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ABSTRACT

Inventory management requires handling uncertainties arising at procurement and pro-
duction stages, transportation channels and demand attributes effectively and efficiently in
order to have a robust operational control. In this thesis, a single period inventory model
with unreliable suppliers and uncertain demand is analyzed. Supplier unreliability is mod-
eled by stochastic proportions and/or random supplier capacity in related literature. We
combine these two approaches where a stochastic proportion is applied to the minimum of
the order amount and random supplier capacity. There are studies in the literature on ran-
dom yield that primarily consider models with only a single vendor. The main contribution
of this work is the extension to the case where there are multiple vendors. We consider cases
involving distinct and identical servers to discuss a number of issues including order diver-
sification. We show that the optimal ordering policy does not have a simple order-up-to or
base stock structure. A number of numerical illustrations are given to discuss the structure

of optimal policies.
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Chapter 1

INTRODUCTION

Optimizing the decisions on production and order quantities in inventory management
is generally not a straightforward task. This may result from both the complex structure of
the supply chain and some individual features of the components of this chain. In this study,
we focused on a specific portion of a supply chain network instead of examining the entire
chain. In fact, this thesis addresses the optimization of the ordering policy for a production

plant or a retail store making decisions on a single item and working with several vendors.

In a fully-deterministic world, one would be sure about receiving or obtaining the exact
amount ordered to the vendor or initiated in the production plant. However, obviously
fully-deterministic modeling is not always applicable to most real-life circumstances since
uncertainty is embedded in many components of the system and the level of this uncertainty
increases as the scale of the system gets larger. Consequently, determination of optimum
quantities becomes complicated by the inclusion of stochastic attributes in the modeling

process.

The main source of uncertainty in such systems is on the vendor side since it is regarded
as somewhat uncontrollable by the decision maker; here, the production plant or the retail
store. A vendor has its own plant to produce semi-finished products within its capacity. The
first source of uncertainty is this capacity limit, which may have a dynamic and stochastic
structure changing each period. Different capacity realizations at successive periods may be

caused by the following factors:

e Machine breakdowns: If the production at the vendor’s side is dominated by machinery
and there is a limited number of machines, then machine breakdowns becomes critical

in the sense that they can decrease the periodic capacity by a considerable amount.
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e Tool wearing: Some components of the machinery may become worn out, which affects

the performance of the machines even if no breakdown occurs.

e Unexpected maintenance duration: Repair and maintenance of malfinctioning ma-
chines can take longer times than planned and some machinery may be out of opera-

tion when needed.

e Utility loss: Any kind of input (steam, electricity, etc.) may become absent due to
external factors, which leads to interruption of the production process via capacity

loss.

o Chase strategy applied for labor force: An aggressive hiring and firing policy causes a

fluctuating labor force level, which also makes overall capacity more unstable.

The realized capacity as a consequence of all these factors becomes restrictive if the
order given by the decision maker is higher than this realized capacity. As a result, only a
portion of the order size, as much as the realized capacity, is actually processed in the plant
of the vendor. In opposite case, the released order is fully processed at vendor’s side. A
common approach to model such vendors is to regard vendor capacity as a random variable
that follows a known distribution. So the actual amount processed at the vendor’s plant is

the minimum of the order and the random capacity.

The second source of uncertainty is a result of all the processes that occur after the
production was initiated at the vendor’s plant until the orders are delivered to the decision
maker. Therefore, this uncertainty is spread over the vendor’s production process and
transportation to the receiver. Due to imperfect production of the vendor, some portion of
the produced amount goes to scrap. Additionally, some of the products become defective
due to improper transportation. As a consequence of these two uncertainty factors, the
decision maker can receive only a portion of the amount that was initially processed at the
vendor’s plant. These sources of uncertainty can be included into the model via applying a
stochastic proportion to the amount initially processed. The stochastic proportion here is
represented by a random variable that is assumed to be independent of the order size and

realized capacity. The stochastic proportion is usually bounded by a finite value.
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In this study, both of these two approaches are combined in order to observe the total
effect of uncertainty on optimum order amounts. Once the order is given to the vendor, it
is fully processed if and only if it is less than the realized capacity of the vench._ Otherwise,
the portion equaling the amount of realized capacity is processed. Then,’;:l-ae processed
amount is exposed to a stochastic proportion and final yield that is actually received is
obtained. This order quantity is optimized to minimize the total expected holding and
shortage costs that are driven by an uncertain demand, which is a random variable following
a known distribution. Although random demand causes complications, it is required to
model the real-life environment. A common approach in the literature is to study the single
vendor case. However, we know that in real life making business with only one vendor
has disadvantages besides its advantages. In order to benefit from the diversification effect
and to reduce uncertainty costs, companies work with several vendors. Moreover, working
with several vendors is advantageous when price and quality variations are concerned. The
main contribution of this thesis is to find and analyze some results for multiple distinct and

identical vendors. It is important to extract some features of total order quantity given to

all vendors as some parameters such as capacity mean and number of vendors change.

The rest of this thesis begins with a comprehensive review of the related studies in this
area presented in Chapter 2. The third chapter discusses the model with a single vendor
in detail. Chapters 4 and 5 give the detailed analysis with multiple distinct and identical
vendors respectively. Finally, there is a discussion about the future complementary work

related to this thesis in Chapter 6.
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Chapter 2

LITERATURE REVIEW

As mentioned in the previous section, there are mainly two approaches to model ran-
dom yield in inventory models that are related to this study. The first approach is based
on applying a stochastic proportion to the order quantity. The second one is driven by the
idea that random yield is the result of the random capacity of the vendor or the production
facility. However, some other approaches exist in literature that use binomial yields, inter-
rupted geometric yields or take the stochastic proportion dependent on the order quantity.
Yano and Lee [1] offer a relevant and comprehensive review of such approaches in literature.

Following is the literature about the relevant two approaches classified under four groups.

2.1 Random Yield Models with Stochastic Proportion

The earliest studies concerning inventory models with random yields are Karlin [2], Silver
(3], Shih [4], Mazzola et al. {5], Noori and Keller [6]. These studies explored a “stochastic
proportion” in order to model the defective units in a lot. They generally represent the actual
yield by Y;=UQ where @ is the amount of order given to the supplier or the production
quantity initiated in the production plant. The general approach is to assign the random
variable U a distribution such that it is bounded by 0 and 1 since it represents the proportion
of defective items. On the other hand, there are articles in literature that assuni&s no upper-
bound on U and justify this approach by potential measuring errors, scaling factors, poor
communication between the vendor and the decision maker. Some other studies like Parlar
and Berkin [7], Berk and Arreola [8], Giirler and Parlar [9] regard stochastic proportion as a
binary variable that equals 1 if supply is available and 0 otherwise, i.e., the order is totally
received if and only if the supplier is available at a specific time of realization and nothing
is received otherwise.

Edhart and Taube [10] studies a random yield, random demand inventory model with
a convex holding/shortage cost structure and linear ordering cost. They show that gener-



Chapter 2: LITERATURE REVIEW

alizations of base-stock and (s, S) policies are optimal. Lee and Yano [11] formulate the
production system as a multistage serial system with proportional yield at each stage and
deterministic demand. At each stage, a single critical level and the corresponding input
level configures the optimal policy. If the available input is less than the target quantity,

then the available level is utilized.

One of the important studies in relevant literature is made by Henig and Gerchak [12] in
which the periodic review concept with a single production facility (analogy to single vendor
case) with stochastically proportional yield was analyzed; however, they do not restrict the
stochastic proportion by a finite value so that it may be higher than one. Variable cost is
paid only for the actual realized yield. They build a recursive cost function and then prove
that it is convex. Optimizing that function results in a non-order-up-to policy, in which
no order is given when the initial inventory is higher than the critical order level for that
period. The sum of the order quantity and the beginning inventory exceeds the critical
order level since it is not an order-up-to policy. Finite period problem solutions converge to

those of infinite-period problem.

Bassok and Akella [13] focus on the aggregate plan of the raw material procurement and
production of a supply chain system. Stochastic proportion applies only to the raw material
procurement. The aim is to find the optimum order quantities for procurement stage and
the capacity to be allocated at the production facility to satisfy the random demand with
this random yield in procurement stage. An optimum solution is hard to obtain due to the
complexity of the cost function, so they propose some approximate solutions. Amihud and
Mendelson [14] have a similar approach that jointly determines the sales and production
quantities under uncertain output and demand. However in this approach, an additive
variability is applied to the input level instead of using a multiplicative approach, i.e.,
stochastic proportion. Optimum solutions are reported to be insensitive to the length of

the planning horizon.

Gerchak et al. [15] study a periodic-review production model with variable yield from
single vendor and include uncertain demand into their formulation. Random yield is rep-
resented by a stochastic proportion applied to the input order level @. They analyze two

and n~period problems after obtaining a comprehensive characterization of the single period
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problem. In this model, the unit variable cost (unit production cost) is considered to be
proportional to the actually realized yield so that defective units do not generate any cost.
In the single period case, they state that the critical order point is unaffected by the yield
distribution. However, due to the existence of the random yield, optimum quantity as a
function of initial inventory is not a straight line and an order-up-to-level strategy does not
emerge. For the n-period problem, they show that a critical order level can be found for
each period so that no order is given if the initial inventory for that period is higher than
that critical level.

There are also heuristic approaches for random yield problem in the literature. Bol-
lapragada and Morton [16] propose three myopic heuristics for the multi-period inventory
problem where a stochastic proportion is applied to the order released. An ordering cost is
applied to both cases: cost can be proportional to either the ordered quantity or actually
received quantity. The Newsvendor Heuristic obtains the order quantity ¢ as a function
of initial inventory, which is nonlinear. The other two heuristics enable the user to make
linear fits onto the function Q(z), the order quantity if the inventory level is x. Via a com-
putational study with different distributions and parameters, it is illustrated that the best
of the heuristics has worst-case errors of 3.0 % and 5.0 % and average errors of 0.6 % and

1.2 % for the infinite and finite horizon cases respectively.

Random yield is also studied in the EOQ setting by Cheng [17], being one of the earliest
works. In his model, an EOQ model is proposed with demand dependent unit production

cost and unreliable supply process. Implicit form optimal solutions are obtained.

In the literature, there is a common assumption that defective items can be identified
just after receiving. This obviously requires perfect inspection that is handled just before
production or shipping to the customer. However, it is costly to implement such an inspec-
tion procedure and there is a trade-off between inspection and holding costs. Zhang and
Gerchak [18] analyze a joint lot sizing and inspection policy under an EOQ model. Due
to the cost of inspection, they find the optimum lot size and the portion of the received
quantity to inspect so that total expected holding and inspection cost is minimized.

Many of the parameters of inventory models may change during the planning horizon,

which is generally named “fuctuating environment” in literature. This concept is important
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in the sense that distributions and some other features of random variables change by the
effects of the environment. Demand is an apparent example that is variable along the
planning horizon. So, earliest studies dealing with random environments model the demand
process environment dependent. Kalymon [19] models the related costs with a Markovian
stochastic process where the demand distribution depends on cost parameters. In Feldman
[20], demands are modulated by a compound Poisson process where parameters depend on

the environment state which follows a continuous Markov process.

Ogzekici and Parlar [21] model random environment within a periodic review control
policy. Supplier unreliability is represented by using a binary variable that equals 1 if
supply is available in that period or 0 otherwise. The environmental process follows a
Markov chain. In this setting, the environmental process affects demand, supply and all
cost parameters. In general, they show that an environment dependent base-stock policy
characterizes the optimum strategy. It is also shown that when a fixed ordering cost is
included, the optimal strategy is the well-known (s, S) policy where the parameters depend

on the state of the environment.

2.2 Random Yield Models with Random Capacity

Another approach for modeling random yield is to take the capacity random so that actual

yield is the minimum of the realized capacity and the order released.

Ciarallo et al. [22] focus on random capacity, which is assumed to follow a known
distribution. Parallel with the previous works, they find out that base-stock policy is the
optimum strategy; however, the objective function is a non-convex but unimodal function
due to the random capacity. Order quantity increases when uncertainty is included in the
model and variability is increased; however, in the single period case uncertainty does not

affect the size of optimum quantity. This is also observed by Henig and Gerchak [12].

Wang and Gerchak [23] analyze the effects of random capacity on the optimum policy
where continuous review is applied. In fact two models are considered: EOQ and the order
quantity/reorder point model with backlogging. Variable cost is applied to the actually

received quantity, which is the minimum of the realized capacity and the order size. The
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expected cost per unit time comes out to be quasi-convex in the order size. If the mean
capacity is allowed to be infinite, then the well-known EOQ formula is obtained. They show
that random capacity makes the optimal order quantities and optimal reordéf point for the
second model higher. Also, for the specific case with exponentially distributed capacity,
they propose a simplified method to reach the optimal quantity.

Gillii et al. [24] analyze a similar capacity uncertainty model and obtain a solution for
the order up to level by utilizing queuing theory applications. Besides the 0 —1 availaﬁility
of the supplier, yield also depends on the size of the order in this periodic review model.
Demand is considered to be deterministic and dynamic over the finite planning horizon. As
a result, they come up with optimality of an order up to policy that minimizes expected

holding and backorder costs.

2.3 Random Yield Models with both Random Capacity and Stochastic Pro-

portion

Wang and Gerchak [25] have a joint approach including variable production capacity and
a stochastic proportion that are applied in an environment with single production plant
(analogous to the single vendor case), uncertain demand and periodic review control policy.
Capacity, stochastic proportion and demand are all assumed to follow a certain distribution.
So when a production order is released, minimum of the order and the realized capacity for
that period is actually obtained. In order to represent the final output of the plant, a sto-
chastic proportion is applied to this value. A stochastic dynamic programminé formulation
is designed to explore some characterizations in the multi-period setting. They prove that,
for the finite horizon problem, the objective function is quasi-convex and so attains a global
minimum for a given initial inventory level. Optimal strategy is such that there is a single
critical order level for each period, above which no order is given. Besides, the resulting
strategy is not an order-up-to-level one. It is also proved that solution of the finite-horizon
problem converges to that of the infinite-horizon problem. They give the expressions to
be solved in order to find optimum quantities and critical order levels without a numerical

llustration.
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Matsumoto and Tabata [26] achieves a comprehensive study on periodic review and
single product inventory control where random capacity, random yield, uncertain demand,
and an environment that randomly fluctuates following a discrete time Markov chain are
considered. A fixed ordering cost is included into the model and a unit variable cost is
applied to the order amount released instead of only the actual yield. Due to the second
one, critical order level comes out to be dependent on the mean of the stochastic proportion
that represents random yield. They also show that finite-horizon objective function is quasi-
convex and the optimal policy is not order-up-to type. Expressions to obtain optimal order

quantities and critical order levels are provided.

2.4 Random Yield Models with Multiple Vendors

The studies mentioned above assume that there is a single vendor or production plant which
is unreliable. However, in real life applications, it is obvious that working with multiple
vendors is advantageous through many perspectives.

An important study about continuous review inventory models is by Gerchak and Parlar
[27]. Stochastic proportions are applied to the order quantities of two distinct vendors having
same prices but different yield rates with different means and variances. Variable cost is
paid for the whole order size, no matter what the ratio of defective items is. So variability
directly affects the variable cost besides the holding cost. The main outcome of this study
is that the optimum order quantities from these two vendors are proportional to the ratio
of means over ratio of variances. Interestingly, they observe that diversification over two
vendors is advantageous if and only if the joint set up cost is less than the sum of the

individual setup costs.

Parlar and Wang [28] study two distinct vendors having different yield distributions and
unit variable costs. Applying different stochastic proportions to the orders given to each
vendor, total cost function is shown to be convex for a wide range of parameters and the

optimal order quantities are found explicitly.

Anupindi and Akella [29] focus on single and multiple-period problems with two distinct

vendors and random demand. They model supplier unreliability via employing stochastic
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proportion. In fact they regard unreliability of the supply process as delayed deliveries.
Since they focus on two vendors, optimum policy contains two different critical order levels.
Orders are given to the both vendors if the initial inventory is less than both of the critical
order level for that period. If the inventory is between the two critical levels, then order is
given only to the cheaper vendor. Otherwise, no order is given to any vendor. They also
show that optimum quantities are proportional to the same ratio of means and variances of
the stochastic proportions, which was previously found by Gerchak and Parlar [27] but in

a continuous review context.

Henig and Levin [30] study joint production planning and product delivery commitments.
Based on the single vendor model by Bassok and Akella [13], they show that the profit
function is concave which facilitates finding the optimum quantities by simple expressions.
They also prove that among the unreliable vendors, there exists one whose yield distribution

makes it relatively preferable.

One of the different approaches to supplier unreliability is to take lead time uncertain,
which is studied in Lau and Zhao [31]. Besides determining the optimum order quantity,
they propose methods to find the optimum splitting ratio between the suppliers so that
annual holding and order costs are minimized subject to constraints for maximum allowable

stockout risk.

A study that considers vendor unreliability with multiple vendors is by Erdem et al. [32]
and Erdem et al. [33]. Erdem et al. [32] tries to see the effect of working with multiple
identical vendors whose capacities are random variables and a potential diversification over
those vendors within a continuous review EOQ setting. After giving the expression that
solves for the optimum quantity, they show that in uniformly distributed capacity case total
order quantity begins to decrease after some n, the number of identical vendors. On the
other hand, in the exponential case, total order quantity always decreases as the number
of identical vendors increases. In the single vendor case, optimal order quantity is higher
than the classical EOQ level in a deterministic setting. In Erdem et al. {33], they obtain an
implicit set of equations that gives the unique optimum set of optimal order quantities with
distinct vendors. These equations are then simplified by taking uniformly and exponentially

distributed capacities. As a consequence of optimality conditions, it is shown that the
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expected unsatisfied order amounts are same for all vendors.

In this study, we analyzed an inventory model with a periodic review_policy. In the
literature, the studies assuming periodic review generally include either random capacity
or stochastic proportion in their model. Some include both of these approaches; however,
those models are based on the single vendor case. Qur approach differs from the literature
by including both random capacity and stochastic proportion in our model and extending
this approach with multiple vendors. After examining the model analytically, which turns
out to be rather complicated for the multiple vendors case, we propose a solution procedure
for this problem. We also show that the methodology greatly simplifies when the periodic
demand is exponentially distributed.
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Chapter 3

A SINGLE PERIOD INVENTORY MODEL WITH SINGLE VENDOR
AND RANDOM YIELD

Before studying the multiple-vendors case, we will first discuss the single vendor case
in order to benefit from the analogies between the two cases in terms of modeling. When
working with only a single vendor, the decision maker is in a riskier position about mate-
rial procurement when compared with working with multiple vendors. At this point any
uncertainty or imperfection in the vendor’s production process and transportation leads to
delivery of the order with an unexpected quantity or lead time. In order to foresee the poten-
tial causes of uncertainties and take precaution against the unexpected results, the decision
maker should analyze the course of the past data and extract some useful knowledge about
the characteristics of the whole ordering cycle including mainly vendor’s production capac-
ity and quality realized at the moment of delivery to the decision maker. After detecting the
sources of uncertainty, one should mathematically model the problem of optimizing the or-
der quantity in this stochastic cycle where the sources of those uncertainties are represented

by random variables.

In the previous section, several articles that deal with this problem with single vendor
case were reported in detail. In this chapter of the thesis, the aim is to analyze the single
vendor case with random yield and reveal some characterizations about the optimum policy
of single-item inventory control. The problem is regarded as a single period problem. The
main sources of the uncertainty are the capacity of the vendor and the imperfection of the

processes that take place in the rest of the whole ordering cycle.

The rest of this chapter gives firstly the definition of the problem and the assumptions
of the model. Then, the mathematical formulation of the problem follows. This chapter

ends with some analytical outcomes and numerical results.
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3.1 Problem Definition

The problem is faced by a single node of a supply chain network given in Figt?r:—(&l), which
means that the supply chain system is operated in a decentralized manner. The decision
maker at this point is a production plant that has to satisfy an uncertain demand of a single
product. It holds a single item inventory for production and procures this single item from
a number of unreliable suppliers in the network. A single distributor or retailer may also
be regarded as the decision maker that has to satisfy an uncertain demand coming directly
from the customers and gives orders to the production plants (vendors in this case). So the
model can be applied to any of these two stages. In the rest of this study, a single production
plant will be regarded as the decision maker that gives orders to the unreliable suppliers.
In other words, the interaction between the first (Supplier) and second (Production) stages
of the supply chain is analyzed, while it may also be conceived as the relation between
the second (Production) and the third (Distributors/retailers) stages. Periodic inventory
control is implemented, but since the single period case is handled, a single decision on
the order quantity is made at the beginning of the period. This decision is driven by the
beginning inventory on hand. The following are the three sources of uncertainty, which are

parametrized and assigned some cumulative distributions.

In real life, most of the problems emerge due to imperfect knowledge of demand. Since
the customers are the least controllable portion of supply chains, nobody can propose an
accurate demand in advance. However, using the past data, some features of the demand
process can be extracted. In this study, demand is taken to be a random variable that is
independent of any other parameter. Let’s denote periodic demand by D. The cumulative

distribution function of demand is

G(w) = P(D < w). (3.1)

The probability density function of demand is represented by g(w). Considering the
amount of beginning inventory on hand, an order is released to the vendor. This amount of
order is processed by the production facility of the vendor, whose capacity is not known in

advance due to the many factors, some of which are listed below:
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Figure 3.1: Parts of Supply Chain Network Where the Model is Applicable

e Machine breakdowns: If the production at the vendor’s side is dominated by machinery
and there is a limited number of machines, then machine breakdowns becomes critical

in the sense that they can decrease the periodic capacity by a considerable amount.

e Tool wearing: Some components of the machinery may become worn out, which affects

the performance of the machines even if no breakdown occurs.

e Unezpected maintenance duration: Repair and maintenance of malfunctioning ma-
chines can take times longer than planned period and some machinery may be out of

operation when needed.

e Utility loss: Any kind of input (steam, electricity, etc.) may become absent due to
external factors, which leads to interruption of the production process via capacity

loss.

e Chase strategy applied for labor force: An aggressive hiring and firing policy causes a
fluctuating labor force level, which also makes overall capacity more unstable.

The realized capacity as a consequence of all these factors becomes restrictive if the

order given by the decision maker is higher than this realized capacity. As a result, only
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a portion of the order size, as much as the realized capacity, is actually processed in the
plant of the vendor. In the opposite case, the released order is fully processed at vendor’s

side. Denoting this random capacity by a random variable A, the cumulative distribution

of capacity can be given as

F(z) = P(A < 2). (3.2)

The probability density function of vendor’s capacity is represented by f(z). After the
execution starts an uncertain cycle emerges, which is spread over the vendor’s production
process and the transportation to the receiver. Due to imperfect production of vendor, some
portion of the produced amount goes to scrap. Additionally, some of the products become
defective due to improper transportation. As a consequence of these two uncertainty factors,
the decision maker can receive only a portion of the amount that was initially processed
at the vendor’s plant. These sources of uncertainty can be included into the model via
applying a stochastic proportion U to the amount initially processed. Random variable U
has the cumulative distribution function

T(u) = P(U < u) (3.3)
with density function ¢(u). Throughout this thesis we suppose that all cumulative distrib-
ution functions G, F, and T are differentiable with probability density functions g, f, and
t. The density functions g, f, and ¢t have some bounds on their domain. It is f)bvious that
neither demand D nor the capacity A can be negative, which is also valid for U. In fact U
should be also bounded above by 1, in addition to nonnegativity, since the uncertain events

generally do not add to the order quantity but decrease the initial order by some amount.

3.2 Assumptions

In order for the model to have a logical structure, the whole decision process should satisfy
some conditions. Besides, the formulation should include some specifications on parameters,
distributions, etc. to state and justify the optimality conditions. Here is the list of the main
assumptions made in this study:
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s The vendor capacity is such that there is always a nonzero probability for the vendor

to process the given order, whatever the order size is, i.e.,, 1 — F(2) > 0 for all 2.

e The density function of the periodic demand takes positive values for positive variables,
i.e., g(y) >0 for y > 0 and g(y) =0 for y < 0.

e Decision is made for a single period.
e There is a single product.

e Orders are given to the vendor before capacity is realized. In the case of early infor-

mation about capacity, random capacity modeling has no meaning,

e Procurement process contains only the variable cost of ordering. Transportation cost

is assumed to be embedded in this variable cost.

e Production process of the decision maker does not comprise any uncertainty. So,
actual yield received from the vendor is directly converted to finished goods to satisfy

the demand without any loss in quantity.
e Lead time is short enough so that it causes no critical delay.

e Unit shortage cost is higher than unit variable cost. This assumption is common in

related literature and required for some outcomes to make sense.

e Parameters related to costs and distributions are fixed throughout the decision period.

e Distribution of the stochastic proportion is independent of order quantity and realized
capacity of the vendor.
o Unsatisfied demand is lost.

The first two assumptions on the distribution function F and G are needed for tech-

nical reasons to avoid some noncrucial difficulties in the analysis.
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3.3 Model Formulation

An order of g is fully processed if it is less than the realized capacity of the vendor. Let’s call
this processed amount P, . Recalling that the random capacity of the vendor is represented

by A, Py can be stated as
P, = min{g, A} (3.4)

The actual amount that is received from the vendor is found by applying the stochastic
proportion U to Py. We call it "actual yield" and denote by Y;. Then, it is given by equation

Y, = Umin{g, A} = UP,. (3.5)

The unit variable cost, which includes only the purchase cost per item in our model, is
denoted by c; & is the unit holding cost and p is the unit shortage cost. Since we study a
single period model, h can be regarded as the holding cost in the newsboy problem, which
is equal to the unit purchase cost minus the salvage value of the item. Here it is important
for p to have a value higher than c. At this point it is necessary to define a vital part of
the cost function, the expected inventory cost. Suppose that after receiving the actual yield
from the vendor, there is a total amount of ¥ on hand together with the initial inventory.
‘We use the common notation L(y) in related literature to denote the expected total holding

and shortage cost given that the sum of actual yield and initial inventory is y.

Recalling that demand is a random quantity with cumulative distribution function G
and density g, we can express total expected holding and shortage cost as

L(y) = Elhmax{0,y— D}+pmax{0,D —y}] (3.6)

= hﬁ(y—w)dG(w) +p/:(w — y)dG(w). (3.7)

In order to derive some characterizations about L, first and second derivatives are ob-

tained as
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L'(y) = (h+p)GE) - p (3.8)

and
L"(y) = (h+p)g(y). (3.9)

As a matter of fact, L is strictly convex on [0,+00) by our assumption that g(y) > 0 for
ally > 0.

The expected total cost function T'C can be thought as a two-variable function of initial
inventory = and the corresponding order quantity g. There are mainly two components of
T'C; the variable ordering cost V; and the expected inventory cost L. Modeling the variable
ordering cost in similar studies may vary according to problem setting and perception of
ordering cost. In some studies, "order" refers to the amount of production level that is
aimed instead of order given to the vendor. When production is initiated, all of the input
costs are incurred and the resulting scrapped items or any other inefficiencies increase the
cost per finished good. Also several studies where "order" refers to order given to the vendor
assurne that variable cost is paid in advance so that it is not important whatever you receive
since you pay what you exactly order. These two approaches implicitly claim that the more
uncertain the ordering or production system, the more costly are the procurement or the
production processes. Under such a setting, when order size is ¢, the variable ordering cost

paid or incurred in advance V' is simply given by

Ve =cqg. (3.10)

A model that is essentially identical to ours in this single period setting is discussed
in detail by Wang and Gerchak [25]. Their model differentiates from our model with this
application of unit variable cost. The relevant portion of the total cost is given by ¢P, in
their model. This approach makes sense since they apply the variable cost to the production
process where the cost is generally incurred at the beginning of the processes. In this study,

orders are given to a vendor and variable cost is the unit procurement cost. We believe thait
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in real life applications, vendor is paid as much as the amount received, independent of the
order initially given. In other words, if the decision maker receives 80% of its order, theﬁ
an amount of 0.8¢q is paid to the vendor and decision maker is not directly punished due
to uncertainty. That final random yield is represented by Y5 in our model. So the random

variable cost is

V, = cY,. (3.11)

The second component of T'C is L(y) as mentioned above. Here, y refers to the total
inventory on hand at the beginning, which is the sum of initial inventory and the actual
yield. So, random demand is met by an inventory of y = 2 + Y;. Then, the total expected

cost function can be expressed as

TC(z,q) = ElcYy+ L(z+Yy)] (3.12)
= E[cUP;+ L(z + UPFy)) (3.13)
= ElcU(gNA)+L{z+U(g A A))] (3.14)

where (¢ A A) = min{g, A}.

Let v1(x) denote the optimal cost function with single vendor, given an initial inventory

of . So we can obtain v;(z) by minimizing T'C(z, q) in (3.12) for ¢ > 0 so that

v(z) = IglzigTC (z,9) (3.15)
= mipE(gAA)+ (e +U(gA4)] (3.16)
= mig f Eleu(g A A) + L{z + u(g A A))dT(w) (3.17)

= mip (101~ F@)(eug + L+ ua)) + [ (eus + Lo +ua))aF@IoT(a)
(3.18)
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In order to derive some optimality conditions, first and second order derivatives with
respect to g should be investigated for any given parameter . The partial derivative of

T'C(z,q) with respect to q is

Y29~ [ia- Fa)eu+ ul/(a-+ )T (3.19)
= E[cU+UL(z+Uq)] (1~ F(g)) (3.20)
= (cE[U|+ E[UL (z+Uq)])(1— F(q)). (3.21)

We know that for a given z and U > 0, L'(z+Ugq) is a continuous and increasing function
of g, and so L(z + Uq) is convex in q. From the definition of L in (3.8) we can easily obtain

o ) i

qlu-goo L'(z+Uq) = h>0 (3.22)
. ) — il

qkr;nooL (z+Uq) = -p<0

for all U > Q.

Considering the first assumption of our model, we have (1 — F(g)) > 0 for any finite
value of g. Under the light of this fact and the assumption that p > ¢, it can be claimed
that for a unique value of ¢ = g(z), the partial derivative in (3.21) becomes zero. Since
p > ¢, the second term of the first factor, E[UL'(z 4 Ugq)], is increasing and takes values in
the range (—pE[U], hE[U]), which includes —cE[U]. Therefore, for a given z, g(z) can be
obtained by solving

cE[Ul+E[UL (z+Ug(z))] =0. (3.23)

The solution of this equation is unique, for example, when z is positive with E[U] > 0
since then, E[UL/(z+ Ugq)] is strictly increasing in the range (—pE[U], RE[U]) and it equals
—cE[U] at only one point. Otherwise, the solution may not be unique but increasing

E[UL(z + Uq)] still guarantees a solution, which is optimal.
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Figure 3.2: Total Expected Cost as a Function of ¢

According to the former arguments, the partial derivative of T'C is negative for ¢ < g(z)
and nonnegative for ¢ > §(z). In order to further analyze the characteristics of TC(z, g),

partial derivative of (3.21) with respect to g is investigated. It satisfies

8TC(z,q) B

52 [UL"(z + Uq)] (1 — F(q)) — f(Q)E [cU + UL (z + Uq)] - (3.24)

The first term of (3.24) is always nonnegative since L” > 0 and (1 — F(q)) > 0 for all
g. Since the left hand side of (3.23) is negative for the values of g smaller than g(z), we
can claim that (3.24) is positive for ¢ € (—oo, §()). Here an important point is that f(q)
is defined to be 0 for ¢ < 0 since the random capacity A > 0. Then the function T'C turns
out to be convex decreasing in this region. At the point where ¢ = §(z), the second term
of (3.24) is zero by (3.23) and second partial derivative is positive. Therefore ¢ = g(z) is a
minimal point for T'C. In the region q € (g(z),+o0), TC increases since T'C' is positive for

g values that are greater than g(z). Figure (3.2) gives an illustration for this case.

In summary, TC is convex decreasing on (—o0, g(z)) and increasing on (g(z),+oc0).

Then, TC turns out to be unimodular with respect to g for fixed = so that it attains its
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global minimum at ¢ = g(z). So a nonnegative g(z) which satisfies the first order optimality
condition (3.23) is also the solution of the constrained minimization problem (3.15). To make
the notation more precise, we will let g(z) denote the optimal solution of £1i€ constrained

minimization problem while g(z) is the optimal solution of the unconstrained problem.

Given the inventory level z, optimum order quantity can be found by solving (3.23),
which is obtained by equating first order partial derivative to zero. This expression can be

stated as

CE[U] + / wl(h+p)C(z +vg(z)) - pldT(u) = 0. (3.25)

Proposition 1. If §(z) <0, then the optimal order policy is to order nothing from the
vendor so that q(z) = 0. Moreover, q(z) = g(z) if g(z) = 0.

Proof. For fixed z, the total expected cost function T'C(z, ¢) is unimodular in g where
g(z) is the global minimum. In (3.15) we must choose ¢ > 0 and the total expected cost
function is increasing for g > g(z). Since ¢ > 0 > g(z), the optimum solution is obtained
at the minimum feasible point and g(z) = 0. It is clear that a nonnegative g(x) gives us
the optimum order quantity since it is also a feasible order size, first order derivative is zero

and second order derivative is positive at that point. B

Proposition 2. The solution of the unconstrained problem G(z) is decreasing in x.
Proof. We first take the derivative of (3.25) with respect to z in order to derive the
structure of §(z). This yields

/ WL (2 -+ ug(z))(1 + u(g%%:z—)))dT(u) =0 (3.26)

which can be written as

(h+9) [ ugto+ @) +uEEare) = o (3.27)
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so that

dg(z) _ _ [ug(z+uq(z))dl(u)
dz [ u?g(zx+ug(z))dT (u) <0 (3.28)

Since the derivative of g(z) with respect to z is negative, the order quantity g(z) is
decreasing in z. This is an intuitive result meaning that it is optimal to order less if you

have more beginning inventory. B

Let S = inf{z : g(z) = 0}. According to this definition, g(z) is greater than zero for
values of z € (—00,.9). At the point = S, §(S) = 0. This is the critical order level for the

vendor and provides a characterization of the optimum ordering policy.

Theorem 3. The resulting optimum ordering policy is not an order-up-to type (base

stock) ordering policy. The optimum order quantity is given by

q(z) = { 9t R (3.29)

0, z> S

where

S=G1 (;{-Z) ) (3.30)

Proof. For an order-up-to type or base stock policy ¢(z) = S — = and the slope of this
function is —1. However, in our case, §(z) is not equal to —1. This is because 0 < u < 1
and, in turn, u? < u, which makes (3.28) less than —1. A slope that is less than —1 causes
the sum of the initial inventory z and the released order size q(z) to be greater than S
for x < S resulting in a non-order-up-to type ordering policy. A typical optimum policy is
illustrated in Figure (3.3). The line with a slope of —1 has an equation of ¢ = S — z and
represents the order-up-to policy. The resulting policy of our model is a curve whose slope
is always less than —1. Clearly this curve lies above the order-up-to type policy line. In the
region where z > S, our curve lies exactly on the x-axis meaning that we give no order to

the vendor in this range.
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Figure 3.3: Single Vendor Ordering Policy

In the light of Proposition 1&2 and Theorem 3, it is obvious that after the critical order
level S, g(z) becomes negative and no order is given beyond this level. Considering the

definition of S, we substitute 0 for g(z) in (3.25) so that

/ ul(h+P)G(S +uq(S)) - pldT(w) = —cE[U] (3.31)
/ ul(h+p)G(S+0) ~ pldT(w) = —cE[U] T (3.32)
which gives
p—c
6(9)= 2.
E

An important outcome of the model is that the critical order level S is independent of
both the distribution of vendor capacity and the distribution of the stochastic proportion.

The relevant information is only the distribution of periodic demand and the parameters of
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unit variable ordering, holding, and shortage costs. So if we take only the demand uncertain
and remove all the other uncertainties, we still begin ordering before the same critical order
level S. The mathematical expression obtained for S explains why we make th&assumption
p > c. If we remove this assumption, the argument of G~'may assume negative values but
we know that G can take only the values that are on {0, 1}.

The outcomes of this chapter are almost the same as the results of Wang and Gerchak
[25]. However they find the critical order level to be dependent on the mean of the stochastic
proportion. This is not an unexpected result, because they apply the unit variable cost to
the minimum of order release and realized capacity so that the amount of actual yield which
is determined by the stochastic proportion has a direct effect on the actual variable cost
incurred. In other words, when actual yield is half of the processed amount, then the actual

variable cost becomes 2c.

3.4 The Case of Exponentially Distributed Demand

Considering the assumptions on the distributions discussed above, exponential distribution
is a good candidate for illustration purposes of vendor capacity and periodic demand. This
is because this density function is defined for all positive values and is zero for negative

values. We suppose that

de=N, y>0
9(y) = (3.33)
0, y<0

with a mean of 1/A. Therefore, the exponential distribution satisfies the assumption on the

periodic demand.

Using the exponential distribution, L is explicitly found as

Liy) = h /.: (y — w)Ae *dw +p f :('w —y)Ae M dw (3.34)
- %[(h +p)e™ + Ry — h] (3.35)

for y > 0 and
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L{y)=-py+= (3.36)

for y < 0 so that

h 1—eM)—p, y>0
-p, y<0
and
h4+p)he™™, y>0
ry =] BT Y (3.38)
0, y<0

Skipping the detailed analysis of the model, we focus on the optimality equation (3.23)

which becomes

E[U((h+p)(1 — e XEHVIE) — p)] = —eE(U]. (3.39)

In (3.39), we used the form of L that is defined for the positive domain. Taking = > 0,
we guarantee that the argument of L is positive since U and G(z) take positive values. In
fact, we obtained all computational results for integer values of z € [0, 10] requiring the
corresponding definition of L so that the optimality condition turns out to be as in (3.39).
Actually L can be modeled for both positive and negative = values especially for a multi-
period model; however, this creates a rather complex expression for L. Throughout the rest
of this thesis, we assume positive z values and use the form of L for positive domain for
illustration.

The selection of the capacity distribution has no effect since it does not exist in the

equation. We write the equation as

e MUy . PTC
ElU(1-e i ot hE[U] (3.40)
which leads to
o h+c
—AUG(z)] — A2
E[Ue ]=e 7 +pE[U]. (3.41)

Here, if we take U as a deterministic parameter so that U = u, then we have
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_ S—z
() = = (3.42)
where
1 h+c
S = —Xln (h+p)' (3.43)

So, for constant U, we have a linear ordering function having a slope of —1/u. In other
words, we order 1/u units for each one unit of quantity needed. The value of § is a positive
number by the assumption that p > ¢. As another special case, note that we obtain the
base stock policy g(z) = S — z if u = 1 so that there are no defectives in the order.

Model with Exponential Vendor Capacity and Uniform Proportion

For illustration purposes, we now assume that vendor capacity is also exponentially
distributed. Considering the assumption on vendor capacity, we observe that exponentially

distributed capacity also satisfies the related assumption since

1-F(z)=e >0 (3.44)

for all z > 0 with mean capacity of 1/u. For the stochastic proportion, we select uniform
distribution on [a, b] since it has a density having finite bounds. We know that it is logical
for U to take values between 0 and 1. Then,

1

) a<u<b

tu)y=4¢ > (3.45)
0, elsewhere

where 0 < a < b < 1. Then, TC(z,q) in (3.15) becomes

b

10,0 = [

a

q
+ / (cuz + L(z + uz)ue **dz]du.
0

~le™(cug + L(z + uq))

(3.46)

After the inclusion of all distributions and parameters, g(x) is found explicitly by the

solving the equation
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1 e (P +c)(a+D)
(b— a)X*g(x)? 2(h +.1)

In order to find the critical order level S, we include the inverse of the exponential

X314+ Ag(z)a) — e IO(1 + 2g(2)b)] = € - (3.47)

cumulative function

G(z) = ~In ( ! ) (3.48)

into (3.30) so that we obtain

_pfp—c)_1 h+p
s=62(222) < L (222 o

which is the same value as in the case when U = 1.

3.5 Numerical Illustration and Results

In this section we give the outputs of the single vendor model when all input parameters
are numerically included in the equations. We suppose that the variable cost ¢ is $§2/unit
and the holding cost h has a value of $0.5/unit. The shortage cost p is $5/unit considering
the assumption that it should be higher than ¢. The parameter A for the periodic demand
is assigned to be 0.1, resulting in a mean periodic demand of 10 units, i.e., D ~ Exp(A).
The stochastic proportion U is assumed to be uniformly distributed on (0.5, 0.8). The
parameter 4 for vendor capacity is taken to be 0.25 resulting a capacity mean of 4, i.e., A ~
Exp(p). The value of u has no effect on optimum order quantities; however, it affects the
total expected cost function.

After setting up the optimality equation, we solved it by using Matlab 6.5. Table (3.1)
shows the optimum order quantities that correspond to the different inventory levels. We
tabulated the order quantities that are calculated each time when the inventory level is
incremented by 1, 0 through 10. The critical order level S for this problem is calculated as

1. (05+5
=57l (0‘5 — 2) = 7.88. (3.50)
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Table 3.1: Optimal Order Quantities for a Single Vendor

Initial Inventory (z) | g(z) | Consecutive Difference | ..

0 12.00 -

1 1047 -1.53
2 8.94 -1.53
3 7.41 -1.52
4 5.89 -1.52
5 4.37 -1.52
6 2.85 -1.52
7 1.34 -1.52
8 0.00 -

9 0.00 -
10 0.00 -
7.8 0.13 -

which is in accordance with the last row of Table (3.1). Up to the critical order level, g(z)
is positive and optimum order size g(z) = g(z) on this range. Both functions are decreasing
up to that point, which is previously stated in Proposition 2. At the points where z > 7.88,
solving the optimality equation gave negative g(x) values resulting an optimum order size
g(z) that equals 0. The pattern of the optimum order size is best seen on Figure (3.4),
despite the fact that non-order-up-to type policy is not obvious since the curve resembles a

—1-slope straight line.

In order to gain insight on Theorem 3 and notice the non-order-up-to type policy, we
should look at the 3rd column of Table (3.1) where the differences between the consecutive
order sizes are tabulated. Since the incremental amounts on z all equal 1, this column
gives a sound insight about the slope of the curve at discrete points. The values are less
than one as stated in Theorem 3, which proves that the policy is a non-order-up-to type
ordering policy. The last column gives a computational illustration of the theorem where
it is observed that the sum of the initial inventory and the order size always exceeds the

critical order level. In fact, the amount of difference increases as inventory level decreases
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Figure 3.4: Optimum Order Quantities for Single Vendor

which is natural since the slope of the curve decreases as inventory level decreases.
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Chapter 4

EXTENSION OF THE MODEL WITH MULTIPLE DISTINCT
VENDORS

Examining the related literature on inventory models with random yield, we observe that
most of the papers study the single vendor case. However, when the random yield concept
is in question, working with a single vendor apparently means taking more risk. Making
purchasing decisions using a single vendor may result in extremely unexpected outcomes

despite the optimization of an objective using these decisions.

In order to acquire a more reliable position in the material procurement process, orders
may be distributed among several vendors. Even if all vendors are unreliable and have
uncertain processes, diversification effect will emerge and variability of the resulting outcome
will decrease. A measure for this reduction in the variability of the whole ordering process
may be the total expected cost. Obviously, decreasing variability is expected to decrease

the total expected cost.

Besides the diversification effect, working with multiple vendors has some other advan-
tages over the single vendor case. Negotiating with multiple vendors may decrease variable
cost and increase the quality of the raw material due to competition among the vendors.
However, these advantages are hard to incorporate in inventory models. In this study, it is
assumed that decision maker works with multiple vendors having different attributes, i.e.

variable costs, distribution of capacities, and distributions of stochastic proportions.

In this chapter, the inventory model discussed in previous chapter is extended to the
multiple distinct vendors case. The aim is to see the effects of working with more than
one vendor and differentiate between the vendors according to their attributes. Some vital
questions may arise, like "Is it always optimal to release orders to all of the vendors we

work with?"; "Should the decision maker always release his order to the cheapest vendor?";
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"Are reliable but expensive vendors more preferable?". The chapter begins with analyzing

the two vendors case before the generalization to n vendors.

4.1 Two Vendors Case

In the general multiple vendors case, the modeling approach in this thesis makes the related
expressions fairly complex; consequently, it is hard to investigate some features of the opti-
mum policy and extract some characterizations analytically. Therefore it is proper to focus

on two vendors case first and then try to generalize some outcomes for the n vendors case.

This section is the application of the single vendor modeling approach to two vendors, so
we keep all of the assumptions for both vendors and their processes. However it should be
noted that, since distinct vendors are in question, parameters for each vendor are different.
For instance, two vendors charge different variable costs ¢; and ¢ where p > ¢; for i = 1, 2.
Besides, the capacity distributions F; and F; for the vendors are either different distributions
or the same distribution with different parameters. Since the production processes are
different and probably different transportation channels are used, stochastic proportions Uy

and Us should have distinct distributions or same distributions with different parameters.

Considering a single planning period, the problem is to obtain optimum order quantities

q1 and gq, given the initial inventory level z. As in the single vendor case,

Fi(z) = P(& < 2) PR

and

Ti(w) = P(Us < u) (42)

where 0 € A; < +o0oand 0 < U; € 1 for 2 = 1,2. In two vendors case, the decision
maker decides on the order for each vendor and then receives the actual yield ¥, from each
vendor. Actual yield of each vendor is obtained in the same manner as the single vendor

case, applying the stochastic proportion to the processed amount so that
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Py = min{g;, Ai} (4.3)
Yq,. = Uimin{qi,A¢}=Uqui (4.4)

for i = 1,2. Then the total random yield received from these two vendors is the sum of

individual yields

Total random yield = Yy, +7Y,, . (4.5)

Total inventory holding and shortage cost L(y) is unchanged except for y. Together
with the ¥ys, we have a total of y = z + Y, + Y, on hand inventory to meet the random

demand. Then, the total inventory holding and shortage cost in terms of actual yields is

$+Yq1+Yq2
L(z+Y, +Yy) = h/ (@ + Y, + Yo — w)dG(w)
0

oQ
+p / (W — (2 + Y + Yap))dG(w).
T+Y +Yey

(4.6)

The next step is to derive the total expected cost function T'C' in terms of the beginning
inventory z and quantities g; and ¢o ordered from each vendor. The same approach is valid
here, T'C is the expected sum of purchase costs from each vendor and the total inventory
holding and shortage cost that is shaped by the initial inventory and the sum of actual

yields form each vendor.

TC(x,q1,92) = Ele1Yy + oYy + Lz + Yy, +Yy)] 4.7
= E[ciUiPy, + caUs Py + L(z + U Py, + UsPy)| (4.8)
= EleiUi(gi A A1) + c2Uz(g2 A A2) + Lz + Ur(q1 A A1) + Uz (g2 A A2))]

(4.9)
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Let vg(z) denote the optimal cost function with two vendors, given an initial inventory

of z. So we can obtain vo(z) by minimizing TC(z, g1, ¢g2) in (4.7) for g1,92 2 0 such that

v(z) = min TC(zq1,0) (4.10)
= min ElaUi(qi A A1) + cUs(go A Az)
q1,9220
+L(z + Ur(qr A A1) + Ua(ge A A2))]- (4.11)

= ming / / [(crurqr + coungs + L(z + u1q1 + ug2)) (1 — Fi{q1)) (1 — Fa(ge))
q2
+/0 (crurgy + cougz + L(z + w1q1 + u22))(1 — Fi(q1))dFa(z)
q1
+f, (crurz + cauggs + L(z + w12 + u2q1))(1 — Falge))dFi(z)

q1 92
+/0 / (Clulzl + cougzg + L(:E +u121 + u222))dF1 (zl)sz(Z2)]dT1 (Ul)de(uz)
0
(4.12)

The partial derivative of T'C(x, q1,g2) with respect to g; is obtained as

OTC(z,q1,92)

g = F [61U1 + U1 L (z+ U1gs + Uz(g2 A Az))] (1 — Fi(q1)) (4.13)

= (aE[h] + E[U:L'(z + Uiq1 + Ua(g2 A A2))))(1 — Fi(g1))- (4.14)

We can observe from its definition that L'(z + U1q1 + Ua(g2 A A2)) is a coritinuous and

increasing function of ¢;. Then, as in the single vendor case

tnlim L(z+Uiqi +Ualge A A2)) = A>0 (4.15)

ql_;_oo L'(z+Uiq1 +Us(ga AAg)) = -p<0 (4.16)

for all U7, Uy > 0.

By our assumption, we know that (1 — Fy(q1)) is always positive for finite g1 values.
So the first factor of (4.13) determines where the first partial derivative is zero. It is also
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obvious that, for a given go, second term of the first factor in (4.13) is also increasing and
takes values between —pE[Ui] and hE[U] as in single vendor case. Therefore for a unique
value of q; = §i(z), the first partial derivative becomes zero. Given the init?ﬁnventory z

and the order size for the second vendor g¢o, i(z) can be obtained by solving the equation

a1 BlU1) + E[UL L (z + U131 (2) + Ua(gz A A2))] = 0. (4.17)

The first partial derivative is negative for g1 < G;(z), and positive for g1 > §;(x). The
next step is to analyze the second partial derivative of T'C(z, g1, g2) with respect to g1. It

can be derived as

62TC(.'L' »q1,42 )

842 = E[UPL"(z+Uiq1 + Uz(g2 A A2))](1 = Fi(qn)) (4.18)

~fula)(@E[U1] + E[ULL (z + Urq1 + Uz(g2 A 42))]).  (4.19)

The first term is always positive since L” and (1 — Fi(g1)) are positive for all g; values.
Also we know that the left hand side of (4.17) is negative for values of g1 smaller than g, (x).
Then, it is concluded that for any fixed go value, (4.18) is positive for ¢1 € (~o0, @i (),
which means that TC(z, g1, q2) is convex and decreasing in ¢; in this interval. If ¢; = i (z),
the second term in (4.18) is zero by (4.17), and (4.18) turns out to be positive at this
point. This means that TC(z,q1,g2) attains a minimal point at ¢; = @i1(z). In the region
(@i(z), +o0), TC increases in ¢; since for given z and go, (4.13) is positive for q; values that

are greater than i (z).

In summary, TC is convex and decreasing in ¢, on (—o0,di(z)) and increasing on
(gi(z),+00). Then, for a given go value, TC(2,q1,¢2) is unimodular in ¢; and for this
reason it attains its global minimum at ¢; = §i(z). Since the cost function is symmetric
in g;, same arguments are also valid for ¢o. Figure (4.1) gives the 3D graph of a typical
TC(z,q,ge) for a fixed value of z.

We have shown that, TC(z,q1,¢2) is unimodular with respect to ¢; for fixed z and g
and unimodular with respect to ¢o for fixed z and ¢1. If ¢1(x) and ga(x) are the optimum
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Figure 4.1: A Typical 3-D Graph of the Total Expected Cost Function
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order quantities for a given initial inventory z and qi(z),g2(x) > O, then they obviously

satisfy the first order condition

8TO($:91(x):Q2(x)) = 0 (420)
oq

TC(z, q(z), 2(=)) _
B = 0. (4.21)

The first order equations in explicit form are

BTC((I), q1, Q2)

on

8TC(1’, a1, ‘IZ)

0q2

(E[Uh] + B[ (= + Uiy + Ua(@a A A)))(A — Fi(ar))  (4.22)
(aBE[U1] + E[h L (z + Uhq1 + Uzg2)](1 — Fa(g2))

+ / Zz BlULL (2 + Urgy + Us2)|dFa(2))(1 — Fi(q1)) (4.23)
@B+ [ [l (e + ma + ue)(t - Fae)

+ /Zz wu L' (z+uiq + u2q)dFs(2)]dT1 (w1 )dT2(u2)}(1 — Fy (1))
0 (4.24)

(E[Us] + EUsL (z + Ur(qu A A1) + Uage)])(1 — Fa(gs))  (4.25)
(coE[Us] + E[UsL (z + Urq1 + U2q2)}(1 — Fi(qr))

+ / Zl E[UsL (& + Urz + Usga)]dF1 (2)) (1 — Fa(g2) (4.26)
(Bl + [ [lual!(e + e+ )t~ Fia)

+ /:1 U2L’($ + U2+ U2qz)dF1(z)]dT1 (ul)de(U2))(1 — F2(t]2)).
0 (4.27)

Equations (4.24) through (4.27) state that, in order to find the optimum order quantities

we should investigate the solutions q; = §i(z) and g2 = @(z) that satisfy
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—qmm1=_//mvm+mﬁ@+w@@ML4mwm»

+ /9-2(“) 'u.1L'(:L' + ulq"l(m) + uzz)sz(z)]dTl(ul)de(ug) (4.28)
0

and

%ﬁWﬂ==//Mﬂ@+wﬂ@+wﬂ@m~ﬂ@@m
+ / f “ ugl (& + w12 + ua@a(z))dF1 (2)]dTy (u1)dTo (ug).  (4.29)

Considering TC(z, 91, q2) at the point (g1,q2) = (¢i(z), @2(x)) and letting H(%, j) be the

entry of Hessian matrix corresponding to row ¢ and column j, we obtain

HLY) = 0-F@E) [ [10- RE@)MEE -+ ndE + we)

g2(z)
+%; u%L"(a: +u1qy (:L') + U2z)dF2(z)]dT1 (ul)de(’LLz) (4.30)
H(1,2) = H(,1)
= (1-FA(@ )1 - F@)

x / / w1 L (& + 1 i (%) + uad () AT (w1 ) dTa (uz) (4.31)
BRY) = (1-F@E) [ [0~ RE@NEL -+ udE +nh)
71(z)
+ Oq 2L (@ + w17 + w2 (x))dF} (2)] T} (uy)dTh(uz) (4.32)

We know that if the Hessian matrix is positive definite at the point (g1, g2) = (¢i(z), 2()),
then it attains a minimum at that point. One of the ways for looking for this criteria is to
analyze the determinants of the first minor M; and the second minor Ma. If both of these
determinants are positive, then we say that Hessian matrix is positive definite at this point.

The determinant of the first minor is

det My = H(1,1) (4.33)
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which is positive by the definition of L”. We also have

det My = (1-Fi(q(2)%(1 — Fa(@(x)))?
x / WL (g -+ ud (@) -+ uads())dTs (un)dTa (i)

x [ [ B2+ @)+ va@)dTi ()i (w)
(1 - B@@)*(1 - B(@(@))

x| / [ w1l (@ + 11di(@) + v @I ()T o)
+(1 - R@ @)1 - F(@())?

X / / 2L (5 +ur i (3) + us(x))dT) (u1)dTh (uz)

x [ / /0 " B + 1 () + ua2)dFs ()T (ur)dTo(ws)
+(1 - R (61(2)))*(1 - Fa(@a(x)))
x [ [82"(@+ ui(o) + vaala))dTi (us)dTo (o)

x / / /0 O 2L + urz + wad()) AP ()T (u )T us)
+(1 ~ F1(q1(2))) (1 — Fa(%(z)))

31 ()
8 / / /oq WL (¢ + u1di(z) + ugz)dF(2)dT: (u1)dTs(us)

32(z)
X ///0“42 u,%L"(IB +urz + ’U2q_2(:1:))dF1(Z)dTl(ul)de(uz).(4.34)

At the first glance, (4.34) is very complex but it is observed that the last three of these
five terms are positive by the definition of L”. Just for simplification purposes, we write the

first two terms as

(1-FR)1~FR)Y / / udL"dT x / f uL"dT — ( / / uup L"dT)?) (4.35)

which is also positive by the Cauchy-Schwartz inequality. Therefore, det My is positive
and the Hessian matrix is positive definite at the point (g1,92) = (i(z), §2(x)) and this

minimizes the objective function.

Proposition 4. If g(z) < 0, then the optimal order policy is to order nothing from
vendor i, so that g;i(x) = 0.
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Proof. Suppose without loss of generality that the solution of (4.28) and (4.29) gives
gi(z) < 0. We know from the previous arguments that TC(z, q1,¢2(z)) is unimodular with
respect to g; given the initial inventory z and go(z). This reveals that fg(x, a1,92(x))
decreases as q; decreases from positive values to the negative value ¢i(x). However, we
know that the optimum order quantity that will be released to the vendor 1 cannot take
a negative value. So, the minimum feasible value for TC(z, ¢1,g2(z)) is attained at the

boundary of the feasible region where ¢1(z) = 0. The same arguments are also valid for
go(z).

We now define the values S; = inf{z : g;(z) = 0}. According to this definition g;(z),
given as the solution of (4.28) and (4.29), is greater than zero for values of z € (—o0, S;).
At the point z = S;, §;(S;) = 0. This is the critical order level for vendor ¢ and provides a

characterization of the optimum ordering policy.

Our computational analysis indicates that there is an inverse relation between ¢; and S;
values. So, we have the conjecture that if the variable costs are ordered as ¢; > cg, then
the critical order levels are ordered as S; < Ss. Changing parameters while keeping ¢ > cg
gives Sy values which are always greater than S;. In our computational results, the ordering

policy comes out to be of the form

(ql(m)’ q2($))a z <5
(a1(2), @2(z)) =< (0, (), S1 <z <8y (4.36)
(0) 0); T2 S2-

The results show that, if we increase the initial inventory z from small values to larger
values, §,(z) and gy(z) are both decreasing and g, (z) first drops below zero. Considering
Proposition 4, if §,(z) < 0, then in the optimal solution, order quantity ¢;(x) for the first
vendor is zero. So for z values that are greater than S;, we do not consider the first vendor
in our calculation and regard the problem as in the single vendor case with only the second
vendor, which is analyzed in Chapter 3 in detail. The details of the computational analysis

is presented in Section 4.3.
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4.2 The Case of Exponentially Distributed Demand

As in the single vendor case, we take exponential distribution for the distribution of periodic

demand so that

D ~ Exp(}). (4.37)

The other parameters are unit holding cost h, unit shortage cost p, and unit variable
costs ¢; and ¢y with p > ¢; > c¢3. For the next step, we look at the optimality equations
(4.28) and (4.29). Instead of analyzing these equations, we have a more compact approach
that facilitate the creation of the optimality equations especially for the case of more than
two vendors. This approach is driven by the simple structure of exponential density for
the periodic demand as in the single vendor case. Focusing on (4.17) and considering that

L(y) = (b +p)(1~ ™)~ p for y 2 0, we have

E(U1((h +p)(1 — e AeHN0EH(0@A )Y _ p)] = ) E[U]] (4.38)

which leads to

E[U;(1 — e e+ +0a(@a(=) 2))) = P~ c}; E[U3). (4.39)
P+
and so
E[U;e~ X U10:@)+12(12@)A 2)))] < ef\-tﬁ_cl E[U4]. (4.40)
h+p i

Since U1e~12:(®) and Up(gy(z) A Az)) are independent random variables, we separate

the left hand side and write

E[U1 e—)\U’1711(2)]E[6—AU2(712(3)AA2))] —_ e)a: %—%E[Uﬂ. (4.41)

Considering the fact that the optimality equations are symmetric in g;(z)s, we can write
(4.41) for Go(z) as

E[Uze—,\vziz(z)]E[e-—Am(§1(3)AA1))] —_ e)@ ’];_%E[Uﬂ- (4.42)
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Now, we have split the two equations into 6 parts which are

. E'[Ule—AUﬂh (-'”)]’

E[UseV222(2)],
o B[ (711(1’)/\A1))]‘

o E[ea(@@nde)],

e %%E[Ul], and

o 2 By,

Each of these pieces are easier to compute one by one, .especially the last two. So, the
solution of the problem is mainly obtained by computing the first 4 functions and then
building the equations (4.41) and (4.42). In short, the exponential distribution assigned to
periodic demand does not simplify solving the problem but it enables the user to build the
optimality equations in an easier way.

Model with Exponential Vendor Capacity and Uniform Proportion

In order to obtain explicit functions here, we assume that vendor capacities are repre-
sented by exponentially distributed random variables and stochastic proportions are uni-

formly distributed random variables. Therefore, we have

A1~ Exp(p) (4.43)

Ay ~ Exp(p,). (4.44)

and
U1 ~ Uniform(al, b1) (445)
Uz ~ Uniform(ag, bg). (4.46)

Including the parameters, we have the total expected cost function as



Chapter 4: EXTENSION OF THE MODEL WITH MULTIPLE DISTINCT VENDORS 43

b1 b2 1
TC(z,q1, = / Cc1u1q1 + cau2qge
(2,91, ) L, Ga— ) =) [(crvig +e2

+ L(z + u1g1 + uage))e 1B eTHe®

q2

+/ (Cl’U«IQI + cougz + L(:z: +uiqn + uzz))e‘#wlpze—pzzdz
0
q1

+ (Clulz + couaqgy + L(:c +uiz+ 'U'ZQ1))6’~‘U'2Q2#16_”‘1Zdz
0
1 92

+ / / (c1u1z1 + caugze + L(z + u121 + ua2s))
0 0

X piy €717 poe™H2d 2z dzgdur dug. (4.47)
The first item in the list above is computed as

B[U;e 0] = - [e 0@ (1 4 Agi (z)ay) — 7 EE (1 4+ Agi (2)b1)]

(b1 — a)) NG (z)? (4.48)

and the third item is

Ele @@ — mle_m[Eiu, & () (g + Ma1))
B+ Aoy

—FA1. & Lad SRR At A
B () + 200) +n (A58
1

Jr_ (e_q_l(z)(p,l-l-)\bl) —~ e~ B@tra)y (4 .49)
Agi(z)(a; — by)

where E;(1,z) is the exponential integral defined as

Ei(l,a:)=/z -1—et. (4.50)

oo t

It is clear that the second and the fourth items above are in the same format as the first

and the third items above respectively.

4.3 Numerical Illustration and Results

As in the single vendor case, this section contains the outputs of sample runs that are made

after assigning numerical values to the parameters. We suppose that the variable cost ¢; for
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the first vendor is $2.5/unit while the c; for the second vendor is $2/unit. In fact we assume
that the second vendor in this section is exactly the same as the one in the single vendor
case. So, Uy is assumed to be uniformly distributed on (0.5, 0.8) and the Tapacity Az ~
Exp(ue) where ps is equal to 0.25 resulting in a mean capacity of 4. Besides, U] is assumed
to be uniformly distributed on (0.8, 1.0) and A; ~ Exp(u;) where p; is 0.10 with a mean
of 10. It is observed that the first vendor is more reliable in the sense that mean values for
the stochastic proportion and random capacity are higher than those for the second vendor.
The costs & and p remain unchanged, and periodic demand is again a random variable that

is exponentially distributed with the parameter A = 0.1.

In the light of our conjecture on the order of Syand Sz, the critical order level Sy can be
found by setting = S in (4.41) and (4.42). Then, we obtain

E[Ule—AUlfn(Sl)] E{e—-»\Uz('d:(Sl)/\Az))] — 0 }”; ':'—‘;1 E[t7) (4.51)
E[Uze—AUzﬂz(sl)]E[ew\Ul(711(51)/\A1))] = M1 };L—:_C;E[Uﬂ (4.52)
Considering the fact that §,(S1) = 0, we have
E[e—«\Uz(fla(Sl)/\A‘z))] L h+a (4.53)
h+p
—AUnT h+co
E[Uze V2051 = 251 E[U. : 4.54
U0 = 522 2 gy (459

with unknowns S; and §,(Si). Including the numerical values, the solution gives S1 = 4.1902
and §,(S1) = 5.6021. When z > S;, we treat the second vendor as the single vendor and
obtain S = 7.88. Table (4.1) and Figure (4.2) gives the optimum order quantities for each
vendor for discrete z values from 0 to 10. In the last row of this table, we observe that
optimum order quantity for the first vendor hits the zero level just after the point z = 4.15,
which is very close to S; = 4.1902. The order quantity go(z) vanishes just after the point
z = 7.8, which is close to So = 7.88. So, the points where the optimum order quantities
hit zero do not contradict with the critical values we found before computing the optimum

order quantities.
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Table 4.1: Optimum Order Quantities for 2 Distinct Vendors

Initial Inventory (z) | ¢1(z) | g2(z) | z + q1(z) + g2(z) =
0 445 | 7.18 11.64
1 341 | 6.56 10.97
2 2.36 1 6.08 10.44
3 1.30 | 5.75 10.05
4 0.21 | 5.61 9.82
5 0.00 | 4.37 9.37
6 0.00 | 2.85 8.85
7 0.00 | 1.34 8.34
8 .00 | 0.00 0.00
9 0.00 { 0.00 0.00

10 0.00 } 0.00 0.00
4.15 0.04 | 5.60

Solutions for the unconstrained problem §;(z) and gy(z) both take positive values up
to 51 so that optimum order sizes are equal to these values. After Si, g;(z) takes negative
values so we solve the single vendor problem after that point, considering only the second
vendor. In the fourth column of Table (4.1), the sum of the initial inventory z and orders
sizes q1(x) and go(z) is given. This sum exceeds the largest critical order level Sa, which

shows that the resulting policy is again not an order-up-to type ordering policy.

Table (4.2) gives the results obtained by directly minimizing the total cost with the
constrained ¢; > 0. In order to achieve this, we used constrained optimization functions of
Matlab 6.5. It is clear that the results are extremely similar to those in Table (4.1), which
confirms our methodology to find the optimum order quantities. There are tiny differences
which are caused by utilization of different routines of Matlab having different termination
criteria. Table (4.2) also gives the optimum total expected cost T'C that is resulted by the
optimum order quantities. Figure (4.3) provides a graph of this cost function with respect
to the initial inventory z. It is observed that T'C behaves as a convex function in z in the

relevant range.
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Figure 4.2: Optimum Order Quantities for 2 Distinct Vendors

4.4 Multiple Vendors Case

In this section, it is assumed that there are more than two vendors that make business
with the decision maker. The approach used in the previous chapters is extended for the
general n vendors case and, in turn, all of the assumptions related to the vendors and their
processes are kept. The vendors analyzed in this section are distinct from each other so
that parametric features of each vendor are different. In order to better differentiate among
the vendors, each vendor has a variable cost ¢;, where ¢; # ¢j for 4,7 = 1,2,3,...,n and
1 # j. We also keep the assumption that p > ¢; for all <. Besides, the capacity distributions
of each vendor are represented by F;, where F; and Fj are either different distributions
or same distributions with different parameters for ¢ # j. Since the production processes
and transportation medium used by each vendor are different from each other, the previous

argument is also valid for the distributions of stochastic proportions applied to each vendor
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Table 4.2: Optimum Order Quantities for 2 Distinct Vendors Obtained by Constrained
Optimization

Initial Inventory (z) | qi(z) | g2(z) | TC
0 445 | 7.19 | 42.86
1 3.41 | 6.57 | 40.14
2 2.36 | 6.08 | 37.563
3 1.29 | 5.75 | 34.98
4 0.21 | 5.61 | 32.47
5 0.00 | 4.37 | 30.04
6 0.00 | 284 | 2781
7 0.00 | 131 | 25.72
8 0.00 | 0.00 | 23.71
9 0.00 {0.00 |21.84
10 0.00 | 0.00 | 20.12

Figure 4.3: Minimum Expected Total Cost Values Corresponding to Different Inventory
Levels
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so that T; and Tj are either different distributions or same distributions with different

parameters for i # j.

The problem is to derive the optimum order quantity g; for vendor 4, given that the
initial order level is z so that the expected total cost is minimized in the single period

setting. Similar to the two vendors case,

Fi(z) = P(4: £ 2) (4.55)

and

Ti(u) = P(U; < v) (4.56)
where 0 < A; < +oo and 0 < U; < 1 for all i. In n vendors case, the decision maker releases

an order for each vendor and then receives the actual yield Yy, from each vendor. Using the

same notation for the processed amount, we obtain

Py = min{g;, A;} (4.57)

T

Y, = Uimin{g,A;}=UiP,. (4.58)

T

for 1 =1,2,3,...,n. Then the total random yield received from n vendors is the sum

n
Total random yield = Vg, + Y + Y + ..+ ¥y, =) Y. (4.59)

i=1
Clearly, we have on-hand inventory y = £+ Yy + Yy, + Yy, +... + Y5, to meet the random
demand. Then, the total inventory holding and shortage cost in terms of actual yields is

obtained as

k<3

Moty ¥ = af B 04 3%, —w)dCw)

=1 i=1

+p / :Z (-Gt S Y))dG(w). (4.60)

y ] =1
i=1
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Total expected cost function T'C in terms of beginning inventory z and quantities g; is

obtained as in the two vendors case, so that

TC’(:B, Q1,92 .- qn) = E[cl},tn + C2Yt12 + ..t cnY;]n (4‘61)
+ L@+ Yy + Yo + o+ Y, )]
n n
= B} oYy +Lz+) Y,)] (462)
i=1 i=1

= E[i cUi(gi A As) + Lz + }Lj: Ui(g: A A:))]
=1 i=1
(4.63)

Let vp(z) denote the optimal cost function with n vendors, given an initial inventory of

z. Then, we can obtain v,(z) by minimizing TC(z, g1, g2, -.., ) in (4.61) for ¢; > 0 so that

'Dn(IL') = {I{IIDTC(.% Q1,82 -y Qn) (4.64)
= min B ; ciYy + L(z + Z ¥g,)] (4.65)
+ Z / (ciuizi + Z CjUjg;
j=1 J#z
+L{z +uiz + Z ujg))dFi(z) [T (1- Fi(g)]
J=Lg#i '-L#z‘
+Z Z / (s + cjugz + Z CrUkQK
=1 j=1,j4¢ k=1,k#i,j
+ L@ +wz+tuzi+ Y waw)) dFiz)dF(z) [[ (1~ Flaw)]
k=1,k#i,j k=1,k#i,j
/ N [ _/ (Z ciuiz + L(z + Zuzzz))dFl(zﬂ AF (2n)]
i=1 =1

X dTl (ul)“.dTn(un)} (4.66)
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After some algebra, the partial derivative of TC(z, g1, 42, -..,qn) With respect to ¢; is

obtained as

n
Tt _ plov+UL(e+ U+ >, Uyley A ~Fila) (467)
* F=1,j#i

= (GE[U]+EUL (z+Uig+ Y, Uilgi A A — Filg)).

J=1j#
(4.68)

! n
We can observe from its definition that L'(z + U;q; + Z Uj(gj A A;)) is a continuous

=15
and increasing function of g;. Then,
n
lm L(z+Uig+ ), U@ A4y)) = h>0 (4.69)
% =L
n
Jm LE@+Ug+ D UG A4y) = —p<0 (4.70)
’ F=1,37i

for all U;, Uy > 0. It is clear by our assumption that (1~ F;(g;)) is always positive for all ¢;
values. Then, we should focus on the first factor of (4.68) since only it can make this first
partial derivative zero. From (4.69) and (4.70) we see that, for any given finite g; values with
j # 1, this second term is increasing in ¢; and takes values between —pE([U;] and hE(U;].
Therefore, for any given finite g; values with j # 4, there is a unique value of ¢; = () so
that the second term takes the value —¢;F[U;] and (4.68) becomes zero since p~ > ¢;. Given
the initial inventory = and order sizes g; for the other vendors, §(z) is obtained by solving

the equation

n
GE[U] + E[U:L (z + UdG(z) + Y Uj(g; AA;))] =0. (4.71)
=1
Then, it is clear that (4.68) is negative for ¢; < g;(z), and positive for ¢ > g;(z) for
fixed g; values with j # i. Second partial derivative of T'C(z, g1, g2, ..., gn) With respect to

g; is obtained as
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O?TC(x,q1,02, s Gis ooy Gn) o rn n
82 = EUL"(z+Uig+ Y. Ujlgi AA))(1 = Elw)
: =17

—f(@)(EU] + E[UL (@ +Uig + Y Uj(gi AA)).
F=li#i

(4.72)

Arguments in the two vendors case are also valid for (4.72). The first term is positive
since L” and (1 — F;(g;)) take positive values for all ¢;. We also know from (4.71) that left
hand side of (4.71) is negative for g; values smaller than G;(z). Therefore (4.72) is positive for
g; € (—~o0,i(x)) and any finite g; values with j # 4, which means that T'C(z, g1, g2, .-, gn)
is convex and decreasing in g; in this interval. At the point where ¢; = §(z), second term
of (4.72) is zero by (4.71) and so (4.72) is positive at this point. So we conclude that it is
a minimal point. In the region (g(z), +00), T'C is increases in ¢; since for given = and g¢;

values with j # i, (4.68) is positive for ¢; values that are greater than g(z).

In other words, TC' is convex and decreasing in ¢; on (—oo,g(z)) and increasing on
(@i(z), +00), which states that for fixed z and g; values with j # 4, TC(z,q1, 42, --.,qn) is
unimodular in g;. This proves that given any finite initial inventory level z and g; values
with j # i, TC(x,q1, 2, -.-,qn) attains its global minimum at ¢; = §;(z). Same arguments
hold for g; with j # ¢ since the cost function is symmetric in all ¢’s. Therefore, given any
z, TC(z, 91,92, --.,qn) is unimodular in ¢; for all i. This outcome reveals that a nonzero

solution set (gi(z), g2(z), ..., gn(z)) of the following equation system

aTC(a:, 41,42, -y qn)

Oq =0
aTC(xa q1,q2; .., q‘n) = 0
9ga
(4.73)
TC(z,q1,92, 1 O0)  _ 0

On
gives us the optimum order quantities. In more explicit terms, we should investigate the

solution set of the system of equations
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bW = [ [ [Bwr(e+vaE)

j=Lii
(4.74)

fori=1,2,..,n.

Proposition 5. If §(z) < 0, then the optimum order policy is to order nothing from

vendor 1, so that gi(z) = 0.

Proof. The same arguments in the two vendors case are valid here. Suppose that in
the solution set of (4.74), we obtain §;(z) < 0. We know from the previous arguments that
TC(z, q1(x), 2(Z), -y Gis -, n(@)) is unimodular with respect to g; given the initial inventory
z and gj(z) with j 5 4. This reveals that TC(z, q1(), g2(), ..., @i, --., gn(x)) decreases as g;
decreases from positive values to the negative value g;(z). Knowing that optimum order size
cannot take a negative value, the minimum value for TC(z, q1(z), g2(2), -, Gi, ---, @u(z)) is

attained at the boundary of the feasible region where g;(z) =0. B

Remembering the definition for the critical order level S; = inf{z : g;(z) = 0}, it is clear
that g;(z), solution of (4.74), is greater than zero for values of z € (—00, S;). At the point
z = S;, §;(S;) = 0. Critical order levels are the main parameters in the expression of the

optimum ordering policy.

As in the two vendors case, analyzing the results of our computations, we have the
conjecture that if ¢; > ¢;, then S; < Sj. As we increase the initial inventory from a small
value to larger values, §;(z)s are all decreasing and the vendor having the largest unit
variable cost is the first one for which the order quantity becomes zero. If the vendors are
ordered such that ¢; > ¢3 > ¢3 > ... > ¢p, our computational results indicate an optimal

ordering policy which is of the form
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([ (01(2), 02(2), g3(), -1 0a(2)), z< S1
(Oa (I2($), q;;(SU), veey qn(x)), Sl <z < SZ
0,0,q3(z),...,qn s Sy < S.
(01(5), 2(2) a5(@)oanl)) = | O 2D 80 ) 253 < 5
(O, 07 07 eeny Qn(w)), S'n.—l .<.. < S'n
| (0,0,0,...,0), z > Sp.
(4.75)

During the computation process with &k vendors where 1 < k < n, any vendor ¢ is
removed from the calculation just after g;(z) hits the zero level by Proposition 5. So, just
after the point S; where g;(x) hits zero, the first order conditions are solved for k—1 vendors
and this process goes on in this way until the last g(z) vanishes. The results show that the
last vendor is the cheapest one. Making computations by increasing x value eliminates the
vendors one by one and gives the idea of which vendors should be considered in the decision

making process at a specific z value.

4.5 The Case of Exponentially Distributed Demand

In this section we will see once again how the exponentially distributed periodic demand
facilitates the construction of the optimality equations since it has a separable structure.

We again take

D ~ Exp(\). . (478)

Then, optimality condition (4.74) is written as

, ANATEEE 3y UG
EUL((h+p)(1—e J=Liti )-p)] = -aE[U] (477)

for i = 1,2, ...,n. In the same way as in the previous cases, we obtain

SMUGEH Y U @G@AG) | pgg
=g —

E U =1,j#i A
[Uie <43 B (4.78)
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Since U;e~Vidi(=) and eUi(%(=)A45)) are all random variables that are independent from
each other for j = 1,2,...,n and j # i, we can separate the left hand side and take the
advantage of exponential distribution to do that. Then, we obtain the set5f optimality

equations

E[Uze\Vit:(@)] H Ele~Vi(a;@M450)) = e'\z%i_;—ciE[ il (4.79)
bt p
.1=1a.7#7'

for i = 1,2,...,n. Therefore, we have split the set of optimality equations into 3n pieces.
The n of these are composed of the right hand side of (4.79) for all ¢, which are extremely
easy to compute. Then the optimality set is constructed mainly by computing 2n functions
which are E[U;e~*Vi%i(®)] and Ble~AUi(@:@A4)] for § = 1,2,...,n. Upon computing these
functions, (4.79) is constructed for all ¢ and the resulting system is solved to reach to g;(z)

values.

Model with Exponential Vendor Capacity and Uniform Proportion

For illustration purposes, we assign as in the two vendors

A; ~ Exp(u;) (4.80)

and

U; ~ Uniform(a;, &) {4.81)

fori=1,2,..,n.
The parameters are the same, i.e., unit holding cost A, unit shortage cost p, and unit
variable costs ¢; for i = 1,2, ..., n. Including the parameters, we have the total expected cost

function as
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n

TC(z,q1,q2: - ) = 77 7113 ((bz—i@) [(; ciuigi + L(z + ﬁ:wqﬁ); =

K

air a2 =1

o % n
30wt Y g
i=t 0 d=Ljti
2 - i #3595
+L(.’B+'u.izi+ Z ug'qj))uie"“‘z"dzi)e j=1,7%#i ]
=Lt

n n q; q] n
+> > [ / . / . (Giwiz +cjuzi+  » | CrUkdk

i=1 j=1j k=1,k,j

n
+ L(z + uiz; + ujzj + z UkGk))
k=1,k#1,j
g - Z Hridk
Xuie"#izi#je—#jzjdzidzj)e k=1,k#j,i

i=1 i=1

+/ZI/Z2 .../Zn(iciuizi-i—l}(m-i-zn:uizi))

X H(pie'”"z‘)dzl...dzn]dul...dun. (4.82)

=1

Remembering the two vendor case, the explicit form of the terms in (4.79) are

1

el S M )e) — (g ()] (489)

E[U; e—z\Uitii(m)] =

and

Bl HUEMD] = oS B (1, 6(2) (s + Ma))
B + Aa

B, a(E) G+ 200) +1n (A1),

— 1 e~ HE@HAA) _ o~ H(@itra)y (4.84)
Agi(x)(ai — &)
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4.6 Numerical Ilustration and Results

In this section we analyze a special case with n = 3 vendors. The first two vendors remain
unchanged as in Section 4.3 where we introduce the third vendor with the variable cost
c3 = $2.25/unit. Also A3 ~ Exp(us) where uz = 0.20 and Us ~ Uni (0.3, 0.5). All of the

remaining distributions and parameters are kept unchanged.

We have ¢; > ¢3 > ¢3 . Remembering our conjecture on the ordering of critical order
levels, we can find S; and Ss by solving the first order conditions obtained by setting
z = S§; (with 3 vendors) and z = S3 (with only vendors 2 and 3). We have Sy unchanged

and equals to 7.88 since it is still the cheapest vendor. Therefore, S; is in the solution set of

E[e—AUz(le(SI)AAz))]E[e—'\Us(Ea(SE)AAS))] = o —————-};+ ! (4.85)
+p

E[Uzew\Uzq_z(Sl)]E[e—AUa(?Ia(Sl)/\As))] = 5t I;L‘F ) E[Us) (4.86)
+p

E[U36—AU353(51)] E[e-)\U2(712(51)/\A2))] — St flbz +C3 E[Us] (4.87)
+p

and S3 is found by solving

_ h+c
ElUse~ V232(S3)] _— A8 T2 .
E| e—)\Ug(T]g(Sa)/\Az))] = 58 ﬁﬂ (4.89)
h+p

The unknowns in (4.85)-(4.87) are S, (S1), and @3(S1) where the unknowns of (4.88)
and (4.89) are S3 and §a(S3). These systems give S; = 2.9209 and S5 = 5.3809. We also
obtain ¢2(S;) = 5.6021, @(S1) = 5.2503, and @(S3) = 3.7926. The last 2 rows in Table
(4.3) tell us that S} is located just after the point 2.90. Besides, we understand that Ss is a
little bit higher than 5.35. It is observed that the ranges for the critical values in Table (4.3)
include the exact values and this does not cause any contradiction. The same is true for
32(S1),32(Ss3), and @(S1). As in the two vendors case, the points where the optimum order
quantities hit zero do not contradict with the critical values we found before computing the

optimum order quantities.
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Table 4.3: Optimum Order Quantities for 3 Distinct Vendors

Initial Inventory (z) | @i(z) | @(@) |®(@) |o+a(=) + e + o)
0 2.97 | 634 | 6.60 15.91
1 199 | 595 | 5.89 14.83
2 098 | 569 | 542 14.09
3 0.00 | 551 | 5.08 13.60
4 0.00 | 453 | 3.01 11.54
5 0.00 | 388 | 0.89 9.76
6 0.00 2.85 0.00 8.85
7 0.00 | 1.34 | 0.00 8.34
8 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00
10 0.00 | 0.00 | 0.00 0.00
2.90 0.0231 | 5.6023 | 5.2506 —
B 5.35 0| 3.7944 | 0.0749 .

Figure 4.4: Optimum Order Quantities for 3 Distinct Vendors
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When we look at the last column of Table (4.3), we realize that the resulting policy
is not an order-up-to type since the total amount exceeds S3. As in the other cases, the
difference is higher for lower inventory values. Figure (4.4) gives the sketc¢l®f optimum
order functions w'ii;h respect to the initial inventory z. The introduction of the third vendor
does not change Ss but causes the first vendor to have a smaller critical level when compared
to the two vendor case. This is driven by the cheaper position of the new vendor. Anocther
outcome that is observed in Figure (4.4) is that the smallest valued function has a more
smooth structure. This is observed especially for §;(z). However after S1, @3(x) becomes
the lower valued function and gets smoother through the points where x = 3,4, and 5 when

compared to §2(z).

Table (4.4) gives the results obtained by directly minimizing the total cost with the
constrained ¢; > 0 again using the constrained optimization functions of Matlab 6.5. We
obtained results that are extremely similar to those in Table (4.3) confirming our methodol-
ogy to find the optimum order quantities. Several tiny differences are caused by utilization
of different routines of Matlab as mentjoned in the two vendors case. Table (4.4) also gives
the optimum total expected cost T'C which is sketched in Figure (4.5) with respect to z.
As in the two vendors case, it is observed that T'C' behaves like a convex function in z in
the relevant range.

Table (4.5) tabulates the optimum order quantities of these three vendors with only the
modification that all of them has the same unit variable cost so that ¢; = cp = c3 = $2
/unit. The aim of creating this table is to support our conjecture about the vital dependency
of the critical order levels on unit variable costs. The result is as we expected so that all of
them have the same critical order level. In fact, they all equal 7.88, the critical order level
of the second vendor having originally the unit variable cost of $2/unit. Figure (4.6) gives
the graphical illustration for this case.
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Table 4.4: Optimum Order Quantities for 3 Distinct Vendors Obtained by Constrained
Optimization

Initial Inventory (z) | qi(z) | g2(z) | ga(x) | TC
0 297 | 634 | 6.60 | 42.36
1 1.99 595 | 5.89 | 39.77
2 098 |5.69 |541 |37.74
3 0.00 |4.49 |5.03 | 34.74
4 0.00 |4.02 |3.00 |32.33
5 0.00 |290 |0.81 |30.03
6 0.00 }1.30 | 0.00 | 27.82
7 0.00 | 0.00 |0.00 [ 25.72
8 0.00 {0.00 {000 |23.71
9 0.00 {0.00 {0.00 | 21.89
10 0.00 |} 0.00 | 0.00 | 20.25

Figure 4.5: Minimum Expected Total Cost Values Corresponding to Different Inventory
Levels
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Table 4.5: Optimum Order Quantities for 3 Distinct Vendors with the Same Unit Variable
Costs

Initial Inventory (:z:) q(z) | e2z) | g3(z)
0 5.32 4.39 6.45
1 4.52 3.66 5.34
2 3.77 2.99 4.35
3 3.05 2.37 3.44
4 2.37 1.81 2.61
5 1.72 1.29 1.85
6 1.11 0.80 1.15
7 0.52 0.36 0.51
8 0.00 0.00 0.00
9 0.00 0.00 0.00
10 0.00 0.00 0.00
7.80 0.0519 | 0.0412 | 0.0276

Figure 4.6: Optimum Order Quantities for 3 Distinct Vendors with the Same Unit Variable
Costs
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Chapter 5

THE MODEL WITH MULTIPLE IDENTICAL VENDORS

5.1 The Original Model with Identical Vendors

In this chapter we assume that there are n vendors as in the previous chapter. However
the difference here is that vendors are not distinct from each other. In fact each vendor has
the same characteristics with each other. For instance there is a single unit variable cost ¢
that is charged by all of the vendors so that ¢; = ¢, for all i = 1,2, ...,n. Together with all
of the previous assumptions, this ¢ satisfies the inequality p > ¢. The cumulative capacity

distributions for vendor ¢ is represented by

Fi(z) = P(A; < 7) = F(z) (5.1)

for all i = 1,2,...,n. In other words, the capacity for the different vendors are taken to be
independent and identically distributed (IID) random variables. The same argument is
also valid for the distribution of U;’s. Stochastic proportions applied to different vendors

are also IID random variables so that

Ti(u) = P(U; < u) = T(u) (52

foralli=1,2,...,n. Actual yield from vendor 1 is defined as

Yy, = Ui min{g;, A;} (5.3)

from which we observe that for the same ¢;’s, actual yields received from different vendors
are also ITD random variables. Then, total random yield from n vendors is the sum of

these IID random variables given by

n
Total random yield = ¥y, + Vg + Ygp + .. + Yg, = 3 Y. (5.4)

i=1
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Knowing the on-hand invenfory Y =T +Yy + Yy + Yy +...+7,, there is no change in
the implicit form of L(y) in (4.60). Since ¢; = ¢, total expected cost function T'C in terms
of beginning inventory  and quantities g; is obtained as

TC(z,q1,92,-qn) = Elc(Yq +Ygp + ... +Y,) (5.5)
+L(z+ Yy + Yy + ... +1g,)]
7 n
= Elc) Yu+Lz+) Y, (5.6)
i=1 i=1

= E[czn: Uilgs A Ai) + L{z + i Us(gs N Ag))]
i=1 i=1

(5.7)

Considering this slight difference, we now let v,(z) denote the optimal cost function

with n identical vendors. As in Chapter 4,

vp(z) = minTC(z,q1,92, .-y qn) (5.8)
;>0

= mnEle) Yo+ Liz+) Yy)] (5.9)

=1 i=1

= ;g%{//.,./[(cﬁ:uiqz'+L(ac+iqu'))ﬁ(1 — Fi(a:))

+;[ /  (clwiz + > uig5)

=15
+Lz+wz+ Y, we)dEE) [[ (- Fig)

=L F=Lji

+30 30 / (: Zj(c(mzi+ujzj+ D wae)

i=1 j=1,joki k=1,k+#i,j

n n
+LE+wn+uzi+ Y wa) dF(z)dFi(z) [[ (1- Fel(q))]
k=1 i k=1, bk,
n n

- qd1 g2 qn
+ f 0 / o / 0 (c;wzi +L(:v+;uizi))dF1(z1)...an(zn)]
% AT (ur) - AT (un) } (5.10)
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where F; = F and T; =T for all § = 1,2,..,n.

Due to the same arguments as in Chapter 4, a nonzero solution set (g1(z), g2(%), ---, gn (%))

of the following set of equations gives the optimum order quantities

orC(z,q1,4, .-, In)

0
oq
TC(z, 01,02+ 80) _ 0
Oqs
(5.11)
8TG'($,‘11,Q2,---,Qn) = 0

9
Considering the fact that there is a single unit variable cost ¢ for all vendors and that
the capacities and stochastic proportions are 7ID random variables, the equation system

above becomes

n

—cElU] = B[l (z + w@i(z) + Y ui(G(@) A 47))] (5.12)
j=1,3%i
for i = 1,2,...,n where E[U;] = E[Us] = ... = E[U,] = E[U]. Since all vendors are identical,

a set of equal @;(z) values solves this system. It is obvious that the optimum order quantities

for each vendor should be the same. So there is a solution of this system that gives §i(z) =

@(x) = ... = ¢o(x) = g(z) and the optimality condition (5.12) can be written as
—cE[U] = ElL/(z+ Uhg(z) + Y, U(g(@)AA))] - (513)
J=Lj#1

which gives the single optimum order quantity g(z) that will be released to all vendors.
Using the same arguments in Proposition 5, it is clear that if §(z) turns out to be a negative
value, then optimum order quantity g(z) is zero. In other words, if §(x) < 0, then no order

is given to the vendors.

Proposition 6. When there are n identical vendors, the critical order level for each

vendor is the same. The common critical order level Sy, is given by

_n-1{P—C
S=G (p————+ h)' (5.14)
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Proof. Since all g;(z) values are equal to each other for every z, they all hit zero at
the same z value, which is Syp. In other words, this is the point where g(z) becomes zero.
Then, setting z = S, and g(z) = 0 in (5.13) gives us the critical order level 5o that

—cE[U] = E[ULiL/(SW)] (5.15)
= L'(Sn)E[Uh] = [(h + p)G(Sn) — plE[U] (5.16)

which leads to
8, =G e-'—;—;) n (5.17)

After the arguments above, it is clear that an optimum order policy for the n identical

vendors is given as

(-‘j(m)1 Q(a)),@(w),, Q(.’B)), z < Sy

(0,0,0,...,0), x> Sy

(q1(%),q2(x),q3(2),-..,qn () = {
(5.18)

Now, we try to extract some characteristics of the optimum order quantity. In fact we
will examine the effect of the number of vendors n and the capacity mean of the vendors
on the optimum order quantity. Let Qn(z) be the optimum order quantity given to each
vendor with the initial inventory = when we have n vendors. In the following propositions,

parameters other than the mentioned ones remain unchanged.

Proposition 7. As we increase the number of the vendors, we obtain smaller optimum
order sizes for each vendor, i.e., Qni1(z) < Qn(z) for all z and n = 1,2, ....

Proof. First of all, let’s write (5.13) in the following compact way

n—1
E[UL'(z+UQn(x) + ) W;(Qn(z) A 47))] = —cE[U] (5.19)
=1
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where U stands for U; and Wj’s‘repre@sents the stochastic proportions for the (n—1) vendors
other than the first vendor. Now, we define the function f,(g) so that
n—1

falq) = EUL (z+ Ug+ > Wi(g A 4;)))- (5.20)
i=1

Since L' is an increasing function, f,(¢) is also increasing in ¢. Considering that the

right hand side of (5.13) is independent of n, we have

£H(@1(2) = f2(Qa(z) = f3(Q3(x)) = ... = fo(@n(®)) = fos1(Qny1(z)) = —cE[U] (5.21)

We can write

Fn+1(Qn(2)) = E[UL (2 + UQn(2) + D W;(Qn(2) A A7))] (5.22)

Jj=1
which leads to the inequality that

fn+1(Qn($)) 2 fn(Qn(x)) (5'23)

We know that fn(Qn(2)) = fat1(@n+1(z)). Therefore fn41(Qn(z)) = frt1(@n+1(z))

and considering that f,41 is an increasing function, @,(z) turns out to be greater than or

equal to Qny1(z). B

5.2 The Case of Exponentially Distributed Demand

We again suppose that periodic demand D ~ Exp()). Then, skipping the details about the
total cost function and focusing again on the optimality condition, we can write (5.13) as

EUL(z+Ug(x) + Y _Ui(q(x) A 45))] = —cE[U]. (5.24)
=2

Using the exponential distribution, we obtain
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AU U3 (a@)A4;))
= el lpm (5.25)

h+p
As in Chapter 4,we separate the left hand side, which results in

EUe

—_ ki - h
E[Ue @) H Ele Ui @@A ) = emh i ;

=2

E[U). (5.26)

We know that all vendor are identical and, in turn, U; and A; are I1D among themselves.

Therefore, Efe~*Ui(2()A43))] takes the same value for all j. Finally, the optimality condition
simplifies to
UG A (@A) -1 _ Rt

ElUe " 91*")|(E[e q Dt =e mE[U] (6.27)
which means that, we have to determine the functions E[Ue~*VT®)] and Ele~*U(a()A4))]
to construct the optimality equation. The rest is to put the right hand side, which is
independent of the number of vendors and place the value n — 1 so that the equation gives
the g(z) value for » identical vendors.

Model with Exponential Vendor Capacity and Uniform Proportion
For illustration purposes, we again assume that

A; ~ Exp(p) (5.28)

and

U; ~ Uniform(a, b) (5.29)

for all i = 1,2, ...,n and keep all of the other parameters fixed. Then, we have to solve the

equation
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h+e 1 ~Xa(z)a = —Aq(=z —
*h B = Gl () - eI R Ag(@h)]
x[m“:—b—)[Ei(l,c‘z(x)(p + Aa)) ~ Ex(1,3(z)(i + Ab))
s+ Aa 1
e (p ¥ Ab)] BT ECED)
x (e~ 1@ W) _ o~3(@)(ptAa)yjn—1 (5.30)

We observe that changing the number of vendors does not make the problem more
difficult when we have a periodic demand that is exponentially distributed since it does
not require the computation of a new function but just changing the parameter n in the

equation.

5.3 Numerical Illustration and Results

We assume that the vendors are identical to the vendor analyzed in the single vendor case.
So, in this section we have A; ~ Exp(0.25) and U; ~ Uni (0.5, 0.8) for all i. By Proposition
6, all vendors have the same critical order level S, which is equal to 7.88. Table (5.1)
gives the optimum order quantities versus both the inventory level z, and the number of
vendors n. As mentioned in Proposition 7, we obtain smaller order quantities if we increase
the number of vendors, which is also an intuitive result. In Table (5.2), we tabulate the
total order quantity n@Qy(z) released to all vendors. The point of this information is that it
shows the effect of working with more vendors on the total order quantity released by the

decision maker. There are two apparent outcomes in this table.

First, we see that the total order quantity first increases when we are working with
more than a single vendor. We observe a sudden and sharp increase in the total order
quantity when switching from a single vendor to two vendors. However this increase does
not continue and the total quantity decreases later for some x and n values. The second
observation, which is parallel to the first one, is that as n takes very large values, total

order quantity again converges to the order quantity released for the single vendor, which is
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Table 5.1: Optimum Order Quantities for Different Number of Identical Vendors

z | Qu(z) | Qa(z) | Q3(z) | Qalz) | Qs(z) | Q7(z) | Quo(z) | Rso(z)~+&s00(z)
0 111.999 | 8.726 | 6.096 | 4.357 | 3.293 | 2.167 1.418 0.250 0.024
1 [ 10468 | 7.335| 5.020( 3.594 { 2.740 | 1.829 1.210 0.218 0.021
2 8.938 | 6.010 | 4.047 | 2.911 | 2.239 | 1.513 1.012 0.185 0.018
3 7414 | 4.761 | 3.172 | 2.297| 1.781 | 1.218 0.823 0.153 0.015
4 5.801 | 3.603 | 2.388 | 1.742 | 1.361 | 0.941 0.641 0.121 0.012
5 4371 ) 2.542 | 1.683 | 1.237 | 0974 0.680 0.467 0.090 0.009
6 283 | 1.578 | 1.046 ) 0.775 | 0.614 | 0.433 0.299 0.058 0.006
7 1.338 { 0.704 | 0.469 | 0.035 | 0.279 | 0.198 0.138 0.027 0.003
8 0.000 | 0.000 | 0.000 | 0.000{ 0.0001 0.000 0.000 0.000 0.000
9 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000 0.000 0.000 0.000
10| 0.000 | 0.000 | 0.000 ) 0.000 ] 0.000} 0.000 0.000 0.000 0.000

easily observed from the last column of Table (5.2). These observations are hard to prove

analytically due to the complexity of the model.

After observing the convergence of the total order quantity to the single vendor order
quantity, we tried to investigate the effect of capacity on this convergence. To achieve that,
we solved the problem for an extreme case where the capacity mean is taken to be 1000. This
approach gives a sound idea about the infinite capacity case. Table (5.3) gives the results for
this increased capacity case. The outcome is such that the total order quantity immediately
converges to the single vendor quantity (i.e., the last two columns are almost the same as
the first column). This is an intuitive result in the sense that when capacity constraint is
removed, the initial quantity is expected to be directly shared among the identical vendors.

After focusing on the convergence point, a question related to this subject comes to mind:
"When does the total order quantity begin to decrease?". Table (5.4) is obtained from Table
(6.1) by taking the consecutive differences of the total order quantities. Negative values in
this table reveals that for a fixed z value, the value of n determines where the decrease in
total order quantity will begin and vice versa.

In order to observe the effect of mean capacity, we created Table (5.5) which gives the
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Table 5.2: Total Order Quantities for Different Number of Identical Vendors

z {n=1{n=2 |n=3 |n=4 |n=5|{n=7 |n=10| n=>50|n=>500
0 |11.999 | 17.453 | 18.288 | 17.428 | 16.467 | 15.168 | 14.181 | 12.505 | 12.150
1 }10.468 | 14.671 | 15.061 | 14.376 | 13.700 | 12.800 | 12.103 | 10.875 | 10.600
2 8.938 | 12.019 | 12.141 | 11.645 | 11.193 | 10.593 | 10.121 | 9.260 9.050
3 7414 | 9522 | 9.517 | 9.189 | 8.905| 8.529 | 8.226 | 7.655 7.550
4 5.891 | 7.206 | 7.163| 6.969 | 6.806 | 6.589 | 6.411 | 6.065 6.000
5 4371 | 5.084| 5048 | 4949 | 4.869 | 4.760 | 4.669 | 4.485 4.450
6 2.853 | 3.155 | 3.138 | 3.102| 3.071} 3.029| 2.993 | 2.920 2.900
7 1.338 | 1.408 | 1.406 | 1.400| 1.395| 1.387| 1.380| 1.365 1.350
8 0.000 | 0.000 | 0.000 | 0.000 | 0.000; 0.000| 0.000| 0.000 0.000
9 0.000 { 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000; 0.000 0.000
10| 0.000 | 0.000| 0.000 | 0.000 | 0.000| 0.000{ 0.000| 0.000 0.000

Table 5.3: Optimum Order Quantities for Increased Capacity Case

z | Qu(@) | Qa(z) | Qs(z) | 2Qa(2) | 3Qs(z)
0 |12.00 | 6.04| 4.03| 12.09| 12.10
1 |10.47 | 527| 352| 10.55| 10.56
2 | 894 450 3.00| 9.01| 9.01
3 | 7.41| 3.74| 249| 747| 7.48
4 | 5.89| 297| 198| 5.94| 5.94
5 | 4.37| 220 147 4.41| 4.42
6 | 2.85| 144| 096| 2.88| 2.88
7 | 1.34| 067| 045| 1.35| 1.35
8 | 0.00| 000 000| 0.00 0.00
9 | 0.00| 000| 000| 0.00| 0.00
10| 0.00| 000| 000| 0.0 0.00
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Table 5.4: Consecutive Differences between the Total Quantities

z | Qulz) | (2-1) | (32) | (43)

0 12.00 | 5.45| 0.84 ) -0.86
1 10.47 { 4.20( 0.39 | -0.68
2 894} 3.08| 0.12 ] -0.50
3 741 2.111-0.01 | -0.33
4 5.80 | 1.31|-0.04 | -0.19
5 437| 0.71]-0.04 | -0.10
6 2.85| 0.30 | -0.02 | -0.04
7 134 | 0.07| 0.00|-0.01
8 0.00{ 0.00| 0.00| 0.00
9 0.00| 000 0.00] 0.00
16| 0004 0.00|{ 0.0C| 0.00

results with a decreased capacity mean of 2 and all other parameters remain unchanged. It
tabulates the consecutive differences of the total order quantities as in Table (5.4). Looking
at the negative values, we observe that total order quantity begins to decrease at larger n
values for fixed z when capacity mean is decreased. Therefore, the outcomes reveal that
there is a negative correlation between the capacity mean and the value of n where the total
order quantity begins to decrease. Another observation from both of the tables is that for
a fixed value of n, total quantity tends to decrease at higher z values.

It is clear that working with multiple identical vendors does not necessa;rily create a
diversification effect in terms of total order quantities. In other words, when we have
multiple vendors, we release a total order quantity that is at least the quantity for the
single vendor case. However, working with multiple vendors brings a diversification effect
in terms of the total expected cost so that as we increase the number of identical vendors,
computational results indicate that we incur smaller expected costs. Table (5.6) compares

the total expected costs of working with 1, 2, and 3 identical vendors.
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Table 5.5: Consecutive Differences between the Total Quantities with a Capacity Mean of
2

z | Quz) | (21) | (32) | (43) | (54)
0 | 1200 | 828 | 464 1.30|-1.15
1 | 1047 | 6.77| 3.24| 0.32|-1.31
2 | 894| 529| 1.99-0.28 | -1.10
3 | 741| 386 099]-0.47 | -0.74
4 | 589 254 0.35]-0.38 | -0.42
5 | 437| 142 0.05]-0.22 | -0.20
6 | 2.85| 0.60|-0.02|-0.08 | -0.07
7 | 134 0.13]-0.01]-0.02 | -0.01
8 | 000 000| 000| 0.00| 0.0
9 | 000 0.00| 0.00{ 0.00]| 0.00
10| 0.00| 0.00| 000| 0.00| 0.0

Table 5.6: Minimum Total Expected Costs for Different Number of Identical Vendors

z |TCn=1) | TC(n=2) | TC(n=23)
0 45.12 42.38 41.06
1 41.43 39.44 38.56
2 38.12 36.76 36.22
3 35.15 34.30 33.89
4 32.47 32.00 31.85
5 30.04 29.83 20.77
6 27.81 27.74 27.73
7 25.72 25.72 25.71
8 23.71 23.711 23.65
g 21.86 21.86 21.75
10 20.23 20.23 20.20
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5.4 Simplified Version of the Model

The aim of anal}"‘zing the multiple identical vendors case is to gain some insight about the
characteristics of the optimum order quantity and total order quantity. It is critical to see
the effect of the number of vendors on these quantities since we have unreliable suppliers
and face some amount of risk in the procurement process. So it is beneficial to obtain some
analytical outcomes before computation. Our model is rather complex due to the structure

of random yield and it is hard make such analysis.

In this section, a simplified version of the model is briefly discussed to make some
analytical analysis. The main simplification is to assume that all vendors have the same
stochastic proportion UU. More precisely, we remove IID U;s and use a single random

variable U that is applied to all vendors. Therefore, U = U; fori =1,2,...,n.

In order not to repeat the same arguments used for the previous model, we skip some
details. It is found that a nonzero solution of the following equation gives us the optimum

order quantity

~cE[U] = EUL(e+U@)+ Y, @) A4 (5.31)
J=14#1

Let the right hand side of (5.31) be represented by

n~1

f3(9) = E[UL (z+U(g+ Y _(a A 4)))]- (5.32)
. J=1

Proposition 8. As the number of vendors increases, optimum order quantities gets

smaller, i.e., Qni1(z) < Qn(x).

Proof. The samie logic in Proposition 7 is also valid here and we can easily obtain the

inequality

n+1(@n(2)) 2 fr(Qn(z)) = Z+1(Qn+1($)) (5.33)
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to conclude @n41(z) < Qn(z). B

Proposition 9. For infinite vendor capacity case, the total order quantit]-gquals to the

single vendor order size, i.e., nQn(z) = Q1(z) for all .

Proof. We can clearly state that if A; is infinite, then (Qn(z) A A;) = Qn(z). It reveals
that

fa(@n(z)) = E[UL (z + UnQa(x))] = f (nQn(x)) = f1(Qu(z)) (5.34)

which leads to the equality nQn(z) = Q1(z).H
Proposition 10. If there is more than one vendor, the total order quantity given to all
vendors i3 always greater than or equal to the order quantity in the single vendor case, i.e.,

n@Qn(z) 2> Q1(z) for all z and n.

Proof. Since Qn(z) 2 (Qn(z) A A;), we can write

n—1
E[UL (z+ UnQn(z))] 2 E[UL (z + U(Qa(z) + Y _(Qa(z) A 45)))] (5.35)
J=1
which means
F(nQn() = £2(Qn(2)) = fi(a") = —cE[U] (5.36)

So we have f3(nQn(z)) > f{(q'), which completes the proof since f{ is increasing. B

5.5 The Case of Exponentially Distributed Demand

Assuming that all vendors are identical to the vendor analyzed in the single vendor case and
that the demand is exponentially distributed, we focus on (5.31). Using the same approach

in the previous section, we write it as

EUL(z+U@@) + »_ (d(z)A4)))] =—cEU] (5.37)
j=Lj#1
which leads to
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AVEEE Y @A)
ElUe e = A ]=e’\”}hli;E[U]. (5.38)

At this point we see that the simplified version of the model does not allow simplifi-

cation during the computation. This is mainly caused by the removal of independence of
the stochastic distributions. In the original model, the independence of Uss allowed us to
separate the left hand side of (5.25), but we cannot make the same separation on the left

hand side of (5.38) since the single U makes all vendors dependent to each other.

This fact complicates the solution procedure since it is hard to explicitly write the inside
of the expectation in (5.38). For example, if we assume that there are two identical vendors,

then (5.38) becomes

[ue - Fa@e 2@ + /OW) MA@ W.  (539)

It is observed that there are two extra terms inside the integral. This can be generalized
so that there are 2! additional terms inside the integral where 7 is the number of vendors.

It is clear that working with large n makes the computation very difficult.

For illustration purposes, we computed the results of this model with two identical
vendors, who are the same vendor as in Section 5. Table (5.7) gives the results of this
two-vendor setting together with the original model. The outcomes are extremely close to
those of the original model with two identical vendors, which is an expected result. In the
last two columns of this table, we give the results of the same setting with large capacity
mean, such as 1000, in order to illustrate the claim of Proposition 9. The last cc;lumn, which
is twice of the previous column, shows that with infinite capacity, the total order amount

converges to the amount of the single vendor case.
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Table 5.7: Optimum Order Quantities of the Simplified Model for 2 Identical Vendors

z | Qi(z) | Q2(z) | Qa2(z), Simplified | @2(z), Simplified, mean=1000 | TQ

0 12.00 | 8.73 8.70 6.01 12.02
1 10.47 | 7.34 7.31 5.24 10.48
2 8.94 ¢ 6.01 5.98 4.48 8.95
3 7.41 | 4.76 4.74 3.71 7.42
4 5.89 | 3.60 3.58 2.95 5.90
5 437 2.54 2.52 2.19 437
6 2.85 | 1.58 1.57 1.43 2.85
7 1.34 | 0.70 0.70 0.67 1.34
8 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00
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Chapter 6

CONCLUSION AND FUTURE RESEARCH

8.1 Contribution

Inventory management with random yield can be a hard task depending on the level of
uncertainty in the whole process. In the literature, there are several different approaches
to modeling uncertainty as mentioned in Chapter 2. One of the most common modeling
approaches is to assume a random capacity for the vendor so that all orders can not be fully
processed. The second approach is to apply a stochastic proportion so that only a portion

of the released order can be received.

In the literature on periodic review inventory control, there are studies which analyze
the two-vendor case such as Parlar and Wang (1993), Anupindi and Akella (1993); however,
they include only one of the modeling approaches discussed above. Some works utilize both
of the approaches in their models but they analyze the problem with a single vendor. At
this point, the main difference of this study is to merge these two approaches in one model

and try to solve the problem with multiple vendors.

6.2 Main Conclusions

We first applied our model to the single vendor case. For the single vendor case, the total
expected cost function is not convex in the order quantity. However, it is convex on a specific
region and attains a minimum in that region. Besides, it is increasing out of that region.
So, the expected total cost function attains its global minimum on that convex region where

the first derivative is zero.

The solution of the optimality condition can be regarded as the solution an unconstrained
optimization problem. A nonnegative solution directly gives the optimum order quantity
while a negative solution means that no order will be given to the vendor. The resulting

policy is determined by a single critical order level above which no order is released. If the
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beginning inventory is lower than this critical level, then an amount of order is released, but
the policy is not an order-up-to type ordering policy. In other words, the sum of beginning
inventory and the order size exceeds the critical order level. Another importa:nt outcome
of the single vendor case is that this critical order level depends on neither the existence of
a stochastic proportion nor the distribution of the random capacity. It depends on merely

the distribution of periodic demand and holding, shortage and unit variable costs.

After the single vendor case, we analyzed the same model for two vendors having all
parameters different from each other. For a fixed beginning inventory level, the total ex-
pected cost is a function of ¢; and go, the order quantities for vendors 1 and 2, respectively.
Analytical study of this function shows that it is unimodular in both ¢; and g2 so that it has
an extreme point where the first order partial derivatives are both zero. The Hessian matrix
is positive definite at that point proving that it is a minimal point. The 3-D graph of this
function obtained for some distributions and numerical values show that it is generally not
convex but unimodal. Then, the problem is to solve a nonlinear system of two equations

obtained by equating first order partial derivatives to zero.

Any nonnegative solution directly gives the optimum order quantities; however, when
one element of the solution set drops below zero, just after the point of critical order level,
then no order is released to the corresponding vendor in the optimal policy. At this point,
it is kept out of consideration and the single vendor case is implemented for the remaining
vendor. At the point of the second critical order level, the solution for remaining vendor
also drops to zero and no order is released to this vendor as well. So the resulting policy is
to order from both vendors if the beginning inventory is lower than the smaller of critical
order levels; from one of the vendors if the beginning inventory is between the two critical
levels and no order is given if the beginning inventory is higher than the higher of critical

levels.

Computational results show that the order of critical order levels strictly depends on
the unit variable costs. The cheaper vendor has a critical order level that is higher than the
one belonging to the more expensive one. In other words, there is a range for the inventory
level in which the decision maker releases an order to only the cheaper vendor. Another

observation is that the resulting policy is again not an order-up-to type policy so that the
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sum of beginning inventory and the order amounts always exceeds the highest critical order

level.

Extending the model to n-vendor case with distinct parameters, the problem gets more
complicated for analytical investigation. For this case, the total expected cost is a function
of n variables for a fixed x so that it is not feasible to illustrate the function visually.
However, implicitly we have showed that the total expected cost function is unimodular in
any ¢ keeping all other ¢ values fixed and attains its minimum at that single mode where
first partial derivative is zero. So, the problem is handled by solving a nonlinear system of

n equations obtained by equating the first partial derivatives of the cost function to zero.

As in the two vendor case, a solution set containing all nonnegative elements directly
gives the optimum order sizes. However, when one of the elements first drops below zero,
we know that no order will be given to that vendor. So, the corresponding vendor is kept
out of computation and (n —~ 1)- vendor case is considered with the remaining vendors.
Whenever an element of the new solution set again drops below zero it is removed from the

computation process and this goes on until no vendor remains.

Our computations revealed that the sequence of the critical order levels is in the inverse
order of the unit variable costs. This is important in the sense that if we know the order of
the critical levels, then we can calculate them by using the first order optimality conditions in
advance. So knowing the beginning inventory and the critical order levels, only the vendors
having a critical order level that is higher than the inventory size should be considered

during the optimization process.

Another point that is worth to note is that exponentially distributed periodic demand
greatly simplifies the computation process. Since the vendors are independent from each
other, it allows the decision maker to establish the optimality equations with expectations
in an easy way. The results of our model solved in this way are compared with the results
obtained by constrained optimization routines of Matlab 6.5. They are almost the same with

our previous results validating our methodology for finding the optimum order quantities.

We also analyzed the identical vendors case where all vendors have the same cost para-

meters and identical distributions for their capacities and stochastic proportions. The aim
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was to better observe the effect of the number of vendors and the mean capacity on the total
order quantity. First of all, taking all vendors identical simplifies the optimaslity conditions
for the n-vendor case since there is a single equation with a single unknown. This is due to
the fact that all vendors should receive the same order size. Naturally, all vendors have the

same critical order level, which can easily be computed.

We analytically proved that as the number of vendors increases, order size for each
vendor decreases. In fact, no lower bound is detected so that in the limit, order size for
each vendor is expected to hit the zero level. We observed that the total order quantity
first increases when we shift to two vendors; however, this increase is not continuous and
the total quantity begins to decrease after some n value for a fixed inventory level. In
fact, for infinite number of vendors, the total order quantity is expected to converge to the
single vendor order size, which is computationally validated by obtaining the results for 500
vendors. At this point it should be noted that, although working with multiple identical
vendors has no diversification effect in terms of total order release, our results show that

total expected cost decreases as the number of identical vendors increase.

It is hard to find where the decrease in total quantity will begin; however, solving the
problem with a lower mean capacity, we observed that the decrease begins at a larger n
for fixed z meaning a negative correlation. Taking this as a starting point, we asked what
happens if we have infinite capacity. Considering the negative correlation, we expected a
sudden convergence in the total order quantity so that increasing the number of vendors
would have no effect on the total order quantity, which is the single vendor order quantity.
Computational results obtained by taking capacity mean 1000 came out to be as we ex-
pected. In other words, total order released to two vendors or three vendors are all equal to
original order size. Providing an analytical proof for this result is hard due to complexity.
In order to analytically validate this result, we focused on a simplified version of the model
which is thought to well approximate the original model. For this simplified version, it is
almost impossible to make runs for a large number of vendors; however, it is simpler to
investigate analytically so that it allows us to implicitly see that in the infinite capacity
case, the total order quantity is always the same. Another analytical result of this simpli-
fied model is that in the normal setting, the total order quantity is higher than or equal to
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the single vendor order size for all n. This result is in accordance with the computational

results of the original model.

To sum up, solving the inventory control problem by such a model is rather complex.
The more critical point is that, it is extremely hard to analytically investigate the related
functions and propose some characterizations. The same difficulty also remains after obtain-
ing the computational results since the resulting policy does not allow the decisicn maker

to get compact and useful insight about the optimum ordering policy.

6.3 Future Research

6.8.1 Multiperiod Setting

Our model obtains results for single-period setting; however, real life decision making
processes about inventory management generally cover a multiple-period planning hori-
zon. Wang and Gerchak [25] studies a very similar model to ours and gives analytical
characterizations for a single vendor. In our case, combining the multiple vendor setting
with multiple period planning horizon greatly complicates the total expected cost function

and makes analytical investigation extremely hard.

Suppose that « is the one period discounting factor and C(z,q1,42,---,¢s) is the one
period realized cost when the decision maker releases orders ¢1, g2, ..., ¢, to n distinct vendors
with an inventory level of z on hand. Also suppose that there is an m-period planning
horizon to manage the inventory and the stochastic environment does not change from
period to period so that demand and capacity are independent in consecutive periods.
Now, we can define TC, () to be the minimum total expected cost for m periods with n
vendors and having an inventory of « at the beginning of the first period. Then T'C% (z) is

written as

TCr(z) = ﬁg{c(x, 91,82 8n) + QT Ch_1(z+ D Yy — D)} (6.1)

=1

where D is the random periodic demand in the first period and

n n
C(2, 41,821 4n) = B[Y _ ci¥q + L{z+ > Yg,)]. (6.2)

3=1 i=1



Chapter 6: CONCLUSION AND FUTURE RESEARCH 81

Handling TCZ(z) analytically is extremely hard due to its complexity. In fact, when
single vendor is assumed as in Wang and Gerchak (1996), mathematical induction helps in
proving that this function is quasi-convex; however, the case of n vendors makes it very
difficult to investigate the convexity of the function. Even considering two vendors raises

many analytical difficulties.

At this point, a solution methodology for multiple period may be the repetition of the
single period procedure for each period without considering the effect of current decisions
on the future decisions. Actually this is a myopic approach and gives results that are
not optimal over the whole planning horizon; however, considering the complexity of the
multiple period problem, it may turn out to be a satisfactory policy especially when the
stochastic features of each period are independent from those of other periods. So, it is
obvious that the problem with m periods and n vendors is a challenging topic for future

research.

6.3.2 Heuristic Approach

Determining the order quantities and critical order levels optimally is difficult with this
model; moreover, there are no simple characterizations on the optimal ordering policy. The
problem may be studied more and computational analysis may be achieved for different
distributions and different ranges. However, it is clear that there are no simple and compact
characterizations of the optimum strategy due to the complex structure of the modeling

approach.

Therefore, heuristic approaches may be designed and implemented. According to our
findings, every vendor has a critical value that determines whether that vendor will be
given an order or not. Therefore, developing a heuristic approach that tries to determine
the critical order levels is a potential research topic. Besides, the curves giving the optimum
order quantities may be approximated by linear functions. So, a heuristic procedure that
obtains both the critical order levels and the slopes of linear functions that approximate
the optimum order curves may be developed to obtain satisfactory results that are close to

optimal solution.
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6.3.3 Inclusion of Fized Ordering Cost

Our model assumes that there is no fixed cost for ordering. However, we know that in real
life, a fixed amount of cost that is generally independent of the lot size is chéxged due to
setup. The concept of fixed ordering cost becomes critical especially when working with
multiple vendors. So, our model may be further studied with the inclusion of fixed ordering
cost. A general approach is to denote the fixed cost of ordering to n vendors by K. The
function K, may be given by nK or any function that is increasing in n where K is the

fixed cost of ordering to a single vendor.

With this setting, it is obvious that the total expected cost will not always decrease as
in the results of Chapter 5. In other words, diversification effect of working with multiple
identical vendors will be restricted by the increase in fixed ordering cost. Then, besides
determining the optimum order quantities, the problem will have a dimension of analyzing
the trade-off between the diversification effect and increase in fixed ordering cost. Fixed
cost models generally result in an (s, S) policy; however, for our model, an order-up-to level
clearly does not exist. A potential ordering policy may include the maximum number of
vendors so that ordering to more vendors results in a higher expected total cost due to the

increase in fixed ordering cost.
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