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ABSTRACT

Cell activity is carried out by the interaction of various proteins. Complex interactions
among proteins constitute molecular pathways, which are the mechanisms by which the
living cells perform biological processes. Understanding pathways is crucial in revealing
mechanisms of cellular activity, thus understanding the reasons behind genetic disorders.
Domains, which are independent subunits of proteins, play an important role in protein
interactions. The first method presented in this thesis uses association rule mining on protein
interaction data to extract domain-domain interaction rules. The method was applied on
a database of protein interactions, which resulted in rules, some of which are supported by
biological knowledge.

Microarray expression data is another data source to study protein interactions. Most
microarray data analysis methods are based on clustering genes that show similar expression
patterns. However, clustering results often need to be refined, which can be done either by
using biological expertise or by integrating other biological data. The second proposed
method integrates domain-domain interaction rules with microarray data. The method is
based on a previously developed probabilistic model which unifies protein interaction and
microarray data. Results show that integrating domain-domain interaction rules produces
gene clusters of higher coherence.

Finally, a parallelization of the second proposed method and its implementation, together

with performance results are presented.
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Chapter 1

INTRODUCTION

Cell activity is carried out by the interactions of various proteins. Complex interactions
among the proteins constitute molecular pathways, which are the mechanisms by which the
living cells carry out biological processes. Understanding pathways is crucial in revealing
mechanisms of cellular activity, thus understanding the reasons behind genetic disorders.

Normally, molecular pathways are identified using laboratory experiments, which are
costly and prone to errors. Identifying an interaction between two proteins is an experi-
mentally hard task. Identifying molecular pathways, which are carried out by a series of
interactions among various proteins is even harder.

With the invention of the microarray technique, it became possible to screen the activity
levels of genes in a cell under certain conditions. Outputs of microarray experiments are
datasets that specify the activity levels of genes in the cells under different conditions. Re-
cently, various methods have been developed to analyze outputs of microarray experiments.
Most methods are based on the idea of clustering genes that show similar expression pat-
terns, Clustering results often yield valuable information and they help us discover genes
that are expressed together. They are useful in identifying the genes, which are responsible
for a certain condition in the cell {for example, a genetic disorder).

On the other hand, results from clustering are often hard to interpret. This is mainly
because the assumption that genes, which show similar expression profiles belong to the
same molecular pathway is a relaxed one. Biological expertise is needed to interpret the
clustering results. Alternatively, it is possible to refine the results computationally by
incorporating other biological facts. For example, known protein interactions and protein
functions can be used to improve the clustering results. This thesis focuses on integrating
protein-protein interactions, domain-domain interaction rules with microarray expression

profiles to refine the clustering results. Before introducing our approach, the following
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sections introduce background information about protein-protein interactions, domains of

proteins and microarray experiments.

1.1 Background Information

1.1.1 Protein Interactions

Structural and chemical bindings between proteins are called protein interactions. As a
result of an interaction between two proteins, one of the interacting partners may become
active, phosphorylated, degraded, etc. (Figure 1.1). Interactions occur by binding of two

proteins to each other via special sites, called interfaces.

Figure 1.1: Proteins interact with structural binding [60].

The binding of two protein molecules is one of the basic mechanism of carrying signals
through biological pathways in cells. Biological pathways can be defined as a chain of
events in the cell that occur in a specific order and responsible for a biological process.
Understanding the mechanisms behind protein interactions is crucial in deciphering the
underlying complex biological pathways of cells.

Identifying protein interactions among the proteins of an organism can be done in various
ways. There exists a number of laboratory experiments used for this task. Yeast two-hybrid
method is the major high throughput technique, by which the interactions between proteins
are identified. In this elegant technique, a special yeast protein complex that starts the

protein synthesis of a reporter gene is divided into two parts: activating domain and the
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Repditer

Figure 1.2: Yeast two-hybrid system [59)].

binding domain. This special protein complex can not start the protein synthesis unless
the two domains come together. Let protein X and protein Y be two proteins that are
suspected to interact (Figure 1.2). Protein X is fused to the binding domain and protein Y
to the activation domain. If proteins X and Y interact, then binding domain and activation
domain of the protein complex come together and synthesis of the reporter gene is started.
If they do not interact, reporter gene can not be synthesized. Finally, by observing the

protein product of the reporter gene, interaction between proteins X and Y can be verified.

1.1.2 Domains of Proteins

As a result of the structural and biochemical evidence, traditional belief that proteins are
simply polypeptides is not adequate to describe some proteins. It was indeed shown that
different regions along a single polypeptide chain can act as independent units. When
excised from the polypeptide chain, these regions can still fold correctly and can often
exhibit their biological characteristics. These independent regions along the polypeptide
chains are called the domains of proteins.

Domains are regarded as the basic units of proteins and are associated to protein func-
tion, folding, and evolution [16]. From the structural point of view, a domain is any part
of a polypeptide which, when folded, creates its own hydrophobic core. From the func-
tional genomics point of view, domains are regions, which are conserved in evolution during

recombination events.
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CONTRACTED

b

Figure 1.3: a. Nerve cell [57], b. Muscle cell [58].

It is important to decompose protein interactions into interactions between domains of

proteins, because interactions between proteins often occur between domains.

1.1.8 Gene Ezpression

Genes are specific regions on DNA molecules. All the protein molecules in an organism
are encoded by DNA and different genes are synthesized to different proteins. Encoding of
the genes to proteins is carried out by a process known as protein synthesis (Figure 1.4).
Proteins are synthesized in the cell in three main steps. First DNA is ¢ranscribed into
mRNASs in the nucleus, and then mRNAs are translated into proteins in special structures
called the ribosomes.

Any cell of an organism carries all of the genes that are specific to that organism?!.
However, in highly developed organisms such as animals, not all the cells look like the same
and have the same function. This is because of different proteins synthesized in different
cells and different biological pathways taking place. For example, muscle cells are specialized
in contracting-relaxing and their shape is round. On the other hand, functions of nerve cells
are different and they have a long axon and a head at the end of the axon (Figure 1.3).

Difference between these two types of cells is because of different gene ezpression mech-
anisms. This means that some genes, which give the nerve cell its characteristics, are kept
off in the muscle cell, and they are kept on in the nerve cell. This regulation of the genes

is called the gene expression mechanism.

1Except some special cells, which do not carry any genetic material.
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l ‘Transcription

l Translation

Figure 1.4: Steps of protein synthesis.

1.1.4 DNA Microarroys

Microarrays are used to monitor the gene expression profile of a cell at a given state of the
cell by measuring the amount of mRNAs present in the cells. If a gene is expressed, then
its mRNA should be present in the cell. Furthermore, concentration levels of the mRNAs
of corresponding genes gives us an idea about how much the genes are expressed.

A DNA microarray consists of an orderly arrangement of DNA fragments representing
the genes of an organism [55]. Basic idea behind microarrays is to put a part of the sequences
of the genes of an organism on a special chip, then to Aybridize’ these sequences with
pre-synthesized cDNA3 sequences. When comparing two cells, mRNAs from the cells are
converted to cDNAs, which are then labelled with green-fluorescing dye and red-fluorescing
dye separately. Then, cDNAs from both cells are hybridized on the same chip. After
scanning of the array with laser, the color of the cell, whose gene is expressed more, will
be dominant at a given spot. A green spot means that the gene was expressed more in
the first cell and a red spot means that the gene was expressed more in the second cell.
A yellow spot, which is the result of same amount of red and green labeled cDNA means
that the corresponding gene is expressed in both cells. Finally, a black spot is the result of

no hybridization, which means that gene was not expressed in both cells. A more detailed

*Hybridization: The process by which cDNAs bind to the sequences on the microarray chip.
3cDNA: Single strand DNA molecule; complementary sequence of mRNA.
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Figure 1.5: DNA Microarray image after hybridization and scanning [61].

Table 1.1: Microarray data format.

Ezperiment 1 | Ezperiment 2 Ezperiment m
Gene 1 0.1 04 -0.6
Gene 2 0.6 0.7 0.2
Gene n -0.9 -0.8 0.3

explanation of the procedure can be found in Appendix B.

Finally, light intensities of the spots, which represent the expression levels of genes are
converted to numbers. Usually, data from multiple microarray experiments (as shown in
Figure 1.5) are gathered into a single table. This table contains numbers representing the
expression levels of the genes. Assume that m types of cells with n genes were examined.
Then data for these experiments are stored as a matrix where the cell a;; stores the ex-
pression level of ith gene in the jth sample. Table 1.1 shows an illustration of such data.
Further normalizations and adjustments can be done over the raw data extracted from the

chip. For example, expression values can be log-normalized because the light intensities can

vary much.
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1.2 Thesis Contribution

Integrating information from various sources into a common framework to infer new knowl-
edge is a common paradigm in bioinformatics. This is because there is a high amount of
biological data, but the connection between the data is rather loose. In order to extract
valuable information from the data, often one needs to unite various sources of data. Data
mining and machine learning methods proved successful to extract information from huge
data sets however, heuristic methods are also used.

In this thesis, two methods focused on identifying protein-protein interactions and mem-
ber proteins of molecular pathways from various kinds of biological data are explained. In
Chapter 3, a method is presented, which uses a data mining technique called association
rule mining to extract knowledge from protein-protein interaction data and domain decom-
positions of proteins. The ultimate aim of this method is to predict new protein-protein
interactions by using the association rules derived from protein interaction data and domain
data. The method outputs a set of rules that indicate the likelihood of interactions between
proteins by looking at their domain decompositions. This method is first used as a primary
method to predict interactions between proteins. Then, results from this study is used as
input to the second method developed.

Identifying molecular pathways using gene expression data is another challenging task.
In Chapter 4, a method (UDIM) is presented, which uses gene expression data, protein
interaction data and domain decompositions of proteins to discover member proteins of
biological pathways. Domain-domain interaction rules from the association rule mining
raethod is integrated into an existing method by Segal et al. [27] (UPIM), which uses gene
expression and protein interaction data. The motivation behind this integration is the
assumption that when two proteins interact, interaction often takes place between domains
of proteins and proteins often show similar gene expression profiles. This method is based
on probabilistic models. Gene expression data is modeled by a probabilistic model, and
then this model is integrated into a second probabilistic model that models the protein
interaction data, which results in a unified model. Our contribution was to integrate the
results of the association rule mining method into this framework.

Finally, a parallel implementation of UDIM is presented in Chapter 5. Because the model

uses EM algorithm to learn model parameters, running until convergence takes considerable
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time in order of hours. Heavy computation is at the inference part of the algorithm, where
belief propagation algorithm is executed to run approximate inference over the graphical
model. A graph partitioning tool is used to partition the protein interaction network so

that the load is balanced and the communication is minimized among the processors.
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Chapter 2

RELATED WORK

Inferring knowledge from biological data is one of the challenges of bioinformatics. Some
of the studies in the field focused on predicting protein-protein interactions. Others include
studies on predicting biological pathways by identifying a network of protein interactions.
There are also studies on extracting domain-domain interactions using protein-protein in-
teractions. The methods used to solve problems are diverse. Data mining and machine
learning methods proved successful to extract information from huge data sets however,
heuristic methods were also used. This section gives a brief survey of these studies.

The task of protein-protein interaction prediction is studied very often. Oyama et al. [29]
used association rule mining on protein-protein interaction data. They used the yeast
protein-protein interaction data from the MIPS [14] and YPD [15] databases, along with
different features of proteins like domains, motifs and localization data from other resources.
Then, they used association rule mining to extract knowledge such as “if a protein has a set
of features a and another protein has a set of features 3, interaction between these proteins
can occur according to some dependability parameters”. Resulting association rules often
agreed with the existing biological evidence.

Bock et al. [30] studied predicting protein-protein interactions directly from the pri-
mary structure of proteins and associated data. They used a diverse database of known
protein-protein interactions (DIP [11]) to train a support vector machine (SVM) learning
system for recognizing and predicting protein-protein interactions based solely on primary
structure and associated physiochemical properties. Interaction data was divided into two,
as training and test data. For each amino acid sequence of a protein complex, they as-
sembled feature vectors from encoded representations of tabulated amino acid properties
such as charge, hydrophobicity and surface tension. Their argument was: since sequentially
proximal protein secondary structure elements are often co-located in three dimensional

structures, sequential profile of these additional features {charge, surface tension) must also
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co-locate upon folding. Resulting system was successful up to 80% of inductive accuracy
when tested against the test data.

Gomesz et al. [33] also studied predicting protein-protein interactions from sequences of
proteins. In their work, they describe an attraction-repulsion model, in which the interaction
between a pair of proteins is represented as the sum of atiractive and repulsive forces
agsociated with small, domain- or motif-sized features along the length of each protein. Their
model assumes that the evolutionary conserved features within each protein are responsible
for interactions. This assumption of evolutionary redundancy implies that features that
have predictive value for a portion of a large network will also have predictive value in
the unknown part of the same network. Results of the study showed that the attraction-
repulsion model with features extracted from Pfam performed slightly better than the SVM
approach.

Ng et al. [32] also worked on inferring protein-protein interactions in silics. Their ar-
gument was that since protein-protein interactions involved physical interactions between
protein domains, domain-domain interaction information can be useful for validating, anno-
tating and even predicting protein-protein interactions. They present a method to compu-
tationally derive putative domain-domain interactions from multiple data sources, including
protein interaction data, protein complexes and Rosetta Stone! sequences. They applied
their resulting domain-domain interactions to validate and predict protein-protein interac-
tions.

Jansen et al. [34] worked on integrating protein interaction information from various data,
sources to evaluate protein-protein interactions. They proposed a Bayesian approach for
integrating interaction information that allows for the probabilistic combination of multiple
data sets and demonstrated its application to yeast. Basic idea of this method was to
assess each source of evidence for interactions by comparing it against samples of known
positives and negatives, yielding a statistical reliability. Then, extrapolating genome-wide,
they predicted the chance of possible interactions for every protein pair by combining each
independent evidence source according to its reliability. They verified their predictions by
comparing them against experimental data and TAP (tandem affinity purification) tagging

experiments.

!Common sequences in interacting proteins.
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On the other hand, some studies focused on information extraction from text sources.
Ono et al. [31] present a method to extract protein-protein interactions from scientific lit-
erature. This method, which employs a protein name dictionary, surface clues on word
patterns and simple part-of-speech rules, achieved high precision rates for yeast and E. coli.
According to this method, first protein names are identified, which is done by using a dictio-
nary of manually constructed protein names. The process of name identification is based on
pattern matching between dictionary entries and words in sentences. Then, sentences which
are reported to report information about two proteins are parsed with simple part-of-speech
rules. Resulting information is evaluated by simple recall and precision measures.

Husmeier et at. [35] worked on applying Bayesian networks to infer protein interac-
tions from gene expression data. Their aim was to measure the sensitivity of inferring
genetic regulatory networks from microarray experiments with Bayesian networks. First,
they simulated gene expression data from a realistic biological network. Then, they inferred
interaction networks from this data in a reverse engineering approach, using Bayesian net-
works and Bayesian learning with Markov chain Monte Carlo. Results demonstrated how
the network inference performance varies with the training set size, degree of inadequacy of
prior assumptions, experimental sampling strategy and inclusion of further sequence-based
information.

Nakaya et al. [36] worked on extracting correlated gene clusters by comparing multiple
graphs derived from various genomic data sources. They first encoded the relationships
among the genes according to each data type as a graphical structure, whose nodes cor-
respond to genes. Their purpose was to find out gene groupings, which are correlated in
all data sets. Gene sets, which show similarity in each graph would be biologically related
with a high probability. Problem of finding correlated gene clusters was then formalized
as a subgraph isomorphism problem, which required special graph algorithms. Using their
method, they identified correlated gene clusters in E. coli. They also analyzed S. cerevisige
protein interactions and gene expression profiles with the same method, which yielded 16
putative interactions.

Vert et al. [37] worked on extracting features from microarray data, based on the knowl-
edge of a graph which links genes known to participate in interactions of metabolic pathways.
Motivation behind the study was that the biologically relevant features are likely to exhibit
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coherence with respect to a graph topelogy. Their algorithm involved encoding the graph
and the set of gene expression profiles into kernel functions, and performing a generalized
form of canonical correlation analysis. After extracting the features, they used them as an
input to a state-of-the-art classifier and observed improvements with S. cerevisiae genes.
They made the classifier use the vector of features instead of a vector of gene expression
profiles to predict the functional class of a gene.

Yamanishi et al. [38] studied the extraction of correlated gene clusters from multiple
genomic data such as gene expression, protein-protein interaction data and phylogenetic
profiles. As a first step, they investigated the amount of correlation between these data
sets. They extended the concept of correlation for non-vectorial data, which was possible
by the use of generalized kernel canonical correlation analysis (KCCA). They proposed a
method to extract groups of genes, which are responsible for detected correlations. In an-
other study [43], they addressed the problem of inferring protein network of an organism
from multiple data sources. Based on a variant of KCCA, they incorporated heterogeneous
genomic data into a supervised learning framework to predict the protein interaction net-
work of S. cerevisice. They used four types of genomic data: gene expression profiles from
microarray experiments, protein-protein interactions identified by yeast two-hybrid exper-
iments, protein localizations in the cell and phylogenetic profiles of proteins. They made
experiments with both supervised and unsupervised approaches. They showed that the
supervised approach, in which a part of the information from the actual protein interaction
network is used, yielded the best results.

Letovsky et al. [39] worked on predicting protein function from protein-protein interac-
tion data using probabilistic methods. Their method assigned functions to proteins based
on probabilistic analysis of graph neighborhoods in a protein-protein interaction network.
They exploited the fact that neighboring nodes in the graph are more likely to share func-
tions than the nodes which are not neighbors. They combined the protein interaction data
with Gene Outology (GO) [26] database to assign proteins different GO terms. They used
a binomial model of local neighbor function labeling probability, combined with a Markov
random field - belief propagation algorithm to assign functions to proteins. As a result, the
method verified the known GO term assignments and it also assigned functions to 10% of
the yeast proteins that lack GO term annotation.
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Deng et al. [40] worked on combining protein function data and protein-protein interac-
tion data to predict the function for unknown proteins. They also used a Markov random
field model for the prediction of yeast protein functions based on multiple protein-protein
interaction databases. Then they compared their prediction results with GO database to
measure the efficiency of their method. They used a leave-one-out validation scheme for
testing, which resulted in a 52% precision.

Nye et al. [41] studied statistical analysis of domains in interacting protein pairs. Their
purpose was first, to combine protein-protein interaction data with individual domain de-
compositions of proteins in order to learn about the structure of interacting protein pairs;
and second, to assess the evidence for physical contacts between domains in a statistical way.
They assigned statistical values to pairs of domain super-families to measure the strength
of evidence that domains from these super-families play role in interactions. Super-families
of domains were created by grouping homologous domains into individual families. Using

this method, they predicted domain-domain contacts in 705 protein interactions.

Analyzing gene expression data is a challenging task. Often, clustering methods, which
group the genes that show similar expression profiles have proved successful in some extent.

Eisen et al. [44] used hierarchical clustering to group the co-expressed genes into same
clusters. Their results proved that in S, cerevisiae, clustering gene expression data groups
together genes of known similar function. Resulting argument was that the patterns seen
in genome-wide expression experiments can be interpreted as indications of the status of
cellular processes. Similar studies on clustering gene expression data followed [45, 46, 47|
and different clustering methods have been widely applied to gene expression data. Self
organizing maps [48] and Bayesian infinite Gaussian mixture models [49] are two exam-
ples. Going further, some studies focused on co-clustering different gene expression data
sets together to fill the information gaps [50]. Supervised methods that use information
resources other than the gene expression data were developed to aid the clustering process.
Robinson et al. [51] and Adryan et al. [52] used the GO database [26] to refine clustering
results. Adryan et al. [52] worked on co-clustering gene expression data and protein-protein
interaction data. They adapted custom distance functions derived from both data sets and
used hierarchical clustering as the clustering method. Segal et al. [27] also used the protein-

protein interaction data to refine the results from gene expression data clustering. They
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developed a unified probabilistic model, which integrates gene expression data with protein
interaction data. They trained this model using EM algorithm.

For the parallelization of belief propagation algorithm, Hong et al. [54] worked on a
parallel approach on evidence combination on qualitative Markov trees. They transformed
the Markov tree to a binary tree, and then they clustered the binary free into different
clusters so that the work load is balanced among the processors. As a result, they observed
a speed-up of 2.3 on 4 processors. They utilized exact belief propagation, which is used to

run inference over tree structured graphs.
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Chapter 3

PREDICTING DOMAIN-DOMAIN INTERACTIONS WITH
ASSOCIATION RULE MINING

With recent advances in modern biology and biotechnology, amount of biological data
keeps accumulating in unprecedented speed. It is extremely important to analyze such a
vast, and diverse collection of data to understand biological processes. Data mining is one of
the emerging areas to extract knowledge from large sets of data. In this section application
of association rule mining to the prediction of protein-protein interactions is discussed.

In this study, relationships between domains of proteins are studied. Proteins can be
characterized by combination of domains, and proteins interact with each other through
their domains to carry out biclogical functions. Using databases of protein-protein inter-
actions and databases of domain decompositions of profeins, it is possible to draw certain
relationships. For example, if one can conclude rules such as “proteins having domain z
generally interact with proteins having domain 3”, then this knowledge might help bioclo-
gists to interpret biological processes better, and predict unknown interactions as well. Next
sections give a summary of association rule mining technique, the method that is used to

adapt the protein interaction and domain data to association rule mining and the results.

3.1 Association Rule Mining

Association rule mining is a data mining technique, which was proposed in [19]. Tt has
emerged because of the need for extracting rules from the supermarket shopping basket
data. With the use of barcode system, data about shopping baskets became very easy to
collect and collection of shopping basket information accumulated in large databases. Such
databases include a set of transactions. Every transaction represents the shopping basket
of a customer, which simply includes a list of different items that are bought. Finding the
frequent item sets that occur in these transactions can help to determine the items that are

bought together by the customers. If such information is expressed in forms of rules, total
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number of items sold can be increased by taking appropriate actions (i.e. rearranging the
products accordingly).

An example association rule can be “If a customer has bought milk and cheese, she often
buys bread, too”. This rule expresses the association between the items that the customer
has bought. The rule states that considering some items a customer has bought, one can
be confident within a limit that this customer has also bought another specific item.

There are two standard criteria. that measure the dependability of association rules.

These measures are the support and confidence of association rules.

3.1.1 Support of Association Rules

Let T be the set of all transactions in a database, e.g. let T be the set of all shopping
basket records in a supermarket database. Support of an item set S is then the percentage
of transactions in 7', which contains §. In the supermarket example, this is the number
of shopping baskets which contain S = {milk, cheese} divided by the total number of
shopping baskets in 7. Let U/ denote the set of all transactions that contain §, then

support(S) = (|U|/|T|) + 100% (3.1)

where |U| and [T'| are the number of elements in U and T respectively. Finally, support of
an association rule is defined as the support of the item set that contains all the items that

appear in the rule.

3.1.2 Confidence of Association Rules

Confidence of an association rule is the second measure o assess the guality of an association
rule. For an association rule like X, Y — Z, confidence is defined as the support of all
items that appear in the rule divided by the support of the if part of the rule:

confidence (X, Y — Z) = (support ({X, Y, Z})/support ({X, Y})) «100%  (3.2)

In other words, confidence of an association rule is the percentage of the number of
cases where the rule is correct relative to the number of cagses where the rule is applicable.

For a rule like milk, cheese — bread, if a customer has bought milk and cheese, then the
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rule is applicable. If the customer has also bought bread, then the rule is correct for that
transaction.
Below is a sample database of transactions, where T = {7}, ...,T5} is the set of transac-

tions and I = {iy,...,47} is the set of distinct items that can appear in a typical transaction.

Ty = {iy, do, 43, 44}
Ty = {i1, iy, 43, is}
Ty = {ia, i3, 44}

Ty = {i1, iz, is, i7}

Ts = {i1, 2, i3}

An example association rule that can be extracted from this database is: 41, ég — i3.
For this rule, the support value is (3 + 5) * 100% = 60% and the confidence value is
(3 + 4) * 100% = 75%.

While mining databases of transactions for association rules, rules that have at least a
certain probability of being true are searched. For this, minimum support and confidence
parameters are given as input to the algorithm.

Finding association rules over a large database of transactions is time consuming. How-
ever, recent methods that use clever algorithms, efficient data structures and parallel algo-
rithms cope well with the problem. Both parallel and sequential efficient algorithms were

implemented.

3.2 Proposed Method

In this section our method is presented [28]. It adapts the protein-protein interaction data
and domain data to be used in association rule mining. First of all, format of the protein-
protein interaction data is not same as the supermarket basket data. Thus, layout of the
data should be modified to make it suitable to be used in association rule mining.

A database of supermarket basket data simply includes a list of transactions, in which
items per shopping basket are stored. However, interaction data, is different. FEvery interac-
tion involves two proteins, such as protein A and B. A typical protein interaction database
entry is like: A < B.
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On the other side, there are domain databases, where the information is stored like:
A = {d;, d;j, di,...}. This is to say that A is composed of the domains {d;, dj, d,...}.

Using this second database, which stores the domain decompositions of the proteins,
database of interacting proteins is converted to a format, where every protein is substituted
with its set of domains. After all of the interacting proteins are decomposed into their
domains, final protein interaction data entry looks like: {d;, d;, di...} <= {d, dp, dn,...}.
In this data, LHS and RHS of the <= declaration correspond to the set of domains for
proteins A and B, respectively.

Further, LHS and RHS of the above interactions should be collapsed into a single set in
order to make it applicable for association rule mining. However, it would be impossible to
interpret the output of the association rule miner if two sets are merged into one set. For
instance, assuming that the LHS and RHS of proteins A and B are merged into one set,
resulting transactions are such as: T' = {d;, d;, di, ...di, dm, dn}. If interaction data is given
to the association rule miner in this form, output rules will be like d;, d;,... = di, d;....
The problem is that it is impossible to identify which domain refers to which side of an
interaction in the original data. LHS and RHS information is eventually lost in such kind
of approach, which is not desirable.

Solution is to put tags on the domains, which make us able to differentiate between LHS
and RHS domains. After putting the tags, an interaction looks like:
{diz, dj1, dgr..} <= {dir, dmr, dng,..}. Now RHS and LHS of this interaction
can be collapsed, which results in: T = {diz, dji, dikr,--dir, dmg, dnr}. Then, when
interpreting rules like: d;r, d;r,... = dgz, dig..., it can be determined if the domains in the
LHS or RHS of the rule come from LHS or RHS of an interaction.

Once it is known which domain is a LHS domain and which is a RHS domain by locking
at the elements in the resulting rules, a final modification is to add the reverse of every
interaction to the set of interactions. This is because an interaction among two proteins is
not a directional relation and A <= B is the same as saying B < A. Also, results of
association rule miner can be biased in cases where some of the domains are often seen in
LHS of the interactions.

When this final form of data is given as an input to the association rule miner, various

types of rules are expected in the output. Let o and £ denote the set of domains that appear
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in the LHS and RHS of an association rule, respectively. Then, rules expected are in the
form: o — 8. Rules which have only LHS domains on one side and only RHS domains on
the other side and vice versa are the most meaningful ones, because they imply a rule that
involve the opposite sides of an interaction. Let these rules be type I rules. Finding such
rules enables us to make predictions like “if a protein has a domains and another protein

has 8 domains, they will probably interact”. These rules are described as:
a3B:acLHS& BcRHSora € RHS & B LHS

Another rule type can be the following (type II), where LHS and RHS of the interaction

is composed of the same kind of domains (i.e all LHS domains):
a—+B:acLHS & Bec LHSorac RHS & B € RHS

Third type (type II1) is more complex. Namely, at least one side of rules is composed of
different kinds of domains (i.e. left side of the rule is composed of LHS and RHS domains.)
Following is an example rule of this type, which is called as the composite rules.:

a—+B:0€ LHS & € LHS URHS

3.3 Protein - Protein Interaction Data Source

Protein interaction data from the DIP (Database of Interacting Proteins) database [11]
was used in this study. DIP is a database of experimentally determined protein-protein
interactions. The core of the database is composed of three relational database tables:
node table stores information about the proteins, edge table stores the interactions between
proteins and a third table stores the details of the experiments that were carried out to
identify the interactions. Most of the reported interactions were identified by yeast two-
hybrid studies. The database stores protein interaction information of more than 107 types

of organisms, but approximately 656% of these interactions are between yeast proteins.

3.4 Domain Data Source

Domain information from Pfam [17] database was used in this study. Pfam is a comprehen-

sive collection of protein domains and families, with a range of established uses including
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[687 residues]

Figure 3.1: A typical example of a protein and its domains according to Pfam database.

genome annotation. Pfam contains curated multiple sequence alignments for each protein
family, along with profile hidden Markov models for finding these domains in new sequences.
For each protein family in Pfam, it is possible to look at multiple alignments, view protein-
domain architectures, examine species distribution, follow links to other databases and view
known protein structures. Figure 3.1 shows an example protein and its domain decomposi-
tion, as showed in Pfam.

Pfam has two main parts: Pfam-A and Pfam-B. Pfam-A is the curated part of Pfam,
which consists of over 7459 protein families. All the protein families in Pfam-A has a
structural function associated with them. To give Pfam more comprehensive sequence
coverage, Pfam-B is automatically generated by using the ProDom [18] database, and is
updated monthly. The functionality for viewing the protein-domain architectures of Pfam
was used in this thesis, which is provided by a branch of Pfam called Swisspfam. Swisspfam
lists the domain decompositions of SWISSPROT /TrEMBL proteins.

3.5 Results and Discussion

23910 interactions were given to the association rule miner and various experiments were
carried out with varying support and confidence values. For the association rule miner,
an implementation [21] of Apriori [20] is used. As the support and confidence values get
more strict, number of rules found by the algorithm decreases. However, it is important to
decide on which support and confidence value pair gives the closest match to a set of rules,
which consists of valuable rules. For example, number of rules generated given a minimum
support of 0.1% and a minimum confidence of 10% is around 130,000, which is very high.
Indeed, when examined more closely, one can see that most of these rules are trivial and
their dependability measures are low. In order to find more meaningful rules, one should
increase the minimum support and confidence variables. However, then, there is the risk of

missing some valuable, but not so frequent rules. Figure 3.2 shows the change in number of
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Figure 3.2: a. Number of Rules vs. support, with fixed confidence. b. Number of Rules
vs. confidence, with fixed support. Change in confidence does not effect number of rules
much. However, as the support parameter gets higher, number of rules goes down rapidly.
¢. Number of Rules vs. support, with fixed confidence for type I rules. d. Number of Rules
vs. confidence, with fixed support for type I rules. For type I rules, effect of confidence
parameter on number of rules gets more important. However, support parameter still causes
more dramatic changes in number of rules.

rules with varying support and confidence parameters.

It is seen from the figures that the number of rules is gradually decreasing as the min-
imum support requirement is increased linearly. This observation is also true with the
minimum confidence value, but the figures prove that the support is a more constraining
variable than the confidence value. As the support increases linearly, a rapid decrease in
the number of rules is observed.

Still in the search for optimum support and confidence pair for our data, other conclu-
sions are drawn by looking at the rules. For example, looking at the number of compos-

ite rules may give us an idea about the dependability of the resulting rules. Composite
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rules, by their nature, contain both RHS and LHS domains in either side of the rule. Al-
though composite rules were observed, it is hard to associate a biologically meaningful
explanation for such rules. A careful look at the data, however, leads to an explana-
tion. Assume that the rules L; — R; and L; — R;Ry have been already produced.
Then the algorithm will produce L R; — Ry as well since the following is always true:
support(L1) > support(L1R;) > support(Li1Ri1Ry). It was observed that the number of
composite rules also gradually decreases with increasing support and confidence require-
ments. In our experiments, it was observed that beyond 0.2% support and 20% confidence,
these rules totally disappeared from the resulting rule sets.

Following are two of the rules that were detected by association rule mining method:

proteasome —» proteasome, support: 0.3%, confidence: 46.5%
pkinase — cyclin, support: 0.2%, confidence: 34.0%

The domain named proteasome of the first rule is the Proteasome A-type and B-type
domain annotated in Pfam. It is claimed that members of this domain form a large ring
based complex, which verifies that proteins that contain this domain interact with each
other. Second rule, on the other hand, is related with two distinct domains: cyclin, which
is the N-terminal domain and pkinase, which is the protein kinase domain. It is mentioned
in Pfam that cyclins regulate the cell division in eukaryotes and protein kinases form a
complex with them. Tables 3.1 and 3.2 show some of the other rules that were discovered
by the method.
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Table 3.1: Some of the rules identified in association rule mining.

Rule Support Confidence
IL8 — Ttm1 0.3% 92.0%
SH3 — SH3 0.3% 16.6%
HLH — HLH 0.2% 55.9%
Glyco_transf 20 —» Glyco_transf 20  0.2% 54.5%
ig — ig 0.2% 43.4%
WD40 — cpn60_TCP1 0.2% 33.1%
AAA — AAA 0.2% 19.1%
Glyco_transf 20 —» Trehalose PPase 0.1% 83.3%
TNFRc6 — TNF 0.1% 65.2%
Sm — Ribosomal §28e 0.1% 53.6%
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Table 3.2: Annotations of the domains involved in the rules listed in Table 3.1.

Pfam Accession Domain Name

Annotation

PF00001
PF00048

PF00018
PF00982
PF00010
PF00047
PF00400
PF00118
PF00004

PF01423
PF01200
PF00229
PF00020
PF02358

7tm_1
1.8

SH3
Glyco.transf 20
HLH

ig

WD40
cpn60_-TCP1
AAA

Sm

Ribosomal S28e
TNF

TNFR.c6
Trehalose_PPase

7 transmembrane receptor {rhodopsin family)
Small cytokines (intecrine/chemokine),
interleukin-8 like

SH3 domain

Glycosyltransferase family 20

Helix-loop-helix DNA-binding domain
Immunoglobulin domain

WD domain, G-beta repeat 11-49 74-113 158-195
TCP-1/cpn60 chaperonin family

ATPase family associated with various cellular
activities

Sm protein

Ribosomal protein S28e

TNF(Tumor Necrosis Factor) family
TNFR/NGFR cysteine-rich region
Trehalose-phosphatase
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Chapter 4

INTEGRATING DOMAIN-DOMAIN INTERACTIONS WITH
MICROARRAY DATA

In order to refine the gene expression clustering results, domain-domain interaction
rules from the study in Chapter 3 is integrated into a method that takes gene expression
and protein interaction data as input. The motivation behind this integration is based on
protein interactions. When two proteins interact, usually there is a physical interaction
between their domains. If two proteins have domains that are likely to interact, they are
also expected to show similar gene expression profiles. This additional information is used
to improve on the results of gene expression data clustering,.

Integrating domain-domain interaction prediction rules with microarray data is based
on UPIM [27], which integrates protein interaction and microarray data. Next section
first describes this method. Then, our method (UDIM), which integrates domain-domain

interaction rules into UPIM, is presented.

4.1 Gene Expression - Protein Interaction Model

This section introduces UPIM. The method relies on the assumption that genes which are
the members of the same molecular pathway often show similar expression profiles and their
protein products often interact. The model unifies two independent probabilistic models;
one for gene expression data and the other for protein-protein interaction data.

The unified model defines a joint probability distribution over n genes: G = {g1, ...,gn }-
The model assumes that every gene belongs to one of the & pathways. Every g; is associated
with a discrete random variable ¢;.C € {1, ...,k}. ¢;.C = j means that gene g; is assigned
to pathway j. Since it is not observed which gene is assigned to which pathway in the data,
variables g,.C, ..., gn.C are hidden variables and determining values of them are one of the

main goals of this method.
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4.1.1 Gene Expression Model

For modeling the gene expression data, Naive Bayes classifier is used. Naive Bayes classi-
fiers are mostly used in classification problems such as text classification. In Naive Bayes
classifier, there is a set of instances with several attributes and each instance belongs to one
of the disjoint classes. Detailed information about Naive Bayes classifiers can be found in
Appendix C.

For the case of gene expression data, instances are the genes and attributes are the
experiments. There are n genes and a gene has m continuous valued attributes, which are
the expression levels of that gene in m experiments. Attribute set of a gene is denoted
by the vector g.E = {g.E1,...,g.En}, where g.E; represents the gene expression level of
the gene in jth experiment. Hypotheses searched for are the separation of n genes into k
disjoint classes.

Naive Bayes model defines a joint distribution over pathway assignment variables g.C
and experiment values g.E as the following (assuming that the expression levels of genes in

different experiments are conditionally independent given the pathway assignments):

P(g.C\g.Ey, ., 9.Em) = P(g.C) [ | P(9.E;19.C). (4.1)
=1

Random variable g.C is distributed as a multinomial distribution which is parameterized
by the vector § = {6, ...,0;} where all 6;’s sum to 1 and P(g.C = p) = .

Each conditional probability distribution (CPDs) P(g.E;|g.C) is modeled by a normal
distribution N (ijﬂgj), where pp; is the mean of the normal distribution given that the

gene is assigned to pathway p and the experiment modeled is the jth experiment.

4.1.2  Protein Interaction Model

Protein interaction model is built so that the interacting proteins assigned to the same
pathway. The model uses a probabilistic model which is known as Markov networks [5].
Detailed information about Markov networks can be found in Appendix E.

Let V = {Vi,..., V;,} be a set of discrete random variables, then a Markov network defines
a joint distribution P(V). The model can be represented with an undirected graph whose

nodes correspond to variables in V. Edges in the graph, which are denoted with ¢ represent
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direct probabilistic relationships between the variables. Each variable V; in V is assumed to
be a clique and is associated with a clique potential ¢;(V;). Likewise, each edge [V;-V;] € ¢
is associated with a non-negative compatibility potential ¢;;(V;,V;). The joint distribution

is then defined as follows:

n

TURATRES | PYCAIN | PV A ) (42)
=1 Vi-Vilee

where Z is the normalization factor required to make the distribution sum to 1. Intuitively

speaking, ¢;{V;) is the probability of different assignments to the variable, ignoring the

underlying relational connections (edges) between the variables (nodes) in V. This can also

be called the local belief at node V;. On the other hand ¢; ;(V;, V;) specifies how compatible

are the two assignments of V;, V; are.

In the case of protein interactions, nodes of the graph correspond to proteins and the
edges correspond to the interactions between the proteins. Every protein has an associated
random variable V;, which is the discrete random variable that identifies the pathway as-
signment of ith protein. Since for every protein, the V; random variable comes from the
same type of distribution, it suffices to define ¢:(V;) and ¢2(V;, V;). Furthermore, since pro-
teins correspond to genes, variables in V' correspond to the pathway assignment variables
g1-C, ..., gn.C of the genes.

The model implements the intuition that if two genes g; and g; interact, it is likely that
they play role in the same biological process, so they are assigned to the same pathway.
The compatibility potential function ¢2(g;.C = p,g;.C = q) promotes the cases that the
two arguments (genes) are assigned to the same pathway. So, its value is higher if p = ¢
and lower otherwise. Compatibility potential function is defined as follows:

#2 (9:-C =p,9;.C =¢q) = { @ ifp=q, } (4.3)

1 otherwise

where [g; — gj] € € and @ > 1. When a = 1, the compatibility potential function has no
effect over the joint distribution P(g;.C, ..., ¢,.C). As it gets greater, the influence will be
greater and the model will promote the cases where interacting proteins are in the same

pathway.
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4.1.83  Unified Model

Unified model is constructed by integrating the gene expression model into protein in-
teraction model. This is accomplished by using the g;.C variables that are common to
both models. Note that given the expression data and conditional probability distributions
(CPDs) in the gene expression model, one can calculate the probability of a single gene to
belong to a specific pathway, independent from the other genes. This probability is used as
the node potential function in the protein interaction model.

Resulting model is a partially directed model with interactions specifying the undirected
edges and the gene expression values specifying the directed edges. In this model, there are
m~+1 random variables for each of the genes: one g;.C variable, plus m random variables for
gi-Ej, where j = {1,...,m}. The variable g;.C is controlled by a multinomial distribution
with parameters § = {fy,...,6;}. Additionally, there are k *x m CPDs P(g;.E;|g;.C = p),
which are controlled by normal distributions N (up;, of,j). Final component of the model is
the compatibility potential function ¢3(g;.C = p,g;.C = q), which is only defined for the
pair of genes that are connected via an edge in the interaction network. The model defines

a joint distribution over the random variables as follows:

P(G.C,G.Ele) =

—-Zl- [ P@-c) ][ Plg-Eilg:.C)

=1 g=1 (4"4)

H ¢‘Z(gz'Cv g,’l-C) ’

lgi—g;l€e

where Z is the normalization constant as to make the distribution sum to 1 and ¢ is the
interactions between genes.

Finally, one should remember that protein interaction model trivially assigns all proteins
to same pathway as long as the protein interaction network is connected. This is because
the model promotes the case that all the interacting proteins are assigned to the same
pathway. Figure 4.1 shows three different pathway assignments. If gene expression data
is not incorporated, then the situation in Figure 4.1.b is the most probable one. However,

once the gene expression data is integrated, this case is no more the most probable one.
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Figure 4.1: Different assignments of proteins to pathways. If the interaction model is used
without integrating gene expression data, the situation in b is most probable, and the
situation c¢ in is least probable.

4.1.4 Training the Model

After the model is set, it is trained with the gene expression and protein interaction data
to learn the values of parameters. The major issue in training is that the g;.C variables
are hidden variables. This is because there is no observation in the data of which gene is
assigned to which pathway. Values of these parameters are learned at the same time with
the values of observed random variables.

Following parameters are o be learned: G.C = {9,.C, ..., g1.C}, N{ip;, agj), and multi-
nomial cocfficients & = {8, ...,6;}. There is an additional parameter ¢, which parameterizes
the compatibility potential function, however since it is given to the model directly, it is not
learned in the training process. Let all this parameters be in set ©. Besides, let D be the
data set that contains the protein interactions ¢, and the gene expression data.

Since the assignments of G.C variables to pathways are not observed in the data, likeli-
hood function P(D)|©) does not have a unique local maxima. In case of unobserved variables,
there are various ways to learn model parameters. Gradient descent, Monte-Carlo simula-
tions and EM algorithm are some of these methods. Here the EM algorithm [9] is chosen.
Detailed information about EM algorithm is given in Appendix D.

EM algorithm iterates in two steps. In the estimation step (E-Step), it uses the current
estimate of the parameters to compute the distribution over hidden variables, given ob-

served data. In this case, probabilistic inference is used to calculate marginal probabilities
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P(G.C|D,0(-1). Since it is infeasible to calculate marginal probabilities exactly, belief
propagation, which is an approximate inference algorithm, is used.
In the maximization step (M-Step), model parameters are re-calculated to maximize the

likelihood of the data. Following formulas are used in this step. Let

q(9,p) = P(g.C =p|D,0(t 1)) ; Npy=) alg:p);

=€ (4.5)
zlp; = Z a(g,p)-g.€; ; x%= Z qlg, p).g.e?.
geG geG

Then the parameters are re-estimated according to the equations below:

M Ty 02.:@_u2.. (4.6)
b4 zzzlm ? 12 Ny ! 12 Np {4]

Belief Propagation Algorithm

BP algorithm is based on passing messages among the nodes of a network. In BP algorithm,
there are variables such as mq;j(z;), which can be defined as the message going from node
i to node j, about what state node j should be in. This message is a vector of the same
dimensionalify as the random variable z;. In this vector, each dimension measures the
likelihood of node x; being in a different state. Belief at node { is calculated as the product
of messages coming to that node from its neighbors and the local evidence ¢;{z;) on that

node:

bi(zi) = ki(m) ] mii(ms). (4.7)
JEN(3)
Messages are calculated by the following message update rules:

mj(z;) < > dilzii(zos) [] mule), (4.8)

REN(NG
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Figure 4.2: Graphical illustration of message update rule: mgi(z;)
> a; 9i(i)¥i; (@i 75) ke wn; mai(zi). To caleulate the message from node i to node j,
messages coming into node ¢ are multiplied with the local belief at node ¢ and summed
over all gtates of z;.

where k£ € N(i)\j means neighbors of node i except node j. Figure 4.2 illustrates this
calculation scheme. In our setting of protein interactions, #;; corresponds to the edge
compatibility function ¢2(g;.C, g;.C) and b;(z;) corresponds to P(g;.C|g.E).

Appendix E covers a proof that the message update rules give the beliefs that are exact

if there are no loops in the graph [12].

Loopy Belief Propagation Algorithm

BP algorithm, as explained above works only for undirected graphs with no loops. Beliefs
are calculated by propagating messages from a root node down to leaves in a single iteration.
However, in a graph with loops, BP is not guaranteed to converge. On the other hand, it
was experimentally proven successful in some applications [13] and was concluded that BP
did converge to good approximations in many cases. Since then, BP has successfully been
applied to many problems in machine learning and computer vision. Algorithm 1 illustrates

this scheme.

4.2 Integrating Domain-domain Interaction Rules into the UPIM

This section introduces our method {(UDIM), which integrates domain-domain interaction
rules into UPIM. In case of the protein-protein interaction and gene expression data model,

there is a network of proteins which can be represented as an undirected graph. In order
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Algorithm 1 LoopyBP()
1: Let £ be the set of edges in the undirected belief network

2: Initialize the messages m{;(z;) for all (i, ) € &

3: for t = 1,2, ...until convergence do

&

Update mf;(z;) by using m;*(z;) for all (i) € ¢ and k € N(3).

5: end for

[=>]

: Update all beliefs b;(x;) using equation 4.7

to integrate the domain-domain interaction rules data into the model, this graph structure
is altered. However, since interaction between two domains is defined by association rules,
which depend on support and confidence parameters, edges in the interaction network are
assigned weights by using a weight calculation algorithm.

Weights in the new interaction network depend on the number of domain-domain inter-
action rules among the proteins and the support parameters of the rules that imply these
interactions.

Let A and B be two proteins. Edge weight among these proteins are determined using
Algorithm 2.

Algorithm 2 CALCULATE WEIGHT ( P4, Pg )
1: Let D4 and Dp be the sets of domains of proteins P4 and Pp, respectively.

2: Let A be the database of association rules
3: Let W be the edge weight

4 W0

5: for all dy € D4 do

6: for all sg € subsets of Dg do

7: Let R be the association rule such that R: d4 — sp
8 if A contains R then

g: W < W+ Support of R
10: end if

11: end for

12: end for
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The algorithm takes two proteins P4 and Pg as an argument. Then, it generates all
possible association rules that can be created by using domains of P4 and Pg. Since the
association rules are in the form: d; — dj,dy,... where d;,d;,d;, are particular domains,
domains of P4 are taken as the single domain (d;) on LHS and domains of Pp are used to
generate all possible subsets that can be taken as RHS (d;,dy, ...) of the association rule.
Note that this algorithm only considers the association rules where LHS of the rule comes
from Pa. So, the algorithm is run two times, exchanging order of the arguments P4 and
Ppg. Finally, weights that come from this two calculations are added up and assigned to the
weight of the edge between P4 and Pg.

Weight calculation is done for all pairs of proteins and the pairs whose weights are
assigned a non-zero value are connected with an edge and assigned the calculated weight.

Algorithm 3 summarizes this procedure.

Algorithm 3 CREATE INTERACTION GRAPH (T : list of proteins )
1: Let ¢ be data structure that stores the lists of interactions among the proteins

2 <0

3:fori=0;i<|T|;4++ do

4:  Let P; be the ith protein in T’

5 forj=i+1;j<|T;j++ do

6: Let P; be the jth protein in T

7: W«

CALCULATE WEIGHT (F;, P;) + CALCULATE WEIGHT (P}, P)

8 if W > 0 then

9: insert ¢ edge [P; — P;] with weight W
10 end if
11:  end for

12: end for

After running the CREATE INTERACTION GRAPH algorithm, a new interaction
graph of weighted edges is obtained.

Existing model is modified to accept this weighted graph. The modification is done
to the edge compatibility function of the interaction model &;; (Equation 4.3). Original
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interaction model used a fixed parameter ¢ for specifying the ®; ; function, which generated
the same outputs for all protein interactions. If both interacting proteins were placed in
the same pathway, output of ®; ; was a and if they are placed in different pathways, output
was 1.

Here, this function is modified so that it outputs different values for the interactions
between different pairs of proteins. For this, weights calculated by the CALCULATE
WEIGHT (Algorithm 2) are used. Also an alternative protein interaction graph, which
is constructed by using the CREATE INTERACTION GRAPH (Algorithm 3) is used in-

stead of using the original protein-protein interaction data.

4.3 Results

Experiments were made with three methods: First, k-means algorithm was used to cluster
gene expression data. Then, UPIM was run on the same gene expression data with inte-
grating protein-protein interaction data. Finally, UDIM, which integrates domain-domain
interaction rules was run. Resulting clusters were compared using different metrics.

The same data set that was used in [27] is used in the experiments. This is the S. cere-
visiae gene expression dataset of 173 microarrays, measuring the responses of cells to various
stress conditions [1]. For the protein interaction data, DIP [11] dataset was used.

Experiments were carried out for 3587 genes, fixing the number of pathways to be learned
t0 60, which was the number of pathways aimed in [27]. The reason for choosing the number
of pathways as 60 is to be able to compare the results from this study and the results from
UPIM. Although DIP database gained in volume recently, an older version of DIP was used
because of the same reason. This older version contained 10142 interactions among the 3587
genes that was studied.

Quality of the clusters was measured by locking at p-values of the GO {Gene Ontology)
terms that annotate the genes in the resulting clusters. GO [26] is a database, which
provides a structured vocabulary used to describe the biological features of gene products.
The database has three different vocabulary sets related with the molecular function of gene
products, biological process in which the gene products participate and cellular compartment
where the gene products are located. Between these three vocabulary sets, largest one is

the biological process, which is used in this study to assess the quality of resulting clusters.
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The Perl module “GO Term Finder” provided by SGD [25] was used to measure the
quality of gene clusters. This module finds all the GO ferms that annotate the genes in
a given gene cluster. It can also report the GO terms that match the given genes with a
p-value, which is below a specified threshold.

P-values provide information about the amount of chance, by which the genes listed in
a gene cluster, are annotated with particular GO terms. They vary in the range [0,1]. The
lower the p-value for a GO term is, the more important information it provides is. In other
words, if the p-value corresponding a GO term is lower, then it means that this match is a
significant one, because it is not statistically common. Appendix F covers the method used
to compute the p-values. In all of the experiments, minimum p-value was chosen to be 0.05.

Clusters were compared by using the p-values in a number of ways. First way is to
find the number of GO terms, that match the genes in each cluster with a p-value below
0.05 and to sum this value for all clusters. Results of this measurements are given in
Figure 4.3. Values of this calculation for k-means clustering, UPIM and UDIM was 688,
802 and 825, respectively. Last two numbers are from the results of the experiments with
«a parameter, which gave the best results. Both UPIM and UDIM performed better than
k-means. UDIM performed slightly better than UPIM with higher number of GO terms.
Figure 4.4 shows the average number of protein interactions between the genes of clusters
for both methods. Number of interactions is rapidly increasing with o in UPIM, whereas it
is gradually increasing with « in UDIM. However, the quality of clusters, when measured
using p-values, are comparable. This shows that average interaction density is not closely
related with biological significance of clusters.

As a second way, best p-value that can be obtained in all the clusters for the GO terms
that match the genes in the resulting clusters are extracted. Then, to compare results from
two studies, these p-values are compared. It was observed that UDIM performed better
than k-means (Figure 4.5). However, UPIM performed better than UDIM, when compared
with this measurement (Figure 4.6).

Finally, negative p-values of the top three clusters (which have most number of GO terms
matched to their genes below the p-value threshold) are calculated. Then p-values from two
studies are compared only for the GO terms that match top clusters. UDIM performed
slightly better than UPIM when compared with this metric (Figure 4.7).
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Figure 4.3: Change of number of GO terms below the p-value threshold versus ¢ parameter
for UDIM and UPIM. For the o value that gives best results, UDIM performs slightly better.

90 — e i —
T T T T T T UP,M
UDIM ¢

Number of Interactions
8
T

40
m -
20 +
i
IR e
10 n PR 1 1 Lt 1 1 2l i PETE L PR
1 10 100 1000 10000 100000 16408 1407 1e+08

o

Figure 4.4: Change of average number of interactions among the genes in the resulting
clusters versus o parameter for UDIM and UPIM. As the parameter « increases, interaction
density is affected more in UPIM.
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Figure 4.5: Negative log p-value calculated for best p-values for the matched GO terms
for all clusters (y-axis) versus negative log p-value for p-values in k-means method. UDIM
performs better than k-means with a higher number of data points above diagonal.
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Figure 4.6: Negative log p-value calculated for best p-values for the matched GO terms for
all clusters (y-axis) versus negative log p-value for p-values in UPIM. UPIM performs better
than UDIM with a higher number of data points below diagonal.
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Figure 4.7: Negative log p-values calculated for top 3 pathways for the matched GO terms
(y-axis) in UDIM versus negative log p-value for top 3 pathways in UPIM. UDIM performs
slightly better with 901 GO terms above diagonal and 710 GO terms below diagonal.
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Domain-domain interaction weights were calculated from an association rule mining set,
where minimum support for a rule was limited by 0.0000493. This number is calculated
by taking inverse of the two times the number of interactions in the interaction data. If a
minimum support value which is higher than 0.00493% is used, a protein interaction with
an interacting domain pair that is observed only once in the data will be absent in the
protein interaction network that is created using the edge weights. For instance, let’s say
that there exists an interaction between proteins A and B, which are single domain proteins
that have domains z and y, respectively. If there is no other interaction that has these two
domains in the interacting pairs, then the support value for the association rule z — y will
be 0.00493%. If a support more than this value is used, interaction edge between protein A
and B will be absent in the graph induced by calculated edge weights, which results in loss
of valuable information.

Number of association rules used to generate the domain-domain interaction weights
was 20038. This created 7906 interactions among 3587 genes, after using the CREATE
INTERACTION GRAPH function (Algorithm 3).
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Chapter 5

PARALLELIZATION OF BELIEF PROPAGATION ALGORITHM

5.1 Introduction

Solving inference problems is usually computationally expensive. In our case, even though
approximate inference is performed, the algorithm takes considerable time to terminate.
This is mainly because inference should be run at every iteration of the EM algorithm.
EM runs until the 8 values converge. With the data set used, the algorithm took from 5
hours to 28 hours'. Most time consuming operation was the calculation of messages until
convergence in BP (Belief Propagation) algorithm. Usually, BP ran for about 10 iterations
until convergence. Rarely, BP did not converge. Number of iterations for BP in these cases
was an upper limit that is given as an input to the algorithm.

Time complexity of BP is closely related with the number of pathways to be learned?.
It is also proportional to the number of edges in the interaction network. In our case,
interaction network has an average node degree of 6.31. Distribution of degrees over the
number of nodes is given in Figure 5.1.

Table 5.1 shows the running times of different sections of the code for 5 EM iterations
and 4 BP iterations for every EM iterations. According to this table, BP Algorithm takes
90% of the running time of the program. Next section covers a parallel BP algorithm for

distributed memory machines.

'Run time varies with parameters.

2See Algorithm 12 in Appendix G.

Table 5.1: Statistics for the sequential version of the algorithm. Times given in milliseconds.

Node Bp Bplnit M-Step
NODE 0 1301049 68962 62987
Run Time: 1435192




Chapter 5: Parallelization of Belief Propegation Algorithm 41

Nurrber of Modes-
=
=]

vsren 5 b B S 9

LR R agp B B '%;; &

Dsgree (Nurrbar of Neighbors)

Figure 5.1: Distributions of the degrees of nodes in the protein-protein interaction network.

5.2 Parallelization of BP Algorithm

In order to execute BP on many processors, nodes of the graph must be distributed to
processors. Each node requires information from neighboring nodes. Messages that come
to i from its neighbors, or messages that go to neighbors from i can be stored in each
node. Former scheme is chosen, which implies that a node can calculate a message it sends
to its neighbor by using its local information, but it should then send this message to its
neighbor. To get the best speed-up, computational load should be distributed equally and
communication between processors has to be minimized as well.

For example Figure 5.2 illustrates a distribution of nodes of a prototype graph to two
processors Processor 1 and Processor 2. Since there are two edges that are cut by the
partitioning, four messages should be sent while calculating messages m;s5, ms;, mas, mss.
All other messages can be calculated without the need for communication. According to
this scheme, beliefs can be calculated in parallel, by multiplying the incoming messages at
a node with local beliefs.

This scheme can easily be implemented with a message passing library. However, it has

a number of disadvantages. First, number of messages exchanged between two processors
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Processorl . : . Processor 2 4

Figure 5.2: A simple network distributed to two processors.

is proportional to the number of edges between these processors, which are cut by the
partitioning. Second, redundant sends and receives are made. For example, in Figure 5.2,
to calculate the message msq, Processor 2 receives messages from nodes ni and no. Likewise,
it has to receive the same messages in order to calculate the message msg. Third, the need for
communication brings up the need for synchronization, which slows down the calculation
of the messages. A final remark is that the amount of required modification to existing
sequential code is high.

In a second scheme, prozy nodes and home nodes are introduced. This scheme aims to
avoid the drawbacks of the former scheme by delaying the communication between proces-
sors until the end of the iteration and sending all the messages that should go from one
processor to another in a single message. Figure 5.3 illustrates this scheme.

In this type of communication pattern, communication overhead is very low compared
to the first scheme. Because at most one send and one receive operation is made between
two processors, number of messages between processors is no longer proportional to the
number of edges cut by the partitioning. However, total communication volume between
processors is still the same.

Additionally, using proxy nodes makes it possible to make all calculations of a single
iteration locally on each processor. Since the communication is delayed until the end of the
iteration, processors do not need to get synchronized during an iteration of BP. Proxies also
allow us to reuse the sequential code. Amount of required modification to the sequential

code is just to implement the Manager class and its UpdateProzies() method.
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Figure 5.3: Network with proxy and home nodes. pi1, p2 and ps are proxies and others are
home nodes. Manager object is responsible for updating proxies (i.e. sending the newly
calculated message values of every processor). Manager class knows which home node has
proxy nodes at which processor. By using this information, it packs all the messages that
will go to appropriate processors and sends them as a single message after each iteration of
BP.

5.3 Distributing Computation to Processors

In order to get the expected speed-up, work should be distributed to processors in a balanced
manner. In our case, work to be distributed is the genes in the interaction network. Genes
are distributed to processors. However, one should take into account that not every gene
requires same amount of computation.

When distributing the nodes to processors, there are three kinds of computations that
should be balanced. First one is the iterations of BP algorithm, where every processor
calculates the messages coming to its home nodes from their neighbors. According to the
message update rules of BP algorithm, complexity of computing the message from node z;
to node z; is proportional t0 k3 . ¢ neighbors(z;) Degree(zp). The multiplier k comes from
the dimension of message vectors, which is the number of pathways. Summation term is
the sum of degrees of all neighbors of node ;. This summation corresponds to the steps
required to multiply all incoming messages to node z; except from z; plus multiplication
of the local belief of z; with this product. Since the & is the same for all nodes, it can be
dropped and this weight is calculated as Wy =37, ¢ Neighbors(z;) Degree(zp).
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Second computation that should be balanced comes from the normalization of messages.
After every iteration of BP algorithm, messages are normalized so that the messages that
come to a node from one of its neighbors sum up to 1. Also the messages of home nodes
are initialized before every EM iteration. Time it takes to complete these two routines are
the same and is proportional to: Winsgnorm = Degree(x;) for and node ;.

Third computation is the initialization of the belief arrays and normalization of beliefs.
Time it takes to complete these computations are the same for all nodes, and is denoted

with a uniform weight: Wi,z = 1.

Table 5.2: Explanation of the three weighting schemes used.

Weighting Scheme Weights

Weprnit Uniform weights for all nodes
WinsgNorm Degree of the node
Wep Sum of the degrees of node neighbors

While partitioning the interaction network to distribute genes to processors, one should
use a graph partitioning algorithm, which balances the three weights and also minimizes
the total edge cut induced by the partitioning. A final improvement would be to balance
the communijcation among the processors.

Metis [22] ”Family of Multilevel Partitioning Algorithms” package was used to parti-
tion the interaction graph. Metis has two standalone programs for partitioning graphs:
p-metis [24] and k-metis [23]. P-metis is preferred for partitioning graphs into number par-
titions less than 8. Both algorithms try to balance the load and minimize the total edge cut.
However, p-metis produces more balanced partitions, while k-metis allows a load imbalance
up to 3%. K-metis also tries to balance the communication among the processors.

Interaction network was partitioned with various weighting schemes. All subsets of the
three weighting schemes were experimented with both algorithms (p-metis and k-metis)
in different precedence to find the best partitioning. Results from some experiments for
5 EM iterations and 4 BP iterations per 1 EM iteration are given at Table 5.3. Looking
at the running times, one can make the following comments: worst partitioning is the one

with uniform weights (scheme Wpyrpi:). This is because with uniform weights on vertices,
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both algorithms just balance the number of nodes per partitioning, which is not enough to
balance the computation.

Table 5.3: Running time of the program for different weighting schemes: Wiy, Winsgnorm
Wapinit- Experiments made for 8 processors, times in seconds.

Weighting Scheme p-metis  k-metis
Whptnit 255.0 251.6
Wiy 213.1 214.9
WinsgNorm 209.1 202.9
Wips WopInit 206.7  205.3
Weprnity Wep 203.8 212.6
Wep, WinsgNorm 201.5 202.3
WinsgNorm, Wip 198.7 201.4
WnsgNorms Wplnit 2054  210.7
Wiprnit, WinsgNorm 208.8 203.7

Wips WinsgNorm, Wepinit ~ 199.3 199.4
Wbplnita Wb}:n WmsgN orm 207.9 203.3

Best partitioning scheme is: WinsgNorm, Wep. The reason scheme Wi, WensgNorm is not
good enough is because of the balance of the partitions. P-metis reports load unbalance
of 0%, 1% for scheme Wysgnorm, Wep and 1%, 1% unbalance for scheme Wep, WinsgNorm.-
One of the weights are balanced worse than the other one in the latter scheme and this
accumulates in the total run time by a difference of about 2.5 seconds.

Another interesting result is that the partitioning scheme Wysonorm, Wip is even better
than scheme Wy, WinsgNorm, Wapinit. Although this scheme includes all weights, it results
in a poor partitioning because it is harder to balance the three weights at the same time.
P-metis reports 1% of unbalance in this scheme for all weights. Likewise, performance of
the scheme Wiprnits Wip, WinsgNorm is worse than Wiy, Winsgnorm, Weprnit, because the

partitioning is more unbalanced with (1%, 2%, 1%).
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Table 5.4: Statistics for the algorithm after Parallelization of BP part. Times in milliseconds.

Node Bp Update Bplnit M-Step Up+Bp Idle
0 156125 15679 22142 50595 171804 14257
1 164350 8900 20449 50596 173250 7598
2 162631 9458 20599 50597 172089 8295
3 156058 14890 22551 50594 170948 13059
4 164497 9396 18505 50596 173893 8388
5 161955 10740 21022 50596 172695 9647
6 163215 12958 17511 50595 176173 11749
7 167705 8018 16656 50596 175723 7043

Run Time: 246095

5.4 Improving Performance of the Program

Upon the completion of the parallelization of BP algorithm, it was observed that even
though the speed-up of BP algorithm were as high as 7.4 on 8 processors, overall speed-
up of the program was about 5.5. This was mainly because of the sequential bottlenecks
(m-step) and some load imbalance (Tables 5.1, 5.4).

All the measurements in Tables 5.4, 5.5, 5.6 and 5.7 are in milliseconds. Each table cell
shows the running time of a task in the corresponding node in a PC cluster of eight nodes.

Weighting scheme used for these measurements is: Wsgnorm, Wap-

5.4.1 Parallelizing M-Step

In the m-step of the EM algorithm, first new theta values are calculated by using the newly
calculated beliefs and then means and standard deviations of & *m CPDs are updated. This
update operation takes O(kmn) time, where n is the number of genes. This operation is
done in a loop shown in Algorithm 4.

To distribute the load, it is chosen to distribute the pathways to processors. However,
distribution of genes to processors is irrelevant for this solution. Thus, the algorithm uses
an alternative load distribution scheme (i.e. distribution of pathways to processors instead

of genes to processors) at the m-step routine. From the start, every processor knows for
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Algorithm 4 M-STEP{( } (Seguential)
1: Calculate new theta values

2: for pw=0+to %k do

3: for ezp =010 m do

4 zpjlpw]lezp] = 0; zpj2fpw]lezp] = 0;

5: for gid =0 to n do

6: zpjl[pw]lezp]+ = Belief(gid, pw) * ExpressionV alue(gid, exp);
7: zpj2[pw)lexzp]+ = Belief (gid, pw) x EzpressionV alue(gid, exp)?;
8: end for

9: end for
10: end for

11: Update the means and standard deviations using zpf1 and zpj2 arrays.

which pathways it will calculate the values of zpjl and zpj2 arrays. Then, processors
compute their division of mean and standard deviations independently, and in the end a
single MPI_Allgather for every pathway solves the problem (i.e. speed-up = 6, Tables 5.5
vs 5.1).

5.4.2 Interleqving Sends and Receives in the UpdateProzies Routine

Second observation was the idle times the processors spent during the updating of proxies
which takes place after every iteration of the BP algorithm. In this routine, every processor
sends messages to other nodes, which has a proxy node that corresponds to its home nodes.
Other processors then receive the message and update their proxy nodes.

In the first version of UpdateProxies (Algorithm 5), first all the messages were packed
into send buffers. Then, messages are received and sent by non-blocking receives and sends.
Once the communication is complete, received messages are unpacked.

In order to decrease the idle times spent during the waiting of send/receive operations,
UpdateProxies routine were improved by interleaving the sends to different processors. In
the first version {Algorithm 5), messages that will be sent to all processors were packed and
sent for all processors. In the second version, (Algorithm 6), send routine is executed as

soon as the messages that will be sent to a node are packed. Likewise, it is not needed to
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Table 5.5: Statistics for the algorithm after Parallelization of M-Step part. Times in mil-
liseconds.

Node Bp Update Bplnit M-Step Up+Bp Idle
0 155739 28438 22842 10886 184177 24104
1 161550 25787 21091 9421 187337 20113
2 162896 24230 21204 10135 187126 19391
3 180164 8486 19068 10899 188650 4530
4 172326 18211 18039 10133 190537 13282
5 155550 31309 22945 8680 186859 24395
6 162535 24605 21698 9425 187140 19121
7 166456 24788 17126 8674 191244 18645

Run Time: 220832

Algorithm 5 UPDATE-PROXIES1( )
1: Let P be the Number of Processors

2: for i = 0 to Number of Home Nodes do

3:  for location € Proxy Locations of home node ¢ do

=

Pack messages array of home node i to send buffer of location
50 end for
6: end for
7: for location = 0 to P do
8:  Receive messages from location.
9: end for
10: for location =0 to P do
11:  Send messages to location.
12: end for
13: for location = 0 to P do
14:  Wait Send / Receive operations for location to finish.
15: end for
16: for location = 0 to P do
17:  Unpack messages received from node location.

18: end for
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wait for the pack operations to complete to receive the messages from other nodes. This
way, it was observed some improvement in idle times processors spent in the update proxies

routine. Difference can be seen by comparing Tables 5.5 and 5.6.

Algorithm 6 UPDATE-PROXIES 2( )
i: Let P be the Number of Processors

2: for location = 0 to P do

3:  Receive messages from location.

4: end for

5: for location =0 to P do

6: Pack messages that will be sent to processor location
7. Send messages to location

8: end for

9: for location =0 to P do

10:  Wait Receive operations for location to finish.
11:  Unpack messages received from location.

12: end for

13: for location =0 to P do

14:  Wait Send operations for location to finish.

15: end for

5.4.8 Parallelization of Bp Initializations

Last sequential bottleneck was the routine that initializes the belief and message arrays
before each EM iteration. Normally, every processor initialized the arrays of its own home
nodes and proxy nodes. However, the number of proxy nodes on each processor was usually
comparable to the number home nodes. Because of this fact, speed-up of this part (compare
Tables 5.4 and 5.1) was about 3.1. If there was no initializations made for proxy nodes
(which must be done), then a speed-up of 6 would be expected because of the comparable
number of proxy nodes and home nodes. Solution was to initialize the proxy nodes by using
communication instead of computation. Processors initialize their home nodes, and then

update their proxies by sending initial message and belief values to other processors.
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Table 5.6: Statistics for the algorithm after interleaving of send/receive operations in Up-
dateProxies part. Times in milliseconds.

Node Bp Update Bplnit M-Step Up+Byp Idle
0 158626 15238 22866 10878 173864 11090
1 165051 11213 191256 10882 176264 7070
2 163914 11181 21281 10155 175095 6303
3 164502 14764 18113 10149 179266 9800
4 163271 12972 21761 9423 176243 7438
5 162329 13749 21140 9420 176078 8257
6 156945 18372 23372 8672 175317 11916
7 167430 14020 17172 8668 181450 7704

Run Time: 210667

This communication made the algorithm avoid the redundant computations and the
speed-up at this part has improved from 3.1 to 4.8 (Table 5.7). On 8 processors, it took
21 geconds on the average to initialize the BP arrays by computing the initial values of
home and proxy nodes. It took 14 seconds on the average to initialize the BP arrays by
first computing the initial values of home nodes and communicating these values with other

PIOCESSOrs.

5.5 Results and Discussion

The program was ran in two PC clusters; one with 8 nodes and a gigabit switch (1 Gbit/sec),
and the other with 32 nodes and a Fast Ethernet switch (100 Mbit/sec).

Maximum speed-up on 8 processors was 7.22 on the first cluster. Because of the gigabit
switch, communication overhead did not affect the performance much. Indeed, most of
the computation was exchanged with communication, because at some routines like the
initializations of BP arrays, it was faster to communicate the initial belief values of home
nodes to their proxies than to compute the values of proxy nodes on the processors.

On the other hand, maximum speed-up on 8 processors on the second cluster with Fast

Ethernet switch was 5.9. This decrease in the speed-up is because of the slowness of the
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Table 5.7: Statistics for the algorithm after parallelization of BP initializations part. Times
in milliseconds.

Node Bp Update Bplnit M-Step Up+Bp Idle
0 157650 7066 14206 10851 164616 5900
1 161013 7915 13860 9394 168928 5296
2 163092 7851 14181 10097 170943 6335
3 155244 9417 14215 8660 164661 5138
4 165249 6216 13427 10852 171465 6520
5 164110 8403 14061 9395 172513 5806
6 163631 7390 13559 10095 171021 8135
7 166264 8145 13454 8655 174399 7342

Run Time: 198769

switch. Average size of messages that a processor receives during updating of the proxy
nodes was in the order of Megabytes. Since messages were large (around 10 Megabytes),
speed difference between Fast Ethernet and gigabit switch affected the speed of the program
significantly. Table 5.8 shows the amount of data sent from each processor while updating of
the proxies in a single iteration of BP. According to the table, total communication volume
is: 184.55 Megabytes, which explains why the performance of the switch is crucial.

In order to be convinced that the decreasing of speed-up was due to communication
bottleneck, communications part was skipped, which resulted in a speed-up of about 31 on
32 processors.

With 32 and 16 processors, maximum speed-up was 16.9 and 10.5, respectively. Ta-
bles 5.9 and 5.10 show the partitioning scheme that yields the highest speed-up on different
machines and different number of processors.

Finally, speed-ups were calculated by distributing the nodes to processors randomly.
Table 5.11 shows the speed-ups on cluster with 8 processors and gigabit switch. As expected,

as the number of nodes increase, speed-up decreases more rapidly with random partitioning.
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Table 5.8: Amount of data sent (in Megabytes) from each processor in the UpdateProzies
procedure.

Node Data
21.50
36.09
14.22
19.47
20.92
21.63
21.59
29.14

NS bR N = O

Table 5.9: Maximum Speed-up values for runs on network with gigabit switch.

Nodes Speed-up Weighting Scheme Partitioning Program

4 3.76 WnsgNorm Wi p-metis
2 1 .90 Wmsg Norm Wbp p—metis

Table 5.10: Maximum Speed-up values for runs on network with Fast Ethernet switch.

Nodes Speed-up Weighting Scheme Partitioning Program
32 16.91  Wiprnit Wap k-metis
16 10.5 Wop WinsgNorm k-metis
8 5.9 WinsgNorm Wap Waprnis k-metis
4 3.14 Winsgnorm Wap p-metis
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Table 5.11: Speed-up values for runs on network with gigabit switch and random partition-
ing.

Nodes Speed-up

8 3.58
4 3.37
2 191
18 T — T T T T
k-metis ~—+—
p-metis >
18 - -
14 -
12 B
g 10 -
& 8t 4
6 -
4 i
2 -
O i 1 i 1 1 1
0 8 10 15 20 25 30 35

Number of Processors

Figure 5.4: Speed-up graph for 32 processors. Experiment made with weighting scheme W,
WinsgNorm. Performance for both p-metis and k-metis partitioning algorithms are shown.
Partitioning with k-metis works slightly better.
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Chapter 6

CONCLUSION

Integrating biological information from various sources to infer new knowledge is benefi-
cent in bioinformatics. This is because amount of biological data is high, but the connection
between data is not obvious. In order to extract valuable information, one often needs to
unite data from various sources. In this thesis, integrating biological data from various
sources to infer knowledge about the pathways, in which proteins act was studied.

First method presented uses association rule mining to integrate protein-protein inter-
action data with domain decompositions of proteins. Using information from both protein-
protein interaction and domain databases, the method outputs domain-domain interaction
rules that imply putative interactions between proteins. Rules can be summarized as “a
protein that has particular domains often interacts with another protein that has another
set of particular domains”. Dependability of the rules varies with support and confidence
parameters. Application of association rule mining to protein-protein interaction data and
domain data required a set of modifications to the layout of the data. According to the
proposed method, interacting proteins were substituted with their sets of domains. Then,
domains were labeled in order to identify if they belonged to a LHS protein or RHS protein.
Finally, LHS and RHS of the interactions were collapsed into a single set. It was observed
that the support parameter was more limiting than the confidence parameter. Number of
rules output by the algorithm decreased rapidly when the minimum support parameter was
increased. Some of the rules discovered were confirmed by biological literature.

As a future work, different features can be incorporated along with the domain decom-
positions of the proteins. For example, motifs, amino acid patterns, and expression profiles
can yield to interesting rules. Also, rules that are generated frequently with reasonable
support and confidence value pairs can be checked with laboratory experiments. By this
way, it can be understood if the method can discover novel protein-protein interactions.

The second method presented (UDIM) uses the results from the first method to integrate
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domain-domain interaction rules with gene expression data clustering. The method is based
on a probabilistic model (UPIM), which is trained using EM algorithm and BP. Domain-
domain interaction rules are integrated into UPIM by calculating the weights of edges
between the proteins. Weights are based on the support parameters of the domain-domain
interaction rules between the protein pairs. Results of the method were compared with
k-means clustering algorithm, which was run using gene expression data only. Number of
GO terms that match the genes in clusters with the best p-value, was higher than that of
k-means. This showed an improvement over the k-means clustering. Also, number of GO
terms that match the genes in top three clusters with the best p-value was higher than that
of the original method (UPIM). As a future work, it can be worked on a reverse procedure,
where domain-domain interaction rules are refined using gene expression data.

Finally, a parallel algorithm for UDIM was presented. Since the running time of UDIM
was in the order of tens of hours, parallelization was required to get the results of the
method as quickly as possible. Protein interaction network was partitioned and distributed
to processors. Weights were assigned to each node in the graph, which represented the
computation required in BP, message normalizations and initializations parts. Partitioning
was done by using a graph partitioning tool, which balanced the weights given. Different
weighting schemes were experimented. For example, when a single, uniform weight was
used, the algorithm performed worst, however when two weighting schemes that represent
BP and message normalizations were used together, it performed the best. Results showed
almost linear speed-ups on a PC cluster with 8 nodes and a gigabit switch. Because of the
communication bottleneck, the same speed-ups were not observed on another PC cluster
with 32 nodes and a Fast Ethernet switch. For example, with 8 processors, maximum speed-
up was 7.22 and 5.9 on clusters with gigabit switch and Fast Ethernet switch, respectively.
This shows that the communication bandwith is more important than the latency for the

performance of the algorithm.
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Appendix A

DETAILS OF BEST GENE CLUSTERS

Table A.2 lists the GO terms that matches the genes in the top clusters of k-means
clustering and Table A.1 lists the genes in this cluster. Best cluster is chosen as the one
that has the highest number of GO terms matched to its genes, below a p-value of 0.05.
Similarly, Tables A.4 and A.3 list the same information for the best cluster from the results
of UDIM.

Table A.2: GO terms and their p-values that matches the

best cluster in k-means.

GOId GO term p-value
GO0:0008283 cell proliferation 6.99E-016
GO:0000067 DNA replication and chromosome cycle 1.16E-015
GO:0007049 cell cycle 1.18E-015
GO0:0006260 DNA replication 2.03E-011
(GO:0006261 DNA-dependent DNA replication 4.31E-011
GO:0006271 DNA strand elongation 8.80E-011
GO0:0006259 DNA metabolism 742E-010
G0:0008151 cell growth and/or maintenance 8.52E-009
GO:0006270 DNA replication initiation 1.01E-008
GO:0050875 cellular physiological process 3.53E-008
GO0:0006139 nucleobase, nucleoside, nucleotide and nucleic acid 7.03E-008
metabolism
GO:0009987 cellular process 1.27E-007
GO:0006325 establishment and/or maintenance of chromatin architec- 5.81E-007
ture
GO0:0006323 DNA packaging 5.81E-007
GO:0006265 DNA topological change 7.0LE-007
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Table A.2 — continued

GO Id GO term p-value
GO:0050789 regulation of biological process 1.66E-006
G0:0006351 tramscription, DNA-dependent 1.81E-006
GO:0000279 M phase 1.81E-006
GO:0006350 transcription 1.84E-006
GO:0006997 nuclear organization and biogenesis 3.33E-006
GO:0006338 chromatin remodeling 3.76E-006
GO:0016582 non-covalent chromatin modification 3.76E-006
GO:0007001 chromosome organization and biogenesis (sensu Eukarya)  4.79E-006
GO0:0000278 mitotic cell cycle 6.60E-006
GO0:0040029 regulation of gene expression, epigenetic 1.39E-005
G0:0016568 chromatin modification 1.53E-005
GO0:0006273 lagging strand elongation 2.53E-005
G0:0019219 regulation of nucleobase, nucleoside, nucleotide and nucleic  3.20E-005
acid mefabolism
GO:0000280 nuclear division 5.34E-005
G0:00068355 regulation of transcription, DNA-dependent 5.49E-005
GO:0045814 negative regulation of gene expression, epigenetic 6.73E-005
GO:0006342 chromatin silencing 6.73E-005
G0:0016458 gene silencing 6.73E-005
G0:0045449 regulation of transcription 7.68E-005
G0:0006267 pre-replicative complex formation and maintenance 8.87E-005
Table A.4: GO terms and their p-values that matches the
best cluster in UDIM.
GOId GO term p-value
GO:0009987 cellular process 1.40E-015
G0:0050875 cellular physiological process 1.79E-014
GO:0008151 cell growth and/or maintenance 4.66E-014
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Table A.4 — continued

GO Id GO term p-value
G0:0008283 cell proliferation 3.11E-013
GO:0007049  cell cycle 6.41E-013
GO0:0050789 regulation of biological process 4.53E-009
G0:0006342 chromatin silencing 8.75E-008
GO:0016458 gene silencing 8.75E-008
GO:0045814 negative regulation of gene expression, epigenetic 8.75E-008
GO:0000067 DNA replication and chromosome cycle 1.51E-007
GO:0040029 regulation of gene expression, epigenetic 1.57E-007
GO:0000279 M phase 3.05E-007
GO0:0019219 regulation of nuclecbase, nucleoside, nucleotide and nucleic 4.08E-007
acid metabolism
G0:0006323 DNA packaging 4.66E-007
GO:0006325 establishment and/or maintenance of chromatin architec- 4.66E-007
ture
G0:0019222 regulation of metabolism 5.16E-007
GO:0050791 regulation of physiological process 5.16E-007
GO:0009892 negative regulation of metabolism 1.00E-006
GO:0016043 cell organization and biogenesis 1.04E-006
GO:0045449 regulation of transcription 1.09E-006
G0:0006259 DNA metabolism 1.54E-006
GO:00165671 histone methylation 1.78E-006
GO:0016481 negative regulation of transcription 2.03E-006
GO:0045934 negative regulation of nucleobase, nucleoside, nucleotide 2.43E-006
and nucleic acid metabolism
GO:0016568 chromatin modification 2.43E-006
(G0:0000280 nuclear division 2.43E-006
GO:0006997 nuclear organization and biogenesis 2.64E-006
GO:0006355 regulation of transcription, DNA-dependent 3.01E-006
GO:0007001 chromosome organization and biogenesis (sensu Eukarya)  3.88E-006
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Table A.4 — continued

GO Id GO term p-value
GO:0006479 protein amino acid methylation 4.36E-006
GO:0008213 protein amino acid alkylation 4.36E-006
GO:0016569 covalent chromatin modification 4.97E-006
GO:0016570 histone modification 4.97E-006
GO0:0000278 mitotic cell cycle 5.41E-006
GO:0006260 DNA replication 6.44E-006
GO:0006348 chromatin silencing at telomere 9.40E-006
G0:0045892 negative regulation of transeription, DNA-dependent 1.09E-005
GO:0016582 non-covalent chromatin modification 1.93E-005
GO0:0006338 chromatin remodeling 1.93E-005
GO:0007067 mitosis 2.62E-005
GO0:0006261 DNA-dependent DNA replication 2.80E-005
GO0:0000087 M phase of mitotic cell cycle 3.04E-005
GO:0006350 transcription 4.82E-005
GO:0007582 physiological process 4.82E-005
GO:0006351 transeription, DNA-dependent 5.16E-005
GO:0006334 nucleosome assembly 6.87E-005
GO:0006333 chromatin assembly/disassembly 7.92E-005
GO:0040020 regulation of meiosis 0.01
GO:0007093 mitotic checkpoint 0.01
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Table A.1: Genes in the best cluster of k-means clustering.

Gene Names

YERO11W YILO11W YGR035C YBRI186W YCRO059C
YGR208W YNLO78W YNL210W YNL226W YNL207W
YFR038W YDR044W YOR204W YNL216W YBRI115C
YPRO18W YNRO27TW YJL115W YOL006C YJLO75C
YIL149C YKL042W YNL102W YPRI120C YGL175C
YLR103C YMR144W YBR141C YBR086C YER168C
YFLOO8W YORS355W YNL262W YNR025C YBL035C
YKL068W YJR053W YHRO031C YKLO033W YMRI179W
YBL014C YKL045W YBR202W YML023C YDL164C
YHR204W YJL025W YOR21TW YIL129C YLR433C
YDR331W YGRO04W YDR448W YCRO052W YMR270C
YBR049C YLR357W YKRO10C YPR104C YLR451W
YKR036C YMR211W YMR209C YER171W YGL1456W
YMR288W YILO85C YERI149C YMR221C YJL135W
YER164W YBL052C YBRI156C YER032W YJL187C
YMRO78C YML109W YNL068C YCR054C YPL210C
YMLO46W YNL273W YIL150C YJLO74C YJRO30C
YPL255W YBLO3IW YFRO031C YGL256W YLR353W
YHRO61C YLR210W YMR277W YCL024W YLR383W
YILOO9W YCRO66W YJR031C YKLO72W YNLI126W
YPL128C YJLO11C YJLO61W YMR266W YNLO88W
YML037C YCR024C-A YKL008C YGL116W YORO038C
YNROI7TW YLR045C YNRO18W YIL141W YLR223C
YNL221C YNL227C YMLO065W YDL093W YBLO04W
YPL209C YMRI199W YHRI120W YDL171C YLLOO4W
YLR406C YOR025W
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Table A.3: Genes in the best cluster of UDIM.

Gene Names

YAROG3W YBL00S8W YBL053W YBR103W YBRI115C
YBR158W YBRI175W YBR195C YBRI198C YBR234C
YBR281C YCL039W YCRO12ZW YCRO067C YCRO084C
YDL127W YDL145C YDL195W YDROSOW YDRI142C
YDR146C YDR364C YEL055C YELO56W YERO66W
YER082C YERI107C YERI124C YFLOO9W YFRO21W
YGL003C YGL004C YGL028C YGL10OW YGL116W
YGL137TW YGL190C YGL213C YGRO89W YGRI108W
YGR128C YGR154C YGRI175C YGRI180C YGR200C
YGR210C YHL022C YHRI119W YHRI129C YHR186C
YILO46W YIL047C YIR012W YJLO35C YJL112W
YJL115W YJR033C YJRO86W YJR112W YKLO18W
YKL021C YKL0O42W YKL045W YKL130C YKL213C
YKR036C YLL004W YLRO15W YLR0456C YLRO055C
YLR129W YLR208W YLR263W YLR403W YLR420W
YMLO66W YMLO71C YML102W YML104C YMRO32W
YMRO038C YMR092C YMR093W YMRI102C YMR146C
YMR199W YMR214W YMR251W YMR319C YNLOOSW
YNLO35C YNLO50C YNLO78W YNL191W YNL218W
YNL253W YNL317W YNRO17W YNRO18W YNRO27TW
YNRO29C YNRO42W YOL005C YOL006C YOLO18C
YOLO90W YOL103W YOL136C YOR025W YORO026W
YORO038C YOR047C YOROT4C YOR212W YOR229W
YOR269W YOR360C YPL036W YPL139C YPL151C
YPL158C YPRO18W YPRO69C YPR175W YPR178W
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Appendix B

DNA MICROARRAY PROCEDURE

Basic idea behind the microarrays is to put a part of the sequences of the genes of an
organism on a special chip, then to hybridize these sequences with pre-synthesized cDNA
sequences that are simply a complementary sequence of the mRNAs extracted from cells.
Hybridization is the name given to the procedure at which ¢DNAs bind to the sequences
on the microarray chip.

There are two types of microarrays, oligonucleotide arrays and ¢cDNA microarrays. Al-
though the principle behind both types is the same, because of structural reasons, oligonu-
cleotide arrays are used to monitor the genes of one cell at a time and ¢cDNA arrays are
used to monitor and compare the gene expression profiles of a control sample and experi-
ment sample on the same chip. The procedure used with cDNA arrays is presented here.
An experiment using a cDNA microarray involves the preparation of two samples for hy-
bridization to the array [56]. One for the control and one for the experiment sample. These
samples are created by extracting the mRNAs from the cells and reverse transcribing these
mRNAs to ¢cDNAs, which are single strand complement of the mRNAs synthesized with
DNA nucleotides. During the reverse transcription, a fluorescent dye is incorporated into
the newly formed ¢cDNA. Different dye is used for control samples and experiment sam-
ples. Usually a green-fluorescing dye (cy3) and a red-fluorescing (cy5) dye are used for this
purpose. Because of the different labeling, both cells can be hybridized on the same array.
After scanning of the array, at a given spot, the color of the sample whose gene is expressed
more will be dominant. So, if the control sample and experiment sample are labeled with
red and green dye, respectively, a red spot tells us that that gene was expressed more in the
control sample and a green spot tells that that gene was expressed more in the experiment
sample. A yellow spot, which is the result of same amount of red and green labeled cDNAs
means that the corresponding gene is expressed in both samples. Finally, a dark spot is the

result of no hybridization, which means that the gene was not expressed in either samples.
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Appendix C

NAIVE BAYES CLASSIFIERS

In Naive Bayes classifier, there is a set of instances with several attributes. Each instance
belongs to a class and the classes are disjoint. After training, each class gets associated
with a probability distribution which is defined over the attributes of the instances and
the method classifies the future data by using the experience it gained from the training
data. One problem with this approach is that when there are many attributes, in order
to learn the probability distribution that a class is associated, an exponential number of
instances are needed, which is usually not available. To get over this problem, Naive Bayes
classifiers assume that the attributes of the instances are conditionally independent given
the class they belong to. Thus, theoretically, Naive Bayes is optimal when observations of
all the instances are independent from each other. Although this assumption is relaxed, the
method works well in practice and it has proven to be quite successful in classifying various
types of data [3, 4].

Let h denote the hypothesis, which classifies the data into disjoint classes and D denote
the training data. Naive Bayes clagsifiers are then, based on the following formula, which
calculates P{h|D), the probability of a hypothesis given the data in terms of P(D|h), the
probability of data given the hypothesis, P(h), the prior probability of hypothesis h and
P(D), probability of seeing data D.

P(D|h).P(h)
P(D)

This equation simply tells us that the probability of a hypothesis given a data set in-

P(h|D) = (€.1)

creases with probability of seeing that data in a universe where the hypothesis is assumed
to be true. It also increases with the probability of seeing that hypothesis among all other
hypotheses in the hypothesis space. Finally, it decreases with the probability of seeing the
data. So, when an instance which supports our hypothesis is seen, the information gained

from the data is low if the data is a common one. The independence assumption is needed to
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caleulate P(D|h). What’s more usually the factor P(D) is dropped in Naive Bayes classifier

calculations since it is the same for all hypotheses, so the equation becomes:

P(h|D) = P(D|h).P(h) (C.2)

Using the independence assumption, usually this equation becomes like:

n
P(h|D) = [ [ P(D;|h).P(h) (C.3)
=1
where P(D;|h) is the probability of ith attribute given the hypothesis is true and n is the
number of attributes. This separation of attributes simplifies the calculations to compute

the probability P(h|D). Finally, the hypothesis that maximizes this probability is chosen.
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Appendix D

EM ALGORITHM

General statement of the EM algorithm is as follows [10]:

Let X = {z1,...,Zm} denote the observed data in a set of m independently drawn
instances , Z = {z1,...,2m} denote the unobserved data in these set of instances and ¥V =
X U Z denote the full data.

Note that Z can be treated as a random variable, whose distribution depends on unknown
parameters © and the observed data X. Similarly, Y can also be treated as a random
variable because it is expressed in terms Z, which is a random variable. Let 4 denote the
current hypothesis. EM searches for a maximum likelihood hypothesis 4’ by seeking an A’
that maximizes E[inP(Y|h')]. This expectation value is calculated by using a probability
distribution governing Y, which is due to unknown parameters ©. Here, P(Y|h') is the
likelihood of full data in a universe where the hypothesis h' is true and maximizing the
logarithm of this expectation also maximizes P(Y |h').

Given that the full data Y is a combination of the observed data X and unobserved
data Z, EM averages over possible values of unobserved random variable Z, weighing each
possibility according to its probability. The distribution that governs Y is determined by
X and the distribution that governs Z, which is not known. EM tries to estimate this
distribution by using the current hypothesis # and the observed data X. It does so, by
using the current hypothesis # in place of the unknown parameters ©.

Let

Q(hIK) = ElinP(Y |I)|h, X] (D.1)

Here, Q gives E[InP(Y |h')|h, X] as a function of A/, under the assumption that © = A

and given X. Then, the following steps are applied until convergence:
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1. Step 1 - Estimation (E-Step):
Calculate Q(h|h') using the current hypothesis & and other observed data X, to esti-
mate the probability that governs Y.

2. Step 2 - Maximization (M-Step):

Replace the hypothesis # with »/ that maximizes this @ function.

h +— argmazp Q(H'|h) (D.2)

When the function Q is continuous, EM converges to a stationary point of the likelihood
function P(Y'|h'). If the function P(Y'|h') has a single maximum, EM is guaranteed to
find it. Otherwise, it is guaranteed to find a local maximum. EM shares some of the
same limitations as other optimization methods like the gradient descent, line search and

conjugate gradient.
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Appendix E

BELIEF PROPAGATION ALGORITHM AND MARKOV NETWORKS

Belief propagation is an algorithm to solve inference problems. The algorithm can be
used for either exact inference or approximate inference. BP is one of the many methods
to solve inference problems that come up in different felds.

Before explaining BP algorithm in detail, it is necessary to go over Bayesian networks,
which is one of the most popular graphical models in Al literature. a small subset of
genes and connections among them is faken as an example. For each gene, gene expres-
sion values in different experiments and other genes that it interacts with is known. An
interaction between protein A and protein B increases the chance that A and B are in the
same pathway. Each protein can be in one of the k pathways. The interactions among
the proteins specify an independence relationship between the random variables that con-
trol the pathway assignments of the proteins. This independence relationships are used
while computing the joint probabilities of all proteins to be assigned into particular path-
ways: P(g1.C,....,;gn.C). Normally in Bayesian networks, these independence relations are
described by directed edges. For example, an edge from gene i to gene j specifies the con-
ditional probability P(g;.C' = plg;.C = ¢q), which is the probability of gene j to belong to
pathway p given that gene i belongs to pathway ¢. While computing the joint probabilities,

following equation [12] can be used:

n
P(g1.Cyeevey gn.C) = HP(gg.Clparents(g,:.C’)) (E.1)

i=1

where parents(g;.C) denotes the parents of gene i at the "directed acyclic” belief net-
work. If gene g;.C' has no parents, then P(g;.C|parents(g;.C)) = P(g;.C) is used.

Our ultimate goal in this inference problem is to calculate the marginal probabilities.
This is to compute the probability that gene ¢ belongs to a particular pathway in the light
of the information from other genes. In order to do this, a sum over all variables other than

gi-C in the joint probability function P(g;.C, ...., gn.C) must be performed. This will require
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an enormous number of steps if all the random variables are dependent to each other. This
is like the case where all the proteins interact with each other. However, since the number
of interactions among the genes is much less than the number of possible protein pairs, the

independence information from the graph can be used in order to calculate the sum:

PlgnC=k)=> Y .. ¥ P(g1.C, -1 g-C) (E.2)

91.C92.C gn1.C

In small Bayesian nets, this summation can be made directly, however, for bigger ones,
this summation is intractable since it requires exponential number of steps. At this point,
BP can be used. However, note that *Bayesian networks” are directed acyclic graphs, but
our interaction network is an undirected graph. So, in our case, there are bi-directional
dependency relationships between the random variables and the corresponding belief net-
work has loops. BP is shown to be effective in approximating the marginal probabilities in
graphical models with loops. [13]

BP algorithm is based on passing messages among the nodes in the graph. In BP
algorithm, there are variables such as m;;(z;), which can be defined as the message going
from node i to node j, about what state node j should be in. This message is a vector of
the same dimensionality as the random variable ;. In this vector, each dimension measures
the likelihood of node j being in a different state. In BP algorithm, the belief at a node  is
calculated as the product of the messages coming to that node from its neighbors and the

local evidence ¢;(z;) on that node:

bi(zi) = kilws) [[ myilzi) (E.3)

JEN()
where k is the normalization factor to make the beliefs sum to 1 and N(z) denotes the
neighbors of node i in the undirected dependency graph.

Mesgsages are calculated by the following message update rules:

mij(z;) < Y dilz i) ] muslzs) (E4)

EEN(ENF
where k € N{i)\j means neighbors of node i except node j. To calculate the message

from node 4 to node 7, product of messages coming to node ¢ except from node j is taken and
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Figure E.l: Graphical illustration of message update rule: mi(z;) <
>z $i(@i) (i, T5) [kem(iy\j mii(zi). To calculate the message from node ¢ to node j,
messages coming into node ¢ are multiplied with the local belief at node { and summed
over all states of z;.

Figure E.2: Sample network with 4 nodes.

it is multiplied with the local belief on node ¢ and the edge compatibility function between
node i and §. Figure E.1 illustrates this calculation scheme,
It is easy to show that these message update rules give the beliefs that are exact if there

are no loops in the graph[12]. For example, consider the network in Figure E.2.

bi(z1) = k1 (z1)ma (1) (E.5)

Using the message update rules, mg; (1) is expanded to get:

bi(21) = k(1) Y v1a(w1, ©2) da(@2)msa (22)maz(z2) (E-6)
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Using the message update rules again, msa{z2) and ma(z;) are expanded to get:

bi (1) = k1 (1) Y tra(21, 22)a(22) D Pa(@a)as(wa,03) ) Ga(wa)os(za, za) (B.T)

If the sums are reorganized, it is easy to see that the belief at node 1 is the same as the

exact marginal probability at node 1.

biz)) =k Y p({z}) = pilz1) (E.8)

£2,%3,T4

Markov Networks

A Markov network is an undirected graphical model that is composed of a graph G and a
set of functions ¢ = {¢1, s, ..., o} defined for n cliques of G. For a graph G, a clique is
a set of nodes V. in V, not necessarily maximal, such that each V;,V; € V, is connected
by an edge in G. {Note that a single node by itself is also a clique). V denotes a set of
discrete random variables for each clique in G and v denotes an assignment to variables V.
A Markov network then defines a joint distribution over V. [7]

Let G=(V,E) be an undirected graph of nodes V, edges E and a set of cliques C(G).
Then each ¢ € C(G) is associated with a set of nodes and a clique potential ¢.(V,), which
is a non-negative function defined on the joint domain of V. Let @ = {¢¢(Ve)}cec(e)- The
Markov network (G, ®) then defines the distribution:

P(v)= ‘;‘ H pe(ve) (E.9)

ceC(@)

Here, Z is the normalization constant given by:

z=7 J]¢cve) (E.10)
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Appendix F

P-VALUES

The Perl module “GO::TermFinder” that was used to measure the quality of clusters
determines whether the observed annotations for a group of genes are significant within
the context of annotation for all genes within a reference set of genes. Following is an
explanation taken from the original documentation of the module.

Let N be the total number of genes that are studied, and M be the number of genes
that match a particular GO term out of these N genes. If x genes are observed with
that annotation, in a sample of n genes, then the probability of that observation can be

calculated, using the hypergeometric distribution as:
MY (N—M
. (z ) n—a )

p= N
(=)
To find a p-value, one should ask the question: What is the probability of having 5

(F.1)

or more out of 10 genes with this annotation, given that 42 out 6000 have it. This is
what a p-value is - the chance of seeing your observation, or better, given the background
distribution. This is calculated by summing the probabilities for 5 out of 10, 6 out of 10,
7 out of 10 etc. Thus the probability of seeing x or more genes with an annotation, out n,

given that M in the population of N have that annotation, is:

o, (3 (420
p — value = Z Lﬁ (F.2)
i==z n
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Appendix G

THE ALGORITHM FOR UDIM

The program is composed of 7 Classes. Relationship between the classes can be seen at
Figure G.1 and a detailed diagram of individual classes with their attributes and operations
can be found in this section. Algorithms are given in pseudocode. Refer to the source code

for the procedures whose pseudocode is not given.

(7]
:
T

Figure G.1: Classes and their relations,

Algorithm 7 EmModel()

bt
1: Read the parameters from configuration file.

: Initialize the 8 values from file.

N

3: Read the Interaction and Expression data from file
: Construct an EmAlgorithm Object em by the parameters and the data that is initialized.

em.RunEm()

[N

&
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Algorithm 8 RunEm()

o

if (lusingInitialClustering) then

2. Initialize the means and standard deviations of CPDs randomly

3: end if

4 numlterations =0

5: isConverged = false

6: while lisConverged && numlIterations++ ! = numMazlterations do
7. EStep()

8 isConverged =MStep();

9: end while

10: Output beliefs to file

Algorithm 9 EStep()

1: StartBp()

Algorithm 10 StartBp()

1: InitBeliefArrs()

2: NormalizeBeliefs()

3: numlierations =0

4: isConverged = false

5: while lisConverged && numlterations + + | = numMazIterations do
6:  RunBp();

7. 4sConverged = NormalizeMessages()
8: end while

9: UpdateBeliefs()

10: NormalizeBeliefs()

11: GetBeliefsInTenBase()




Appendiz G: The Algorithm for UDIM 74

Algorithm 11 InitBeliefArrs()
1: for gid = 0to N do

2. node = interactionsArr(gid)
3 for k=0to K do
4: node.probJointArr = ProbJointGcE(gid, k)

5.  end for

6:  node.InitBeliefs(node.probJoint Arr)

7. for all neighNode € Neighbors of node do
8: node.InitMessages(0.0)

9: end for

10: end for

Algorithm 12 RunBp()
1: for gid = 0to N do

22 GraphNode node = interactionsArr|gid]

3: for all neighNode € Neighbors of node do

4 messageArr = node.GetMessagesFromNew()

5: for k=0t K do

6: messagesArr(k] = CalcMij(neighNode, node)

7: end for

8: end for

9: end for
10: for gid = 0to N do
11:  GraphNode node = interactions Arr|gid);
12:  node.SwapMessages();

13: end for
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Algorithm 13 CalcMij{GraphNode fromNode, GraphNode toNode, int pK)
1: Let msgArr be array of size K

% for £=0to K do

3:  message ={

4: for all neighNode € Neighbors of node do

5 if {(neighNode ! = toNode) then

6: message += GetMessagesFromOld(neighNode, node, k);
7: end if

8: message += fromN ode.GetBeliefsOld(k);

9 CalcPhi2(fromNode, toNode, k, pK)

10: msgArr[k] = message;

11:  end for

12: end for

13: return LogArrSum(msgArr);
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Algorithm 14 MStep()

1:
2
3:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

Calculate Np Values
Check if 6 values are converged

SUMED = Efio Npli]

:for k=0t K do

O, = Np;/sum,p

: end for

: for k=0t K do

for m=0to M do
double zpj = 0, zpj2 = 0;
for gid = O0io N do
GraphNode node = interactionsArr[gid];
belief Arr = node.GetBelief sOld()
expressionVal = GetEzpressionVal(gid, m);
zpj = belief Arr[k] x expressionVal
zpj2 = belief Arr[k] » expressionVal?
end for
mpCpdMeansArr[k][m] = zpj /Nplk]
mpCpdStdevs Arr[k|[m] = zpj2/Nolk] — (zpj/Npk])?
end for

end for
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Figure G.2: Full class diagram of the program.



Appendiz G: The Algorithm for UDIM

78

@{RunEmgﬁ)' twoid.

_IU‘,'ﬁmer"Eehe frdnl it - woid

“GraphMode

‘mCurrﬁelghlndex ir
mDimension i
nGid i -
mbumMeigh int .
rpBaliefAriNes: daublet
‘,mpEehefMld dauhle“‘*
mpMuArrMaw sdonbles
dpuble ¥
npPreboinths ‘ﬂﬁuble*‘

- AddMNsighbsrp
~GeIBehﬁf&Newti dnuble‘*
jGaIBehefsQMﬁ doubla®
'Getﬁxdi} mi

’SﬂMassagesFramNew ewmggs': t‘iwble 13 i
SetProb JaintAripNewirr double 4; weid
‘SwapBeligfal) : void

‘SwapMassages)): vaid

Figure G.3: Full class diagram of the program (Continued).
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