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ABSTRACT

Floating-point computations suffer from undetected errors due to rounding and
catastrophic cancellation. Fast computers let programmers write numerically inten-
sive programs, but computed results can be far from the true results due to the accu-
mulation of errors in arithmetic operations. Interval arithmetic provides an efficient
method for monitoring and controlling errors in numerical computations. With inter-
val arithmetic, each data value is represented by two floating-point numbers which
correspond to the endpoints of an interval, such that the true result is guaranteed
to lie on this interval. To support interval arithmetic, several software tools have
been developed including interval arithmetic libraries, extended scientific program-
ming languages, and interval enhanced compilers. The main disadvantage of these
software tools is their speed, since interval operations are implemented using function
calls. To speed up interval arithmetic, hardware support for interval arithmetic oper-
ations (addition/subtraction, multiplication, division, and comparison/selection) has
been developed.

In this research, hardware support for interval reciprocal operation is investigated.
The combined interval and floating-point reciprocal unit is designed to support both
interval and floating-point reciprocal operations. The unit that supports reciprocal
operation for interval and floating-point arithmetic is implemented at gate level and
tested. Furthermore, the unit is synthesized to estimate the number of gates and

delays.



OZETCE

Kayan noktali hesaplamalar, yuvarlama ve iptallenmeler sonucu ortaya gikan hata-
lardan 6tiirii olumsuz etkilenmektedir. Hizli bilgisayarlar programcilara yogun sayisal
hesaplamalar iceren programlar yazmalarina miisade etmekte, fakat aritmetik iglemler-
deki hatalarin toplanmasi sonucu hesaplanan sonuglar dogru sonuglardan cok farkl
olabilmektedir. Aralikh: aritmetik, sayisal hesaplamalarda ortaya cikan hatalarin
izlenmesi ve kontrol edilmesi icin etkin bir yontemdir. Aralikl aritmetik ile her
veri degeri, araligin son noktalarini olugturan iki kayan noktali sayidan olusur ve
dogru sonucun bu aralhkta bulunacag garanti edilir. Aralikh aritmetigi destekleyen
birgok yazilim araci geligtirilmigtir. Bunlarin baghcalar:; aralikli aritmetik program ki-
tapliklar1 , genigletilmis bilimsel programlama dilleri ve aralikl aritmetigi destekleyen
derleyicilerdir. Aralikh aritmetik iglemleri iglevsel (fonksiyonel) ¢agrilar ile gerceklegti-
rildigi icin, bu yazilim araglarinin temel gotiiriisii yavag olmalaridir. Aralikli aritmetigi
hizlandirmak igin, aralikli aritmetik iglemleri (toplama/gikarma, carpma, bolme ve
kargilagtirma/se¢gme) i¢in donanmimsal destekler geligtirilmigtir.

Bu aragtirmada, aralikh bir sayinin tersini almak i¢in donamimsal destek ince-
lenmisgtir. Aralikhi ve kayan nokta sayilarinin her ikisinin de tersini hesaplayabilen
birlegik bir {inite tasarlanmigtir. Aralikli ve kayan noktali sayilarinin her ikisinin
de tersini hesaplayabilen bu iinite, gecit (kapi) seviyesinde gerceklestirilmis ve test
edilmigtir. Daha sonra, yaklagik olarak gecit sayisini ve gecikmeyi tahmin edebilmek

icin unite sentez edilmigtir.

vi
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Chapter 1

INRODUCTION

1.1 The Need for Reliable Computing

VLSI technology advances as parallel to the statement of Gordon Moore, known as
Moore’s Law, [1]. The number of transistors on an integrated circuit still continues
to double its predecessor within 18 to 24 months, as stated. Beyond semiconduc-
tor technology scaling, the innovative design approach on computer hardware boosts
microprocessor performance, hence originates a great impact on computer speed [2].
Improvements on computer speed provides the ability to perform trillions of arith-
metic operation per second.

Despite the improvement on the speed of the arithmetic computations, the preci-
sion obtained has not altered over the past two decades. Today, most modern proces-
sors support IEEE double and /or double-extended precision floating-point arithmetic,
which was defined in 1985. The accuracy of double precision number is about fifteen
decimal digits. IEEE floating-point standard is being modified to support quadruple
precision arithmetic to increase the precision in numerical computations.

Quadruple precision numbers are often 128-bit and consist of a sign bit, 15-bit
exponent and 112-bit fraction. The accuracy of quadruple precision floating-point
numbers is about thirty-three decimal digits. Even though the accuracy of compu-
tations is improved using quadruple precision numbers, floating-point computations
do not provide a direct method to determine the accuracy of the result. In other
words, a floating-point number contains no accuracy information and moreover, it is

impossible to represent most real numbers using finite precision floating-point format.
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Since floating-point arithmetic provides limited accuracy, it can lead to large errors

after a few consecutive operations. As an example, the multiplication of the following

matrices
[ _10'8 T i 1038
2246 33
1027 1029
A= and BT =
10% —10%
22 1044
| 10° | | 10%2 |
yields the result
A-B=0

using [EEE-754 double precision floating-point arithmetic, where the matrix B is
given in its transpose form. However, the correct multiplication yields the following

result:
A-B=97,086

Catastrophic cancellation and round-off error introduced by floating-point arith-
metic may cause such inaccurate results. In today’s world, a wide range of researches
-from astronomy to genetics- contain mass computations with long computation times
and as a consequence reliable computing is extremely necessary in sequential arith-
metic operations.

Interval arithmetic provides an efficient method for monitoring and controlling
errors in floating-point computations. Round-off behavior, uncertainty in input data
and nonlinear problems can easily be dealt with interval arithmetic. As a definition,
an interval is the set of all real numbers between and including the interval’s lower
and upper bounds. Interval arithmetic is used to evaluate arithmetic expressions

over sets of numbers contained in intervals. Hence, any interval arithmetic result is
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a new interval that is guaranteed to contain the set of all possible resulting values.
For example, the interval X = [2.34, 2.35] has a lower interval endpoint 2.34 and an
upper interval endpoint 2.35. These two endpoints bound the true result, which is
greater than or equal to 2.34 and less than or equal to 2.35. When performing interval
arithmetic on computers, one or both of the endpoints may not be representable as a
floating-point number. In this case, the interval endpoints are computed by outward
rounding. Outward rounding requires that the lower endpoint is rounded downward
towards negative infinity, and the upper endpoint is rounded upward towards positive

infinity.

1.2 Motivation for Reciprocal Operation

The reciprocal operation is important in scientific computing, digital signal processing,
and multimedia applications [3], [4].

Besides unique utilization of reciprocal, division operation can also be implemented
by reciprocation. Reciprocal of the divisor and a subsequent multiplication of the re-
ciprocal result with the dividend yields division. Division is the most time consuming
arithmetic operation and it is difficult to pipeline. As a result, in mass computations,
a replacement to the division may yield a significant decrease in the computation

time.

1.3 Reciprocal Unit

The reciprocal unit presented in this thesis supports floating-point and interval arith-

metic. The proposed method to compute the reciprocal has two stages:

e Computing Initial Approximation

~— Table Look-up and Operand Modification

— Multiplication

e Newton-Raphson Iteration



Chapter 1: Inroduction 4

Necessity and implementation of the stages will be given in details in the following
chapters. Table look-up, operand modification, and multiplication are required in
order to compute the initial approximation for the reciprocal. On the other side,
Newton-Raphson Method is used to increase the accuracy of the initial approximation

result and applied twice in the proposed implementation.

1.4 Contribution

In this thesis, my contributions are as follows:

e The theory of reciprocal operation using table look-up and multiplication pro-
posed by Takagi [5] is investigated in details and is used to compute the initial

approximation of reciprocal.

e The Newton-Raphson algorithm is configured in order to be utilized for recip-

rocal operation.

e The computation of the ROM values are carried out and the refinement of the

coefficient is conducted using Maple.

e The number of bits, which are used to index the table, is optimized and set to

12 (this number will be denoted as m in Chapter 3).
e First the reciprocal unit is implemented for floating-point arithmetic.

e Then, the floating-point reciprocal unit is extended to support interval arith-
metic. The extended version of the floating-point reciprocal unit is called the

combined interval and floating-point arithmetic reciprocal unit.

e Both units are implemented and simulated in VHDL. Units are synthesized to

determine the clock cycle time and to estimate the number of gates.

e Replacement of the division is suggested by using the implemented reciprocal

unit with an additional multiplication operation.
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1.5 Outline

The outline for this thesis is as follows: Chapter 2 presents the required background for
floating-point and interval arithmetic, Taylor Series, and Newton-Raphson Method.
Chapter 3 proposes the method utilized for reciprocal operation and gives the recipro-
cal unit implementation for floating-point. Furthermore, the area and delay estimates
of the implementation and the comparisons are also discussed in here. Chapter 4
presents the combined reciprocal unit implementation which supports floating-point

and interval arithmetic. Finally, Chapter 5 gives our conclusions.
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Chapter 2

BACKGROUND

In this chapter, floating-point, interval arithmetic, Taylor Series, and Newton-
Raphson method are briefly described. IEEE-754 Standard for floating-point number
is the most common representation today for real numbers on computers, including
Intel-based PC’s, Macintoshes, and the most Unix platforms. On the other hand,
interval arithmetic is being employed within a wide range of scientific applications,
which is associated with elaborate mathematics.

In the last two sections of this chapter, an overview of the Taylor Series and

Newton-Raphson Method can be found.

2.1 Floating-Point

Among several methods, floating-point is the most commonly utilized representation
to approximate real numbers on computers. Floating-point representation basically
represents reals in a scientific notation.

In order to compare with fixed point representation, floating-point employs a
sort of sliding window of precision, appropriate to the scale of the number, which
allows it to span numbers approximately in a range of 1.17 x 10738 to 3.40 x 103
for single-precision and 2.22 x 1073% t0 1.79 x 103%® for double-precision standard
representation, excluding infinite values [6], [7], [8], [9].

On the other hand, fixed point representation has a fixed window of precision,
which limits it from representing very large or very small numbers. Also, loss of
precision is unavoidable when two large numbers are divided using fixed-point repre-

sentation.
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2.1.1 Floating-Point Formats

After a history of confusing and complex representations of numbers in computers [10],
both as in terms of hardware and software; nowadays, most of the general purpose
computer architectures are based on IEEE-754 Standard [9] and support single, double
and double-extended floating-point numbers.

The IEEE-754 single precision floating-point number requires a 32-bit word, which
may be represented as numbered from 31 to 0, left to right, as shown in Figure 2.1.
The first bit from left, which is annotated as the 31° bit, is the sign bit, §. The next
8-bit represent the exponent bits, Ezponent, and the remaining 23-bit are the fraction

bits, Mantissa.

S | Exponent Mantissa

31 30 23 22 0

Figure 2.1: IEEE-754 Single Precision Floating-Point Representation

The sign bit, which serves to identify whether the represented real number to be
negative or positive, is set to logical one (1) or zero (0), respectively. The biased
exponent has implicitly determined base set to two, which is not explicitly stored in
the representation. The exponent part is utilized in order to determine the value of
the represented number and the related information can be viewed in the following
rules. The mantissa of the represented real number is composed of the fraction part

with an implicit leading (hidden) digit, for which the details can be found below.

The following rules are defined in IEEE-754 Standard [9] for single precision floating-

point representation in order to determine the value, V, represented by a 32-bit word:
e If F =255 and F is nonzero, then V = NaN (Not a Number)

o If E =255 and F is zero and S =1, then V = —o0
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If E =255 and F is zero and S =0, then V = oc

o If 0 < E < 255 then V = (—1)5 x 2E-1%7 x (1.F),
where; 1.F" is intended to represent the binary number created by prefixing the
fraction part with an implicit leading 1 (hidden one), and a binary point (.), as

well the exponent bias being set to 127.

e If E =0 and F is nonzero, V = (—1)% x 2712 x (0.F),
where these are defined as denormalized numbers.
e [f E=0and Fiszeroand S =1, then V = -0

e If E=0and Fis zero and S =0, then V =0

Not a number, denormalized numbers, infinity, and zero are the special cases
of the IEEE-754 Standard. Briefly, Zero is either negative zero or positive zero,
which are distinct values but they both compare as equal. Infinity value represent
either negative or positive infinity and is very useful in operations where overflow
case occurs. Operations with infinite values are well defined in IEEE-754 Standard.
Numbers with non-zero fraction part but having all zeros in exponent part are called
denormalized numbers and zero can be interpreted as a special form of denormalized
number. Special handling methods are employed in arithmetical operations for NaN
(Not a Number) values, which are used to represent values those do not represent a
real number. Arithmetical operations on special numbers are well defined by IEEE-
754 Standard. For example, multiplication of zero and infinity yields a NAN and any
operation with a NaN results to NaN. Other operations on special numbers can be
found in [6].

As shown in Figure 2.2, the IEEE-754 double precision floating-point number
requires a 64-bit word, where the first bit is the sign bit, S, the next 11-bit are the
exponent bits, Fzponent, and the remaining 52-bit are the fraction bits, Mantissa.

Since the number of bits in the fraction part determines the precision and since the

number of bits in the exponent part determines the range of representable numbers,
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S | Exponent Mantissa

63 62 52 51 0

Figure 2.2: IEEE-754 Double Precision Floating-Point Representation

IEEE-754 double precision floating-point numbers have greater range and are more
precise than single precision floating-point numbers [9].

The rules defined in IEEE-754 Standard [9] for double precision floating-point
representation in order to determine the value, V, represented by a 64-bit word, are

detailed below:
e If E = 2047 and F is nonzero, then V' = NaN (Not a Number)
e If £ =2047 and F is zero and S = 1, then V = —o0
o If £ =2047 and F is zero and S =0, then V = oc

o If 0 < E < 2047 then V = (—1)% x 257108 x (1.F),
where; 1.F is intended to represent the binary number created by prefixing the
fraction part with an implicit leading 1 (hidden one), and a binary point (.), as

well the exponent bias being set to 1023.

e If E =0 and F is nonzero, V = (—1)% x 27192 x (0.F),

where these are defined as denormalized numbers.
e If E=0and Fiszeroand S=1, then V = -0

o If F=0and Fiszeroand S =0, then V =0

Extensions to well-known single and double precision floating-point, namely single-
extended and double-extended floating-point, are available in IEEE-754 Standard, as

specified in [9]. The single-extended floating-point word is defined to have more
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than 43-bit. Corresponding lower limit is 79-bit for double-extended floating-point.
However, many scientific computing applications, such as computational geometry,
computational physics and climate modelling need more precise arithmetical opera-
tions [11]. 128-bit quadruple precision arithmetic significantly improves the numerical
stability of those scientific applications as stated in [12]. IBM S/390 G5 FPU (floating-
point unit) fully supports the quadruple precision arithmetic in hardware [13]. But,
even with full hardware support for quadruple precision, the arithmetical operations
are four times slower than double precision in hardware [14]. Much faster quadruple
precision floating-point multiplier is presented in [15], which requires more hardware
than IBM S/390 G5 FPU, as a trade-off. IEEE-754 Standard is also being revised to
support quadruple precision floating-point [16].

2.1.2 Rounding Errors in Floating-Point Arithmetic

It is impossible to represent some real numbers by IEEE-754 floating-point due to

two reasons [17]:

o Real number to be represented may have a finite decimal representation, but in

binary, it may have an infinite repeating representation.

e Real number to be represented can be out of range, i.e., the number exceeds
the upper and lower representable limits of the corresponding floating-point

number.

The rounding error is introduced as a consequent of the first reason. One quick
example to this situation is to represent 0.1. Actually, 0.1 lies in between two repre-
sentable floating-point numbers, but none of those floating-point numbers can exactly
represent the real number 0.1, because of the infinite repeating sequence in its fraction

part, as seen in Figure 2.3.
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1.10011001100110011001100 x 27* = 0.09999999403953552

Figure 2.3: Representation of 0.1 by Single Precision Floating-Point Representation

Well-known measure of rounding error is Unit in the Last Place, and it is abbrevi-
ated as ulp. For example, if the infinitely precise real number 0.61271 is represented
as 0.6127 in floating-point representation, than the error is stated as 0.1 ulp. An-
other measure of a rounding error is relative error and for the above case, the relative
error is approximated as 0.00001/0.61271 = 0.00001632. In this work, ulp will be
considered as the measure of rounding error.

Utilizing the rounding to nearest(even) mode, the nearest floating-point number
will correspond to a rounding error of less than or equal to 0.5 ulp, as the proof to
this statement can be found in [17]. The least rounding error is obtained when the
rounding mode is set to rounding to nearest(even) and Table 2.1 shows the maximum
possible rounding errors for different precision types. The required accuracy is 1 ulp
in the remaining rounding modes [18]. The rounding modes are described in the next

section.

Precision Type Max. Rounding Error (0.5 ulp)
Single Precision 0.596046447754e-07

Double Precision 0.1110223024625156541e-15
Quadruple Precision | 0.48148248609680896326399445¢-34

Table 2.1: Maximum Rounding Errors with Rounding to Nearest(Even) Mode

2.1.83 Rounding Modes in IEEE-754 Floting-Point Arithmetic
Four rounding modes are defined in IEEE-754 Floating-Point Arithmetic Standard

[9]:

e Round to Nearest(Even): The infinitely precise real number is represented with

the nearest representable floating-point number. If the two representable values
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are at the same distance, then the even one (which has a zero in its least

significand bit, LSB) is selected.

e Round toward +oo: The infinitely precise real number is represented with the

nearest greater representable floating-point number.

e Round toward —oco: The infinitely precise real number is represented with the

nearest smaller representable floating-point number.

e Round toward 0 (zero) : The infinitely precise real number is represented with

the nearest and smaller in magnitude representable floating-point number.

The IEEE-754 Standard specifies round to nearest(even) as the default rounding
mode. However, the rest three rounding modes should be implemented in all [EEE-
754 compliant FPU’s. In other words, all four rounding modes should be available to
be utilized in user-selectable manner.

In order to obtain the most accurate true results in floating-point operations, such
as multiplication, many different hardware design approaches are available in the
literature for the implementation of the rounding algorithms, that conforms to the
IEEE-754 rounding modes. These approaches are considering criterions such as the
speed of the rounding and the required hardware complexity. Among such works are

[19], [20], [21], [22], [23].

2.2 Interval Arithmetic

In 1962, Ramon E. Moore’s dissertation has initiated the modern development of
interval arithmetic [24]. Interval arithmetic is defined on sets of intervals and an
interval X = [z, z,] consists of two real numbers; a lower endpoint z; and an upper
endpoint z,, such that z; < z,. The interval X is the set of real numbers z, satisfying
z; < z < . In the rest of this chapter, the lowercase letters will denote real numbers

and the uppercase letters will denote intervals.
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2.2.1 Interval Arithmetic Applications

Today, since interval arithmetic is extremely powerful to bound the range of func-
tions, it is widely used in various computations and numerical applications in fields
of science and engineering. Global optimization algorithms, bounding the error term
in Taylor’s Theorem, bounding the effects of roundoff errors and solving nonlinear
systems are the major topics where interval arithmetic is frequently utilized. Specific
numerical applications of interval arithmetic are solving linear systems [25], [26], non-
linear systems [27], [28], [29], [30], adaptive quadrature [31], initial value problems
and error bounds for ordinary differential equations [32], boundary value problems
[33] and integral equations [34]. Many scientific and engineering applications, such
as verification of chaotic behaviors of dynamical systems [35], process design [36],
computational geometry [37], fluid mechanics [38], [39], computer graphics [40], solv-
ing AC network equations [41], quality control in the manufacture of radio-electronic
devices [42], Hurwitz stability in control theory [43], medical diagnosis systems [44],
remote sensing [45], examination of uncertainty effects in economics [46] and quality

control in manufacturing processes [47] employ interval arithmetic.

2.2.2 Interval Arithmetic Operations

Interval arithmetic operations are designed to produce interval results such that true
result is guaranteed to lie within the interval endpoints. Operations on interval end-
points may yield real numbers which can not be represented as a floating-point num-
ber. In order to contain the true result in the resulting interval, outward rounding is
performed to compute the lower and upper endpoints of the resulting interval. Out-
ward rounding proceeds as follows. The resultant lower endpoint is rounded towards
negative infinity and the resultant upper endpoint is rounded towards positive infin-
ity. In the following, \7 will denote rounding towards negative infinity and A will
denote rounding towards positive infinity.

To provide closure over the interval operations, special intervals including empty

interval, the entire interval, and intervals with infinite endpoints are defined [48]. The
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empty interval does not contain any real numbers and is represented by setting each
endpoint to Not a Number (NaN). @ denotes an empty interval. The entire interval
contains all real numbers and is denoted as [—o0, +00]. Finally, there are two intervals

with infinite endpoints:
e [—00,z], which represents all real numbers less than or equal to x.

o [z, +o00], which represents all real numbers greater than or equal to x.

2.2.2.1 Addition and Subtraction

When adding two intervals, the lower endpoint of the resulting interval is computed
by adding the operands’ lower endpoints with rounding towards negative infinity. The
upper endpoint of the resulting interval is obtained by adding the operands’ upper
endpoints with rounding towards positive infinity. An addition of two intervals and
a numerical example is given in Figure 2.4.

Z=X+Y
[21, 2u) = [V + Y1, DTy + Y

[3.68, 3.73] = [1.42, 1.45] + [2.26, 2.28]

Figure 2.4: Interval Addition and a Numerical Example

Interval subtraction is similar to interval addition, as seen in Figure 2.5. However,
the upper endpoint of the subtrahend is subtracted from the lower endpoint of the
minuend with rounding towards negative infinity. Accordingly, the lower endpoint of
the subtrahend is subtracted from the upper endpoint of the minuend with rounding

towards positive infinity.

2.2.2.2 Multiplication

Multiplication of two interval numbers is more complex than addition or subtraction.

The upper endpoint of the product is computed by the maximum of each endpoints
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=X-Y
(21, 2u) = [V 21 — Yu, D2y — Yi]

[0, 86, —0.81] = [1.42, 1.45] — [2.26, 2.28]

Figure 2.5: Interval Subtraction and a Numerical Example

multiplication. Similarly, the lower endpoint of the product is computed by the min-
imum of each endpoints multiplications as observed in Figure 2.6. In straightforward

manner, the result can be obtained by four multiplications and three comparisons.

Z=X'Y
(21, 2] = [VMIN(Z1y1, T, Tuli, Tith) AMXZ( 1YL, ZiYur TuYls Tulu))]

[3.2092, 3.3060] = [1.42, 1.45] - [2.26, 2.28]

Figure 2.6: Interval Multiplication and a Numerical Example

In order to perform multiplication of intervals faster and make it worth to replace
floating-point arithmetic, it is required to examine the sign bits of endpoints of the
multiplier and the multiplicand. In that case, it is possible to describe nine separate

cases for different sign combinations of the operands:
1. If ; > 0 and y; > 0, then X - Y = [V, Azy Y]
2. If z; > 0 and y; <0 < yy, then X - Y = [Vzuyi, ATy yy)
3. Ifz; > 0 and y, <0, then X - Y = [Vzuy1, AT1Y)
4. Ifz; <0<z, and y; > 0, then X - Y = [y, ATuyu]
5. If z; <0< =z, and y,, <0, then X - Y = [Vz,y, Aziyi]

6. If z, <0 and y; > 0, then X - Y = [V 21yy, Az,y]



Chapter 2: Background 16

7. If z, <0 and y; <0< gy, then X - Y =[5, A1yl
8. If 2, <0 and y, <0, then X - Y = [VZyYu, Az1Y]
9. Ifz; <0 <z, and 4y < 0 < yy, then XY = [ymin(z,y;, T1%), Amaz(T1y;, TulYu)]

In each combination, the resulting interval can be computed by two multiplica-
tions, except case 9. In case 9, four multiplications and two comparisons should be
performed. However, since multiplication of floating-point numbers takes consider-
able amount of time, even case 9 can be performed in shorter. In other words, three
multiplications can be sufficient to obtain the result for case 9 by the fast algorithm
of Heindl [49] and as well by [50], [51]. Another study predicts an average time of two

multiplications in order to perform interval multiplication [52].

2.2.2.3 Division

Division of two intervals is similar to multiplication of two intervals, except the case
where zero lies in between the lower and upper endpoints of the divisor. In that case,
the quotient interval will be the whole representable real numbers, i.e., [—o0, 4+00].

Interval division is shown in Figure 2.7.

— X
Z - Y
J— g & T & € x Z x &
(71, 2] = [Umin(&, &, 2, 81), Amag (%, 2, &, )]

1.0,1.2
[0.5,0.8] = m

Figure 2.7: Interval Division and a Numerical Example

It is possible to extract seven different cases for the interval division if the sign

bits of endpoints of the dividend and the divisor are examined initially:

1. If ;> 0 and g >0, then £ = [y2L, A%

2. If ; > 0 and gy, < 0, then % = [v%, Ail]
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3. If z, <0 and y, > 0, then £ = [ng’ Agy%]

4. If z, < 0 and y, < 0, then & = [V%;‘, Aiﬁ]

5. Ifz; <0<z, and y; > 0, then ¥ = [V%’A%J
6. If z; < 0 < z, and g, < 0, then & = [V%’Z’ Aﬁ]
7. If y; < 0 < yy, then & = [—00, +00]

2.2.2.4 Reciprocal of an Inierval

Reciprocal of an interval is straight forward and obeys interval division rules in which
the dividend is unity, as seen in Figure 2.8. However, there are two special cases. If
the interval, for which the reciprocal will be computed, is an empty interval; then the
resulting interval is an empty interval as well. Also, if the divisor interval contains

zero, then the resulting interval is the entire interval.

1 @ : if interval X is empty
¥ = [—o0, +00] if <0<z,
[ V() Az)] : elsewhere
mmeg = (0-625, 0.800]

Figure 2.8: Interval Reciprocal and a Numerical Example

2.2.2.5 Reciprocal Square-root of an Interval

Reciprocal square-root of an interval is similar to reciprocal of an interval, except
the special cases. When the upper endpoint of the divisor interval is less than zero
or when the divisor interval is an empty interval, then the resulting interval is also

empty. Finally, when the lower endpoint of the divisor interval is less than zero and
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the upper endpoint of the divisor interval is greater than zero, then the resulting

interval is an interval with an infinite endpoint, as shown in Figure 2.9.

Q : if z, < 0 or interval X is empty
— = [V(\/;—u),—l—oo] cifz; < 0and z, >0

VX v( ‘/%B—;;): (\/177)] . elsewhere
1 — 1 _
o = o = 08+

Figure 2.9: Interval Reciprocal Square-root and a Numerical Example

2.3 The Taylor Series

Taylor series is widely employed in prediction of the function value at one point.
Moreover, the Taylor series representation can approximate any smooth function as
a polynomial [53].

Taylor’s Theorem states that if the function f and its first n + 1 derivatives are
continuous on an interval containing a and z, then the value of the function at z is

given by Equation (2.1), which is known as Taylor’s formula.

f@) = f@+F@E-a)+ e ap

+f—”§!a—)(x—a)3+---

L (Z!(“) (z —a)" + Rq (2.1)

where the remainder R, is defined as follows:

Ro= [ e (2.2

.

where ¢ = g is a dummy variable.
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For functions whose values alter on the interval of interest, the more terms included
in the Taylor series representation, the better estimate of the function is provided.

Zero, first and second-order Taylor series are listed below, respectively:

f(@iy1) = f(z) (2.3)
f@iyr) = fl@) + f(@) (@i — z2) (2.4)
f@ip1) =~ flo) + (@) (Fin — ) + [ (@ir1 — z:)° (2.5)

2!

In this research, first-order Taylor series approximation, given in Equation (2.4),
is utilized in both determining the constant values, which constitutes the required
table for the reciprocal unit, and computing of the power of an operand, as well. The

details on how Taylor series is employed will be given in Chapter 3.

2.4 Newton-Raphson Method

Newton-Raphson method is the most widely used of all root-locating formulas [53].
It can be investigated in Figure 2.10 that a tangent line to a function will cross the
z-axis at a point which is an approximate to the root of the function. As the Newton-
Raphson method is applied consecutively, a closer estimate to the root is obtained.
The slope of the tangent line in Figure 2.10 is denoted by f’(z;) and can be

calculated by geometrical interpretation such that:

’ fzi) -0
r;) = ——— 2.6
f@) T — Tiya (2.6)
Newton-Raphson formula given below is obtained by re-arranging the Equation

(2.6):

_ f(z:) (2.7)

Tit1 = xi_f’(m)
K3

Once the Newton-Raphson method is applied, the error becomes roughly propor-
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y
f(x)
slope =f(x,)
fx;)p-------m - :
: X
/ X1 %
AR SN

Figure 2.10: Graphical Interpretation of Newton-Raphson Method

tional to the square of the previous error. Hence, the number of significant figures

of accuracy approximately doubles itself in each Newton-Raphson iteration, which

provides the property of quadratically convergence to the method.

The derivation of the Newton-Raphson method can also be carried out by Taylor

series. Since the location of the root is being considered, the obtained result should

be zero in the first-order Taylor series given in Equation (2.4):

0 fz) + f'(zs)(Tiga — 4)
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which can be rewritten as;

f(z)
() (2.9)

Tivr = &j—
Equation (2.9) is derived from Taylor series expansion and equal to Newton-
Raphson formula given in Equation (2.7).
Quadratically convergence property of Newton-Raphson method is the reason that
the method is employed to improve the accuracy of the initially obtained reciprocal
approximation in this work. The details on how Newton-Raphson method is applied

in the presented reciprocal unit will be given in Chapter 3.
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Chapter 3

FLOATING-POINT RECIPROCAL UNIT

Among the arithmetic operations, the division operation is the most time con-
suming operation because the number of cycles used to determine the quotient is
proportional to the number of bits of the dividend. It is also difficult to pipeline the
division operation due to the dependencies between the iterations [54], [55].

As shown in Equation (3.1), division can be implemented by computing the recip-
rocal of the divisor. In order to finalize the division operation, the result of reciprocal
operation is utilized as the multiplier in a subsequent multiply operation, where the

dividend is being the multiplicand.

8=

a

In this chapter, an implementation of reciprocal unit designed for IEEE-754 double
precision floating-point number is presented. The design utilizes a table look-up and
Newton-Raphson iteration. The theory for computing the initial approximation of

the reciprocal is by Takagi [5].

3.1 An Overview to Compute Reciprocal

A method used to compute reciprocal of an operand consists of two basic steps:
e Computation of the initial reciprocal approximation,
e T'wo consecutive Newton-Raphson iterations.

The piecewise linear approximation, based on the first-order Taylor expansion [56]

[5], is used to compute the reciprocal of the operand approximately. This approximate
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result will be mentioned as initial approrimation throughout this work.

In order to compute the initial approximation, a constant, C, is read through a
table look-up first. As well, a modification to the operand, whose details will be given
in the next section, is applied. Finally, multiplication and addition follow the table
look-up and operand modification procedure to obtain the initial approximation.

The Newton-Raphson iterations construct the second phase of the method. Each
iteration of Newton-Raphson yields a quadratic convergence to the true result. In
other words, error of the previous step squares itself in each Newton-Raphson itera-
tion, which in turn results in doubled accuracy as compared to the previous approx-
imation [53]. This ensures that, if more than thirteen correct bits are acquired in
the mantissa part of the initial approximation, it is guaranteed to obtain the correct
reciprocal result after two consecutive Newton-Raphson iterations as seen in Equation

(3.2):

14 bits — 28 bits — 56 bits (3.2)

3.2 Computing Power of an Operand

In this section, a method for generating the p-th power of an operand, X,,, is given.
The power, p, is in the form of —2* (where, k is 0 for reciprocal and k is —1 for
reciprocal square-root operation). The operand, X,,, is an IEEE compliant 64-bit
normalized double precision floating-point number as shown in Figure 2.2 and it is
in the decimal range of 1 < X,, < 2. The hidden-one and the least significand 52-
bit of X,, altogether represents the mantissa part and will be called as operand, X,
throughout this work. Operand X is an (n+1)-bit binary number and 7 is 52 for
double precision number.

The binary representation of the operand, X, is shown in Equation (3.3):

X = [1.$1$2$3...$52] (33)
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where;
z; € {0,1} (3.4)

The modification of the operand and the determination of the ROM values are
carried out based on Taylor series expansion. In order to represent the power of the
operand by Taylor series expansion, the operand X is separated into two parts from
1% to m™ and from (m + 1)® to n®* bit, as proposed by Takagi [5]. Below, the

operand, X, is apparently the sum of its two parts:

X1 = [l.2122T3...Tp,)] (3.5)
Xo = [0.Zpi1ZTmyne. Ly X 27™ (3.6)

where;
X = Xi+X, (3.7)

Given in Equation (2.1), an approximated version of the Taylor series expansion
by truncating the series after the first derivative term can be represented as first-order

Taylor series:

f@iv1) = f(z:) + (@) (@i — z4) (3.8)

Power of an operand, which is denoted by X?, is approximated based on first-order

Taylor series as in Equation (3.8):
XP o~ (Xy+2™ W 4p (X + 27 )P (X — 27 (3.9)
where the function shown in Equation (3.10);

flz) = = (3.10)



Chapter 3: Floating-Point Reciprocal Unit 25

and below equalities are considered:

r = (Xp+27™1 (3.11)

Tiv1 = X (3.12)

Flm) = (Xy+27™ (3.13)

fle) = p-(Xi+27mHpP7 (3.14)

f(@i) = XP (3.15)
T —2; = X — (X1 +27™1)

= X-X; -2l = (X, -2 (3.16)

The Taylor series linear approximation for a power of an operand adopts a linear

function as described in [57] and can be represented such that:

X ~ Co + Cng (317)

where;
Co = (Xhi+2™ 1 —p.(X;+27myp-1. (2= 1) (3.18)
01 = p- (Xl + 2—m~—1)p-—1 (319)

The conventional linear approximation representation given above in Equation
(3.17) will require a great size of table since two coefficients, Cy and C1, are necessary.
One multiplication, Cy X5, and one addition operation, Cy+C; X5 are required in order
to obtain the initial approximation.

A new method which significantly reduces the size of the table by providing only
one coefficient, and also which eliminates the addition operation is proposed by Takagi
[5].

Rewriting Equation (3.9), power of the operand, X?, can also be expressed as
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shown in Equation (3.20):
Xp ~ (Xl -+ 2“’"‘1)7’_1[()(1 + 2—m—1) +p . (X2 - 2—m—1)] (320)

Above arrangement constructs the new method proposed by Takagi. Finally, the
below representation given in Equation (3.21) can be employed in a way that only one
multiplication operation will be sufficient in order to compute the initial approxima-
tion with an easy modification of the operand, X'. As well, the utilized table (ROM)

size is reduced, since only one coefficient, C, is required.

XP ~ C. X (3.21)

where;
C = (X;+27 ™1yt (3.22)
X = [(X+2™ Y +p- (Xp—27"1)] (3.23)

This manipulation yields the same accuracy in bits for the initial approxima-
tion compared to the conventional linear approximation. Moreover, as previously
mentioned, the required ROM size is reduced significantly and the entire reciprocal

computation time is shortened by one clock cycle since the addition is removed.

3.3 Floating-Point Reciprocal Unit

This section is dedicated for computing the reciprocal of an operand. First, the theory
on how to reciprocate an operand by table look-up and multiplication method will
be introduced. Later, the utilization of Newton-Raphson method will be detailed,
which provides more accurate reciprocal result. Finally, the implemented unit will be
presented and obtained area-delay estimates as a result of synthesizing the unit will

be given.
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3.3.1 Computing Reciprocal of an Operand

The proposed unit in this chapter computes the reciprocal of an operand. Hence,
related power, p = —1 is considered. The initial reciprocal approximation, X!, is

calculated by referring to Equation (3.9) such that:

X1t~ (Xp42m YT (X 27X, - 27 (3.24)
where;
fl@) = (X +2m™ )t (3.25)
fllz) = —(Xy+27™ )2 (3.26)
flei) = X7 (3.27)
Ty — 2 = (Xo—2"™71) (3.28)

By rewriting Equation (8.24), reciprocal of X can also be expressed as shown in

Equation (3.29), in order to employ the proposed form of C - X' mentioned above:

Xt~ (X +2mH (X 427 - (X — 27 (3.29)

where;
C = (X;+27™1)2 (3.30)
X' = [(X;+27™) — (X — 277 (3.31)

3.83.2 Determining the Table Look-up Values

The constant, C, given in Equation (3.30) can be refined to C' in order to reduce
the error in the initial approximation as proposed by Takagi [5]. The refinement
of the coefficient is performed based on the formula given in Equation (3.32). The

mathematical computation which clarifies the refinement process is studied in this
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thesis. The details on refinement of the coefficient are given in Appendix A.
e=C-X'— X1 (3.32)

where, ¢ denotes the error in C - X’. Note that, C - X’ is proposed to yield the
initial reciprocal approximation.

The refined coefficient is computed as shown below:
C' = (X)) — (X)) 2 (X))t 7 27mR (3.33)

In the rest of the study, C’ is the constant value read from a ROM and the utilized
ROM will store words which are pre-determined by Equation (3.33).

As given in Equation (3.5), X; is constructed by the first m-bit of the operand.
Hence, for the phase of table look-up, the first m-bit of the mantissa of the operand
Xop will constitute the indez bits as inputs to the ROM. In other words, the entire
X7 without hidden-one is used to index the ROM.

The size of the values stored in the ROM are determinant on the accuracy of the
initial approximation and these values will be called as ROM words. As the size of
the words stored in the table increases, the initial approximation becomes closer to
the true reciprocal result and hence has better accuracy. However, the trade-off here
is that, the number of index bits (m-bit) directly determines the size of the ROM. In
the presented reciprocal unit, the ROM words are of size 2m, and with this selection,

the utilized ROM size will be:
2™ x 2m bits (3.34)

3.8.8 Operand Modification Phase

The remaining term in Equation (3.20), which is [(X; +2™™!) +p- (X — 27™7Y)],
has to be formed and provided by the operand modifier. For the reciprocal case, the

term becomes [(X; 4+ 2™ 1) — (X, — 27™~1)], which is denoted by X’ in Equation
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(3.31).

Rearranging the above term, X' can be expressed as:

X = (X;-Xy+2-27™h (3.35)
= (X1 —Xp+277) (3.36)

Keeping the bits of X fixed and appending bitwise inverted version of X, as
shown in Equation (3.37), yields a very precise approximation to exact computation

of the modified operand given in Equation (3.36):
X' ~ [L.2122%3... T Erma 1 Fmag--- T (3.37)

where; complement of x; is denoted by Z;.

In fact, exact X’ would be obtained with an additional term, 27", but in this work

the last term in Equation (3.38) is omitted while modifying the operand.
X’ = [1.$1$E2373...$m§m+1.’fim+2...fﬁn] +27" (338)

This disregard is apprehensible since the purpose of the first stage is to obtain
an initial reciprocal approximation and in any case, the following Newton-Raphson
stages will converge on the true reciprocal. As well, the omission is advantageous
since an addition operation is saved during the operand modification, which would

introduce an extra delay to the initial approximation process.

3.8.4 Computation and Accuracy of the Initial Reciprocal Approzimation

The initial reciprocal approximation is computed by multiplication of the term C’

(read from ROM) with the modified operand X’.

X1 ~ (C-X (3.39)
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The multiplication of C’'- X’ is conducted by a 53 x 53 Dadda Tree Multiplier, which
will be utilized for all multiplication operations throughout the complete procedure,
covering initial approximation stage and Newton-Raphson stages. Moreover, the uti-
lization of the existing multiplier on the floating-point unit of the processor is also
feasible, in order reduce hardware cost significantly. This multiplier is abbreviated as
DTM.53 in next sections.

Among a set of numbers, trials show that the obtained accuracy of the initial

approximation is about 2m + 3 bits.

3.3.5 Newton-Raphson Iteration

Newton-Raphson method is employed in the process of increasing, in fact, doubling
the accuracy of the previously obtained initial approximation of reciprocal.

An overview to the method and its mathematical proof can be found in the last
section of Chapter 2.

As detailed explicitly below, Newton-Raphson method is applied twice in an iter-
ative manner in this work, in order to increase the accuracy of the initial approxima-
tion of reciprocal obtained by table look-up. In each Newton-Raphson iteration, the
number of true bits in the mantissa approximately doubles itself. The proof to the
quadratically convergence of the Newton-Raphson method can be viewed in the next
section.

Below assignments will construct the form of employed Newton-Raphson method

in the presented unit:
e The operand is denoted by X,
e The initial reciprocal approximation of the operand is denoted by z;,

e The reciprocal result after first Newton-Raphson iteration applied to initial

approximation is denoted by z;,;.



Chapter 3: Floating-Point Reciprocal Unit 31

The function f(z), given in Equation (3.40), should vanish for the specific z value

which is selected as the reciprocal of X.

f@)=X -~ (3.40)

where;

€T =

1
¥ 3.41
- (3.41)

Inserting the function given in Equation (3.40) into the general Newton-Raphson
formula given in Equation(3.42), the mathematical expression for the utilized Newton-

Raphson iteration form is obtained, as shown in Equation (3.44).

f(zi)

T; = I;— —% 3.42
¢+1 2 f’(xz) ( )

v A
Tiv1 = Ty — T i (343)

=
Ziv1 = %(2— Xz;) (3.44)
where;
, 1

filz)=— (3.45)

In order to double the accuracy of the previous reciprocal result, the operation
given in Equation (3.44) is conducted by means of hardware and called as Newton-
Raphson iteration throughout this thesis.

The Newton-Raphson iteration phase needs two multiplication and one subtrac-
tion operations to yield z;.;. The multiplications will be performed with the pre-
viously utilized 53 x 53 Dadda Tree Multiplier, DTM.53. On the other hand, the

subtraction operation is a subtraction from 2, so the hardware equivalent is appar-
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ently the two’s complement of Xx;. While computing the two’s complement of Xz;,
first the bitwise inversion of all bits of Xz; is carried out. Finally, a logical one is
added to the least significand bit position of the inverted result, using the 53-bit Carry
Lookahead Adder. The mentioned adder will be denoted as CLA_53 in the rest of

this work.

3.8.5.1 Error Analysis of Newton-Raphson Implementation

The error of initial reciprocal approximation is assumed to be E;,, such that:

(3.47)

Inserting z; into the Newton-Raphson form, which is specifically derived for recipro-

cation in Equation (3.44), will yield the following Equation (3.48):

1
Similar to Equation (3.47), the error of reciprocal result maintained after the first

Newton-Raphson iteration can be defined as:

1

Equations (3.48) and (3.49) are both equal to z;.;, so the right hand side of these

equations are also equal to each other.

1 1
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E = —XE. (3.51)

Tit1

Equation (3.51) proves that the absolute error degrades quadratically in each

Newton-Raphson iteration as it is proportional to the square of previous error.

3.8.6 Implementation of Floating-Point Reciprocal Unit

The hardware design that supports reciprocal operation is shown in Figure 3.1. The
implemented design consists of three pipeline stages. The first pipeline stage con-
structs the table look-up and operand modification phase. The second pipeline stage
performs the multiplication. The last pipeline stage manipulates the results by shift,
bitwise inversion or buffer operations.

The reciprocal operation takes total of eleven clock cycles. The first three clock
cycles yields the initial reciprocal approximation. Each Newton-Raphson iteration,
in order to obtain more accurate reciprocal result, is completed in four clock cycles.
Eight clock cycles are dedicated for Newton-Raphson iterations, since it is applied
twice.

The first pipeline stage, consisting of ROM and the operand modifier (OpMod),
is only used in the first clock cycle of the reciprocal operation to obtain the constant,
C’ (Constant), and the modified operand, X’ (Modified_Op). Therefore, pipeline reg-
isters are not used between the first and the second pipeline stages. In the following,
the components of the stages and their respective operations will be explained in
details.

The computations of the implemented unit are based on the 52-bit mantissa, with

given constraints below:

e X is a 64-bit normalized double precision floating-point number in the decimal
range of 1 < X < 2. As a result, the first 12-bit of X, i.e., the sign and the
exponent bits of X, is equal to (3F F)peq-

e Given the constraint on the operand X, the exact reciprocal, X}, is supposed
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to be in the decimal range of 0.5 < X! < 1. The most significand 12-bit of
X~ should have (3FE)peq-

Hence, the sign bit and exponent bits will not be considered in the rest of this
study.

As to speak over the implemented unit, the most significand m-bit of the mantissa
of the operand forms the index bits of the table look-up procedure, whereas the entire
mantissa is provided to the OpMod unit initially.

As previously mentioned, a trade-off appears while selecting the number m, as it
is determinant on both the ROM size and the accuracy of the initial approximation.
Utmost care is taken to keep the ROM size minimum in order to prevent the cost of
hardware. On the other hand, the accuracy obtained by initial approximation has to
be sufficient to yield the correct result after two Newton-Raphson iterations. Among
many experiments performed on the implemented unit, the most effective m, which

yields exactly correct results at all trials is chosen, such that;
m = 12 (3.52)

With this selection, the employed ROM should have size of 12KB, referring to
Equation (3.34):

2'2 x 24 bits = 2'° x 96 bits = 96 Kbits =12 KB (3.53)

In the 1% clock cycle, the ROM takes as inputs the most significand 12-bit of the
mantissa from REG1 register, in which the input operand is saved in 64-bit IEEE
compliant format. The ROM is constructed with the values that are computed as
described in section 3.3.2. The procedure for forming a specific 24-bit ROM word is
as follows: 23-bit of the mantissa of the floating-point number computed by Equation
(3.33) is taken. This 23-bit constructs the least significand 23-bit of the ROM word.
On the other side, the least significand bit of the exponent of the floating-point number
computed by Equation (3.33) constructs the most significand bit of the ROM word.
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As a result, a 24-bit ROM word is obtained.

The least significand bit of the exponent of the ROM value computed by Equation
(3.33), is determinant on the flow of the presented unit. The initial approximation
result is normalized whether by shifting left 1-bit or 2-bif, depending on the odd
or even exponent of the ROM value, respectively. The least significand bit of the
exponent is sufficient to choose the right operation and is supplied from the ROM
to the multiplexor MUX3 as the most significand selecting input, S2. Details on the
selection bits of all of the multiplexors utilized in the unit are summarized in Table

3.1.

| Clock Cycle | Select Bits | Selected Input J
} |S2|S1[s0o| MUX1 | MUX2 | MUX3 |
N 3o 0 | 0| 0 | Constant [ Modified Op | L_1_ SHIFT
4th 5th gth gtk |0 | 0 | 1 | Mantissa REG5 INV_51
7 0 1 0 X X L2 SHIFT
6, 10, 11 0 1 1 REG4 REG5 CLA64_Out
ond 1 | 0 | 0 [ Constant | Modified_Op X
4th 5th gth gth | 0 1 | Mantissa REG5 INV.51
3rd, 7 1 1 0 X X L2 _SHIFT
6%, 10% 11%* | 1 | 1 | 1 | REG4 REG5 CLA64_Out
| Note: S2 = First Bit of ROM, X = Don’t Care J

Table 3.1: Selection Bits of the Multiplexors Utilized in the Reciprocal Unit

A logical one is concatenated to the front of the least significand 23-bit of the read
value from the ROM and 29 zeros are appended to the right of the word in order to
fulfill the 53-bit.

On the other side, the mantissa of the operand is supplied to the OpMod unit.
The OpMod unit is constructed with forty inverters, in which the most significand
12-bit of the mantissa stays the same, whereas the least significand 40-bit are bitwise
inverted, as explained in Equation (3.37). Within the OpMod unit, a logical one is
appended as a most significand bit of the 52-bit word in order that the output of

53-bit is suitable for multiplication.
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In the 274 clock cycle, these two 53-bit values are selected by MUX1 and MUX2
multiplexors. The selected ROM output constitutes the refined constant, C' (Con-
stant), and the selected OpMod unit output is the modified operand, X' (Modi-
fied_Op), referring to Equation (3.39). As a final step of the 2™ clock cycle, the
outputs of MUX1 and MUX2 are multiplied by the 53 x 53 Dadda Tree Multiplier,
DTM_53, and results in carry-save format are stored in the registers REG2 and REG3.
These results are kept in carry-save format to avoid carry-propagate addition, which
would increase the delay.

In the 37 clock cycle, the contents of registers REG2 and REG3 are added by
64-bit Carry Lookahead Adder, CLA_64. Depending on the most significand bit of
the ROM, either shift left 1-bit (L_1_SHIFT) or shift left 2-bit (L_2_SHIFT) output
is selected by MUX3. L_1_SHIFT unit takes as inputs the most significand 52-bit
of the CLA_64 output and shifts it to the left 1-bit by inserting a zero at the end
and truncates the most significand bit. Finally, a hidden-one is appended to the left
of the word for the oncoming multiplication in the L_1_SHIFT unit. L_2_SHIFT is
conducted in similar manner to L_1_SHIFT, for which two logical zeros are inserted
to the end of the CLLA_64 output, where two most significand bits are truncated. The
hidden-one is as well appended as the most significand bit of the word.

The MUXS3 output is stored into both registers REG4 and REG5, at the end of the
37 clock cycle. Note that, REG5 is a register with WRITE_ENABLE signal, where
in some cases, the register value will not be updated in order to keep the previous
result for future operations. This memory behavior is the requirement of the Newton-
Raphson iteration stages. Table 3.2 summarizes the clock cycles in which REG5 is
enabled. At the end of the 37 clock cycle, the initial reciprocal approximation, z;,
is obtained with an accuracy of 2m % 3 bits and it is stored into registers REG4
and REG5. The computed initial approximation will be iterated twice by Newton-
Raphson method in the next eight clock cycles.

Note that, each Newton-Raphson iteration takes four clock cycles. Second and

third pipeline stages are used twice in each Newton-Raphson iteration. In the follow-
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Effective Clock Cycle | WRITE_ENABLE |
31'3: 7th, 11th 1
else 0

Table 3.2: WRITE_ENABLE Signal for REG5

ing, implementation details of the Newton-Raphson iteration is given.

At the beginning of the 4** clock cycle, 53-bit mantissa of the original operand,
Mantissa, is selected by MUX1. MUX2 selects the input coming from register REG5,
which contains the initial reciprocal approximation. These two values are multiplied
in the 4** clock cycle. The multiplication of these two values will yield Xz;, in the
Newton-Raphson formula given in Equation (3.44).

In the 5% clock cycle, the multiplication results are saved in REG2 and REG3
and the register values are added by CLA_64. In order to obtain the mathematical
expression, 2 — Xz;, the required operation is to take two’s complement of Xz;,
provided by CLA_64. Excluding the hidden-one, 51-bit of the multiplication result
is bitwise inverted by INV_51. Later, two bits, a hidden-one and a consequent zero
is appended as the most significand 2-bit of the inverted word. Inverted result is
incremented by one, using CLA_53. One of the operand in CLA_53 is constant and
equal to one. One is formed by 51-bit logical zeros and a logical one as the least
significand bit. Finally, 2 — Xz; is obtained and saved in register REG4. However,
in this clock cycle, WRITE_ENABLE signal is set to zero and register REG5 is not
updated. Hence, register REGS5 still preserves the initial approximation result, ;.

Note that, the adder CLA_53 is used to obtain two’s complement of Xz;, to
compute 2—Xz;. In the first draft design of the reciprocal unit, instead of taking two’s
complement of Xz;, one’s complement is used as was done in the IBM 360/91 division
algorithm [58]. Even though the small error introduced using one’s complement is 1
ulp compared to two’s complement, simulation results show that the final reciprocal
results may be 2 ulp different than the results obtained using IEEE compliant floating-

point unit. Therefore, the extra adder, CLA_53, is used instead of only bit inversion,
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to reduce the error from 2 ulp to 1 ulp in the final reciprocal result. Although using
CLA_53 slightly increases the hardware, it does not effect the clock cycle time of
the reciprocal unit, because the delay of the third pipeline stage is still less than the
second pipeline stage.

During the 6% clock cycle, MUX1 selects the value in REG4, which is 2 — Xz;,
and MUX2 selects the value of REGS5, in which the initial approximation, z;, is saved.
Their multiplication is performed in the same clock cycle to yield z;(2 — Xx;).

In the 7% clock cycle, products in carry-save format stored in registers REG2 and
REG3 are added by CLA_64. Later, MUX3 selects the output of L. 2_SHIFT unit
and provides the result to REG4 and REGS5, for which WRITE_ENABLE signal is
set to one. At the end of the 7% clock cycle, first iteration of the Newton-Raphson,
Z;11, is available in both registers REG4 and REG5. This concludes the first Newton-
Raphson iteration and the number of accurate bits is doubled compared to the initial
reciprocal approximation.

The 8%, 9* 10%* and 11% clock cycles are dedicated to conduct the second
Newton-Raphson iteration. These are obviously the repetition of the 4%, 5%¢, 6
and T clock cycles, respectively. The exception here is that, in the last clock cy-
cle, MUXS3 selects the exact multiplication result, which is shown as CLA64_Out.
The most significand 53-bit of CLA_64 result is denoted as CLA64_Out. The final
reciprocal result is saved in both registers REG4 and REGS.

In this implementation, m is 12 and two Newton-Raphson iterations are applied to
obtain more accurate result. Simulation results, among hundreds of normalized float-
ing point numbers, show that 52-bit accuracy including the hidden-one is obtained.
However, since an infinite precision to compute the final result is not available, the
proposed design does not guarantee the correctness of the least significand bit of
mantissa, i.e., the 52 bit, compared to IEEE compliant reciprocal operation. More
clearly, in most of the cases investigated, the obtained reciprocal result is same as the
reciprocal result provided by an IEEE compliant floating-point unit (FPU) with the

default round to nearest(even) mode. There are also a few cases in which the com-
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| Component | # of Gates | Reference in the Unit
ROM 207 ROM
REG (64-bit) 521 REG1, REG2, REGS,
REG (53-bit) 536 REG4, REGS
MUX (3-to-1, 53-bit) 518 MUX1
MUX (2-to-1, 53-bit) 445 MUX2
MUX (4to-1, 53-bit) 179 MUX3
CLA (53-bit) 1011 CLA 53
CLA (640it) 1154 CLA 64
INVERTERS 91 INV_51, OpMod
Dadda Tree Multiplier (53-bit) 40811 DTM_53
B Total Area | 47144 | |

Table 3.3: Area Estimates of the Components in the Reciprocal Unit

puted reciprocal result is 1 ulp more than the results obtained by IEEE compliant
FPU. This may not be a problem especially in the area of DSP applications.

In order to summarize the operation of the reciprocal unit, computation of the
initial reciprocal approximation takes three clock cycles, which requires table look-up,
multiplication, and addition operations. While iterating the initial approximation,
each Newton-Raphson iteration takes four clock cycles, and the second and third
pipeline stages are used twice in each iteration. Finally, reciprocal operation takes

total of eleven clock cycles, excluding the rounding.

3.8.7 Area and Delay Estimates

In order to estimate the area and the worst-case delay, the reciprocal unit is imple-
mented and simulated in VHDL. For the procedure of synthesizing the unit, Leonar-
doSpectrum synthesis tool by Mentor Graphics and TSMC 0.25 micron CMOS stan-
dard cell library are employed. The design is optimized for speed with a greater
frequency of 250 MHz. Table 3.3 gives area estimates for the components of the
whole unit, based on the synthesis results, which were obtained using an operating
voltage of 2.5 Volts and a temperature of 25 degrees centigrade.

Note that, the column # of Gates in Table 3.3 refers to the number of equiva-
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Stage Delay Determinant Components
(ns) on the Delay of the Stage
1 1.95 REG1, ROM
2 5.62 REGS, MUX2, DTM_53
3 4.36 | REG3, CLA_64, INV.51, CLA 53, MUX3, REG4
| Clock Cycle | 5.62

Table 3.4: Delay Estimates of the Stages in the Reciprocal Unit

lent gates for each type of components and the results are normalized such that an
equivalent gate corresponds to the area of a single minimum-size inverter.

The total area given in Table 3.3 is calculated by adding the referred # of Gates
values, taking into account that the 64-bit register is used three times and the 53-bit
register is used two times in the reciprocal unit.

In order to determine the clock cycle time of the unit, the three pipeline stages are
synthesized separately. The components of each pipeline stages and their respective
worst case delays are given in Table 3.4.

The worst case delay path occurs in the second pipeline stage where the multipli-
cation operation is performed. Hence, the clock cycle time of the unit is determined
on the worst case delay path, which is obtained by adding the delay of REG5, MUX1,
and DTM_53, as shown in Equation (3.54).

tar = trees +tumuxe+ torm_ss

= 0.67+ 0.29 + 4.66
= 5.62ns. (3.54)

As a conclusion, the reciprocal unit takes eleven clock cycles with a clock cycle
time of 5.62 nanoseconds to perform reciprocal operation. During the last two clock
cycles of reciprocal operation, only the second and the third pipeline stages are used.

Therefore, it is possible to start a new reciprocal operation every nine cycles.
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3.4 Comparisons

A smaller size of multiplier would be sufficient in order to compute the reciprocal of
an operand with the conventional linear approximation. However, the conventional
linear approximation requires a table of size 2™ x 3m bits and an extra addition
operation, given in Equation (3.17).

It is possible to share the existing multiplier in the floating-point unit in order to
replace the 53-bit Dadda Tree Multiplier used in the reciprocal unit. This will lead
to a significant decrease in the area occupied by the reciprocal unit. As well, the
proposed implementation has two thirds ROM size, 2™ x 2m bits, which is another
advantage in terms of area.

SRT division is the most commonly implemented division algorithm in modern
microprocessors. It is based on the digit recurrence. Sweeney, Robertson, and Tocher,
each developed the algorithm approximately the same time and their initials form the
name of the algorithm, SRT.

SRT algorithm uses normalized operands. It allows redundant representations of
partial remainders and quotient digits [59]. Basically, the key to the algorithm is to
select the quotient digits by comparing the most significand bits of partial remainder
with the divisor.

Time complexity of SRT algorithm depends on the length of the divisor and radix.
Radix-4 SRT division is frequently used algorithm for division operation, where 2-bit
of the quotient bits are determined in each iteration. If the operand is a double pre-
cision number, more than 53-bit of quotient is required in order to perform rounding.
Hence, Radix-4 SRT division takes approximately 30 clock cycles including initial
setup and final rounding.

There are many different approaches to the hardware design of SRT method, in
order to implement the algorithm with faster clock cycle times and/or to occupy the
minimum areas. Among such works are [59], [60], [61], [62].

Another well-known division algorithms to mention are very high radix and vari-

able latency algorithms [63]. Very high radix algorithms are attractive means of
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achieving low latency while also providing a true remainder. Division unit of DEC Al-
pha 21164 processor is implemented using the variable latency algorithm [64]. When-
ever a consecutive sequence of zeros or ones is detected in the partial remainder, a
similar number of quotient bits are also set to zero, all within the same clock cycle.
It is reported that an average of 2.4 quotient bits are retired per cycle using vari-
able latency algorithm algorithm [64]. However, because of the duplication of the
quotient-selection logic for speculation, the required area is about 44% more than a
conventional radix implementation.

A design similar to the floating-point reciprocal unit presented in Figure 3.1 has
been developed by Fowler [65]. The theory for computing the initial approximation
is different in [65]; however, it employs Newton-Raphson iteration twice in order to
increase the accuracy of the initial approximation. In the design of Fowler, the error
introduced for the reciprocal result is investigated based on each rounding mode.
However, the area and delay estimates are not presented and the least significand bit
is still not guaranteed for reciprocal operation.

The reciprocal unit presented in this thesis may replace the division unit. Even if
the Radix-8 SRT division is used, it takes roughly 20 clock cycles for 53-bit mantissa,
whereas the reciprocal operation in our design takes 11 clock cycles (excluding the
final rounding cycle). A subsequent multiplication, which can be implemented in
at most 3 clock cycles, would be sufficient to complete the division operation. The
disadvantage of our design is the non-guaranteed accuracy of the least significand
bit. This would cause a problem to have an IEEE compliant floating-point unit.
However, an error, one unit in the last place (ulp), may not be a problem for DSP
applications. Another area that the reciprocal through a table look-up and Newton-
Raphson iteration can be used is interval arithmetic where the containment of the true
result is more important [66]. The modified version of floating-point reciprocal unit
which is able to handle both floating-point and interval number will be introduced in

Chapter 4.



Chapter 3: Floating-Point Reciprocal Unit 43

3.5 Conclusions

The reciprocal unit presented in this chapter takes eleven cycles to compute the
reciprocal of a double precision floating-point number (excluding the final rounding
cycle). The implemented and proposed design to compute the reciprocal is utilizing
table look-up and multiplication in order to obtain an initial approximation and two
Newton-Raphson iterations. An accuracy of 52-bit is obtained in the experiments
conducted, but the least significand bit is not guaranteed to be same for all cases

compared to IEEE compliant floating-point unit.
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Chapter 4

A COMBINED INTERVAL AND FLOATING-POINT
RECIPROCAL UNIT

Interval arithmetic provides an efficient method for monitoring errors in numerical
computations and for solving problems that cannot be efficiently solved with floating-
point arithmetic. To provide software support for fixed-precision interval arithmetic,
interval arithmetic libraries have been developed. INTLIB is an interval arithmetic
library for FORTRAN 77 [67]. Another fixed-precision interval arithmetic library is
the Programmer’s Runtime Optimized Fast Interval Library (PROFIL) [68]. Pro-
file is a C++ class library that uses a set of Basic Interval Arithmetic Subroutines
(BIAS). InC++ is another library for interval computation [69]. Unlike previous li-
braries, InC++ supports operations on open-ended intervals (e.g. (1.23, 1.24), infinite
intervals (e.g. [1.23,4+0c]), and discontinuous intervals (e.g. [1.23, 1.24] U [2.14,2.47]).

Techniques for variable-precision arithmetic and interval arithmetic have been
combined in the extended scientific programming languages PASCAL-XSC [70], C-
XSC [71], ACRITH-XSC [72], and VPI [73]. These languages are extensions to ex-
isting programming languages, which allow the programmer to define abstract data
types, overload operators, and create dynamic arrays. To support accurate, self-
validating computation, these languages provide variable-precision data types for in-
tervals, vectors, matrices, and complex numbers.

Recently, compiler support for interval arithmetic has been developed. The GNU
Fortran Compiler has been modified to provide support for single and double preci-
sion interval data types [74]. These modifications are based on the Interval Arithmetic
Specification [48]. Although the interval-enhanced GNU Fortran compiler provides

support for interval arithmetic, it suffers from function call overhead, because all
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interval operations are implemented by calls to runtime library routines. Sun Mi-
crosystems enhanced their Fortran 95 compiler to support intervals as intrinsic data
types [75]. Sun’s compiler has full support for extended interval data types. It also
provides some compiler optimizations, which substantially improve the performance
of interval code.

The main disadvantage of software tools for interval arithmetic is their speed.
Since the arithmetic operations are simulated in software, tremendous overhead occurs
due to function calls, memory management, error checking, changing rounding modes,
and exception handing. It is expected that interval arithmetic will become generally
accepted when its performance is within a factor of two of floating-point arithmetic.
Therefore, hardware support for interval arithmetic is required.

To provide hardware support for interval arithmetic, a coprocessor and several
hardware units have been designed. Variable-precision, interval arithmetic coproces-
sors [76] allow the programmer to specify the precision of the computation, determine
the accuracy of the results, and recompute results with higher precision when nec-
essary. The combined interval and floating-point adder/subtracter [77], multiplier
(78], divider [79], comparator/selector [80] have also been designed. These combined
units support both floating-point and interval operations. In this chapter, hardware

support for interval reciprocal operation is investigated.

4.1 An Overview to the Combined Reciprocal Unit

The combined interval and floating-point reciprocal unit computes the reciprocal of
either an interval or a floating-point number. The interval endpoints and the floating-
point number are all double precision floating-point numbers. When the combined
interval and floating-point reciprocal unit is used to compute the reciprocal of an
interval, it guarantees that the computed result interval contains the true result.
However, for the floating-point reciprocation, the reciprocal result may differ from
the true value based on an infinite precision result. When the result do differ, the

difference is only 1 ulp more than the true value as it is detailed in Chapter 3.
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4.2 Implementation of the Combined Reciprocal Unit

The previously implemented floating-point reciprocal unit shown in Figure 3.1 is
modified in order to support both interval and floating-point number. Additional
two 53-bit registers, REG6, REG7, two rounding units, RND_UP, RND_DOWN, a
single 2-to-1 multiplexor, MUX4, and a single 64-bit register, REGS, are used in the
combined interval and floating-point reciprocal unit. The hardware design for the
combined reciprocal unit is shown in Figure 4.1.

The combined reciprocal unit consists of four pipeline stages. The first pipeline
constructs the table look-up and operand modification phase. The second pipeline
performs the multiplication. The third pipeline manipulates the results by shift,
bitwise inversion or buffer operations. The last pipeline performs rounding.

All of the components and their abbreviations which are used for the floating-
point reciprocal unit are also valid in the combined reciprocal unit. However, the
additional components used in the combined reciprocal unit will be detailed in the

following sections.

4.2.1 Reciprocation of a Double Precision Floating-Point Number

In the combined reciprocal unit, reciprocal operation for a double precision floating-
point number is conducted in a similar manner compared to the floating-point recip-
rocal unit. The operand, X, saved in 64-bit register REG1, is reciprocated in eleven
clock cycles, containing the initial approximation phase and two Newton-Raphson
iterations.

The CONTROL signal is the selection bit of multiplexor MUX4. In the 1% clock
cycle, CONTROL signal is set to zero in order to select the 52-bit mantissa of the
operand saved in register REG1. The value of CONTROL signal for different clock
cycles is given in Table 4.1.

As the operand is selected by MUX4, the rest of the initial approximation and
Newton-Raphson stages are similar to the previously introduced floating-point recip-

rocal unit. At the end of the 11* clock cycle, the reciprocal result of the double
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precision floating-point operand is ready and saved in register REGA4.

The reciprocal result for floating-point may rarely 1 ulp more than the true value
based on an infinite precision result as specified by IEEE-754 Standard. In most
of the cases investigated, the obtained reciprocal result is same as the reciprocal
result provided by SRT division, performed on an IEEE compliant floating-point
unit. However, for some of the cases, whose frequency is extremely low, the obtained
reciprocal result is 1 ulp more than the reciprocal result provided by IEEE compliant
floating-point unit. Actually, it is safe to say that the obtained reciprocal result is
either same or 1 ulp less/more than the true rounded result computed with one of the
four rounding modes based on an infinite precision. Therefore, it is not efficient to
round the result when the combined unit is used to compute reciprocal of a floating-

point number.

4.2.2  Reciprocation of an Interval Number

Reciprocal of an interval number, formed by two double precision floating-point num-
bers constituting its endpoints, is computed by the combined reciprocal unit.

The operand interval is represented as below:

X = [Xl: Xo] (4'1)

where; X is the lower endpoint of the interval and X, is the upper endpoint of
the interval.

Reciprocation of the interval operand is performed as follows. X is saved in
register REG1 and X, is saved in register REG8. The CONTROL signal, whose
value for different clock cycles is given in Table 4.1, is set to zero in the 1% clock
cycle. As the multiplexor MUX4 selects the mantissa of the lower endpoint of the
operand, the reciprocal operation follows the same procedure of the floating-point
reciprocation. At the end of the 11* clock cycle, the unrounded reciprocal of X; is

ready and saved in REGA4.
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Effective Clock Cycle | CONTROL
1%¢ 0
10 1
other X
| Note: X = Don’t Care ]

Table 4.1: CONTROL Signal for MUX4

The reciprocal of the lower endpoint of the operand, (Xl)~1 constitutes the upper
endpoint for the resultant reciprocal interval and the reciprocal of the upper endpoint
of the operand, (Xu)'l, formes the lower endpoint for the resultant interval, given in

Equation (4.2).
X7 = [(X) ™ (X)) (42)

In the 12% clock cycle, unrounded reciprocal of the lower endpoint of operand
stored in register REG4 is rounded towards positive infinity by RND_UP unit. The
upwards rounded result constitutes the upper endpoint of reciprocal interval and
guarantees the containment. To round positive infinity, the RND_UP unit adds one
to the least significand bit of the result saved in register REG4. Rounded result, which
forms the upper endpoint of the reciprocal interval result, is saved in register REGS,
where WRITE_ENABLE? signal is set in the 12® clock cycle. Table 4.2 summarizes
the clock cycles in which REG®6 is loaded.

Since the combined unit is pipelined, it is possible to initiate the computation
for the reciprocal of upper endpoint in the 10%* clock cycle. In the same clock cycle,
the second Newton-Raphson iteration for the reciprocal computation of the lower
endpoint is performed using the second pipeline stage. Therefore, at the end of the
20" clock cycle, unrounded reciprocal of the upper endpoint is ready and the result
is saved in register REGS5.

In the 21% clock cycle, available result in REG5 is read and RND_DOWN unit

subtracts one from the result in order to round the result towards negative infinity.
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| Effective Clock Cycle | WRITE_ENABLE2 |
12% 1
else 0

Table 4.2: WRITE_ENABLE2 Signal for REG6

This will ensure that the result is decreased by 1 ulp. Note that, rounding units,
RND_UP and RND_DOWN does not increase the clock cycle time and performs their
dedicated operations in one clock cycle. Details of area and delay estimates of the
combined reciprocal unit will be given in the following section. Within the same
clock cycle, WRITE_ENABLES signal, whose details is available in Table 4.3, is set
to logical one, and the result, which forms the lower endpoint of the reciprocal interval
result, is saved in REGT.

In the case that both endpoints of the interval operand are negative, the rounding
units operate in an opposite manner. For that case, the upper endpoint of the result
is rounded towards positive infinity by decreasing the result by 1 ulp, and the lower
endpoint of the result is rounded towards negative infinity by increasing the result by
1 ulp.

Two special cases as a definition of interval reciprocal operation are given in Figure
2.8. First, the interval operand may contain zero. If it does, then the entire interval
is returned as a reciprocal interval result. Second, the interval operand may be empty

interval. In this case, the empty interval is returned as a reciprocal interval result.

| Effective Clock Cycle | WRITE_ENABLES |
21tk 1
else 0

Table 4.3: WRITE_ENABLES3 Signal for REG7

As a conclusion, in twenty-one clock cycles, the reciprocal of an interval is com-
puted and the results are available in the registers REG6 and REG7, which constitute

the upper and lower endpoint of the reciprocal result, respectively. Thus, the latency
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of interval reciprocation is twenty-one clock cycles. Since initiation interval is the
number of clock cycles that must elapse between issuing two operations of a given
type, the initiation interval is eighteen clock cycles for interval reciprocal operation.

The computed interval result is given in Equation (4.3).
X7 = [v(Xa) T A%y (4.3)

When the combined unit is used to compute the reciprocal of a double precision
floating-point number, the latency is eleven clock cycles and the initiation interval is
nine clock cycles.

The main advantage of the proposed design is that the true result is guaranteed
to lie in the computed reciprocal interval. Other noteworthy advantages of the design
are its speed and its ability to replace the division operation for interval arithmetic.
The unit would be inexpensive in terms of hardware, if the existing multiplier on the
processor is utilized as to replace the multiplier employed in our design. However,
the drawback of the hardware support offered for reciprocal of an interval is that the
possibility of additional 1 ulp error in each endpoint computation. For some cases,
whose frequency is extremely low, if both endpoints are computed with 1 ulp error,
then the range of the result interval would be 2 ulp wider compared to the interval

result obtained using an infinite precision.

4.3 Area and Delay Estimates

In order to estimate the area and the worst-case delay, the combined reciprocal unit
is implemented and simulated in VHDL. For the procedure of synthesizing the unit,
LeonardoSpectrum synthesis tool by Mentor Graphics and TSMC 0.25 micron CMOS
standard cell library are employed. The design is optimized for speed with a greater
frequency of 250 MHz. Table 4.4 gives area estimates for the components of the whole
unit, based on the synthesis results, which were obtained using an operating voltage

of 2.5 Volts and a temperature of 25 degrees centigrade.
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Component | # of Gates | Reference in the Unit |
ROM 207 ROM
REG (64-bit) 521 REGI, REGZ, REG3, REGS
REG (53-bit) 536 REG4, REG5, REG6, REGT
MUX (3-to-1, 53-bit) 518 MUX1
MUX (2-to-1, 53-bit) 45 MUX2
MUX (4-to-1, 53-bit) 79 MUX3
MUX (3-to-1, 52-bit) 510 MUX4
CLA (53-bit) 1011 CLA53
CLA (64-bit) 1154 CLA 64
INVERTERS 91 INV_51, OpMod
Dadda Tree Multiplier (53-bit) 40811 DTM.53
B Total Area | 50969 | ]

Table 4.4: Area Estimates of the Components in the Combined Reciprocal Unit

Note that, the column # of Gates in Table 4.4 refers to the number of equiva-
lent gates for each type of components and the results are normalized such that an
equivalent gate corresponds to the area of a single minimum-size inverter.

The total area given in Table 4.4 is calculated by adding the referred # of Gates
values, taking into account that the register of 53-bit is utilized four times, the register
of 64-bit is utilized four times and Carry Lookahead Adder of 53-bit is utilized three
times in the combined reciprocal unit.

The total area of the combined implementation is only 8% more than the floating-
point reciprocal unit. However, the clock cycle time remains the same and it is
determined by the second pipeline stage.

In order to determine the clock cycle time of the combined reciprocal unit, the
four pipeline stages of the combined unit are synthesized separately. The components
of the stages and their respective worst case delays are given in Table 4.5. The worst
case delay path occurs in the second stage where the multiplication operations are
performed. Hence, the clock cycle time of the combined reciprocal unit is determined

on the worst case delay path, which is obtained by adding the delay of REG5, MUX2
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Stage Delay Determinant Components
(ns) on the Delay of the Stage
1 2.62 REG1, MUX4, ROM
2 5.62 REG5, MUX2, DTM_53
3 4.34 | REG3, CLA_64, INV_51, CLA_53, MUX3
4 2.23 REG4, RND_UP, REG6
| Clock Cycle | 5.62 | ]

Table 4.5: Delay Estimates of the Stages in the Combined Reciprocal Unit

and DTM_53, as shown in Equation (4.4).

tak = trecs +Iimux2+tpram.ss
= 0.67+0.29 +4.66
= 5.62ns. (4.4)

4.4 Conclusions

The combined reciprocal unit presented in this chapter is able to perform reciprocation
of a double precision floating-point number or an interval number formed by two
double precision floating-point numbers. It takes eleven clock cycles to compute the
reciprocal of a double precision floating-point number and the initiation interval is
nine clock cycles. The least significand bit is still not guaranteed for all cases for the
floating-point reciprocation.

However, the implemented and proposed combined reciprocal unit is offering an
interval reciprocation for which the exact result is guaranteed to be contained in
the final reciprocal interval result, which takes twenty-one clock cycles (including the
rounding cycle). Interval division operation takes fifty-seven clock cycles using the
combined interval and floating-point divider given in [79], whereas if the reciprocal re-
sult is used in the subsequent multiplication, it is possible to perform interval division

operation in total of twenty-five clock cycles, where the interval multiplication takes
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four clock cycles [78]. Thus, the combined reciprocal unit also reduces the number
of clock cycles required for interval division operation from fifty-seven clock cycles to

twenty-five clock cycles. This is a significant improvement.
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Figure 4.1: Combined Reciprocal Unit Implementation
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Chapter 5

CONCLUSIONS

This thesis introduces an implementation of a reciprocal unit for floating-point
and interval arithmetic. The method to perform reciprocal operation depends on
table look-up and multiplication, basically. Moreover, in order to obtain more precise
result, Newton-Raphson Method is used.

At first, reciprocal unit is designed, tested and synthesized for double precision
floating-point. Reciprocal of a double precision floating-point number is computed
in eleven clock cycles, including phases such that modification of the operand, table
look-up, multiplication, and two consecutive Newton-Raphson iterations.

The floating-point reciprocal unit yields a result in which the least significand
bit is not guaranteed to be true based on an infinite precision. In fact, for most of
the cases investigated, the obtained reciprocal result is same as the reciprocal result
provided by an IEEE compliant floating-point unit. However, for some of the cases,
whose frequency is extremely low, the obtained reciprocal result is 1 ulp more than
the reciprocal result provided by an IEEE compliant floating-point unit. As a result,
rounding is not applied.

The combined interval and floating-point reciprocal unit is designed, tested and
synthesized. The combined unit computes the reciprocal of a double precision floating-
point or an interval number. Hardware support for interval arithmetic is aimed in
order to speed up interval operations. For floating-point reciprocal computation per-
formed by the combined unit, rounding is not applied due to the same reasons ex-
plained previously.

In interval reciprocal computation, the operand and resultant intervals are both

formed by two double precision endpoints. The main advantage of the design is to
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maintain the containment of the true result. The reciprocal result is obtained in
twenty-one clock cycles, including the rounding. The Round towards Positive Infinity
(+00) is applied to compute the upper endpoint and the Round towards Negative
Infinity (—oo) is applied to compute the lower endpoint. After rounding, it is guar-
anteed that the result interval contains the correct reciprocal for the interval operand.
However, the disadvantage of the hardware support offered for reciprocal of an inter-
val is that the possibility of 1 ulp error in each endpoint computation. For some cases,
whose frequency is extremely low, if both endpoints are computed with 1 ulp error,
then the range of the result interval would be 2 ulp wider compared to the interval
result obtained using an infinite precision.

Interval arithmetic is extremely powerful to bound the range of functions. It is
widely used in various computations and numerical applications in fields of science
and engineering. The most time consuming operation is division in such applications.
For example, the interval division operation takes fifty-seven clock cycles with the
combined interval and floating-point divider. As a future direction, the presented
reciprocal operation may perform division operation as well and may replace the
division unit. It is possible to complete interval division operation in twenty-five clock
cycles if the reciprocal result obtained with the proposed combined reciprocal unit
is used in the subsequent multiplication operation, where the interval multiplication
takes four clock cycles. With the possibility of utilizing the existent multiplier on the
processor as to replace the multiplier employed in our design, the proposed design is

inexpensive in terms of hardware.
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Appendix A

REFINEMENT OF THE TABLE LOOK-UP
COEFFICIENT

Minimization of the maximum absolute error is performed below for the computed

power of an operand.

e=C-X"—-XP (A1)

where, ¢ denotes the error in C - X' and X? denotes the correct result for power

of the operand.

Left hand side of Equation (A.1) can be rewritten as:

e = X'[C-X?(X")Y (A.2)
where;
C = (Xy+27™lpd (A.3)
X = [Xi+2™ 4 p. (Xy—27™ 1) (A.4)
X = X1+ X, (A.5)

Rearranging Equation (A.2):

e = X'[(X;+2 ™!
(X1 + XX+ 27" 4 p - (X — 27 )T (A.6)



Appendiz A: Refinement of the Table Look-up Coefficient

59

General Binomial Theorem states that [81]:
(@+ay =Y () ota*
k=0

where;

R(e—D)(k—2) .1

o rr-Dr=2).(r—k+l)  jppecer k>0
k =
0 , integer k < 0

Applying Binomial Theorem to Equation (A.6):

e = X'[((X1)PH(p—1)(X1)P2(2) ™14 B=HE=) (x )p-3((g)-m-1y2y )
—(X1)P+®)(X1)P~ 1 X+ LB (X1 )P~ 2(X5)2+...)

((X1) 7 ~(X1) "2 (pX2—(p-1)(2) 7™ ) H(X1) T (X2~ (p-1)(2) )2 —.0))]

Rewriting Equation (A.8):

fl

X((X1)P~ -1 (X0)P=2(2) 7™ L+ (p— 1) (p-2)(X1)P 3 ((2) 2" %) +..)

—~((X1)P+(p)(X1 )P~ X4 LY=L (50 yo—2(X,)24...)

(A7)

(A.8)

((X1) 7 =(X1)72pXa+(X1) "2 (p~1)(2) "™ H(X1) T3P XS - (X1) T3 p(p—1) X2(2) M H(X1 ) R (p-1)2 (2) 722

= XX - (X)) -1 (- (X1)P (@) ) -0 H (K P Ky

—(X1)P~2(p—1)(2) "™ —(X1)P~3p?(X2)? +(X1)PPp(p—1) X2(2) "™ —(X1)P 3 (p-1)? (2) 22

~(X1)P72(p) Xa+(X1)P 3P (X2)— (X1 )P ~3p(p—1) X2(2) ™1 - BB (3, )P=3(Xp) 2+ ]

(A.9)

Many terms in Equation (A.9) cancel out. Neglecting the rest of the non-considered

terms; simplified version of the error is obtained:

¢ = x|~ o= (B - cormreres)| @)

2
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Rearranging Equation (A.10):

¢ = X' [~(p)p- DX ((X) - ()2 + 272
X[m0 - DX () - 2] (A1)

R

Since Xj is the rest of the mantissa, beginning from the (m + 1)** bit, the above

error can be approximated as:
e ~ X'[-@)@- DX @) (A12)

Finally, refinement of the table look-up coefficient with the complementary of the

term in Equation (A.12), excluding the modified operand term, is performed:

¢ = C+(p)(p-1)(Xy)p-3272md
= (Xyt2mmo Pl (X pommelyp-l

= (X)PT 4 (p—1)(Xy )P 22 1 o) (5 yp-3g-2m=2 4t (p)(p—1)(X1)P—3(2)"2m—4

1R

(X1)P~ L (p—1)(X1)P~2(2) "™~ (X1 )P~ 3(2)~2m—4 [p(p—1)+2(p—1)(p—~2)] (A.13)

The obtained refined coeflicient given in Equation (A.14) yields one or two more

bit/bits accuracy for the initial approximation result:
' = (X)) (p-1)(X1)P(2) (X )P 3(2) 24 (p— 1) (3p—4)] (A.14)

Table look-up coefficient for reciprocation operation is provided by the general

refinement formula, where p = —1,

C' = (X)P—- (X)) 2 (X)) 707 m8 (A.15)
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