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ABSTRACT 

 

In this thesis, a continuous-review, infinite horizon inventory pricing and replenishment 

problem with capacitated supply is analysed.  Demand is modeled as a  

Markov-modulated Poisson process where the potential demand rate depends on an 

external environment process. The supply side is modeled by a single server with 

exponential processing times. The structures of the optimal replenishment policies are 

demonstrated for two pricing models applied in business. One of these is the static pricing 

method where the price of the item remains fixed over time, and the other is the dynamic 

pricing method where the price may change over time depending on the current inventory 

level and the external environment. It is found that the optimal replenishment policy is an 

environment-dependent base-stock policy for both pricing models. Moreover, these two 

methods are compared in a numerical study and it is concluded that the dynamic pricing 

method would result in a limited improvement on the firm’s profit compared to static 

pricing when both methods are applied optimally, and the benefit of dynamic pricing tends 

to increase with the demand variability.  
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Chapter 1 

 

INTRODUCTION 

 

 

The objective of inventory management is to reduce the losses caused by the 

mismatches that arise between supply and demand processes. With the advances in 

computers and communication technology, this discipline has improved very much in the 

past few decades. Today, the role of inventory management has changed from cost control 

to value creation. Therefore, the issues inventory management studies now include both the 

traditional decisions such as inventory replenishment and in addition the strategic decisions 

made by the firm such as pricing. Since the joint optimization of pricing and replenishment 

decisions results in significant improvements on the firm’s profit [1], most of the current 

research study the integrated pricing and replenishment decisions rather than sequential 

optimization of these two decisions. The inspiring results obtained on this topic so far 

encouraged us to analyse an inventory pricing and replenishment problem. 

The structure of the demand and supply processes is the main characteristic of the 

inventory system studied, and it has a direct effect on the structure of the optimal pricing 

and replenishment policy. In the inventory system studied in this thesis, the demand is 

time-varying, price-sensitive and stochastic, and the capacitated supply process is also 

stochastic. A single item is produced in a fluctuating environment. The uncertainty in 

demand and supply is a common element of many inventory management problems in 

literature. However, the problems studied recently also take into account unpredictable 

variations in demand and so does the problem analysed here. Moreover, the price 
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sensitivity of demand is taken into account since price has become a very effective 

management tool to control the demand. With the increasing popularity of E-commerce 

applications, price changes are easy to implement on the Internet, and therefore the firms 

are interested to try innovative pricing strategies such as dynamic pricing (where the price 

changes over time). 

Dynamic pricing models have been attaining great popularity in both production and 

service industries. Airlines and hotels charge different prices for the perishable and  

non-renewable set of resources they offer to their customers [2],  retail chains apply 

markdown pricing and discount the prices to clear out the inventory before the end of 

season, and companies selling goods with short or long life-cycle such as Coca Cola and 

Amazon.com has also tried to apply dynamic pricing model [3], [4]. Because of the 

increasing interest on dynamic pricing model, the structure of dynamic pricing policies 

with replenishment decisions are analysed here along with the traditional (static) pricing 

model with replenishment where the price remains fixed over time. 

In this thesis, we study a continuous review, infinite horizon inventory pricing and 

replenishment problem with capacitated supply where the demand is modeled as a  

Markov-modulated Poisson process and there is a single server with exponential processing 

time. There is no set up cost, and the production cost is linear. Moreover, the inventory 

holding cost is convex and nondecreasing in the inventory level.  

In Chapter 2, we provide the necessary background and literature review on the 

inventory models with integrated pricing and replenishment decisions and with similar 

system definitions. 

In Chapter 3, we introduce the basic definitions of Markov Decision Processes and 

present the method used to obtain the analytical results in this thesis on a simplified 

inventory pricing and replenishment problem with stationary Poisson demand where static 

pricing is applied.  
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In Chapter 4, we analyse the static pricing method with replenishment and describe the 

structure of the optimal replenishment policy for a given price. Moreover, we investigate 

whether the optimal policy reflects any interesting characteristics.  

In Chapter 5, we study the dynamic pricing method with replenishment and again 

characterize the optimal replenishment policy. Moreover, we compare the static and 

dynamic pricing methods in a numerical study using relative value iteration method. 

The thesis is concluded with a short summary of the performed study and future 

research work. 
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Chapter 2 

 

LITERATURE SURVEY 

 

 

Pricing models and integrated pricing and production decisions have been studied since 

1960s, and the excellent reviews of Yano and Gilbert [5], Chan et al. [4], Elmaghraby and 

Keskinocak [3], and Bitran and Caldentey [2] provide a summary of the research papers on 

this area by focusing on different aspects of the problem. The characteristics of the general 

model which is the focus of Yano and Gilbert’s review is the one mostly similar to the 

inventory pricing and replenishment problem studied in this thesis. Therefore, this literature 

survey is organized in a similar manner to this review.  

The characterization of the optimal inventory pricing and replenishment policy mostly 

depends on the assumptions on demand and cost structure of the problem. Here we will 

discuss the models with stochastic demand with one exception which is the work of 

Kunreuther and Schrage [6] since they assume the demand is deterministic. They develop 

an algorithm for determining the pricing and ordering decisions for a firm producing one 

product to satisfy deterministic, time-varying, price-sensitive demand in finite horizon. The 

time-varying demand, although it is stochastic with a specific definition of the process, is 

the most important assumption of our model, and the work of Kunreuther and Schrage is 

one of the earliest introducing this concept to the problem.   

They assume that unsatisfied demand is lost and develop a two-step algorithm which 

finds the optimal production schedule for a given price and then chooses the optimal price 

based on the marginal costs associated with the production schedule of each price. Their 
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algorithm gives bounds on the optimal price, but it does not necessarily give the optimal 

solution. 

One of the popular approaches for defining the stochastic demand as a function of price  

is to define the demand as a random perturbation plus a decreasing function of price 

(additive demand), d = η + u(p), or multiply the perturbation with the demand function 

(multiplicative demand), d = η u(p). Zabel [7] studies first the multiplicative demand case 

for a single-period problem with convex production and linear inventory holding cost. He 

also assumes that unsatisfied demand is lost and demonstrates that there is a unique optimal 

policy for every initial stock level, and when the inventory level is sufficiently low, the 

optimal price is less than the optimal price with deterministic demand.  

Zabel [8] then extends those results to the multi-period problem with both additive and 

multiplicative demand cases where the demand for period n, dn, is given such that  

dn = ηn u(pn) for the multiplicative demand and dn = ηn + u(pn) for the additive demand. He 

finds that the firm should produce when the initial inventory is below a critical point, xn, 

and the price is a decreasing function of the inventory. Moreover, he demonstrates that the 

optimal replenishment level is decreasing in the initial amount of inventory for the additive 

demand model, and the optimal price, the optimal replenishment level and the critical point 

of inventory decrease in the number of periods left.  

Zabel is one of the first to characterize the optimal inventory replenishment policy as a 

critical number policy in a multi-period model without set up cost. Many researchers 

studied inventory problems without set up cost and with different assumptions on the 

demand and supply processes, and they also found that the critical number policy, the so-

called “base-stock” policy, is in fact the optimal inventory replenishment policy when there 

is no set up cost. We will now discuss the other models without set up cost and with 

similarities on the other assumptions with our model. 
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Thowsen [9] studies the case of price-sensitive nonstationary demand consisting of a 

general function of price with an additive stochastic component. The unit production cost is 

linear, inventory holding and shortage costs are convex, and backlogging,  

partial-backlogging and lost sales assumptions are considered along with the assumption of 

deteriorating inventory with a deterministic fraction. He conjectures that a  

period-dependent base-stock list price (y, p) policy, similar to critical number inventory 

policies, is optimal, and specifies the conditions for its optimality. The (y, p) policy is 

defined such that: For the nth period, if the inventory level is below yn, then order up to yn, 

and do not replenish otherwise. Then, charge the price pn(I) on the optimal price trajectory 

depending on the current inventory I.   

Federgruen and Heching [10] study a periodic-review inventory pricing and 

replenishment problem where the demand is stochastic and the unsatisfied demand is 

backlogged. They assume that one-period expected inventory holding cost function is 

jointly concave in order-up-to-level and price, production cost is linear and inventory 

holding cost is convex. They demonstrate that a base-stock list price policy is optimal for 

both average and discounted profit in finite or infinite horizon. Their results also extend to 

the case with production capacity limits.  

Chan et al. [11] study a finite horizon inventory pricing and replenishment problem 

with limited capacity, lost sales and the possibility of rationing. The demand is stochastic 

and price-sensitive such that the random error may depend upon the selected price. The 

production and inventory holding costs are linear, and all parameters are nonstationary. 

They study control policies in which either a pricing or a production decision is made at the 

beginning of the horizon; this decision is held fixed throughout the horizon and decisions in 

the other category are allowed to change in each period.  

In the scenario where they fix the price at the beginning of the horizon and determine 

the production quantity before the demand is realized at each period n (Delayed Production 
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Scenario), they demonstrate that the optimal policy has an optimal order-up-to (Yn) and 

save-up-to (Sn) level in each period such that if the inventory level is below Yn, then order 

up to Yn, otherwise do not replenish. Moreover, the rationing is allowed to keep the 

inventory level at the amount Sn, so the firm may reject customers to obey the optimal 

policy and make sure the inventory level at the end of the period is at least Sn.  

In the Delayed Pricing scenario where production decision is made at the beginning of 

the horizon and pricing decisions are made at the beginning of each period, they show that 

the optimal prices are not necessarily monotonic in the inventory levels. Moreover, from a 

computational study, they conclude that the performance of the dynamic pricing policy 

tends to increase with demand seasonality and tightness of capacity, and the benefit of 

dynamic pricing under increasing uncertainty is less clear.    

The demand uncertainty is reflected in our model with the Markov-modulation concept, 

and in our numerical study we investigate the benefit of dynamic pricing compared to static 

pricing for one of the possible uncertainty cases that is not included in the computational 

study of Chan et al. 

The models discussed until now are all finite horizon and periodic-review problems. 

Our problem is an infinite horizon and continuous-review problem, and now we will 

discuss the problems with these assumptions and still without set up cost. These studies 

also conclude that the base-stock policy is the optimal replenishment policy when there is 

no set up cost.  

Li [12] studies a continuous-review model where the demand and production are 

Poisson counting processes, and the demand is price-sensitive. He assumes that unsatisfied 

demand is lost. The production and holding costs are linear, and the capacity decision is 

made at the beginning of the horizon. Li shows that for both cases in which a single price is 

chosen and in the case where price may be changed dynamically, a base-stock policy is 
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optimal. Moreover, he shows that the price is a non-increasing function of the inventory 

level in the dynamic pricing case. 

Gayon [13] studies a single-server make-to-stock production system producing one 

item to satisfy price-sensitive Poisson demand. The production time is exponential. He 

shows that for the infinite horizon model with either the discounted or average cost 

criterion, the optimal policy is a base-stock policy with prices decreasing with the current 

inventory level. We generalize his results to the systems operating in a fluctuating 

environment.   

Now we will discuss the problems with set up cost where the structure of the optimal 

replenishment policy slightly changes. The only change in the optimal policy is the 

addition of a second inventory level, s, which is the threshold value to give an order and the 

optimal policy is to give an order up to the so-called “order-up-to-level”, S, when inventory 

falls below the threshold value.  

Thomas [14] studies the periodic-review, finite horizon model with incapacitated 

supply and stochastic, price-sensitive demand. He assumes that unsatisfied demand is 

backlogged. He proposes a simple period-dependent (s, S, p) policy. Moreover, he claims 

that price depends on the initial inventory level at the beginning of the period. Then, 

Thomas also provides a counterexample for this policy and he conjectures that an (s, S, p) 

policy is optimal when prices satisfy certain conditions.  

Chen and Simchi-Levi [15] study a periodic-review, finite horizon model where the 

demand is a general function of the form dn = αn Dn(pn) + βn for the nth period. The 

perturbations αn and βn are random variables satisfying E[αn] = 1 and E[βn] = 0. All the 

unsatisfied demand is backlogged. They demonstrate that in the case of additive demand 

the base-stock list price policy (s, S, p) is optimal where the price is determined according 

to the inventory at the beginning of the period, and for more general demand functions, this 

policy is not necessarily optimal. Moreover, Chen and Simchi-Levi [16] extend their results 
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to the infinite horizon case and show that (s, S, p) policy is optimal for both the discounted 

and average profit models with the demand function defined above. 

Feng and Chen [17] study an infinite-horizon continuous-review model where the 

demand follows Poisson processes that are parameterized with prices (the demand rate for 

pi is λi). There is a fixed set up cost and a variable production cost, and the holding and 

shortage costs are jointly determined by a quasi-convex and unbounded function depending 

on the current inventory level. The replenishment can be done instantaneously and there are 

no capacity limits. Unsatisfied demand is fully backlogged. The pricing decision is to 

choose the price to charge from a finite set (p1>p2>…>pN), and Feng and Chen introduce 

the concept of a maximum increasing concave envelope via which dominated prices can be 

excluded. The envelope is actually a way of creating a lower bound on the revenue rate  

(λipi) corresponding to each price where λ1< λ2<…<λN. 

They show that the optimal policy has the form (s=dn, dn-1, …, d1, D1, …, Dn-1, Dn=S), 

where s is the reorder level, S is the order-up-to point, and dn-1, …, d1, D1, …, Dn-1 define 

the upper and lower inventory levels for each price such that it is optimal to charge price pi 

when the inventory level is between di and di-1 or Di-1 and Di. The former inventory range 

to charge price pi may appear counterintuitive since it contradicts the common intuition to 

charge higher when the inventory is low. However, it comes from the fact that it is optimal 

to stimulate demand by lowering the price and deplete enough inventories to trigger an 

order to reduce the shortage costs. This happens when the inventory levels are relatively 

low or some of the di values are negative. 

The work of Feng and Chen uses a demand model very similar to ours except that we 

include a fluctuating environment concept with continuous pricing, as opposed to their 

discrete prices, in our model. The difference between the optimal replenishment policies of 

the two models can be expressed as due to the differences in model assumptions. 
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Although it is not a pricing model, we find it worthwhile to discuss the work of Ha [18] 

on inventory rationing since the demand and supply processes have similarities with ours, 

and the lost sales cost can be taken as the price. Ha studies the problem of inventory 

rationing for a make-to-stock production system producing a single product to satisfy 

several demand classes. Unsatisfied demand is assumed to be lost with a cost charged at 

each lost sale. The demand is a Poisson process and the production is exponential. Ha 

shows that the optimal policy can be characterized by a sequence of monotone stock 

rationing levels. That is, there is a critical inventory level for each demand class such that it 

is optimal to start rejecting this customer class in anticipation of future arrivals of higher 

priority customers when the inventory level falls below the critical point.   

Besides searching for the optimal pricing policy for a specific problem, a comparison of 

static and dynamic pricing method is done by Chen et al. [1]. They study an infinite 

horizon inventory pricing and replenishment problem where the demand is  

price-sensitive and modeled by Brownian motion. They consider both the long-run average 

and discounted objectives. They show that the joint optimization of both decisions may 

result in significant profit improvement over the traditional way of making sequential 

optimization. Moreover, they also show that changing price with the inventory level 

(dynamic pricing) will only result in a limited profit improvement over static pricing when 

both methods are optimally applied. This result is compatible with the results of our 

numerical study.  

The studies reviewed so far include the joint optimization of pricing and replenishment 

policies and/or the structure of the optimal replenishment (pricing) policy for a given 

pricing (replenishment) method. In none of the models, the possibility of unpredictable 

shifts in demand is included since none of these studies include the fluctuating demand 

environment in an inventory pricing (static or dynamic) and replenishment model. 

However, there are many research studies including the possibility of unpredictable shifts 
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in demand in an inventory replenishment problem. A widely-used approach to insert the 

effect of fluctuating environment is defining the demand process to be driven by an 

exogenous Markov chain. The demand process defined as such is called a  

Markov-modulated demand process. Now we will discuss mainly the models with  

Markov-modulated demand and various assumptions on the other elements of the model.  

Before introducing the studies with Markov-modulated demand, it is worthwhile to 

note the early work of Karlin [19]. Karlin is one of the first to introduce to the dynamic 

inventory model the changes in the demand distribution from period to period such that the 

demand constitutes a sequence of independent random variables over successive periods 

which may not be identically distributed. He assumes that purchase cost is linear and 

holding and shortage costs are convex. There are no time lags in delivery, and the 

unsatisfied demand is lost. Karlin shows that a base-stock policy is optimal at each period 

but could vary since the demand distribution may change at each period. 

Moreover, there are studies which provide algorithms to obtain the steady state values 

of the systems they consider. For the inventory system we now discuss there are two 

algorithms as such to our knowledge. Kalpakam and Arivarignan [20] discuss an  

(s, S) inventory model with lost sales and Markov-modulated supply and demand rates. 

They provide an efficient algorithm to evaluate the steady state values and also obtain the 

transient and limiting values of the mean reorder and shortage rates. Feldman [21] derives 

the steady-state distribution of the inventory position for a continuous review (s, S) 

inventory system where the demand is a discrete-valued Markov-modulated compound 

Poisson process and the orders are replenished instantaneously.   

A special case for the Markov-modulated demand is the stochastic periodic demand 

case where the demand distribution changes in cycles. Zipkin [22] studies a  

periodic-review, infinite-horizon inventory problem with stochastic periodic demand and 

no set up cost where unsatisfied demand is fully backlogged. He shows that a periodic 
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base-stock policy is optimal. That is, the base-stock level depends on the state of the cycle 

the system currently occupies. Kapuscinski and Tayur [23] extend this result to the case of 

capacitated supply for the finite-horizon, the discounted infinite-horizon and the  

infinite-horizon average cost criteria. 

We use the Markov-modulated, price-sensitive Poisson demand to model the demand 

process in this thesis, and the demand process we use is the same with the one used by 

Song and Zipkin [24] except that we include price sensitivity.  

Song and Zipkin [24] present an inventory model that includes a fluctuating demand 

environment where the demand rate varies with an underlying state-of-the-world variable. 

They model the world as a continuous-time Markov chain with a discrete state space. In 

their model, the world affects demand as follows: When the world is in state i, demand 

follows a Poisson process with rate λi. Thus, the overall demand process is a  

Markov-modulated Poisson process.  

The other components of the model are: a fixed or stochastic order lead time, inventory 

holding and backorder costs, and a positive discount rate. Hence, the overall model 

becomes a continuous-time, discrete-state dynamic program with two state variables, the 

world and the inventory position. 

They show that if the production cost is linear, a world state-dependent base-stock 

policy is optimal. In the case where there is a fixed cost to place an order, Song and Zipkin 

show that a world-dependent (s, S) policy is optimal. They also show that when the 

problem data are ordered in a certain natural way, the optimal base-stock levels are ordered 

in the same way. Our results are compatible with the results of this study for the linear 

production cost case.  

We will continue to discuss the studies with this demand model and various system 

assumptions in the chronological order, and the structure of the optimal policy does not 
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change in any of these. That is, the base-stock policy is optimal when the production cost is 

linear, and an (s, S) policy is optimal when there is a fixed set up cost.  

Beyer and Sethi [25] prove the existence of state-dependent (s, S) policies for infinite-

horizon average cost criterion of a stochastic inventory problem with Markovian demand, 

fixed ordering cost, and convex surplus cost. They assume that the unsatisfied demand is 

backlogged.  

Sethi and Cheng [26] generalizes the results obtained for the classical inventory 

problem with fixed ordering cost by including real life restrictions such as no ordering 

periods, shelf capacity and service level constraints. The demand is periodic and has a 

general distribution dependent on a finite-state Markov chain, and they also include the 

case of cyclic or seasonal demand. They assume the unsatisfied demand is backlogged and 

the inventory/backlog cost is convex and state-dependent. Sethi and Cheng show that a 

state-dependent (s, S) policy is optimal for the finite-horizon and infinite-horizon 

nonstationary problem they concern.  

Özekici and Parlar [27] study a periodic-review inventory model with fixed ordering 

cost where demand, supply and cost parameters change with respect to a randomly 

changing environment. They assume that unsatisfied demand is backlogged, and the 

planning horizon is infinite. The environmental process follows a time-homogeneous 

Markov chain, and the demand, supplier availability, fixed ordering, unit purchase, unit 

holding and shortage cost is modulated by the time-homogeneous Markov chain controlling 

the environment. The supplier availability is defined as up or down where the order is fully 

received if supplier availability is up and the order could not be received if supplier 

availability is down. Özekici and Parlar show that environment-dependent base-stock 

policy is optimal when the order cost is linear in order quantity, and  

environment-dependent (s, S) policy is optimal when there is a fixed cost of ordering.   
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Cheng and Sethi [28] show that state-dependent (s, S) policies are optimal for the 

inventory model with Markovian demand they presented. They consider the finite horizon 

problem where the demand at one period is a nonnegative random variable depending on 

the current demand state which changes according to the fluctuating external conditions.  

Chen and Song [29] consider a serial production/distribution system where random 

demand arises at Stage 1, Stage 1 orders from Stage 2, etc. and Stage N orders from an 

outside supplier with unlimited stock. The demand process is driven by an exogenous 

Markov Chain. Excess demand is fully backlogged, linear holding costs are incurred at 

every stage, and linear backorder costs are incurred at Stage 1. The ordering costs are also 

linear. The objective is to minimize the long run average costs in the system. They show 

that echelon base-stock policies with state dependent order-up-to levels are optimal for the 

system. They also provide an efficient algorithm to compute an optimal policy. 

The work of Gallego and Hu [30] is the most recent one on this problem; they study a 

discrete-time, single-item, single-location, periodic-review production/inventory system 

with Markov-modulated demands and yields and with finite capacity. The yield is 

determined as the proportion of usable supply after the order is received. The demand and 

supply processes are driven by two independent, discrete-time, finite-state and time-

homogeneous Markov chains. They prove that a modified,  

state-dependent, inflated base-stock policy (See p.392 of [31]) is optimal for the  

single-period, multi-period, and infinite period problems, and the finite-horizon solution 

converges to the infinite-horizon solution.  

The research about two different problems is surveyed in this chapter; the inventory 

pricing (static or dynamic) and replenishment problem and the inventory replenishment 

problem in a fluctuating environment. Our model combines these two features with 

capacitated supply where the capacitated supply will be a new challenge on this topic. 
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Moreover, the relative benefit of dynamic pricing with respect to static pricing is an open 

area which we aim to provide guidelines in this thesis. 
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Chapter 3 

 

MARKOV DECISION PROCESSES 

 

 

3.1 Introduction 

 

 

In this chapter, we present the approach we will use in subsequent chapters to construct 

and analyse the Markov Decision Process optimality equations for certain systems with 

pricing and replenishment decisions. Markov Decision Processes [MDP] are used to model 

the systems where decisions are made sequentially under uncertainty, and the MDP models 

provide the opportunity to compare the immediate gain of current decisions and the 

possible outcomes of future decision making opportunities [32].  

The modern study of stochastic sequential decision problems began with Wald’s work 

on sequential statistical problems during the Second World War. He later published his 

studies in his book [33]. Also, Pierre Massé, minister in charge of French electrical 

planning, introduced many of the basic concepts in his analysis of water resource 

management models (1946). Many investigators studied sequential problems after the 

works of these two pioneers, and Bellman introduced the common ingredients to these 

problems as states, actions, transition probabilities and developed the fundamental 

equations to determine the optimal policies [34]. He is considered as the first one to 

develop the mathematical foundations of dynamic programming.  
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3.2 Markov Decision Problems 

 

In this section, we will construct and analyse a simplified version of the problems 

studied in subsequent chapters to present the formulation of Markov Decision Processes 

and the solution method applied in this thesis.  

The time points at which the decision maker has to choose an action to influence the 

future performance of the system are called decision epochs. The set of decision epochs can 

be either discrete or continuous. If it is discrete, then the decisions are made at each 

decision epoch; otherwise the decisions could be made at random points in time when 

certain events occur, at the times chosen by the decision maker, or continuously. In the 

problems discussed in this thesis, the decisions are made at random points of time when 

certain events as arrivals, replenishments or environment state changes occur. Therefore, 

the Markov Decision problems analysed here can be described by the five elements below: 

1. S is the set of all possible states of the system. 

2. A is the set of allowable actions a decision maker could choose at each decision epoch. 

A As S s    where As  is the set of allowable actions for each state s. It is assumed that S 

and A do not vary with time.  

3. Ct(i,a) (Wt(i,a)) is the immediate cost incurred (reward received) and ct(i,a) (wt(i,a)) is 

the cost (reward) rate imposed from time t until the next transition occurs when action a is 

chosen in state i at time t. That is, if a transition occurs after T units, then the total cost 

incurred is given by Ct(i,a)+Tct(i,a). Ct(i,a) (Wt(i,a)) and ct(i,a) (wt(i,a)) together constitute 

the cost (reward) structure of the model.  

4. ( )tP aij  is the probability the next state will be j when the state is i and action a is chosen 

at time t. 
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5. ( | )tF T aij  is the probability the transition from i to j will occur before T time units when 

action a is chosen at time t.  

In the problems studied here, it is assumed that the costs (rewards), transition 

probability and transition time distributions are independent of time. Hence, we drop the 

superscript “t” hereafter. The performance criterion for optimality can be either the 

discounted cost (reward) over an infinite horizon or long-run average cost (reward) 

criterion. If the discounted cost (reward) criterion is taken, the objective of the Markov 

Decision problem is to minimize the expected total discounted cost over an infinite horizon 

(maximize the expected total discounted reward); otherwise the objective is to minimize 

the expected long-run average cost (maximize the expected long-run average reward). In all 

the problems studied in this thesis, the objective is to maximize the profit. Therefore, we 

will concentrate on maximization problems in all the MDP formulations presented here.  

If the discounted reward criterion is used, then the optimal expected total discounted 

reward with initial state i and discount rate β (β > 0) is denoted by Vβ(i) and is represented 

as below [35]: 

 

( ) max { ( , ) ( ) ( ) ( | )}
0

0i

T
V i W i a P a e V j dF T aij ij

a A j



 

 
 

 

  , 

where  

( , ) ( , ) ( ) ( , ) ( | )
0 0

0

T sW i a W i a P a e w i a dsdF T aij ij
j





  



   . 

 

When (. | )F aij  are exponential for all i, j, a, and A, S, and the reward structure satisfy 

certain conditions, it is well-known that there exists an optimal Markovian deterministic 

     (3.1) 
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policy (See Theorems 5.5.1, 8.1.2., 8.4.1, and Proposition 6.2.1. in [32]). The problems we 

will describe in this thesis satisfy these conditions, so we restrict ourselves to the set of 

Markovian deterministic policies. 

We will now formulate a simplified version of the problem analysed in subsequent 

chapters. We have a production facility producing a single product to stock. There is a 

single demand class, and customers arrive at the system according to a Poisson process 

with rate λ. The price is denoted as p, and it is determined in the very beginning of the 

whole process. We model the random structure denoting the choice of the customer to buy 

or not to buy in the demand process formulation with the reservation price concept. The 

reservation price is defined as the maximum price a customer is willing to pay for one unit 

of a good or service, and we represent the probability a customer buys the product when a 

price of p is offered as P(R ≥ p)= ( )F p  where R is a random variable denoting the 

reservation price of the customer. Therefore, the buying rate with price p ( p ) would be 

( )F p . It is assumed that the reservation price distribution is known in advance and p  is 

strictly decreasing in p. In addition, the buying rate is bounded from below by “0” and from 

above by “ ”. A single resource processes one item at a time, and the processing time is 

exponentially distributed with mean 1/μ. 

Let X(t) be the amount of stock at time t denoting the state of the system at time t and 

h(X(t)) be the inventory holding cost function. The decision maker has to decide whether to 

produce at any time, and the decisions depend on the current amount of stock because we 

consider Markovian policies. Due to the exponential transition times, it is clear that we 

observe only the current state and do not need the historical information of the process; 

therefore we simply denote the current amount of inventory as x without any reference to 

the time point at which the decision is made. The holding cost h(x) is assumed to be 
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nondecreasing and convex. Moreover, h(x) is finite for every finite x. Production is done 

one by one, and we also include a fixed production cost of c where c-p≤0. 

If the state is x, h(x) is the cost rate imposed until the next transition occurs. Then, if the 

action is not to produce (a = 0), the only possible event is that a sale occurs. Therefore, the 

next state will be obviously (x-1). Revenue of price p will be gained, and the transition time 

will be exponential with rate p . However, if the action is to produce  

(a = 1), the transition time will be exponential with ( p  ) and there are two possible 

states for the next transition; (x+1) and (x-1) with respective transition probabilities 

[ /( )]p p    and [ /( )]p   . If the next state is (x+1), production cost of c will be 

incurred. Otherwise, revenue of price p will be gained. From now on, the discount rate will 

be fixed and taken as β, and we drop the subscript denoting the discount rate hereafter. 

Thus, the optimal expected total discounted profit with initial inventory amount x, V(x), can 

be represented as: 

 

( ) max ( ) [ ( 1)] ,

0 0 0

p p
t

t ts tV x e h x ds e dt e p V x e dtp p
   

   
        

 

 

    

( ) ( )
[ ( ) ( ) [ ( 1)]( ) ]

0 0 0

p p
t

t tp s te h x ds e dt e p V x e dtp p
p

        
 

   
          

  
 

  

 

( ) ( )
[ ( ) ( ) [ ( 1)]( ) ]

0 0 0

p p
t

t ts te h x ds e dt e c V x e dtp p
p

        
 

  
                   

  

 

(3.2) 
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( )
max [ ( 1)] ,

( )
[ ( 1)] [ ( 1)]

( )
max ( 1) ,

( )
( 1) ( 1)

h x p
p V x

p p

h x p
p V x c V x

p p p

p h xp p
V x

p p

p c h xp p
V x V x

p p p



   

 

        

 

   

   

        

 
     

   

 
        

       

 
   

   

  
   

     





 

 

The discount rate β will be considered as the exponential failure rate hereafter where  

P [failure by time t] = 1- e-βt, and P [not failure by time t] = e-βt. Thus, if the action is not to 

produce (a = 0), the expected transition time will be [1/ ]p   unit times. Hence, the 

expected profit will be [λpp-h(x)] times the expected transition time where λpp is the 

revenue rate. Moreover, the probability a sales occurs before the exponential failure will 

be[ / ]p p   . Otherwise (a = 1), the expected profit will be [λpp-μc-h(x)] times the 

expected transition time which is [1/ ]p     since μc is the production cost rate. 

Moreover, the probability a sales, replenishment or exponential failure occurs first will 

be[ / ]p p     , [ / ]p     , and [ / ]p      respectively. 

 

3. 3 Method of Uniformization and Value Iteration 

 

We will use the method of uniformization and value iteration to determine the optimal 

policies of the models stated in subsequent chapters. We therefore present our solution 

approach on the simplified problem described above in this section. 
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Instead of analysing the optimality equation above, we use Lippman’s uniformization 

[36] to analyse the system in discrete time with uniformization rate  

γ = λ + μ ≤ 1, and we rescale the time by taking γ + β = 1.  

We then use the method of value iteration to find the structure of the optimal policy 

maximizing the discounted (v*) and long-run average rewards. This method is widely used 

when the Markov Decision problem considered satisfies the assumptions below: 

1. Rewards, transition probability and transition time distributions are stationary. 

2. Rewards are bounded; | ( , ) |W i a M    for all a є Ai and i є S. 

3. Future rewards are discounted according to a discount factor α, with 0 ≤ α < 1. 

4. S is discrete. 

5. Ai is finite for each i є S, or Ai is compact, ( , )W i a  is continuous in a for each i є S, and, 

for each i, j є S, ( )P aij is continuous in a. 

Consider the set of real-valued functions L defined on S. The following theorem constructs 

the basis of the method of value iteration (Proof of Theorem 1 and Corollary 1 could be 

found in Chapter 6 of [32]; Theorem 6.1.1, 6.2.2, 6.2.3, 6.2.6, 6.2.10). 

Theorem 1. If the above assumptions are satisfied, then there exists an optimal 

deterministic policy d such that v* is the unique solution to the equation 

max{ }v r P v Lvd d
d D

  


 where L is an operator in L and D denotes the set of Markovian 

Decision rules.  

Corollary 1. If v0  L, vn defined by the equation vn+1 = Lvn converges to v* such that 

1( ) sup { ( , ) ( ) ( )}

i

n nv i W i a P a v jij
a A j S

  

 

  converges to v*(i) for all i є S.  

The probability of exponential failure is not included here since the process will 

terminate with the reward of “0” in this case. Hence, ( ) 1P aij
j S




  in the above equation.  
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It is worthwhile to note that vn is the maximum expected total discounted reward of the 

n-stage problem conferring a terminal reward of  v0. If it is proven that the state space is 

finite for every value of n in the finite period problem, then it can be concluded that the 

state space of the infinite-horizon problem is finite and the model is unichain. In our model, 

we will show that the inventory amount is always finite and so is the inventory holding 

cost. Moreover, rewards are bounded. Hence, the results obtained here applies for both the 

discounted and long-run average reward cases since the action space is finite (a = 0 or  

a = 1), (Theorem 6.2.10 and 8.4.5. in [32]). After applying the uniformization method on 

the simplified problem presented here, the transition probabilities for state x depending on 

the action chosen (a = 0 or a = 1) are: 

(0) ( ), 1P F px x  , (0) [1 ( )],P F px x     , and  

(1) ( ), (1) , (1) [1 ( )], 1 , 1 ,P F p P P F px x x x x x       .  

The probability of the exponential failure is equal to β for both actions. Therefore, we have 

the optimality equation: 

 

 

( ) ( ) ( ){ ( 1) } [1 ( )] ( )

max ( ), ( 1) .0

V x h x F p V x p F p V x

V x V x c

 

 

      

   
 

 

Let ( )V x  be the operator defined as ( ) ( ) ( 1)V x V x V x    . Then, 

Lemma 1.  

a. For every 0x  , V(x) is concave in x, i. e. ( ) ( 1) 0V x V x    . 

b. p-ΔV(x+1)≥0; for all 0x  . 

Proof. We will now use the method of value iteration and generate a sequence of optimal 

value functions for the n-period problems, Vn(x). Then, we will prove the lemma for the 

finite period problem with the induction method, and the lemma follows from Theorem 1 

     (3.3) 
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and Corollary 1 because we will prove that the inventory state space is finite for every 

value of n in the finite period problem so that the rewards are bounded for every state and 

action since the inventory holding cost is bounded at each state. Hence, 

( ) lim ( )V x V xn n   [32]. Moreover, the results obtained here applies for both the 

discounted and long-run average reward cases since the action space is finite  

(a = 0 or a = 1), (Theorem 6.2.10 and 8.4.5. in [32]). Set ( ) 0,0V x  for all x. 

For n ≥ 1,  

 

( ) ( ) ( ) ( ) ( 1) [1 ( )] ( )1 1

max{ ( ), ( 1) }1 1

V x h x F p p F p V x F p V xn n n

V x V x cn n

  



       

   
 

 

The lemma is trivially true for all x when n=0. Assume it is true for n-1 for all x. We will 

now show that it is also true for n. We need to consider the cases x = 1 and x ≥ 2 separately 

due to the boundary condition. Then, for x ≥  2,  

 

( ) ( 1)

[ ( ) ( 1)] [ ( 1) ( )]

{ ( ) [ ( 1)]} { ( 1) [ ( )]} ( ){ ( 1) ( )}1 1

[1 ( )]{ ( ) ( 1)}1 1

{max[ ( ), ( 1) ] max[ ( 1), ( ) ]}1 1 1 1

{max

V x V xn n

V x V x V x V xn n n n

h x h x h x h x F p V x V xn n

F p V x V xn n

V x V x c V x V x cn n n n









   

     

               

      

        

 [ ( 1), ( 2) ] max[ ( ), ( 1) ]} 01 1 1 1V x V x c V x V x cn n n n         

 

 

Before discussing the inequality above, a brief explanation is needed about the 

consequences of the replenishment decisions made at each state considered. It is clear that 

the replenishment decision is not to replenish at a state x if and only 

if (( ( ) ( 1) ) ( ( 1)))1 1 1V x V x c c V xn n n         . Then, if the optimal action is not to 

(3.4) 

     (3.5) 
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replenish at a state x meaning that ( 1)1c V xn   , this inequality will also hold for the 

states with greater amount of inventory by the first part of the lemma since it is assumed to 

be true for n-1 for all x. Hence, if it is not optimal to replenish at state x, it will not be 

optimal to replenish at states (x+1), (x+2), and so on. Therefore, a summary of all the 

possible replenishment decisions related with (3.5) and the inequalities determining those 

decisions are given in the table below: 

 

Table 1. Possible cases for the replenishment decision for states x-1, x, x+1 

in stationary environment 

 

Repl :1 
No Repl:0 

 

States and Inequalities 

 
x-1 

 
x 

 
x+1 

 
Inequalities Cases 

1 0 0 0 
1 1 1( ) ( 1) ( 2)n n nc V x V x V x           

2 1 0 0 
1 1 1( ) ( 1) ( 2)n n nV x c V x V x           

3 1 1 0 
1 1 1( ) ( 1) ( 2)n n nV x V x c V x           

4 1 1 1 
1 1 1( ) ( 1) ( 2)n n nV x V x V x c           

 

We can now return to (3.5), this inequality holds since h(x) is convex and Lemma 1 is 

assumed to be true for n-1 for all x, and  

 

{max[ ( ), ( 1) ] max[ ( 1), ( ) ]}1 1 1 1

{max[ ( 1), ( 2) ] max[ ( ), ( 1) ]} 01 1 1 1

V x V x c V x V x cn n n n

V x V x c V x V x cn n n n

       

          
 

 

We will show that (3.6) holds for all the cases in Table 1. The inequalities that must be 

satisfied when the replenishment decisions in Table 1 are applied to (3.6) is listed below for 

each case with the verifications: 

Case 1: { ( ) ( 1)} { ( 1) ( )} ( ) ( 1) 01 1 1 1 1 1V x V x V x V x V x V xn n n n n n                

(3.6) 
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This inequality holds since the first part of the lemma holds for n-1 for all x by the 

induction assumption. 

Case 2: { ( ) ( ( ) )} { ( 1) ( )} ( 1) 01 1 1 1 1V x V x c V x V x c V xn n n n n              

This inequality holds since it is not optimal to replenish at state x in this case. 

Case 3:  

{ ( 1) ( ( ) )} { ( 1) ( ( 1) )} ( 1) 01 1 1 1 1V x c V x c V x V x c V x cn n n n n                   

This inequality holds since it is optimal to replenish at state x in this case. 

Case 4:  

{ ( 1) ( ( ) )} { ( 2) ( ( 1) )}1 1 1 1V x c V x c V x c V x cn n n n              

( 1) ( 2) 01 1V x V xn n        

This inequality holds since the first part of the lemma holds for n-1 for all x by the 

induction assumption. Thus, the lemma is true for x ≥ 2.  

For x = 1, 

 

(1) (2)

[ (1) (0)] [ (2) (1)]

[( (1) ( )[ (0)] [1 ( )] (1) max[ (1), (2) ])1 1 1 1

( (0) ( ) (0) [1 ( )] (0) max[ (0), (1) ])]1 1 1 1

[( (2) ( )[ (1)] [11

V Vn n

V V V Vn n n n

h F p p V F p V V V cn n n n

h F p V F p V V V cn n n n

h F p p Vn

  

  

 

  

   

          

         

     ( )] (2) max[ (2), (3) ])1 1 1

( (1) ( )[ (0)] [1 ( )] (1) max[ (1), (2) ])]1 1 1 1

{ (1) [ (0)]} { (2) [ (1)]} ( ) ( ) (1)1

[1 ( )]{ (1) (2)}1 1

{max[ (11

F p V V V cn n n

h F p p V F p V V V cn n n n

h h h h F p p F p Vn

F p V Vn n

Vn



  

 





    

          

           

     

  ), (2) ] max[ (0), (1) ]}1 1 1

{max[ (2), (3) ] max[ (1), (2) ]} 01 1 1 1

V c V V cn n n

V V c V V cn n n n

    

       

 

(3.7) 
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The inequality above holds since h(x) is convex, Vn-1(x) is concave for all x and 

(1) 01p Vn   by the induction assumption, and  

 

{max[ (1), (2) ] max[ (0), (1) ]}1 1 1 1

{max[ (2), (3) ] max[ (1), (2) ]} 01 1 1 1

V V c V V cn n n n

V V c V V cn n n n

     

       
 

 

since this inequality holds for all the cases summarized in Table 1 for x=1. Thus, the proof 

of the first part of the lemma is complete. 

For the second part of the lemma, we again need to consider the cases x = 0 and x ≥ 1 

separately due to the boundary condition. Then, for x ≥ 1,  

 

( 1)

[ ( 1) ( )]

{ ( 1) [ ( )]} ( ) ( ) [1 ( )] ( 1)1 1

{max[ ( 1), ( 2) ] max[ ( ), ( 1) ]} 01 1 1 1

V x pn

V x V x pn n

h x h x F p V x F p V xn n

V x V x c V x V x c pn n n n

 



  

   

           

           

 

 

Since 

 ( ( ) [1 ( )] )p p F p F p         by uniformization we can write (3.9) as follows: 

 

( 1)

[ ( 1) ( )]

{ ( 1) [ ( )]} ( ){ ( ) } [1 ( )]{ ( 1) }1 1

{max[ ( 1), ( 2) ] max[ ( ), ( 1) ] } 01 1 1 1

V x pn

V x V x pn n

h x h x F p V x p F p V x pn n

V x V x c V x V x c p pn n n n

 

 

  

   

             

            

 

 

(3.9) 

(3.8) 
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The inequality above holds since h(x) is nondecreasing, ΔVn-1(x)-p   0 for all x by the 

second part of the induction assumption, and 

 

{max[ ( 1), ( 2) ] max[ ( ), ( 1) ] } 01 1 1 1V x V x c V x V x c pn n n n           . 

 

This inequality holds for all the cases summarized in the table below by the induction 

assumption and the inequality c-p≤0. The possible cases are determined by the fact that if 

the optimal action is not to replenish at a state x meaning ( 1)1c V xn   , this inequality 

will also hold for the states with greater amount of inventory since the lemma is assumed to 

be true for n-1 for all x. 

 

Table 2. Possible cases for the replenishment decision for states x, x+1 

in stationary environment  

Repl: 1,  

No Repl: 0 

 

x 

 

x+1 

 

Inequalities 

Cases 

1 0 0 
1 1( 1) ( 2)n nc V x V x        

2 1 0 
1 1( 1) ( 2)n nV x c V x        

3 1 1 
1 1( 1) ( 2)n nV x V x c        

 

We will now show that (3.10) holds for all the cases in Table 2. The inequalities that must 

be satisfied when the replenishment decisions in Table 2 are applied to (3.10) is listed 

below for each case with the verifications: 

Case 1: {[ ( 1)] [ ( )] } ( 1) 01 1 1V x V x p V x pn n n           

This inequality holds since the second part of the lemma holds for n-1 for all x by the 

induction assumption. 

Case 2: {[ ( 1)] [ ( 1) ] } 01 1V x V x c p c pn n          

(3.10) 
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This inequality holds by the assumptions of our system. 

Case 3: {[ ( 2) ( ( 1) )}] } ( 2) 01 1 1V x c V x c p V x pn n n              

This inequality holds since the second part of the lemma holds for Vn-1(x) for all x by the 

induction assumption. Thus, the lemma is true for x ≥ 1.  

For x = 0, 

 

(1)

[ (1) (0)]

[( (1) ( )[ (0)] [1 ( )] (1) max[ (1), (2) ])1 1 1 1

( (0) ( ) (0) [1 ( )] (0) max[ (0), (1) ])]1 1 1 1

{ (1) [ (0)]} ( ) [1 ( )] (1)1

{

V pn

V V pn n

h F p p V F p V V V cn n n n

h F p V F p V V V c pn n n n

h h F p p F p Vn

  

  

 



 

  

          

          

        

 max[ (1), (2) ] max[ (0), (1) ]} 01 1 1 1V V c V V c pn n n n       

 

 

Since 

 ( ( ) [1 ( )] )p p F p F p         by uniformization we can write (3.11) as follows: 

 

(1)

[ (1) (0)]

{ (1) [ (0)]} ( ){ } [1 ( )]{ (1) }1

{max[ (1), (2) ] max[ (0), (1) ] } 01 1 1 1

V pn

V V pn n

h h F p p p F p V pn

V V c V V c p pn n n n

 

 

 

  

         

         

 

 

The inequality (3.11) holds since h(x) is nondecreasing, ΔVn-1(x)-p   0 for all x by the 

induction assumption, and  

 

{max[ (1), (2) ] max[ (0), (1) ] } 01 1 1 1V V c V V c pn n n n        . 

 

(3.11) 

(3.12) 
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This inequality holds for all the cases summarized in Table 2 for x=0 by the induction 

assumption and c-p≤0. Thus, the proof of the lemma is complete. 

Theorem 2. The optimal replenishment policy is a base-stock policy. Thus, there is an 

optimal base-stock level S*, where it is optimal to replenish until the amount of inventory 

reaches S*, and not to replenish when x   S*. 

Proof. Theorem 2 directly follows from Lemma 1.   

In this chapter, we presented our solution approach by proving that the optimal 

replenishment policy is a base-stock policy for the inventory replenishment problem with 

static pricing in a nonfluctuating environment. In subsequent chapters, we will generalize 

this result for the replenishment problem with static pricing in a fluctuating environment, 

and we will also analyse models with dynamic pricing in a fluctuating environment. 
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Chapter 4 

 

ANALYSIS of REPLENISHMENT POLICIES COMBINED with STATIC 

PRICING for a MAKE-TO-STOCK PRODUCTION SYSTEM with  

MARKOV-MODULATED DEMAND and LOST SALES 

 

 

4.1 Introduction  

 

 

The widely known results in inventory control model the randomness of demand by 

using a random component with a well-known density in the definition of the demand 

process. However, the environmental factors could affect the density of the demand 

distribution unpredictably, and the focus in the recent studies of inventory control has been 

shifting to model the impact of fluctuating demand on the optimal replenishment policy.   

In particular, changes in the demand distribution might be caused by economic factors 

such as interest rates, or they might be caused by the changes in business environment 

conditions such as progress in the product-life-cycle or the consequences of rivals’ actions 

on the market.  

In the model we present here, the effect of all the external factors controlling the 

demand distribution is represented by an underlying variable describing the environment 

state, and we model the state of the environment as a continuous time,  

finite-state, homogeneous Markov Chain. The demand rate would depend only on this 

variable. We assume that there is no backlogging, and the unsatisfied demand is lost 



 

Chapter 4: Analysis of Replenishment Policies Combined with Static Pricing 

for a Make-to-Stock Production System with  

Markov-Modulated Demand and Lost Sales                                                                        32 

 

forever. In these circumstances, the replenishment policy must adapt to the fluctuating 

environmental factors; and the structure of the optimal replenishment policy maximizing 

the expected infinite-horizon discounted profit along with the effect of definite 

monotonicity patterns of environmental parameters on the optimal policy is analysed in this 

chapter.  

Our main results characterize the structure of the optimal replenishment policy as a base 

stock policy depending on the state of the environment meaning that there is an optimal 

base stock level corresponding to each environmental state and the optimal policy requires 

ordering up to that level. We also show that when the transition rates between different 

states of the environment reflect a definite monotonicity pattern, the optimal base stock 

levels of these environmental states have the same order with the demand rates of these 

states.   

 

4.2 Model Formulation 

 

The underlying Markov Chain representing the environment and the demand rates 

determined by the states of this chain is defined here. Let   : 0M M t t   be the 

underlying Markov Chain, characterizing the environment; and E be the state space of M.  

E is assumed to be discrete and finite. Denote by 

 
,

Q
ej

e j E
q


, the infinitesimal generator of M; where  

; , .q e j Eejee
j e

q   


  

We model the demand as a Markov-modulated Poisson process with rate λe, where 

λe is the demand rate when M(t) = e. 
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We consider a production facility producing a single product to stock where a single 

resource processes one item at a time, and the processing time is exponentially distributed 

with mean 1/μ. The price is denoted as p and is determined in the very beginning of the 

whole process. We model the random structure denoting the choice of the customer to buy 

or not to buy in the demand process formulation with the reservation price concept. The 

reservation price is defined as the maximum price a customer is willing to pay for one unit 

of a good or service, and we represent the probability a customer buys the product when a 

price of p is offered as ( ) ( )P R p F p   where R is a random variable denoting the 

reservation price of the customer. Therefore, the buying rate in state e with price p would 

be ( )F pe . It is assumed that the reservation price distribution is known in advance and 

( )F p  is strictly decreasing in p. In addition, the buying rate is bounded from below by “0” 

and from above by “ e ”. 

Let X(t) be the amount of stock at time t and h(X(t)) be the inventory holding cost 

function. The decision maker has to decide whether to produce at each decision epoch, and 

the decisions depend on the current amount of stock and the current state of the 

environment because we consider Markovian policies. Due to exponential transition times, 

it is clear that we observe only the current state and do not need the historical information 

of the process; therefore we simply denote the current amount of inventory as x and the 

current state of the environment by e without any reference to the time point the decision is 

made. Therefore, we denote the current state of the system by (x, e). The holding cost h(x) 

is assumed to be nondecreasing and convex. Moreover, h(x) is finite for every finite x. The 

products are produced one at a time, and we also include a fixed production cost of c where  

c-p≤0. 

Let E be the set of environment states 1, 2, …, N 

where ... ...1 1 1N N e e           . If the state is (x, e), h(x) is the cost rate 
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imposed until the next transition occurs. Then, if the action is not to produce (a = 0), the 

possible events are occurrence of a sale and environment state transition, and the transition 

time will be exponential with ( ( )F p qe ej
j e

 


 ). Therefore, the next state can be  

[(x-1), e] or one of the states (x, j), j ≠ e with respective transition probabilities: 

[ ( ) / ( ) ]F p F p qe e ej
j e

  


  and [ / ( ) ]q F p qej e ej

j e

 


 . If the next state is [(x-1), e], a 

revenue of price p will be gained. Otherwise, there will be no immediate revenue or cost. 

However, if the action is to produce (a = 1), the transition time will be exponential with 

( ( ) )F p qe ej
j e

  


  and the possible events are occurrence of a sale, replenishment of 

order and environment state transition. Therefore, the next state can be [(x-1), e], [(x+1), e],  

or one of the states (x, j), j ≠ e with respective transition probabilities: 

[ ( ) / ( ) ]F p F p qe e ej
j e

   


 , [ / ( ) ]F p qe ej

j e

   


  and 

[ / ( ) ]q F p qej e ej
j e

  


 . If the next state is [(x-1), e], a revenue of price p will be 

gained. If the next state is [(x+1), e], production cost of c will be incurred. Otherwise, there 

will be no immediate cost or revenue. Thus, the optimal expected total discounted profit of 

our problem with initial state (x, e) can be represented as: 
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( ( ) )
( )

( , ) max{ [ ( ) ( ( ) )
( )

0 0

( ( ) )

[ ( 1, )]( ( ) ) ]

0

[ ( ) (
( )

F p q te ejt
F p s j eeV x e e h x ds F p q e dte ej

F p qe ej j e
j e

F p q te ej
t j ee p V x e F p q e dte ej

j e

qej se h x ds Fe
F p qe ejj e

j e


  





 

 


  
 

   
  



 
 

     
 





 
  





 









( ( ) )

( ) )

0 0

( ( ) )

( , )( ( ) ) ] ,

0

( ( ) )
( )

[ ( ) ( ( ) )
( )

0 0

[ ( 1,

F p q te ejt
j ep q e dtej

j e

F p q te ej
t j ee V x j F p q e dte ej

j e

F p q te ejt
F p s j ee e h x ds F p q e dte ej

F p qe ej j e
j e

te p V x e





 

 
   

 



 






 
 

   
 


   
 

    
   



  



 







 


( ( ) )

)]( ( ) ) ]

0

( ( ) )

[ ( ) ( ( ) )
( )

0 0

( ( ) )

[ ( 1, )]( ( ) ) ]

0

F p q te ej
j eF p q e dte ej

j e

F p q te ejt
s j ee h x ds F p q e dte ej

F p qe ej j e
j e

F p q te ej
t j ee c V x e F p q e dte ej

j e

 

 

 
   

 

 

  

  
 

  
 


   
 

    
   



  


      









 






( ( ) )

[ ( ) ( ( ) )
( )

0 0

( ( ) )

( , )( ( ) ) ] }

0

F p q te ejtqej s j ee h x ds F p q e dte ej
F p qe ejj e j e

j e

F p q te ej
t j ee V x j F p q e dte ej

j e

 

  
 

 

  







   
 

    
   



  
 

    
 




  





 

(4.1) 
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( ) ( ) ( )
max{ ( 1, ) ( , ) ,

( ) ( ) ( )

( ) ( ) ( )
( 1, ) ( 1,

( ) ( ) ( )

qej
F p p h x F p j ee e V x e V x j

F p q F p q F p qe ej e ej e ej
j e j e j e

F p p c h x F pe e V x e V x e
F p q F p q F p qe ej e ej e ej

j e j e j e

 

     

   

        

 
 

     
      
 

   

 
   

        

  



  

  
)

( , ) }
( )

qej
j e

V x j
F p qe ej

j e

  











 
  


 





 

 

If the action is not to produce (a = 0), the expected transition time will be 

[1/ ( ) ]F p qe ej
j e

  


  time units. Hence, the expected profit will be 

[ ( ) ( )F p p h xe  ] times the expected transition time where ( )F p pe  is the revenue rate. 

Moreover, the probability that a sales or environment state transition occurs is 

[ ( ) / ( ) ]F p F p qe e ej
j e

   


 , and [ / ( ) ]q F p qej e ej

j e j e

  

 
  , respectively. 

Otherwise (a = 1), the expected profit will be [ ( ) ( )F p p c h xe   ] times the expected 

transition time which is [1/ ( ) ]F p qe ej
j e

    


  since μc is the production cost rate. 

Moreover, the probability that a sales, replenishment, environment state transition or 

exponential failure occurs first will be [ ( ) / ( ) ]F p F p qe e ej
j e

     


 , 
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[ / ( ) ]F p qe ej
j e

     


 , [ / ( ) ]q F p qej e ej

j e j e

    

 
   and 

[ / ( ) ]F p qe ej
j e

     


  respectively. 

To construct the Markov Decision Process optimality equations in discrete time we use 

Lippman’s uniformization [36] with rate : 

1 1

N N

e ej
e e j e

q   

  
   , and without loss of generality, we can rescale the time by 

taking γ + β = 1 where β is the discount rate. The discounted systems are equivalent to the 

systems with exponential failure when the discount rate is equal to the exponential failure 

rate of the corresponding system [37], therefore β will be considered as the exponential 

failure rate hereafter.  

After applying the uniformization method on our problem presented here, the transition 

probabilities for state (x, e) depending on the action chosen (a = 0 or a = 1) are: 

     (0) ( )( , ),( 1, )P F px e x e e , 

     (0) [1 ( )]( , ),( , )P F p qx e x e e i ij
i e i e j i

      

  
   , (0)( , ),( , )P qx e x j ej

j e




  and  

     (1) ( )( , ),( 1, )P F px e x e e , (1)( , ),( 1, )P x e x e   

     (1) [1 ( )]( , ),( , )P F p qx e x e e i ij
i e i e j i

    

  
   , (1)( , ),( , )P qx e x j ej

j e




  and  

the probability of the exponential failure is equal to β for both actions. Therefore, we have 

the optimality equation: 
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( , ) ( ) ( ){ ( 1, ) } [1 ( )] ( , )

max ( , ), ( 1, ) ( , )

( ) ( , )

V x e h x F p V x e p F p V x eee

V x e V x e c V x j
ej

j e

V x ei ij
i e i e j i

q

q









      

   



 

  



  

 

                           

      which can be written as follows 

 

( , ) ( ) ( ) ( ) ( 1, )

[1 ( )] ( , ) max{ ( , ), ( 1, ) }

( , )

( )] ( , )

V x e h x F p p F p V x ee e

F p V x e V x e V x e ce

V x j
ej

j e

V x ei ij
i e i e j i

q

q



 





    

    





 

  



  

            

 

4.3 Structure of the Optimal Policy 

 

In this section, we prove that the optimal value function V is concave. This implies that 

the optimal replenishment policy is of base-stock type. Let ( , )V x e  be the operator 

defined as ( , ) ( , ) ( 1, )V x e V x e V x e    .  

Lemma 2.  

a. For every x ≥ 0 and e є E,  V(x, e) is concave in x, i. e. ( , ) ( 1, ) 0V x e V x e     

b. p-ΔV(x+1,e) ≥ 0; for all x ≥ 0 and e є E. 

Proof. We will use the method of value iteration and generate a sequence of optimal value 

functions, Vn (x, e), representing the maximum expected total discounted profit of the  

n-stage problem. Then, we will prove the lemma for the finite period problem with the 

  (4.2) 



 

Chapter 4: Analysis of Replenishment Policies Combined with Static Pricing 

for a Make-to-Stock Production System with  

Markov-Modulated Demand and Lost Sales                                                                        39 

 

induction method, and the lemma follows from Theorem 1 and Corollary 1 because we will 

prove that the inventory state space is finite for every value of n in the finite period 

problem so that the rewards are bounded for every state and action since the inventory 

holding cost is bounded at each state. Hence, ( , ) lim ( , )V x e V x en n   

[32]. Moreover, the results obtained here applies for both the discounted and long-run 

average reward cases since the action space is finite  

(a = 0 or a = 1), (Theorem 6.2.10 and 8.4.5. in [32]). Set ( , ) 0,0V x e  for all x, e.  

For n ≥ 1,  

 

( , ) ( ) ( ) ( ) ( 1, )1

[1 ( )] ( , ) max{ ( , ), ( 1, ) }1 1 1

( , ) ( )] ( , )1 1

V x e h x F p p F p V x en ne e

F p V x e V x e V x e cn n ne

V x j V x en niej ij
j e i e i e j i

q q



 





    

      

   
   
   

 

                         

Then, V (x, e) is concave in x if Vn (x, e) is concave in x for all n by Corollary 1. The 

lemma is trivially true for all e and x when n=0. Assume it is true for n-1 for all e and x. 

We need to consider the cases x = 1 and x ≥ 2 separately due to the boundary conditions. 

Then, for x ≥ 2 and all e,  

 

  (4.3) 
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( , ) ( 1, )

[ ( , ) ( 1, )] [ ( 1, ) ( , )]

{ ( ) [ ( 1)]} { ( 1) [ ( )]} ( ){ ( 1, ) ( , )}1 1

[1 ( )]{ ( , ) ( 1, )}1 1

{max[ ( , ), ( 1, ) ] max[1 1

V x e V x en n

V x e V x e V x e V x en n n n

h x h x h x h x F p V x e V x ee n n

F p V x e V x ee n n

V x e V x e c Vn n







   

     

               

      

     ( 1, ), ( , ) ]}1 1

{max[ ( 1, ), ( 2, ) ] max[ ( , ), ( 1, ) ]}1 1 1 1

{ ( , ) ( 1, )} ( ){ ( , ) ( 1, )} 01 1 1 1

x e V x e cn n

V x e V x e c V x e V x e cn n n n

q V x j V x j q V x e V x eej n n i ij n n
j e i e i e j i





  

         

              
   

   

 

Before discussing the inequality above, a brief explanation is needed about the 

consequences of the replenishment decisions made at each state considered. It is clear that 

the replenishment decision is not to replenish at a state (x, e) if and only 

if (( ( , ) ( 1, ) ) ( ( 1, ))1 1 1V x e V x e c c V x en n n         . Then, if the optimal action is 

not to replenish at a state (x, e) meaning that ( 1, )1c V x en   , this inequality will also 

hold for the states with greater amount of inventory in the same environment state since the 

lemma is assumed to be true for n-1 for all x, e. Hence, if it is not optimal to replenish at 

state (x, e), it will not be optimal to replenish at states [(x+1), e], [(x+2), e], and so on. 

Therefore, a summary of all the possible replenishment decisions related with (4.4) and the 

inequalities determining those decisions are given in the table below: 

 

 

 

 

 

 

  (4.4) 
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Table 3. Possible cases for the replenishment decision for inventory amounts x-1, x, x+1 

for environment e 

 
Repl :1 

No Repl:0 

 

Inventory Amounts for Environment State e and Inequalities 

 

x-1 

 

x 

 

x+1 

 

Inequalities Cases 

1 0 0 0 
1 1 1( , ) ( 1, ) ( 2, )n n nc V x e V x e V x e           

2 1 0 0 
1 1 1( , ) ( 1, ) ( 2, )n n nV x e c V x e V x e           

3 1 1 0 
1 1 1( , ) ( 1, ) ( 2, )n n nV x e V x e c V x e           

4 1 1 1 
1 1 1( , ) ( 1, ) ( 2, )n n nV x e V x e V x e c           

 

We can now return to (4.4), this inequality holds since h(x) is convex and Lemma 2 is 

assumed to be true for n-1 for all x, e, and  

 

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}1 1 1 1

{max[ ( 1, ), ( 2, ) ] max[ ( , ), ( 1, ) ]} 01 1 1 1

V x e V x e c V x e V x e cn n n n

V x e V x e c V x e V x e cn n n n

       

          
 

 

We will show that (4.5) holds for all the cases in Table 3. The inequalities that must be 

satisfied when the replenishment decisions in Table 3 are applied to (4.5) is listed below for 

each case with the verifications: 

Case 1:  

{ ( , ) ( 1, )} { ( 1, ) ( , )} ( , ) ( 1, ) 01 1 1 1 1 1V x e V x e V x e V x e V x e V x en n n n n n                

This inequality holds since the first part of the lemma holds for n-1 for all x and e by the 

induction assumption. 

Case 2: 

{ ( , ) ( ( , ) )} { ( 1, ) ( , )} ( 1, ) 01 1 1 1 1V x e V x e c V x e V x e c V x en n n n n              

This inequality holds since it is not optimal to replenish at state (x, e) in this case. 

 

  (4.5) 
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Case 3:  

{ ( 1, ) ( ( , ) )}1 1

{ ( 1, ) ( ( 1, ) )} ( 1, ) 01 1 1

V x e c V x e cn n

V x e V x e c V x e cn n n

    

           
 

This inequality holds since it is optimal to replenish at state (x, e) in this case. 

Case 4:  

{ ( 1, ) ( ( , ) )} { ( 2, ) ( ( 1, ) )}1 1 1 1

( 1, ) ( 2, ) 01 1

V x e c V x e c V x e c V x e cn n n n

V x e V x en n

            

       
 

This inequality holds since the first part of the lemma holds for n-1 for all x and e by the 

induction assumption. Thus, the lemma is true for x ≥ 2 and all e.  

For x = 1 and all e, 

 

(1, ) (2, )

[ (1, ) (0, )] [ (2, ) (1, )]

[( (1) ( )[ (0, )] [1 ( )] (1, ) max[ (1, ), (2, ) ]1 1 1 1

(1, ) ( ) (1, ))1 1

( (0) ( ) (0, )1

V e V en n

V e V e V e V en n n n

h F p p V e F p V e V e V e ce n e n n n

q V j q V eej n i ij n

j e i e i e j i

h F p V ee n

  





  

   

          

   

   

   

   

[1 ( )] (0, ) max[ (0, ), (1, ) ]1 1 1

(0, ) ( ) (0, ))]1 1

[( (2) ( )[ (1, )] [1 ( )] (2, ) max[ (2, ), (3, ) ]1 1 1 1

(2, ) (1

F p V e V e V e ce n n n

q V j q V eej n i ij n

j e i e i e j i

h F p p V e F p V e V e V e ce n e n n n

q V j qej n i ij

j e j

 



  



     

   

   

          

  

 

   

 ) (2, ))1

( (1) ( )[ (0, )] [1 ( )] (1, ) max[ (1, ), (2, ) ]1 1 1 1

(1, ) ( ) (1, ))]1 1

V en

i e i e i

h F p p V e F p V e V e V e ce n e n n n

q V j q V eej n i ij n

j e i e i e j i

  





 

          

   

   

  

   

 

(4.6) 
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{ (1) [ (0)]} { (2) [ (1)]} ( ) ( ) (1, )1

[1 ( )]{ (1, ) (2, )}1 1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}1 1 1 1

{max[ (2, ), (3, ) ] max[ (1, ), (2,1 1 1 1

h h h h F p p F p V ee e n

F p V e V ee n n

V e V e c V e V e cn n n n

V e V e c V e V en n n n

 







           

     

      

      ) ]}

{ (1, ) (2, )}1 1

( ){ (1, ) (2, )}1 1

{ (1) [ (0)]} { (2) [ (1)]} ( ){ (1, )}1

[1 ( )]{ (1, ) (2, )}1 1

{max[ (1, ), (2, ) ] max1 1

c

q V j V jej n n

j e

q V e V ei ij n n

i e i e j i

h h h h F p p V ee n

F p V e V ee n n

V e V e cn n











    



     

  

           

     

   



  

[ (0, ), (1, ) ]}1 1

{max[ (2, ), (3, ) ] max[ (1, ), (2, ) ]}1 1 1 1

{ (1, ) (2, )}1 1

( ){ (1, ) (2, )} 01 1

V e V e cn n

V e V e c V e V e cn n n n

q V j V jej n n

j e

q V e V ei ij n n

i e i e j i





 

      

    



      

  



    

 

The inequality above holds since h(x) is convex, (1, ) (2, ) 01 1V e V en n    and 

(1, ) 01p V en    for all e by the induction assumptions, and  

 

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}1 1 1 1

{max[ (2, ), (3, ) ] max[ (1, ), (2, ) ]} 01 1 1 1

V e V e c V e V e cn n n n

V e V e c V e V e cn n n n

     

       
 

 

since this inequality holds for all the cases summarized in Table 3 for x=1. Thus, the proof 

of the first part of the lemma is complete. 

For the second part of the lemma, we again need to consider the cases x = 0 and x ≥ 1 

separately due to the boundary conditions. Then, for x ≥ 1 and all e, 

  (4.7) 
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( 1, )

[ ( 1, ) ( , )]

{ ( 1) [ ( )]} ( ) ( , ) [1 ( )] ( 1, )1 1

{max[ ( 1, ), ( 2, ) ] max[ ( , ), ( 1, ) ]}1 1 1 1

( 1, ) ( ) (1 1

V x e pn

V x e V x e pn n

h x h x F p V x e F p V x ee n e n

V x e V x e c V x e V x e cn n n n

q V x j q V xej n i ij n
j e i e j i

 





  

   

           

         

       
  

   1, ) 0e p

i e

 





 

 

Since  

( ( ) [1 ( )] )p p F p F p q qe e i ej ij
i e j e i e j i

           

   
     by uniformization, 

we can write (4.8) as follows: 

 

( 1, )

[ ( 1, ) ( , )]

{ ( 1) [ ( )]} ( ){ ( , ) } [1 ( )]{ ( 1, ) }1 1

{max[ ( 1, ), ( 2, ) ] max[ ( , ), ( 1, ) ] }1 1 1 1

{ ( 1, ) } (1

V x e pn

V x e V x e pn n

h x h x F p V x e p F p V x e pe n e n

V x e V x e c V x e V x e c pn n n n

q V x j p qej n i ij
j e j i

 





  

   

             

          

     
 

 ){ ( 1, ) } 01V x e p pn
i e i e

    
 

  

 

 

The inequality above holds since h(x) is nondecreasing, ΔVn-1(x, e)-p ≤ 0 for all x, e by the 

second part of the induction assumption, and  

 

{max[ ( 1, ), ( 2, ) ] max[ ( , ), ( 1, ) ] } 01 1 1 1V x e V x e c V x e V x e c pn n n n           . 

 

  (4.8) 

  (4.9) 
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This inequality holds for all the cases summarized in the table below by the induction 

assumption and the inequality c-p≤0. The possible cases are determined by the fact that if 

the optimal action is not to replenish at a state (x, e) meaning ( 1, )1c V x en   , this 

inequality will also hold for the states with greater amount of inventory since the first part 

of the lemma is assumed to be true for n-1 for all x. 

 

Table 4. Possible cases for the replenishment decision for inventory amounts x, x+1 

for environment e 

Repl: 1,  

No Repl: 0 

 

x 

 

x+1 

 

Inequalities 

Cases 

1 0 0 
1 1( 1, ) ( 2, )n nc V x e V x e        

2 1 0 
1 1( 1, ) ( 2, )n nV x e c V x e        

3 1 1 
1 1( 1, ) ( 2, )n nV x e V x e c        

 

We will now show that (4.9) holds for all the cases in Table 4. The inequalities that 

must be satisfied when the replenishment decisions in Table 4 are applied to (4.9) are listed 

below for each case with the verifications: 

Case 1: {[ ( 1, )] [ ( , )] } ( 1, ) 01 1 1V x e V x e p V x e pn n n           

This inequality holds since the second part of the lemma holds for n-1 for all x, e by the 

induction assumption. 

Case 2: {[ ( 1, )] [ ( 1, ) ] } 01 1V x e V x e c p c pn n          

This inequality holds by the assumptions of our system. 

Case 3: {[ ( 2) ( ( 1) )] } ( 2) 01 1 1V x c V x c p V x pn n n              

This inequality holds since the second part of the lemma holds for n-1 for all x, e by the 

induction assumption. Thus, the lemma is true for x ≥ 1.  
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For x = 0 and all e, 

 

1 1

1 1 1 1

1 1

(1, )

[ (1, ) (0, )]

[( (1) ( )[ (0, )] [1 ( )] (1, )

max[ (1, ), (2, ) ] (1, ) ( ) (1, ))

( (0) ( ) (0, ) [1 ( )] (0, )

m

n

n n

e n e n

n n ej n i ij n
j e i e i e j i

e n e n

V e p

V e V e p

h F p p V e F p V e

V e V e c q V j q V e

h F p V e F p V e

 

 

 



 

   
   

 

 

  

     

    

    



   

1 1 1 1

1

1 1 1 1

1

ax[ (0, ), (1, ) ] (0, ) ( ) (0, ))]

{ (1) [ (0)]} ( ) [1 ( )] (1, )

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

(1, ) (

n n ej n i ij n
j e i e i e j i

e e n

n n n n

ej n i
j e

V e V e c q V j q V e p

h h F p p F p V e

V e V e c V e V e c

q V j



 





   
   



   




    

       

   

  

   

 1) (1, ) 0ij n
i e i e j i

q V e p
  

       

 

Since  

( ( ) [1 ( )] )p p F p F p q qe e i ej ij
i e j e i e j i

           

   
     

by uniformization we can write (4.10) as follows: 

 

(1, )

{ (1) [ (0)]} ( ){ } [1 ( )]{ (1, ) }1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ] }1 1 1 1

{ (1, ) } ( ){ (1, ) } 01 1

V e pn

h h F p p p F p V e pe e n

V e V e c V e V e c pn n n n

q V j p q V e p pej n i ij n
j e i e i e j i

 



 

 

         

       

         
   

   

 

 

   (4.10) 
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The inequality above holds since h(x) is nondecreasing, ΔVn-1(1, e)-p0 for all x, e by the 

induction assumption, and  

 

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ] } 01 1 1 1V e V e c V e V e c pn n n n         

 

This inequality holds for all the cases summarized in Table 4 for x=0 by the induction 

assumption and c-p≤0. Thus, the proof of the lemma is complete. 

Theorem 3. The optimal replenishment policy is a base-stock policy for every state of the 

environment. Thus, when the environment state is e, there is an optimal base-stock level 

*
eS  where it is optimal to replenish until the amount of inventory reaches *

eS , and not to 

replenish when x   *
eS .  

Proof. Theorem 3 directly follows from Lemma 2.   

Remark 1. The proof of Theorem 3 follows from the concavity of the optimal expected 

total discounted profit function, V(x, e), in x (Lemma 2) for each e, and therefore the 

behaviour of the optimal policy is investigated according to the changes in the inventory 

amount (x) at a specific environment e. Since the optimality equation at a certain 

environment is examined at the proof of Lemma 2, the optimal policy is again an 

environment-dependent base-stock policy when the assumptions of the model are 

generalized to include environment-dependent inventory holding cost function (he(x)), 

reservation  price distribution ( ( )F pe ) , production cost per item (ce), and production rate 

(μe) given that the inventory holding cost function is convex and nondecreasing for all e 

and the price is at least as much as the maximum value of the production cost that is 

possible ( max{ } 0p ce
e

  ).  

 

4.4 Monotonicity of the Base Stock Levels 

(4.11) 
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In this section, we show that the base stock levels of environmental states have the 

same ordering with the demand rates of these states. Note that  E is the set of environment 

states 1, 2, …, N  where ... ...1 1 1 1N N e e e               and β is the 

discount rate.  

Condition 1 

a.  qej   qe+1, j , e    where j = 1, 2, …, e-1. 

b.  qe+1, j   qe j , e    where j = e+2, e+3, …, N. 

 Condition 1 presents the relationships that the transition rates of the Markov chain 

characterizing the environment must satisfy for the following lemma and the theorem to be 

true. We will now explain Condition 1 in more detail.  

 The first part of Condition 1 states that for every state having lower demand rate than 

state e, the transition rate from e to these states must be greater than the transition rate from 

e+1 to these states. The transitions from e+1 to states 1, 2, …, e-1 could be considered as 

more drastic changes in the environment state than the transitions from e to states 1, 2, …, 

e-1 since there will be at least one more intermediate state between the current and next 

state in the former transitions, and intuitively this is not very unrealistic since more drastic 

changes in the state of the environment are caused by more extraordinary so rarer situations 

 The second part of Condition 1 states that for every state having higher demand rate 

than state e+1, the transition rate from e+1 to these states must be greater than the 

transition rate from e to these states since the transitions from e to states e+2, e+3, …, N  

could be considered as more drastic changes in the environment state than the transitions 

from e+1 to states e+2, e+3, …, N.   

Lemma 3. ( , 1) ( , )V x e V x e    , for all x and for 1 eN-1. 

Proof. We will again use the induction method and show that ( , 1) ( , )V x e V x en n     for 

all x and for 1 eN-1. The lemma is trivially true for n=0, suppose that it is true for n-1. 

We again consider x = 1 and x   2 separately. Then for x   2 and all e, 
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( , 1) ( , )

[ ( , 1) ( 1, 1)] [ ( , ) ( 1, )]

[[ ( ) ( ) ( ) ( 1, 1) [1 ( )] ( , 1)1 1 1 1 1

max{ ( , 1), ( 1, 1) }1 1

( , ) ( ) ( , 1)]1, 1 1

V x e V x en n

V x e V x e V x e V x en n n n

h x F p p F p V x e F p V x ee e n e n

V x e V x e cn n

q V x j q V x ee j n i ij n
j

  





   

       

            

     

     
1 1 1

[ ( 1) ( ) ( ) ( 2, 1) [1 ( )] ( 1, 1)1 1 1 1 1

max{ ( 1, 1), ( , 1) }1 1

( 1, ) ( ) ( 1, 1)]]1, 1 1
1 1 1

[[ ( ) ( )

j e i e i e i

h x F p p F p V x e F p V x ee e n e n

V x e V x e cn n

q V x j q V x ee j n i ij n
j e i e i e j i

h x F pe

  







     

              

     

       
      

  

   

   

( ) ( 1, ) [1 ( )] ( , )1 1

max{ ( , ), ( 1, ) }1 1

( , ) ( ) ( , )], 1 1

[ ( 1) ( ) ( ) ( 2, ) [1 ( )] ( 1, )1 1

max{ ( 1, ), ( ,1 1

p F p V x e F p V x ee n e n

V x e V x e cn n

q V x j q V x ee j n i ij n
j e i e i e j i

h x F p p F p V x e F p V x ee e n e n

V x e V xn n

 





  



    

   

   
   

         

  

   

) }

( 1, ) ( ) ( 1, )]], 1 1

( ) ( 1, 1) ( ) ( 1, )1 1 1

[1 ( )] ( , 1) [1 ( )] ( , )1 1 1

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1)1 1 1

e c

q V x j q V x ee j n i ij n
j e i e i e j i

F p V x e F p V x ee n e n

F p V x e F p V x ee n e n

V x e V x e c V x en n n



 

 





     
   

        

        

         

   

, ( , 1) ]}1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}1 1 1 1

( , ) ( , )1, 1 1
1

( ) ( , 1) ( ) ( , )1 1
1 1

V x e cn

V x e V x e c V x e V x e cn n n n

q V x j q V x je j n ej n
j e j e

q V x e q V x ei ij n i ij n
i e i e j i i e i e j i



 

 

        

     
  

       
       

 

     
 

(4.12) 
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( ) ( 1, 1) ( ) ( 1, )1 1 1

[1 ( )] ( , 1) [1 ( )] ( , )1 1 1

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}1 1 1 1

{max[ ( , ), ( 1, ) ] max[ (1 1 1

F p V x e F p V x ee n e n

F p V x e F p V x ee n e n

V x e V x e c V x e V x e cn n n n

V x e V x e c V xn n n

 

 





        

        

            

       1, ), ( , ) ]}1

1
( ) ( , ) ( , )1, 1, 1 1, 1

1 2

1
[( ) ( , ) ( , 1)], , 1 , 1 1

1 2

{ ( , 1) ( , )} ( , 1) ( , )1 1 1 1 1
, 1

(

e V x e cn

e N
q q V x j q V x ee j e j n e e n

j j e

e N
q q V x j q V x ee j e j n e e n

j j e

V x e V x e V x e V x ek n n e n e n
k e e

  




        

  


       

  

             
 



 

 



1
){ ( , 1) ( , )}1 1

1 2

1
( ) ( , 1) ( , 1), , 1 , 1 1

1 2

1
[( ) ( , ) ( , )]1, 1, 1 1, 1

1 2

e N
q q V x e V x eij ij n n

i j i i e j i

e N
q q V x e q V x ee j e j n e e n

j j e

e N
q q V x e q V x ee j e j n e e n

j j e


     

    


        

  


        

  

   

 

 

 

 

We can regroup the terms in (4.12) as follows: 

 

(1) 
( ) ( 1, 1) ( ) ( 1, ) ( , 1) ( , )1 1 1 1 1 1

[1 ( )] ( , 1) [1 ( )] ( , )1 1 1

F p V x e F p V x e V x e V x ee n e n e n e n

F p V x e F p V x ee n e n
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(2) 

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}1 1 1 1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}1 1 1 1

{ ( , 1) ( , )}1 1

, 1

1

( ){

1 2

V x e V x e c V x e V x e cn n n n

V x e V x e c V x e V x e cn n n n

V x e V x ek n n

k e e

e N

q q Vij ij

i j i i e j i







           

        

     

 



  

    



    ( , 1) ( , )}1 1x e V x en n   

 

 

(3) 

1 1

( ) ( , ) [( ) ( , )]1, 1, 1 , , 1

1 2 1 2

1 1

( ) ( , 1) [( ) ( , )], , 1 1, 1, 1

1 2 1 2

e N e N

q q V x j q q V x je j e j n e j e j n

j j e j j e

e N e N

q q V x e q q V x ee j e j n e j e j n

j j e j j e

 

       

     

 

         

     

   

   

 

  

We will now analyse each group separately: 

 

(1) 

( ) ( 1, 1) ( ) ( 1, ) ( , 1) ( , )1 1 1 1 1 1

[1 ( )] ( , 1) [1 ( )] ( , )1 1 1

( ) ( ) ( 1, 1) ( ){ ( 1, 1) ( 1, )}1 1 1 1

( )[1 ( )]1

F p V x e F p V x e V x e V x ee n e n e n e n

F p V x e F p V x ee n e n

F p V x e F p V x e V x ee e n e n n

F pe e

   

 

  

 

               

        

              

    ( , 1) [1 ( )]{ ( , 1) ( , )}1 1 1

( , 1) ( , )1 1 1

( ) ( ) ( , 1) ( ){ ( 1, 1) ( 1, )}1 1 1 1

( )[1 ( )] ( , 1) [1 ( )]{ ( , 1) (1 1 1 1

V x e F p V x e V x en e n n

V x e V x ee n e n

F p V x e F p V x e V x ee e n e n n

F p V x e F p V x e Ve e n e n n



 

  

  

        

      

             

              , )}

( , 1) ( , )1 1 1

{ ( , 1) ( , )} ( ){ ( 1, 1) ( 1, )}1 1 1 1 1

[1 ( )]{ ( , 1) ( , )} 01 1

x e

V x e V x ee n e n

V x e V x e F p V x e V x ee n n e n n

F p V x e V x ee n n
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The first inequality holds since Vn (x, e) is concave in x for all e by Lemma 2, and therefore 

1 1( 1, 1) ( , 1)n nV x e V x e       ; the second inequality holds since Lemma 3 is assumed to be 

true for n-1. Thus, the first part of the inequality holds. 

 

(2) 

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}1 1 1 1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}1 1 1 1

{ ( , 1) ( , )}1 1
, 1

1
( ){

1 2

V x e V x e c V x e V x e cn n n n

V x e V x e c V x e V x e cn n n n

V x e V x ek n n
k e e

e N
q q Vij ij

i j i i e j i







           

        

     
 


  

    



    ( , 1) ( , )} 01 1x e V x en n    

 

 

The inequality above holds by the induction assumption and since 

 

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}1 1 1 1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]} 01 1 1 1

V x e V x e c V x e V x e cn n n n

V x e V x e c V x e V x e cn n n n

           

         
 

 

Before discussing the inequality above, a brief explanation is needed about the 

consequences of the replenishment decisions made at each state considered. It is clear that 

the replenishment decision is not to replenish at a state (x, e) if 

1 1 1(( ( , ) ( 1, ) ) ( ( 1, ))n n nV x e V x e c c V x e         . Then, if the optimal action is not to 

replenish at a state (x, e) meaning that 
1( 1, )nc V x e   , this inequality will also hold for 

the states with greater amount of inventory by Lemma 2. Hence, if it is not optimal to 

replenish at state (x, e), it will not be optimal to replenish at states (x+1, e), (x+2, e), and so 

on. This information is needed to list all the possible replenishment decisions for an 

environment state considered above.  

   (4.13) 
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Moreover, since Lemma 3 is assumed to be true for all states, if the optimal action is 

not to replenish at a state (x, e+1) meaning that 
1( 1, 1)nc V x e    , this inequality will 

also hold for the states  (x, e), (x, e-1) and the action will also be not to replenish at these 

states. Therefore, a summary of all the possible replenishment decisions related with (4.13) 

and the inequalities determining those decisions are given in the table below: 

 

Table 5. Possible cases for the replenishment decision for states (x-1, e), 

 (x, e), (x-1, e+1), (x, e+1) in nonstationary environment 

 
Rep :1 

No 
Rep :0 

 

States and Inequalities 

 

Env:e+1 

 

 

Env: e 

 

 

Inequality for the Case 

Env: e+1 

 

Inequality for the Case 

Env: e 

Cases x-1 x x-1 x   
1 0 0 0 0 

1 1( , 1) ( 1, 1)n nc V x e V x e         1 1( , ) ( 1, )n nc V x e V x e       

2 1 0 0 0 
1 1( , 1) ( 1, 1)n nV x e c V x e         1 1( , ) ( 1, )n nc V x e V x e       

3 1 0 1 0 
1 1( , 1) ( 1, 1)n nV x e c V x e         1 1( , ) ( 1, )n nV x e c V x e       

4 1 1 0 0 
1 1( , 1) ( 1, 1)n nV x e V x e c         1 1( , ) ( 1, )n nc V x e V x e       

5 1 1 1 0 
1 1( , 1) ( 1, 1)n nV x e V x e c         1 1( , ) ( 1, )n nV x e c V x e       

6 1 1 1 1 
1 1( , 1) ( 1, 1)n nV x e V x e c         1 1( , ) ( 1, )n nV x e V x e c       

 

We will show that (4.13) holds for all the cases in Table 5. 

Case 1: 
1 1{ ( , 1) ( , )} 0n nV x e V x e       

This inequality holds since the lemma holds for all (x, e) by the induction assumption. 

Case 2: 
1{ ( , )} 0nc V x e    

This inequality holds since it is not optimal to replenish at state (x-1, e) in this case. 

Case 3: { } 0c c  . 

Case 4: 
1 1{ ( 1, 1) ( , )} 0n nV x e V x e        
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This inequality holds since it is optimal to replenish at state (x, e+1) and not to replenish at 

state (x-1, e) in this case. 

Case 5:  

1{ ( 1, 1) } 0nV x e c      

This inequality holds since it is optimal to replenish at state (x, e+1) in this case. 

Case 6: 

1 1{ ( 1, 1) ( 1, )} 0n nV x e V x e         

This inequality holds since the lemma is holds for all (x, e) by the induction assumption. 

Thus, the second part of the inequality holds. 

 

(3) 

1 1
( ) ( , ) [( ) ( , )]1, 1, 1 , , 1

1 2 1 2

1 1
( ) ( , 1) [( ) ( , )], , 1 1, 1, 1

1 2 1 2

1
( [ ( , ) ( , )]1, 1 1 1

1

e N e N
q q V x j q q V x je j e j n e j e j n

j j e j j e

e N e N
q q V x e q q V x ee j e j n e j e j n

j j e j j e

e
q V x j V x e qe j n n e

j

 
       

     

 
         

     


       



   

   

 [ ( , ) ( , )]), 1 1
2

1
( [ ( , 1) ( , )] [ ( , 1) ( , )]) 0, 1 1 , 1 1

1 2

N
V x j V x ej n n

j e

e N
q V x e V x j q V x e V x je j n n e j n n

j j e

   
 


             

  



 

 

We will now analyse the inequality above in two groups. 
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1 1

, 1 1 1, 1 1
1 1

1, 1 1 , 1 1
2 2

( )( [ ( , 1) ( , )] [ ( , ) ( , )])

( )( [ ( , ) ( , )]) [ ( , 1) ( , )])

e e

e j n n e j n n
j j

N N

e j n n e j n n
j e j e

i q V x e V x j q V x j V x e

ii q V x j V x e q V x e V x j

 

    
 

    
   

       

       

 

 

 

We will now present the relationships between the terms of these two inequalities. It is 

known that 
1 1( , 1) ( , ) 0n nV x e V x j       and 

1 1( , ) ( , ) 0n nV x j V x e      for  

j = 1, 2, …, e-1 by the induction assumption. Thus, the first term above is nonnegative if 

the absolute value of the first summation is greater than or equal to that of the second one. 

 

1 1 1 1

1 1 1 1

1 1

| ( , 1) ( , ) | | ( , ) ( , ) |

[ ( , 1) ( , )] [ ( , ) ( , )]

[ ( , 1) ( , )] 0

n n n n

n n n n

n n

V x e V x j V x j V x e

V x e V x j V x j V x e

V x e V x e

   

   

 

       

        

     

 

 

where j = 1, 2, …, e-1 by the induction assumption. Therefore, when the transition rate 

multiplied by 1 1[ ( , 1) ( , )]n nV x e V x j      is greater than or equal to the transition rate 

multiplied by 1 1[ ( , ) ( , )]n nV x j V x e     in (i), i. e., when (
, 1,e j e jq q  ) for all  

j = 1, 2, …, e-1, inequality (4.14) holds. But this is guaranteed by the first part of  

Condition 1. 

It is known that 
1 1( , ) ( , ) 0n nV x j V x e      and 

1 1( , 1) ( , ) 0n nV x e V x j       for  

j = e+2, e+3, …, N by the induction assumption. Thus, the second term above is 

nonnegative if the absolute value of the first summation is greater than or equal to that of 

the second one. 

 

   (4.14) 
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1 1 1 1

1 1 1 1

1 1

| ( , ) ( , ) | | ( , 1) ( , ) |

[ ( , ) ( , )] [ ( , 1) ( , )]

[ ( , 1) ( , )] 0

n n n n

n n n n

n n

V x j V x e V x e V x j

V x j V x e V x e V x j

V x e V x e

   

   

 

       

        

     

 

 

where j = e+2, e+3, …, N by the induction assumption. Therefore, when the transition rate 

multiplied by 
1 1[ ( , ) ( , )]n nV x j V x e     is greater than or equal to the transition rate 

multiplied by 
1 1[ ( , 1) ( , )]n nV x e V x j      in (ii), i. e., when (

1, ,e j e jq q  ) for all  

j = e+2, e+3, …, N, inequality (4.15) holds. But this is guaranteed by the second part of 

Condition 1. Thus, we have shown that (4.12) is nonnegative and therefore Lemma 3 is true 

for x ≥ 2, given that Condition 1 holds.  

For x=1 and all e, 

 

(1, 1) (1, )

[ (1, 1) (0, 1)] [ (1, ) (0, )]

[[( (1) ( ) ( ) (0, 1)1 1 1

[1 ( )] (1, 1) max{ (1, 1), (2, 1) }1 1 1 1

(1, ) ( ) (1, 1)]1, 1 1

1

V e V en n

V e V e V e V en n n n

h F p p F p V ee e n

F p V e V e V e ce n n n

q V j q V ee j n i ij n

i e j i

 

 



   

     

      

         

     

  


1 1

[( (0) ( ) (0, 1) [1 ( )] (0, 1)1 1 1 1

max{ (0, 1), (1, 1) }1 1

(0, ) ( ) (0, 1)]]1, 1 1

1 1 1

[[( (1) ( ) ( ) (0, ) [1 ( )1

j e i e

h F p V e F p V ee n e n

V e V e cn n

q V j q V ee j n i ij n

j e i e i e j i

h F p p F p V e F pe e n e

 





  

   

         

    

     

      

     

  

   

] (1, )1

max{ (1, ), (2, ) }1 1

(1, ) ( ) (1, )], 1 1

[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }1 1 1 1

(0, ) ( ) (0, )], 1 1

V en

V e V e cn n

q V j q V ee j n i ij n

j e i e i e j i

h F p V e F p V e V e V e ce n e n n n

q V j q V ee j n i ij n

i e j i





  





  

   

   

         

   

 

   

  ]

j e i e 

 
 

   (4.16) 

   (4.15) 
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1 1 1 1

1 1 1 1

1 1 1 1

1, 1

( ) ( ) [1 ( )] (1, 1) [1 ( )] (1, )

{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

(1, )

e e e n e n

n n n n

n n n n

e j n

F p p F p V e F p V e

V e V e c V e V e c

V e V e c V e V e c

q V j

   





   

   

   

 

        

       

   

  1
1

1 1
1 1

1 1 1

1 1

1 1

(1, )

( ) (1, 1) ( ) (1, )

( ) ( ) ( )[1 ( )] (1, 1)

[1 ( )]{ (1, 1) (1, )}

{max[ (1, 1), (2,

ej n
j e j e

i ij n i ij n
i e i e j i i e i e j i

e e e e n

e n n

n n

q V j

q V e q V e

F p p F p V e

F p V e V e

V e V e

 

   






  

 
       

  

 

 

 

      

      

     

 

 

     

1 1

1 1 1 1

1

1, 1, 1 1, 1
1 2

1

, , 1 , 1
1 2

1) ] max[ (0, 1), (1, 1) ]}

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

( ) (1, ) (1, )

[( ) (1, )

n n

n n n n

e N

e j e j n e e n
j j e

e N

e j e j n e e n
j j e

c V e V e c

V e V e c V e V e c

q q V j q V e

q q V j q V



 

   



    
  



  
  

     

   

    

    

 

  1

1 1 1 1 1
, 1

1

1 1
1 2

1

, , 1 , 1 1
1 2

1,

(1, 1)]

{ (1, 1) (1, )} (1, 1) (1, )

( ){ (1, 1) (1, )}

( ) (1, 1) (1, 1)

[(

k n n e n e n
k e e

e N

ij ij n n
i j i i e j i

e N

e j e j n e e n
j j e

e j
j

e

V e V e V e V e

q q V e V e

q q V e q V e

q

      
 



 
    



  
  






         

     

      





   

 

1

1, 1 1, 1
1 2

) (1, ) (1, )]
e N

e j n e e n
j e

q V e q V e


   
 

    

 

 

We can regroup the terms in (4.16) as follows: 

 

(1) 
( ) ( ) ( )[1 ( )] (1, 1)1 1 1

[1 ( )]{ (1, 1) (1, )} (1, 1) (1, )1 1 1 1 1

F p p F p V ee e e e n

F p V e V e V e V ee n n e n e n
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(2)

1 1 1 1

1 1 1 1

1 1
, 1

1

1
1 2

{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

{ (1, 1) (1, )}

( ){ (1,

n n n n

n n n n

k n n
k e e

e N

ij ij n
i j i i e j i

V e V e c V e V e c

V e V e c V e V e c

V e V e

q q V e







   

   

 
 




    

      

   

    

   



    11) (1, )}nV e 

 

 

(3) 

1 1

( ) (1, ) [( ) (1, )]1, 1, 1 , , 1

1 2 1 2

1 1

( ) (1, 1) [( ) (1, )], , 1 1, 1, 1

1 2 1 2

e N e N

q q V j q q V je j e j n e j e j n

j j e j j e

e N e N

q q V e q q V ee j e j n e j e j n

j j e j j e

 

       

     

 

         

     

   

   

 

 

We will now analyse each group separately: 

 

(1) 

( ) ( ) ( )[1 ( )] (1, 1) [1 ( )]{ (1, 1) (1, )}1 1 1 1 1

(1, 1) (1, )1 1 1

( ) ( ) ( ) (1, 1) ( ) ( ) (1, 1)1 1 1 1 1

[1 ( )]{ (1, 1)1

F p p F p V e F p V e V ee e e e n e n n

V e V ee n e n

F p p V e F p V ee e e e n e e n

F p V e Ve n

    

 

     



               

      

             

      (1, )}1

(1, 1) (1, )1 1 1

( ) ( ) ( ) ( ) (1, 1)1 1 1

( ) (1, 1) (1, 1) (1, )1 1 1 1 1

[1 ( )]{ (1, 1) (1, )}1 1

( ) ( ){ (1, 1)}1 1

en

V e V ee n e n

F p p F p V ee e e e n

V e V e V ee e n e n e n

F p V e V ee n n

F p p V ee e n

 

   

   



  



      

       

            

      

       { (1, 1) (1, )}1 1 1

[1 ( )]{ (1, 1) (1, )} 01 1

V e V ee n n

F p V e V ee n n
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The inequality above holds since Lemma 3 is assumed to be true for all x and e and 

1{ (1, 1) 0}np V e     by the second part of Lemma 2. 

 

(2) 

{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}1 1 1 1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}1 1 1 1

{ (1, 1) (1, )}1 1
, 1

1
( ){ (1,1

1 2

V e V e c V e V e cn n n n

V e V e c V e V e cn n n n

V e V ek n n
k e e

e N
q q V eij ij n

i j i i e j i







         

      

     
 


   

    



    1) (1, )} 01V en  

 

 

The inequality above holds since Lemma 3 is assumed to be true for all x and e and 

 

{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}1 1 1 1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]} 01 1 1 1

V e V e c V e V e cn n n n

V e V e c V e V e cn n n n

         

       
 

 

for all the cases summarized in Table 5 for x=1. 

 

(3) 

1 1
( ) (1, ) [( ) (1, )]1, 1, 1 , , 1

1 2 1 2

1 1
( ) (1, 1) [( ) (1, )], , 1 1, 1, 1

1 2 1 2

e N e N
q q V j q q V je j e j n e j e j n

j j e j j e

e N e N
q q V e q q V ee j e j n e j e j n

j j e j j e

 
       

     

 
         

     

   

   

 

 

As before, we will now analyse the inequality above in two groups. 

 

   (4.17) 



 

Chapter 4: Analysis of Replenishment Policies Combined with Static Pricing 

for a Make-to-Stock Production System with  

Markov-Modulated Demand and Lost Sales                                                                        60 

 

1 1

, 1 1 1, 1 1
1 1

1, 1 1 , 1 1
2 2

( )( [ (1, 1) (1, )] [ (1, ) (1, )])

( )( [ (1, ) (1, )]) [ (1, 1) (1, )])

e e

e j n n e j n n
j j

N N

e j n n e j n n
j e j e

iii q V e V j q V j V e

iv q V j V e q V e V j

 

    
 

    
   

       

       

 

 

 

We will now present the relationships between the terms of these two inequalities. It is 

known that 
1 1(1, 1) (1, ) 0n nV e V j       and 

1 1(1, ) (1, ) 0n nV j V e      for  

j = 1, 2, …, e-1 by the induction assumption. Thus, the first term above is nonnegative if 

the absolute value of the first summation is greater than or equal to that of the second one. 

 

1 1 1 1

1 1 1 1

1 1

| (1, 1) (1, ) | | (1, ) (1, ) |

[ (1, 1) (1, )] [ (1, ) (1, )]

[ (1, 1) (1, )] 0

n n n n

n n n n

n n

V e V j V j V e

V e V j V j V e

V e V e

   

   

 

       

        

     

 

 

where j = 1, 2, …, e-1 by the induction assumption. Therefore, when the transition rate 

multiplied by 1 1[ (1, 1) (1, )]n nV e V j      is greater than or equal to the transition rate 

multiplied by 1 1[ (1, ) (1, )]n nV j V e     in (iii), i. e., when (
, 1,e j e jq q  ) for all  

j = 1, 2, …, e-1, inequality (4.18) holds. But this is guaranteed by the first part of  

Condition 1. 

It is known that 
1 1(1, ) (1, ) 0n nV j V e      and 

1 1(1, 1) (1, ) 0n nV e V j       for  

j = e+2, e+3, …, N by the induction assumption. Thus, the second term above is 

nonnegative if the absolute value of first summation is greater than or equal to that of the 

second one. 

 

   (4.18) 
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1 1 1 1

1 1 1 1

1 1

| (1, ) (1, ) | | (1, 1) (1, ) |

[ (1, ) (1, )] [ (1, 1) (1, )]

[ (1, 1) (1, )] 0

n n n n

n n n n

n n

V j V e V e V j

V j V e V e V j

V e V e

   

   

 

       

        

     

 

 

where j = e+2, e+3, …, N by the induction assumption. Therefore, when the transition rate 

multiplied by 
1 1[ (1, ) (1, )]n nV j V e     is greater than or equal to the transition rate 

multiplied by 
1 1[ (1, 1) (1, )]n nV e V j      in (iv), i. e., when (

1, ,e j e jq q  ) for all  

j = e+2, e+3, …, N, inequality (4.19) holds. But this is guaranteed by the second part of 

Condition 1. Thus, we have shown that (4.16) is nonnegative and therefore Lemma 3 is true 

for x = 1 given that Condition 1 holds, and the proof is complete. 

Theorem 4. The base stock levels for each environmental state e ( *
eS ) have the same 

ordering with the demand rates corresponding to these states given that Condition 1 holds. 

That is,  * * * * *
1 1 1... ...N N e eS S S S S        where 

1 1 1... ...N N e e           . 

Proof. The theorem is directly implied by Theorem 3 and Lemma 3. 

Remark 2. Condition 1 is directly satisfied by definitions of the system when a  

birth-and-death process represents the environment, i. e., the infinitesimal generator of M  

is denoted by  
,

Q qej e j E



 where ,q e Eq ejee

j e

  


 and 0,qej   for all j ≠ e+1, 

e-1. The reason is that 01,qq e jej    for j = 1, 2, …, e-2 and 1, 1, 1 qq e ee e     since 

0.1, 1qe e    Hence, the first part of Condition 1 is directly satisfied by definitions of the 

system when a birth-and-death process represents the environment. Moreover, 

01, qq eje j    for j = e+3, e+4, …, N and , 21, 2 qq e ee e     since 0., 2qe e   

Hence, the second part of Condition 1 is also directly satisfied by definitions of the system. 

Therefore, the base stock levels for each environmental state e ( *
eS ) have the same ordering 

   (4.19) 
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with the demand rates corresponding to these states without any condition to be satisfied on 

the values of the environment state transition rates when the continuous-time Markov chain 

characterizing the environment is a birth-and-death process. (See Appendix A for more 

detail.) 

Remark 3. Condition 1 is automatically satisfied by definitions of the system when the 

environment has only two states; 1 and 2 where 
2 1  , and there are only two 

environment state transition rates; q12 and q21. The reason is that the inequalities represented 

by Condition 1 are not necessary since there are not any environment states corresponding 

to (e-1) and (e+2) when e = 1 and to (e+1) and (e+2) when e = 2. Therefore, the base stock 

levels for environment states 1 and 2 ( *
1S , *

2S ) have the same ordering with the demand 

rates corresponding to these states. That is, * *
2 1S S . (See Appendix A for more detail.) 

Remark 4. The proof of Theorem 4 follows from the monotonicity of ( , )V x e  in e 

(Lemma 3) for each e, and therefore the ( , )V x e  values of the two environments, e and 

e+1, are compared with each other. Since the two expressions ( ( , 1)V x e  , ( , )V x e ) are 

compared term by term, the base stock levels for each environment have the same ordering 

with the demand rates of these states given that Condition 1 holds when the assumptions of 

the model are generalized to include environment-dependent inventory holding cost 

function (he(x)) and production cost per item (ce), given that the marginal inventory holding 

cost (he(x)- he(x-1)) and the production cost per item for each environment have the same 

ordering with the demand rates of these environments. Thus, if  

[he(x)-he(x-1)] [he(x)-he(x-1)] and ... ...1 1 1c c c c cN N e e                                 

then the base stock levels are monotonic in the demand rates.   

Moreover, we provide an illustrative example for the monotonicity of the base-stock 

levels for a system of four environment states. (See Appendix B for more detail.) 
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Chapter 5 

 

ANALYSIS of DYNAMIC PRICING POLICIES and COMPARISON with  

STATIC PRICING  

 

 

5.1 Introduction  

 

 

Price is one of the most effective variables that a firm can control, and pricing policies 

are critical in inventory management since the demand can be encouraged or discouraged 

by changing the price. The developments in information technologies have increased the 

use of Internet, and the increasing popularity of E-commerce applications provides firms 

many advantages such as flexibility in the price changes, easier data collection from the 

customer, and more accurate information on inventory levels. These advantages influence 

the firms to try new strategies for pricing, and one of the popular pricing models used in  

E-commerce is dynamic pricing, where the price of an item may change over time.  

Many service industries such as airlines and hotels have been using dynamic pricing for 

years in revenue management applications, and dynamic pricing is also becoming popular 

in production and retail environments as many firms investigate the benefits of this pricing 

model in these sectors. In this chapter, we will first analyse the structure of the optimal 

replenishment policy when dynamic pricing method is applied on the problem analysed in 

this thesis and demonstrate that a state-dependent base-stock policy is again optimal in this 

case. Moreover, we will also show that the optimal prices decrease in the amount of 
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inventory. Next, we will compare the structure of optimal pricing and replenishment 

policies for dynamic and static pricing methods along with the infinite horizon average 

profit obtained for these two pricing models. 

The average profit criterion is used to compare the static and dynamic pricing policies 

with replenishment decisions, and relative value iteration method is used to calculate the 

average profit for the systems in the data range considered ([32],  

Chapter 8, Section 8.5.5).    

 

5.2 Dynamic Pricing Model Formulation  

 

The system considered in this chapter operates in the same environment described in 

Chapter 4 by M(t) to model the demand arrivals as a Markov-modulated Poisson process 

with rate λe, where λe is the demand rate when M(t)= e. As before, the demand rates 

corresponding to the states of M(t) are ordered such that 

... ...1 1 1N N e e           . Moreover, the service process as well as the 

reward and cost structure of the problem remains the same. The only difference between 

the two models is in the action space. Now we need to decide on the price of the item as 

well as whether to replenish or not to replenish. More explicitly, we are allowed to change 

the price depending on the environment state and current inventory level, which is 

commonly referred to as dynamic pricing. Since both the arrival and service processes are 

the same as in Chapter 4, we can still use uniformization, which gives the following 

optimality equations for the system with dynamic pricing: 

 

( , ) ( ) max{ ( )[ ( 1, ) ] [1 ( )] ( , )}

max{ ( , ), ( 1, )} ( , ) ( ) ( , )

V x e h x F p V x e p F p V x ee e
p

V x e V x e q V x j q V x eej i ij
j e i e i e j i

 

 

      

    

   

   
 

  (5.1) 
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where x is the current inventory level and e is the current environment state. 

 

5.3 Structure of the Optimal Policy 

 

In this section, we prove that the optimal value function V is concave; hence the 

optimal replenishment policy is of base-stock type. Let ( , )V x e  be the operator defined 

as ( , ) ( , ) ( 1, )V x e V x e V x e    . Then, 

Lemma 4. For every x ≥ 0 and e є E, V(x, e) is concave in x, i. e. 

( , ) ( 1, ) 0V x e V x e    . 

Proof. We will use the method of value iteration and generate a sequence of optimal value 

functions, Vn (x, e), representing the maximum expected total discounted profit of the  

n-stage problem. Then, we will prove the lemma for the finite period problem with the 

induction method, and the lemma follows from Theorem 1 and Corollary 1 because we will 

prove that the inventory state space is finite for every value of n in the finite period 

problem so that the rewards are bounded for every state and action since the inventory 

holding cost is bounded at each state and the optimal price is bounded by definitions of the 

reservation price distribution. Hence, ( , ) lim ( , )V x e V x en n   [32]. Moreover, the 

results obtained here apply for both the discounted and long-run average reward cases since 

the action space for every state (As) is compact because the set of prices that can be offered 

is a compact set and possible replenishment decisions set is finite  

(a=0 and a=1), (Theorem 6.2.10 and 8.4.7. in [32]). Set ( , ) 0,0V x e   for all x, e.  

For n ≥ 1,  
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( , ) ( ) max{ ( )[ ( 1, ) ] [1 ( )] ( , )}1 1

max{ ( , ), ( 1, )} ( , )1 1 1

( ) ( , )1

V x e h x F p V x e p F p V x en e n e n
p

V x e V x e q V x jn n ej n
j e

q V x ei ij n
i e i e j i

 





       

    


  
  



  

 

                          

Then, V (x, e) will be concave in x if Vn (x, e) is concave in x for all n. The lemma is 

trivially true for all e and x when n=0. Assume it is true for n-1 for all e and x. We need to 

consider the cases x = 1 and x ≥ 2 separately due to the boundary conditions. Let px,e be the 

optimal price for inventory amount x and environment e, which maximizes Vn(x, e), and 

pmax be the maximum price that can be offered. Then, for x ≥ 2 and all e,  

 

  (5.2) 
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( , ) ( 1, )

[ ( , ) ( 1, )] [ ( 1, ) ( , )]

{ ( ) [ ( 1)]} { ( 1) [ ( )]}

{ ( )[ ( 1, ) ] [1 ( )] ( , )}, 1 , , 1

{ ( )[ ( 2, ) ] [1 ( )]1, 1 1, 1,
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The pricing operator is the only difference between (5.3) and (4.4), and therefore if  
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then (5.3) also holds. We will now show that (5.4) holds for x ≥ 2 and all e.  
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where the first inequality holds by the optimality of px,e in state (x, e) and the second 

inequality is true by the induction hypothesis. Thus, the lemma is true for n for x ≥ 2 and  

all e.  

For x = 1 and all e, 
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The pricing operator is the only difference between (5.5) and (4.6), and therefore if  
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then (5.5) also holds. We will now show that (5.6) holds for x = 1 and all e.  
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where the first inequality is true by  definitions of p1,e, p2,e, and pmax, and the second 

inequality holds since 
max( ) 0F p   by definition of reservation price distribution. Thus, the 

lemma is true for n for x = 1 and all e.  
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Lemma 5. Let x1 and x2 be two nonnegative inventory levels such that x1<x2, and p1e and 

p2e be the optimal price for these inventory levels at environment e, respectively. Then, 

p1e>p2e.  

Proof. Suppose p2e<p1e. Then, ( ) ( )1 2F p F pe e  and for every e є E 
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However, it contradicts our definitions. Therefore, the assumption p2e<p1e is false and we 

conclude that p1e>p2e. 

Theorem 5. For every state of the environment, there is an optimal base-stock level 
*Se  

where it is optimal to replenish until the amount of inventory reaches 
*Se , and not to 

replenish when x 
*Se . Moreover, the optimal price is decreasing in inventory amount, i. e. 

e , there exists a set of optimal prices { }, 1,...,
1,...,

px e x S
e N



 where , 1,P Px e x e  .  

Proof. Theorem 5 directly follows from Lemma 4 and Lemma 5.   

  (5.7) 
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Finally, we conclude that the optimal replenishment policy for both the static and 

dynamic pricing method has the same structure; the optimal policy is a base-stock policy 

for both models. Moreover, in the dynamic pricing method, the optimal prices decrease in 

the amount of inventory. The reason is that when we have higher amount of stock, the 

possibility of having lost sales soon is smaller, and therefore the firm wants to sell as much 

as it can. Thus, the optimal policy decreases the price. However, when the inventory 

amount is low, the possibility of having lost sales soon increases, and it makes the 

inventory left more “valuable” in the sense that the firm wants to sell this product to the 

customers who can pay more. Thus, the optimal policy increases the price.     

The dynamic pricing problem here is also analysed in stationary environment by Gayon 

[13] where he shows that a base-stock policy is also optimal in this case. 

Remark 5. The proof of Theorem 3 follows from the concavity of the optimal expected 

total discounted profit function, V(x, e), in x (Lemma 2) for each e, and therefore the 

behaviour of the optimal policy is investigated according to the changes in the inventory 

amount (x) at a specific environment e. Since the optimality equation at a certain 

environment is examined at the proof of Lemma 2, the optimal policy is again an 

environment-dependent base-stock policy when the assumptions of the model are 

generalized to include environment-dependent inventory holding cost function (he(x)), 

reservation  price distribution ( ( )F pe ) , production cost per item (ce), and production rate 

(μe) given that the inventory holding cost function is convex and nondecreasing for all e 

and the price is at least as much as the maximum value of the production cost that is 

possible ( max{ } 0p ce
e

  ). It is worthwhile to note that the maximum and minimum 

prices and therefore the price range can be changed depending on the environment ( max,p e  

and min,p e ) since the reservation price distribution depends on the environment.  
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5.4 Numerical Analysis and Comparison of Dynamic and Static Pricing Policies 

 

In this section, we will present the results obtained by generating sample runs with the 

parameters described below. The objective of this numerical study is to observe the 

changes in the structure of the optimal pricing and replenishment policy for both pricing 

models, and to gain insights about the relative profit increase dynamic pricing method 

brings compared to the static pricing in stationary and nonstationary environment. Here we 

have two environment states, namely Low(L) and High(H), where the demand rate of the 

High(H) state is greater than the demand rate of the Low(L) state. The average profit 

criterion is used to analyse and compare the static and dynamic pricing policies with 

replenishment decisions, and relative value iteration method is used to calculate the average 

profit for the systems in the data range considered ([32], Chapter 8, Section 8.5.5). The 

value iteration algorithm given in the book of Puterman [32] is coded in C.   

 

5.4.1 Parameter Values Used in the Numerical Analysis 

 

The values of the parameters used to generate the sample runs are taken as below: 

 h(x) = h x, where h is taken to be the inventory holding cost per item per unit time 

and h = 0.01. 

 ( ) ,F p b ap   with a = 1, b = 1. 

 In this numerical study, the net profit margin obtained from each product (p-c) is used 

instead of using price p and the constant unit production cost of c separately since the 

amount sold will be equal to the amount produced in the long-run. Therefore, a net 

profit margin of p´ is used to represent the net revenue obtained from each sale in the 

sample runs generated, and the reservation price distribution is shifted by changing a to 

a´ = a(p/p-c) where 
' ' ' '( ) ( )F p b ap F p b a p     . 
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 Pricing decision for static pricing is to choose the optimum profit margin from the 

discrete set p´ = 0, 0.01, 0.02, 0.03, ..., 1 with a minimum of 0 and a maximum  

of 1. 

 Pricing decison for dynamic pricing is to choose the optimum margin from the compact 

set [0, 1] which maximizes the pricing operator in Vn, which is  

 

max{ ( ')( ( 1, ) ') [1 ( ')] ( , )}1 1
'

F p V x e p F p V x ee n e n
p

       

 

for the inventory level x and environment e. The value iteration method calculates the 

optimal expected average reward when there are n transitions left for the system to 

terminate using the Vn-1 values already calculated in the previous iteration. Therefore, 

the Vn-1 values are treated as constants in the derivations below. 

 λL = (λAverage – є), λH = (λAverage + є), where λAverage = 1, and є = 0, 0.1, 0.2, 0.3, ..., 0.9; 

with linear reservation price distribution, and the pricing operator (PO) can be 

represented as: 
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(5.9) 



 

Chapter 5: Analysis of Dynamic Pricing Policies and 

Comparison with Static Pricing                                                                                            75   

 

 

Thus, PO is concave with the maximizing margin  

 

( , )' 1

2 2

V x eb npopt
a

    

 

Note that monetary scale (MS) can be changed by dividing or multiplying the margin 

(p´) and the inventory holding cost per item per unit time (h) with a certain amount (ms) 

(the value a´ should be rescaled by multiplying the old value with the reciprocal of the 

amount used to rescale the monetary values, i. e. a´ a´/ms).  

Then, changing the money scale will correspond to multiplying or dividing the 

expected rewards obtained at each transition. Hence, changing the money scale does 

not change the optimal policy. 

Thus, we actually observe infinitely many systems that can be created by changing the 

money scale, but we do not include any money scale change in our results since it does 

not cause any change in the optimal policy. 

 To generate samples for different systems, we change the utilization rate (ρ) by 

changing the production rate (μ) from 0.1 to 1.0 by incrementing μ by 0.01 for every 

value of є. Hence, μ = 0.1, 0.11, 0.12, ..., 1.00. 

Since the transition probabilities (tp) are the ratios of transition rates (tr) to the 

normalization rate (nr = Σtr), (tp = tr / nr), dividing or multiplying all the transition 

rates changes the time scale without causing any change in the optimal policy, and 

therefore the change in the time scale only causes a change in the average profit such 

that the average profit of the new system can directly be obtained by dividing or 

multiplying the average profit of the old system with the same amount used to change 

the time scale.     

(5.10) 
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Thus, we actually observe infinitely many systems that can be created by changing the 

time scale for every value of ρ, but we do not include any time scale change in our 

results since it does not cause any change in the optimal policy. 

 The transition rates are taken as qLH = qHL = α = 0.01. 

Even though the values of these parameters might seem restricted, they actually cover a 

complete set of problems for different possible values of a, b, and λ values due to scaling 

properties. Gayon [13] gives a detailed explanation.  

Thus, the system could be described generally in the figure below: 

 

 

 

 

 

 

 

Figure 1. The transition rates for the system with two environment states  

 

5.4.2 Results 

In this section, we will present the results obtained from the sample runs generated. 

First, we will compare the structure of the optimal static and dynamic pricing policies 

combined with replenishment decisions by comparing the base stock levels and optimal 

prices for different values of demand variability (є), and then we will compare the average 

profit obtained by dynamic pricing with the profit obtained by applying static pricing for 

each system to understand the benefit of dynamic pricing model.  

λ-є λ+є 

α 

α 
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The optimal base-stock values, optimal prices and optimal average profit are obtained 

for different є values of 0, 0.1, ..., 0.9, and for the values є = 0, 0.3, 0.8, the results are 

presented in the graphics below:  
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Base Stock Level versus μ for 
E n v i r o n m e n t  2  ( H ) - S t a t i c  P r i c i n g
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Base Stock Levels versus μ for 
E n v i r o n m e n t  1  ( L ) - D y n a m i c  P r i c i n g
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Base Stock Levels versus μ for 
E n v i r o n m e n t  2  ( H ) - D y n a m i c  P r i c i n g
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 The base-stock levels of both environments (L and H) decrease in the production rate 

(μ) since the firm needs less stock when it can produce faster. 

 The base-stock level of environment (L) decreases in the demand variability since the 

demand rate of Low state (λ-є) decreases in є by definition. The firm needs less amount 

of inventory when the demand is lower. However, the base-stock level of environment 

Figure 2. The base-stock levels for static and dynamic pricing for the Low(L) and 

High(H) environment states at each system and for different demand variabilities 
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(H) increases in the demand variability since the demand rate of High state (λ+є) 

increases in є by definition. The firm needs greater amount of inventory when the 

demand is higher. 

 The base-stock level determined by dynamic pricing method is higher than the  

base-stock level determined by static pricing in both environment states (L and H) for 

all demand variabilities since dynamic pricing gives the firm the opportunity of getting 

rid of excess stock by decreasing the prices because the firm can control the price and 

price has a direct effect upon demand. It is optimal to try to avoid lost sales by 

increasing the amount of stock especially when the capacity is low since the minimum 

realistic profit margin to offer (0.01) is equal to the holding cost per item per unit time.  

 

To create a benchmark for the optimal profit margin (p' = p-c) for static pricing, we 

choose the maximum margins offered by the dynamic pricing model at both environment 

states. p'1L and p'1H are the maximum margins charged in Low and High environments, 

respectively, since the optimal prices decrease in the inventory level (Lemma 5).  

In Figures 3a and 3b, we present the optimal margins for both pricing models separately 

in order to gain insights about the structure of the optimal pricing policy for both methods 

in stationary and nonstationary environment. In Figure 4, we compare the optimal static 

and dynamic margins for the cases where є = 0 and є = 0.8. Note that the case with є = 0 

corresponds to the stationary environment, which will be denoted by (SE). 
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Optimal Profit Margin (p´) for Static Pricing versus μ
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p'1L versus μ 

0

0.2

0.4

0.6

0.8

1

0
.1

0
.2

0
.3

0
.4

0
.5

0
.7

0
.8

0
.9

1
.0

μ

O
p

ti
m

a
l 

M
a

rg
in

s

є=0

є=0.3

є=0.8

p'1H versus μ   
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Figure 3b. The maximum values of optimal dynamic profit margins for each system  

with different demand variabilities 

 

 The optimal static and dynamic pricing margins decrease in production rate (μ) 

meaning that it is optimal to try to increase the amount of sales as much as possible by 

decreasing the margin if there is enough capacity rather than increasing the margin 

obtained from each sale and causing a decrease in the total amount of sales. 

Figure 3a. The optimal profit margins for static pricing for each system with different  

demand variabilities 
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 The optimal static pricing margin increases in demand variability meaning that the 

fluctuating enviroment influences the optimal policy to charge higher prices and earn 

more from each sale to compensate the uncertainty of demand. 

 The maximum optimal dynamic pricing margin offered at the Low state decreases in 

demand variability whereas the maximum optimal dynamic pricing margin offered at 

the High state increases in demand variability since the demand rate at the Low state  

(λ- є) decreases in є whereas the demand rate at the High state (λ+ є) increases in є. 
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Optimal Static and Dynamic Margins (p´) for є=0.8  
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Figure 4. Comparison of the optimal static and maximum dynamic pricing margins  

for the cases є = 0 and є = 0.8 where SE denotes the stationary environment 
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 The dynamic pricing method charges higher prices than static pricing in stationary 

environment. Moreover, the maximum optimal dynamic price in the environment with 

lower demand rate,which is charged when inventory amount is 1,decreases and falls 

below the optimal static price as the demand variability increases whereas the 

maximum optimal dynamic price in the environment with higher demand rate increases 

above the optimal static price.  
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Opt. Ave. Profit versus μ for Dynamic Pricing (Prd) 
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 The optimal average profit of both pricing policies increases in (μ) and is concave in (μ) 

since it is not possible to obtain a lower profit with increased capacity and excess 

capacity brings relatively small increase in profit.  

Figure 5a. Optimal average profit for static and dynamic pricing  
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 The optimal average profit of both pricing policies decreases in demand variability (є) 

since the fluctuating environment and the demand uncertainty it brings decrease the 

revenue of the firm. It is worthwhile to note that the optimal static prices increase as the 

demand variability increases, but the optimal average profit decreases in the demand 

variability meaning that the nonstationary environment is not beneficial for neither the 

firm nor the customer when static pricing is applied.   
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 Gayon [13] generates sample runs for his model and finds that the maximum relative 

profit increase that could be obtained by applying dynamic pricing with linear 

reservation price distribution is 3.78891% which is obtained when both pricing models 

are applied optimally, μ is taken to be 0.25 and the holding cost is h = 0.01. Our results 

for stationary environment (є = 0) are compatible with his results. 

 The maximum relative profit increase we obtained by applying dynamic pricing with 

linear reservation price distribution is 3.65914% when μ is taken to be 0.23. Since we 

Figure 5b. Relative profit increase obtained with dynamic pricing 
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also observed that the dynamic pricing method brings less than 4% increase compared 

to static pricing when both methods are applied optimally as Chen et al. [1] and Gayon 

[13] did, we checked if this is the same for the case of nonstationary environment. 

However, we observe that the relative profit increase of dynamic pricing method can 

goes up to 10% since the maximum increase we obtained in this numerical study is 

10.41474% where є is taken to be 0.7 and μ is 0.12.  

Thus, we conclude that dynamic pricing method is more beneficial in fluctuating 

environments, and the relative profit increase of dynamic pricing tends to increase in 

demand variability although a perfect monotonicity is not observed for this tendency. 

Since the firm has more authority on price than it has in the static pricing method, the 

managers could react more effectively to the environmental fluctuations by changing 

the price in dynamic pricing method, and this advantage brings more revenues than 

static pricing. 

Moreover, it is observed that the relative profit increase of dynamic pricing increases as 

the production rate (μ) decreases. The reason is that the firm does not have many 

options to apply as a replenishment policy when the supply process is very restrictive, 

and the firm’s financial performance depends mainly on its pricing strategy, and the 

advantages of dynamic pricing gain more importance and become more effective in 

these cases.  

 

5.4.3 Additional Numerical Examples 

 

In this section, we test the sensitivity of our previous results with respect to the cases 

with exponential reservation price distribution ( ( ) bpF p ae ) and different values of 

demand variability.  
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Our first example is for the case with environment transition rates (α) taken to be 0.1. 

We generated sample runs for the two different cases with α = 0.1 and   

a = b = 1. The results are shown in the figure below:  
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From Figure 6, it is concluded that as the frequency of environment state transitions 

increase when compared to the demand rate, the benefit of dynamic pricing tends to 

decrease. The reason is that the pricing strategy cannot be applied long enough to properly 

gain all the possible benefit when the environment fluctuates frequently compared to the 

demand arrival. 

 

Figure 6. Comparison of the Relative Profit Increase with Dynamic Pricing for  

α = 0.01 and α = 0. 1 
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The results we obtained for exponential reservation price distribution are totally 

compatible with the results we obtained for the linear case. Therefore, we do not present all 

the graphics here. The relative profit increase for the exponential case was slightly higher 

than the linear case which is shown in the figure above. The highest increase in profit 

obtained by applying dynamic pricing in this numerical study was “13.74931%”, and it 

obtained for the exponential case with є = 0.8.  

 

5.4.4 Summary of the Numerical Results 

 

From the studies completed so far, we are able to anticipate the structure of the optimal 

replenishment policy when static pricing or dynamic pricing is applied in stationary 

environment. Moreover, the previous numerical studies of Chen et al. [1] and Gayon [13] 

point that the dynamic pricing method does not bring a higher enough (less than 4%) 

increase compared to static pricing in stationary environment when both pricing models are 

applied optimally. However, the structure of the optimal policies for both pricing models 

and the relative profit increase that can be obtained by applying dynamic pricing was 

unclear in nonstationary environment. 

Figure 7. Relative Profit Increase with Dynamic Pricing for ( ) pF p e  
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We aimed to gain insights about this case in this numerical study, and our results show 

that the structure of the optimal replenishment policy is a state-dependent base-stock policy 

as it is expected and shown to be true in Lemma 6. The behavior of the optimal pricing and 

replenishment policies according to the demand variability is observed and demonstrated 

with figures and explanations. Moreover, it is observed that dynamic pricing is more 

beneficial in nonstationary environment and with capacitated supply. Chan et al. [11] 

conclude that the performance of dynamic pricing tends to increase with demand 

seasonality and tightness of capacity in their numerical study, and we observed the same 

result in uncertain environment where the uncertainty is reflected with the unpredictable 

shifts in the demand rate and the tightness of capacity is determined by the amount of the 

production rate.   
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Chapter 6 

 

CONCLUSION 

 

 

In this thesis, a continuous-review, infinite horizon inventory pricing and replenishment 

problem with capacitated supply is analysed.  Demand is modeled as a  

Markov-modulated Poisson process where the potential demand rate depends on an 

external environment process. The supply side is modeled by a single server with 

exponential processing times. The main objective is to demonstrate the structure of optimal 

policies and also to compare two pricing models applied in business. One of them is the 

static pricing method where the price of the item remains fixed over time and the other is 

the dynamic pricing method where the price changes over time depending on the current 

inventory level and the external environment.  

First, the static pricing model with replenishment is analysed and it is found that an  

environment-dependent base-stock policy is optimal for a given price, and the base-stock 

levels for each environment reflect the same monotonicity pattern with the corresponding 

demand rates when the environment transition rates satisfy certain conditions. From the 

firm’s perspective, this result means that the capability of the management to observe the 

fluctuations in the environment and adjusting the current inventory policy according to 

these fluctuations is crucially important. However, it should be noted that to achieve this 

objective, the firm must have an effective demand forecasting model and it should have 

effective information channels to follow the changes in the economic conditions and detect 

the unpredictable shifts in the demand as soon as possible. Since determining the values of 
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the base-stock levels is a complicated problem, the results obtained here can be a guideline 

for the researchers working on this topic. For instance, it is shown that a higher base-stock 

level should be kept for a higher demand rate when environment transition rates satisfy 

certain conditions. 

Second, the dynamic pricing model with replenishment is analysed and again it is found 

that the optimal replenishment policy is an environment-dependent base-stock policy once 

again emphasizing the need for effective demand forecasting techniques and following the 

changes in economic conditions to get a high performance in inventory management when 

dynamic pricing is applied. Moreover, it is shown that the optimal prices decrease in the 

inventory amount. This result comes from the fact that when the firm has lower amount of  

inventory, the possibility of having lost sales after a short while increases and the firm will 

rationally want to gain as much as possible from each sale in this situation in order to 

compensate for any lost sales that might occur in a short time. 

Finally, the two pricing models are compared in a numerical study. The objective of 

this numerical study was to observe the structure of the optimal pricing and replenishment 

policies and to compare the relative profit increase of these two pricing models for different 

values of demand variability in a fluctuating environment where there are two environment 

states. It was observed that the base-stock levels determined by the dynamic pricing 

method are higher than the ones determined by static pricing. This can be explained by the 

fact that the firm has an opportunity of getting rid of excess stock by decreasing the price 

and hence increasing the demand rate. Thus, the firm keeps more inventory to decrease the 

possibility of having a lost sale. The ability to control demand by changing the price 

becomes more important especially when the capacity is tight, and applying dynamic 

pricing gives the firm the opportunity to keep more stock without incurring a certain 

decrease in profit when compared to the static pricing.  
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Moreover, the results show that the optimal static prices increase as the demand 

variability increases. This result gives interesting insights since the demand variability 

represents the situation where the difference between the demand rates of the two 

environments increases, so the lower demand rate decreases more and the higher demand 

increases more. Intuitively, it seems rational to charge lower prices when the demand 

decreases but, in the static pricing case,  a higher price is charged in the environment with 

lower demand rate. This contradiction comes from the fact that the firm cannot adapt to the 

changes in the environment, and the customers pay for the cost of this inability of the firm. 

Also, the optimal average profit decreases in the demand variability for both pricing 

methods. Thus, for static pricing we conclude that when the environment and therefore the 

demand fluctuates, both the customer and the firm lose money since the customer has to 

pay a higher price and the firm gains a lower profit compared to the case of stationary 

environment. 

The most important choice that has to be made here is whether to use static pricing or 

dynamic pricing. Although dynamic pricing method provides the firm the great advantage 

of controlling the demand, it might have some drawbacks. For instance, changing the price 

stickers or catalogs can result in a high increase in transaction costs or the firm might lose 

its reputation if the customers react negatively to the price changes. If there is a high 

possibility that the firm’s profit might be damaged from these drawbacks, the profit 

increase dynamic pricing brings might not compensate for these losses. This might happen 

especially in a stationary demand environment since it is concluded that the dynamic 

pricing method results in a limited improvement on the firm’s profit compared to static 

pricing when both models are applied optimally. The maximum profit increase obtained in 

this numerical study for this case is less than 4%. Therefore, we advise to prefer static 

pricing in a stationary demand environment given that this method is applied optimally. 

The results show that the relative increase in profit obtained by applying dynamic pricing 
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tends to increase with the demand variability and tightness of the capacity. The reason is 

that the great advantage of controlling the demand the dynamic pricing method provides 

the firms becomes more effective on the firm’s profit since the fluctuating environment 

conditions causes unpredictable shifts in demand and the tightness of the capacity restricts 

the replenishment decision. Therefore, the firms need to control the demand more strongly 

in these cases. 

Hence, we conclude that dynamic pricing can bring a high enough increase to 

compansate for its drawbacks where the demand variability is high and capacity is tight 

since we observed relative profit increase values are approximately 10% in these cases.    

A natural extension of the inventory pricing and replenishment problem studied in this 

thesis is to add an assumption of set-up cost to the cost structure where it is expected that 

the optimal replenishment policy would be an (s, S) policy with threshold value s and 

order-up-to-level S determining the amount of inventory to replenish since all the orders 

will be given to increase the inventory amount up to the level “S”. Another challenge 

would be to investigate whether the optimal prices reflect any monotonicity pattern for the 

dynamic pricing method.  

The dynamic pricing model with replenishment analysed here considers to optimize the 

prices at each environment state and for each inventory amount. However, it seems 

interesting to construct another model with dynamic pricing where the optimal price 

depends on only the environment state and to compare its effect on the firm’s financial 

performance. Moreover, the assumptions of demand and supply processes can be modified 

by allowing batch arrivals and batch production. Also, the assumptions of our model can be 

generalized to include modulated prices, supply, etc. For instance, the case of Markov-

modulated reservation price distribution would not cause a change in the optimal policy 

since it has the same effect with changing the demand rate by definitions of our problem. 
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Another attractive issue might be to add perishability to our model by considering the 

inventory as decaying over time. 
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Appendix A 

 

MONOTONICITY of the BASE STOCK LEVELS at SPECIAL CASES 

 

 

We will now show that the base stock levels for each environmental state e ( *
eS ) have 

the same ordering with the demand rates corresponding to these states without any 

condition to be satisfied on the values of the environment state transition rates since 

Condition 1 is directly satisfied by definitions of the system when the continuous-time 

Markov chain characterizing the environment is a birth-and-death process. In addition, 

Condition 1 is not necessary when there are only two environment states.  

 

A.1 Monotonicity of the Base Stock Levels When a Birth-and-Death Process 

Represents the Environment 

 

Note that E is the set of environment states 1, 2, …, N  where 

1 1 1 1... ...N N e e e               and β is the discount rate. Moreover, the 

underlying Markov Chain characterizing the environment,   : 0M M t t  , is a  

birth-and-death process in this case. That is, the infinitesimal generator of M is denoted by  

 
,ej e j E

Q q


  where  

, .ejee
j e

q e Eq


  
  and 
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0,
ejq   for all j ≠ e+1, e-1.  

We will now show that the base stock levels for each environmental state e ( *
eS ) have 

the same ordering with the demand rates corresponding to these states without any 

condition to be satisfied on the values of the environment state transition rates since 

Condition 1 is directly satisfied by definitions of the system. We present the optimality 

equations for environment states e = 2, 3, …, N-2,  e = 1, and e = N  separately due to the 

differences between the transitions possible from each environment state considered. For  

e = 2, 3, …, N-2, we have the following optimality equation: 
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For e = 1, we have the following optimality equation: 

 

1 1
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For e = N, we have the following optimality equation: 
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Lemma A.1. ( , 1) ( , )V x e V x e    , for all x and for 1  e N-1. 

    (A.1) 

(A.2) 

(A.3) 
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Proof. We will use the induction method and show that ( , 1) ( , )n nV x e V x e     for all x, 

1  e  N-1, and for all n. The lemma is trivially true for n=0, suppose that it is true for  

n-1. We again consider x = 1 and x   2 separately. Moreover, we will consider the cases  

e = 2, 3, …, N-2,  e = 1, and e = N-1 separately. Then, for x   2 and  

e = 2, 3, …, N-2, 
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i e e j k

j e e k e e

q V x e q V x e q q V x e


       
   

   

           

, 1 , 1 1 1( ) ( , 1) ( , 1)e e e e n e nq q V x e V x e           

1

, 1 1 , 1 1 , 1 , 1 1
, 1 1 2

, 1 , 1

[ ( , 1) ( , 1) ( ) ( , )
N N

e e n e e n i j j k k n
i e e j k

j e e k e e

q V x e q V x e q q V x e


      
   

   

           

1, 2 1, 1 1 1( ) ( , ) ( , )]e e e e n e nq q V x e V x e           

=
1 1 1 1( ) ( ) ( 1, 1) ( ){ ( 1, 1) ( 1, )}e e n e n nF p V x e F p V x e V x e                 

1 1 1 1( )[1 ( )] ( , 1) [1 ( )]{ ( , 1) ( , )}e e n e n nF p V x e F p V x e V x e                 

1 1 1( , 1) ( , )e n e nV x e V x e         
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1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x e V x e c V x e V x e c               

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x e V x e c V x e V x e c           

1

, 1 , 1 1 1
1, 1 2

1, 1,

( ){ ( , 1) ( , )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V x e V x e


   
   

   

        

 

, 1 1 1 1, 2 1 1( ){ ( , 1) ( , 1)} { ( , 2) ( , )}e e n n e e n nq V x e V x e q V x e V x e                  


1 1 1 1( ) ( ) ( , 1) ( ){ ( 1, 1) ( 1, )}e e n e n nF p V x e F p V x e V x e                

1 1 1 1( )[1 ( )] ( , 1) [1 ( )]{ ( , 1) ( , )}e e n e n nF p V x e F p V x e V x e                 

1 1 1( , 1) ( , )e n e nV x e V x e         

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x e V x e c V x e V x e c               

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x e V x e c V x e V x e c           

1

, 1 , 1 1 1
1, 1 2

1, 1,

( ){ ( , 1) ( , )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V x e V x e


   
   

   

        

 

, 1 1 1 1, 2 1 1( ){ ( , 1) ( , 1)} { ( , 2) ( , )}e e n n e e n nq V x e V x e q V x e V x e                  

=
1 1 1 1 1{ ( , 1) ( , )} ( ){ ( 1, 1) ( 1, )}e n n e n nV x e V x e F p V x e V x e                 

1 1[1 ( )]{ ( , 1) ( , )}e n nF p V x e V x e         

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x e V x e c V x e V x e c               

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x e V x e c V x e V x e c           

1

, 1 , 1 1 1
1, 1 2

1, 1,

( ){ ( , 1) ( , )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V x e V x e


   
   

   

        

 

, 1 1 1 1, 2 1 1( ){ ( , 1) ( , 1)} { ( , 2) ( , )}e e n n e e n nq V x e V x e q V x e V x e                  

=
1 1 1 1 1{ ( , 1) ( , )} ( ){ ( 1, 1) ( 1, )}e n n e n nV x e V x e F p V x e V x e                 

1 1[1 ( )]{ ( , 1) ( , )}e n nF p V x e V x e         

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x e V x e c V x e V x e c               

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x e V x e c V x e V x e c           
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1

, 1 , 1 1 1
1, 1 2

1, 1,

( ){ ( , 1) ( , )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V x e V x e


   
   

   

        

 

, 1 1 1 1 1( ){[ ( , 1) ( , )] [ ( , ) ( , 1)]}e e n n n nq V x e V x e V x e V x e               

1, 2 1 1 1 1{[ ( , 2) ( , 1)] [ ( , 1) ( , )]} 0e e n n n nq V x e V x e V x e V x e                  

The inequality above holds since Vn (x, e) is concave in x for all e and n 

(
1 1( 1, 1) ( , 1)n nV x e V x e       ) by Lemma 2, Lemma A.1 is assumed to be true for n-1, 

and since 

 

1 1 1 1

1 1 1 1

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]} 0

n n n n

n n n n

V x e V x e c V x e V x e c

V x e V x e c V x e V x e c

   

   

        

      

 

 

(A.5) holds by the same discussion summarized in Table 5 for e = 2, 3, …, N-2. Thus, 

Lemma A.1 is true for x  2 and e = 2, 3, …, N-2. Then, for x  2 and e = 1, 

 

( , 2) ( ,1)n nV x V x    

[ ( , 2) ( 1,2)] [ ( ,1) ( 1,1)]n n n nV x V x V x V x       

2 2 1 2 1 1 1[[( ( ) ( ) ( ) ( 1,2) [1 ( )] ( , 2) max{ ( ,2), ( 1,2) }n n n nh x F p p F p V x F p V x V x V x c                 

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

( ,3) ( ,1) ( ) ( ,2)]
N N

n n i j j k k n
i j k

j

q V x q V x q q V x


    
  



      

 

2 2 1 2 1 1 1[( ( 1) ( ) ( ) ( 2,2) [1 ( )] ( 1,2) max{ ( 1,2), ( , 2) }n n n nh x F p p F p V x F p V x V x V x c                   

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

( 1,3) ( 1,1) ( ) ( 1,2)]]
N N

n n i j j k k n
i j k

j

q V x q V x q q V x


    
  



         

 

1 1 1 1 1 1 1[[( ( ) ( ) ( ) ( 1,1) [1 ( )] ( ,1) max{ ( ,1), ( 1,1) }n n n nh x F p p F p V x F p V x V x V x c                 

1

1,2 1 , 1 , 1 1
1 2 2

( ,2) ( ) ( ,1)]
N N

n i j j k k n
i j k

q V x q q V x


   
  

     
 

1 1 1 1 1 1 1[( ( 1) ( ) ( ) ( 2,1) [1 ( )] ( 1,1) max{ ( 1,1), ( ,1) }n n n nh x F p p F p V x F p V x V x V x c                   

(A.5) 

(A.6) 
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1

1,2 1 , 1 , 1 1
1 2 2

( 1,2) ( ) ( 1,1)]]
N N

n i j j k k n
i j k

q V x q q V x


   
  

       
 

= 
2 1 1 1( ) ( 1,2) ( ) ( 1,1)n nF p V x F p V x        

2 1 1 1[1 ( )] ( , 2) [1 ( )] ( ,1)n nF p V x F p V x         

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

( ,3) ( ,1) ( ) ( , 2)
N N

n n i j j k k n
i j k

j

q V x q V x q q V x


    
  



         

 

1

1,2 1 , 1 , 1 1
1 2 2

[ ( ,2) ( ) ( ,1)]
N N

n i j j k k n
i j k

q V x q q V x


   
  

       

 

=
2 1 1 1( ) ( 1,2) ( ) ( 1,1)n nF p V x F p V x        

2 1 1 1[1 ( )] ( , 2) [1 ( )] ( ,1)n nF p V x F p V x         

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

2,3 1 2,1 1 , 1 , 1 1
2 3 3

( ,3) ( ,1) ( ) ( ,2)
N N

n n i j j k k n
i j k

q V x q V x q q V x


    
  

         

 

1,2 1( ) ( , 2)nq V x   

1

1,2 1 , 1 , 1 1 2,3 1 2,1 1
1 3 3

[ ( ,2) ( ) ( ,1) ( ,1) ( ,1)]
N N

n i j j k k n n n
i j k

q V x q q V x q V x q V x


     
  

           

 

=
2 1 1 1 1 1( ) ( ) ( 1,2) ( ){ ( 1,2) ( 1,1)}n n nF p V x F p V x V x              

2 1 1 1 1 1( )[1 ( )] ( , 2) [1 ( )]{ ( ,2) ( ,1)}n n nF p V x F p V x V x              

1 1 2 1( , 2) ( ,1)n nV x V x       

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

, 1 , 1 1 1
2,1 3 3

( ){ ( ,2) ( ,1)}
N N

i j j k k n n
i j k

q q V x V x
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2,3 1 1{ ( ,3) ( ,1)}n nq V x V x      


2 1 1 1 1 1( ) ( ) ( , 2) ( ){ ( 1,2) ( 1,1)}n n nF p V x F p V x V x             

2 1 1 1 1 1( )[1 ( )] ( , 2) [1 ( )]{ ( ,2) ( ,1)}n n nF p V x F p V x V x              

1 1 2 1( , 2) ( ,1)n nV x V x       

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

, 1 , 1 1 1
2,1 3 3

( ){ ( ,2) ( ,1)}
N N

i j j k k n n
i j k

q q V x V x


   
  

      
 

2,3 1 1{ ( ,3) ( ,1)}n nq V x V x      

=
2 1 1 1 1 1{ ( ,2) ( ,1)} ( ){ ( 1,2) ( 1,1)}n n n nV x V x F p V x V x              

1 1 1[1 ( )]{ ( , 2) ( ,1)}n nF p V x V x        

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

, 1 , 1 1 1
2,1 3 3

( ){ ( ,2) ( ,1)}
N N

i j j k k n n
i j k

q q V x V x


   
  

      
 

2,3 1 1{ ( ,3) ( ,1)}n nq V x V x      

=
2 1 1 1 1 1{ ( ,2) ( ,1)} ( ){ ( 1,2) ( 1,1)}n n n nV x V x F p V x V x              

1 1 1[1 ( )]{ ( , 2) ( ,1)}n nF p V x V x        

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1

, 1 , 1 1 1
2,1 3 3

( ){ ( ,2) ( ,1)}
N N

i j j k k n n
i j k

q q V x V x


   
  

      
 

2,3 1 1 1 1{[ ( ,3) ( , 2)] [ ( , 2) ( ,1)]} 0n n n nq V x V x V x V x             
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The inequality above holds since Vn (x, e) is concave in x for all e and n 

(
1 1( 1,2) ( , 2)n nV x V x     ) by Lemma 2, Lemma A.1 is assumed to be true for n-1, and 

since 

 

1 1 1 1

1 1 1 1

{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( ,2) ]}

{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]} 0

n n n n

n n n n

V x V x c V x V x c

V x V x c V x V x c

   

   

    

      

 

 

(A.7) holds by the same discussion summarized in Table 5 for e = 1. Thus, Lemma A.1 is 

true for x  2 and e = 1. Then, for x  2 and e = N-1, 

 

( , ) ( , 1)n nV x N V x N     

[ ( , ) ( 1, )] [ ( , 1) ( 1, 1)]n n n nV x N V x N V x N V x N         

1 1 1 1[[( ( ) ( ) ( ) ( 1, ) [1 ( )] ( , ) max{ ( , ), ( 1, ) }N N n N n n nh x F p p F p V x N F p V x N V x N V x N c                 

1 1

, 1 1 , 1 , 1 1
1 2

( , 1) ( ) ( , )]
N N

N N n i j j k k n
i N j k

q V x N q q V x N
 

    
  

      
 

1 1 1 1[( ( 1) ( ) ( ) ( 2, ) [1 ( )] ( 1, ) max{ ( 1, ), ( , ) }N N n N n n nh x F p p F p V x N F p V x N V x N V x N c                   

1 1

, 1 1 , 1 , 1 1
1 2

( 1, 1) ( ) ( 1, )]]
N N

N N n i j j k k n
i N j k

q V x N q q V x N
 

    
  

        
 

1 1 1 1 1 1 1[[( ( ) ( ) ( ) ( 1, 1) [1 ( )] ( , 1) max{ ( , 1), ( 1, 1) }N N n N n n nh x F p p F p V x N F p V x N V x N V x N c                        

2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

( , ) ( , 2) ( ) ( , 1)]
N N

N N n N N n i j j k k n
i N j k

k N

q V x N q V x N q q V x N


       
   

 

        

 

1 1 1 1 1 1 1[( ( 1) ( ) ( ) ( 2, 1) [1 ( )] ( 1, 1) max{ ( 1, 1), ( , 1) }N N n N n n nh x F p p F p V x N F p V x N V x N V x N c                        

 

2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

( 1, ) ( 1, 2) ( ) ( 1, 1)]]
N N

N N n N N n i j j k k n
i N j k

k N

q V x N q V x N q q V x N


       
   

 

           

 

= 
1 1 1( ) ( 1, ) ( ) ( 1, 1)N n N nF p V x N F p V x N          

1 1 1[1 ( )] ( , ) [1 ( )] ( , 1)N n N nF p V x N F p V x N           

(A.7) 

(A.8) 
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1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

1 1

, 1 1 , 1 , 1 1
1 2

( , 1) ( ) ( , )
N N

N N n i j j k k n
i N j k

q V x N q q V x N
 

    
  

        

 

2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

[ ( , ) ( , 2) ( ) ( , 1)]
N N

N N n N N n i j j k k n
i N j k

k N

q V x N q V x N q q V x N


       
   

 

           

= 
1 1 1( ) ( 1, ) ( ) ( 1, 1)N n N nF p V x N F p V x N          

1 1 1[1 ( )] ( , ) [1 ( )] ( , 1)N n N nF p V x N F p V x N           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

2 2

, 1 1 , 1 , 1 1
1 2

( , 1) ( ) ( , )
N N

N N n i j j k k n
i N j k

q V x N q q V x N
 

    
  

        

 

1, 1 1, 2 1( , ) ( , )N N n N N nq V x N q V x N         

2 2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

[ ( , ) ( , 2) ( ) ( , 1)
N N

N N n N N n i j j k k n
i N j k

q V x N q V x N q q V x N
 

       
   

           

, 1 1( , 1)]N N nq V x N     

= 
1 1 1( ) ( 1, ) ( ) ( 1, 1)N n N nF p V x N F p V x N          

1 1 1[1 ( )] ( , ) [1 ( )] ( , 1)N n N nF p V x N F p V x N           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

2 2

, 1 1 , 1 , 1 1
, 1 1 2

( , 1) ( ) ( , )
N N

N N n i j j k k n
i N N j k

q V x N q q V x N
 

    
   

        

 

1, 1 1, 2 1 1 1( , ) ( , ) ( , )N N n N N n N nq V x N q V x N V x N             

2 2

1, 1 1, 2 1 , 1 , 1 1
1, 1 2

[ ( , ) ( , 2) ( ) ( , 1)
N N

N N n N N n i j j k k n
i N N j k

q V x N q V x N q q V x N
 

       
   

           

, 1 1 1( , 1) ( , 1)]N N n N nq V x N V x N         

=
1 1 1 1 1( ) ( ) ( 1, ) ( ){ ( 1, ) ( 1, 1)}N N n N n nF p V x N F p V x N V x N                 

1 1 1 1 1( )[1 ( )] ( , ) [1 ( )]{ ( , ) ( , 1)}N N n N n nF p V x N F p V x N V x N                 
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1 1 1( , ) ( , 1)N n N nV x N V x N         

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

2 2

, 1 , 1 1 1
, 1 1 2

( ){ ( , ) ( , 1)}
N N

i j j k k n n
i N N j k

q q V x N V x N
 

   
   

       
 

1, 2 1 1( ){ ( , ) ( , 2)}N N n nq V x N V x N         


1 1 1 1 1( ) ( ) ( , ) ( ){ ( 1, ) ( 1, 1)}N N n N n nF p V x N F p V x N V x N                

1 1 1 1 1( )[1 ( )] ( , ) [1 ( )]{ ( , ) ( , 1)}N N n N n nF p V x N F p V x N V x N                 

1 1 1( , ) ( , 1)N n N nV x N V x N         

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

2 2

, 1 , 1 1 1
, 1 1 2

( ){ ( , ) ( , 1)}
N N

i j j k k n n
i N N j k

q q V x N V x N
 

   
   

       
 

1, 2 1 1( ){ ( , ) ( , 2)}N N n nq V x N V x N         

=
1 1 1 1 1{ ( , ) ( , 1)} ( ){ ( 1, ) ( 1, 1)}N n n N n nV x N V x N F p V x N V x N                 

1 1 1[1 ( )]{ ( , ) ( , 1)}N n nF p V x N V x N          

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               

2 2

, 1 , 1 1 1
, 1 1 2

( ){ ( , ) ( , 1)}
N N

i j j k k n n
i N N j k

q q V x N V x N
 

   
   

       
 

1, 2 1 1( ){ ( , ) ( , 2)}N N n nq V x N V x N         

=
1 1 1 1 1{ ( , ) ( , 1)} ( ){ ( 1, ) ( 1, 1)}N n n N n nV x N V x N F p V x N V x N                 

1 1 1[1 ( )]{ ( , ) ( , 1)}N n nF p V x N V x N          

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x N V x N c V x N V x N c           

1 1 1 1{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]}n n n nV x N V x N c V x N V x N c               
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2 2

, 1 , 1 1 1
, 1 1 2

( ){ ( , ) ( , 1)}
N N

i j j k k n n
i N N j k

q q V x N V x N
 

   
   

       
 

1, 2 1 1 1 1( ){[ ( , ) ( , 1)] [ ( , 1) ( , 2)]} 0N N n n n nq V x N V x N V x N V x N                  

 

The inequality above holds since Vn (x, e) is concave in x for all e and n 

(
1 1( 1, ) ( , )n nV x N V x N     ) by Lemma 2, Lemma A.1 is assumed to be true for n-1, and 

since 

 

1 1 1 1

1 1 1 1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}

{max[ ( , 1), ( 1, 1) ] max[ ( 1, 1), ( , 1) ]} 0

n n n n

n n n n

V x N V x N c V x N V x N c

V x N V x N c V x N V x N c

   

   

    

          

 

 

(A.9) holds by the same discussion summarized in Table 5 for e = N-1. 

Thus, Lemma A.1 is true for x2. We will now analyse the cases with x=1 and  

e = 2, 3, …, N-2,  e = 1, and e = N-1.  

For x=1 and e = 2, 3, …, N-2, 

 

(1, 1) (1, )n nV e V e     

[ (1, 1) (0, 1)] [ (1, ) (0, )]n n n nV e V e V e V e       

1 1 1 1 1 1 1[[( (1) ( ) ( ) (0, 1) [1 ( )] (1, 1) max{ (1, 1), (2, 1) }e e n e n n nh F p p F p V e F p V e V e V e c                      

1

1, 2 1 1, 1 , 1 , 1 1
1 1 2

1 1

(1, 2) (1, ) ( ) (1, 1)]
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


       
   

   

        

 

1 1 1 1 1 1[( (0) ( ) (0, 1) [1 ( )] (0, 1) max{ (0, 1), (1, 1) }e n e n n nh F p V e F p V e V e V e c                   

1

1, 2 1 1, 1 , 1 , 1 1
1 1 2

1 1

(0, 2) (0, ) ( ) (0, 1)]]
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


       
   

   

        

 

1 1 1 1[[( (1) ( ) ( ) (0, ) [1 ( )] (1, ) max{ (1, ), (2, ) }e e n e n n nh F p p F p V e F p V e V e V e c               

(A.10) 

(A.9) 
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1

, 1 1 , 1 1 , 1 , 1 1
1 2

(1, 1) (1, 1) ( ) (1, )]
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


      
  

 

        

1 1 1 1[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }e n e n n nh F p V e F p V e V e V e c             

1

, 1 1 , 1 1 , 1 , 1 1
1 2

(0, 1) (0, 1) ( ) (0, )]]
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


      
  

 

        

 

= 
1 1 1 1( ) ( ) [1 ( )] (1, 1) [1 ( )] (1, )e e e n e nF p p F p V e F p V e               

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c             

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV e V e c V e V e c         

1

1, 2 1 1, 1 , 1 , 1 1
1 1 2

1 1

(1, 2) (1, ) ( ) (1, 1)
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


       
   

   

           

 

1

, 1 1 , 1 1 , 1 , 1 1
1 2

[ (1, 1) (1, 1) ( ) (1, )]
N N

e e n e e n i j j k k n
i e j k

j e k e

q V e q V e q q V e


      
  

 

           

 

=
1 1 1 1 1( ) ( ) ( )[1 ( )] (1, 1) [1 ( )]{ (1, 1) (1, )}e e e e n e n nF p p F p V e F p V e V e                     

1 1 1(1, 1) (1, )e n e nV e V e         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c             

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV e V e c V e V e c         

1

1, 2 1 1, 1 , 1 , 1 1 , 1 , 1 1
1, 1 2

1, 1,

(1, 2) (1, ) ( ) (1, 1) ( ) (1, 1)
N N

e e n e e n i j j k k n e e e e n
i e e j k

j e e k e e

q V e q V e q q V e q q V e


          
   

   

               

 

1

, 1 1 , 1 1 , 1 , 1 1 1, 2 1, 1
, 1 1 2

, 1 , 1

[ (1, 1) (1, 1) ( ) (1, ) ( ) (1, )]
N N

e e n e e n i j j k k n e e e e n
i e e j k

j e e k e e

q V e q V e q q V e q q V e


          
   

   

              

 

=
1 1 1 1 1 1( ) ( ){ (1, 1)} ( ) (1, 1) [1 ( )]{ (1, 1) (1, )}e e n e e n e n nF p p V e V e F p V e V e                        

1 1 1(1, 1) (1, )e n e nV e V e         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c             

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV e V e c V e V e c         

1

1, 2 1 , 1 , 1 1 , 1 1
1, 1 2

1, 1,

(1, 2) ( ) (1, 1) ( ) (1, 1)
N N

e e n i j j k k n e e n
i e e j k

j e e k e e

q V e q q V e q V e


       
   

   

            

 

1

, 1 1 , 1 , 1 1 1, 2 1
, 1 1 2

, 1 , 1

[ (1, 1) ( ) (1, ) ( ) (1, )]
N N

e e n i j j k k n e e n
i e e j k

j e e k e e

q V e q q V e q V e
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=
1 1 1 1 1( ) ( ){ (1, 1)} { (1, 1) (1, )}e e n e n nF p p V e V e V e                

1 1[1 ( )]{ (1, 1) (1, )}e n nF p V e V e         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c             

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV e V e c V e V e c         

1

, 1 , 1 1 1
, 1 1 2

, 1 , 1

( ){ (1, 1) (1, )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V e V e


   
   

   

       

 

1, 2 1 1 , 1 1 1{ (1, 2) (1, )} ( ){ (1, 1) (1, 1)}e e n n e e n nq V e V e q V e V e                  

=
1 1 1 1 1( ) ( ){ (1, 1)} { (1, 1) (1, )}e e n e n nF p p V e V e V e                

1 1[1 ( )]{ (1, 1) (1, )}e n nF p V e V e         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c             

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV e V e c V e V e c         

1

, 1 , 1 1 1
, 1 1 2

, 1 , 1

( ){ (1, 1) (1, )}
N N

i j j k k n n
i e e j k

j e e k e e

q q V e V e


   
   

   

       

 

1, 2 1 1 1 1{[ (1, 2) (1, 1)] [ (1, 1) (1, )]}e e n n n nq V e V e V e V e                 

, 1 1 1 1 1{[ (1, 1) (1, )] [ (1, ) (1, 1)]} 0e e n n n nq V e V e V e V e                

 

The inequality above holds since Lemma A.1 is assumed to be true for n-1, 

1{ (1, 1) 0}np V e     by the second part of Lemma 2, and since  

 

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV e V e c V e V e c           

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]} 0n n n nV e V e c V e V e c         

 

(A.11) holds by the same discussion summarized in Table 5 for x=1 and e = 2, 3, …, N-2. 

For x=1 and e = 1, 

 

(1,2) (1,1)n nV V    

(A.11) 

(A.12) 
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[ (1,2) (0,2)] [ (1,1) (0,1)]n n n nV V V V     

2 2 1 2 1 1 1[[( (1) ( ) ( ) (0,2) [1 ( )] (1,2) max{ (1,2), (2,2) }n n n nh F p p F p V F p V V V c               

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

(1,3) (1,1) ( ) (1,2)]
N N

n n i j j k k n
i j k

j

q V q V q q V


    
  



      

 

2 1 2 1 1 1[( (0) ( ) (0,2) [1 ( )] (0,2) max{ (0,2), (1,2) }n n n nh F p V F p V V V c             

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

(0,3) (0,1) ( ) (0,2)]]
N N

n n i j j k k n
i j k

j

q V q V q q V


    
  



      

 

1 1 1 1 1 1 1[[( (1) ( ) ( ) (0,1) [1 ( )] (1,1) max{ (1,1), (2,1) }n n n nh F p p F p V F p V V V c               

1

1,2 1 , 1 , 1 1
1 2 2

(1,2) ( ) (1,1)]
N N

n i j j k k n
i j k

q V q q V


   
  

     
 

1 1 1 1 1 1[( (0) ( ) (0,1) [1 ( )] (0,1) max{ (0,1), (1,1) }n n n nh F p V F p V V V c             

1

1,2 1 , 1 , 1 1
1 2 2

(0,2) ( ) (0,1)]]
N N

n i j j k k n
i j k

q V q q V


   
  

     
 

= 
2 1 2 1 1 1( ) ( ) [1 ( )] (1,2) [1 ( )] (1,1)n nF p p F p V F p V            

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

1

2,3 1 2,1 1 , 1 , 1 1
2 1 3

2

(1,3) (1,1) ( ) (1,2)
N N

n n i j j k k n
i j k

j

q V q V q q V


    
  



         

 

1

1,2 1 , 1 , 1 1
1 2 2

[ (1,2) ( ) (1,1)]
N N

n i j j k k n
i j k

q V q q V


   
  

       
 

= 
2 1 2 1 1 1 1 1( ) ( ) ( )[1 ( )] (1,2) [1 ( )]{ (1,2) (1,1)}n n nF p p F p V F p V V                 

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

1

2,3 1 2,1 1 , 1 , 1 1 1 1 1,2 1
2,1 3 3

(1,3) (1,1) ( ) (1,2) (1,2) (1,2)
N N

n n i j j k k n n n
i j k

q V q V q q V V q V 


      
  

             
 

1

1,2 1 , 1 , 1 1 2 1 2,3 1 2,1 1
1,2 3 3

[ (1,2) ( ) (1,1)] (1,1) (1,1) (1,1)
N N

n i j j k k n n n n
i j k

q V q q V V q V q V 


      
  

             
 

= 
2 1 1 2 1 1 1 1 1( ) ( ){ (1,2)} ( ) (1,2) [1 ( )]{ (1,2) (1,1)}n n n nF p p V V F p V V                   

1 1 2 1(1,2) (1,1)n nV V       
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1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

1

, 1 , 1 1 1
2,1 3 3

( ){ (1,2) (1,1)}
N N

i j j k k n n
i j k

q q V V


   
  

      
 

2,3 1 1{ (1,3) (1,1)} 0n nq V V       

 

The inequality above holds since Lemma A.1 is assumed to be true for n-1, 

1{ (1,2) 0}np V     by the second part of Lemma 2, and since  

 

1 1 1 1

1 1 1 1

{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}

{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]} 0

n n n n

n n n n

V V c V V c

V V c V V c

   

   

  

    

 

 

(A.13) holds by the same discussion summarized in Table 5 for x = 1 and e = 1. Thus, 

Lemma A.1 is true for x = 1 and e = 1. For x = 1 and e = N-1, 

 

(1, ) (1, 1)n nV N V N     

[ (1, ) (0, )] [ (1, 1) (0, 1)]n n n nV N V N V N V N       

1 1 1 1[[( (1) ( ) ( ) (0, ) [1 ( )] (1, ) max{ (1, ), (2, ) }N N n N n n nh F p p F p V N F p V N V N V N c               

1 1

, 1 1 , 1 , 1 1
1 2

(1, 1) ( ) (1, )]
N N

N N n i j j k k n
i N j k

q V N q q V N
 

    
  

      
 

1 1 1 1[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }N n N n n nh F p V N F p V N V N V N c             

1 1

, 1 1 , 1 , 1 1
1 2

(0, 1) ( ) (0, )]]
N N

N N n i j j k k n
i N j k

q V N q q V N
 

    
  

      
 

1 1 1 1 1 1 1[[( (1) ( ) ( ) (0, 1) [1 ( )] (1, 1) max{ (1, 1), (2, 1) }N N n N n n nh F p p F p V N F p V N V N V N c                      

2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

(1, ) (1, 2) ( ) (1, 1)]
N N

N N n N N n i j j k k n
i N j k

k N

q V N q V N q q V N


       
   

 

        

 

1 1 1 1 1 1[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }n n n nh F p V N F p V N V N V N c             

(A.13) 

(A.14) 
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2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

(0, ) (0, 2) ( ) (0, 1)]]
N N

N N n N N n i j j k k n
i N j k

k N

q V N q V N q q V N


       
   

 

        

 

= 
1 1 1 1( ) ( ) [1 ( )] (1, ) [1 ( )] (1, 1)N N N n N nF p p F p V N F p V N               

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV N V N c V N V N c         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV N V N c V N V N c             

1 1

, 1 1 , 1 , 1 1
1 2

(1, 1) ( ) (1, )
N N

N N n i j j k k n
i N j k

q V N q q V N
 

    
  

        
 

2

1, 1 1, 2 1 , 1 , 1 1
1 1 2

1

[ (1, ) (1, 2) ( ) (1, 1)]
N N

N N n N N n i j j k k n
i N j k

k N

q V N q V N q q V N


       
   

 

           

 

= 
1 1 1 1 1 1( ) ( ) ( )[1 ( )] (1, ) [1 ( )]{ (1, ) (1, 1)}N N N N n N n nF p p F p V N F p V N V N                     

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV N V N c V N V N c         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV N V N c V N V N c             

2 2

, 1 1 , 1 , 1 1 1 1 1, 1 1, 2 1
, 1 1 2

(1, 1) ( ) (1, ) (1, ) (1, ) (1, )
N N

N N n i j j k k n N n N N n N N n
i N N j k

q V N q q V N V N q V N q V N 
 

           
   

              

2 2

1, 1 1, 2 1 , 1 , 1 1 1 , 1 1
1, 1 2

[ (1, ) (1, 2) ( ) (1, 1)] (1, 1) (1, 1)
N N

N N n N N n i j j k k n N n N N n
i N N j k

q V N q V N q q V N V N q V N 
 

          
   

                 

= 
1 1 1 1 1 1 1( ) ( ){ (1, )} ( ) (1, ) [1 ( )]{ (1, ) (1, 1)}N N n N N n N n nF p p V N V N F p V N V N                       

1 1 1(1, ) (1, 1)N n N nV N V N         

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV N V N c V N V N c         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV N V N c V N V N c             

2 2

, 1 , 1 1 1 1, 2 1 1
, 1 1 2

( ){ (1, ) (1, 1)} { (1, ) (1, 2)}
N N

i j j k k n n N N n n
i N N j k

q q V N V N q V N V N
 

       
   

           
 

=
1 1 1 1 1( ) ( ){ (1, )} [1 ( )]{ (1, ) (1, 1)}N N n N n nF p p V N F p V N V N                

1 1{ (1, ) (1, 1)}N n nV N V N        

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV N V N c V N V N c         

1 1 1 1{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}n n n nV N V N c V N V N c             

2 2

, 1 , 1 1 1 1, 2 1 1
, 1 1 2

( ){ (1, ) (1, 1)} { (1, ) (1, 2)}
N N

i j j k k n n N N n n
i N N j k

q q V N V N q V N V N
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The inequality above holds since Lemma A.1 is assumed to be true for n-1, 

1{ (1, ) 0}np V N    by the second part of Lemma 2, and since  

 

1 1 1 1

1 1 1 1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

{max[ (1, 1), (2, 1) ] max[ (0, 1), (1, 1) ]}

n n n n

n n n n

V N V N c V N V N c

V N V N c V N V N c

   

   

  

       

 

 

(A.15) holds by the same discussion summarized in Table 5 for x = 1 and e = N-1. Thus, 

Lemma A.1 is true for x = 1, and the proof is complete. 

Proposition A.1. The base stock levels for each environmental state e ( *
eS ) have the same 

ordering with the demand rates corresponding to these states. That is,  

* * * * *
1 1 1... ...N N e eS S S S S        where 

1 1 1... ...N N e e          . 

Proof. The proposition is directly implied by Theorem 2 and Lemma A.1. 

 

A.2 Monotonicity of the Base Stock Levels with Only Two Environment States 

 

In this section, we have only two environment states: Low (L) and High (H) where  

λH   λL, and the   transition rates between these two states are denoted by qLH and qHL. 

Here, we deal with a very simple Markov chain to characterize the environment, and the 

optimality equations are presented below: 

 

, ,

( , ) ( ) ( ) ( ) ( 1, ) [1 ( )] ( , ) max{ ( , ), ( 1, ) }

( , ) ( ) ( , )

H H H

H L L L H

V x H h x F p p F p V x H F p V x H V x H V x H c

q V x L q V x H

   



         

  

 

 

, ,

( , ) ( ) ( ) ( ) ( 1, ) [1 ( )] ( , ) max{ ( , ), ( 1, ) }

( , ) ( ) ( , )

L L L

L H H H L

V x L h x F p p F p V x L F p V x L V x L V x L c

q V x H q V x L

   



         

  

 

 

(A.15) 

(A.17) 

(A.16) 
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Lemma A.2. ( , ) ( , )V x H V x L   , for all x. 

Proof. We will use the induction method and show that ( , ) ( , )n nV x H V x L    for all x and 

for all n. The lemma is trivially true for n=0, suppose that it is true for n-1. We again 

consider x = 1 and x  2 separately.  

 For x   2,  

 

( , ) ( , )n nV x H V x L    

[ ( , ) ( 1, )] [ ( , ) ( 1, )]n n n nV x H V x H V x L V x L       

1 1 1 1[[( ( ) ( ) ( ) ( 1, ) [1 ( )] ( , ) max{ ( , ), ( 1, ) }H H n H n n nh x F p p F p V x H F p V x H V x H V x H c                 

, 1 , 1( , ) ( ) ( , )]H L n L L H nq V x L q V x H     

1 1 1 1[( ( 1) ( ) ( ) ( 2, ) [1 ( )] ( 1, ) max{ ( 1, ), ( , ) }H H n H n n nh x F p p F p V x H F p V x H V x H V x H c                   

, 1 , 1( 1, ) ( ) ( 1, )]]H L n L L H nq V x L q V x H       

1 1 1 1[[( ( ) ( ) ( ) ( 1, ) [1 ( )] ( , ) max{ ( , ), ( 1, ) }L L n L n n nh x F p p F p V x L F p V x L V x L V x L c                 

, 1 , 1( , ) ( ) ( , )]L H n H H L nq V x H q V x L     

1 1 1 1[( ( 1) ( ) ( ) ( 2, ) [1 ( )] ( 1, ) max{ ( 1, ), ( , ) }L L n L n n nh x F p p F p V x L F p V x L V x L V x L c                   

, 1 , 1( 1, ) ( ) ( 1, )]]L H n H H L nq V x H q V x L       

= 
1 1( ) ( 1, ) ( ) ( 1, )H n L nF p V x H F p V x L        

1 1[1 ( )] ( , ) [1 ( )] ( , )H n L nF p V x H F p V x L         

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x H V x H c V x H V x H c           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x L V x L c V x L V x L c           

, 1 , 1 , 1 , 1( , ) ( , ) ( ) ( , ) ( ) ( , )H L n L H n L L H n H H L nq V x L q V x H q V x H q V x L             
 

= 
1 1 1( ) ( ) ( 1, ) ( ){ ( 1, ) ( 1, )}H L n L n nF p V x H F p V x H V x L              

1 1 1( )[1 ( )] ( , ) [1 ( )]{ ( , ) ( , )}H L n L n nF p V x H F p V x H V x L              

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x H V x H c V x H V x H c           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x L V x L c V x L V x L c           

(A.18) 
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, 1 , 1 , 1 , 1( , ) ( , ) ( ) ( , ) ( ) ( , )H L n L H n L L H n H H L nq V x L q V x H q V x H q V x L             
 


1 1 1( ) ( ) ( , ) ( ){ ( 1, ) ( 1, )}H L n L n nF p V x H F p V x H V x L             

1 1 1( )[1 ( )] ( , ) [1 ( )]{ ( , ) ( , )}H L n L n nF p V x H F p V x H V x L              

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x H V x H c V x H V x H c           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x L V x L c V x L V x L c           

, 1 , 1 1 , 1 1 , 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )H L n L H n L n L H n H n H L nq V x L q V x H V x H q V x H V x L q V x L                 
 

= 
1 1 1( ) ( , ) ( ){ ( 1, ) ( 1, )}H L n L n nV x H F p V x H V x L             

1 1 1 1( , ) ( , ) [1 ( )]{ ( , ) ( , )}L n H n L n nV x H V x L F p V x H V x L               

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x H V x H c V x H V x H c           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x L V x L c V x L V x L c           

, 1 , 1 , 1 , 1( , ) ( , ) ( , ) ( , )H L n L H n L H n H L nq V x L q V x H q V x H q V x L          
 

= 
1 1 1 1{ ( , ) ( , )} ( ){ ( 1, ) ( 1, )}H n n L n nV x H V x L F p V x H V x L              

1 1[1 ( )]{ ( , ) ( , )}L n nF p V x H V x L        

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}n n n nV x H V x H c V x H V x H c           

1 1 1 1{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]} 0n n n nV x L V x L c V x L V x L c            

 

The inequality above holds since for all n (
1 1( 1, ) ( , )n nV x H V x H     ) by Lemma 2, 

Lemma A.2 is assumed to be true for n-1, and since 

 

1 1 1 1

1 1 1 1

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]}

{max[ ( , ), ( 1, ) ] max[ ( 1, ), ( , ) ]} 0

n n n n

n n n n

V x H V x H c V x H V x H c

V x L V x L c V x L V x L c

   

   

    

      

 

 

(A.19) holds by the same discussion summarized in Table 5 for e   L and e+1   H where  

x   2. Thus, Lemma A.2 is true for x  2. 

 For x = 1,  

(A.19) 
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(1, ) (1, )n nV H V L    

[ (1, ) (0, )] [ (1, ) (0, )]n n n nV H V H V L V L     

1 1 1 1[[( (1) ( ) ( ) (0, ) [1 ( )] (1, ) max{ (1, ), (2, ) }H H n H n n nh F p p F p V H F p V H V H V H c               

, 1 , 1(1, ) ( ) (1, )]H L n L L H nq V L q V H     

1 1 1 1[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }H n H n n nh F p V H F p V H V H V H c             

, 1 , 1(0, ) ( ) (0, )]]H L n L L H nq V L q V H     

1 1 1 1[[( (1) ( ) ( ) (0, ) [1 ( )] (1, ) max{ (1, ), (2, ) }L L n L n n nh F p p F p V L F p V L V L V L c               

, 1 , 1(1, ) ( ) (1, )]L H n H H L nq V H q V L     

1 1 1 1[( (0) ( ) (0, ) [1 ( )] (0, ) max{ (0, ), (1, ) }L n L n n nh F p V L F p V L V L V L c             

, 1 , 1(0, ) ( ) (0, )]]L H n H H L nq V H q V L     

= 
1 1( ) ( ) [1 ( )] (1, ) [1 ( )] (1, )H L H n L nF p p F p V H F p V L            

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV H V H c V H V H c         

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV L V L c V L V L c         

, 1 , 1 , 1 , 1(1, ) (1, ) ( ) (1, ) ( ) (1, )H L n L H n L L H n H H L nq V L q V H q V H q V L             
 

= 
1 1 1( ) ( ) ( )[1 ( )] (1, ) [1 ( )]{ (1, ) (1, )}H L H L n L n nF p p F p V H F p V H V L                 

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV H V H c V H V H c         

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV L V L c V L V L c         

, 1 , 1 1 , 1 1 , 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )H L n L H n L n L H n H n H L nq V x L q V x H V x H q V x H V x L q V x L                 
 

= 
1 1 1 1( ) ( ){ (1, )} ( ) (1, ) [1 ( )]{ (1, ) (1, )}H L n H L n L n nF p p V H V H F p V H V L                   

1 1( , ) ( , )L n H nV x H V x L       

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV H V H c V H V H c         

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV L V L c V L V L c         

, 1 , 1 , 1 , 1( , ) ( , ) ( , ) ( , )H L n L H n L H n H L nq V x L q V x H q V x H q V x L          
 

= 
1 1 1( ) ( ){ (1, )} [1 ( )]{ (1, ) (1, )}H L n L n nF p p V H F p V H V L             

1 1{ ( , ) ( , )}H n nV x H V x L       

(A.20) 
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1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}n n n nV H V H c V H V H c         

1 1 1 1{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]} 0n n n nV L V L c V L V L c          

 

The inequality above holds since for all n (
1(1, ) 0np V H   ) by the second part of  

Lemma 2, Lemma A.2 is assumed to be true for n-1, and since 

 

1 1 1 1

1 1 1 1

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]}

{max[ (1, ), (2, ) ] max[ (0, ), (1, ) ]} 0

n n n n

n n n n

V H V H c V H V H c

V L V L c V L V L c

   

   

  

    

 

 

(A.21) holds by the same discussion summarized in Table 5 for e   L and e+1   H where  

x = 1. Thus, Lemma A.2 is true for x = 1, and the proof is complete. 

Proposition A.2. The base stock levels for environmental states Low and High ( *
LS , *

HS ) 

have the same ordering with the demand rates corresponding to these states. That is,  

* *
H LS S  where 

H L  . 

Proof. The proposition is directly implied by Theorem 2 and Lemma A.2.   

 

(A.21) 
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Appendix B 

 

An ILLUSTRATIVE EXAMPLE-MONOTONICITY of the BASE STOCK LEVELS 

for a SYSTEM of FOUR ENVIRONMENT STATES 

 

 

In this section, we show that the base stock levels of the four environmental states 

induce the same ordering with the demand rates of these states. Note that E is the set of 

environment states 1, 2, 3, 4 where 
4 3 2 1       and β is the discount rate.  

Condition B.1 

a.  qe j   qe+1, j , e    where j = 1, …, e-1. 

b.  qe+1, j   qe, j , e    where j = e+2, …, 4. 

 Condition 2 states that the relationships listed below must hold for Theorem 4 to be true 

for the system studied here: 

For e = 1; q2, 3   q1, 3, q2, 4   q1, 4,    

For e = 2; q2, 1   q3, 1, q3, 4   q2, 4,    

For e = 3; q3, 1   q4, 1, q3, 2   q4, 2.    

Lemma B.1. ( , 4) ( ,3) ( , 2) ( ,1)V x V x V x V x       , for all x. 

Proof. We will use the induction method and show that 

( , 4) ( ,3) ( , 2) ( ,1)n n n nV x V x V x V x        for all x if Condition 2 is satisfied. The lemma is 

trivially true for n=0, suppose that it is true for n-1. We again consider the inequalities 

( , 4) ( ,3)V x V x   , ( ,3) ( , 2)V x V x   , and ( , 2) ( ,1)V x V x    for x = 1 and x   2 

separately.  
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For x   2, 

 

(1) ( , 4) ( ,3)n nV x V x    

[ ( , 4) ( 1,4)] [ ( ,3) ( 1,3)]n n n nV x V x V x V x       

4 4 1 4 1 1 1[[( ( ) ( ) ( ) ( 1,4) [1 ( )] ( , 4) max{ ( ,4), ( 1,4) }n n n nh x F p p F p V x F p V x V x V x c                 

3 3

41 1 42 1 43 1
1 1

( ,1) ( ,2) ( ,3) ( ) ( ,4)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

     
 

4 4 1 4 1 1 1[( ( 1) ( ) ( ) ( 2,4) [1 ( )] ( 1,4) max{ ( 1,4), ( , 4) }n n n nh x F p p F p V x F p V x V x V x c                   

3 3

41 1 42 1 43 1
1 1

( 1,1) ( 1,2) ( 1,3) ( ) ( 1,4)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

         
 

3 3 1 3 1 1 1[[( ( ) ( ) ( ) ( 1,3) [1 ( )] ( ,3) max{ ( ,3), ( 1,3) }n n n nh x F p p F p V x F p V x V x V x c                 

31 1 32 1 34 1
3 3

( ,1) ( ,2) ( ,4) ( ) ( ,3)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

      
 

3 3 1 3 1 1 1[( ( 1) ( ) ( ) ( 2,3) [1 ( )] ( 1,3) max{ ( 1,3), ( ,3) }n n n nh x F p p F p V x F p V x V x V x c                   

31 1 32 1 34 1
3 3

( 1,1) ( 1,2) ( 1,4) ( ) ( 1,3)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

          
 

= 
4 1 3 1( ) ( 1,4) ( ) ( 1,3)n nF p V x F p V x        

4 1 3 1[1 ( )] ( , 4) [1 ( )] ( ,3)n nF p V x F p V x         

1 1 1 1{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( , 4) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

41 1 42 1 43 1 31 1 32 1 34 1( ,1) ( ,2) ( ,3) { ( ,1) ( ,2) ( ,4)}n n n n n nq V x q V x q V x q V x q V x q V x                  

1 1
4 4 3 3

( ) ( ,4) ( ) ( ,3)i ij n i ij n
i i j i i i j i

q V x q V x  
     

          
 

= 
4 1 3 1( ) ( 1,4) ( ) ( 1,3)n nF p V x F p V x        

4 1 3 1[1 ( )] ( , 4) [1 ( )] ( ,3)n nF p V x F p V x         

1 1 1 1{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( , 4) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

   (B.1) 



 

Appendix B. An Illustrative Example-Monotonicity of the Base Stock Levels  

for a System of Four Environment States                                                                           116 

 

 

41 1 42 1 43 1 31 1 32 1 34 1( ,1) ( ,2) ( ,3) { ( ,1) ( ,2) ( ,4)}n n n n n nq V x q V x q V x q V x q V x q V x                

2

1 1 1 1
4 3 1

( ,4) ( ,3) ( ( ,4) ( ,3))i n i n ij n n
i i i j i

V x V x q V x V x    
   

          

 

31 1 32 1 34 1 41 1 42 1 43 1( ,4) ( ,4) ( ,4) { ( ,3) ( ,3) ( ,3)}n n n n n nq V x q V x q V x q V x q V x q V x                  

= 
4 3 1 3 1 3 1( ) ( ) ( 1,4) ( ) ( 1,4) ( ) ( 1,3)n n nF p V x F p V x F p V x               

4 3 1 3 1 3 1( )[1 ( )] ( , 4) [1 ( )] ( , 4) [1 ( )] ( ,3)n n nF p V x F p V x F p V x                

1 1 1 1{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( , 4) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

41 1 1 42 1 1{ ( ,1) ( ,3)} { ( ,2) ( ,3)}n n n nq V x V x q V x V x            

31 1 1 32 1 1{ ( ,4) ( ,1)} { ( ,4) ( ,2)}n n n nq V x V x q V x V x          

2

1 2 1 1 3 1 4 1
1

( ){ ( ,4) ( ,3)} ( ,4) ( ,3)ij n n n n
i j i

q V x V x V x V x      
 

          

 

  
4 3 1 3 1 1( ) ( ) ( , 4) ( ){ ( 1,4) ( 1,3)}n n nF p V x F p V x V x             

4 3 1 3 1 1( )[1 ( )] ( , 4) [1 ( )]{ ( ,4) ( ,3)}n n nF p V x F p V x V x              

1 1 1 1{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( , 4) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

41 1 1 42 1 1{ ( ,1) ( ,3)} { ( ,2) ( ,3)}n n n nq V x V x q V x V x            

31 1 1 32 1 1{ ( ,4) ( ,1)} { ( ,4) ( ,2)}n n n nq V x V x q V x V x          

2

1 2 1 1 3 1 4 1
1

( ){ ( ,4) ( ,3)} ( ,4) ( ,3)ij n n n n
i j i

q V x V x V x V x      
 

          

 

= 
4 1 1 3 1 1{ ( ,4) ( ,3)} ( ){ ( 1,4) ( 1,3)}n n n nV x V x F p V x V x              

3 1 1[1 ( )]{ ( , 4) ( ,3)}n nF p V x V x        

1 1 1 1{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( , 4) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

2

1 2 1 1
1

( ){ ( ,4) ( ,3)}ij n n
i j i

q V x V x   
 

      

 

41 1 1 42 1 1{ ( ,1) ( ,3)} { ( ,2) ( ,3)}n n n nq V x V x q V x V x            

31 1 1 32 1 1{ ( ,4) ( ,1)} { ( ,4) ( ,2)} 0n n n nq V x V x q V x V x             
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The inequality above holds since 
1 1( 1,4) ( ,4) 0n nV x V x       for all x by Lemma 2, by the 

induction assumption, and 

  

1 1 1 1

1 1 1 1

{max[ ( ,4), ( 1,4) ] max[ ( 1,4), ( ,4) ]}

{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]} 0

n n n n

n n n n

V x V x c V x V x c

V x V x c V x V x c

   

   

    

      

 

 

by the inequalities in Table 5 for e = 3 given that Condition 2 holds for e = 3. That is, the 

following inequalities must hold: q3, 1   q4, 1, q3, 2   q4, 2.    

 

(2) ( ,3) ( , 2)n nV x V x    

[ ( ,3) ( 1,3)] [ ( , 2) ( 1,2)]n n n nV x V x V x V x       

3 3 1 3 1 1 1[[( ( ) ( ) ( ) ( 1,3) [1 ( )] ( ,3) max{ ( ,3), ( 1,3) }n n n nh x F p p F p V x F p V x V x V x c                 

31 1 32 1 34 1
3 3

( ,1) ( ,2) ( ,4) ( ) ( ,3)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

      
 

3 3 1 3 1 1 1[( ( 1) ( ) ( ) ( 2,3) [1 ( )] ( 1,3) max{ ( 1,3), ( ,3) }n n n nh x F p p F p V x F p V x V x V x c                   

31 1 32 1 34 1
3 3

( 1,1) ( 1,2) ( 1,4) ( ) ( 1,3)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

          
 

2 2 1 2 1 1 1[[( ( ) ( ) ( ) ( 1,2) [1 ( )] ( , 2) max{ ( ,2), ( 1,2) }n n n nh x F p p F p V x F p V x V x V x c                 

21 1 23 1 24 1
2 2

( ,1) ( ,3) ( ,4) ( ) ( ,2)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

      
 

2 2 1 2 1 1 1[( ( 1) ( ) ( ) ( 2,2) [1 ( )] ( 1,2) max{ ( 1,2), ( , 2) }n n n nh x F p p F p V x F p V x V x V x c                   

21 1 23 1 24 1
2 2

( 1,1) ( 1,3) ( 1,4) ( ) ( 1,2)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

          
 

= 
3 1 2 1( ) ( 1,3) ( ) ( 1,2)n nF p V x F p V x        

3 1 2 1[1 ( )] ( ,3) [1 ( )] ( , 2)n nF p V x F p V x         

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

   (B.2) 

   (B.3) 
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3,1 1 3,2 1 3,4 1( ,1) ( ,2) ( ,4)n n nq V x q V x q V x       
 

2,1 1 2,3 1 2,4 1{ ( ,1) ( ,3) ( ,4)}n n nq V x q V x q V x         

1 1
3 3 2 2

( ) ( ,3) ( ) ( ,2)i ij n i ij n
i i j i i i j i

q V x q V x  
     

          
 

= 
3 1 2 1( ) ( 1,3) ( ) ( 1,2)n nF p V x F p V x        

3 1 2 1[1 ( )] ( ,3) [1 ( )] ( , 2)n nF p V x F p V x         

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

3,1 1 3,2 1 3,4 1( ,1) ( ,2) ( ,4)n n nq V x q V x q V x       
 

2,1 1 2,3 1 2,4 1{ ( ,1) ( ,3) ( ,4)}n n nq V x q V x q V x         

1 1 1 1
3 2 1,4

( ,3) ( ,2) ( ( ,3) ( ,2))i n i n ij n n
i i i j i

V x V x q V x V x    
   

          

 

2,1 1 2,3 1 2,4 1 3,1 1 3,2 1 3,4 1( ,3) ( ,3) ( ,3) { ( ,2) ( ,2) ( ,2)}n n n n n nq V x q V x q V x q V x q V x q V x                
 

= 
3 2 1 2 1 2 1( ) ( ) ( 1,3) ( ) ( 1,3) ( ) ( 1,2)n n nF p V x F p V x F p V x               

3 2 1 2 1 2 1( )[1 ( )] ( ,3) [1 ( )] ( ,3) [1 ( )] ( , 2)n n nF p V x F p V x F p V x                

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

3,1 1 1 3,4 1 1{ ( ,1) ( ,2)} { ( ,4) ( ,2)}n n n nq V x V x q V x V x          
 

2,1 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,3)}n n n nq V x V x q V x V x          

1 4 1 1 2 1 3 1
1,4

( ){ ( ,3) ( ,2)} ( ,3) ( ,2)ij n n n n
i j i

q V x V x V x V x      
 

          

 

  
3 2 1 2 1 1( ) ( ) ( ,3) ( ){ ( 1,3) ( 1,2)}n n nF p V x F p V x V x             

3 2 1 2 1 1( )[1 ( )] ( ,3) [1 ( )]{ ( ,3) ( , 2)}n n nF p V x F p V x V x              

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

3,1 1 1 3,4 1 1{ ( ,1) ( ,2)} { ( ,4) ( ,2)}n n n nq V x V x q V x V x          
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2,1 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,3)}n n n nq V x V x q V x V x          

1 4 1 1 2 1 3 1
1,4

( ){ ( ,3) ( ,2)} ( ,3) ( ,2)ij n n n n
i j i

q V x V x V x V x      
 

          

 

= 
3 1 1 2 1 1{ ( ,3) ( , 2)} ( ){ ( 1,3) ( 1,2)}n n n nV x V x F p V x V x              

2 1 1[1 ( )]{ ( ,3) ( , 2)}n nF p V x V x        

1 1 1 1{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 4 1 1
1,4

( ){ ( ,3) ( ,2)}ij n n
i j i

q V x V x   
 

      

 

3,1 1 1 3,4 1 1{ ( ,1) ( ,2)} { ( ,4) ( ,2)}n n n nq V x V x q V x V x          
 

2,1 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,3)} 0n n n nq V x V x q V x V x             

 

The inequality above holds since 
1 1( 1,3) ( ,3) 0n nV x V x       for all x by Lemma 2, by the 

induction assumption, and 

 

1 1 1 1

1 1 1 1

{max[ ( ,3), ( 1,3) ] max[ ( 1,3), ( ,3) ]}

{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( ,2) ]} 0

n n n n

n n n n

V x V x c V x V x c

V x V x c V x V x c

   

   

    

      

 

 

by the inequalities in Table 5 for e = 2 given that Condition 2 holds for e = 2. That is, the 

following inequalities must hold: q2, 1   q3, 1, q3, 4   q2, 4.    

 

(3) ( , 2) ( ,1)V x V x    

[ ( , 2) ( 1,2)] [ ( ,1) ( 1,1)]n n n nV x V x V x V x       

2 2 1 2 1 1 1[[( ( ) ( ) ( ) ( 1,2) [1 ( )] ( , 2) max{ ( ,2), ( 1,2) }n n n nh x F p p F p V x F p V x V x V x c                 

21 1 23 1 24 1
2 2

( ,1) ( ,3) ( ,4) ( ) ( ,2)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

      
 

2 2 1 2 1 1 1[( ( 1) ( ) ( ) ( 2,2) [1 ( )] ( 1,2) max{ ( 1,2), ( , 2) }n n n nh x F p p F p V x F p V x V x V x c                   

   (B.4) 

(B.5) 
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21 1 23 1 24 1
2 2

( 1,1) ( 1,2) ( 1,4) ( ) ( 1,2)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

          
 

1 1 1 1 1 1 1[[( ( ) ( ) ( ) ( 1,1) [1 ( )] ( ,1) max{ ( ,1), ( 1,1) }n n n nh x F p p F p V x F p V x V x V x c                 

12 1 13 1 14 1
1 1

( , 2) ( ,3) ( ,4) ( ) ( ,1)]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

     
 

1 1 1 1 1 1 1[( ( 1) ( ) ( ) ( 2,1) [1 ( )] ( 1,1) max{ ( 1,1), ( ,1) }n n n nh x F p p F p V x F p V x V x V x c                   

12 1 13 1 14 1
1 1

( 1,2) ( 1,3) ( 1,4) ( ) ( 1,1)]]n n n k ij n
k i j i

q V x q V x q V x q V x  
  

         
 

= 
2 1 1 1( ) ( 1,2) ( ) ( 1,1)n nF p V x F p V x        

2 1 1 1[1 ( )] ( , 2) [1 ( )] ( ,1)n nF p V x F p V x         

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

2,1 1 2,3 1 2,4 1( ,1) ( ,3) ( ,4)n n nq V x q V x q V x       
 

1,2 1 1,3 1 1,4 1{ ( ,2) ( ,3) ( ,4)}n n nq V x q V x q V x         

1 1
2 2 1 1

( ) ( ,2) ( ) ( ,1)i ij n i ij n
i i j i i i j i

q V x q V x  
     

          
 

= 
2 1 1 1( ) ( 1,2) ( ) ( 1,1)n nF p V x F p V x        

2 1 1 1[1 ( )] ( , 2) [1 ( )] ( ,1)n nF p V x F p V x         

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( , 2) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

2,1 1 2,3 1 2,4 1( ,1) ( ,3) ( ,4)n n nq V x q V x q V x       
 

1,2 1 1,3 1 1,4 1{ ( ,2) ( ,3) ( ,4)}n n nq V x q V x q V x         

1 1 1 1
2 1 3,4

( ,2) ( ,1) ( ( ,2) ( ,1))i n i n ij n n
i i i j i

V x V x q V x V x    
   

          

 

1,2 1 1,3 1 1,4 1 2,1 1 2,3 1 2,4 1( ,2) ( ,2) ( ,2) { ( ,1) ( ,1) ( ,1)}n n n n n nq V x q V x q V x q V x q V x q V x                
 

= 
2 1 1 1 1 1 1( ) ( ) ( 1,2) ( ) ( 1,2) ( ) ( 1,1)n n nF p V x F p V x F p V x               

2 1 1 1 1 1 1( )[1 ( )] ( , 2) [1 ( )] ( , 2) [1 ( )] ( ,1)n n nF p V x F p V x F p V x                

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           
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1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

2,3 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,1)}n n n nq V x V x q V x V x          
 

1,3 1 1 1,4 1 1{ ( ,2) ( ,3)} { ( ,2) ( ,4)}n n n nq V x V x q V x V x          

3 4 1 1 1 1 2 1
3,4

( ){ ( ,2) ( ,1)} ( ,2) ( ,1)ij n n n n
i j i

q V x V x V x V x      
 

          

 

  
2 1 1 1 1 1 1( ) ( ) ( , 2) ( ) ( 1,2) ( ) ( 1,1)n n nF p V x F p V x F p V x              

2 1 1 1 1 1 1( )[1 ( )] ( , 2) [1 ( )] ( , 2) [1 ( )] ( ,1)n n nF p V x F p V x F p V x                

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

2,3 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,1)}n n n nq V x V x q V x V x          
 

1,3 1 1 1,4 1 1{ ( ,2) ( ,3)} { ( ,2) ( ,4)}n n n nq V x V x q V x V x          

3 4 1 1 1 1 2 1
3,4

( ){ ( ,2) ( ,1)} ( ,2) ( ,1)ij n n n n
i j i

q V x V x V x V x      
 

          

 

= 
2 1 1 1 1 1{ ( ,2) ( ,1)} ( ){ ( 1,2) ( 1,1)}n n n nV x V x F p V x V x              

1 1 1[1 ( )]{ ( , 2) ( ,1)}n nF p V x V x        

1 1 1 1{max[ ( ,2), ( 1,2) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

1 1 1 1{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]}n n n nV x V x c V x V x c           

3 4 1 1
3,4

( ){ ( ,2) ( ,1)}ij n n
i j i

q V x V x   
 

      

 

2,3 1 1 2,4 1 1{ ( ,3) ( ,1)} { ( ,4) ( ,1)}n n n nq V x V x q V x V x          
 

1,3 1 1 1,4 1 1{ ( ,2) ( ,3)} { ( ,2) ( ,4)}n n n nq V x V x q V x V x            

 

The inequality above holds since 
1 1( 1,2) ( ,2) 0n nV x V x       for all x by Lemma 2, by the 

induction assumption, and 

 

1 1 1 1

1 1 1 1

{max[ ( ,2), ( 1,2) ] max[ ( 1,2), ( ,2) ]}

{max[ ( ,1), ( 1,1) ] max[ ( 1,1), ( ,1) ]} 0

n n n n

n n n n

V x V x c V x V x c

V x V x c V x V x c

   

   

    

      

 
   (B.6) 
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by the inequalities in Table 5 for e = 1 given that Condition 2 holds for e = 1. That is, the 

following inequalities must hold q2, 3   q1, 3, q2, 4   q1, 4. Thus, we have shown that  

Lemma 4 is true for x   2.  

For x = 1,  

 

(1) (1,4) (1,3)n nV V    

[ (1,4) (0,4)] [ (1,3) (0,3)]n n n nV V V V     

4 4 1 4 1 1 1[[( (1) ( ) ( ) (0,4) [1 ( )] (1,4) max{ (1,4), (2,4) }n n n nh F p p F p V F p V V V c               

3 3

41 1 42 1 43 1
1 1

(1,1) (1,2) (1,3) ( ) (1,4)]n n n k ij n
k i j i

q V q V q V q V  
  

     
 

4 1 4 1 1 1[( (0) ( ) (0,4) [1 ( )] (0,4) max{ (0,4), (1,4) }n n n nh F p V F p V V V c             

3 3

41 1 42 1 43 1
1 1

(0,1) (0,2) (0,3) ( ) (0,4)]]n n n k ij n
k i j i

q V q V q V q V  
  

     
 

3 3 1 3 1 1 1[[( (1) ( ) ( ) (0,3) [1 ( )] (1,3) max{ (1,3), (2,3) }n n n nh F p p F p V F p V V V c               

31 1 32 1 34 1
3 3

(1,1) (1,2) (1,4) ( ) (1,3)]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

3 1 3 1 1 1[( (0) ( ) (0,3) [1 ( )] (0,3) max{ (0,3), (1,3) }n n n nh F p V F p V V V c             

31 1 32 1 34 1
3 3

(0,1) (0,2) (0,4) ( ) (0,3)]]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

= 
4 3( ) ( )F p p   

4 1 3 1[1 ( )] (1,4) [1 ( )] (1,3)n nF p V F p V         

1 1 1 1{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

3 3

41 1 42 1 43 1
1 1

(1,1) (1,2) (1,3) ( ) (1,4)n n n k ij n
k i j i

q V q V q V q V  
  

         
 

31 1 32 1 34 1
3 3

[ (1,1) (1,2) (1,4) ( ) (1,3)]n n n k ij n
k i j i

q V q V q V q V  
  

          
 

= 
4 3( ) ( )F p p   

   (B.7) 
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4 3 1 3 1 1( )[1 ( )] (1,4) [1 ( )]{ (1,4) (1,3)}n n nF p V F p V V              

1 1 1 1{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

3 2

41 1 42 1 43 1 31 1 32 1 34 1
1 1

(1,1) (1,2) (1,3) ( ) (1,4) (1,4) (1,4) (1,4)n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V     
  

               
 

2

31 1 32 1 34 1 41 1 42 1 43 1
3 1

[ (1,1) (1,2) (1,4) ( ) (1,3) (1,3) (1,3) (1,3)]n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V     
  

               
 

= 
4 3 1 3 1 4 1( ) ( ){ (1,4)} (1,4) (1,3)n n nF p p V V V             

4 3 1 3 1 1( ) (1,4) [1 ( )]{ (1,4) (1,3)}n n nV F p V V             

1 1 1 1{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

2 2

41 1 42 1 43 1 31 1 32 1 34 1
1 1

(1,1) (1,2) (1,3) ( ) (1,4) (1,4) (1,4) (1,4)n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V     
  

               
 

2

31 1 32 1 34 1 41 1 42 1 43 1
1 1,2

[ (1,1) (1,2) (1,4) ( ) (1,3) (1,3) (1,3) (1,3)]n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V     
  

                
 

= 
4 3 1 4 1 1( ) ( ){ (1,4)} { (1,4) (1,3)}n n nF p p V V V            

3 1 1[1 ( )]{ (1,4) (1,3)}n nF p V V        

1 1 1 1{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

2 2

41 1 42 1 31 1 32 1
1 1

(1,1) (1,2) ( ) (1,4) (1,4) (1,4)n n k ij n n n
k i j i

q V q V q V q V q V   
  

           
 

2

31 1 32 1 41 1 42 1
1 1,2

[ (1,1) (1,2) ( ) (1,3) (1,3) (1,3)]n n k ij n n n
k i j i

q V q V q V q V q V   
  

            
 

= 
4 3 1 4 1 1( ) ( ){ (1,4)} { (1,4) (1,3)}n n nF p p V V V            

3 1 1[1 ( )]{ (1,4) (1,3)}n nF p V V        

1 1 1 1{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

2 2

1 1

( ){ (1,4) (1,3)}k ij n n
k i j i

q V V
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41 1 1 42 1 1{ (1,1) (1,3)} { (1,2) (1,3)}n n n nq V V q V V            

31 1 1 32 1 1{ (1,4) (1,1)} { (1,4) (1,2)} 0n n n nq V V q V V             

 

The inequality above holds since by the second part of Lemma 2, by the induction 

assumption, and 

 

1 1 1 1

1 1 1 1

{max[ (1,4), (2,4) ] max[ (0,4), (1,4) ]}

{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]} 0

n n n n

n n n n

V V c V V c

V V c V V c

   

   

  

    

 

 

by the inequalities in Table 5 for e = 3 given that Condition 2 holds for e = 3. That is, the 

following inequalities must hold q3, 1   q4, 1, q3, 2   q4, 2.  

 

(2) (1,3) (1,2)n nV V    

[ (1,3) (0,3)] [ (1,2) (0,2)]n n n nV V V V     

3 3 1 3 1 1 1[[( (1) ( ) ( ) (0,3) [1 ( )] (1,3) max{ (1,3), (2,3) }n n n nh F p p F p V F p V V V c               

31 1 32 1 34 1
3 3

(1,1) (1,2) (1,4) ( ) (1,3)]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

3 1 3 1 1 1[( (0) ( ) (0,3) [1 ( )] (0,3) max{ (0,3), (1,3) }n n n nh F p V F p V V V c             

31 1 32 1 34 1
3 3

(0,1) (0,2) (0,4) ( ) (0,3)]]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

2 2 1 2 1 1 1[[( (1) ( ) ( ) (0,2) [1 ( )] (1,2) max{ (1,2), (2,2) }n n n nh F p p F p V F p V V V c               

21 1 23 1 24 1
2 2

(1,1) (1,3) (1,4) ( ) (1,2)]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

2 1 2 1 1 1[( (0) ( ) (0,2) [1 ( )] (0,2) max{ (0,2), (1,2) }n n n nh F p V F p V V V c             

21 1 23 1 24 1
2 2

(0,1) (0,3) (0,4) ( ) (0,2)]]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

= 
3 2( ) ( )F p p   

3 1 2 1[1 ( )] (1,3) [1 ( )] (1,2)n nF p V F p V         

   (B.9) 

(B.8) 
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1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

31 1 32 1 34 1
3 3

(1,1) (1,2) (1,4) ( ) (1,3)n n n k ij n
k i j i

q V q V q V q V  
  

          
 

21 1 23 1 24 1
2 2

[ (1,1) (1,3) (1,4) ( ) (1,2)]n n n k ij n
k i j i

q V q V q V q V  
  

          
 

= 
3 2 2 1 3 1( ) ( ) (1,3) (1,2)n nF p p V V          

3 2 1 3 2 1 2 1 1( ) (1,3) ( ) ( ) (1,3) [1 ( )]{ (1,3) (1,2)}n n n nV F p V F p V V                   

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

31 1 32 1 34 1 21 23 24
1,4 1,4

(1,1) (1,2) (1,4) ( ) (1,3) (1,3) (1,3) (1,3)n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V  
  

                
 

21 1 23 1 24 1 31 32 34
1,4 1,4

[ (1,1) (1,3) (1,4) ( ) (1,2) (1,2) (1,2) (1,2)]n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V  
  

                
 

= 
3 2 1 2 1 3 1( ) ( ){ (1,3)} (1,3) (1,2)n n nF p p V V V             

3 2 1 2 1 1( ) (1,3) [1 ( )]{ (1,3) (1,2)}n n nV F p V V             

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

31 1 34 1 21 24
1,4 1,4

(1,1) (1,4) ( ) (1,3) (1,3) (1,3)n n k ij n n n
k i j i

q V q V q V q V q V 
  

            
 

21 1 24 1 31 34
1,4 1,4

[ (1,1) (1,4) ( ) (1,2) (1,2) (1,2)]n n k ij n n n
k i j i

q V q V q V q V q V 
  

            
 

= 
3 2 1 3 1 1( ) ( ){ (1,3)} { (1,3) (1,2)}n n nF p p V V V            

2 1 1[1 ( )]{ (1,3) (1,2)}n nF p V V        

1 1 1 1{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1,4 1,4

( ){ (1,3) (1,2)}k ij n n
k i j i

q V V
  

     
 

31 1 1 34 1 1 21 24{ (1,1) (1,2)} { (1,4) (1,2)} { (1,3) (1,1)} { (1,3) (1,4)} 0n n n n n n n nq V V q V V q V V q V V                     
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The inequality above holds by the second part of Lemma 2, by the induction assumption 

and  

 

1 1 1 1

1 1 1 1

{max[ (1,3), (2,3) ] max[ (0,3), (1,3) ]}

{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]} 0

n n n n

n n n n

V V c V V c

V V c V V c

   

   

  

    

 

 

by the inequalities in Table 5 for e = 2 given that Condition 2 holds for e = 2. That is, the 

following inequalities must hold q2, 1   q3, 1, q3, 4   q2, 4.  

 

(3) (1,2) (1,1)n nV V    

[ (1,2) (0,2)] [ (1,1) (0,1)]n n n nV V V V     

2 2 1 2 1 1 1[[( (1) ( ) ( ) (0,2) [1 ( )] (1,2) max{ (1,2), (2,2) }n n n nh F p p F p V F p V V V c               

21 1 23 1 24 1
2 2

(1,1) (1,3) (1,4) ( ) (1,2)]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

2 1 2 1 1 1[( (0) ( ) (0,2) [1 ( )] (0,2) max{ (0,2), (1,2) }n n n nh F p V F p V V V c             

21 1 23 1 24 1
2 2

(0,1) (0,3) (0,4) ( ) (0,2)]]n n n k ij n
k i j i

q V q V q V q V  
  

      
 

1 1 1 1 1 1 1[[( (1) ( ) ( ) (0,1) [1 ( )] (1,1) max{ (1,1), (2,1) }n n n nh F p p F p V F p V V V c               

12 1 13 1 14 1
1 1

(1,2) (1,3) (1,4) ( ) (1,1)]n n n k ij n
k i j i

q V q V q V q V  
  

     
 

1 1 1 1 1 1[( (0) ( ) (0,1) [1 ( )] (0,1) max{ (0,1), (1,1) }n n n nh F p V F p V V V c             

12 1 13 1 14 1
1 1

(0,2) (0,3) (0,4) ( ) (0,1)]]n n n k ij n
k i j i

q V q V q V q V  
  

     
 

= 
2 1( ) ( )F p p   

2 1 1 1[1 ( )] (1,2) [1 ( )] (1,1)n nF p V F p V         

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

(B.10) 

(B.11) 
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21 1 23 1 24 1
2 2

(1,1) (1,3) (1,4) ( ) (1,2)n n n k ij n
k i j i

q V q V q V q V  
  

          
 

12 1 13 1 14 1
1 1

[ (1,2) (1,3) (1,4) ( ) (1,1)]n n n k ij n
k i j i

q V q V q V q V  
  

         
 

= 
2 1 1 1 2 1( ) ( ) (1,2) (1,1)n nF p p V V          

2 1 1 2 1 1 1 1 1( ) (1,2) ( ) ( ) (1,2) [1 ( )]{ (1,2) (1,1)}n n n nV F p V F p V V                   

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

21 1 23 1 24 1 12 13 14
3,4 3,4

(1,1) (1,3) (1,4) ( ) (1,2) (1,2) (1,2) (1,2)n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V  
  

                
 

12 1 13 1 14 1 21 23 24
3,4 3,4

[ (1,2) (1,3) (1,4) ( ) (1,1) (1,1) (1,1) (1,1)]n n n k ij n n n n
k i j i

q V q V q V q V q V q V q V  
  

                
 

= 
2 1 1 1 1 2 1( ) ( ){ (1,2)} (1,2) (1,1)n n nF p p V V V             

2 1 1 1 1 1( ) (1,2) [1 ( )]{ (1,2) (1,1)}n n nV F p V V             

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

23 1 24 1 13 14
3,4 3,4

(1,3) (1,4) ( ) (1,2) (1,2) (1,2)n n k ij n n n
k i j i

q V q V q V q V q V 
  

            
 

13 1 14 1 23 24
3,4 3,4

[ (1,3) (1,4) ( ) (1,1) (1,1) (1,1)]n n k ij n n n
k i j i

q V q V q V q V q V 
  

            
 

= 
2 1 1 2 1 1( ) ( ){ (1,2)} { (1,2) (1,1)}n n nF p p V V V            

1 1 1[1 ( )]{ (1,2) (1,1)}n nF p V V        

1 1 1 1{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}n n n nV V c V V c         

1 1 1 1{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]}n n n nV V c V V c         

3,4 3,4

( ){ (1,2) (1,1)}k ij n n
k i j i

q V V
  

     
 

13 1 1 14 1 1 23 24{ (1,2) (1,3)} { (1,2) (1,4)} { (1,3) (1,1)} { (1, 4) (1,1)} 0n n n n n n n nq V V q V V q V V q V V                     
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The inequality above holds by the second part of Lemma 2, by the induction assumption 

and  

 

1 1 1 1

1 1 1 1

{max[ (1,2), (2,2) ] max[ (0,2), (1,2) ]}

{max[ (1,1), (2,1) ] max[ (0,1), (1,1) ]} 0

n n n n

n n n n

V V c V V c

V V c V V c

   

   

  

    

 

 

by the inequalities in Table 5 for e = 1 given that Condition 2 holds for e = 1. That is, the 

following inequalities must hold q2, 3   q1, 3, q2, 4   q1, 4.  

Proposition 1 The base stock levels of the four environmental states induce the same 

ordering with the demand rates of these states. That is, ( * * * *
4 3 2 1S S S S   ) where 

4 3 2 1      . 

Proof. The proposition is directly implied by Theorem 2 and Lemma 4.  

 

 

 

(B.12) 
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