytical treatment of the parametric resonances in torsional
comb-driven microscanners is presented. Since the mechanical mode of interest is only the
torsional mode, and the modal separation and quality factor of the devices are sufficiently high,
the system will be treated as a single-degree-of-freedom system. A global solution for the
equation of motion valid at all damping and drive-schemes is impossible to achieve, hence,
certain assumptions on damping and excitation are made at different analysis steps. In 4.2, the
steady state behavior of torsional comb-driven microscanners is investigated without the effect
of damping and cubic nonlinearities. 4.3 and 4.4 deal with the effects of damping and cubic
nonlinearities on the steady-state behavior of the devices, respectively. Experimental and

numerical verification of the results of the analytical treatments are presented when necessary.

4.2 Steady-State Behavior
In Chapter 2, the equation of motion for the torsional microscanner was given as,

d*e de
Z—+b—+K,0=M(t,0 4.1
m dtz dt f ( ) ( )

where, I, is mass moment of inertia, b is the damping constant, Kris the torsional stiffness, and

I

M(1,6) is the time and displacement dependant torque function. Damping term b is determined
experimentally; the remaining parameters are calculated using analytical formulas or numerical

simulations as given in Chapter 2. The torque induced by the comb actuators is given by,

N1 0y
M(t,6)=2N T 140) “4.2)

where, N is the number of comb fingers, dC/d@ is the rate of change of capacitance with
respect to the deflection angle, and V(%) is the periodic drive signal. In order to be able to
achieve a close form solution to 4.1, a set of assumptions need to be made. Figure 2.6-1
illustrates a plot of the dC/d@ term. For small deflections, this derivative function may be
approximated by a third order polynomial. Since dC/d@ is an odd function, the fitting
polynomial has only the linear and cubic terms. The torque is proportional to the square of the
excitation; therefore, in order to obtain a harmonic excitation, the drive signal is chosen as a
square-rooted sinusoid (¥ (r) = 4yJcos(wr) +1, Where 4 is the excitation amplitude). The resulting

simplified torque expression is given by,

M(z,0)= —(r303 + n@)Az (cos(wt)+1) 4.3)
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where, r; and r; are the coefficients of the first and third order terms of approximate dC/dé

expression, respectively. This simplified form of the torque reveals the reason behind the
parametric characteristics of the device. Due to the multiplication of dC/d@ and the periodic
excitation, terms with parametric coefficients arise in the equation of motion. Apart from the
parametric effect, the torque also introduces a cubic nonlinearity into the system, which has a
significant effect on the stability of the steady state solutions. In this subsection, the effect of
this cubic nonlinearity and damping will be omitted, but the following two subsections will
explore these two effects in detail. Substituting (4.3) into (4.1) and rewriting the equating with

new parameters leads to a more comprehensive form of the equation of motion:

d’e deo
ya 2a—-— +(B +26, cos(27))9+ (83 + F3cos(27))9* =0 4.4

where the new parameters are defined as,

2 2
T=-—1:V£ =—— ﬂ 4(”A +I<f), 61 =2,ZA , (53 =4F;A
2 1, wi, wl, wl,

Neglecting the nonlinear term in (4.4) simplifies the analysis for the analytical treatment that

follows; the effect of cubic nonlinearity will be discussed later

d’e

e 2a—+ (B+26, cos(27))6=0 4.5)
Introducing the change of variableg(z) = 6(z)exp(arr)into (4.5) simplifies the differential

equation significantly. This transformation is proven in Appendix C, and yields to
d 2
2+ p)p=0 (46)
dt

where p(7)=£+28, cos(2r), and £=(8-a?). This linear and homogeneous differential

equation is first studied by Mathieu [53] in connection with the problem of vibrations of an
elliptic membrane, and is called Mathieu’s equation. There is couple of different methods of
determining the steady-state solutions of the Mathieu Equation. The analysis in this work will
follow the Floquet Theory analysis of (4.6) in [54].

Equation (4.6) is a linear, second-order homogeneous differential equation; therefore there
exist two linearly independent solutions u;(#) and uy(%), and all other solutions u() may be

written as a linear combination of u,(#). Mathematically,

u(7) =y (T) +c,u,(7) .7
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where, ¢;, ¢, are arbitrary constants. Since the coefficients of (4.5) are periodic with 7, we can
write that;
(T +n)+p@u(t+r)=0 4.8)
It follows from (4.8) that if u;(?) is a fundamental set of solutions for (4.6), so are u;(t+x), since
they satisfy the same equation. Therefore
u, (T +7) = a,u, () + a,u, (7) - [u, (z'+n')] _ A{ul (1)]’ 4= [au a,
U, (T +7) = a,u,(T) + a,u, (7) u,(T+7) u,(7)

Relation 4.9 in hand, we have to prove the existence of the fundamental set of solutions of

} (4.9)

a4y, Ay

following property:
(@ +m)y=4v(7)
v (T+7)=4,,(7)
To prove this, it should be noted that any other fundamental set of solutions v;(?) is related to
the fundamental set of solutions u;(2) through a nonsingular 2x2 matrix [P], such as

w(7) u(7)
=[P 4.11
[Vz('[)] [ Lz(r)] i

Since [P] is nonsingular, we can written that

(4.10)

v(o)=[P['7(z) (4.12)
Thus, we can write that
v+ ) =[P['u(c+7) (4.13)
Substituting (4.9) into (4.13) yields
v(r+m) =[P [4fa(z) (4.14)

Substitution of (4.11) into (4.14) lead to

[vl(rwc)] _ [B{vl(r)]’ [B]=[PI"[4]P] (4.15)

v, (T+7) v,(7)

Since the [P] is an arbitrary matrix, it can be chosen such that [B] has the Jordan canonical
form. In such a case [B] will have the eigenvalues of [4] on its diagonal. Let’s say the

eigenvalues of [4] are A;, i=1,2. Then we can write following relation

vE+a)| 14 0 fw()
[vz(r+ﬂ)]_l:0 aj[vz(r)] (4.16)

which is essentially (4.10) written in matrix form. It follows from (4.10) that
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v,(T+nr)=Av,(7) 4.17)

where 7 is an integer. Consequently as £— oo,

It can be seen from (4.17) that, when A; = 1, v; is & periodic, and, when ; = -1, v; is periodic
with the period 2x.
Multiplying both sides of (4.17) with exp[-y;(t+=)] for n=1 leads to

exp[~¥, (7 + )]y, (7 + 7)) = A, exp(—y,7) exp(-¥,T)v,(7) (4.18)
If y; is chosen, such that 4; = exp(y;1), we have
exp[—¥, (T +7m)v,(7 + ) = exp(—y,7)v,(T) 4.19)
It follows from (4.19) that o{f) = exp(-y#)v{?) is a = periodic function. Therefore, the
fundamental set of solutions v;(¢) can be written in the following form:

(7) = exp(1,7)¢, ()

(4.20)
v,(7) =exp(,7)¢,(7)
If the matrix [4] of (4.12) has repeated eigenvalues (1,=1;), the matrix [B] is either
0
B|= 421
[8] I (421)
or
1 0]
[B]= i (4.22)

The fundamental set of solutions corresponding to (4.21) is exactly the same as (4.20).
However, for (4.22) the fundamental solution set is slightly different [54].

n(7) = exp(yr)4(7)

} 423
v, (r)=exp(m[¢2 (r)+{—¢a(r)} (+23)
JT

Equations (4.20) and (4.21) show that the stability of the solution depends on the sign of the
real parts of y;; therefore, they are called the characteristic exponents of the system. They are
given by:

1
Y= in(4) (4.24)
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The characteristic exponents of (4.6) is determined as follows: Let us choose u;(f) and ux(?) to
be the fundamental set of solutions satisfying the initial conditions
0)=1 #(0)=0
u,(0)=0, u,(0)=1
The entries of the matrix [4] can be determined by using (4.9) and the derivative of it together

with (4.17). The values of these parameters are found as
a, =u(7), a,=u,(r) 4.26)
a, =y (7), ay, =4, (7)

It is previously stated that J; are the eigenvalues of [4]. This follows from the linear algebra
that
A —200+A=0 4.27)

where
o= .;_[ul O+ () A=u ()i, ()~ i (), (7) (4.28)

The parameter A is called the Wronskian determinant and it is equal to unity for Mathieu

Equation [59]. Therefore, for a Mathieu equation, eigenvalues of the matrix [A] are given by

Ay =ExE -1, A =1 429

In order to obtain the entries of the matrix [A] in (4.26), two linear independent solutions of

- (4.6) should be numerically integrated during the first period of oscillation and values and first
derivatives of these solutions should be determined at the end of one period. When the
eigenvalues of [4] are found through (4.27), the characteristic exponents may be determined by
using the relation 4.20. The stability of the steady-state solutions of 4.6 can be examined
through 4.29. If |4>1, the system is in the unstable regime and the solution amplitude grows
unboundedly (in real-time systems, the unstable solutions is limited by the nonlinearities in the
system, which will be examined in the following subsections). In order to obtain a stable
solution, absolute value of ¢ should be less than unity. The {-d values that correspond to || = 1
determine the boundaries between the stable and unstable regions, and the solutions are « or 27
periodic. Distribution of these boundaries can be determined by numerically evaluating the (-0
values that correspond to [A| = 1. This is a rather complicated process and there exist numerous
analytical approximations to determine the boundaries separating stability from instability.
Next subsection deals with the problem of determination of stability curves.
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4.3 Stability Curves

There exist several methods of stability analysis for the Mathieu Equation. Some of these
methods are the method of multiple scales [60], Hill’s infinite determinant [61], and the method
of strained parameters [54]. The latter method uses the results of steady-state analysis by
Floquet Theory, and provides more accurate results for the solution at the boundaries of the
stability curves. Following analysis will be based on this method.

According to the Floquet theory, the solutions of (4.6) on the stability transition curves
have periods of = or 2z, and these curves correspond to the positive or negative unity
eigenvectors of the characteristic matrix. These stability curves form a tongue-like shape in the
drive-voltage — drive-frequency space, and therefore called “stability tongues™. Due to the time
scaling of (4.4), a solution which is of period 7 in the new time scale corresponds to an
oscillation of period T in the actual time. Similarly, the 27 periodic solution of (4.6) is actually
an oscillation of period 27. This 27 periodic solution is half the frequency of the drive signal
and corresponds to the subharmonic oscillation in the 1% order parametric resonance. Based on
the result of Floquet theory that on boundaries of the stability tongues the solution of (4.6) is
either r or 2z periodic, we utilized the method of strained parameters, in order to find analytical
expressions for determining these tongues. In this method the characteristic exponents are
chosen so that the periods of the possible solutions of (4.6) are # or 2z. Then, the required
parameters are determined in such a way that this assumption holds. The method of strained
parameters uses the following perturbation expansions, in order to obtain the stability transition

curves in the form & =£(4))

u(?) =1y (%) + 8,1, (7) + 6,1, () + ... (4.30)
E=E+6,E+67E +.. (4.31)
Substituting (4.30) and (4.31) into (4.6) and equating the coefficients of same powers J gives
iy +&u, =0 (4.32)
i, + &y =—Eu, — 2€, cos(27) (4.33)
iy + Euy =—Euy — Euy —2u, cos(27) 4.34)

7 and 27 periodic solutions of (4.32) are given by
u, =acos2nt+bsin2nt, n=0,12... (4.35)

u, =acosn—-1)7+bsin(2n-1)7, n=123.. (4.36)
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Equation (4.32) also implies that ¢ can only be equal to 7°. Each specific n value corresponds
to a different stability tongue. The boundaries of these tongues can be determined by
substituting (4.35) and (4.36) into (4.32), (4.33) and (4.34) and solving these system of
equations iteratively. Here, this solution process is applied only for the first stability tongue that
corresponds to {p=I. Higher order tongue equations can be determined using the same
procedure.
When {p=1, (4.32) becomes
u, =acosT+bsint 4.37)
Substituting this expression into (4.33) yields
iy +u, =—a(& +1)cost—b(& ~1)sinT —acos3r—bsin3z (4.38)
In order that u; to be periodic, coefficients of 2z periodic terms in (4.38) must vanish. This
leads to
a(+1)=0 (4.39)
b -1)=0 (4.40)
There are two nontrivial solutions satisfying both (4.39) and (4.40). When {; =-1 and b=0, the
particular solution of (4.33) is

U, = %a cos 3t (4.41)
Substitution into (4.34) gives
il +u, =—a(pB, +§-)cosr+%acos3z‘—%acos$r (4.42)

Again, the periodicity of the solution requires 2z periodic terms to diminish. Hence

g=-1 443)

8
Therefore, the first transition curve of the first stability tongue is given by
ﬂ=1—6,—%512+0:2+0(63) 4.44)

When same procedure is used for the other nontrivial solution of (4.39) and (4.40), which

corresponds to B; =1 and a=0, the other transition curve is obtained as

B=1+8, +%5,2+a2+0(63) (4.45)
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Equations (4.44) and (4.45) forms the boundaries for the first stability tongue, when there is no
damping in the system. For the second stability tongue, boundary equations are given by

B= 4+%52 +a’ +0(6%) (4.46)

B= 4—%52 +a’ +0(8%) 4.47)
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Figure 4.3-1: Stability tongues for E201 at atmospheric pressure. Up to 25V only two
parametric resonances were observable, due to high damping
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Figure 4.3-2: Stability tongues for E201 at 30 mTorr, and analytical approximations. Due to
much lower damping, 5 parametric resonances could be observed.

Figure 4.3-1 shows the stability tongues of the microscanner in the atmospheric pressure.
There is a significant viscous air damping between the comb fingers in the atmospheric
pressure (we have measured a Q factor of 22), so that there are only two observable parametric

resonances within the operation voltage of the device. Additional orders or resonances would
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be observed with higher drive voltages, but we avoided such high voltages in order to prevent
device failure. The stability tongues of the microscanner in 30 mTorr ambient pressure can be
seen in Figure 4.3-2. Voltage and frequency span of the two plots are identical. In low pressure,
air damping is much less and therefore the device has a much higher quality factor (~1250). As
seen in the Figure 4.3-2 there are 5 observable parametric resonances and the width of the
stability tongues are increased, and their tips came-much closer to the V=0 axis. In Figure
4.3-2, solid lines represent the results of the analytical expressions of the stability tongues. The
analytical results are in good agreement with the experimental data. However, as the input
voltage increases, the deviation of the analytical approximation from the experiments increases.
This is due to the fact that for higher voltages, the small driving signal and small tilt angle
approximations are becoming invalid and therefore our perturbation analysis ceases to be
accurate. Another reason of the difference between the experimental and analytical results is
the cubic nonlinearity in (4.3). As the driving voltage increases, this cubic nonlinearity term

also grows and it prevents the left hand of the stability curve to bend rightward.

4.4 Effect of Cubic Nonlinearity

Floquet analysis showed that within the unstable region, oscillation amplitude of the device
should grow unboundedly, even if damping is present. However, real devices do not have such
behavior. This difference is due to the effect of the nonlinearity term neglected before. The
effects of nonlinearity can be explained as follows: as the resonance causes the amplitude of
the motion to increase, the relation between period and amplitude (which is a characteristic
effect of nonlinearity) causes the resonance to detune, decreasing its tendency to produce large

motions.

4.5 Conclusions
An analytical model for a torsional comb-driven microscanner is presented. The model

gives a small-signal solution for the nonlinear system around the single DC operating point,
which is the rest position. Stability analysis based on the analytical model successfully
predicted the locations and characteristics of the stability tongues, especially for small

excitation amplitudes, which ensures that small signal assumption holds.
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Chapter 5

CONCLUSIONS

In this research, comb-driven torsional microscanners are studied. First a numerical and an
analytical model are developed, then the results are successfully verified in the laboratory using
a number of experimental setups we developed for scanner characterization.

Torsional microscanners studied in this research show interesting hysteretic frequency
behavior, parametric resonances and subharmonic oscillations, alternating frequency behavior
for square wave excitation, and nonlinear transient response. The numerical model gives a
powerful tool to predict the nonlinear device response to any kind of excitation. The analytical
model is based on Floquet Theory and analytical stability curve predictions follow method of
strained parameters. The analytical solution is only possible when damping effects are ignored
and small deflections are assumed. . The expressions obtained for dynamic behavior and
stability behavior of the device gives a good understanding of the mathematical meaning of
different device properties, such as damping, natural frequency, actuation force (torque), etc.
Numerical simulation and analytical treatment results were compared with experimental results
for model verification. This comparison showed that both models successfully predict
frequency response and stability regions of the scanners.

A number of experimental setups are developed and implemented during this research. The
setups facilitate accurate and automatic characterization of microscanners. All measurement
techniques used in this research employ optical methods, and they enable accurate
characterization of transient and steady-state response to various excitations, amplitude of the
hysteretic frequency response, stability characteristics, mode frequencies and dynamic
deformation, and damping mechanism of comb driven microscanners.

As a future work, numerical tools developed can be used to improve the scanner control
algorithms. Another configuration to be analyzed is the microscanners that employ different
comb-finger electrode configurations for beam pointing such as those used for telecom

applications.
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Appendix A
EXPERIMENTAL SETUPS

Dynamic characterization of microscanner devices is concerned with the measurement of
device response to driving signals of different amplitude, frequency, waveform, etc. The
response to be measured is the mechanical deflection angle, and it can be monitored in different
ways for different devices. Some microscanner devices employ some built-in feedback
mechanisms in order to enable real-time monitoring of device motion (such as piezoresistive or
capacitive feedback loops that were mentioned in Chapter I). IPMS scanners do not have such a
feedback capability. Optical characterization is a powerful way to measure dynamic responses
of such microscanners without a position feedback utility. We have implemented several

optical microscanner characterization setups in our laboratory.
A.1 Dynamic Microscanner Characterization Setup (DMCS)

A.1.1 Layout and Operation

Figure A.1-1 is'the sketch of the dynamic microscanner test setup that was used in the stability
and frequency response measurements presented in this thesis work. Details on how each of

those measurement were done also given below.

The fundamental measurement device is a single photodetector, which is placed very close to
the center of the scan line. During device operation, output of the detector is a periodic train of
non-uniformly spaced impulses. This impulse train is used to form a square wave, whose duty
cycle and frequency gives direct information on the oscillation frequency and amplitude of the
microscanner. Figure A.1-2 shows the diagram of the simple circuit to form the desired square
waveform from the impulses of the photodetector. The circuit is composed of three stages: an
inverting amplifier to amplify the detector output, an inverter and a D-type positive-edge-
triggered flip flop. The gain of the inverting amplifier in the first stage can be adjusted via the
variable resistor. Even if the amplifier output signal level is not TTL compatible, regenerative

property of the inverter solves this problem. The inverter also maintains signal integrity. A



Appendix A: Experimental Setups 50

proper zener ensures that the voltage level of the inverter input does not exceed a certain level.
Output of the inverter is fed into the clock input of the flip-flop. Complementary output of the
flip-flop is fed back to its input; therefore at every impulse from the photodetector flip-flop
output switches state and forms the desired square waveform. This signal is then captured by a

data acquisition card and transferred into LABView, where it is processed.

detector signal
processing
electronics

high voltage function
ampilifier generator

(4

"
e .
Detectur . To cantral cireult
cutput K OPAMP - " or computer
y DIN7SD
zener
Verishis gain inverting emplifier tnverter  Positive esige-triggered D-iype fip-flop

Figure A.1-2: Schematic of the electronic circuitry in Figure A.1-1

A series of simple evaluations in LABView is sufficient to extract the valuable information in
the above mentioned square waveform. In order to be able to make precise measurements, the
angle in which the detector placed (68p) should be known exactly. Oscillation frequency
(therefore the period) is exactly the frequency of the square wave from the flip-flop. From this
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point on, derivation of the scan angle is very simple, and is given below. Timing convention

used in the derivation is shown in Figure A.1-3.

ty =|dc—0.5*T
sin| 2_7£t sin Z—ﬂt
6, T T (2
= = =sin| —17,
Opx . [27T (7
sin| —— sin| —
T 4 2
=0, = %
. {2m
sin| ?to

where dc is the duty cycle and T is the period of the square waveform. However, Opq, is the

optical scan angle and it should be halved in order to get the mechanical scan angle.

) J
t=ty t=T\4

to=time for the beam to reach the detector

Figure A.1-3: Timing convention used in the scan angle derivation

Following two figures give the photographs of the setup and a screenshot of the LABView

program written for this measurement setup.

(@)

Figure A.1-4: Photos of the experimental setup
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Figure A.1-5: LABView control program for the DMCS

4.1.2 Frequency Response Measurements

Frequency response characterization is done by sweeping the frequency of the driving signal
upwards or downwards with constant amplitude and recording the deflection angle. Currently
the frequency adjustments are done manually. With a suitable GPIB interface, the signal
generator in the setup can properly be controlled and synchronized through the computer and

full automatic data acquisition can be possible.

A.1.3  Stability Measurements

Stability analysis requires to do measurements in the drive-voltage—drive-frequency plane. In
other words, both drive voltage and frequency should be adjusted and oscillation amplitude
should b recorded. Stability measurements in this thesis were done by scanning the frequency
axis at constant drive-voltage levels.

A.1.4 Voltage Domain Measurements

This type of characterization is done to figure out the maximum deflection angle at certain
drive signal amplitude. This measurement requires manual intervention, since the maximum
deflection frequency shifts as the driving signal amplitude is changed.
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A.1.5 Damping Measurements

A slight modification in DMCS leads to a simple yet precise quality factor measurement for
microscanners. This measurement technique exploits the fact that oscillation amplitude of a
free oscillating 2" order systems shrinks to 1/e of the initial amplitude after Q cycles of
oscillations, due to damping. The photodetector in Figure A.1-1 is placed exactly at 1/e of the
scan line. After the drive signal is turned off, the oscillation amplitude starts to shorten and
amplitude of the detector peaks grows, due to the longer integration time on the detector. As
the length of the scan line becomes smaller than 1/e of the initial amplitude, no more peaks are
observed in the detector output. Figure A.1-6 shows an example recorded detector output

during this sequence.

Figure A.1-6: Sample quality factor measurement data taken with DMCS

Number of the detector peaks in the interval between the point where peak amplitudes begin to
grow and the peaks disappear gives the quality factor of the device. Quality factor for the
scanner in Figure A.1-6 is 21. Since the count is always an integer, a certain error is introduced
in this measurement technique. For instance, maximum error of 5% is possible if Q factor is 20.
This accuracy is enough for many applications. A more precise damping measurement

technique is presented in Appendix B.
A.2 Transient Response Measurement Setup (TRMS)

A.2.1 Layout and Operation

Transient response of a microscanner device until it reaches steady-state when it is excited by a

certain signal is an important merit to characterize the device behavior. This type of
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measurements require the recording the motion of the device for the entire time interval of
interest. This is not possible with the setup introduced in Appendix A. Another optical
characterization setup was built to accomplish transient response measurements. This setup was
also used for damping (Q factor) measurements of microscanners. Figure A.2-1 is a sketch of

the aforementioned setup.
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Figure A.2-1: Sketch of the Transient Response Measurement Setup

The heart of the setup is a custom-made, high-speed 2D position sensing device (PSD). A PSD
is a device that enables us to determine the exact position of a laser beam on its active area. Our
PSD has an active area of 1x1 in®, and four output pins for real time differential position
monitoring in —x and —y axis. It is with a driving circuit that converts current output of the pins
into voltage and computes the exact position from the outputs. Laser beam from the diode and
scan line from the moving microscanner pass through a beam splitter and shined on the
microscanner and PSD, respectively. PSD output is fed into the driving circuit and the position
information from the circuit is recorded via a DAQ card and LABView. Maximum measurable
scan amplitude was limited by the size of the active area of PSD. In our setup, this maximum
value was ~1° mechanical. Some optical modifications in the setup would lead to higher

maximum measurable scan angles; however current values were sufficiently large for
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measurements of interest. Figure A.2-2 shows an exemplary transient response measurement
for a comb-driven torsional microscanner. The plot shows the device initially at rest. The input
is turned on after 1.6 seconds and the device reaches steady state afier 7% second. The transient

behavior is successfully modeled.
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Figure A.2-2: Sample transient response measurement data

A.2.2 Damping Measurements

A simple technique to measure the quality factor of a microscanner is given in Appendix
Error! Reference source not found.. Although it is simple and fast, sensitivity of the
measurements may not be sufficient for in some cases where high accuracy is required. A more
formal and precise damping measurement may be accomplished by using TRMS. In this
technique, die-out oscillations of a microscanner are recorded using the PSD and a proper
function describing the die-out oscillatory behavior (exponential decay of a sinusoid) is fitted
to the acquired data using the curve fitting toolbox of MATLAB.

A.3 Out-of-plane Mode Frequencies Measurement Setup

Laser Doppler Vibrometry is an effective way to measure the velocity and displacement of a
microstructure oscillating in an out-of plane mode. We have utilized a Polytec PDV100
portable laser Doppler vibrometer to characterize the modal characteristics of various
microscanners. PDV100 was capabie of measuring velocities between 2 um/sec and 500
mm/sec. Maximum measurable frequency was 20 KHZ. This was a limiting factor, since higher
mode natural frequencies of most of the available scanners were higher than this limit. Figure
A.3-1 shows the measurement setup, which is capable of measuring all types of out-of-plane

vibrations of a microscanner.
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Figure A.3-1: Sketch of the LDV measurement setup.

Laser Doppler Vibrometry is a single point measurement technique; therefore a certain
out-of-plane vibration can be completely characterized by comparing the amount of
displacement and phase of the vibrations on different points on the mirror. For instance, in out-
of-plane translational mode, all points on the mirror surface vibrate identically, however, in
out-of-plane torsional mode; points on the rotation axis have zero velocity, whereas points on
the mirror edge vibrate with maximum velocity. Figure A.3-2 shows the nine measurement

points on the scanner mirror for mode characterization.

Figure A.3-2: LDV measurement points for out-of-plane mode characterization.

The vibrometer of our setup was only capable of measuring the velocity of the vibrating
body, therefore a simple LABView interface was written to convert the velocity information

into displacement data. Details of this conversion are given below.
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x(t) = acos(wr)
v(t) = x(t) = awsin(wr)

v(t)

= [x(t)i = L——l
w

where, x(¢) is the displacement, v(?) is the velocity data grabbed by the vibrometer, and a is the

oscillation amplitude. This derivation assumes that the vibration of interest a pure sinusoid,

which is generally the case. A screenshot of the LABView program that implements the above

derivation and displays the results is given in Figure A.3-3.

Figure A.3-3:LABView Control program screenshot
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Appendix B
MODE FREQUENCY FORMULAS FOR MICROSCANNERS

Basic one-axis torsional scanner geometry and the first five fundamental vibration modes are
illustrated in Figure B.1.

Flexure cross-section

2a
«—> 5
I::I IZ b Torsion {front view)
a

>

Scan
mirror

In-plane sliding (top view) In-plane rocking (top view)

(®)

Figure B.1 (a) Torsional resonant scan mirror suspended with two flexure beams that
are fixed at the ends, figure inset shows flexure rectangular cross-section and
coordinate axis; (b) five fundamental vibration modes for the torsional scanner,
which are rotation around x-axis (torsional), translation in z-axis (out-of-plane
translation), translation in y-axis (in-plane sliding), rotation around y-axis (out-of-
plane rocking), and rotation around z-axis (in-plane rocking).

One can calculate the natural frequencies of each vibration mode by using appropriate
displacement or rotation angle variable, spring constant, and effective mass or effective mass
moment of inertia terms. As an example, the natural frequency for the vibration mode along y-
axis (in-plane sliding) with angular frequency (@=27f) can be calculated by:

d*y

;l—t2—+a)2y=0 €h)

o=21f =K, IM, @)
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where K_ is the spring constant for the mode and M.y is the effective mass of the scan mirror

for the particular vibration mode. Throughout our analysis, the mirror plate is assumed rigid
and flexures are assumed fixed on either end. In addition, damping is ignored in (B.1) because

of the typically negligible effect on the natural frequency for underdamped systems.

Table B-1 summarizes the spring constant, effective inertia including the flexure-inertia terms
for 5 fundamental modes. The formulas for the spring constants are consistent with values
given elsewhere in the literature. Table B-2 gives mirror inertia for different mirror shapes. The

natural frequency of a mode can be calculated using (B.2).

Table B-1: Natural frequency for five fundamental oscillation modes for torsional

scanncers
Effective Mass (M) / Spring Constant, K,
Mass Moment of Inertia (J.)
g =T e T I3 KSJLGK s u=\[G_IG,
. 1 7
1. Torsion J Fox =My (a2 +b 2) For a>b use below; for b>a, interchange
3 a with b and G, with G,
M, =4abL
4 ’ 6K a6, ) 5.33-33621(1- L
ap 124"y
2.0ut-of-plane Slidin

p 4 Meﬂ'=Mm+-2—§Mf :24Ex1 g =ﬂ—ab3

35 s L3 ’ y 3

3. In-plane Sliding 26 24E I, 4
My =M, +—M, K, ; I.==a’b

35 3

Jog =T npy T2/,
4.0ut-of-plane Rocking J;=M(0.0095L; 2 * 6 1+
+0.052L,L, +0.0929L},)
5. In-plane Rocking Jg=Jna+2J, = 2% 6 1+ I
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Table B-2: Mass and mass moment of inertia for different mirror (M, is the mass of

the mirror and My is the mass of one flexure) shapes.

M’" J"',Ui Jm,yy Jm,zz
Rectangular Mirror |- M. ] M .

Pl | L (2 4 12) --Ml = (vl | 0L
Elliptical ) ]
Mirror %meDtm —A%’;E(%Dz +t,f,) —A%"L(%Lfn +,3‘) Ml_ng_n_(Dz +L3”)
Circular 7 M. (3 M 3 M
Mirror SpD*, | Zmrlop? g2 || | 2Dty mirr_ (12
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Dynamic Modeling of Comb Actuated
Microscanners
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Ibstract— Comb-~drive actuation is commonly utilized in
ay’s MEMS devices. Dynamic characteristics of comb-
xated devices are predominantly determined by the nature of
forcing function of the actuators, which depends on the mode
yperation (torsion, in-plane or out-of-plane translation mode,
) In this work, we investigate a torsional mode comb-actuated
roscanner. The device exhibit unusual frequency and
nsient response characteristics, such as subharmonic
illations, multiple parametric resonances, and alternating-
illation-frequency. We present an analytical and a numerical
del for the dynamic behavior of the device. Our analytical
del, which is based on solution of linear Mathien equation, is
id for small angular displacements and low air-damping, while
numerical model also remains valid when those restrictions
: not satisfied. Both models successfully predict the parametric
wure of the microscanner that leads to the aforementioned
wracteristics. We present experimental results under various
bient pressures and excitation schemes to validate the
ideling results,

Index Terms— Comb-drive actuation, microscanner,
bharmonic oscillation, parametric resonance, frequency
iponse, dynamic behavior

I. INTRODUCTION

:LECTROSTATIC comb-drive actuation is a common
~actuation mechanism in today’s microelectromechanical
stems (MEMS). Comb-actuated structures are multi degree-
“freedom actuators; they can be actuated in different
echanical modes, such as torsional, in-plane sliding, and out-
*plane sliding modes. The vibration mode of the actuator is
¢ predominant factor that determines the system dynamics.
| in-plane sliding mode, the force induced by the actuator is
dependent of the displacement of the combs, and the
tuator exhibits a simple harmonic oscillatory (SHO)
shavior. this type of comb-actuators are studied in detail in
e literature[1-3] and utilized in various applications, such as
[EMS motors [4], tunable capacitors [6], mechanical
:sonators [7], optical switches [8], and mechanical filters for
F and other applications, [9]-[9].
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In this paper we discuss the torsional mode comb actuators,
whose dynamics are more complicated than that of their in-
plane counterparts. Torsional actuators are mainly used for
laser beam scanning and beam steering for display [10],
imaging [11], and optical switching [12} applications. A
torsional comb-actuated microscanner is not a SHO and can be
classified as a “Parameirically Excited System”, which
exhibits multiple resonances, hysterical frequency response,
subharmonic oscillations and alternating-oscillation-frequency
characteristics. Those characteristics are observed both
experimentally and in numerical simulations and discussed in
detail in subsequent sections.

A parametrically excited system is governed by a 2™ order
differential equation, in which the time-dependent excitations
appear as coefficients (parameters) of the equation. Such
systems frequently arise in different areas of science and
engineering, such as photonic crystals [13], optical cavities
{14], plate vibrations [15], and nano-scale devices [16]. In
simple harmonic systems, a small excitation cannot create a
large response unless the excitation frequency is close to the
resonance frequency of the system (primary resonance).
However, a small parametric excitation can produce a large
response when frequency of the excitation is close to twice the
natural frequency (f;) of the system (principal parametric
resonance) or an integer fraction of 2f,. The resonance around
2f/n is called the nth order parametric resonance. We have
experimentally observed up to 8 parametric resonances with
square-wave excitation in atmospheric pressure, which is the
largest number of parametric resonance reported for a
micromechanical structure. A similar comb-actuated out-of-
plane actuator that was reported to be a parametric oscillator is
a mass flow sensor [17]. Up to five parametric resonances
were observed for this device in vacuum, but the discussion
was limited to steady-state response corresponding to a small
angle excitation using square-root sine wave as the input
waveform. In this paper, we discuss both the transient and the
steady-state responses for sinusoidal and square-wave
excitations. In addition, we developed a numerical model for
accurate prediction of frequency behavior that is valid for both
small and large deflections. Proposed analytical and numerical
modeling approaches provide a simple yet powerful way to
analyze the nonlinear frequency response of comb actuators
and simplify the design process for microscanners.

The organization of the paper is as follows: In section 2, we
briefly explain the device layout, fabrication, and principle of
operation. In section 3 we present numerical predictions for
transient and steady-state behavior and experimental
confirmation of the results for small and large deflections at



ous pressure levels. In section 4, we discuss analytical
nulas that work well for small excitation amplitude and
damping conditions.

II. THEDEVICE

. Layout

s device under investigation is a torsional, comb actuated,
zle-crystalline microscanner fabricated by Fraunhofer
titute for Photonics Microsystems (IPMS) in Dresden-
rmany. The microscanner is fabricated on a 30 um thick
I wafer with a CMOS compatible process [18]. Fig. 1 is a
srograph showing the overall layout of the device. The
lective area in the middle is a 2 mm by 2mm movable
1are mirror, which is bonded to the fixed outer frame by two
xure beams. Comb fingers are placed on either side of the
lective mirror. For device operation, complementary finger
s on the mirror and the frame should be electrically isolated.
is isolation is maintained by the filled isolation-trenches
it form an insulating channel between the required portions
the device. These trenches are fabricated by first etching a
m thick channel on the silicon structural layer using ASE™
acess, then covering the side walls of the channel by 90 nm
ck insulating oxide, and at last filling the channel with
'CVD-polysilicon. Comb fingers, flexure beams and other
uctural elements are defined by another ASE™ process.
g. 2 is an SEM image of the comb fingers.

reflective izolation
mirror trench
torsiodd spring comb Yingers

Jig. 1. Sketch of ﬁe torsional microscanner. The internal mirror is 2 mm x2
mm, while entire device is 5 mm x 5 mm, and placed inside a ceramic
package

dg. 2. Micropgraph of the electrostatic comb drive actuators of IPMS
nicroscanners (only movable fingers are shown) [18]

B. Torsional Actuators and Equation of Motion

Comb-drive actuators can induce mechanical motion both in
>ut-of-plane and in-plane modes. Which of these modes is the
actual oscillation mode is determined by the driving frequency
and modal characteristics of the device. For scanning
applications, it is critical that the fundamental (1*) mechanical

mode of a microscanner structure is the rotation around the
flexure axis, called the forsional mode. Regardless of the
operation mode, force (or torque) associated with comb
actuators is proportional to the rate of change of capacitance
with respect to the displacement and the square of the driving
voltage. Despite the displacement independent force of in-
plane mode comb drives, the torque induced by the torsional
mode comb-actuators is strongly dependent on the
displacement (iilt angle). The torque can be expressed as;

dC _ v
M@)=N—V1(t 1
0)=v%r) o

where N is the total number of comb fingers on single side of
the mirror, C is the capacitance of a single finger, 8 is the tilt
angle and V() is the periodic driving signal. The derivative of
the total capacitance introduces the 8 dependence into the
torque function. Fig. 3 shows capacitance-displacement and
rate of change of capacitance with respect to displacement
curves for a single finger of a torsional comb actuator obtained
using FEMLAB®;
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Fig. 3. Capacitance vs. deflection curve and its derivative for 2 single comb
finger. A high order polynomial is fitted to the FEA simulation data of
capacitance curve. The fitted polynomial is differentiated to obtain the
capacitance change vs. deflection curve.

Dynamic behavior of the microscanner can be modeled by a
second order nonlinear differential equation (equation of
motion —~ EoM ) with a single degree of freedom (DOF), since
the mode separation and quality factor (Q) of the device are
sufficiently high to ensure that there is no coupling between
different modes. The EoM is given by the expression, [19]

d*e . de
+b—+K,0=M|(0O 2

where, I, is the mass moment of inertia, b is the air damping,
Ky is the torsional stiffness of the flexures, and M(6) is the net
torque given by (1). Analytical expressions for moment of
inertia of a box shaped mirror and torsional stiffness of the
flexure beams are available in the literature [21]. More



arate values for these parameters can be extracted using a
te Element Analysis (FEA) software. Quality factor,
efore the damping term in the equation of motion, is
wsured experimentally. A position sensing device and a PC
h data acquisition card is utilized to record the free damped
illations of the device after the excitation is turned off
ile the device is in operation. The quality factor is then
ermined from the time constant of the damped oscillations
fitting a curve to the recorded data. An analytical model of
damping mechanism between the comb fingers is given in
.} Coefficients in (2) for the device under investigation at
ferent ambient pressures are given in Table 1.

TABLEI
DEVICE PARAMETERS AT VARIOUS AMBIENT PRESSURES
rvessure(Torr) L. (kgm) b(N.s/m) K(N/m) 0
Atm 9.32E-14 4.21E-13 4.28E-06 22
) mTorr 932E-14 287E-11 4.28E-06 1250

ible 1. System parameters measured at different ambient pressures.

mmerical simulations are performed by numerically solving
: equation of motion using MATLAB® ODE solvers. The
ght asymmetry in the structure, which triggers oscillations,
infroduced as a small initial tilt angle. For certain portions

the excitation spectrum, the system has multiple stable
lutions, where the choice of initial conditions determines the
tual solution.

I DYNAMIC BEHAVIOR OF THE DEVICE

Due to the displacement dependent torque, time and
squency domain behavior of a torsional comb-actuated
icroscanner is significantly different than the dynamics of a
jear resonant oscillator. In this section, we present
iperimental results on the frequency and time domain
1aracteristics of the device for torsional mode operation. We
so give numerical simulation data together with the
kperimental results.

. Frequency Domain Characteristics

Square-root Sinusoidal Excitation

The torque produced by the comb-actuators is proportional
> the square of the input voltage. Therefore, in order to get
eriodic coefficients of single frequency in the EoM, the
riving signal should be a square-root sinusoid
V = A)Jcos(wr)+1) to obtain a harmonic ¥ term in the
orcing function expression. Fig. 4 (a) and (b) show the
requency response curves for such an excitation at
tmospheric pressure (760 Torr), and at 30 mTorr,
espectively. In atmospheric pressure, the device has two
rarametric resonances, of which the fundamental one is
ocated around twice the mechanical resonance frequency (f).
At 30 mTorr, the device experiences a much lower air
lamping, and frequency response is significantly different.
Jue to the lack of the stabilizing effect of the damping, the
wmber of observable parametric resonances and maximum
sscillation amplitude are increased. All orders of resonances
are similar in shape, and they are located around excitation

frequencies of 2f/n, n=1, 2, 3, 4. Maximum oscillation
amplitude scales down as » increases. However, oscillation

frequency of the device is always close to f,, regardless of the
order of the resonance.
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Fig. 4. Experimental frequency response data at (a) atmospheric pressure (760
Torr), (b) at 30 mTorr. Excitation signal is a square-root sine wave with Vp-
p=20 for both plots
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Fig. 5. Comparison of simulation (dashed line) and experimental {solid line)
results for the 1st order parametric resonance in atmospheric pressure.

2600

Fig. 5 shows the comparison of numerical and experimental
results for the frequency response of the device in the first
parametric resonance. Upsweep and downsweep simulations
are done with different initial conditions. For the upsweep a
small tilt angle is introduced to simulate the asymmetries in
the structure, and the oscillations converge to the trivial
solution. For downsweep, an initial tilt angle greater than the
maximum oscillation amplitude is used, so that the oscillations
converge to nontrivial solution.

Square-wave Excitation

When the excitation waveform is different than a square-root
sinusoid, the torque in the system is no longer a harmonic
function. Fig. 6 is the frequency response curve of the device
for square wave excitation. Number of observable parametric
resonances is more than the square-root sine excitation voltage
case. Fig. 6 shows 8 parametric resonances at atmospheric



isure. However, monotonous decrease in the maximum
illation amplitude as the order of resonances grows is also
present with square-wave excitation. This reveals that
er harmonic content of the square-wave signal gives rise to
1e other resonances. Hysterisys in the response curve is
» present for all 8 resonances, but the jump frequencies are
‘erent than the square-root sinel excitation voltage case.
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. 6. Experimental frequency response data at 760 Torr (1 Atm) and with 20
» Square wave excitation. Number of observable parametric resonances is 8,
s to the higher harmonics in the square wave excitation.

JAultiple parametric resonances and very sharp hysterisys jumps in
; frequency response curves make this device a potential candidate
* various applications, such as parametric amplification, mass
1sor, impact detectors, etc.

Time Domain Characteristics

me domain characteristics of the device are also determined by the
rametric nature of the microscanner

Transient Response

Fig. 7 shows the behavior of the output amplitude until the
stem reaches steady state. Excitation voltage waveform is a
uare-root sinusoid for both 7a and 7b, but the frequencies
e different. Fig. 7a shows the transient response of the
svice, when it is driven with a frequency f greater than f.
nlike linear systems, oscillation amplitude grows with in a
ssitive exponential manner, until it reaches a maximum
ilue, then it shown an underdamped oscillatory behavior
1til it settles at a steady-state value. If the drive frequency is
ary close to the boundary between the stable and unstable
.gions (f~f;) damped oscillatory behavior in the output
nplitude diminishes, and the device reaches steady-state
nmediately after the positive-exponential growth.

. . SLars SRR
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a

‘. A, r &
“Yirna * b Time B

(@ ®
lig. 7. Transient response of the device. (a) fax >f; (stable region); (b) £ty
boundary of the unstable region).

Steady State Response

In steady-state, there is not a linear relationship between the
Irive signal and oscillation amplitude. The relation between
he frequencies of drive and output depends on the order of
esonance in which the device is operated. Oscillations in the

1™ parametric resonance are called subharmonic oscillations,
since the drive frequency is twice the oscillation frequency.
For the 2™ order resonance, the oscillations and excitation
frequencies are the same. For all other resonance orders, drive
signal has a lower frequency than the actual oscillations. Fig. 8
shows the input-output relations for the first two orders of
resonances.
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Fig. 8. Excitation and oscillation signals for the first two orders of resonances.
(a) Excitation frequency is twice the oscillation frequency (subharmonic
oscillation). (b) Excitation and oscillations are of same frequency

For square wave input, the response is not a pure sinusoid
for high order resonances. Scan wave shows an unusual
behavior and changes oscillation frequency and amplitude at
each half cycle of the square wave. When excitation is in the
OFF state (meaning that no torque is present in the system),
the system makes free oscillation at its natural resonant
frequency, when the excitation is in the ON state, the mirror
oscillates at a higher frequency, which can be calculated using
the excitation and natural frequencies. This phenomenon is
called alternating-oscillation-frequency. Fig. 9 shows the
experimental results illustrating this behavior. Such behavior
is observed in higher order resonances when excited with a
square-wave. This phenomenon is also predicted in the
numerical simulations.

Alternating Oscillation Frequency
{Experimental @ 235 H)

Oscillation Amplitude

Excitation Waveform
- = « . Oscillation Waveform

Fig. 9. Alternating oscillation phenomenon at higher order resonances with
380 Hz square wave excitation (Experimental result)



‘oltage Domain Characteristics

tage domain behavior refers to the response of the device
changes in the excitation amplitude. Fig.10 shows the
tionship between the maximum mechanical deflection
e and the excitation amplitude. The deflection values are
asured at the peak of the first order resonance of the
sroscanner. Regardless of the waveform of the excitation,
ximum deflection anglé grows linearly with the increasing
itation amplitude.
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r. 10, Maximum scan angle vs. excitation amplitude with square-wave,
usoidal and square-root sine excitation. Experimental results belong to
01.

IV. ANALYTICALMODELING

v small angular displacements, the rate of change of total
pacitance with angle, illustrated in Figure 3, can be
yproximated with a third order polynomial. If the excitation
gnal is <chosen to be a squared-root sinusoid

7() = A‘/cos(wt)-ﬂ), torque induced by the comb-actuator
m then be expressed as;

1(0,t)= —-(r393 + rle)Az (cos(we)+1) ?3)

there ry and 3 are the coefficients of the cubic polynomial fit

f the deflection-derivative of capacitance. The simplified
quation of motion can be rewritten by substituting (3) into

2):

%;‘fm +(B+26 cof20))0+(5:+Bco20)P =0 (&)
there,p =¥, _ b g nd k) o wd o dns
e P A AL

Jeglecting the nonlinear term in (4) simplifies the analysis for
he analytical treatment that follows; the effect of cubic
onlinearity will be discussed later:

d’e
—+ 20:—+ (B+268,cos(27))9 =0

7 ®

Introducing the change of variable ¢(7) = 8(7) exp(7) into
(5) simplifies the differential equation and leads to [23]

©)

2L+ pl)p=0

where p(r)=£&+28,cos(27), and £=(B~a?). This linear
and homogencous differential equation with periodic
coefficients is known as the Mathieu’s equation [24]. There
are several methods in the literature to analyze the dynamics
of this equation. Our solution follows the Floquet theory
analysis of (7) detailed in Ref. [24] in order to determine the
form of possible solutions. Then we perform a stability
analysis based on the results of Floquet theory using the
method of strained parameters.

A. Transient Behavior
Eq. (6) can be written in state-space representation as follows:

X ~p(®) O x,
where, x=0 and p(zr) = B + 2dcos(2t). Since (7) is a linear,
second-order homogeneous system of differential equations, it
has two linearly independent solutions, which forms a solution
space. Floquet theory suggests that there exists a fundamental

solution set v(7) and vy(7), which satisfies the following
relation [23]:

M

vi(T+nm)=4v,(7), i=12 ®)
where, A;are the eigenvalues of a special matrix called the
characteristic matrix. If X(7) is a fundamental solution matrix,
whose columns are the two linearly independent solutions,
which satisfy the initial conditions X(0)=I, where I is the
identity matrix, the characteristic matrix C of (7) can be
computed from, [22]

x(T) xl(T)]

5T) %) ®

C=X(T)=[

where, T=7z is the period of the periodic coefficient p(z).
Solutions and the stability of (6) can be determined using this
characteristics matrix. In order to determine the characteristic
matrix, the system should be numerically integrated from 7=
0, for one period of the coefficients, with the initial conditions
X(0)=I. Once the entries of C are determined, the solutions
and stability of the system be extracted. Let 0;,() denote the
solutions of the; then the form of the solutions are given by the
relation.

6,(7) = exp(,7)¢,(7)

8,(2) = exp(1,0)0, (7) (0



re, y; and y; are called the characteristic exponents, and
1) are linear combinations of sinusoids of periods ® and
The characteristic exponents of (6) are given by

1
=—In(A 11)
7 1(4) (

10 is the general form of the solutions of the linear
thieu equation. Depending on the values of the
:nvectors of the characteristic matrix, stability, transient
idy state characteristics of the system can be determined. If
se eigenvectors are complex conjugates, they have unity
dulus and lie on the unit circle. In this case, the steady state
put is bounded and the system is stable, however the output
plitude shows damped oscillatory behavior due to (14),
ich agrees with the transient behavior illustrated in Figure

When one of the eigenvectors of the characteristic matrix
; amplitude greater than unity, one of the fundamental
utions die out in time, however the amplitude of the other
ution grows exponentially, and the system is unstable
tbic nonlinearity that was neglected puts an upper bound on
: unstable solution amplitude). When f,,.=f; or f...=f, the
senvectors of the characteristic matrix are -1 or 1, due to
2) the solutions at f.,.=f; and f...=f; are 2z or & periodic,
spectively. Thereby, the oscillatory behavior in the transient
sponse diminishes as illustrated in Figure 7a.

3. Stability Tongues

ability curves for the structure defines the boundaries
tween stable and unstable regions. The curves form a
ngue-like shape in the drive-voltage — drive-frequency
ane, and therefore called “stability tongues”. The method of
;ained parameters is an efficient way to locate these tongues.
iis method assumes that #(7) and & can be written as the
llowing perturbation expressions:

(12)
13)

(7) = uy(2) + 6,,(0) + &1, (T) + ..
=& +6,E+82E +...

nbstituting (12) and (13) into (7) and equating the
sefficients of same powers of § gives

g+ ‘fo”o =0 (14)
iy + Goty =~y — 2&, cos(27) (15)
iy + &gty = —Eyuy — Eu, ~2u, cos(27) (16)

qs. (14), (15), and (16) are a set of differential equations,
/hich can be solved iteratively. Eq. (14) also implies that &,
an only be equal to n’ due to the second order differential
srm. Each specific # value corresponds to a different solution
or (14) and different stability tongue. Using this method, the
irst two stability tongues for (7) are found as [23]

B=1-9, —%é}%az +0(6%) a7

,B=4+1—52—62+a2+0(63) (18)

Equations (17) and (18) are given in terms of the parameters
introduced in (4). A mapping is required to obtain the stability
tongues on the drive-voltage — drive-frequency plane. Fig. 10
shows the experimental results for the stability tongues for the
observable parametric resonances at two different ambient
pressure levels. Fig. 10b also shows the analytical results for
the first two stability tongues mapped onto the drive-voltage —
drive-frequency plane.
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Fig. 11. Stability tongues for the device (5) At atmospheric pressure; (b) At an
ambient pressure of 30 mTorr. Dotted lines show experimental results and
solid lines in (b) show the stability tongues evaluated using the analytical
formulas.

There is a significant viscous air damping between the comb
fingers in the atmospheric pressure (measured Q-factor is 22),
so that there are only two observable parametric resonances
within the operation voltage of the device. Additional orders
or resonances would be observed with higher drive voltages,
but we avoided such high voltages in order to prevent device
failure. The stability tongues of the microscanner in 30 mTorr
ambient pressure can be seen in Fig.10b. In low pressure, air
damping is much less and therefore the device has a much
higher quality factor (Q-factor=1250). As seen in the Fig.10b
there are 5 observable parametric resonances and the width of
the stability tongues are increased, and their tips came much
closer to the ¥=0 axis. In Fig.10b, solid lines represent the
results of the analytical expressions of the stability tongues.



small oscillation amplitudes, the analytical results are in
d agreement with the experimental data. However, as the
it voltage increases, the deviation of the analytical
roximation from the experiments increases. This is due to
fact that for higher voltages, the small driving signal and
Ul tilt angle approximations are becoming invalid and
efore our perturbation analysis ceases to be accurate.
sther reason of the difference between the experimental
| analytical results is the cubic nonlinearity in (4). As the
ving voltage increases, this cubic nonlinearity term also
ws and it prevents the left hand of the stability curve to
1d rightward.

quet analysis showed that within the unstable region,
sillation amplitude of the device should grow unboundedly,
:n if damping is present. However, real devices do not have
sh behavior. This difference is due to the effect of the
nlinearity term neglected before. The effects of nonlinearity
1 be explained as follows: as the resonance causes the
iplitude of the motion to increase, the relation between
riod and amplitude (which is a characteristic effect of
nlinearity) causes the resonance to detune, decreasing its
dency to produce large motions [26).

V. EXPERIMENTAL SETUP

e developed various optical setups for characterizing the
stem. Fig. 12 shows a sketch of our setup for frequency,
msient response and stability measurements. For the
:quency response and stability measurements the actual
sasurement device is a single photodetector, which is placed
1y close to the center of the scan line. During device
seration, output of the detector is a periodic train of non-
pulses. A square wave is formed using the impulse train
ith the help of a positive edge triggered D-type flip-flop. The
ymplementary output of the flip-flop is connected to the
put, therefore at each clock tick (impulse from the detector);
e output of the flip-flop switches state, leading to a square
ave. From the duty-cycle, phase, and the frequency of this
Juare-wave oscillations of the device can be characterized.
his waveform is fed into Lab View via a PC with DAQ
iterface to evaluate the oscillation frequency, scan angle, and
base to form the complete frequency response of the system.
. similar method is used for the damping measurements. For
1 low-damping experiments, the device is placed inside a
acuum chamber with a transparent bell jar. For transient
*sponse measurements, the photodetector is replaced by a fast
D-Position Sensing Detector (PSD). Again a laser beam is
ent on the microscanner, and the scan waveform of the
aicroscanner is recorded by reflecting the scan-line onto the
'SD. Response time of the PSD is much faster than the scan
requency, therefore no deformation of the scan waveform is
llowed.

scan line 4 tor signal

/ processing

elettronics
high voltage function
amplifier generator

<k ~]

vacuum
chamber

Fig. 12. Schematics of the dynamic micromirror characterization setup

V1. CONCLUSION

In this work, we have presented analytical expressions
describing the many fundamental characteristics of comb-
actuated microscanners. Having an analytical and numerical
tool for predicting microscanner behavior is very valuable. In
linear scanners, one avoids having other resonances in the
system close to the primary resonance of the scanner and its
harmonics. For the nonlinear parametric resonance scanner,
one should also pay attention to the subharmonic frequencies
in the system. Theory presented here is applied to various
science and engineering problems, but to our knowledge, this
is the first time that a detailed analysis of the stability,
transient and frequency behavior of a parametric resonance
device is presented. We developed analytical solution and
simulation tools and they confirm our experimental results
very well. Our analytical model is valid within small damping
and small oscillation angles, but it gives a good understanding
of the stability and transient response. On the other hand, our
numerical model is valid for both small and large scan angles,
providing a very useful tool for scanner design and
characterization. The model can also be used for the
optimization of both the structure and the drive waveforms.
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ABSTRACT

Accurate prediction of the dynamic behavior of comb~driven MEMS microscanners is important to optimize the actuator
and structure design. In this paper, a numerical and an analytical model for the dynamic analysis of comb-driven
microscanners under different excitation schemes are presented. The numerical model is based on a second order
nonlinear differential equation. Due to the nature of the torque function, this governing equation of motion is a
parametric nonlinear ODE, which exhibits hysteretic frequency domain behavior and subharmonic oscillations. .
Experimental results and approximate analytical expressions for this nonlinear torque function of the comb-drive are
presented. Amplitude and phase relationship between the excitation signal and the resultant oscillations at different
excitation frequencies are measured and we show that they are in close agreement with the numerical simulations.
Analytical model uses perturbation methods to reach approximate close-form expressions for the dynamic behavior of
the device in the first parametric resonance region. It is also utilized to predict the stability regions on the frequency-
excitation voltage plane, where the device exhibit hysterical characteristics. Analytical and numerical modeling
approaches proposed in this paper provides a simple yet powerful way to analyze the nonlinear frequency response of
comb-driven actuators and simplify the design process for a microscanner based system.

Keywords: Comb-drive actuation, microscanner, subharmonic oscillation, parametric resonance

1. INTRODUCTION

Comb-driven electrostatic actuation is widely used in various microstructures. Comb structures greatly enhance the
net capacitance variation and therefore, high actuation forces can be reached with relatively low drive voltages'. Some
applications that utilize comb-drive structures include microscanner’?, mechanical filters*”, and optical switches®”.

In-plane motion of a comb drive is governed by a second order constant-coefficient differential equation. The
resulting system is a Simple Harmonic Oscillator (SHO). In torsional mode, the motion is out-of-plane. Actuation force
is a nonlinear function of angular displacement and time. Therefore, the governing second order differential equation
(DE) is no longer a constant coefficient linear DE, but a nonlinear DE with time-varying coefficients. Time varying
coefficients in the governing equation lead to time dependant torsional stiffness, and the governing DE defines a
parametric system that exhibits hysterical frequency response, generates subharmonic oscillations and has multiple
orders of parametric resonances. Parametric oscillation is not a rare phenomenon in engineering, and is investigated in
great detail, elsewhere®. Turner developed analytical formulas for a comb-driven resonator used for scanning tunneling
microscopy'®!!, but this is the first time that such an analysis is carried out for a microscanner. We also developed
accurate numerical simulations to study the parametric resonances for arbitrary excitation waveforms.

We first discuss the structure and the typical frequency characteristics of the comb-driven microscanners used in
this study. The remainder of the paper has three parts where we present our results. In section 3, we propose a numerical
model for the device and compare the simulation results with experimental data. In section 4, an analytical solution of
the equation of motion near the first parametric resonance is presented. Section 5 presents further experimental data on

the frequency response of the device for different excitation waveforms. The last section gives an insight for future work
in this area.



2. DEVICE STRUCTURE AND DYNAMIC CHARACTERISTICS

The device that we have investigated in this work is a 1D, single-crystalline silicon comb-actuated microscanner.
The structure is consisted of a movable, aluminum covered mirror, a fixed frame and two flexure beams that bind the
mirror to the frame. The flexures act as torsional springs that pull the mirror back to its rest position. The mirror is 2mm
long, 2mm wide and 30pm thick. The flexure dimensions are 550um in length, 10pm in width and 30um in thickness.
Both the comb fingers and the gap between the comb fingers are Sum wide. Comb fingers are placed on both sides of the
mirror. Mirror and the frame are electrostatically isolated with isolation trenches, so that different potentials can be
applied to the fixed and movable comb fingers. The device was fabricated by Fraunhofer Institute for Photonic
Microsystems (IPMS), in Dresden-German;r. More information on the design and fabrication of the device can be found
in the related works by Fraunhofer IPMS*'>*, Simple sketch of the device and micrograph of the comb fingers are
shown below.

Figure 1: General Device Layout" Figure 2: Micrograph of the comb fingers"?

Biaxial microscanners that produce a 2-D raster pattern with comb-drive actuation are also available. In 2D mirror
structure, there is a reflective mirror in the middle, a movable inner frame and a fixed outer frame. Innermost mirror and
the movable frame have comb-drives in perpendicular orientation; therefore, the device can manage 2D scanning. Since
the actuation mechanism is exactly the same, dynamic characteristics of 1D and 2D scanners are the same. Figure 1 shows
the frequency response curves for horizontal and vertical axis of a 2D microscanner. The shape of the response curve is
typical for all similar devices. Frequency response is nonlinear and shows hysterical behavior. The path traced on the 6-f
curve when frequency is increased quasi-statically from a lower frequency is different than the case, in which the
frequency is swept down from a higher frequency.
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Figure 3: Frequency response of a) vertical, b) horizontal axis of a 2D comb-driven microstructure



3. SYSTEM MODELING AND NUMERICAL ANALYSIS

Comb-actuated micromirror devices exhibit a hysterical bebavior and generate subharmonic oscillations. Such
phenomena are typical for nonlinear parametric systems. In order to have a parametric equation of motion for our
microscanner, electrical or torsional stiffness of the device should be time dependant. It is known that the general
equation of motion for a microscanner can be written as follows'*:

2
md—f+bﬁ+Kfa=M(o) (1
dt dt
where,
1,;: Mass moment of inertia;
b: Damping constant;
Ky Torsional stiffness;
M(9): Torque function.

Amount of torque produced by the comb actuators as a function of the tilt angle is given as:

M(O)=2N -2 (o) ®
2d6

where, N is the number of fingers on one side of the mirror. M(®) is proportional to the rate of change of the energy
stored in the actuator combs with respect to . Change in the stored energy is proportional to the change in the total
capacitance of the comb actuators, which is proportional to the overlap area of comb fingers. Overlap area between the
finger plates is a piecewise continuous function with three different regions. This also leads, when the fringing effects are
ignored, to a piecewise continuous torque function. If the comb fingers on different frames are designed to be coplanar
without any vertical offset in between and have the same thickness, the forcing function becomes an even function. If the
structure were perfectly symmetrical, oscillations would not start, but there is always some asymmetry due to processing
and even small force is sufficient to get the oscillations started. When fringing fields are ignored, the rate of change of
total capacitance with tilt angle can be found by expressing the overlap area of the comb fingers as a function of 8. The

resultant function is piecewise and can be expressed as:
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where,
D: Mirror Width
/i Finger Length
g: Gap Between Fingers
t..: Thickness of the mirror
xo: Initial Overlap of the Fingers
fx Width of the Fingers

When V(%) is a periodic function, such as a sinusoid, the forque turns out to be a function of both time and
angular displacement. Therefore, Eq.1 becomes a nonlinear differential equation with time-varying coefficients. This
implies that the resultant system is a parametric oscillator and will exhibit parametric resonances, and subharmonic
oscillations.

Numerical simulations are performed using the model above and Matlab® ODE solvers. Figure 3 shows that the
behavior of the device when the input frequency is steadily increased or decreased is significantly different. Between the
two jump frequencies, there are two stable solutions, and it is the initial conditions that determine which one is the actual
solution that the oscillations will converge to. Therefore, for the regions, in which the nonlinear differential equation has
two solutions, the simulation converges to the one with lower oscillation amplitude. For decreasing sweep simulations,
the initial condition is larger than the maximum scan angle, and the simulation converged to the solution with larger
oscillation amplitude.

Figure 4 illustrates the excitation and scan waveforms. A photodetector is placed at the center of the scan line and
produces a short pulse each time the scanner goes through zero deflection angle. The square excitation waveform is at
2234Hz and the zero crossings of the sinusoidal scan waveform are also at the same frequency. Since two peaks of the
diode output correspond to one complete oscillation period, the scan waveform frequency is 1117Hz, half of the
excitation frequency. Figure 4.b shows the sinusoidal scan waveform and the square wave excitation waveform,
illustrating the subharmonic nature of the oscillations.

Figure 5 shows the simulation results for nonlinear frequency response characteristics and compares them with
the experimental data. The graph is plotted for downsweep frequency response and three parametric resonances were
captured. Numerical method successfully predicts the higher order parametric resonances and their associated jump
frequencies. Numerical model is not as accurate in predicting the maximum scan amplitude. This is due to neglecting the
fringing fields for the electrostatic torque calculations.

Exclation Waveform va.System Response

T

3
s

Figure 4: (a) Square wave excitation waveform (solid line) and photodiode output (dashed line) at the center of the scan line;
(b) simulation result illustrating the sinusoidal scan waveform and the square excitation waveform
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Figure 5: Comparison of the simulation and experimental results for the downsweep frequency response
characteristics of the device for 20V square wave excitation (shown in Figure 4.2)

4. ANALYTICAL SOLUTION FOR 1** ORDER PARAMETRIC RESONANCE

A general solution for the equation of motion of the microscanner is difficult to achieve. On the other hand, some
reasonable assumptions can be made, in order to get some analytical expressions that will reveal some crucial
characteristics of the solution. Assume that the input voltage waveform is the square root of a biased sinusoid function
(this way, we can eliminate higher harmonics in the V()* term in Eg.2). In case of small amplitude oscillations, the
torque function in Eq.3 can be simplified as:

M(6,t)= —(r393 + r10)A2 (cos(wr)+1) “

In the above formula, rate of change of total capacitance is approximated with a third order polynomial. The torque
function is odd; therefore no even order terms exist. Near the first parametric resonance, oscillation frequency is half of
the drive frequency. Using this fact, and the simplified torque expression of Eq.4, Eq.3 can be rewritten for the first
parametric resonance region as follows'’:

2
90 098 1 (B+25c0s(20)0 + (8 + E:c0s(20))6° =0 )
dt dt
where,
2 2 2
pM 2 g A K)o ond A
2 wi, wl, wl, w'l,

If the damping is small in the system, only B is in the order of 1, whereas the other terms are at least one order of
magnitude smaller than . Therefore, perturbation methods may be utilized in the solution of Eq. 5. If we define the
perturbation parameter € as equal to §, Eq.5 becomes a perturbed Mathieu equation and it can be solved using method of
two-variable expansion’. This method is based on the fact that possible solution of Eq. 5 includes two different time-
scales. One of those time scales is close to t and defines the period of the motion. The other time scale, on the other
hand, is much slower and modulates the amplitude of the oscillations'’. If the time scales are defined as 7 and n=¢t, and
we assume that @ = 6, + £6,, § =1+ 8B, , the solution of Eq.5 is given as follows:

0= A(r)coseg )+ B(r) cos(% £ ) )

where A and B are given as the solution of following coupled differential equations:



i4=~£3+£(ﬁl_l)+%(3,42+32) (72)

dt 2 2

dB u . A A83(. 5 o (7b)
=g (fi+1)— SA*+ B

dr 2 y Bret)- ( )

Limits of the bistable region on the B-5 and the map of this region on the voltage-frequency plane are shown in
Figure 6. On figure 6a, the frequency range between the arms of the plot at a certain voltage corresponds to the frequency
range between the two jump frequencies on Figure 3. Analytical model can successfully estimate the peak frequency for
the stability region; however, the deviation from the model in higher voltage values is evident. This is because that for at
atmospheric pressure, the damping term in Eq.5 is not small enough to be assumed as a perturbation in the system. In
vacuum environment, the model is predicted to give much accurate results. Vacuum measurements will be performed as
fature work.
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Figure 6: Analytical and experimental results for the stability region a) on the voltage-frequency plane, b) on the -5 plane.
Theoretical plots are drawn assuming that there is no damping in the system. However actual device is operated in the
atmospheric pressure and significant damping is present in the system, Therefore, the tip of the stability curve is lifted

upwards and the curve is widened considerably.

The theoretical plots assume that there is no damping in the system; therefore the minimum points are on the x-axis.
However, the experimental data are taken in atmospheric pressure and there is significant air damping in the system (Q
factor of the system is only 22). Damping lifts the tongue upwards and smoothes the tip of the stability curve.
Analytically, the tip of the curve is found to be at 2242 Hz. The actual value is 2248 Hz, which is in close agreement
with the analytical result.

5. HIGHER ORDER PARAMETRIC RESONANCES

In addition to the first order parametric resonance that we have analyzed so far, parametric systems have more
resonances located near 2f/n, where f, is the mechanical resonance frequency of the system, and n is any positive integer
greater than one. As shown in the analytical analysis, as the damping in the system is increased, the threshold voltage
required for observing the parametric resonances rises. Due to damping, it is difficult to observe higher order parametric
resonances at atmospheric pressure for most MEMS devices. However, the device in this work gives rise to higher order
parametric resonances even at atmospheric pressure. Figure 7 shows the experimental frequency response curves for the
microscanner with both square and sinusoidal excitation. With square wave excitation, it is possible to observe 8
different orders of parametric resonances, whereas with sinusoidal excitation, number of observable parametric
resonances is only two. ‘



Frequency response curves of a 1D micromirror for Square Wave Excitation
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Figure 7: Higher order parametric resonances a) with 20V square wave input, b) 20V sine wave input
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For square wave input, the response is not a pure sinusoid for high order resonances. Scan wave shows an unusual
behavior and changes oscillation frequency and amplitude at each half cycle of the square wave. When excitation is in
the OFF state (meaning that force is not present in the system), the system makes free oscillation at its natural resonant
frequency, when the excitation is in the ON state, the mirror oscillates at a higher frequency, which can be calculated
using the excitation and natural frequencies. Figure 8 shows the experimental results illustrating this behavior. Such

behavior is observed in very high order resonances. In Figure 9 simulated waveforms for varying frequency behavior can
be seen.
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Figure 8: Varying frequency oscillations (a) At 7 order parametric resonance and 289 Hz, (b) At 6" order parametric
resonance and 384 Hz,
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Figure 9: Simulation results for the varying frequency behavior. The simulation was done at 380 Hz, for 20V square wave
input.

6. DISCUSSION AND FUTURE WORK

We have presented an analytical and a numerical model! for a comb-driven microscanner. The numerical model can
be utilized up to 20 degrees of angular displacement (the limit is the validity of small angle approximation) and predicts
higher order parametric resonances, as well as the fundamental resonance. The significance of the model is within its
ability to simulate high deflection angles, which are common in display and scanning applications. The analytical model
is valid for a simplified excitation waveform, small angular displacements, and negligible damping. Analysis in this
paper is done for the fundamental resonance; however similar methods can be used to reach approximate analytical
solutions for higher order resonances. Analytical results will be extended to higher order resonances in future work. The
analytical model cannot predict the instability region of the voltage-frequency curve very accurately. This is primarily,
due to the loose satisfaction of the low damping assumption at atmospheric pressure. Vacuum testing of the devices will
be carried out as a next step, in order to obtain better agreement between the analytical model and the experimental
results.
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ABSTRACT

Dynamic behavior of a comb-driven torsional microscanner is governed by a nonlinear parametric differential equation.
Theoretically, such systems have multiple resonances located near the integer fractions of twice the mechanical
resonance frequency. The number of observable parametric resonances strongly depends on the damping of the system,
whereas the stable and unstable operating regions are determined by drive-voltage and drive-frequency. In atmospheric
pressure, only first few of these parametric resonances are observable within the operation voltage range of the devices.
This paper explores the effect of damping on the various characteristics of parametric resonances and some unusual
scanner behavior rarely seen in mechanical structures. A numerical and an analytical model for comb-driven
microscanners are presented. Frequency responses of various devices are experimentally measured inside a vacuum
chamber at different ambient pressures ranging from atmospheric pressure to 30 mTorr. Experimental results are
compared with analytical and simulation results.

Keywords: Comb-drive actuation, microscanner, subharmonic oscillation, parametric resonance, damping, quality factor
i. INTRODUCTION

Electrostatic comb-drive actuation is a common actuation mechanism in microelectromechanical systems
(MEMS). Comb-drives can be actuated in in-plane or out-of plane modes, and operation made of the actuator is the
fundamental factor that determines the dynamic behavior of the associated device. In-plane mode comb-actuators are
widely utilized in various devices and systems such as tunable capacitorsl, mechanical resonators2, optical switches®, and
mechanical filters for RF and other applications.” ° In this mode of operation, the force induced by the actuator is
independent of the displacement of the combs, and the actuator exhibits a simple harmonic oscillatory (SHO) behavior.
As all other second order harmonic oscillator, in-plane mode comb actuators have one resonance, corresponding to the
mechanical resonance of the system. On the other hand, the force in out-of-plane actuator is both time and displacement
dependent. This relatively complicated nature of the forcing function leads to the phenomenon of parametric resonance.
Parametric systems are seen in different areas of science and engineering, such as photonic crystals °, optical cavities’,
plate vibrations®, and quantum devices.’ A parametric oscillator is described with a second order differential equation
with time-dependant coefficients. In parametric systems, linear relation between the drive signals and the output of the
system ceases to exist and the system exhibits subharmonic oscillations and hysterical frequency response.

We have previously proved that a comb-driven torsional microscanner is a typical parametric oscillator and
presented experimental results, numerical model, and analytical solutions for the primary resonance (fundamental
parametric resonance).'® This paper explores the effect of damping and drive voltage on the number and width of the
stability curves of the microscanners. We applied “method of strained parameters” to obtain stability regions in the
analytical solution, and we applied “Floquet Theory” to obtain our approximate transient analytical solutions. Our
analytical solutions successfully predict stability regions and other characteristics of primary and higher order
resonances. In section II, we give a brief introduction to the microscanner structure, Section III includes the analytical
analysis of the stability regions and steady state solutions for the parametric resonance. Experimental frequency response
and stability data are also given in section IIl. Comparisons of this data with analytical and numerical results are also
included in this section. In the last part, we included conclusions and a brief discussion on the significance of this work.



2. THE DEVICE

2.1Device Layout

The device that is investigated in this work is a ID, 30 pm thick single-crystalline silicon comb-actuated
microscanner. The structure consists of a movable, aluminum covered 2 mm x 2mm aluminum mirror, a fixed frame and
two flexure beams that bind the mirror to the frame. The flexures are 550 um in length, 30 ym in width, 20 um in
thickness, and they act as torsional springs that pull the mirror back to its rest position. The mirror and the frame are
electrically isolated via the isolation trenches. Therefore, different potentials can be applied to the complementary comb
fingers. These fingers are placed on sidewalls of the mirror. The devices were fabricated by Fraunhofer Institute for
Photonic Microsystems (IPMS), in Dresden-Germany. More information on the design and fabrication of these devices
can be found in the related works by Fraunhofer IPMS'"'* %, Figure 1shows the general micromirror layout.
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Figure 1 - General layout of the microscanner

2.2 Actuation Mechanism

Torsional movement of these micromirrors is induced by the numerous comb shaped fingers on the edge of the
device. These fingers greatly enhance the overlap capacitance between the opposing surfaces and lower the operation
voltage of an electrostatic actuator significantly. Figure 2 shows the comb fingers on the microscanner and a first order
approximation to capacitance-change — tilt-angle characteristics of the comb actuator.
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Figure 2 - (a) The comb fingers on the edge of the microscanner mirror. (b) Torque vs. tilt angle characteristic
The amount of torque produced by the comb-drive actuators is given by the expression,
1dC
M(@)=2N—-—=v () )
2d0

wherez N is the I}umber of comb fingers. The nonlinear relation between the rate of change of capacitance and the tilt
angle is showed in Figure 2(b). In electrostatic actuators, the amount of torque produced is proportional to the square of



the input signal. Therefore, when a time-varying input is applied to the system, the torque function is both time aqd
displacement dependant. We have previously shown that this nature of the torque function leads to parametric
oscillations, and comb-drive microscanners exhibit the typical characteristics of parametric systems. Figure 3 shows the
frequency response of the device within the first parametric resonance.
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Figure 3 - Frequency response curve of the device in the fundamental parametric resonance. The peak amplitude corresponds
to f= 2f,, where f; is the mechanical resonance frequency of the system.

The shape of the response curve is typical for all similar devices. Frequency Response of the torsional comb-driven
microscanners is a nonlinear function exhibiting subbarmonic oscillations and hysterical behavior. The path traced on the
6-f curve when frequency is increased quasi-statically from a lower frequency is different than the case, in which the
frequency is swept down from a higher frequency. The interval between the two jump frequencies f; and f, is the
unstable region of the response curve. Oscillations in this region can only be observed if the external frequency is quasi-
statically swept down to this region from a higher initial value. At the critical frequencies, the jump in the oscillation
amplitude is extremely abrupt — sharper than 10° Hz, which is the maximum resolution of our measurements. It is
uncommon for a macroscopic parametric system to have multiple observable parametric resonances. But we are able
observe more than one resonance even in the atmospheric pressure. In vacuum, the number of observable resonances is
much higher. The shape of the other orders of resonance is still the same, but they are located around 2fy/n, n=1,2,.... In
the first parametric resonance, the oscillation frequency is half the driving signal frequency. This phenomenon is called
subharmonic oscillation. Subharmonic oscillations in comb-driven microscanners are explored in our earlier work.°

3. THEORY, EXPERIMENTS AND SIMULATIONS

General equation of motion for a microscanner can be written as follows'®:

d’¢ . de
I —+b—+K.0=M 2
et 0=M(0) @
where,
1,;: Mass moment of inertia;
b: Damping constant;
Kz Torsional stiffness;
M(6): Torque function.

For very small tilt angles, the torque function of the comb actuators can be successfully approximated by a 3™ order
odd polynomial. With a square-rooted-sine input voltage (¥ = A, /cos(wt) +1), the torque expression is;

M(0,1)= ~(r303 + r19)A2 (cos(wt)+1) 3)

We can now rewrite Eq.2 as follows:
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In this new representation 7 stands for the new time variable, which is the actual time scaled by w/2. Eq4 is a
nonlinear homogeneous Mathieu equation and there exists two linearly independent solutions for this equation. We have
previously presented approximate analytical expressions for the behavior of this system near first parametric resonance.'’
A more general insight for the transient behavior of the system may be gained by using Floquet theory. In order to utilize
this theory, we need to express Eq.4 in state space representations, as follows:

X, =X,
%, =—ax, — (B + 26 cos(27))x, — (53 + S3cos(27))x,’ ©)

An analytical solution can be obtained when the cublc nonlinearity and the damping terms are ignored. We can now,
rewrite this system of equations in matrix form as:'

X 0 1 x
X, -f(@ 0fx,
Where, f{) = B + 26cos(z). Linear system theory suggests that this system of equations has two linearly independent

solutions. Let X{(?) be a fundamental solution matrix, whose columns are two linearly independent solutions of Eq.6, and

satisfy the initial conditions X{(0) ——I where [ is the identity matrix. Floquet theory suggests that the characteristic matrix
C of Eq.6 is given by the relation,**

C = X(T) =[x1(T) J'CI(T)] %)

%,(T)  %,(T)

Where, T'is the period of f{z), and equals to 2z for the Mathieu equation. The transient solutions and the stability of the
system in Eq.3 can be determined using the charactenstlcs matrix. Let ;,(t) denote the transient solutions of the system
of interest; then they are given by the relation.'

8,(7) =™ (1)
6,(7) =™ 9, (7)

where, 9; are called the characteristic exponents of the equation. Above expression is the general form of the solution for
linear Mathieu equation. In torsional comb microscanner case, the periodic functions of ¢,(7) are linear combinations of

®)

sinusoidal functions of period z and 2z. ; are given by the expression,

1
Vi = —]—:ln(ﬂ‘i) 9)

Where, 1; are the eigenvectors of the characteristic matrix C. For a linear Mathieu equation, the product of these
eigenvectors is unity. Depending on the values of these eigenvectors, steady state and stability characteristics of the
system can be determined. If these eigenvectors are complex conjugates, they have unity modulus and therefore they lie
on the unit circle. In this case, the steady state output is bounded and the system is stable. However, the amplitude of the
output bas a damped oscillatory behavior, due to Eq.8. Figure 4(a) shows the experimental data for such a behavior. The



system is within first parametric resonance range, but is far from its resonance peak. The exponential growth and dan{pgd
oscillations in the output amplitude can be clearly seen from the data. When one of the eigenvectors of the characteristic
matrix has amplitude greater than unity, one of the fundamental solutions die out in time, however the amplitude of the
other solution grows exponentially. If there is no damping in the system, this growth in the output amplitude is
unbounded, and the system becomes unstable. However, both damping and the cubic nonlinearity, -the effects that we
both ignored in deriving Eq.8- have a stabilizing effect on the system, and they limit the oscillation amplitude of the
unstable system. When f,..=f; or f...=f), the eigenvectors of the characteristic matrix are either -1 or 1, and the oscillatory
behavior in the transient response diminishes. Such a characteristic can be observed in Figure4b. Unlike linear systems,
exponential terms has positive growth coefficient, and the amplitude grows until it reaches upper bound set by damping
and the cubic nonlinearity. Then suddenly, oscillation amplitude stops growing.
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Figure 4 - Transient response of the device to various frequencies. (a)f,,>f; (stable region);
(b) fo=f; (boundary of the unstable region).

3.1 Stability Tongues

According to the Floquet theory, the solutions of Eq.4 on the stability transition curves have periods of # or 2z,
and these curves correspond to the positive or negative unity eigenvectors of the characteristic matrix. These stability
curves form a tongue-like shape in the drive-voltage — drive-frequency space, and therefore called “stability tongues”.
Due to the time scaling of Eq.4, a solution which is of period # in the new time scale correspond to an oscillation of
period T in the actual time. Similarly, the 2z periodic solution of Eq.4 is actually an oscillation of period 2T. This 2T
periodic solution is half the frequency of the drive signal and corresponds to the subharmonic oscillation in the 1% order
parametric resonance. Based on the result of Floquet theory that on boundaries of the stability tongues the solution of
Eq.4 is either 7 or 27 periodic, we utilized the method of strained parameters, in order to find analytical expressions for
determining these tongues. In this method the characteristic exponents are chosen so that the periods of the possibie
solutions of Eq.4 are = or 2z. Then, the required parameters are determined in such a way that this assumption holds.
With the effect of small viscous damping, which is the case in comb-driven microscanners within small oscillation
amplitudes, the transition curves separating the stable and unstable regions are given by'*: -

1
B=n*t-|a, +5,7 )57 ~16a%n*} +0(), w=123,... (10)

1
2

Where, a;, and b,, are the Fourier series coefficients of f{t), and O(n) stands for higher order terms. For the first two
orders of parametric resonances, the expressions for the associated stability tongues can be found as:'®

1
ﬁ=1:|:(52—4o:2)5—é52+0(n) (11a)

,B=4+—é—52i(flg52—16a2)2+0(n) (11b)



Figure 5 shows the experimental results and analytical approximations for the stability tongues for the observa}ble
parametric resonances at two different ambient pressure levels. The tongues are mapped in to drive-voltage — drive-

frequency plane using the refations in Eq.4.
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Figure 5 - Stability tongues for the device (a) At atmospheric pressure; (b) At an ambient pressure of 30 mTorr, Dotted lines
show experimental results and solid lines in (b) show the stability tongues evaluated using the analytical formulas.

Figure 5(a) shows the stability tongues of the microscanner in the atmospheric pressure. There is a significant viscous air
damping between the comb fingers in the atmospheric pressure (we have measured a Q factor of 22), so that there are
only two observable parametric resonances within the operation voltage of the device. Additional orders or resonances
would be observed with higher drive voltages, but we avoided such high voltages in order to prevent device failure. The
stability tongues of the microscanner in 30 mTorr ambient pressure can be seen in Figure 5b. Voltage and frequency span
of the two plots are identical. In low pressure, air damping is much less and therefore the device has a much higher
quality factor (~1250). As seen in the Figure 5(b), there are 5 observable parametric resonances and the width of the
stability tongues are increased, and their tips came much closer to the =0 axis. In Figure 5b, solid lines represent the



results of the analytical expressions of the stability tongues. The analytical results are in good agreement with the
experimental data. However, as the input voltage increases, the deviation of the analytical approximation from the
experiments increases. This is due to the fact that for higher voltages, the small driving signal and small tilt angle
approximations are becoming invalid and therefore our perturbation analysis ceases to be accurate. Another reason of the
difference between the experimental and analytical results is the cubic nonlinearity in Eq.3. As the driving voltage
increases, this cubic nonlinearity term also grows and it prevents the left hand of the stability curve to bend rightward.

3.2 Frequency Response

Damping of system also has a significant effect on the frequency response of the device. Figure 5 compares the
frequency response of the comb-driven microscanner at two different ambient pressures. The solid line represents the
experimental data for backward frequency sweep, and the dotted line represents forward frequency sweep. The driving
signal was a square-root sine wave with peak-to-peak value of 20V.
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Figure 6. Frequency response of the microscanner; (a) at atmospheric pressure, (b) at 30 mTorr.

With this drive signal, we can observe two parametric resonances in the atmospheric pressure and four resonances
in 30 mTorr. The amplitude of the oscillations is significantly increases in low pressure due to lower damping. Near the
peak of the first parametric resonance, the oscillation amplitude reaches almost 12°. In atmospheric pressure, the
maximum oscillation amplitude is around 3.5°. Another effect of the damping is the modification of the resonant
frequency.'® When the pressure changed from ambient to 30 mTort, resonance frequency of the device increased from
1068.9 Hz to 1081.7 Hz. This shift is due to the frequency tuning effect of damping.

3.3 Simulation Results

Frequency and transient response of the devices were simulated using our numerical model. The simulations are
done by numerically solving Eq.2 using the differential equation solvers in MATLAB®. The torque associated with the
comb actuators is computed using a first order approximation of the total capacitance in the system (Figure 2(b)). We
have presented the detailed modeling procedure elsewhere. ' Figure 7 is presents the results of some simulations run with
this model. Figure 7(a) compares the experimental data and simulation results for the frequency response of the device at
atmospheric pressure. The model accurately predicts the values of frequencies, where abrupt changes in the amplitude
occur. There is a slight disagreement between the amplitudes of two data sets, which is due to the ignored fringing



electric fields between the comb fingers. Figure 7(b) shows the result for a sample transient response simulation, which
verifies the exponential increase and oscillatory decay in the output amplitude in this operation region observed in the
experiments (see. Figure 4a). The numerical results show good agreement with the experimental data and verify the

validity of the model.
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Figure 7 — Simulation results for; (a) frequency response at 1** order parametric resonance, (b) sample transient
response at stable region.

3.4 Experimental Setup
The microscanner structure does not employ an angular displacement feedback feature; therefore, we have used

various optical characterization methods, in order to obtain desired data. Figure 8 shows a picture of our frequency
response, transient response stability analysis measurements setup. Transient response measurements are done using a
fast 2D-Position Sensing Detector (PSD) and a PC with data acquisition hardware. A laser beam is sent on the
microscanner, and the scan waveform of the microscanner is recorded by reflecting the scan-line onto the PSD. Response
time of the PSD is much faster than the scan frequency, therefore no deformation of the scan waveform is allowed. For
the frequency response and stability measurements, we used a computer-controlled setup, based on a single
photodetector. A similar method is used for the damping measurements. For the low-damping experiments, the device is
placed inside a vacuum chamber with a transparent bell jar.

(@) (b)
Figure 8 - Experiment setup. (a) General view of the setup. (b) Microscanner inside the vacuum chamber



3. DISCUSSION AND CONCLUSIONS

In this work, we have presented analytical expressions describing the many fundamental characteristics of comb-driven
microscanners. Having an analytical and numerical tool for predicting microscanner behavior is very valuable. In linear
scanners, one avoids having other resonances in the system close to the primary resonance of the scanner and its
harmonics. For the nonlinear parametric resonance scanner, one should also pay attention to the subharmonic frequencies
in the system. Theory presented here is applied to various science and engineering problems, but to our knowledge, this
is the first time that a detailed analysis of the stability, transient and frequency behavior of a parametric resonance device
is presented. Together with the analytical expressions, we have presented experimental and simulation data and they
confirm the analytical predictions very well. Our analytical model is valid within small damping and small oscillation
angles, but it gives a good understanding of the stability and transient response. On the other hand, our numerical model
is valid for both small and large scan angles, providing a very useful tool for scanner design and characterization.
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