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ABSTRACT

We study stochastic multiperiod production planning problems of a manufacturer with
single/multiple plant(s) and/or subcontractors. Each source, i.e. each plant and
subcontractor, has a different production cost, capacity, and lead time. The manufacturer
has to meet the demand for single/multiple product(s) according to the service level
requirements set by a retailer. The demand for each product in each period is random. We
present a methodology that a manufacturer can utilize to make its production and sourcing
decisions, i.e., to decide how much to produce, when to produce, where to produce, how
much inventory to carry, etc. This methodology is based on a mathematical programming
approach. Stochasticity in the problem that comes from random demand and service level
constraints is integrated in a deterministic mathematical program by adding a number of
additional linear constraints. Solving this deterministic equivalent problem yields the an
approximation to the solution of the stochastic problem. We justify the equivalencies
between the base stock model and the deterministic equivalent model with modified service
level constraints solved on a rolling horizon basis in the single product single production
facility setting. For the multiple plants setting without lead time, we show that the
deterministic equivalent model gives good enough solutions to the threshold subcontracting
model. Finally, motivated by a production planning and sourcing problem in the textile-
apparel-retail channel, we use the proposed methodology to perform some numerical
experiments to get insights regarding the interaction among the cost, lead time, and

variability of demand and how they affect the sourcing decisions.

Keywords: stochastic production planning, service level constraints, subcontracting
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Chapter 1

INTRODUCTION

The challenges faced by the firms operating in the competitive manufacturing
environment of today emphasize the importance of the firm’s capability to react to the
changing conditions immediately and optimally by making the right decisions at the right
time. The mathematical models for optimizing inventory management and sourcing
decisions address questions such as: when to produce or when to subcontract, and how
much to produce or how much to subcontract and how much inventory to carry. The
assumptions made about the demand, cost structure and physical characteristics of the
system determine the complexity of these models.

One of the main challenges in these models is incorporating the uncertainty. The
uncertainty might be related to the production or demand variability. The unexpected
events that cause delays in the manufacturing environments and the randomness in demand
make it difficult to anticipate the ultimate effects of the performed actions. Since the
manufacturer’s capability to compete is determined by the degree of responsiveness to the
customer demand, there has been a lot of work in the literature for the formulation and
solution of the stochastic production planning problems.

Some stochastic models consider possible scenarios of an unknown future. It is known
that the optimal solution to stochastic production planning problems can be obtained by

stochastic dynamic or sequential-stochastic programming formulations. However, it is very
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challenging to construct and solve such models. Studies for even small sized problems
require substantial amount of time and effort.

Therefore, in order to address sourcing and production planning problems, it is, in
general, preferable to utilize deterministic-based approximations that are solved on a
rolling horizon basis and heuristic solutions are proposed. In these models, the uncertainties
are not explicitly treated since all inputs are taken as deterministic. The heuristics that
offer speed and tractability are preferred to optimality in the most current supply chain
planning practices. However, utilization of these heuristics influences the decision makers
to make sub-optimal decisions which might result in lower than desired performance for
the supply chain.

While making production decisions, manufacturers must determine the planned level of
production for each specific product to be produced in each time period during the planning
horizon, and must make a trade-off among capacity acquisition, inventory holding and
stock out costs in order to maximize profitability. Maintaining a relatively constant
production rate and holding inventory to satisfy peak demands might be an alternative for
responding to changes in demand. Another alternative might be synchronization of the
production rate with the demand rate by varying the production capacity and therefore
following the demand closely. The production capacity might be increased in the long run
by investing in new facilities, hiring new workers, etc. or it might be increased in the short
run by overtime of workers, subcontracting, etc. Not surprisingly, mixed strategies might
be utilized whenever it is more profitable.

Recently, subcontracting to third parties has become a commonly adopted approach
across many industries. According to Day [1], subcontracting refers to the case in which
the prime contractor procures an item or service that the firm is normally capable of
economic production in its own facilities and which requires the contractor to make

specifications available to the supplier. Although a manufacturer can increase its
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responsiveness by investing in an additional capacity or by carrying higher inventory, these
alternatives are costly and also risky in volatile market conditions. In broad sense,
subcontracting can satisfy the manufacturer’s needs with the gains of specialization and
low cost of production. Additional costs of utilizing subcontractors can be justified by
reducing the inventory levels and its associated costs. Adoption of subcontracting practices
provides many advantages to the firms. It enables greater production flexibility and allows
better supervision of the production process and greater efficiency in the use of plant and
machinery, which improve the firm’s responsiveness and ability to manage highly variable
customer demand in supply chains, but comes at higher costs relative to the in-house
production costs.

As mentioned previously, responding to and satisfying customer demand in a timely
manner is very crucial in manufacturing environments. In order to evaluate the
effectiveness of inventory management policies, service measures are often used in many
practical applications. Although there are a number of different definitions of service
measures, they generally refer to the probability that a demand or a proportion of demands
is met.

The two most commonly utilized service levels are named as Type 1 and Type 2. Type 1
Service Level is defined to be the fraction of periods in which there is no stock out. It can
be viewed as the plant’s no-stock out frequency. It is also called the cycle service level or
the ready rate. This service level measures whether or not a backorder occurs but is not
concerned with the size of the backorder. Type 2 Service Level is defined to be the
proportion of demand that must be satisfied from inventory on hand. This measure is also
known as the fill rate. This service level considers not only the probability of a stock out
but also the size of the backorder.

In real life applications, it is preferred to limit the number of backorders by the service

level requirements. The stock out costs contain both tangible and intangible components.
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Tangible components might include the lost or deferred profit from sales, or the
bookkeeping expenses of keeping track of unsatisfied orders. Intangible components might
include loss of customer goodwill, or potential delays to other parts of the system. Since it
is very difficult to accurately estimate the unit stock out costs, models with service level
constraints are attractive for managers.

In this study, we focus on stochastic production planning and sourcing problems with
service level constraints where the demand is assumed to be random. Service level
constraints are expressed as probabilistic statements.

The objective of our study presented in this thesis can be summarized as follows: First,
we would like to develop a methodology that a manufacturer can utilize to make its
production and sourcing decisions, i.e. to decide how much to produce, when to produce,
where to produce, how much inventory to carry, etc. Second, once such a tool is developed,
we would like to evaluate the performance of the tool by comparing the results of it with
those of the benchmarks chosen and validate our proposed approach. Finally, motivated by
a frequently encountered problem in the textile-apparel-retail channel, we would like to
obtain insights regarding the interaction among the cost, lead time, and variability of
demand and how they affect the sourcing decisions.

One of the main contributions of this thesis is the systematic analysis of the integration
of the deterministic mathematical programming approach for a manufacturer’s production
and sourcing problem with randomness arising from stochastic demand and service level
constraints. Stochastic demand and probabilistic service level constraints can be
transformed into a set of constraints in the deterministic mathematical programming. It is
shown that this approach is valid for several kinds of service level definitions.

Another important contribution of the study is the justification of the equivalencies
between the base stock model and the deterministic equivalent model with modified service

level constraints solved on a rolling horizon basis in the single product single production
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facility setting. In addition to this, it is shown that the deterministic equivalent model with
modified service level constraints solved on a rolling horizon basis performs as well as the
threshold subcontracting model in the single product multiple production facility setting.

The final contribution of this thesis lies in the insights regarding the interaction among
the cost, lead time, and variability of demand and their effects on the sourcing decisions. It
is declared that sourcing decisions of a manufacturer depends on many parameters. The
analytical findings and the numerical experiments show that the situation is much more
complicated and context dependent in general.

The organization of the remaining part of the study is as follows: Chapter 2 provides
the literature review on production planning and inventory management issues.

A systematic approach that enables the randomness in demand and the desired service
levels to be incorporated in a mathematical programming framework is presented in
Chapter 3.

Chapter 4 includes the assessment of the performance of the proposed deterministic
equivalent model with modified service level constraints. The results of the deterministic
equivalent model are compared with those of the benchmarks created and the results are
interpreted.

Chapter 5 focuses on a numerical study motivated by a sourcing problem in the textile-
apparel-retail channel. The objective of the study explained in this chapter is to come up
with the production and sourcing decisions of the manufacturer by utilizing the
methodology described in detail in previous chapters and then to get insights regarding the
interaction among the cost, lead time, and variability of demand and their effects on the
sourcing decisions.

Chapter 6 presents the summary of our study, concluding remarks and possible future

research topics.
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Some of the lengthy proofs and analytical developments are presented in the
Appendices. Appendix A proves Proposition 4.2, Appendix B focuses on the M/M/1 dual

source model and Appendix C proves Proposition 5.1.
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Chapter 2

LITERATURE SURVEY

The literature that includes relevant work with our study can be categorized under three
topics: general production planning problems, production planning problems with

stochastic demand and production planning problems with subcontracting options.

2.1 General Production Planning Problems

The classical deterministic production planning problem, its mathematical
programming formulations and solution methodologies have received a lot of attention for
many years (see Candea and Hax [2] for a number of well-known models). Thomas and
McClain [3] give a complete overview of production planning, review some literature and
discuss some planning problems related to the use of operations research tools. Shapiro [4]
presents mathematical models and solution methods that have been applied to or that are
promising to be implemented for practical situations. Shapiro [5] extends the general
mathematical programming framework for supply chain planning problems. Zipkin [6]
focuses on the formulation, analysis and use of mathematical models of inventory systems
and covers most of the classical inventory theory models. Chand, Hsu and Sethi [7] provide
a summary of the research papers in the area of forecast, solution and rolling horizons in

operations management problems by focusing on five dimensions that identify the horizon
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type, the model type, the sources of horizon, the method used to obtain horizon results, and

the subject area of the paper.

2.2 Production Planning Problems with Stochastic Demand

Bitran and Yanasse [8] study a stochastic production planning problem with a service
level requirement. They focus on a service level type which forces the probability of having
a stock out to be less than or equal to a prespecified value in each period. They provide
non-sequential, sequential stochastic and deterministic equivalent formulations of the
model aiming to minimize the costs related with production, overtime and inventory
bolding. They derive relative error bounds for non-sequential and sequential production
planning problems and show that the relative error bounds are very small for some of the
commonly used probability distributions. Bitran and Sarkar [9] extend this study and
provide better upper bounds and they focus on mostly error bounds, as well.

Beyer and Ward [10] examine a production and inventory problem of Hewlett-
Packard’s Network Server Division, which manufactures a major subassembly of network
servers in Singapore and ships it to its distribution centers. The authors mention that no
other previous work simultaneously investigates all of the complicating factors as the
presence of high non-stationary demand with large random fluctuations, use of different
shipment modes with different associated cost and lead times, short product lifecycles,
rapid depreciation, high risk of obsolescence. The performance of the system is measured
by a Type 2 service level for each of the products across all distribution centers. However,
it is not desired to observe any significant imbalances in service levels either between the
distribution centers or over time. Therefore, they propose to use Type 1 service level goal
in each time period for both the warehouse and the distribution centers. They determine the

order-up-to levels from the probabilistic service level constraints by the utilization of Fast
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Fourier Transforms. Given the demand distribution information and the service level
requirements, they simulate their model for a number of different demand scenarios in
order to see how shipment decisions would be made. They average out the resulting costs
and the realized service levels over all runs and take them as approximations to the
expected cost and service level values of the given set of inventory targets. Then, among
the inventory targets that satisfy the service level requirements of the warehouse and the
distribution center simultaneously, they determine the one that leads to minimum cost
value. By developing a tool that integrates the above mentioned steps, they show that their
proposed heuristic performs well in reducing inventory and shipment related costs and
provide some insights.

Bitran, Haas and Matsuo [11] present a model that is motivated by a case in consumer
electronics and textile-apparel industry. An approximate solution for the stochastic
production planning problem is given by a hierarchical approach. In this model, the
stochastic problem is transformed into a deterministic one by replacing the random demand
with their average values. Then, the solution of the transformed problem gives answers to
the questions of what to produce and when to produce. The complete solution is obtained
by determining how much to produce from a newsboy-type formulation based on the
solution of the deterministic problem.

Feiring and Sastri [12] focuses on production smoothing plans with rolling horizon
strategies and confidence levels for the demand, which are set by the production planners.
The probabilistic constraints in the demand-driven scheduling model are revised by
Bayesian procedures and are transformed into deterministic constraints by inverse
transformation of normally distributed demand. The model provides solutions for the cases
in which decisions for regular/overtime, hiring/firing, single/multiple products, etc. should

be made effectively.
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Zapfel [13] claims that MRP II systems can be inadequate for the solution of
production planning problems with uncertain demand because of the insufficiently
supported aggregation/disaggregation process. While solving the hierarchical model
proposed for the uncertain demand, it is assumed that the upper and lower bounds of the
end product quantities and the aggregate demand of all product groups are known with
certainty. The paper proposes a procedure which will help finding robust aggregate plans
and consistent disaggregate plans for the MPS.

Kelle, Clendenen and Dardeau [14] extend the economic lot scheduling problem for the
single-machine, multi-product case with random demands. This study is motivated by a
problem of a large chemical company. Their objective is to find the optimal length of
production cycles that minimizes the sum of set-up costs and inventory holding costs per
unit of time and satisfies the demand of products at the required service levels.

Clay and Grossman [15], motivated by the chemical processing industry, focus on a
two-stage fixed-recourse problem with stochastic Right-Hand-Side terms and stochastic
cost coefficients and propose a sensitivity-based successive disaggregation algorithm.

Sox and Muckstadt [16] present a model for the finite-horizon, discrete-time,
capacitated production planning problem with random demand for multiple products. The
proposed model includes backorder cost in the objective function rather than enforcing
service level constraints. A subgradient optimization algorithm is developed for the
solution of the proposed model by using Lagrangian relaxation and some satisfactory
computational results are provided.

Albritton, Shapiro and Spearman [17] study a production planning problem with
random demand and limited information. In this paper; two solution methods, a simulation
based optimization method and a discrete simulation based optimization method, are

proposed.
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A hierarchical production planning and scheduling problem motivated by the fibre
industry is studied by Qiu and Burch [18]. In the proposed procedure, the concept of
expected set-up costs is introduced, an optimization model that uses logic of expert systems
is developed and significant savings are obtained.

Van Delft and Vial [19] consider a multi-period supply chain contracts with options. In
order to analyze the contracts, they propose a methodology to formulate the deterministic
equivalent from the base deterministic model and from an event tree representation of the
stochastic process and solve the stochastic linear program by discretizing demand under the

backlog assumption.

2.3 Production Planning Problems with Subcontracting Options

Atamturk and Hochbaum [20] examine the trade-offs between capacity acquisition,
subcontracting, production and inventory holding decisions to satisfy non-stationary
demand over a multi-period planning horizon. They analyze these decisions not in
isolation; instead they optimize these interrelated decisions simultaneously. They also
identify the forecast-robustness of the optimal solutions to the capacity acquisition and
subcontracting models.

Van Mieghem [21] addresses coordinating capacity, subcontracting and production
decisions. They present a two-stage stochastic investment decision model of a
manufacturer and a subcontractor. In the first stage, the sources decide on their capacity
investment levels separately but simultaneously. After observation of the market demands,
both sources decide on their production levels. They then analyze outsourcing conditions
for different contract types and present the outcomes of the study.

Bradley [22] focuses on the optimal dual base stock and capacity policies for a dual
source M/M/1 system. This study not only proves the structure of the optimal control
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policy of the M/M/1 dual source model, but also presents exact closed-form expressions for
the optimal base stock parameters. Numerical studies of this study investigate the situations
in which subcontracting is profitable and useful in reducing in-house capacity and
inventory holding costs and conclude that the subcontractor’s role is more crucial in
reducing capacity rather than inventory. Bradley [23] constructs a tractable Brownian
motion approximation to the optimal dual base stock and capacity policies for a dual source
M/M/1 model. Bradley and Glynn [24] extend the above mentioned Brownian motion
approximation by jointly optimizing the capacity and inventory holding decisions in a
single product single plant make-to-stock manufacturing system

Van der Wal [25] develops an analytical approach for threshold subcontracting in a
make-to-order job-shop type production system. The decision to accept or to subcontract is
made based on a threshold structure. If the subcontracting cost is above a threshold level
depending on the number of jobs in the shop, the jobs are accepted to the shop. Otherwise,
the jobs are subcontracted. Assuming that the job shop is always in steady state, the optimal
strategy is proven to be the threshold strategy.

Abernathy et al. [26] focuses on a problem that is frequently observed in the textile-
apparel-retail channel. Rapid changing styles, product proliferation, uncertain customer
demand and longer lead times make it more difficult to estimate the demand accurately in
this channel. In order to cope with the changes in the environment and in order to minimize
the associated risks, most of the retailers are adopting lean retailing practices. As a result,
the risks associated with inventory shift to manufacturers from retailers. Manufacturers
may then produce to stock or increase their capacities in order to respond to orders quickly.

When manufacturers have limited capacity and the demand for products is highly
variable, subcontracting option can be utilized. Abernathy et al. [27] focus on a multiperiod
production planning and sourcing problem in the above mentioned channel. Without a

formal basis, they propose that a local short-cycle manufacturer can used for products with
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high demand variability and an offshore manufacturer can be used for products with low
variability.

Tan and Gershwin [28] and Tan [29] focus on production and subcontracting strategies.
In order to get insights, they formulate the problem in a stochastic optimal control
framework.

Due to the complexity of the problem, instead of modeling it analytically, a simulation
model has also been developed by Yang, Lee, and Ho [30]. The authors use a simulation-
based optimization technique which is referred as ordinal optimization to determine the
parameters of a production and inventory control policy that gives a good-enough solution

approximately.
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Chapter 3

A FRAMEWORK FOR STOCHASTIC PRODUCTION PLANNING AND
SOURCING PROBLEMS WITH SERVICE LEVEL CONSTRAINTS

3.1 Introduction

The objective of the study presented in this chapter is to develop a methodology that a
manufacturer utilizes to make its production and sourcing decisions, i.e. to decide how
much to produce, when to produce, where to produce, how much inventory to carry, etc.
Since our objective is to build a planning tool that incorporates most of the assumptions
and the features, we propose a mathematical programming approach. Stochasticity in the
problem that comes from random demand and service level constraints is integrated in a
deterministic mathematical program by adding a number of additional linear constraints.
We show that solving this deterministic equivalent problem yields the same result as the
solution of the stochastic problem. Therefore, the proposed methodology of determining
the deterministic equivalent problem can easily be integrated with the Advanced Planning
and Optimization tools, such as the products of i2, Manugistics, etc., that are commonly
used in practice.

The main contribution of this chapter is to develop a production and sourcing planning
methodology that has the power of mathematical programming and that also incorporates

demand variability in an equivalent deterministic model.
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The approach utilized in this chapter is summarized in Section 3.2. In Section 3.3, the
general methodology of determining the additional constraints on minimum production
quantities for different service levels is presented. Finally, conclusions are presented in

Section 3.4.

3.2 The Model and the Approach

Figure 3.1 below depicts the system we consider in this study. The manufacturer has
multiple plants and also works with a number of subcontractors. Each production source
has a different cost of production for each product, different lead time and capacity. One
possible setting might be a manufacturer that produces at its own plants close to the market
and also subcontracts a portion of its orders to low-cost subcontractors that have longer
lead times. The manufacturer faces a demand from a retailer for a number of different

products and promises a service level for each product and period.

—»  Product 1

\ Retailer orders
|

Distribution Center Retailer

......’
LN
.

X
i

Subcontractor /

: —»  Product X
{
I f
“'“‘ﬂ Subcontractor i Sales data
L-M ol Yy
R ] ..
Decision and Control

Production e ————————

Figure 3.1: A Manufacturer with multiple plants that sells multiple products to a retailer
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The basic costs are the production costs and the inventory holding costs. There are
production capacity constraints associated with each source. The manufacturer minimizes
the total cost of production for the planning period by deciding on the production quantities
of each product at each production source in each time period.

The above problem can easily be modeled as a mathematical program. If the demand
for each product in each time period were deterministic, the resulting mathematical
program would also be deterministic and could easily be solved by using commercially
available solvers.

Our approach is to transform the probabilistic service level constraints into a number of
additional deterministic constraints and then forming a deterministic mathematical program

to solve the resulting model. Figure 3.2 summarizes this approach.

Cost Information
(production costs and
inventory holding costs)
A
Demand
Distributions Module I Module II Module I
Obtaining Building the Solution of the Productio
Deterministic Mathematical Mathematical |, opla,, "
. Equivalent Program Program

Service Level Constraints on
Requirements Production

Initial Inventory Levels Production capacity constraints,
other constraints and
requirements

Figure 3.2: Block diagram of the methodology

In the rest of this chapter, we focus essentially on Module ], i.e., obtaining deterministic
equivalent constraints on production when the demand distributions, service level

requirements, and the initial inventory levels are given. When these additional constraints
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are obtained, the final mathematical program can be constructed by incorporating
production capacity constraints and other requirements, as well as by forming the objective
function with the given cost information in the second module. Finally, the production plan
is obtained from the solution of the mathematical program by using a commercially
available LP solver. If an Advanced Planning and Optimization module is already available
for the deterministic version of the problem, the random nature of the demand and

probabilistic service level constraints can easily be incorporated into the existing program.

3.3 The General Methodology

3.3.1 General Model of the Stochastic Production Planning Problem with Service

Level Constraints

There has been a lot of work in the literature for the formulation and the solution of the
stochastic production planning problem. In this section, we will begin with a simplified
formulation of the planning problem that is frequently observed in production
environments and then, extend the model by including the service level constraints and
other features.

First, assume that there is a single product to be produced at a single plant in each time
period. The demand for this specific product at time ¢, d; is random. The main decision
variable is the production quantity at time ¢, X, The inventory level at the end of time
period ¢ is denoted by I, The number of periods in the planning horizon is T. The inventory
holding cost per unit per unit time is &, and g(X;) defines all other possible costs that depend
on the production amount in each period, X;.

The constraints that define inequalities are given by the vector function v(.) and the
constraints that define the equalities are given by the vector function w(.).
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The Stochastic Production Planning Problem (SP) can be defined as:

Z'(SP)=Min {g(X,)+ E[h,(1)']}

t=1

subject to
IL=1I_+X-d,t=1..,T, 3.D)
v(X,)<0, t=1..T; (3.2)
w(X,)=0, t=1,..,T; (3.3)
X, 20, t=1,..,T. (.4

where (/)" =Max{0, 1.}, t=1,...,T.

The objective of the problem SP is to minimize the total expected cost, which is the
expected value of the sum of the inventory holding costs and all other costs relevant to
production in the planning horizon.

The first constraint set defines the inventory balance equations for each time period
whereas the second and third constraint sets define all possible other constraints that
depend on production quantity in each period. Service level constraints, limits on
production quantities, etc. can be counted as examples for these kinds of constraints.

The above formulation can be extended to the lost sales case. In the lost sales case, the
inventory balance equation for each time period takes the form of I,=(/_ +X,-d,) .

Although conceptually similar to the backorder case, the lost sales case is analytically more
difficult and will not be investigated in this study. From now on, we focus our attention on
the backorder case (i.e. all unsatisfied demand is backordered at no additional cost).

The optimal solution of the above model answers the questions of when to produce,
how much to produce and how much product inventory to carry in each time period

throughout the planning horizon. Clearly, a better solution can be obtained by a model that
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is to be solved in each time period by incorporating the realized demand and inventory on
hand information, sequentially. This sequential stochastic planning problem (see Bitran and
Yanasse [8] for details) is a stochastic dynamic program which suffers from the well-
known curse of dimensionality. An exact solution of this formulation cannot be obtained

except for very special cases.
3.3.2 Dealing with Service Level Constraints

As mentioned previously, required service levels impose constraints on the performance
(related to backorders) of the system. The service level constraints of the problem can be
constructed in several different ways based on different definitions of service levels. In this
study, service definitions are taken to be the most commonly used ones.

Throughout the literature, Type 1 Service Level is defined to be the fraction of periods
in which there is no stock out. It can be viewed as the plant’s no-stock-out frequency. It is
also called the cycle service level or the ready rate. This service level measures whether or

not a backorder occurs but is not concerned with the size of the backorder. Let a be the

service level requirement of the planning horizon. 1, is the indicator function for event A,
1,=1 if A is true and 1,=0 otherwise. Then, the Type 1 service level constraint can be

constructed as:

1 T
FE[;II {,,20}] >a (.5

Modified Type 1 Service Level forces the probability of having no stock out to be

greater than or equal to a service level requirement in each period. Therefore, it is tighter

than Type 1 Service Level. Let &, be the service level requirement in period ¢. Then, the

Modified Type 1 Service Level constraint can be expressed as:
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P{,20}>q, t=1,.,T. (3.6)

Type 2 Service Level is defined to be the proportion of demand that must be satisfied
from inventory on hand. This measure is also known as the fill rate. This service level
considers not only the probability of a stock-out but also the size of the backorder. Let o
be the service level requirement of the planning horizon. The Type 2 service level

constraint can be written as:

t=1 t=1

2]

where the numerator of the ratio is the expected shortage of the specific product in the 7-

g ]

o 3.7

period-long planning horizon and the denominator is the expected demand of the specific
product in the T-period-long planning horizon.

Modified Type 2 Service Level or Modified Fill Rate is defined as the proportion of
demand that is satisfied from inventory on hand in each time period. An alternative
definition is the following: the Modified Fill Rate is 1 minus the ratio of the average

backlog at the end of a period and the mean demand per period. Let ¢, be the service level

requirement in period ¢. Then, the corresponding constraints can be expressed as:

[

. E[d]

>a, t=1,..,T. (3.8)
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3.3.3 Obtaining Solutions with Service Level Constraints

The deterministic equivalent problem with service level constraints that has been
mentioned in the previous sections can be modeled as below:
Deterministic Equivalent Production Planning Problem (DEP):

Z'(DEP)=MinY {g(X,) +,(I,)")

t=1

subject to
L=1_+X-d,t=1,..,T; (3.9)
WX,)<0, t=1,..,T; (3.10)
w(X,)=0, t=1,..,T; (3.11)
2X,+10 21, t=1,.,T; (3.12)
=
X, 20, t=1,..,T. (3.13)

where :1; is a prefixed value for the demand in period ¢ and /; denotes the minimum

cumulative production quantity in period ¢ which is determined according to the service
level constraints by using a methodology explained in the next section. Note that

v(.) £0 and w()=0 are functions of deterministic variables in this case.
-
If [ > zd,, t=1..,T then I, 20, ¢t =1,...,,T and the problem can be modified as:
7=1
Modified Deterministic Equivalent Production Planning Problem (MDEP):

Z' (MDEP) = Min zr‘,{g(x,)+h,(lo+ixf—2d7)*}
t=1 7=l z=1

subject to

WX,)<0, t=1,.,T; (3.14)
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wX,)=0, t=1,..,T, (3.15)
t
Y X, +1,21, t=1,..,T; (3.16)
7=1
X, 20, t=1..T. (3.17)

As noted by Bitran and Yanasse [8], for any prespecified Z satisfying

L —
[ sz,, t=1,..,T, the optimal solution to MDEP is the same as the solution of DEP.

7=1
Because the constraints of MDEP are not functions of c-z';, the objective function value of

MDEP is the same as that of DEP except for a constant term.

Both DEP and MDEP replace the probabilistic service level constraints by deterministic
linear constraints (3.12) and (3.16) respectively. There is an important issue to be clarified
in this general approach: how to find the appropriate value of the parameter /; appearing in
the right hand side of equations (3.12) and (3.16) that will result in a mathematical program

equivalent to the original problem SP. This issue will be addressed in the next section.

3.3.4 Construction of Deterministic Equivalent Constraints based on Service Level

Requirements

In order to utilize a deterministic mathematical programming model such as DEP or
MDEP, the probabilistic service level constraints should be transformed into equivalent
deterministic ones. We investigate this transformation in this section. It is assumed that the
demand for the specific product follows a general continuous distribution which may vary
between periods. The following subsections illustrate how the transformation is performed

for the modified service level types.
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3.3.4.1 Modified Type 1 Service Level

It is instructive to outline the transformation from the probabilistic constraint to a
corresponding deterministic constraint for the Modified Type 1 service level (Bitran and

Yanasse [8]).

Proposition 3.1: Let /, denote the (deterministic equivalent) minimum cumulative

production quantity in period ¢ which is calculated by solving the probabilistic inequality

3
P{Zd,sl,}za,, t=1,..,T forl,(t=1,.,T).

7=l

I =F(a,), t=1,...,T where F{.) is the cumulative distribution function of the random

L
sum: Zdr. Then, the probabilistic constraint P{/, 20} 2¢,, t=1,...,T can be expressed

7=1

equivalently by:

t
Y X, +1, 21, t=1,..,T (3.18)

7=l

Proof:

! ¢
P{ZX,—Zd,HO20}217;(4)=a,, t=1,..,T
7=1 =1

14 ¢
P{Ed,sZX,+IO}2E(l,)=a,, t=1,..,T

z=1 7=l

P{id, < 2X, +IO}ZP{£d, SIt}=at, t=1,.,T =

7=1 7=l 7=l



Chapter 3: A Framework for Stochastic Production Planning and Sourcing Problems
with Service Level Constraints 24

3.3.4.2 Modified Type 2 Service Level

In a similar manner, the deterministic equivalent constraint for the Modified Type 2
service level can be obtained by solving the following inequality for the minimum

z, =2X, +1,, t=1..,T values and then replacing the probabilistic constraint

7=]

!
withz, =Y X, +1, 21, t=1,.,T.

7=1

E|(d-1_,~X)
1- [( - ‘)]z(x,,t=1,...,T
E[d]

1 t t 1 = .
1———E[dt]~E[MaX{0,§dr—ZXr_Io}]-—.l—-—_E[d]. ’ I (y—ZX,—IOJf;(y)dyZa” t=1..T

7=l f 7=l

S
e AR 0¥+ 3% 41 (S5 2, ot

ix,uo
I“E[ld]' E[zdr}‘(z)fﬁfo]— | (y—EX,—IoJﬂ(y)dy >a, t=1,..,T (3.19)

£
where f{(.) denotes the probability density function of the random sum: 2 d,.

7=l
Whether we can extract an inequality for the cumulative production quantity in the
1
planning horizon in the form of: z, = ZX, +1, 21, t=1,..,T; from the above inequality,
7=l

is not very trivial. The next proposition ensures that this can be done:
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3
Proposition 3.2: Letz, =2X . +1,, t=1,.,T . Then, the equation (3.18) takes the form:

7=l

z, 21, t=1,..,T. If f(y) is continuous and (strictly) positive for all y > 0, there is a unique

[ 24

z; and therefore I, , t =1,...,T for which the constraint (3.19) is satisfied with equality.

Proof: For any constant =1,...,T; assume that z; < z, and f(y) >0, then

0

[O-20f00 = [ 91,0)dy~ [ 21,y

oo

[0-2)1000 = [ 210y 2f, )y = | wf )= [ 2 f, )y = | 2y = 20, )y
z % 2 %

L3

o0

)

[-20£0) = [ G-2)0)dy = | w1 0)y— | 25,00y + [ 22— 20, )y >0

Hence, the realized service level:

1
EaT

! Y X+l
7=

[ 0-2x.-Lf»d

7=1

£
is strictly increasing and continuous in z,=ZX . +1, . This ensures that a unique minimum

7=1
z; value can be found such that the realized service level is greater than or equal to the pre-

specified service level target ¢;. Therefore, it can be concluded that an inequality of the

0= "%

¢
form zt=2X,+I 21,t=1,...,T canbe extracted from (3.19). m
7=1
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3.3.5 A Procedure to determine the Minimum Cumulative Production Quantities

when only the Two Moments of the Demand Distribution are available

After the transformation of the probabilistic constraints, we obtain linear deterministic
constraints in the form of (3.18) for Modified Type 1 and Modified Type 2 service levels.

The procedure to calculate the minimum cumulative production target levels in each
period is summarized below.

For applications, the complete demand distribution for a given product is unknown. We
therefore focus on a procedure where only the mean and the variance of the distribution are
available. Since the demand distribution that we focus on is assumed to be unimodal (i.e.
have a single peak), we choose to fit a Weibull distribution with the desired mean and
variance. The selection of a Weibull distribution enables us to model situations where the
Coefficient of Variation (CV) of demand can be extremely variable (from very small to
very large). The probability density function of this distribution is given as:

-1
f(x) =%[%J e ¥'P) where x20, @>0,8>0 and a is the shape, § is the scale

parameter.

After providing the mean and the coefficient of variation values, the appropriate
Weibull distribution parameters & and f with the desired mean and CV can be calculated.

In order to calculate minimum cumulative production quantities, the distribution of
cumulative demand in each period is required next. We perform the convolution operation
by discretizing the demand distribution. Obviously, if the complete probability mass
function of the initial demand distributions is provided as input data, there is no need to fit
a Weibull distribution initially. Once the discrete convolutions are obtained, the minimum
cumulative production quantities can be found using a direct numerical search to determine
l; values in (3.18).
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3.3.6 Obtaining Lower Bounds on the Objective Function Value

A useful property of the deterministic mathematical programming approach is that it
can yield simple bounds for the objective function value of the corresponding stochastic
problem. In particular, it is shown for the Modified Type 1 service level that the objective
function value of the problem MDEP obtained by replacing the random demand in each
period by its average yields a lower bound on the objective function value of the problem
SP (Bitran and Yanasse [8]). The proposition below extends the results for Modified Type

I service level to Modified Type 2 service levels.

Proposition 3.3: Let Z'(MDEP) be the objective function value of the problem MDEP
obtained by replacing d; by E[d}], then Z*(MDEP) < Z*(SP).

Proof: The proof exploits an application of Jensen’s Inequality: if f'is a convex function

and X is a random variable, then E[ f(X)]2 f(E[X]).

I3 ! ¢
Noting that, h,(ZX,—Zd,+IO)* is a convex function in Za’, , by Jensen’s
7=l

7=1 =1
Inequality,
E{Z[g(XtHh,(ZXT—Zdt+Io)+]}ZZ{g(X,Hh,(ZXrut +Io)+}
=1 =1 7=1 =1 =1

¢t t
where U, = E[Zd,] = ZE[dT] . Then,
7=1 7=l

Z"(SP) =Min {E{i[g(X,)+ht(iXt—2‘:dr+Io)+]}}
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> Min {i{g(x,)m,(ﬁxr—u, +10)+}}=z*(1vmp)

where both minimums are taken over the feasible region as defined in (3.1), (3.2), (3.3), and
(B4).=

Note that the objective function value of the optimal solution of MDEP in Proposition
3.3, Z'(MODP) s not the actual cost value that is realized, but only the output of the
mathematical model formulated replacing random variables by their mean values. Bitran
and Yanasse [8] show, through numerical examples, that this bound is fairly tight for the
Modified Type 1 service level. We do not pursue the evaluation of the bound here because
our main interest is in obtaining a production/outsourcing plan under service level
constraints. Nevertheless, Proposition 3.3 could be useful in other contexts as a quick

approximation of the expected realized cost.
3.3.7 Observations on Minimum Cumulative Production Quantities

It is interesting to examine how the minimum cumulative production quantities change
over time; as the mean demand, the coefficient of variation of the demand or the service
level requirements change. To this end, we set a 26-period numerical example with a single
product whose demand is stationary and calculate the minimum cumulative production
quantities using the approach outlined above for Modified Type 1 and Modified Type 2
service levels. For our numerical experiments, the demand random variables are discretized
with an interval length of one unit and the upper tail of the distribution is truncated at 6
standard deviations away from the mean.

In Figure 3.3, we report the required production levels (i.e. the quantities /-/,.;) for each

period for different demand distributions and different service levels. It can be seen in
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Figure 3.3 that the production levels are decreasing as a function of time and they converge
to the mean demand in time. For the initial periods of the planning horizon, satisfying the
desired service levels requires keeping significant buffer inventories in addition to the
mean demand. Towards the end of the horizon, the CV of the cumulative demand
decreases, approaches to zero and there is little need to constitute a safety inventory and
producing the mean demand is sufficient. Other anticipated orderings can also be observed
from the figure: increased mean demand or CV leads to higher production levels. Increased
service levels also have the same effect. For the same demand level, however, the effects of
coefficient of variation and the service level selection subside after a number of initial

periods.

3.4 Conclusion

In many practical situations, mathematical models of production
planning/subcontracting problems have to deal with the randomness in demand.
Frequently, randomness is dealt with in ad hoc manner (by replacing a random variable by
a single point estimate value or by its mean). In this chapter, we present a systematic
approach that enables the randomness in demand and the desired service levels to be

incorporated in a mathematical programming framework.
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Chapter 4

PERFORMANCE EVALUATION OF
THE DETERMINISTIC EQUIVALENT MODEL

4.1 Introduction

In this chapter, we aim to assess the performance of the proposed deterministic
equivalent model with modified service level constraints. Can we be sure that the proposed
approach gives better solutions than some of the commonly utilized policies, or does it
perform worse than our expectations? In order to gain some insights, we need to find some
benchmarks with which we can compare the results of deterministic equivalent model.

In Section 4.2, the base stock model is chosen to be the benchmark for the single plant
setting. The similarities between the base stock model and the deterministic equivalent
model with modified service level constraints solved on a rolling horizon basis in the single
product single production facility setting are examined in detail. The equivalencies of these
two models are shown for two cases: for the case in which there is a production lead time
and for the case in which there is not.

In Section 4.3, the threshold subcontracting model is chosen to be the benchmark for
the multiple plants setting without lead time. The control parameters of the policy are
determined by using a simulation-based optimization procedure. The results of the

benchmark are then compared with those of the deterministic equivalent model.
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4.2 Performance Evaluation of the Model for the Single Plant Setting

It is worth examining the similarities and differences between the base stock policy and
the deterministic equivalent model. The base stock policy is widely known and can be
easily utilized in many applications. It is an inventory policy, with a single parameter
which is a reorder level and a base lot size of one unit. It aims to maintain a prespecified
inventory level. In the base stock policy, the sequence of events is as follows; the system
starts with a prespecified base stock level in the finished goods inventory. The arrival of the
customer demand triggers the consumption of an end-item from the inventory and issuing
of a replenishment order to the production facility. The resulting policy is the base stock
policy. Under this type of policy, an order is placed (or the manufacturing facility operates)
if and only if the inventory level drops below the base stock level. The comparison of these
two models is performed for two cases. Subsection 4.2.1 discusses the case without
production lead time and subsection 4.2.2 examines the case including the production lead

time.
4.2.1 The Case without Lead Time

In this first scenario, there is a single product to be produced by a single production
facility. It is assumed that the demand of this specific product stays stationary over the
planning horizon. We propose that solving the deterministic equivalent model with
modified service level constraints on a rolling horizon basis is equivalent to operating the

system under the base stock policy. The next proposition establishes this equivalence:

Proposition 4.1: When the production facility has no lead time and the demand is

stationary, using a base stock policy is equivalent to solving the deterministic equivalent
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model with service level constraints on a rolling horizon basis (either Modified Type 1 or
Modified Type 2).

Assume that the base stock level in the base stock policy equals IH(BS)=S; and the
initial inventory level in the deterministic equivalent problem equals I(DEP)=/,. If S;=/|,
then the equivalent base stock policy gives the same total expected cost value, yields the
same production plan and results in the same service level with the deterministic equivalent

model with modified service level constraints solved on a rolling horizon basis.

Proof: We use induction to show that;
i. If the inventory levels at the beginning of the first period are equal,
Iy(BS)=Iy(DEP)=S=l;, then production quantities in the first period and the
inventory at the end of first period for both policies become equal, i.e.
Xi(BS)=X1(DEP)=0 and I;(BS)=h(DEP)=l;-d;
and
ii. If the inventory levels at the end of period ¢ are equal, I{BS)=I{DEP)=S;-d,=I;-
d,, then the production quantities in period (#+1) and the inventory levels at the
end of period (¢+1) for both policies become equal; i.e. X;+1(BS)=X.1(DEP)=d,
and I41(BS)=I+1(DEP)=/1-dyu.

Assume that the initial inventory levels are equal such that I,(BS)=S), I(DEP)=/; and
S1=l1. In the base stock policy, each demand observed is produced in the next period;
therefore there is no production in the first period, X;(BS)=0. In the deterministic
equivalent approach, the production quantity in the first period is determined according to
the constraint X (DEP)+I,(DEP) = X,(DEP)+/ >/, and therefore X,(DEP) = 0. Since the
problem is of minimization type, the production quantity in the first period equals zero,

Xi(DEP)=0. Next, a customer demand of d; arrives. The end of period inventory for the
base stock policy becomes I;(BS)=Iy(BS)+Xi(BS)-d1=S1+0-d1=Si-d; and the end of period
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inventory for the deterministic equivalent approach becomes I;(DEP)=Io(DEP)+X;(DEP)-
di=l+0-d=l;-d;. Since we know that S;=I,, [(BS)=I;(DEP).

Now assume that at the end of any period ¢, the ending inventory levels for both
policies are such that I(BS)=S:-d, I{DEP)=li-d; and S;=l;. In period (¢+1), the base stock
policy produces an amount equal to the demand of the previous period, i.e. X;+1(BS)=d,.
Now, assume that we solve the deterministic equivalent model for the modified service
level types repeatedly in each time period by incorporating the realized demand and
inventory on hand information. The demand is assumed to be stationary over the planning
horizon. Although solving the model on a rolling horizon basis throughout the planning
horizon requires integration of the minimum cumulative production quantites for the
number of periods in the rolling horizon into the model, only the minimum cumulative
production quantity of the first period, /;, is fully utilized. The production quantity in period
t is determined according to the constraint X, ,(DEP)+I,(DEP)=X, (DEP)+/ —d, =2/

and therefore X,,,(DEP) > d, . Since the model is of minimization type X, (DEP)=d, . Next,

a customer demand of dy; arrives. The end of period inventory for the base stock policy
becomes I+1(BS)=I{BS)+X;+1(BS)-d~=Si-drtdrd1=S1-dw1 and the end of period inventory
for the deterministic equivalent approach becomes I1(DEP)=I(DEP)+X.\(DEP)-d;=I;-
ditdrdwi=l1-dwy. Since we know that Si=l;, [41(BS)=I4+1(DEP). This proves our

proposition.m

Remark: It is worth mentioning that if we set the initial inventory level to be S;=/, the
resulting production plan is the same with that of the base stock policy which starts with a
base stock level of Si=/;. Although the base stock policy does not guarantee the assurance
of the service levels, since we know that the deterministic equivalent model satisfies the
required service levels and the two policies are equivalent, we can say that the base stock

level S1=/; ensures that the resulting production plan satisfies the required service levels. O
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4.2.2 The Case including Lead Time

The deterministic equivalent model with service level constraints (DEP) can be
extended to a case in which the production facility has a production lead time. Assume that
there is a production lead time of LT periods and the initial scheduled receipts are denoted
by SR,t=1,...,LT. Then, the problem can be modeled in the following way:

Deterministic Equivalent Production Planning Problem including Lead Time (DEPLT):

Z"(DEPLT) = Mini{ g(xX,)+h (1)}

t=1

subject to

I,=1_+SR—d, t=1,.,LT; (4.1)
L=I,+X, ,,.—d,t=(LT+),..T; “42)
WX, ;) <0, t=(LT +1),...,T; (4.3)
w(X, ;) =0, t=(LT +1),...,T; (4.4)

t LT
Y X, .+ SR +1, 21, t=(LT +1),...,T; (4.5)

7=LT+1 =1
X, 20, t=1,..,T. (4.6)

After showing the equivalence for the case in which there is no production delay in the
previous section and formulating the deterministic equivalent model with service level
constraints including lead time in this section, now we can show the equivalence for the
case in which the production facility has a specific lead time. Proposition 4.2 and its proof

state this equivalence.
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Proposition 4.2: When the production facility has a specific lead time, the demand is
stationary and there are no scheduled receipts initially, using a base stock policy is
equivalent to solving the deterministic equivalent model with service level constraints on a
rolling horizon basis (either Modified Type 1 or Modified Type 2).

Assume that the base stock level in the base stock policy including lead time equals
Iy(BSLT)=S; and the initial inventory level in the deterministic equivalent model including
lead time equals Iy(DEPLT)=l14;. If S:=l;r+1,then the equivalent base stock policy gives
the same total expected cost value, yields the same production plan and results in the same
service level with the deterministic equivalent model with service level constraints solved

on a rolling horizon basis.

Proof: The proof of proposition 4.2 is quite lengthy and therefore, is presented in
Appendix A. m

4.3 Performance Evaluation of the Deterministic Equivalent Model for the Multiple
Plants Setting

In order to get insights from the deterministic equivalent model constructed in the
previous chapter and in order to evaluate its performance based on modified service levels
for the multiple plants setting without lead time, we need to find an appropriate benchmark
and compare the results of the deterministic equivalent model with those of the benchmark.

Bradley [22] proves that the optimal control policy structure for continuous cases is a
dual-base stock policy (see Appendix B for the M/M/1 dual-source model), therefore we
decide to choose the threshold subcontracting model as a benchmark to our deterministic

equivalent model and as the optimal structure has not been proven for discrete cases, we
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only assume that the threshold subcontracting model we create might be a good
approximation to the optimal solution.

In this case, there is a single product to be produced either by the original in-house
production facility or the subcontractor. It is assumed that the production sources have no
lead time. The order arrivals are governed by a Poisson process with rate 10 products per
period. The in-house facility has a finite capacity whereas the subcontractor has an infinite
capacity. The production cost is assumed to be $4 per product for the in-house facility. The
initial inventory level of the specific product is set to be zero. The service level requirement
is set to be 95% for both Modified Type 1 and Modified Type 2 service levels.

The deterministic equivalent model is created by OPL Studio and is solved for a rolling
horizon of 10 periods repeatedly throughout a planning horizon of 1000 periods. 5000
sample demand streams are generated and the realized inventory levels are integrated in the
model accordingly. The production plans and the realized cost values between periods 451
and 550 are observed. All cost values are calculated on a per period basis. The model is
modified for each service level by integrating the deterministic equivalent of the relevant
probabilistic service level constraint.

In order to evaluate the performance of the deterministic equivalent model in a
multiple-plant setting, we propose a threshold subcontracting model. In this benchmark
model, the in-house production facility operates if the inventory level drops below the
target level S and stops producing when the inventory level again reaches S. When the
inventory level decreases to a threshold level of Z, a subcontractor with an infinite capacity
is utilized. Assume that the inventory level drops below S, but is still above Z. The in-house
facility produces to cover the shortfall with respect to S, if possible. However, if there is not
sufficient capacity to cover the whole shortfall, the in-house facility operates at full
capacity and the portion of demand that cannot be satisfied is backlogged.
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Let Xi, and X5, denote the production amounts of the in-house facility and the
subcontractor in period ¢ respectively, and let C be the capacity of the in-house facility .
Then, the production amounts of each production facility in each time period can be
determined for the threshold subcontracting model in the following way:

X,,=Min{§-Z2,5~1,,,C}, t=1,.,T; 4.7

X,,=Max{0,2-1_}, t=1,.,T. (4.8)

This threshold subcontracting model is performed by a direct numerical search and is
coded in MATLAB. 1t is assumed that there are 1000 periods in the planning horizon and
the same 5000 sample demand streams are utilized. The service level requirement is
modified such that we create an upper confidence limit for the service level with a
confidence coefficient of 0.95. In other words, we would like to be 95% sure that the
required service level lies within the one-sided confidence interval we create. The
underlying reasoning behind making this modification in service levels is that, the sample
size we utilize might not be sufficient enough to make the realized service level equal
exactly to the required one. Among the base stock and threshold levels that satisfy the
relevant service level requirements, the model aims to find the one with minimum total
cost. The calculations are performed for periods between 451 and 550.

The comparison between the deterministic equivalent model and the threshold
subcontracting model is performed for nine combinations of subcontracting cost to in-
house production cost, holding cost to in-house production cost and capacity to mean
demand ratios. The combinations of subcontracting costs, holding costs and the in-house
production capacities and therefore, the combinations of relevant subcontracting cost to in-
house production cost, holding cost to in-house production cost and capacity to mean

demand ratios for which the comparisons are made can be observed in Table 4.1.
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Table 4.1: The possible scenarios for which comparisons are made
SubcontractinJHoldin Plrl;::l::t:: Subcontracting Cost Holding Cost In-house Prod. Capacity
Cost Cost Capacity | In-house Prod. Cost | In-house Prod. Cost Mean Demand
4 16 8 1 4 0.8
4 16 12 1 4 1.2
4 16 20 1 4 2
6 1 8 1.5 0.25 0.8
6 1 12 1.5 0.25 1.2
6 1 20 1.5 0.25 2
6 4 8 1.5 1 0.8
6 4 12 L5 1 1.2
6 4 20 1.5 1 2

For each of the above mentioned problem settings, the base stock and threshold levels

observed in the threshold subcontracting model for each modified service level type can be
found in Table 4.2 below:

Table 4.2: Base stock and threshold levels observed in each scenario

for each modified service level type

3 In-house
Subcontracfits Holding Cost Production .

Cost Capacity Base Stock | Threshold | Base Stock | Threshold
4 16 8 15 7 12 3
4 16 12 15 3 12 -3
4 16 20 15 -00 12 -00
6 1 8 17 7 14 3
6 1 12 16 0 12 -3
6 1 20 15 -00 12 -00
6 4 8 15 7 12 3
6 4 12 15 3 12 -3
6 4 20 15 ~00 12 ~00

Note that, in some of the cases, the base stock and threshold pairs are observed to be the

same. The reasoning behind this is, these pairs lead to the same average inventory levels

and minimum cost values in these settings.
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While comparing the two models, total expected cost, average production cost, average
inventory holding cost values and the assignment of production to the plants (in
percentages) are the key elements we focus on. Table 4.3 summarizes the total expected
cost values of the deterministic equivalent model (DEM) and the threshold subcontracting

model (TSM) for the nine different scenarios for each modified service level type:

Table 4.3: The comparison of total expected cost values observed in each scenario

for each modified service level type

Subcont.| Holding T-hovse ' el B
. ercentage ercentage
ost ost Cap. DEM TSM Diﬁ’erencge DEM TSM Differencge

4 16 8 121.66 121.66 0.00 80.50 72.11 11.62

4 16 12 121.66 121.66 0.00 80.50 74.85 7.54

4 16 20 121.66 121.62 0.03 80.50 80.47 0.04

6 1 8 49,97 49.89 0.16 47.34 46.51 1.79

6 1 12 46.16 45.65 1.12 43,58 42.53 249

6 1 20 45.10 45.10 0.02 42.53 42.52 0.02

6 4 8 65.33 65.33 0.00 55.04 52.61 4.61

6 4 12 6147 61.47 0.00 51.18 49.06 432

6 4 20 60.42 60.40 0.03 50.13 50.11 0.03

The above figures display that the deterministic equivalent model gives good enough
solutions when compared with the threshold subcontracting model for both types of the
modified levels. The deterministic equivalent model results in total expected cost values
equal to or a little bit larger than those of the threshold subcontracting model. However, the
percentage differences between the deterministic equivalent model and the threshold
subcontracting model for the Modified Type 1 service level are smaller than those for the
Modified Type 2 service level. Therefore, it is worth mentioning that for our set of
numerical experiments, the deterministic equivalent model gives closer results to the

threshold subcontracting model when the service level requirement is of Modified Type 1.
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Tables 4.4 and 4.5 display the comparison of average production and holding cost
values for the two models for each modified service level type. As can be seen, no general
structure can be observed in these figures and we cannot conclude that either one of the

models performs better than the other in any of these two comparisons.

Table 4.4: The comparison of average production cost values observed in each scenario

for each modified service level type

Subcont. | Holding In-house

Cost Cost | Ered. Percentage Percentage
Cap. DEM TSM Difference DEM TSM Difference

4 16 8 39.99 39.99 0.00 39.99 39.99 0.00

4 16 12 39.99 39.99 0.00 39.99 39.99 0.00

4 16 20 39.99 39.99 0.00 39.99 39.99 0.00

6 1 8 44.06 4436 -0.68 44.02 44.22 -0.45

6 1 12 41.05 40.24 2.03 41.05 40.35 1.75

6 1 20 40.00 39.97 0.06 40.00 39.99 0.01

6 4 8 4491 4491 0.00 44 91 44.58 0.74

6 4 12 41.05 41.05 0.00 41.05 40.35 1.75

6 4 20 40.00 39.99 0.01 40.00 39.99 0.01

Table 4.5: The comparison of average holding cost values observed in each scenario

for each modified service level type

Subcont.| Holding I“l;':‘(’)“;“ e x _
st s . ercentage ercentage
° ost Cap. DEM TSM Diﬂ'erenge DEM TSM Diﬁ'erencge
4 16 8 81.67 81.67 0.00 40.50 32.12 26.10
4 16 12 81.67 81.67 0.00 40.50 34.86 16.19
4 16 20 81.67 81.63 0.05 40.50 40.47 0.07
6 1 8 5.92 5.53 6.91 3.32 2.29 45.02
6 1 12 5.10 541 -5.67 2.53 2.18 16.19
6 1 20 5.10 5.10 0.05 2.53 2.53 0.07
6 4 8 2042 2042 0.00 10.13 8.03 26.09
6 4 12 20.42 20.42 0.00 10.13 8.71 16.19
6 4 20 20.42 20.41 0.05 10.13 10.12 0.07
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Table 4.6 summarizes the percentage of production assigned to the in-house production
facility for both the deterministic equivalent model and the threshold subcontracting model.
The results suggest that the production assignments of the deterministic model follow a

similar pattern with the benchmark chosen.

Table 4.6: The percentage of production assignments to the in-house production facility

observed in each scenario for each modified service level type

. In-house
Subcontracting Holding Cost Production B s — ‘
Cost Capacity | Base Stock | Threshold | Base Stock | Threshold
4 16 8 75.45 75.40 75.45 77.06
4 16 12 94.73 94.70 94.73 98.23
4 16 20 99.97 100.00 99.97 100.00
6 1 8 79.76 78.17 79.95 78.88
6 1 12 94.73 98.78 94.73 98.23
6 1 20 99.97 100.00 99.97 100.00
6 4 8 75.45 75.40 75.45 75.40
6 4 12 94.73 94.70 94.73 98.23
6 4 20 99.97 100.00 99.97 100.00

Based on these figures, we can conclude that the proposed deterministic equivalent
model solved on a rolling horizon basis performs as well as the threshold subcontracting
model solved on a simulation-based optimization technique for both types of the modified
service levels. The total expected cost values of deterministic equivalent models for all nine
different cases are equal to or a little bit larger than those of the threshold subcontracting
model. However, we cannot reach the same conclusion for the average production and
holding cost values. Deterministic equivalent model performs either worse for some cases
or better for some other cases when the comparison is based on average production or
holding cost values. However, the sum of these two terms, the total expected cost, is equal
to a little bit larger than that of the threshold subcontracting model. Moreover, the
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proportion of production assigned to the in-house facility in the deterministic equivalent

model resembles that in the simulation based threshold subcontracting model.

Remarks: It is worth mentioning that the sample size utilized in the above numerical
comparisons, 5000, might not be large enough to satisfy the service level requirements in
each time period that the modified service level definitions necessitate. The coefficient of
variation in the realized service level values might be larger than expected. To handle this
problematic issue, we introduced one-sided confidence intervals. Although, the threshold
subcontracting model constitutes a lower bound in terms of total expected cost values for
our set of numerical examples, it can not be generalized from our examples that the
deterministic equivalent model always gives solutions worse than those of the threshold
subcontracting model.

Moreover, the solutions found above might not be the optimal solutions to the problem
defined and the nine possible problem settings might not be adequate to come up with
generalizations. Although numerical experiments have been performed for a larger number
of problem settings, since the running of these algorithms take considerable amount of
time, the models are solved for a smaller sample size resulting in higher coefficient of
variations in the realized service levels. However, it is assumed that if large enough sample
sizes for the two models were utilized, the two models would give better and much closer

results. O

4.4 Conclusion

In order to state the validity of our proposed approach, the performance of the
methodology should be compared with some benchmarks created.
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In this chapter, the base stock model is chosen to be the benchmark for the single plant
setting. The equivalencies of the base stock model and the deterministic equivalent model
with modified service level constraints solved on a rolling horizon basis in the single
product single production facility setting are shown.

Moreover, the threshold subcontracting model solved on a simulation-based
optimization technique is chosen to be the benchmark for the multiple plants setting
without lead time. It is concluded that the deterministic equivalent model performs as well
as the threshold subcontracting model and the threshold subcontracting model might
constitute a lower bound to the deterministic equivalent model. The shortcomings of the

numerical experiments are also mentioned.
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Chapter 5

APPLICATION OF THE METHODOLOGY FOR MULTIPLE PRODUCTS IN
A STOCHASTIC PRODUCTION PLANNING AND SOURCING PROBLEM WITH
SERVICE LEVEL CONSTRAINTS

5.1 Introduction

In this chapter, we consider a production planning problem encountered in the textile-
apparel-retail channel. In particular, a sourcing problem in this channel forms the
motivation of this chapter. New styles are being introduced very fast as fashion changes
very quickly in the textile-apparel-retail channel. Product proliferation and uncertain
customer demand make it more difficult to estimate the demand accurately. As a result,
most of the retailers are beginning to adopt lean retailing practices in order to minimize the
associated risks (Abernathy et al. [26]). Lean retailers transform the basis of competition
for all suppliers by reducing the amount of time manufacturers have to respond to orders,
which means that suppliers must be able to provide more frequent deliveries, in smaller
quantities, of more diverse products.

Adoption of lean retailing practices and rapid replenishment programs by the retailers
force manufacturers to build capabilities to respond quickly to changes in customer
demand. In order to compete with other manufacturers and attain satisfactory profit levels,
a manufacturer needs to make its production and inventory planning decisions in the best

way possible.
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Although a manufacturer can increase its responsiveness by investing in an additional
capacity or by carrying higher inventory, these alternatives are costly and also risky in
volatile market conditions. In recent years, manufacturers use subcontracting as an
alternative to increase their capacities temporarily whenever it is needed. Subcontracting is
the procurement of an item or service that a firm is normally capable of economic
production in its own facilities and which requires the prime contractor to make
specifications available to the supplier. However, when to subcontract and how much to
subcontract are the challenging questions to be answered.

In this chapter, we focus on a production planning problem of a manufacturer with
multiple plants and subcontractors. Each source, i.e. each plant and subcontractor, has a
different production cost, capacity, and lead time. The manufacturer has to meet the
demand for multiple products according to the service level requirements set by a retailer.
The demand for each product in each period is random. Although the demand is assumed to
be stationary and random, the manufacturer has historical data that are used to estimate
demand probability distributions or at least their means and variances in each period. A
qualitative discussion of this problem can be found in Abernathy et al. [27].

The objective of the study explained in this chapter is to come up with the production
and sourcing decisions of the manufacturer, i.e. to aid the manufacturer in deciding how
much to produce, when to produce, where to produce, how much inventory to carry, etc. by
utilizing the methodology described in detail in previous chapters and then to get insights
regarding the interaction among the cost, lead time, and variability of demand and how
they affect the sourcing decisions.

Simplified versions of the above mentioned problem have been investigated in the past
by using different methodologies. For example, Tan and Gershwin [28] and Tan [29]
formulate a simplified version of the problem in a stochastic optimal control framework by

focusing on the question of when and how to use a subcontractor to get insights rather than
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developing a tool that can be used by a manufacturer on a daily-basis. In these two studies,
there is no lead time associated with the production sources, there is only one product, and
the demand is stationary.

Due to the complexity of the problem, instead of modeling it analytically, a simulation
model has also been developed (Yang, Lee and Ho [30]). Then, a simulation-based
optimization technique that is referred to as ordinal optimization has been used to
determine the parameters of a production and inventory control policy that gives a good-
enough solution approximately. However, one needs to set a specific production and
inventory control policy in the simulation. In addition to the difficulty of setting a plausible
policy in a complicated case, as the number of sources and products increase, the number
of parameters to be optimized also increases. As a result, finding a good-enough solution
requires a considerable time.

In Section 5.2, we focus on the analytical solution of a single-period production
planning problem in which multiple products are produced by multiple plants, and then, in
Section 5.3 we focus on the formulation of a multi-product multi-period production
planning problem. Finally, in Section 5.4, based on a two-product two-plant example, we
try to interpret and get insights from the analytical solutions and the numerical

observations, and come up with general results.

5.2 The Single Period Production Planning Problem with Service Level Constraints

In this section, we turn our attention to a single period problem with multiple products
and multiple sources. The question that has received significant research interest in this
environment is when and how much of which product to produce in which plant. The
volatility in the demand of the products in each period, the lead times of the plants, the unit
production costs of the products in the plants, the capacity of the plants and many other

factors affect the assignment of the production of the products to the plants.
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Now, let us construct the single period multiple product multiple source production
planning problem. Assume that there are K different products to be produced by L different
production facilities in a single period. We try to find answers to the questions of where to
produce and how much of which product to produce in a single period.

Let /; be the deterministic equivalent demand of product i calculated based on a service
level requirement of a; for each product i, p;; be the cost of producing one unit of product i
at plant j, C; be the production capacity of plant j and X;; be the production quantity of
product i at plant j. [;, the beginning inventory level of product i is set to be zero for both of
the two products

The Single Period Deterministic Equivalent Production Planning Problem (SPDEP)

with service level constraints can be defined as:

Z"(SPDEP) = Mlnii piX

i=l j=1
subject to

L
¥ X, 21,i=1,..,K; (5.1)
j=1

K

Y X,,<C,j=1..,L; (5.2)
i=1
X,,20;i=1..K, j=1,..,L (5.3)

Note that in the above formulation, the probabilistic service level constraints are
transformed into the linear deterministic equivalent constraints as described in Chapter 3.

After describing the Single Period Deterministic Equivalent Production Planning
Problem, we now concentrate on deriving the production plan of a manufacturer which has
the options of utilizing two production facilities (a cheaper and an expensive facility) while
satisfying the demand of two different products. The formulation of this mathematical

problem is as follows:
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. 2 2
Z'=MinY 3 p, X,

i=l j=1

subject to
2
Y X, 2h,i=12 (5.4)
j=1
2
Y X,,<CLji=12 (5.5)
i=l
X,,20,i=12j=12. (5.6)

Now, assume that the first plant is the expensive production facility and the second
plant is the cheaper production facility which means p;,1>p1» and p; 1>p2,. We assume that
the first product has a higher minimum production quantity whereas the second product has
a lower minimum cumulative production quantity; i.e. /;>/;. Note that, in order to find a
feasible solution, the total production capacity should be large enough to meet the total
production requirements of the two products. Otherwise, the problem would be infeasible.
Therefore, we assume that C,+Cy=li+l, at the very beginning. Then, we make the

following proposition:

Proposition 5.1: The Single Period Production Planning Problem, in which two products
are to be produced either by a cheaper or by an expensive plant or by both of the two
plants, can result in different optimal solutions based on different combinations of p;;, C;
and /; values. For the specified parameter conditions, all possible optimal solutions can be
observed below:

If p1,1-p125p2,1-p22 and if:

* |+, <C,, then the optimal solutionis X;, =0, X,, =/ ,X,, =0 and X, , =/,

with Z* =P, ‘L+p,,h;



Chapter 5: Application of the Methodology for Multiple Products
in a Stochastic Production Planning and Sourcing Problem
with Service Level Constraints 50

. I, <C, <l +1,, then the optimal solution is X, = (}; +1,)-C, , X,, =C, -1,
X,,=0and X,, =1, with z =Dy @ +lz)_C2]+p1,2 (Co-L)+pyy-bs
. C, £1,, the optimal solution is X, =/, , X,,=0,X,, =/, -C, and X,, =C,

Wlth Z‘ =p1’1 'll +P2,1 '(lz _C2)+p2,2 .CZ'

prl,l-pl,zzpz,l-pz’z and ifs

= l, +1, £ C,, then the optimal solutionis X, =0, X,, =/ ,X,, =0and X, , =1,
with Z" = p, L+ py,-1y;

. l, <C, <] +1,, then the optimal solution is X, =0, X, =}, X,, =(,+1,)-C,
andXz,z =C, ~]; with Z'= Db+ py, ‘[(ll +lz)_cz]+l72,2 (G, -1h);

o C, <1, the optimal solution is X, =/-C, , X,,=C, , X,, =], and X, , =0

with Z" = P G=C)+p,-Cot+p,yy -l

Proof: The proof of proposition 5.1 is quite lengthy and therefore, is presented in
Appendix C. m

The above solutions prove that the Single Period Production Planning Problem with
service level constraints, in which two products are to be produced either by a cheaper or
by an expensive plant or by both of the two plants, can result in different optimal solutions
based on different combinations of parameters: p;;, C;and /; for each i=1,2 and j=1,2.

The insights that can be gained from the above proposition are as follows:

Since the production costs of both products at the second plant is always lower than or

equal to those at the first plant, it is always cost-advantageous and therefore, it is always
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preferred to produce the production requirements of both products in the first and the
cheaper plant.

If the capacity of the cheaper plant is large enough to produce the required quantities of
products 1 and 2, then both products are produced only in the cheaper plant.

If the capacity of the cheaper plant is unable to satisfy the requirements of both
products, the relative cost reductions obtained by producing the products at the cheaper
plant (p13-p12 and p;;-p>, values) should be taken into consideration. The product with
higher cost reduction value is the cost-advantageous product and is preferred to be
produced in the cheaper plant.

Moreover, if the production requirement of the cost-advantageous product exceeds the
capacity of the cheaper plant, then the cheaper plant dedicates its whole capacity to that
product. The remaining portion of the cost-advantageous and the other products’
production requirements are then produced in the expensive plant.

If the capacity of the cheaper plant is unable to satisfy the total production
requirements of the two products, but if it is greater than or equal to the production
requirement of the cost-advantageous product, then the second and cheaper plant gives
priority to the production of the product with the greater cost advantage. The cheaper plant
first satisfies the requirement of the cost-advantageous product. Then, the remaining
capacity is dedicated to the production of the other product. The unsatisfied portion of the
other product’s requirement is then produced in the expensive plant.

Note that if the product with the greater cost advantage is altered, the whole production
plan changes. This indicates the criticality of the relative cost reductions obtained by
producing the products at the cheaper plant (p1,1-p12 and p; 1-p> > values).

Once we obtain a solution, we can perform comparative statics analysis and examine

the change in the production plan when we vary a specific parameter ceteris paribus.
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For instance; let product 1 be the cost-advantageous product (i.e. p1,1-p122p2,1-p22) and
assume that the capacity of the cheaper plant is unable to satisfy the total production

requirements of the two products, but it is still greater than or equal to the production
requirement of product 1 (i.e. [, <C, <[ +1,).

Note that, the change in /; value can be performed by altering either the coefficient of
variation or the required service level of the first product. If we increase /;, three different
cases might be observed. The optimal solution might stay the same as long as /, <C,. But
if C, <l and C1+Cozlyth, the optimal solution changes to
X,=4-C,, X,,=C, ,X,,=l,and X,, =0 with an objective function value of
Z"=p, - (h-C)+p,-Cy+py, -l If we increase /i further and if Ci+Co<li+h, the
problem becomes infeasible. If we decrease /;, the optimal solution either stays the same if
C,<h+l, or changes toX;=0,X,=], X,;=0 and X,,=I, with
Z'=p, L+ p,,h if L+1,<C,,

Moreover, the increase in /, value does not affect the optimal solution if Ci+Co=li+h, it
stays the same. But if C;+Cy</i+h, the problem becomes infeasible. The decrease in I,
value might change the optimal solution. It might stay the same as long as C, </, +1,, or it
might change to X, =0, X, =/}, X,,=0 and X,,=I, with Z'=p,-L+p,,-} if
L+1,<C,.

The change in the capacity of the expensive plant, C;, has no effect on the optimal
solution as long as C\+Cy=l,+]. The problem becomes infeasible otherwise.

If we increase the production capacity of the cheaper plant, C,, the solution might stay

the same if C, </ +/, or might change to X,, =0, X, =/, X,, =0 and X,, =/, with

Z'= Diah+p,,L if | +1, <C,. The decrease in C; does not change optimal solution if
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[ <C,. However, if C,</ and C+C,zli+h, the optimal solution changes to
X, =4-C,, X,,=C, , X;, =1, and X, , =0 with z =py-G-C)+p, Co+p,,l,. If
we decrease C; further and C,+C,</; 1, the problem turns out to be infeasible.

In the end, if we change the cost-advantageous plant to be the second plant, i.e. p; ;-

DP12=P2,1-p22, the solution changes to be X, =(,+/)-C, , X 12=C, -1, X,,=0 and

Xz,z =1, with z =Dy '[(l1 +12)_C2]+pl,2 (G, 'lz)"'pz,z 1.
This analysis can be performed to other optimal solutions as well and the new optimal

solutions might be observed.

5.3 The Multi-Period Production Planning Problem with Service Level Constraints

In this section, we extend our focus in the previous section by concentrating on multiple
periods. The parameters of the multi-product multi-source multi-period production
planning problem can be defined as:

T = the number of periods in the planning horizon

K= the number of products

L = the number of plants

LT;=lead time of plant j
LT, = Min {LT,}

je{l.,L} J

Hlow = M)

:z': =mean demand of product i in period ¢
l;,= minimum cumulative production quantity for product i in period ¢
C,..= production capacity of plant j in period ¢

Dij = unit production cost of product i in plant j
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h; = inventory holding cost of product i per unit per period
I;o= initial inventory level of product i

SR; = the scheduled receipts for product i for periods ¢=1,.., LT e

The decision variables of the model can be defined as the following:
X; ;= production quantity of product i at plant j in period ¢

I;;= inventory level of product i at the end of period ¢

The Multi-Period Deterministic Equivalent Production Planning Problem (MPDEP) can
be formulated as follows:
R . T K L K +
Z'(MPDEP)=Min Y | ¥'> p, X, . +> (1)
=t | =l j=1 i=1
subject to
L,=I, +SR,~dis,i=1,..,K; t=1,., LT ; (5.7

L

L=l +Y> X, 7 +SR,~di,i=L..K;

it Tt i
J=1

J€ oy L} LT, <85 t = (LT +1),ey LT (5.8)

L —_
L=l 4 ) X~ by i = K t= (L +1),.,T5 (5.9)
7=l

J

K
Y X, <C,.j=L.,L;t=1..T; (5.10)
i=1

¢ ¢ L
Ii,O +ZSR1,T + 2 ZX"J,T"‘IJ} = li,t’ i= l,..., K;

7=l =Ll +1 j=1

JE€L o, L} LT, <8 t =(LT, +1),..., LT, ; .11
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LT, t L
Lo+ Y SR+ Y XX 2l
7=l 7=LT ,+1 j=1
=1...,K;j=1..,L; t=(LT,,, +1),...T; (5.12)
X,,;,20,i=1.,K;j=1..,L; t=1,.,T. (5.13)

where (I,.J )+ =Max{0,lu}, t=1,.,T.

The objective function of the model aims to minimize the sum of total production and
total inventory holding costs over all periods in the planning horizon.

Constraint set (5.8) defines the inventory balance equations until the maximum lead
time among plants and ensures that the inventory level of a product i is determined by the
inventory carried from the previous period, the total production of that product in the
current period if possible, scheduled receipts of the product to the current period and the
mean demand of the product in the same period. Constraint set (5.9) is the inventory
balance equations for the rest of the periods in the planning horizon. The inventory level of
a product i is determined by the inventory carried from the previous period, the total
production of that product in the current period and the mean demand of the product in the
same period. Constraint set (5.10) is the capacity constraints for each production source.

Although there might be demand for product i in periods t=1,..,LT, it is assumed that
the production of either plant is not possible. Therefore, we cannot affect or make any
changes in the production plan in the first L7,,, periods nor can we construct any
deterministic equivalent service level constraints up to period (LTp;,+1). The demand
during lead time can only be satisfied through the initial scheduled receipts. If it is desired
to meet the service level requirements during the lead time, the parameters ;o and SR;; for

product i and for periods t=1,..,L T, should be set such that:

+2S L, ,i=1. K ;t=1,.,LT,,
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To satisfy the minimum cumulative production quantity constraints, this initialization
should be made and the right hand side of this constraint can only be satisfied by initial
inventory plus the scheduled receipts in those periods.

Constraint sets (5.11) and (5.12) are the minimum cumulative production constraints
for the rest of the periods. Finally, Constraint set (5.13) ensures the non-negativity of the

production quantities.

5.4 A Two-product Two-plant Example

In our illustrative example, there are two products and two production sources with
different lead times and production costs. The closer facility is assumed to have a shorter
lead time at a higher production cost whereas the remote facility is assumed to have a
longer lead time but at a lower production cost. Moreover, it is assumed that one of the
products has a smaller mean demand with a higher coefficient variation value whereas the
other product is assumed to have a larger mean demand with a lower coefficient variation
value. The initial inventories and initial scheduled receipts are assumed to be zero. We try
to decide where and how much of which product to produce in a multiperiod planning
horizon to satisfy the demand.

It is assumed that the more responsive and expensive plant has a lead time of 1 period
whereas the slower and cheaper plant has a lead time of 3 periods. There are no scheduled
receipts for the first three periods and the initial inventories are set to be zero. In order not
to observe any infeasibilities in the first three periods where the simultaneous production of
the two plants is not possible, it is assumed that no demand for any of the products is
observed. In each of the upcoming 12 periods, the first product is assumed to have a
stationary demand of mean 25 whereas the second product is assumed to have a stationary

demand of mean 100. It is also assumed that the CV’s of the products are also known. Note
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that we have no other information about the demand distribution of the products. The
service level requirement is 95% for the Modified Type 1 service level. The numerical
experiments can be performed for the Modified Type 2 service level in a similar way. The
only difference would be the /;values to be utilized.

We solve the deterministic equivalent model once for each problem setting (not on a
rolling horizon basis) and would like to observe the effects of the changes in production
and holding costs, lead times and the coefficient of variations on the production

assignments in the following subsections.
5.4.1 Effect of Production Costs on Production Assignments

The possible optimal solutions to the Single Period Production Planning Problem
suggests that there is a relationship between the amount of production assigned to each
plant for each product and the ratio of the difference between the production costs at the
two plants of a specific product to that of the other product, i.e. X;; values depend on the
ratio (p,; — p,)(p,, — P,,) for each i=1,2 and j=1,2. The optimal solution also depends

on the C;,and /;, values for i=1,2, j=1,2 and #=1,...,12. However, the effect of the changes
in any of these parameters is not so obvious and a careful examination of their effect on the
optimal solution is necessary. Therefore, we focus our studies on how the production
assignment to each plant for each product changes when we alter the ratio
(P, — P 2)(p,, — P,,) - This ratio gives us clues about producing which product in the

cheaper plant is more advantageous for us. It is the ratio of the relative cost reduction
obtained by producing the first product at the cheaper plant to that obtained by producing
the second product at the cheaper plant. If it is greater than 1, producing the first product in
the second and cheaper plant is more cost-advantageous and if it is less than 1, producing

the second product in the second and cheaper plant is more cost-advantageous. If this ratio



Chapter 5: Application of the Methodology for Multiple Products
in a Stochastic Production Planning and Sourcing Problem
with Service Level Constraints 58

equals 1, both products have equal cost advantage. Assume that the coefficients of
variations are 2 and 0.25 for products 1 and 2 respectively. We examine the cases in which

the ratio(p,; ~ p,,) (p,, — p,,) equals 3, 2, 1, 1/2, and 1/3. We are also interested in the

change in the production assignments when the capacities of the plants are varied between
77 (the minimum production capacity that does not cause any infeasibility), 80, 90, 100,
110, 120, 130, 140 and 150. Moreover, keeping the ratio constant, we observe how the
changes in the production costs affect the production assignments.

Table 5.1 displays how the assignment of the total production quantities over the
horizon to the plants takes place under different combinations of plant capacities

when(p;; — p,,)/(P,, — P,,) equals 3 or 2, assuming that the holding costs are 0.1 and

0.05 for products 1 and 2 respectively. In each case, the production capacities of the two
plants are assumed to be equal. The observations start with 88; the minimum capacity that
does not result in any infeasibilities in the model and end with 150; a capacity greater than
the minimum production quantity of the second product in the third period which is the first
period having the demand different than zero. Keeping the ratio constant and equal to 3, the
analysis is performed for the cases; for p; 1=6, p12=3, p2,1=3, p22=2 and for p, =5, p1,=2,
P2,1=3, p22=2. In these two cases, the majority of the high variability product is produced
in the slower plant whereas the majority of the low variability product is produced in the
quicker plant. In addition to this, 100% of the high variability product, and the majority of
the low variability product are produced in the cheaper and slower plant if possible. That is
because; when the production capacities get scarce, the importance of the fact that it is
relatively more advantageous for the high variability product to be produced in the cheaper
plant becomes more significant. Moreover, we can say that the individual production costs

have no significance by themselves; instead it is the ratio (p,, ~ p,,)/(p,, — p,,) thathas a

major impact. The analysis is repeated for p1,1=6, p12=4, p21=3, p22=2 and for p;;=4,
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P12=2, p21=3, p2»=2 when (p,,~ p,,)(p,;~P,,)=2. As a result, the same production

assignments are observed.

Table 5.1: The effect of production costs on the percentage of total production assigned to
each plant for each product when (p,;, ~ p,,)/(p,, — p,,) =3 or 2

Capacity of each plant Percentage of Product 1 produced in | Percentage of Product 2 produced in
71 547 94,53 7223 27.77
80 4.96 9504 ] 6976 = 30.24
90 3.25 : 96.75 o683 38.47
100 1.54 . 9846 - | . 5329 46.71
110 0.00 10000 44.99 5502
120 0.00 1100007 36.00 6400
130 0.00 L0 100,000 27.02 . 72.98
140 0.00 100.00 ! 18.04 ; 81.96
150 0.00 S0 10000 13.02 © . B6.98

Table 5.2 summarizes the results of the same analysis performed for
(P, — P12) Py — Py,) =1. The analysis is repeated for p1:1=6, p12=4, p21=3, p>2=1 and
for p1,1=6, p12=35, p2,1=3, p22=2. In these cases, the majority of the low variability product
is produced in the slower plant whereas the majority of the high variability product is
produced in the quicker plant. If possible, 100% of the low variability product, and the
majority of the high variability product are produced in the cheaper and slower plant. This
highlights the significance of the ratio (p,, —p,,)/(p,, ~ p,,) rather than the individual

i J',S.
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Table 5.2: The effect of production costs on the percentage of total production assigned to

each plant for each product when (p,, - p,,) (P, — P,,) =1

Capacity of each plant Percentage of Product 1 produced in | Percentage of Product 2 produced in
71 9453 , 547 33.23 66,77
80 19504 4.96 30.31 69.69
90 9675 325 20.58 7942
100 . 9846 1.54 10.85 8915
110 19590 4.10 2.99 ~97.01
120 7880 21.20 1.50 9850 -
130 60.00 " 40.00 , 0.75 9925
140 41.20 . 5880 0.00 100,00
150 29.74 70260 0.00 . 100.00

Table 5.3 summarizes the results of the same analysis performed

for(p,, ~ py,) (P, — P2,) =1/2 and 1/3. The analysis is repeated for p; 1=6, p12=5, p2.1=3,

P22=1 and for py,=4, p1,=3,and for p;1=3, p2»,=2 when (p,;—p,,)(P,;—P,,)=1/2;
and for p1,1=7, p1,2=6, p2,1=5, p22=2 and for p1,1=8, p12=6, p2,1=7, p2,2=1 when
(P — i) /( D,y — D,,)=1/3. In these cases, as in the case ( Dy~ D) Py~ py,) =1, the

majority of the low variability product is produced in the slower plant whereas the majority
of the high variability product is produced in the quicker plant. In addition to this, 100% of
the low variability product, and the majority of the high variability product are produced in
the cheaper and slower plant if possible. That is because; when the production capacities
get scarce, the importance of the fact that it is relatively more advantageous for the low
variability product to be produced in the cheaper plant becomes more significant.
Moreover, we can repeat the fact that the production costs have no importance in quantity

by themselves; instead the ratio (p,, — p,,)/(p,, — p,,) is of significance.
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Table 5.3: The effect of production costs on the percentage of total production assigned to
each plant for each product when (p,, — p,,)/(p,, — P,,)=1/2 or 1/3

Capacity of each plant Percentage of Product 1 produced in | Percentage of Product 2 produced in
77 69.16
80 71.86
90 80.84
100 - 89.82
110 1 97.01
120 .98.50
130 9925
140 100.00
150 100.00

5.4.2 Effect of Holding costs on Production Assignments

Next, we investigate how the production assignment to each plant for each product
changes when we alter the holding cost. Assume that the coefficients of variations are 2
and 0.25 for products 1 and 2 respectively. Table 5.4 displays the results when the
capacities of the two plants equal 120 and when (p,, ~ p, ;) /(p,, — p,,) = 2 for the case for
P1,1=6, p12=4, p2,=3, p22,=2. In this case, no matter what the combination of holding costs

of the products is, the majority of both products is produced in the slower plant.
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Table 5.4: The effect of holding costs on the percentage of total production assigned to
each plant for each product when (p,, ~ p,,)/(p,, ~ P,,) =2

Holding cost for Percentage of Product 1 produced in | Percentage of Product 2 produced in
Product 1 |Product2} Tant | jant anl . o

0.1 0.05 0.00 - 100,00 36.00 6400

0.1 0.1 0.00 10000 36.00 6400
0.1 0.15 0.00 10000 36.00 . 64.00

1 1 0.00 | 10000 36.00 | 6400

1 0.05 0.00 10000 36.00 6400
0.05 1 0.00 £ 10000 36.00 6400

4 1 0.00 10000 36.00 64,00

5 1 0.00 100000 36.00 6400

6 1 0.00 S 100,00 36.00 6400
0.05 1.05 1.54 oomde 35.33 467
0.05 2 1.54 . 9846 . 35.33 : 64.67 .
0.05 6 1.54 e e 35.33 6467
4 6 1.54 0BG 35.33 6467
6 6 0.00 ; 10000 36.00 6400

Table 5.5 displays the results when the capacities of the two plants equal 120 and it is
assumed that p;1=6, p12=4, p21=3, p22=1 when (p,, — p,;,) (P, — P,,) =1 and p;;=6,
P12=5, p2,1=3, pxp=1 when (p,, ~ p,,)(p,, — P,,) =1/2. In this case, no matter what the
combination of holding costs of the products is, the majority of the low variability product
is produced in the slower plant whereas the majority of the high variability product is
produced in the quicker plant. The reasoning behind this is the fact the deterministic

equivalent service level constraints are always binding,
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Table 5.5: The effect of holding costs on the percentage of total production assigned to
each plant for each product when (p,, — p,,)/(p,; — p,,)=1 or 1/2

Holding cost for Percentage of Product 1 producedin | Percentage of Product 2 produced in
Product 1| Product 2 ‘ ’ = .
0.1 0.05
0.1 0.1
0.1 0.15
1 1
1 0.05
0.05 1
4 1
5 1
6 1
0.05 1.05
0.05 2
0.05 6
4 6
6 6

5.4.3 Effect of the Length of the Lead Time on Production Assignments

It is interesting to understand how the production of the two products will be distributed
among the two plants, when the lead times of the plants vary. Assume that the coefficients
of variations are 2 and 0.25 for products 1 and 2 respectively. Moreover, let the lead time
of the first plant be constant and be 1 period. We examine the changes in the production
assignments when the lead time of the second plant varies between 1 and S periods. The
planning period is assumed to be LT, periods added to the 12 periods. In the first LT,
periods where the simultaneous production of the two plants is not possible, it is assumed
that no demand for any of the products is observed. For each case, the production capacity
of each plant is assumed to be equal and is taken to be the minimum capacity that does not

cause any infeasibilities.
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Table 5.6 summarizes these results when (p,,—p,,)/(P,;—P,,)=2. In these two

cases, 100% of the high variability product, and the majority of the low variability product

are produced in the slower plant if possible. Otherwise, the majority of the high variability

product is produced in the slower plant whereas the majority of the low variability product

is produced in the quicker plant.

Table 5.6: The effect of the length of the lead time on the percentage of total production

assigned to each plant for each product when (p,; — p,,)/(p,, — p,,) =2

Capacity of each | Lead time of Percentage of Pl:oduct 1 et
125 1 31.51
88 1 6317
71 1 A 108 .
72 1 | 7635 | 2365
69 1 S et 21.33

Percentage of Product 2

Table 5.7 and Table 5.8 summarizes the results when (p,, - p,,)/(p,, — p,,)=1 and

1/2, respectively. In both cases, the majority of the high variability product is produced in

the quicker plant whereas the majority of the low variability product is produced in the

slower plant.
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Table 5.7: The effect of the length of the lead time on the percentage of total production
assigned to each plant for each product when (p,, - p,) (p,, — P,,) =1

Percentage of Product 1 Percentage of Product 2

Capacity of each | Lead time of roduced in roduced in

plant

125
88
77
72
69

Table 5.8: The effect of the length of the lead time on the percentage of total production
assigned to each plant for each product when (p,, - p,,)/(p,, — P, ,) =1/2

Percentage of Product 1 Percentage of Product 2

Capacity of each | Lead time of produced in produced in

plant

125
88
77
72
69

5.4.4 Effect of Coefficient of Variations on Production Assignments

Now, we would like to examine how the changes in the coefficients of variations of the
two products affect the production decisions. Assume that the lead times are 1 and 3
periods for plants 1 and 2 respectively. The coefficient of the first product is set to be
constant and 2. The coefficient of variation of the second product varies between 0 and 2.
The capacities of the plants are set to be the minimum capacity values that do not produce

any infeasibilities. Table 5.9 summarize the results when (p,, — p,,)/(p,, — P,,) =2. In this

case, the majority of the high variability product is produced in the slower and cheaper
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plant whereas the majority of the low variability product is produced in the quicker and
more expensive plant. Moreover, if the production of the two products by the slower and

cheaper plant is possible and feasible, this option is utilized.

Table 5.9: The effect of the coefficient of variations on the percentage of total production

assigned to each plant for each product when (p,, - p,,) (P, — P,,) =2

. Coefficient of Percentage of Product 1 Percentage of Product 2
Capacl:gl:)tf each Variation of produced in produced in
Product1 | Product2 | Pla  Plani 1
70 2.00 0.00 . 19316 7544 24.56
77 2.00 0.25 547 | 9453 | 1223 21.77
86 2.00 0.50 3.93 9607 | 6841 31.59
97 2.00 0.75 2.05 | .97.95 6414 35.86
109 2.00 1.00 0.00 10000 | 6006 | 3994
122 2.00 1.25 0.00 100000 ) 5527 ] 4473
133 2.00 1.50 000 | 10000 | 5204 | 4796
142 2.00 1.75 0.00 100,00 4996 | . 5004
150 2.00 2.00 000 | 100.00 4836 | 5164

Tables 5.10 and 5.11 summarize the results when (p,, — p,,)/(p,; ~ p,,)=1 and 1/2

respectively. In these cases the majority of the high variability product is produced in the
quicker and the more expensive plant whereas the majority of the low variability product is

produced in the slower and cheaper plant.



Chapter 5: Application of the Methodology for Multiple Products

in a Stochastic Production Planning and Sourcing Problem
with Service Level Constraints

67

Table 5.10: The effect of the coefficient of variations on the percentage of total production

assigned to each plant for each product when (p,; - p,,) (p,; ~ P, ,) =1

. Coefficient of variation
Capacity of each of
Plant
Product 1 | Product 2

70 2.00 0.00

77 2.00 0.25

86 2.00 0.50

97 2.00 0.75
109 2.00 1.00
122 2.00 1.25
133 2.00 1.50
142 2.00 1.75
150 2.00 2.00

Percentage of Product 1
produced in

93.16

6.84

. 9453 5.47
9607 3.93
9795 | 2.05
100,00 0.00
~1100.00 0.00
~100.00 0.00
9863 1.37
9316 6.84

Percentage of Product 2
produced in

33.39 66,61
33.23 66.77
32.19 67.81
30.10 69.90
27.73 7227
25.50 7450
24.29 1591
24.15 75.85
25.20 74.80

Table 5.11: The effect of the coefficient of variations on the percentage of total production

assigned to each plant for each product when (p,, - p,,) /(p,, — p,,)=1/2

Capacity of each %’::g:;:‘:&f
Plant :
Product 1 | Product 2
70 2.00 0.00
77 2.00 0.25
86 2.00 0.50
97 2.00 0.75
109 2.00 1.00
122 2.00 1.25
133 2.00 1.50
142 2.00 1.75
150 2.00 2.00

Percentage of Product 1
produced in

100,00 0.00
100.00 0.00
100.00 0.00
1100.00 0.00
100.00 0.00
100.00 0.00
9863 1.37
93.16 6.84

Percentage of Product 2
produced in

30.84 69.16
30.65 69.35
29.37 7063
27.73 1227
25.50 74.50
24.29 7571
24.15 - 75.85
25.20 74.80
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5.5 Conclusion

In the existing literature, the assignment of low variability products to cheaper sources
with long lead times and of high variability products to faster sources is frequently
suggested as a heuristic without a formal basis. For instance, Abernathy, Dunlop,
Hammond and Weil [26] show that a local short-cycle manufacturer is more appropriate for
items with high variability whereas an offshore manufacturer can be utilized for items with
low variability. However, the situation is much more complicated and context dependent in
general. Our numerical results performed for Modified Type 1 service level, only confirm
the validity of this heuristic in certain cases but suggests a different criterion in general.

When (p,, — p,,)(p,, — P,,) >1, 100% of the high variability product, and the majority of

the low variability product are produced in the slower plant if possible. Otherwise, the
majority of the high variability product is produced in the slower plant whereas the
majority of the low variability product is produced in the quicker plant. In these cases, as

in the case(p,,—p,,)/(Py—P,,) <1, 100% of the low variability product, and the

majority of the high variability product are produced in the slower plant if possible.
Otherwise, the majority of the low variability product is produced in the slower plant
whereas the majority of the high variability product is produced in the quicker plant.
Moreover, it is observed that the change in the holding costs do not affect the production
assignments when the ratio (p,;, - p,,)/(p,,; — p,,)is kept constant. While observing the
effect of the length of the lead times of the plants on the production decisions, when
(p1y = P12) (P — P2p) =2, 100% of the high variability product, and the majority of the
low variability product are produced in the slower plant if possible. Otherwise, the

majority of the high variability product is produced in the slower plant whereas the

majority of the low variability product is produced in the quicker plant. When
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(P — P12) (s — Py 2) =1 or 1/2, the majority of the high variability product is produced in
the quicker plant whereas the majority of the low variability product is produced in the
slower plant. While observing the effect of the change in coefficient of variations of the
products on the production assignments to the plants, when (p,, — p,,)/(p,, — p,,) =2, the
majority of the high variability product is produced in the slower and cheaper plant
whereas the majority of the low variability product is produced in the quicker and more
expensive plant. Moreover, it is possible and feasible to produce the two products by the
slower and cheaper plant, this option is utilized. When (p,, — p,,)/(p,, — p,,)=1 or 1/2,
the majority of the high variability product is produced in the quicker and the more
expensive plant whereas the majority of the low variability product is produced in the

slower and cheaper plant.
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Chapter 6

CONCLUSIONS

In this thesis, stochastic production planning and sourcing problems with service level
constraints are examined in detail. The randomness in demand should be incorporated in
mathematical models of production planning and sourcing problems in many practical
situations. In the existing literature, most of the time, randomness is handled by replacing a
random variable by a single point estimate value or by its mean. In this thesis, we develop a
framework that explicitly addresses the random components.

In Chapter 3, a systematic approach that enables the randomness in demand and the
desired service levels is proposed. This enables the incorporation of random demand and
the probabilistic service level constraints in a mathematical programming framework
leading to a methodology that aids manufacturers in deciding how much to produce, when
to produce, where to produce, how much inventory to carry.

To establish the validity of the proposed approach, the performance of the methodology
is compared with some benchmarks created in Chapter 4. The proposed benchmark in the
single production facility problem is the well-known base stock inventory policy. For both
the case including production lead time and for the case without lead time, the
equivalencies between the base stock model and the deterministic equivalent model with
modified service level constraints solved on a rolling horizon basis are shown in the single
product single production facility setting. Moreover, for the multiple plants setting without
lead time, the threshold subcontracting model is chosen to be the benchmark. The control
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parameters of the policy are determined by using a simulation-based optimization
procedure. The results of both the proposed model and the benchmark are then observed
and compared with each other. As a result, it is concluded that the proposed approach gives
promising solutions.

In Chapter 5, the optimal sourcing strategies for the single period production planning
problem, in which two products are to be produced either by a cheaper or by an expensive
plant or by both of the two plants, are derived and the results are interpreted. It is
emphasized that if the product with the greater cost advantage is altered, the whole
production plan changes and the criticality of the relative cost reductions obtained by
producing the products at the cheaper plant is shown. Motivated by a production planning
and sourcing problem in the textile-apparel-retail channel, the proposed methodology is
applied for multiple products setting in a multiperiod stochastic production planning and
sourcing problem with service level constraints. It is found out that the situation is context
dependent and based on different capacity, minimum cumulative production quantity, or
production cost parameter settings, different optimal solutions might be observed. Based
on a two-product two plant numerical example, by focusing mainly on the relative cost
reduction ratio of the two products, different solutions are observed and the insights gained
are presented.

The contributions of this thesis can be summarized as:

e The integration of the deterministic mathematical programming approach for a
manufacturer’s production and sourcing problem with randomness arising from
stochastic demand and service level constraints.

e The justification of the equivalencies between the base stock model and the
deterministic equivalent model with modified service level constraints solved on a

rolling horizon basis in the single product single production facility setting.



Chapter 6: Conclusion 72

e The presentation of the similarities between the results of the deterministic
equivalent model with modified service level constraints solved on a rolling
horizon basis and the threshold subcontracting model solved on a simulation-
based optimization technique in the single product multiple plants setting.

o The insights obtained regarding the interaction among the cost, lead time, and
variability of demand and their effects on the sourcing decisions.

There are several other significant issues that are worth investigating from a
methodological point of view. The effect of rolling horizon procedures and frozen planning
periods can be investigated. The effect of forecast updates and their incorporation in
mathematical programming formulations are also interesting issues for future research.

Moreover, the numerical experiments for the single product multiple plants setting can
be performed for larger sample sizes for a larger number of scenarios. It would be worth
investigating whether the threshold subcontracting model always constructs a lower bound

on total expected cost for the deterministic equivalent model.
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ii.

and

Appendix A

PROOF OF PROPOSITION 4.2

If the inventory levels at the beginning of the first period are equal,
In(BSLT)=IL(DEPLT)=lr+1, then production quantities in the first period and
the inventory at the end of first period for both policies become equal, i.e.
Xi(BSLT)=X(DEPLT)=0 and /;(BSLT)=I;(DEPLT)=l;1+1-ds;

If the inventory levels at the end of period # such that #<LT are equal,

[
I, (BSLT)=1, (DEPLT)=1,,,, —2 d, , then the production quantities in period
7=l

(t1+1) and the inventory levels at the end of period (#+1) for both policies
become equal; ie. X, ,(BSLT)=X, (DEPLT)=d, and 1, ,,(BSLT)=

h+l
1, ,(DEPLT) =1, - Y d,.

7=l

If the inventory levels at the end of period (LT+1) are equal,

LT+1
I,;,,(BSLT)=I,,, (DEPLT)=,,,, - 2 d. , then production quantities in period

7=l

(LT+2) and the inventory levels at the end of period (LT+2) for both policies
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become equal, ie. XLT+2(BSLT)=XLT+2(DEPLT)=dLT+l and I LT+2 (BSLT)
LT+2
=l,7.,,(DEPLT)= =1y~ Y d, ;
7=2
iv. If the inventory levels at the end of period # such that ©=LT are equal,
¢
I, (BSLT)=1, (DEPLT)=/,,, — 2 d,, then the production quantities in
7=t,—LT
period (,+1) and the inventory levels at the end of period (£,+1) for both
policies ~ become  equal; ie. X, (BSLT)=X, , (DEPLT)=d, and

ty+l
I_.(BSLT)=1, (DEPLT)=lp,~ 3 d,.

7=ty+1-LT
Assume that the initial inventory levels are equal such that [(BSLT)=S,,
Iy(DEPLT)=l; 7+ and S>=I;7+1. In the base stock policy, each demand observed is produced
in the next period; therefore there is no production in the first period, X;(BSLT)=0. In the
deterministic equivalent approach, the production quantity in the first period is determined
LT
according to the constraint X,(DEPLT)+ ZSR, (DEPLT)+/,(DEPLT) = X,(DEPLT)
7=1

+0+1,7,, 21, and therefore, X,(DEPLT)=0. Since the problem is of minimization

type, the production quantity in the first period equals zero, i.e. Xj(DEPLT)=0. Next, a
customer demand of d; arrives. The end of period inventory for the base stock policy
becomes I;(BSLT)=Iy(BSLT)+SR(BSLT)=S,10-d;=S,-d; and the end of period inventory
for the deterministic equivalent approach becomes I;(DEPLT)=I(DEPLT) +SR;(DEPLT)-
di=lyr1+0-d1=lr7+1-d;. Since we know that S>=Ir 7+, [{(BSLT)=I;(DEPLT).

In the second period, the base stock policy produces the demand of the first period, i.e.
X2(BSLT)=d;. At the beginning of the second period, the deterministic equivalent model is
rerun since it is solved on a rolling horizon basis. The demand is assumed to be stationary

over the planning horizon. Although solving the model on a rolling horizon basis



Appendix A: Proof of Proposition 4.2 75

throughout the planning horizon requires integration of the minimum cumulative
production quantites for the number of periods in the rolling horizon into the model, only
the minimum cumulative production quantity of period (LT#1), I;r+1, is fully utilized. The

production quantity of the deterministic equivalent model in the second period is

LT+1

determined by X,(DEPLT)+ Y SR,(DEPLT)+1 (DEPLT) = X,(DEPLT)+ X,(DEPLT)
7=2

+I,(DEPLT) = X,(DEPLT) +0+1,,,, —~d, 21,,,,; therefore, X,(DEPLT)>d,. In order to

minimize the production costs, the production quantity in the second period equals the

demand of the first period, i.e. X,(DEPLT)=d,. After the arrival of a customer demand

of d), the end of period inventory for the base stock policy becomes
L(BSLT)=6(BSLT)+SRy(BSLT)-d>=S>-d;-d, and the end of period inventory for the
deterministic equivalent approach becomes L(DEPLT)=I;(DEPLT)+SR,(DEPLT)-d>= Iy 741
-di-d,. Since S>=I; 141, we can say that L(BSLT)=L(DEPLT).

Since demand during lead time cannot be satisfied no sooner than (LT+1) periods of
time, the inventory levels at the end of any period # such that #;<(L7-1) can be written
asl, (BSLT)=S, —i:d,,ltl(DEP)=lLT+1 —idr and S;=I;7+1. In period (£;+1), the base

7=1 7=l
stock policy produces X,, (BSLT)=d, . In the deterministic equivalent approach, the

4+LT
production quantity is determined by the constraint X +1(DEPLT) + 2 SR, (DEPLT)

T=fy+1
4 4-1
+1, (DEPLT) = X, ,(DEPLT)+ ' X, (DEPLT)+1, (DEPLT) = X, ,,(DEPLT)+ 3 d, +1,,.,
7=l 7=l
!,
—2 d, 21r,; therefore, X, , (DEPLT)2d, . Since the problem is of minimization type,
7=l

X,+(DEPLT) =d, . Then, a customer demand of d,,, is observed. The end of period
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inventory for the base stock policy becomes I, ,,(BSLT)=1, (BSLT)+SR, ,,(BSLT)

4 4+l
S, - 2 d,—d, =5, —Zdr and the end of period inventory for the deterministic

f+1
7=l 7=1

equivalent approach becomes I, , (DEPLT)=1, (DEPLT)+SR, , (DEPLT)-d,,, =1,

-d

a1 T

4 4+l
~d,~d,, =l;p,— 3 d, . Since Sy=lr, I, ,,(BSLT) =1, , (DEPLT).
7=1 7=1

Similarly, d;74+; is produced by the base stock policy in period (LT+1), i.e. X rri=drr+1.

2LT LT
The constraint X, ,(DEPLT)+ ) SR (DEPLT)+I,,(DEPLT)=X,, (DEPLT)+) X,
7=1

7=LT+1

LT-1 LT
+1,;(DEPLT) = X, (DEPLTY* ¥ d, +1;7,,~ 3.d, 21,73 ie. X, (DEPLT)2d,,
z=1

7=l
determines the production quantity of the deterministic equivalent model in period (LT+1).

Then, X,,.,(DEPLT)=d,,. Next, a customer demand of d;+, arrives. The end of period

inventory for the base stock policy becomes/,,,,(BSLT)=1,,(BSLT)+SR,,, (BSLT)

LT LT LT+l
~dira =5, _zdr +X,(BSLT)-d,;,, =5, "zdr +0-d;p, =8, 2 d, and the end of
7=1 =1

7=

period inventory for the deterministic  equivalent approach  becomes

LT
I,7,,(DEPLT) = I, (DEPLT) + SR, (DEPLT) ~d,,, =L, — ¥.d, + X,(DEPLT) ~d,,,

7=1

LT LT+1
=lpn— 3, d,+0-d;r, =1, - Y, d, Since S;=lyrs1, I, (BSLT) =1, ,(DEPLT).
7=1 7=1

In period (LT+2), the base stock policy produces X;mi1(BSLT)=drp, For the

2LT+1

deterministic equivalent approach, we know that X,, ,(DEPLT)+ 2 SR,(DEPLT)

7=LT+2

LT+1 LT

1,74 (DEPLT) = X, 1, (DEPLT)+ ) X, +I;7,,(DEPLT) = X ;7,,(DEPLT)+Y d, +1;,,
=2 7=1
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LT+1

~Y d,21,,; ie. X;7,(DEPLT)2d,;, and then, X, ,(DEPLT)=d,,. Afier the
7=l

arrival of dimp, the following end of period inventory levels are observed

LT+1

I,.,.BSLT)=1I,, (BSLT)+SR,;,,(BSLT) - diry,=8,— 2 d,+X,(BSLT)~- dir., =5,
=1

LT+l LT+2
~Y d,+d,~d;,, =S, Y d, and I,;,,(DEPLT)=1,,,(DEPLT)+SR,.,,(DEPLT)
7=1 7=2
LT+1 LT+ LT+2
~dyr, =l - 2 d,+ X,(DEPLT) ~dyry =l — z d.+d —dip, =l — 2 d,.
7=l 7=l 7=2

Since we know that $>=l 41, I;7,,(BSLT) =1,,,,(DEPLT).

Now assume that at the end of any period # such that #»=(LT+1),

t t
I (BSLT)=S, — d_, I (DEPLT)=l,,,, — d, and Sy=l;pv. In period (&+1),
173 T t LT+ 3

7=t)~LT 7=ty~LT

X, ,(BSLT)=d, and X, (DEPLT) is determined by the constraint X, (DEPLT)

ty+ LT £y
+ 2 SR,(DEPLT)+ I, (DEPLT) = X, ,,(DEPLT)+ ¥ X, +I, (DEPLT) = X, ,,(DEPLT)

Tty +1 =1

-1 P
+2d, Hru —id, 20,5 X, ,(DEPLT)2d, and since the model is of minimization
7=l

7=1

type X, ,,(DEPLT)=d, . Next, a customer demand of d,,, arrives. The end of period

inventory levels for both policies become I, ,,(BSLT)=1, (BSLT)+SR, 4 (BSLT)

t ty t+1
_dtz+1 = S2 - 2 dr +th+l—LT(BSLT) _dt2+1 = SZ - z dz- +dt,—LT _dtz+l = S2 - z dr

T=ty—LT r=ty—LT 7=ty +1~-LT

L3
and 1,,,(DEPLT) = I, (DEPLT)+5R, ,(DEPLT)~d, , =S,~ Y. d,+X,,, ,-(DEPLT)

T=ty—LT
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t t+1
S,— Y d.+d,_;,;-d,,=S,—- Y, d,. Since we know that S;=lrmi,

t=ty~LT =ty +1~LT

—d,

ftl T

I, ,,(BSLT) =1, ,,(DEPLT). This proves our proposition. m
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Appendix B

M/M/1 DUAL SOURCE MODEL

We focus on a single stage, single server, make-to-stock production system in which a
single product is manufactured. It is assumed that the order arrivals are governed by a
Poisson process and that the order processing times of the manufacturing facility are
exponentially distributed. The production system is controlled by a dual base stock policy
with a base stock level of s and a threshold level of z. The manufacturing facility operates if
and only if the finished goods inventory level drops below the target level s, i.e. whenever
the amount of shortfall with respect to the base stock is positive. The facility stops
producing when the finished goods inventory level again reaches the target level s. If the
number of items stored in the inventory is positive, orders are fulfilled from the finished
goods inventory. Otherwise, an order that cannot be satisfied is backlogged. Moreover,
when the inventory on hand decreases to a threshold level of z, the subcontracting option is
utilized. It is assumed that the processing times of the subcontractor are also exponentially
distributed and both the in-house manufacturing facility and the subcontractor have finite

capacities. Note that at time zero, there are s items in the finished goods inventory.

For modeling we define the following notation:
A(?): Number of order arrivals at time ¢

D(t): Number of items produced at time ¢
K(): Number of items subcontracted at time ¢
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R(?):

I():

B(?):

X(@):

N(:

(.

A
U
Hz:

Number of orders fulfilled at time ¢

R(@®)=Min {s+D()+K(¢), A(£)}

Number of items in the inventory at time ¢

I(O)=s+D(O)+K($)-R(¢)

Number of items backlogged at time ¢

B(6)=A(t)-R(?¥)

Finished goods inventory level at time ¢ (either positive or negative)
X(&=I(t)-B(t)=s-[A()-D()-K(1)]

Amount of shortfall with respect to the base stock level s at time ¢
N(@)=s-X(O=A(H)-D(t)-K(?)

C(H=Min {A(?)-D(£)-K(2), s}

Order arrival rate

Processing rate of the in-house manufacturing facility

Processing rate of the subcontractor

Base stock level

Threshold level for the finished goods inventory below which
subcontracting option is utilized

The difference between base stock and threshold subcontracting levels
k=s-z

The system under consideration can be modeled as an M/M/1 queuing system.The

inventory related calculations depend on the cases for which z>0 and z<0. The first case

that should be examined in detail is the one in which z>0. Figure B.1 displays the queuing
process of the finished goods inventory level at time ¢, X(¢).
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A A A y) y) 2 A
u u u )7 u

wtu,

Figure B.1: X(¢) Process when z>0

Compared with the queueing model in which X{(7) is the underlying queuing process as
described above, the model in which N(?) is the underlying queuing process is easier to deal
with. In fact, these two queueing models are equivalent. The only difference is M(¥) is the
amount of shortfall with respect to s; i.e. N(t)=s-X(f). Therefore, from now on, we will
model the production system as an M/M/1 queueing system in which N(?) is the underlying
queuing process as displayed in Figure B.2.

A A A A A A A

)7 J u ) u wp, pta,

Figure B.2: N(¢)=s-X(¢) Process when z>0

In order to have a stable system, the total processing capacity, which is the sum of the
capacities of the in-house manufacturing facility and the subcontractor, should be sufficient
enough to meet the order arrivals; i.e. the total utilization of the system, u/~u+u, should be

greater than or equal to the order arrival rate 4.
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The other case that should be examined in detail is the one in which z<0. Figure B.3

below visualizes the X(#) process:

iﬁ?

wp, pp

Figure B.3: X(¢) Process when z<0

And the queueing process that is easier to deal with can be constructed as shown in

Figure B.4 below:

utp, nip,

Figure B.4: N(f)=s-X(¢) Process when z<0

The steady state probabilities of the N(f) process can be calculated in the following

way:
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(A-pA-p)p'
uk+l (ﬂt _ A{) _ lk+l#z

H -4 .
:  ifA=p & A<y
+2p -(kaDas DR EASA

,ifAzu & A<y,
B =

p=CyB, i=1,..k
U

t

The objective of the model proposed is to minimize the long-run average operating
costs of the manufacturing facility; which consist of the inventory holding cost,
backlogging cost, subcontracting cost and in-house production cost. Let / be the inventory
holding cost per item per period, b be the backlogging cost per item per period, ¢ be the
subcontracting cost per item per period and d be the in-house production cost per item per
period. Assume that EJ] denotes the expected inventory level, E[B] denotes the expected
number of backlogged items, E[K] denotes the expected number of items subcontracted,
and ETH] denotes the expected number of items produced in the in-house facility. Then, the
total expected cost, E[TC], can be calculated as:

E[TC]=h.EI]+b.E[B]+c.E[K]+d.EH]

We first focus on the case z>0. Then, the probability distribution of the number of items

in the inventory can be calculated as follows:
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I(f) = Max{s — N(£), 0}

oy
PU=0)=P(V2s}= 3 (DR = L
i=5— ¢ 1-—=

A,

&y B, itnzz
PU=n}=P(N=s-m=1"

(_)k __)s—n—k Po , if n<z
7"

Moreover, we know that;

C(t) = Min{N(),s}

(é—)"Po, ifn<s-z=k

P{C=n}=P{N=n}=
(i)k(i)"'kpo, ifn>s-z=k

t

2’ s~k
1 (l'u'—)
P{C=s}=P{N 25} =(—-)"—‘—A—P0
g 2L
K,

We now focus on the case whend # 1 & A< p,. Then, it seems easier to calculate

ETI], expected inventory level in the long run, from E[C] since we know that E[J+-E[C]=s.

E[C]= i nP{C = n}
n=0
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( )s—k
k-1 s=k-1
=Y )P+2(+k>(—)( IR Ay b
=0 M =0 1—-—
K,
{/1“‘[#,’"" AR L, — A (=) | kAR A=)+ A = AN~ D
= D = )= A U= (=) =4}
El1]=5-EIC]
T AR L = AR W=D A )+ A - AN} —
PR T T Py ey (=AW (= D=4 4}

In order to calculate the expected number of backlogged items, we perform the

following operations:

B(t) =Max{N(t)-s,0}

k+1 ’1 s—k
- 2.2
P{B=0}=P{N<s}= 2(—)P+};(—)( )R (—)" o x|k
=0 i=1 1__ K, 1—-—
u K,

PB=n} =PI =541} = ™
_ oo _ 3 ASH (ﬂ _ ﬂ)
E[B]= Z”P{B =n}= Iuts—k—l ('ut _ ﬂ)[ﬂkﬂ (/‘lt _ /1) _ )k ﬂz]

n=0

The expected number of items subcontracted and produced are calculated as follows:
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k+1

U
_—tz_p
G -2) "

v A N (A Ay At =AY =+ A - 4)
E[H]= 2yp+Y (&) R | =
] ﬂ[;(ﬂ) °+n2=1(u) R °} B (=), - )

E[K]=p,Y PN =k+n}=

Moreover, we know that the demand is satisfied either through in-house production or
subcontracting. Therefore, E[K]+E[H]=A which is exactly the same in our case.
Assuming that k, the difference between base stock and threshold subcontracting levels,

is fixed, we can write the total expected cost as a function of s, the base stock level:

p{kA (A=) + A=A + ")) (=A+ 1)
(—/1+,U)(—,Uz/1“k +ﬂl+k(—/1+,u,))
, (A +u) 'ut1+k—s ( Ak yt—k+s (~A+p)+ Ak (_ A5 4 yt—k+s ))
(“A+p) (A" + 1 -2+ 1))
+b A At o B A-p)
A+ 1) (s A+ A ) A ) (A T (A )
QA=) (A At )+ A+ ) A )
A+ 1A+ ) (~ A + (A 1))

E[TC(s)]=h| s—

It can be observed that the subcontracting and in-house production costs turn out to be
constant terms since & is assumed to be fixed. Note that, the second term of the inventory
holding cost turns out to be constant as k is fixed, too. Therefore, these three terms can be
ignored while performing minimization and the optimization calculations are focused on

the portion of the total expected cost function which is variable in s.

Lemma B.1: E[TC(s)] is convex in s.
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Proof:
AE[TC(s)]= E[TC(s +1)]- E[TC(s)]
G+ A" A- i)y
=h- k+l k1
‘uzﬂ + ﬂ (2’ - ﬂt)
Af(A-p) A
=h-(h+b : —)
OO o W
It is clear that as s increases, the difference function AE[7C(s)] increases. (Note that
A

—<1). Therefore, AE[TC(s)] is non-decreasing in s and it can be concluded that
H,

AE[TC(s)] is convex in s.

Proposition B.1: The global optimizer s* that minimizes the total cost equals:
Kl kil
LogiMEA"+ 1" =)}
y A (h+ DA (A—4)
s (k)= 2
Log(—)

t

]

where s"(k) is the optimal s that minimizes the total cost when k is constant.

Proof: Using Lemma B.1, we calculate the root of the difference equation and obtain the

above mentioned global optimizer in the following way:

—h_ ﬂ’:utk()“_.u) _i s _
AT == B +u’”‘(ﬂ—u,)(ﬂ,) ~

Having calculated the optimal s, the next step in our study is to calculate the optimal k&
that minimizes the total expected cost. Therefore, E[TC(s (k)] is constructed such that:
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h ﬂ Al+k +ﬂl+k(ﬂ'ﬂ)ﬂ-k
Log{ ]+Log[ z e }
E[TC(s" ()] = he—t2t MA-p
og| —

A+ 2 A-RA+ k) - 1)
('ﬂ"l'ﬂ)(ﬂzﬂ'”k +1ul+k(ﬂ"ﬂt))

Wk Ik Tk Ik -k
Log[ h ]+Log[:]+mg[ﬂza+ ™ Ay 1 L"g[w’] kLOg[:]+Log"”l +™ (A a1 ]
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However, we cannot say anything about the convexity of the above function due to the
complexity of the expressions. Therefore, a closed form for the optimal %4 that minimizes
the total expected cost function cannot be derived. Still we can find the optimal & by
performing numerical analysis and calculate the optimal threshold subcontracting value
Z'(k") by just subtracting the £" value from s" ("), i.e. z'(k)=s (k)-k=s"(k)- s (k) +z"(k").
For instance, if we take 1=9, u=10, ©;=10, h =1, b=50, c=5, d=2, the optimal s”(k) values
for the given constant k values and the resulting total expected cost values can be observed

in Table B.1:
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Table B.1: s'(k) and E[TC(s"(k))] values observed for the given constant k values

k sty |EITCGE" )Y
0 3 37.4842
1 4 31.6109
3 5 28.3309
5 6 28.0775
7 8 27.2811
8 9 27.2377
9 10 27.3493
i1 1t 28.6676
13 13 29.1135
15 15 29.8933
17 16 31.7035

When we plot the TC(s(%)) for each £ and for each s, we observe the below figure:

TC(s(kw

80

A

SR aSa o S " -

A
Figure B.5: TC(s(k)) vs. s drawn for each & displayed in Table B.1

As can be seen in Figure B.5, the total expected cost function displays a convex

function structure in &. The optimal s and k values that minimize the total cost can be found
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by enveloping the minimum values of the total cost functions plotted for each £. Then the
optimal z value can be calculated accordingly. For our specific numerical example, point A
where s™=9, k*=8, z'=s"-k"=1 results in the minimum total cost value of 27.2377.

Note that, all of the above calculations and observations are performed for the case in

which z>0 and 4 # u & A< y,. The calculations should be repeated for the case in which
z>0and A =4 & A< y,, and then for the case in which z<0.

Independently from our studies, Bradley [22] has looked at a similar problem motivated
by the optimal control. Bradley’s model also uses in-house capacity costs and arrives at

similar results to ours.
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Appendix C

PROOF OF PROPOSITION 5.1

We utilize the Simplex Method in order to find the optimal solution to the Single Period
Production Planning Problem, in which two products are to be produced either by a cheaper
or by an expensive plant or by both of the two plants. Note that we assume pi,>p;2,
P2.1>D22, 11> 1, (C1+Cy)-( I1+1)=0 at the very beginning. First, we formulate the problem as

a minimization problem as follows:
Z" =Max ('(pl,lX wtpX,+ pZ,IX 21T P22 X5, ))

subject to

X +X,21;

XatX,2h;

X, +X,,2G;

X, +X,,<Cy;

Xu 20;i=12;j=12.

In order to apply the simplex method, we need to transform the above maximization

problem into the standard form. Let S, denote the slack variable for constraint m=1,..,4.
Then, the problem takes the form:

Z" =Max ("(Pl,lX T Pl,zX 12t P2,1X nt Pz,zX 2,2 ))
subject to

Xy —Xia+s =—1;

X =X+, =—0;
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X1,1+X2_1+s3 =C;
Xl,2 +X2.2 +s5,=C,;

X, 20,i=12j=12.

The problem can be represented in the initial simplex tableau as:

Table C.1: Initial Tableau

ZE*® X X Xoa X0 MY AY) AY) M RHS

Z*+* 1 DL P12 Pai D22 0 0 0 0 0
A 0 -1 -1 0 0 1 0 0 0 -1;<0
RY) 0 0 0 -1 -1 0 1 0 0 -1<0
A 0 1 0 1 0 0 0 1 0 Ci>0
M 0 0 1 0 1 0 0 0 1 C>0

In many situations, it is easier to solve a linear program by beginning with a simplex
tableau in which each variable in row zero has a non-negative coefficient (dual feasible)
and at least one constraint has a negative right-hand-side (RHS) (primal infeasible).
Starting with our initial tableau which corresponds to a dual feasible and primal infeasible
solution, we utilize the Dual Simplex Method in order to find the optimal solution.

Since [;>h, we know that -/;<-,. Therefore, S; should leave the basis displayed in Table
5.2. By applying the Minimum Ratio Test, Min {p;;, pi2}=p12 (since plant 2 is the
cheaper plant), we see that X, , should leave the basis. Then, the tableau takes the following

form:
Table C.2: S;leaves, X; , enters in Table C.1
zZ X1 Xio X X S S Y Sy RHS
z 1 PriP12 0 ) 2NN Y LT 0 0 0 -p12.11
X2 | 0 ] 10 0 -1 0 0 0 1,>0
AV 0 0 0 -1 -1 0 1 0 0 -L<0
A 0 i 0 1 0 0 0 1 0 C>0
s, | o 1 o 0 1 1 0 0 1 Co-ly?
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Depending on the signs and the relations of the right-hand-side values of the basic

variables, different variables might leave and enter the basis. There are three different

possibilities:

Case 1: If C3-1;=0; S, should leave and X; » should enter the basis and the resulting tableau

can be found below:

Table C.3: §; leaves, X; ; enters in Table C.2

z" X4 X1 X5 X2 8 S, 8 8 RHS
z" 1 PLiP12 0 D21P22 0 pi2 py O 0 p12:li-pash
X1 0 1 1 0 0 -1 0 0 0 >0
X2 0 0 0 1 1 0 -1 0 0 5L>0
S3 0 1 0 1 0 0 0 1 0 Ci>8
Sy 0 -1 0 -1 0 1 1 0 1 Co-(I+])?

We still cannot be sure whether we have reached the optimal tableau. There are three

different possibilities for Case 1.

Case 1.1: If C>-1;20 and Cy-(/1+1,)20; since each variable in row zero has a non-negative
coefficient and each constraint has a positive right-hand-side value, we have reached a dual
and a primal feasible solution. Therefore, we can say that optimal solution is found with an
objective function value of Z*=-Z“=p1 2.1t p22.h and the production amounts of X;,=/)

and Xz 2 =lz.

Case 1.2: If Co-51=0, Co-(I+12)<0 and p1,1-p12< P21-P22; Ss should leave and X;; should

enter the basis resulting in the following tableau:
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Table C.4: S,leaves, X;, enters in Table C.3

Z7 1| Xy X X1 X2 8 S, S3 Sy RHS
o (P21-P22) (P1L1-12) . Prahiprad
Zjrypoe o -(P11-P12) 0 pu P22 0 pupia +p11-p1.2).[Co-(l )]
Xi2| O 0 1 -1 0 0 1 0 1 Cy-1>0
X2lolo o 1 1 0 1 o 0 L>0
ss1olo o 0 0 1 1 11 (Ci+Cp)-(ls +5)=0
x.Jof1 o 1 0 -1 1 0 - (I+1,)-Cy>0

We know that C,-/;=0, therefore C,-/,=0 since /;>/;. Since we have reached dual and
primal feasibility, we can say that, we come up with an optimal solution with
Z"=p1 2 tpazds (01 1-p1) Co-(l+B)]; X =(liHh)-Ca; X1 2=Co-h and X 7=h.

Case 1.3: If Cz-llz(), Cz-(11+lz)<0 and P1,1°P122P2,1P225 S4 should leave and X2,1 should

enter the basis resulting in the following tableau:

Table C.5: Ssleaves, X, enters in Table C.3

z" X4 X X501 X, $; S; 83 Sy RHS
. (P11-P12) P2.1P22) -p12h-Paahy
z 11 -(p21-P22) U 0 P12 Pa 0 parpa Hp2.1022)[Co-(1i )]
X2| 0 1 1 0 0 -1 0 o0 0 >0
X:2| 0 -1 0 0 1 1 0 0 1 Cy-1;=0
s, | o 0 0 0 0 1 11 1 (C+Cy)-(liH)=0
X, | 0 1 0 1 0 1 4.0 - (+5)-Cr>0

Since we have reached dual and primal feasibility, we can say that the optimal solution
to the problem is Z$=p1 ,2.11+p2 ,2-12‘(P2,1'P2 2[Co-(hth)]; X 2=ly; /Yz,1=(11+12)-C2 and
Xo2=Cr-hs.

Case 2: If C>-11<0 and Cy-l;<-l; S, should leave and X;; should enter the basis and the

resulting tableau is:
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Table C.6: S4 leaves, Xj,; enters in Table C.2

Z7 | Xy X, X Xa2 N Y Sy RHS
zZ' |1 0 0 pu (p:;f;z) pa O 0 pupi2 D12hHP1L1-P1.2)(Co- 1)
Xi2| O 0 1 0 1 0 0 0 1 C>0
Y 0 0 0 -1 -1 0 1 0 0 -1<0
ss{olo o 1 1 10 1 1 (C+C-I?
xalol1 o o B 4 0 0 1 1-C,20

We have mentioned that (Cy+C5)-(l1+5)=0 not to observe any infeasibilities; which also
means that (C1+C;)-1;=0. Then, S, should leave the basis and either X ; or X2 should enter

the basis.

Case 2.1: If C5-11<0, C-ly<-1; and P11-P122ZP2.17D225 S should leave and X5 should enter
the basis resulting in the following tableau:

Table C.7: S, leaves, X enters in Table C.6

Z" | Xy Xia Xy X S S 8 Sy RHS
zZ" |1 0 0 0 -((I;;z’ll 5;2'22)) P Pt 0 pupy [pizhepand Y0101 (Corlh)
X[ O 0 1 0 1 0 0 0 1 C>8
X | 0 0 0 1 1 0 10 0 L>0
A 0 0 0 0 0 1 1 1 1 (CHCy)-(IyH)=0
X1 0 1 0 0 -1 -1 0 0 -1 11-Cy>0

Since each variable in row zero has a non-negative coefficient and each constraint has a
positive right-hand-side value, we have reached a dual and primal feasible solution.
Therefore, we can say that optimal solution is found with Z*=p1 2112 1.b-(p1,1-p12)(Ca-1);
X1,1=l-Cy; X12=C; and X5 1=

Case 2.2: If C3-11<0, Cy-li<-; and p1,1-P1,2Sp2,1-P22; S2 should leave and X, should enter
the basis resulting in the following tableau:
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Table C.8: S, leaves, X3, enters in Table C.6

Z7 | Xy X X X5z Si M AR M RHS
P12y
zZ°|1]0 o0 _((’;’l-f’ 2'2)) 0 pui (P:,_rpl,z) 0 pupy (111 2)(Coh)
LIP12 P2 [Pri-p12tps2lds
X2 O 0 1 -1 0 0 1 0 1 Cy-1,?
X2| 0 0 0 1 1 0 -1 0 0 5L>0
S ] 0 0 0 0 0 1 1 1 1 (Ci+C)-(1+1)z0
X lol1 o i 0 -1 1 0 -1 A

Case 2.2.1; If Cp-h<0, Co-li<-by p11-P125P21-P22 and Cr-520; since Cr-11<0, we know
that [;-C>0, then (/;+4)-C»>0. Since we have reached dual and primal feasibility, we can
say that optimal solution is found with Z'=p12.h-(p11-012)(Co-l)H(@1,1-P12) +P2.2] 23
Xy,1=(hith)-Cy; X1 2=Co-h and X; 2=

Case 2.2.2: If C3-11<0, C5-l,=<-1, P1,17P125P21°P22 and C,-1,<0; if Cy-1,<0, we know that
L-C,>0 and then (/;+4)-C,>0. Therefore, X, should leave the basis and X3 should enter

the basis which results in the tableau below:

Table C.9: X, leaves, X3 enters in Table C.8

Z" | X, X2 Xy X S S 8 Sy RHS
D120t P11-P12)(C-hy)
Z7|1]0 _((1;72,1-?2,2)) 0 0 pu P 0 pup L1121 P22l
LIPL2 H (P22 @121 )] Corl)

Xa] 0] o0 1 1T 0 0 1 0 - 1-C>0
X2 0 0 1 0 1 0 0 0 1 C>0
s;lo]o 0 o o0 1 1 1 1 (C+C)-(l+5)20
X ]o] 1 1 0 0 -1 0 0 0 1,50

Since we have reached dual and primal feasibility, we can say that optimal solution is
found with  Z'=py2Ji-(p11-P1)(Co-)HP11P12) P22l - [(P20P22)-(P1,1-P12)1(Co-h);
X1,1= 11 ; X2,1=12-C2 and X2,2=C2.
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Case 3: If C;-11<0 and Cy-I1=-I5; S, should leave and X;» should enter the basis and results

in the below tableau:

Table C.10: S; leaves, X5 > enters in Table C.2

z" X4 Xz Xoa X, 8 S5 S3 84 RHS
Z" | 1 | pupis 0 pupr 0 p2 Py 0 0 pi2li-przds
X2 0 1 1 0 0 -1 0 0 0 >0
X5 0 0 0 1 1 0 -1 0 0 L>0
83 0 1 0 1 0 0 0 i 0 C>0
S4 0 -1 0 -1 0 1 1 0 1 Co-(li+1)<0

In this case, S4 should leave and either Xj; or X5 ; should enter the basis according to

the relationship between p1,1-p12 and p;,1-p2 2 values.

Case 3.1: If Cy-1;<0, Co-11=-L, and p11-p12<P2,1-P2,2; S+ should leave and either X; ; should

enter the basis resulting in the following tableau:

Table C.11: S4 leaves, Xj ; enters in Table C.10

Z" | Xy Xz X1 X2 8 S5 S 8 RHS
- »2,1P22) @11p12) -p12d1-pagh
zZ7|1)0 (P11-P12) P P2 R ki 1212 Co-(hth)]
Xi2| O 0 1 -1 0 0 1 0 1 Cr-1p?
Xo2| 0 0 0 1 1 0 -1 0 0 L>0
s;{olo o 0 0 1 1 11 (C+Co)-(lrHp)=0
Xalol1 o 1 0 -1 4 0 -1 (eth)-Co>0

Since C;-1;<0, we know that /;-C>>0 and then we can say that (/;+})-C>>0. Therefore,
the optimal solution depends on the sign of Cy-/;.

Case 3.1.1: If C>-1;<0, Co-ly=-b, p1,1-P125p2,1-P2,2 and Cy-5,20; since each variable in row

zero has a non-negative coefficient and each constraint has a positive right-hand-side value,
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we have reached a dual and primal feasible solution. Therefore, we have found the optimal

solution with Z'=p; 2./i+p22.b-(p11-012)-[Ca-(li+1)]; Xi.1=(li+h)-Co; X1 2=Cr-ly and X p=h.

Case 3.1.2: If C,-1;<0, Cy-l1=-1,, PL1-P125D2,1-P2,2 and C,-1L,<0; X, 2 should leave and X2,1

should enter the basis resulting in the following tableau:

Table C.12: X ; leaves, X, enters in Table C.11

Z" | X, X1, X1 X0 8 8 S A RHS

z" (D2,17P22) Prahpaa*h
110 (01 1p12) 0 0 piyi pi O pop2 (@121 Co-(hi+h)]
L2 HP1-P22)-(P11-P12)1(Co-l2)

X5, ] 0 0 -1 1 0 0 -1 0 -1 L-C>0
X52| 0 0 1 0 1 0 0 O 1 C>0
Ss 0 0 0 0 0 1 1 1 1 (C+Cy)-(I+)=0
x.] 0] 1 1 0 0 -1 0 0 0 150

Since we have reached dual and primal feasibility, we can say that optimal solution is

found with Z'=py2.Ji+p22.lo-01,1212) [ Co-(Urt ) (P2,1-P22)-@11-21 2 Co-h);  Xi=hs
zYz,l= hL-Cyand X'2,2=C2.

Case 3.2: If Co-11<0, Co-l1=-1; and p1 1-p1,22P2,1-P2.2; S4 should leave and either X ; should

enter the basis resulting in the following tableau:

Table C.13: Syleaves, X5 ; enters in Table C.10

Y Avded Xia Xio X4 X5 S S, S5 S; RHS
@11-P12) P21-P22) Pr2h1-pazls
il -(21-P22) o 0 0 +p, DM 0 Pupe Hp21-P22) Co-(h )]
Xi2| O 1 1 0 0 -1 0 0 0 L>0
X2| 0 -1 0 0 1 1 0 O 1 Cy-11<0
A% 0 0 0 0 0 1 1 1 1 (C1+C2)-(ll+lz)20
X { O 1 0 1 0 -1 -1 0 -1 (I, +1,)-Co>0




Appendix C: Proof of Proposition 5.1 99

Since C;-11<0, we know that /;-C>>0 and then we can say that (/)+/,)-C>>0. Therefore,

X5 should leave and X ; should enter the basis.

Table C.14: X;, leaves, X, enters in Table C.10

Z" | X1y Xz X, X5 S 8 8 Sy RHS
. @Lp1) Pradprph
Z |10 0 O Paapag) PW P2 0 pup2 H@1,1P12)-2,1-722)1(Co-1)

ki (2102 LCo- (Ui +h)]

Xi2{ 010 1 0 1 0 0 0 1 C>0
Xalo|l1 0 0o a1 a1 0 o -1 1-C>0
ss1o]lo o o 0 1 1 1 (CHC-(li+h) 20
X101 0 0 1 1 0 -1 0 0 L,>0

Since we have reached dual and primal feasibility, we can say that optimal solution is
found with Z'=p12.litpa2lo-[(1,1-p12)-02,1022)1Co-h)-2,1-P22) [ Co-(+h)]; Xai=h-Co;
X1,=C; and X 1=D,

Note that some cases are sequenced under more than one case instance. For instance;
the case in which Cy-[;=0, C,-(/;+5)<0 and p; 1-p12=p2,1-p2 2 can be classified either in Case
1.2 or Case 1.3. That is why alternative optimal solutions might be observed.

Different optimal solutions can be observed based on different combinations of p;;, C;

and /; values. Which parameter condition results in which optimal solution is presented in

the above iterations. m
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