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ABSTRACT

Since the middle of the sixteenth century to the beginning of the nineteenth cen-
tury some of the greatest mathematicians of this period have tried to obtain a formula
for the roots of quintic equations. Before that period it was known that the solutions
of the equations of degree less than or equal to 4 were expressible by radicals, in
other words, the polynomials up to the quartic were solvable by radicals (a radical
is a formula involving only the 4 basic arithmetic operations and the extraction of
roots). Galois not only solved this important problem which could not be solved for
centuries, but he also provided a criterion for solvability by radicals of any equation
2" + an_12™1 + ... = 0. Actually, the importance of the main result of Galois’ dis-
coveries has transcended by far that of the original problem which lead to it. His
discoveries in the theory of equations is called Galois Theory. Galois Theory inves-
tigates field extensions possessing a Gelois correspondence. Cogalois Theory, a fairly
new theory of about 20 years old is dual to the Galois Theory and investigates field
extensions possessing a Cogalois correspondence.

The main objective of this work is to present the fundamentals of Galois Theory
and Cogalois Theory. Firstly, we investigate Galois Theory. We start by providing
some concepts in order to define the Galois extensions and the Galois group of a given
field extension. Two major results of Galois Theory are given, namely The Funda-
mental Theorem of Finite Galois Theory and The Galois’ Criterion for Solvability by
Radicals. Then we work on Cogalois Theory. In that part we provide some results,
such as The Kneser Criterion and The Greither-Harrison Criterion. Lastly, we de-
fine G-Cogalois extensions. A G-Cogalois extension is a separable field extension with
G/ F*-Cogalois correspondence. The importance of these extensions stems from the

fact that they play the same role as that of Galois extensions in Galois Theory.
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INTRODUCTION

In Elementary Algebra the solution

o —b £ Vb2 - 4ac
- 2a

to the quadratic equation az? + bz + ¢ = 0 was known to the Babylonians around
2000 BC. During the period of the Italian Renaissance the roots of the cubic and
the quartic equations were also formulated. The first one was formulated by Scipione
Del Ferro (1465-1509) and Niccolo Tartaglia (1499-1557) independently. Tartaglia’s
solutions were given in terms of root extractions and rational operations. The second
one was attributed to Geronimo Cardano’s assistant Ludovico Ferarri (1522-1565).
His method was similar to the one which was used for cubics.

Although the quartic equation has been solved by radicals in the 1500’s, the quintic
equation remained a puzzle for the next 300 years. The reason was that most of the
mathematicians of this period believed that a formula for the quintic equations would
be formulated soon. Joseph-Louis Lagrange obtained considerably better solutions
than the other mathematicians who worked on the same problem. He showed that
the general method, which was used for proving the solvability of an equation of
degree < 4, did not work when it is tried on the quintic. It did not prove that the
quintic was not solvable by radicals, since there might had been another method which
would provide a formula for the quintic. But failure of such a general method caused
suspicion among people.

In 1799, Paolo Ruffini (1765-1822) published a book on the insolvability of the
quintic. But in the mathematical community the proof was thought to be unsatisfac-
tory. There was a gap in the proof. Nonetheless, he had made an improvement for

the solution of the problem and he deserved appreciation for it.



The problem remained until 1824 when Niels Henrik Abel (1802-1829) proved
that the general quintic equation was not solvable by radicals. He filled in the gap in
Ruffini’s proof. This achievement lead Abel to work on any particular polynomial of
any degree. But he died in 1829 without proving this new problem.

Evariste Galois (1811-1832), a mathematical genius independently proved the in-
solvability of the quintic using his Galois Theory. The Galois Theory has far-reaching
implications than its original purpose, it can be used to determine which equations
can be solved and which cannot be solved by radicals.

In his theory, for a finite Galois extension E/F, Galois found that there was a
canonical one-to-one, order-reversing correspondence, in other words, a lattice anti-
isomorphism between the lattice £ of the set of all subfields of E containing F, and
I", the lattice of all subgroups of the Galois group Gal(E/F). Later these extensions
are called the extensions with I'-Galois correspondence. With the help of this result,
Galois managed to describe the lattice of all intermediate fields of the extension E/F
in terms of the lattice of all subgroups of I'. So, the problem of the solvability of the
quintic equation is reduced into a group theoretical one.

There are also finite field extensions which are not necessarily Galois for which
there exists a canonical one-to-one, order preserving correspondence, or equivalently,
a lattice isomorphism between the lattice £ of all intermediate fields of the extension
E/F and the lattice D of all subgroups of a certain group A canonically associated
with the extension F//F. These extensions are called extensions with A-Cogalois corre-
spondence. Cogalois Theory, a fairly new theory, only about 20 years old, investigates
these field extensions which are finite or infinite. This theory is dual to the Galois
Theory which investigates field extensions possessing a Galois correspondence.

The term “extension with Cogalois correspondence” was introduced by Albu and
Nicolae [2] in order to emphasize a situation which is dual to that appearing in Galois
Theory.

The term “Cogalois” first appeared in the literature in 1986 in the fundamental
paper of Greither and Harrison [9]. In their paper they introduced and investigated
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“Cogalois extensions”. Also in 1991 Barrera-Mora, Rzedowski-Calderén and Villa-
Salvador published a paper [7] on this subject. In 1986, Greither and Harrison showed

that the extension
Q( " al,..., ”’V(ITVQ,

where r € N*, ny,...,n.,01,...,a, € N* and for every 1 < i < r, %/a; is the
positive real n;-th root of a;, is an extension with A-Cogalois correspondence. The
associated group A, for this extension is the factor group Q*( w/a1,..., %/a,)/Q*.
So, they obtained

[Q(ﬂ A1y- v n\r/(TT)lelQ*(n G PRI W/Q*‘

Kneser tried to find an explicit formula in order to compute [F(xy,...,z,.) : F],
where z1,...,z, € F and F is an algebraic closure of F. Partial answers were given to
this problem, but Kneser in his paper [12], answered this problem for a large class of
extensions. These extensions were later called by T. Albu and F. Nicolae [2] Kneser
ertensions.

In their paper, Greither and Harrison [9] also presented two other large classes of
field extensions with A-Cogalois correspondence. These are Cogalois extensions and
the neat presentations. The classical finite Kummer extensions are extensions with
Galois and Cogalois correspondences, and the two groups in these correspondences
are isomorphic. So, the extensions of type Q( v/a1,. .., %/a,)/Q, the Cogalois exten-
sions, the neat presentations, and the finite classical Kummer extensions all are field
extensions with A-Cogalois correspondence.

Albu and Nicolae [2] investigated separable finite radical extensions with A-Cogalois
correspondence and continued this subject in [3], [4], [5], [6]. They introduced the
concept of G-Cogalois extensions.

This Thesis is divided into two parts: part 1 is devoted to Galois Theory and
part 2 is devoted to Cogalois Theory. In Chapter 1, necessary preliminaries are given
containing the terminology and notation which are used throughout the Thesis.

Chapter 2 investigates the Galois Theory. We basically follow N. Jacobson [10]
3



and 1. Kaplansky [11] in this chapter. We start this chapter by the life of Galois.
Then some results from Group Theory which are needed in the proof of The Galois’
C'riterion for Solvability by Radicals are given. Further we give a short review of basic
Field Theory. After discussing on Ruler and Compass Constructions and Splitting
Fields, we come to the Foundations of Galois Theory, which is the body of Chapter 2.
We present the Galois correspondence and Fundamental Theorem of Galois Theory.
In the last section of this chapter we prove The Galois Criterion for Solvability by
Radicals. This is a criterion that is used to determine which equations are solvable
and which are insolvable by radicals.

Chapter 3 studies Cogalois Theory. In this chapter we follow the monograph [1] by
T. Albu. Firstly, we present some basic facts which are needed in the sequel. Then we
prove The Vahlen-Capelli Criterion which is a criterion to decide when the binomials
X™—a are irreducible over an arbitrary field. Then we introduce some concepts which
play an important role in Cogalois Theory. These are the concepts of G-radical and
G-Kneser extension. Roughly speaking, a radical extension is a field extension E/F
such that F is obtained by adjoining to F' an arbitrary set of “radicals” over F, that
is, of elements of z € E such that z™ = a for some n € N*. We can denote = by
{/a and call it an n-th radical of a. So, if E/F is a radical extension, then we have
E = F(R), where R is a set of radicals over F. But we can replace R by the subgroup
F* C G = F*(R) of the multiplicative group E* of E generated by F* and R. So, we
have E = F(G), where G containing F*, is a subgroup of E*. These extensions are
called G-radical extensions. Note that this concept is different from the one used in
Galois Theory, but coincides for simple extensions. A finite extension E/F is defined
as G-Kneser, when it is G-radical and has the following property, [G/F*| = [E : FJ.
Then we prove The Kneser Criterion which characterizes finite separable G-Kneser
extensions.

In 3.3, we study Cogalois extensions. In this section we provide the definition of a
Cogalois extension. A Cogalois extension is a field extension E/F which is T'(E/F)-
Kneser. T(E/F) is the subgroup of the multiplicative group E* of E, such that the

4



factor group T'(E/F)/F™ is the torsion group of the factor E*/F* (T(E/F) is the set
of all elements of F*/F* which have finite order). The group T(E/F)/F* is called
the Cogalois group of the extension E/F.

The Greither-Harrison Criterion that characterizes Cogalois extensions is also
given in this chapter. Some examples and computations of Cogalois Group of a given
field extension are also presented. Also the Cogalois groups of quadratic extensions of
Q are computed. Then we define the strongly G-Kneser extensions. Before defining
this concept, we present a general discussion on the dual concepts, Galois connec-
tions and Cogalois connections. To any G-radical extension E/F, finite or infinite, a

canonical Cogalois connection :

where

p:§— G, ¢(K)=KnNG,
Y:i— G — & ¢Y(H)=F(H),

¢ is the lattice Intermediate(E/F) of all subfields of F containing F, and G is the
lattice {H | F* < H < G}, is associated.

A strongly G-Kneser extension is a finite G-radical extension such that any subfield
of K of E, containing F, the extension K/F' is K* N G-Kneser. These extensions are

precisely the GG-Kneser extensions for which the maps
a : Intermediate( E/F) — Subgroups(G/F*), a(K) = (K N G)/F*,

and

B : Subgroups(G/F* — Intermediate(F/F), 8(H/F*) = F(H)

are isomorphisms of lattices, inverse to one another. So, a strongly GG-Kneser extension
E/F is also defined as a G-Kneser extension with G/F*-Cogalois correspondence.
In the following section, a special name to the separable field extensions E/F

with G/F*-Cogalois correspondence is given. They are called G-Cogalois extensions.
5



These extensions are characterized within the class of G-Kneser extensions by means
of n-Purity Criterion, where n is the exponent of the quotient group G/F*, which
is finite. These extensions in Cogalois Theory play the same role as those of Galois
extensions in Galois Theory. That’s why they are so important in Cogalois Theory.

Lastly, we are going to present some examples of G-Cogalois extensions.



Chapter 1: Preliminaries 7

Chapter 1

PRELIMINARIES

General Notation. In this chapter we present some general notation and termi-

nology that are used throughout the Thesis.

Numbers and Sets

N = {0,1,2,...} = the set of all natural numbers
N = N\ {0}

Z = the set of all rational integers

= the set of all rational numbers

R = the set of all real numbers

C = the set of all complex numbers

S* = S\ {0} forany o #SCC

Sy ={zeS|z>0}forany SCR

St = {z€S|z>0}forany SCR

m|n  mdividesn

ged(m,n) = the greatest common divisor of m and n
lem(m,n) = the least common multiple of m and n
¢(n) = the Euler function of n

P = {pe N*|pprime}
P = (P\{2}) U {4}
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)
3
It

{plpe P,p|n} foranyneN

D, = {m|meN, m|n} foranyneN
P, = PnND,foranyn €N

|M| = the cardinality of an arbitrary set M
1y = the identity map on the set A

fla = therestrictionof amap f: X — Y to ACX
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Groups

Unless otherwise stated G denotes throughout this Thesis a multiplicative group

with identity element e.

HCG
HLG
z =y (modH)
Ha(G
HVEK

V

iel

STL
Subgroups(G)
(M)

(gtha s 79’”«)

(G:H) =

the group with only one element
H is a subset of G

H is a subgroup of G

rlyeH

H is a normal subgroup of G

the subgroup generated by H U K

the subgroup generated by U H;
il

{z"|z€ S} forany @#SCGandneN

the lattice of all subgroups of G

the subgroup of GG generated by the subset M C G
the subgroup of GG generated by the subset

{913927' 0o ,gn} - G
the index of the subgroup H in G

xH =the left coset {zh|h € H} of z € G modulo H < G

G/H

the quotient group of the group G modulo H where H <G
the quotient group Z/nZ of integers modulo n

the symmetric group of degree n

the alternating group of degree n

ord(g) = the order of an element g € G

the set of all elements of G having finite order,

i.e, the torsion group of the group G.
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to(G)

IIc

icl

Do,

iel

D

el

= the set of all elements of G having order a power
of a prime number p

= {(zi)ier|z: € G;, for all i € I}

the (external) direct product of an arbitrary family (G;):er of groups

= {(z:)ier € HGi | z; = e;for all but finitely many ¢ € I}
icl

the (external) direct sum of an arbitrary family (G;);er of groups

= \/ H; = the internal direct sum of an independent family
i€l

(H;)ier of normal subgroups of G
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Rings

All rings given in this Thesis have unit elements.

A* = A\ {0} for any subset A of a ring R
U(R) = the group of all units of a ring R
F, = the finite field of ¢ elements
(z1,Z9,...,2y) = { Z rix;|T1,72,...,7n € R} = the left ideal of R

1<i<n
generated by z1,%2,..., 2, € R
(z) =Rz = the principal left ideal of R
generated by z € R
R[X1,...,X,] = the polynomial ring in the indeterminates
Xi,...,X, with coefficients in the ring R
deg(f) = the degree of a polynomial f € R[X]
@ (R) = the field of quotients of the domain R
F(Xy,...,X,) = Q(F|Xy,...,Xn]) = the field of rational
fractions in the indeterminates Xi,... , X,
with coefficients in the field F
po(F) = {z € Fl|z" = 1}, Fafield, neN*
F* = {z"|z € F}, F afield, n € N*
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Chapter 2

GALOIS THEORY

Before listing the important concepts that are used throughout this Thesis, we

briefly mention about Galois’ life.

2.1 The Life of Galois

Evariste Galois was born on October 25, 1811 in Bourg-la-Reine, France. His father
was Nicholas-Gabriel Galois, and his mother was Adelaide-Marie Demante. They were
both well educated in the subjects of philosophy, classical literature and religion. In
his childhood, Evariste’s mother helped him to be good at Greek and Latin. He was
also influenced by her skepticism toward religion.

His father was a republican. He was the head of the village liberal party, but in
1814 when Louis XVIII returned to the throne, he became the mayor of the town.
Galois’s mother was the daughter of the jurisconsult. It can be correctly said that
Galois was influenced by his parents’ liberal ideas. On October 6, 1823 Galois entered
a preparatory school, named College de Louis-le Grand which still continues education
in Paris. That school was a place where he had the chance to express his political
ideas. In Galois’ first term in that school, the students rebelled and refused to sing in
the chapel. Then, forty students, whom were believed to lead the insurrection, were
expelled. It was not known whether Galois was among the ones who were expelled
or not. But there is no harm in saying that these events had made an impression on
him.

In the first two years of school, Galois was successful. He received the first prize
in Latin and he had some other remarkable successes. But then everything started to

become worse. Galois was asked to repeat his third year. In those hard times Galois
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found a safe place to hide. He took a serious interest in mathematics. He discovered
Legendre’s text on geometry, and soon he had read Lagrange’s original memoirs:
Resolution of Numerical Equations Theory of Analytic Functions and Lessons on
the Calculus of Functions. Without a doubt, his ideas on the theory of equations
originated in Lagrange. Since he discovered the hidden secrets of mathematics, he
neglected other courses. Some of his teachers were unimpressed by his attitude, and
they thought that he was dissipated.

His mathematics teacher, M. Vernier, recommended him to work systematically.
But Galois did not take his advise and without being well-prepared, he took the
examination to “I'Ecole Polytechnique” a year early. But he was rejected.

In 1828, Galais enrolled in an advance mathematics course given by Louis-Paul-
Emile Richard who noticed his ability in mathematics. He thought that Galois should
be admitted to the Polytechnique without examination, since he believed that his high
talent would not let him to be successful in an examination which would be prepared
with poor examination techniques.

The next year Galois published his first research paper Proof of a Theorem on
Periodic Continued Fractions in Annales de Gergonne. At the same time he was
working on the theory of polynomial equations. At the age of 17, he submitted his
first rescarches on the solubility of equations of prime degree to the Academy of
Sciences. At that time, Augustin-Louis Cauchy was the referee. In Rothman’s notes,
there was a belief that Cauchy lost the manuscript or he got rid of it deliberately.
But on the other hand, René Taton (1971) has discovered a letter, which proved that
he did not lose Galois’s memoirs but had planned to present them to the Academy
in January 1830, of Cauchy in the archives of the Academy. But on 25 of January
Cauchy did not present Galois’s paper.

Taton suggested that Cauchy found Galois’s ideas remarkable and advised Galois
to prepare a new version for the Grand Prize in Mathematics. But we are not sure
whether this is the exact truth or not. What we know for sure is that Galois made
such a submission to the competition. Although Cauchy had conferred the highest
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price on Galois about his works on numerical equations, the memoir is lost in a strange
way and the prize is given without participation of Galois.

The same year, on the second of July, 1829, Galois’s father committed suicide. The
priest of Bourg-la-Reine had signed Mayor Galois’s name to a number of maliciously
forged epigrams directed at Galois’s own relatives. But M. Galois could not get over
such an attack. Galois was deeply effected by this event and the years after his
father's death were very difficult for him. A few days later Galois failed the entrance
examination to 'fcole Polytechnique for the second and the last time.

Since Galois was planning to continue his education in 'Ecole Polytechnique and it
did not require the Bachelor examinations, he did not study for his final examinations.
But now that he had failed to be admitted to I'Ecole Polytechnique, he decided to
enter I'Ecole Normale which was less prestigious than the Polytecnique at that time.
He prepared himself for his final examinations and he did well in mathematics and
science. In literature he was not much good, but he obtained both Bachelor of Science
and Bachelor of Letters on 29 December 1829.

In February 1830, Galois presented a new version of his research to the Academy
of Sciences for the competition of Grand Prize in Mathematics. His paper reached
the secretary, Joseph Fourier, and he took it home to read. However he died before
reading it, and Galois’ entry could not be found among his papers. But it may not
have been Fourier who lost the entry, since among Grand Prize committee, there
were also Legendre, Sylvestre-Francois Lacroix, and Louis Poinsot. On the other
hand, in Galois’s eyes the repeated loss of his papers could not be an accident. As
he said “The loss of my memoir is a very simple matter, and it was with M. Fourier,
who was supposed to have read it and, at the death of this savant, the memoir was
lost.” In April, in spite of the things happened in February, Galois published a paper,

~An analysis of a Memoir on the Algebraic Resolution of Equations and in June, he
published Notes on the Resolution of Numerical Equations and the article On the
Theory of Numbers, which were very important.

During the July revolution of 1830, the Director of I’Ecole Normale, M. Guigniault,
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locked the students in, so that they would not be able to fight on the streets. Galois
tried to escape but he failed and missed the revolution. In December of that year, M.
Guigniault was engaging in polemics against students in lots of newspapers. Then,
Galois wrote a blistering letter to the Gazette des Ecoles.

Galois was expelled because of that letter. This happened on January 4, but
Galois left the school immediately and joined the Artillery of the National Guard, a
branch of the militia which was composed of mostly republicans. On 21 December
1830, the Artillery of the National Guard, in which Galois was serving, was stationed
near the Louvre and were waiting for the verdict of the trial of four ex-ministers.
The decision would be to execute or to give them life sentences. If they received only
life sentences, the Artillery was planning to rebel. Before the verdict was announced,
the Louvre was surrounded by the full National Guard and by other troops. Then
the verdict was announced and the ministers had been given imprisonment. But it
did not erupt in fighting. On 31 December, the Artillery of the National Guard was
abolished by the king because they were thought of as a threat to the throne.

In January 1831, Galois was no longer a student and he knew that he had to
do something in order to make a living. Then he decide to give private lessons on
Advanced Algebra. Forty students enrolled, but his attempt to give lessons did not
continue for long because he was too involved in politics.

On 17 January he submitted a third version of his memoir to the Academy: On
the Conditions of Solvability of Equations by Radicals. Siméon Poisson and Lacroix
were the appointed referees. But he did not receive any answer from them in two
months. So, he decided to write a letter in order to learn the reason of it. But he
received no reply.

During the spring of 1831, Galois’ behavior became more extreme. In the ninth of
May, 1831, about two hundred young republicans held a banquet to protest against
the royal order disbanding the artillery which Galois had joined. Toasts were given
to the Revolutions of 1789 and 1793 and to the Revolution of 1830. Galois was seen

with his glass in one hand, and his open pocket knife in the other. His companions
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interpreted this as a threat against the life of the King.

The next day Galois was arrested and thrown into the prison at Sainte-Pelagie.
Probably because of his youth, he was freed on 15 June.

On 4 July, he received a letter about his memoir. Poison declared it “incomprehen-
sible”. According to the referees, Galois’ entry did not yield any workable criterion to
determine whether an equation is solvable by radicals. Tignol says “the Galois Theory
did not correspond to what was expected, it was too novel to be readily accepted”.

On 14 July, Galois and one of his friends were leading a Republican Demonstration.
Galois was wearing the uniform of the Artillery and carrying a knife and a loaded
rifle. Since it was illegal to wear the uniform and to be armed, they were arrested.
He stayed in prison nearly six months and he worked on mathematics there. Because
of cholera epidemic he was transferred to a hospital. Soon he was set free. In the first
times of his freedom, he experienced his first and only love affair. The lady’s name
was believed to be Stéphanie-Felicie Poterin du Motel. But he was rejected and it
was hard for him to get over it.

Soon Galois was challenged to a duel, seemingly because of his advances toward
this lady. But the circumstances are mysterious. One thought assets that Galois’
interest in Mlle. du Motel was used by his political opponents. The other thought
assets that Galois was assassinated by a police spy. But Alexandra Dumas says that
Galois was killed by a republican, Pescheux D’Herbinville and it was clear that he
was not a police spy. So, the duel was exactly what it appeared to be. Galois’ own
word also supports this matter:

“I beg patriots and my friends not to reproach me for dying otherwise than for
my country. I die the victim of an infamous coquette and her two dupes. It is in a
miserable piece of slander that I end my life. Oh! Why die for something so little, so
contemptible?... Forgive those who kill me for they are of good faith.”

On 29 May, the eve of the duel Galois wrote down his discoveries in a letter in
order to be sent to his friend Auguste Chevalier. This letter was later published in

Revue Encyclopédique. In that letter Galois made the connection between the groups
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and polynomial equations, and stated that an equation is solvable by radicals if its
group is solvable. He also mentioned many other ideas in his letter, about elliptic
functions and the integration of algebraic functions. His letter was actually for the
posterity. After his death, his few supporters managed to get the letter to Joseph
Liouville who edited his work and published them with this letter to Chevalier. With
the help of this book Galois gained the appreciation that he had always deserved. His
letter to Chevalier ended with these words:

“Ask Jacobi or Gauss publicly to give their opinion, not as to the truth, but as
the importance of these theorems. Later there will be, I hope, some people who will
find it to their advantage to decipher all this mess..”

It was not until Liouville republished Galois’s original work in 1846 that its sig-
nificance was noticed at all. Serret, Bertrand and Hermite had listened Liouville’s
lectures on Galois theory and had begun to contribute to the subject but it was C.
Jordan who was the first to formulate the direction the subject would take.

Galois’ discoveries enabled him to prove the problem, why the equations higher
than the forth degree could not generally be solved by radicals. His success mostly
comes from his approach which is directed toward the algebraic structure of the
problem. He felt that he could solve this problem which uses field theory, by reducing
it into a group theoretical one. Then, not only his idea lead him to the right solution,
but also it gave birth to modern algebra.

2.2 Some Results on Solvable Groups

In this section we present some basic facts on solvable groups that will be frequently

used in the sequel.
Definition 2.2.1. A normal series of a group G is a chain of subgroups
1=GoCG1CG:C...CGr =G,

where G; < Giyqq for alli € {0, 1, 2,...,n — 1}. The quotient groups Giy1/G;, where
i1 €40, 1,2,...,n— 1} are called the factors of the normal series. [
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Definition 2.2.2. A group G is said to be solvable if it has a normal series whose

factors are Abelian. O
Now we list some important results on solvable groups.

Proposition 2.2.3. Let G be a finite group. Then G is solvable if and only if G has

a normal series whose factors are cyclic groups of prime order. EI

Proposition 2.2.4. Any subgroup and any homomorphic image of a solvable group

is solvable. In particular, any quotient group of a solvable group is solvable. O

Proposition 2.2.5. Let N <G. If N and G/N are solvable then G is also solvable.
4

Examples 2.2.6. (1) Any Abelian group G is solvable since 1< G is a normal series
with Abelian factor G/1.

(2) Consider the group Ss. We know that 14 A3< S3, and the factors of this normal
series are S3/As = Zs and A3/1 = Zg. Hence, these factors are cyclic, so Abelian.
Therefore S3 is solvable.

More generally, S, is solvable if and only if 1 < n < 4. By (1), S; and S; are
solvable since they are Abelian and by (2), S; is solvable. Now we show that S, is
solvable. We claim that

1< KaAs a8,

is a normal series of Sy, where

K ={(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.

We are going to show that K <A4. The left cosets of K in Ag are K, (1,2,3)K, (2,3,4)K,
and the right cosets K in A4 are K, K(1,2,3), K(2,3,4). But K(1,2,3) = (1,2,3)K,

and also K(2,3,4) = (2,3,4)K. So, every right coset of K in Ay is a left coset of K

in Ay. Hence, K < Ay. Since |A4/K| = 12/4 = 3, we have Ay/K = Z3, so A4/K is

Abelian. We have also Sy/A4 =2 Z; and K/1 = K and K is isomorphic to the Klein-4

group, which is Abelian. Thus,

1<« K<Ay <48,
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is a normal series of S, with Abelian factors. Therefore, S, is solvable.

Conversely assume that S, is solvable for n > 5. Then by Proposition 2.2.4, A,
would be solvable since A, < S, for all n € N*. But we know that A, is simple for
n 2 5. So,

1< A,

is the only normal series of A, for n > 5. Since A, /1 = A, is clearly non-Abelian,
for n > 5, this leads to a contradiction. Thus, we have shown that S, is solvable if

andonly if 1 < n <4. O

2.3 Basic Field Theory

In this section we present the basic terminology, notation and results in Field Theory

which are used throughout the Thesis. Firstly, we recall the definition of a field.

Definition 2.3.1. A field F' is a commutative unital ring with 1 # 0, in which every

nonzero element is invertible. O
Now we define the characteristic of a field.

Definition 2.3.2. The characteristic of a field F is a natural number defined by:

n ifneN
Char(F) =

0 fn=

where n € N*U {oo} is the order of the identity element 1 in the Abelian group (F,+)
of the field F. If Char( F) # 0 then it is necessarily a prime number. EI

Definition 2.3.3. The characteristic exponent e(F') of a field F is defined by

o(F) = 1 4f Char(F)=0

p if Char(F)=p >0

A field F' is said to be perfect if F = FeF), O
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Field Extension

Definition 2.3.4. Let F C E be fields. If F contains the identity element of E, and
if it is closed under subtraction, multiplication, and inverses, then we say that F is a
subfield of E.

If F is a subfield of the field E, then E is said to be an overfield (extension field) of
F. We call the pair (F, E) o field extension, where F is a subfield of E (or E is an overfield
of F), in this case, we write E/F. Any subfield K of E with F C K is called an
intermediate field of the extension E/F. A subextension (resp. quotient extension) of
the extension E/F is any extension of the form K/F (resp. E/K), where K is an
intermediate field of the extension E/F. O

If E/F is a field extension then we can consider E as a vector space over F. We
call the dimension of this vector space, the degree of E over F and write it as [E : F].
If [E : F] < oo, then we say that E/F is a finite extension.

An extension is called quadratic (resp. cubic, quartic, quintic) if [E : F] = 2 (resp.

[E:F]=3,[E:F|=4,[E: F]=5).

Proposition 2.8.5. Let F, K, E be fields with F C K C E. Then [E : F| is finite if
and only if [E : K] and [K : F] are finite, and in this case [E : F] =[E : K] [K : F|
holds.

Proof. Suppose that [E : F] is finite. Since K is a subspace of F containing F, [K : F]
is finite. [E : K] is also finite since a basis for E over F' spans E over K.
Conversely, suppose that [K : F] = m < oo and [E : K] = n < oco. Let
{us,... ,un} be a basis for K/F and let {v1,...,v,} be a basis for E/K. We claim
that
{uju | 1€5<m, 1<i<n}

is a basis for E/F. If we can show that, then we deduce that [E : F] is finite and

equals to nm. In order to show that

{ujvi| 1€j<m,1<ig<n}



Chapter 2: Galois Theory 21

forms a basis for E/F, we must first show that this set spans F and it is linearly
independent over F. Let z be an element of E. We can write
7
xr = Z a;v;
i=1
where a; € K for each 1 € i < n. Since {uy,... ,un} is a basis for K/F, each a; can

be written as a; = )y ;¢ Cijt; With c;; € F. And then this gives
Tr = Z CiiU4V5.
%)

Hence, {u;v; | 1 < j<m, 1< i< n} spans E/F. We are going to show that this

set is linearly independent. Suppose that

Z Ciu;V; = 0
t,f

where each ¢;; € F. We have to show that ¢;; = 0 for each 4, j. We can write the above

equality as

0= Z ( Z Cvij'U/j)Ui.

1<ign M<G<m
We know that ), ., ciju; € K, and this gives that ), ciju; = 0 for all 4, since
{v1,... , U} is a basis for E/K. Since ¢;; € F for each 4, j and {us, ... ,un} is a basis
for K/F we obtain ¢;; = 0 for all j. Hence, {u;v;|1 < j < m,1 <4 < n}is a basis
for E/F. Therefore, [E : F] is finite and

[E:Fl=nm=[E:K]-[K:F],

as desired. O

F-homomorphism, F-isomorphism, Galois group

If E/F and L/F are two extensions, then an F-homomorphism from the field E into
the field L is any ring homomorphism ¢ : F — L that fixes F' pointwise, i.e, ¢(a) = a,
for all @ € F. Any F-homomorphism of fields is necessarily an injective map. An F-

isomorphism is a surjective (hence bijective) F-homomorphism. An F-automorphism
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of E is any F-isomorphism from F into itself. The set of all F~automorphisms of E
is a group under the binary operation of composition, called the Galois group of the
extension E/F, and denoted by Gal(E/F).

Poset, Lattice, Isomorphism, Anti-isomorphism

A partially ordered set, or poset, is a pair (P, <) consisting of a nonempty set P and
a binary relation < on P which is reflexive, anti-symmetric, and transitive. A poset
is also denoted by P. The opposite poset of P is denoted by P.

If every two elements z, y in a poset L have a least upper bound, z V 4 (also
denoted by sup(z, y)) and a greatest lower bound z A y (also denoted by inf(z, y)),
then L is said to be a lattice. A complete lattice is a poset in which every subset A
has a least upper bound V, ¢4z (also denoted by sup(A)) and a greatest lower bound
Nezea (also denoted by inf(A)).

A poset homomorphism (resp. a poset anti-homomorphism) from a poset P into
a poset P’ is a map f : P — P’ which is increasing, or order-preserving (resp.

decreasing, or order-reversing), that is, satisfies the following condition:
Vz<yin P= f(z) < f(y)

(resp. Ve < yin P = f(y) < f(x)).

A poset isomorphism (resp. a poset anti-isomorphism) from a poset P into a poset
P’ is a bijective poset homomorphism (resp. poset anti-homomorphism) f: P — P’
such that its inverse f~! : P/ — P is a poset homomorphism (resp. poset anti-
homomorphism).

If L and L' are two lattices, then a lattice homomorphism resp. (lattice anii-
homomorphism) from L into L' is a map f : L — L' satisfying the following condi-

tions:

flzAy)=flx)Af(y) and f(zVy) = f(z)V f(y), Vo, y € L
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(resp. f(z Ay) = fz) V f(y) and f(z Vy) = f(z) A fly), Yz, y € L.
Any lattice isomorphism between complete lattices commutes with arbitrary meets
and joins.
A bijection f : L —> L’ between two lattices L and L' is a lattice isomorphism
(resp. lattice anti-isomorphism) if and only if f and its inverse f~! are both order-
preserving (resp. order-reversing) maps, i.e, if and only if f is a poset isomorphism

(resp. poset anti-isomorphism).

Lattice of Subextensions

By Subextensions(F/F') we will denote the set of all subextensions of E/F. Note that
Subextensions(E/F) is a poset, that is, a partially ordered set, with respect to the

partial order < defined as follows:
K/F £ L/F <= K is a subfield of L.

Actually, this poset is a complete lattice, where
icl
sup;er(K:/F) = F(|J K:)/F,
i€l
and F(|J,c; Ki) is the subfield of E obtained by adjoining the set |
F (see Adjunction).

K to the field

i€l

Note that the lattice Subextensions(E/F) is essentially the same with the lattice
Intermediate(E/F) of all intermediate fields of the extension E/F.

Tower of Fields

A finite chain
EgCE,CEC...CE,

of fields, where n > 2 and F; is a subfield of E;y, for every i =0,...,n — 1 is called
a tower of fields.
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Adjunction

Ring Adjunction

Let E be a ring, and let R be a subring of E. If A is any subset of E, then R[A]
denotes the smallest subring of F containing both R and A as subsets. We have
R[A] := ﬂ T
TeS,

where Sq = {T|AUR C T, T is a subring of E}. Clearly, R[A] is a subring of E,
and it is called the subring of E obtained by adjoining to R the set A. We call
the procedure of obtaining R[A] from a subring R of E and a subset A of E a ring
adjunction.

Now we describe the elements of R[A]. Clearly, R[@] = R. Let A = {a1, aa, ...,an}
be a nonempty, finite subset of E. Then we denote R[{a1, as, ...,a,}] = Rla1, az, ..., an].

We claim that

Rlay, az, -..,a,] = {f(a1, az, ...,as) | f € R[X1,..., X4]},

where f(a1, ag, ...,ay) is the “value” in (ay, as, ..., ay) of the polynomial f.
First observe that

R[AU B] = R[A]|B] = R[B|[A],

where A and B are subsets of E. By the definition of ring adjunction, R[A][B] is
the subring of E obtained by adjoining B to the subring R[A] of E. We claim that
R[A][B] coincides with the subring R[A U B], which is the subring of E obtained by
adjoining AU B to R. Firstly, R[AU B] contains R[A] and B since R[A] C R[AU B],
and B C R[A U B]. By the definition of ring adjunction, the subring of E which is
obtained by adjoining to R[A] the set B, that is R[A][B], lies in R[A U B]. Hence,
R[A][B] € R[A U B]. Now we are going to show the other inclusion. It is clear that
R, AU B C R[AU BJ. So, by the same reasoning, we obtain R[A U B] C R[A][B].
Hence, R[AU B] = R[A][B]. If we repeat the argument by adjoining A to the subring
R[B], we obtain R[A U B] = R|B]|A], and we are done.
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Let A = {a1, az, -..,as}. If we do induction on n, then we can generalize the

above result. So, we obtain

R[al, az, ..., a,n] = (((R[al])[az]) N {an_1])[an], (231)

that is, Rla;, ag, ..., a,) is obtained by adjoining single elements to the previously
constructed subrings. According to this result, in order to describe the elements of
R[A], we can start by studying subrings of the form R[a]. We can see that the elements
of Rla] are of the form

bo + bya + boa® + ... + bra®,

with n € N arbitrary and b; € R for all 4, 0 < 7 < n. These are just the polynomial
expressions in a with coefficients in R. Clearly, R]a] contains all such elements. We
can also show that the set of polynomial expressions in a with coefficients from R form
a subring of R. By definition of ring adjunction, we can easily see that this subring
coincides with Rlal.

Now, using the above result and Equation ( 2.3.1), we deduce that

Rlay, ag, ...,a,) ={fla1, a3, ...,a:)| f € R[Xy,..., X,]}.

Now if A is any subset of F, then we can show that
RlAl= | R[],
CEFys
where F4 denotes the set of all finite subsets of A. Each subring R|C] of E is contained
in R[A], where C' € Fy; hence, gz, RIC] C R[A]. Cleatly, this union contains R
and A. So if it is a subring of E, then it must be equal to R[A], since R[A] is the
smallest subring of F containing R and A. To show that this union is a subring of
E, let a, B € Uges, RIC]. Then there are some finite subsets C, D of A such that
o € R[C] and 8 € R[D]. Then both «, 8 belong to R[C U D]. So, clearly, a £+ 3, a8

alt lie in ez, R[C]. So, this union is a subring of E. Hence,
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Field Adjunction

Let E/F be a field extension, and let A be a subset of E. F(A) denotes the smallest
subfield of F containing both F' and A as subsets, i.e,
F(4)= [ K,
KeTy
where Ty = {K|AUF C K, K is a subfield of E}.

F(A) is called the subfield of E that is obtained by adjoining A to the field F and
the extension F'(A)/F is the sube:vte;zsz’on of E/F generated by the set A. We call
the procedure of obtaining the subfield F(A) from a field F and a subset A of F a
field adjunction.

As in the ring case, we have

FA) = | F(9). (2.3.2)
S€EF,
We denote by F4 the set of all finite subsets of A. As in the ring case again, we have
F(AUB) = F(A)(B) = F(B)(A) where A, B are subsets of E.

For any field extension E/F and any subset A of E, we claim that F(A) is the
field of quotients of the integral domain F[A]. Firstly, take A = {a}. Since Fla] is
a subring of the field E, it is an integral domain. So, all possible quotients of the

elements of F|a] belong to E. Then we have
Fu{a} € Fla] € Q(Fld]) € E.

By the definition of F(a), we obtain F(a) C Q(F]al).

F(a) is a subring of E containing both F' and a. So, Fla] C F(a). But F(a)
is a field, so it has to contain all possible quotients of the elements of F[a]. Thus,
Q(Fla]) € F(a). Therefore, Q(F[a]) = F(a). If we take A to be any finite subset of
E, then doing induction on the number of elements in A, we obtain the same result.
Now if we take A to be an infinite subset of E, then by Equation ( 2.3.2), we have the
same result. Hence, we have shown that F(A) is the field of quotients of the integral

domain F[A], for any subset A of E.
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Now we can list the elements of F(A). Clearly, F'(2) = F. For any nonempty finite
subset A = {as,...,a,} of E, where E is an overfield of F,

F(ai,...,a,) = {f(ay,...,an)(glar,...,a:.)) " | f, g € F[Xy,..., X0}, 9(a1,. .., a,) # 0}

Finitely Generated Extension

A field extension E/F is said to be finitely generated (or of finite type) if E = F(A) for
some finite subset A of E. If A = {a1,0z,...,a,} then instead of F({a,az,...,a.})

we write F(a1,a2,...,an).

Simple extension

An extension E/F is said to be simple if there exists a € E, called a primitive element

of E/F such that E = F(a).

Compositum

Let E/F be a field extension and let (Kj;);er be a family of intermediate fields of the
extension E/F. The compositum of (K;)ics is the field F({J,; Ki) which is denoted
by V;e; Ki. If the index set I is finite, then we denote the compositumn of a family
(Ki)1gign also as K1 K. .. .. K.

The next result gives an upper bound for the degree of the compositum of two

intermediate fields.

Proposition 2.3.6. Let K and L and be two intermediate fields of the extension
If [ K:Fl=m,[L:Fl=nand [KVL:F]=1 thent < oo if and only if both m and
n are finite; in this case m |t and n|t and t < mn; if m and n are relatively prime

then t = mn. . a
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Algebraic Extension

Definition 2.3.7. Let E/F be a field extension, and let u € E. We say that u is
algebraic over F, if there ezists f € F[X], f # 0 such that f(u) = 0. Otherwise we

say that u s transcendental over F. O

Let E/F be a field extension and u € E. The evaluation map
n : FIX] — E,

which is defined as 7,(f) = f(u), is a ring homomorphism. The image of this ho-
momorphism is F[u]. Using the Fundamental Theorem of Isomorphism for Rings, we
obtain

F[X]/Ker (1) = Flu].

Clearly,
u is transcendental over F' <= Ker (n,) = 0 <= F[X] & Flu].

v is algebraic over F <= Ker (1,) # 0.

We know that Ker (7,) is a principal ideal of F[X], since F[X] is a PID. So, if u
is algebraic over F' then the unique monic polynomial f which generates Ker (7,,) is

called the minimal polynomial of u over F. We denote it by Min(u, F).

Proposition 2.3.8. Let E/F be a field extension, let w € E be algebraic over F, and
let f = Min(u, F) with n = def(f). Then

(1) f is unigue, irreducible in F[X], and for oll polynomials g € F[X] such that
g(u) = 0 we have f|g.

(2) {1,u,u?,...,u™1} is a basis of the vector space Flu] over F, so [Flu] : F] =n.

(3) Flu] is a field, and in this case we have Flu] = F(u).
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Proof. We only prove part (3). Let y € Flu], y # 0 be arbitrary. Since y € Flu| we
have y = g(u) = ap+ aju+ agu® +. . . + a,u™ where a; € F. Let f = Min(u, F). Then
by part (1), f € F[X], f is monic and irreducible, f(u) = 0 and f | g for polynomials
g € F[X] such that g(u) = 0. Let ged(f,g) = d. Then d|f and d|g. Since f is
irreducible, we have either d ~ 1 ord ~ f . If d ~ f then f|g, and this implies
that g = fh for some polynomial i € F[X]. Then y = g(u) = f(u)g(u) = 0, which
contradicts our assumption. So d ~ 1, which means that ged(f,g) ~ 1. Then there
exists f1,g1 € F[X]suchthat 1=f-fi+g- 1.

Now evaluate this equation at w. Then 1 = f(u)f1(u) + g(u)g1(u). But, f(u) =0.
Then we have 1 = g(u).g;(u). Since g(u) = y, we can take g1(u) as y~. Hence, all
elements y € F[u], y # 0 are invertible, which means that Flu| is a field. Therefore
Flu] = F(u). O

Definition 2.3.9. Let E/F be an extension. We say that E/F is an algebraic ex-
tension, or F is algebraic over F, if every element of F is algebraic over F. Otherwise

E/F is a transcendental extension or E is transcendental over F. O

Proposition 2.3.10. An extension E/F is algebraic if and only if every subring A
of B with FF C A is a field.

Proof. Let A be a subring of E with FF C A. We have to show that for every u € A,
u# 0, u"! € A Since F C A and u € A, F[u] C A. But since u is algebraic
over F, part (3) of Proposition 2.3.8 says that F[u] is a field. Hence, we have that
u€ Flul C A= u! € 4, and so A is a field.

Conversely, we show that v is algebraic over F, for every u € E. If u = 0, then
we are done. So, assume u 7% 0. We have F' C Flu] C E, and Flu] is a subring of
E. Then, from our assumption Flu] is a field. Since u € Flu] we have u™! € F[u].
So, there exists some by, by ...,b, € F, such that ©™! = by + biu + ... + bpu™ If we
multiply both sides with «, then we obtain 1 = bgu + b1u? + ...+ b,u™. So, we have
obtained a nonzero polynomial f = b, X" +b, 1 X" +...+5X —1 € F[X]. But u

lg ~ b means that a and b are associate in divisibility.
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is a root of this polynomial. Therefore, every element of F is algebraic over F, which

means that E/F is an algebraic extension. O
We list below some important properties of algebraic extensions.
(1) The followings are equivalent for an extension E/F.
(a) E/F is a finite extension.

(b) E/F is algebraic and finitely generated.

(c) There exists finitely many algebraic elements w1, us, .. .,u, of E/F such

that E = F(ug,ug, ..., Un).

(2) Let E/F be an extension, and let A be a subset of E consisting of algebraic
elements over F. Then F(A)/F is an algebraic extension, and so F(A) = F[A].

(3) Let F C K C FE be a tower of fields. Then E/F is an algebraic extension if and
only if both E/K and K/F are algebraic extensions.

Splitting Field

Let F be a field and let f € F[X]\ F. An overfield E of F is called a splitting field

over F of f if the following conditions are satisfied.
(1) f splits over E, that is, we have
f=cX—=r)... (X —m),
where ry,...,m, € F and ¢ € F*.

(2) There is no proper subfield £ of E which contains F such that f splits over
E', in other words E = F(ry,...,r,). This means that F is minimal with the

property (1).
Clearly, [E : F] is finite. We will see in Section 2.5 that for any field F' and any
polynomial f € F[X]\ F there exists a splitting field of f over F.
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Finite Field

First of all, we define the concept of prime field and prime subfield. The prime subfield
of a field F denoted by P(F), is the intersection of all subfields of F. A prime field
is a field which has no proper subfields. One can define the characteristic of a field F/
using the notion of prime subfield as follows:

>0 if P(F)¥Z
Char(F) = p (F) 4

0 if P(F)=Q.

Now if F is a finite field, then clearly the characteristic of F is p > 0. Then
P(F) & Z,. Since F//P(F) is a finite extension, say [F' : P(F)] = n, we have |F| = p",
considering F' as a vector space over P(F).

Conversely, let p > 0 be a prime number, and let n be a positive integer. Then
there exists a field F' with p" clements. We take the splitting field of the polynomial
f =X — X € Z,[X]. Clearly, this polynomial is separable since we have that
f=p"XP"~1 —1+#£0. So, f has p" distinct roots in any splitting field of F.

Any such field F' with p” elements is also a splitting field of f over P(F) which
implies that any two finite fields are isomorphic if and only if they have the same
number of elements. Hence, for any power of a prime number ¢, there exists a field,
that will be denoted as F,, with |F,| = ¢, which is unique up to isomorphism.. We
will denote Z, by F,. Also for any finite field F, and any n € N*, we have that I, is
a subfield of Fen.

Algebraically Closed Extension

Algebraically closed field. A field F is said to be algebraically closed if it satisfies one

of the following equivalent conditions.

(1) Every irreducible polynomial over F' is linear.

(2) Every nonconstant polynomial over F' has at least one root in F.
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(3) Every nonconstant polynomial in F[X] splits over F.

(4) There exists no proper overfield E of F such that E is an algebraic extension

of F.

Steinitz’s Extension Theorem. Let E/F be an algebraic extension, let Q be an
algebraically closed field, and let o : FF — ) be a field homomorphism. Then ¢ can
be extended to a field homomorphism 7 : E — €.

Algebraic closure. An algebraic closure of a field F is an overfield E of F such
that F is algebraically closed and E/F is an algebraic extension.

Any field F has an algebraic closure which is unique up to an F-isomorphism. An
algebraic closure of F' is denoted by F.

The following facts follow from Steinitz’s Extension Theorem.

(1) If F is a fixed algebraic closure of F, and E/F is any algebraic extension, then
there exists an F-homomorphism 7 : E — F, which is necessarily injective, and
extends the canonical injection j : F — F. Identifying E with 7(E), we can assume
that any algebraic extension of ' can be considered as a subfield of F.

(2) If E/F is an algebraic extension, then every F-automorphism of F can be

extended to an F-automorphism of F.

Normal Extension

Conjugate elements. Let F be a field, let F be a fixed algebraic closure of F, and let
z,y € F. Then, z and y are called conjugate elements over F if one of the equivalent

conditions is satisfed.

(1) There exists an F-automorphism o of I such that o(z) = y.
(2) There exits an F-isomorphism 7 : F(z) — F(y) such that 7(z) = y.

(3) Min(z, F) = Min(y, F).
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Equivalent definitions. An extension E/F (where E C F) is said to be normal,

if it is algebraic, and satisfies one of the following equivalent conditions.
(1) Whenever f is an irreducible polynomial in F[X] then either f splits over F,
or f has no roots in E.
(2) The minimal polynomial of each element of E splits over E.
(3) olp € Gal(E/F) for every o € Gal(F/F).
(4) For each z € E, all conjugates of z over F belong to E.

(5) o(E) C E for every F-homomorphism 7 : E — F.
Now we list some important properties of normal extensions.

(1) Let F C K C E be a tower of fields. If E/F is a normal extension then so is
also E/K.

(2) Let (E;/F);er be afamily of normal extensions. Then the extension ((;; Ej)/F
and F(lU,c; Ej)/F are also normal, that is, the meet and the compositum of

any family of normal extensions is normal.

(3) For any algebraic extension E/F there exits a “least” normal extension E /F
containing E/F as a subextension, where E is the intersection of all subfields N
of F containing E such that N/F is a normal extension. The extension E /Fis
called the normal closure of the extension E/F. The normal closure of a finite

extension is also a finite extension.

Separable Extension

Multiple Root. Let f be a polynomial in F[X] \ F having a root v in F. If (X —
u)™ divides f, but (X — u)™*! does not divide f, then the number m is called the

multiplicity of u. We say that u is a multiple root if m > 1 and a simple rootif m = 1.
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Definition 2.3.11. Let f = gp+ a1 X +...+a, X" € F[X]. We define the derivative

f'of f by
fl=a1+ 26X +... +na, X"

where kax, = ai + ... + ai (k times). Thus, we obtain a map called differentiation

D:F[X]— FIX], f— [

This map has the following properties:
1) (f+9'=F+7,
@) (af) =af,

(3) (fg) =fd +9f,

for every f,g € F[X], and a € F.
I:l

Proposition 2.3.12. For an irreducible polynomial f € F[X], the followings are

equivalent.

(1) In every splitting field of -f over F, f factors into distinct linear factors.,

(2) In some splitting field of [ over F, [ factors into distinct linear factors.

(3) f#0.

Proof. (1) = (2) is obvious.

(2) = (3) : Suppose that f’ = 0. Then for any root a of f, X — a divides both f
and f’. Then f=h-(X —a) and f'=h'- (X —a) + h. Since (X —a) | f’, clearly we
have (X — a) | h. So, (X — a)? divides f, which is contrary to our assumption.

(3) = (1) : Suppose that f has repeated factors in some splitting field E of f
over F. Let (X — a)? divides f in E[X]. We know that (X — a) divides both f and
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f'. But [ is irreducible over F and f’ is a polynomial which has a lower degree than
that of f. Then, ged(f, f') = 1, so there exists some polynomials r, s € F[X] such
that 7f + sf’ = 1. Now evaluating this equation at a, we obtain 0 = 1, which is a
contradiction. Hence, f factors into distinct linear factors in any splitting field of f

over F. O

Definition 2.3.13. Let f be an irreducible polynomial over F. We say that f is
separable over F, if one of the equivalent statements of Proposition 2.8.12 hold. An
algebraic element u is said fo separable over F' if its minimal polynomial is separable
over F. An algebraic extension E/F is separable over F if every element of E is
separable over F. A polynomial is said to be separable over F' if every irreducible

factor in F[X] is separable. O

Now we list some basic properties of separable extensions.

(1) A field F is perfect if and only if every algebraic extension of F' is separable.
In particular, any algebraic extension of a field of characteristic 0 or of a finite

field is a separable extension.

(2) Let F C K C F be a tower of fields. Then E/F is a separable extension if and
only if both K/F and E/K are separable.

Separable Degree

Let F be a field of characteristic p > 0, and let f be an irreducible polynomial in F[X].
Then there exits a unique number e € N such that [ € F[X?] but [ ¢ F[Xi"e+1], and
we write f = g(X?") for some g € F[X]. The following statements hold.

(1) g is irreducible and separable over F.

(2) All roots of f in F have the same multiplicity equal to p°, and the degree of g

is equal to the number of distinct roots in F of f, and so

deg(f) = p°® - deg(g).
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The positive integers deg(g) and p© are called the separable degree of [ and the degree
of inseparability of f, respectively.

If E/F is an extension and u € F is an algebraic element, then we define the
separable degree of u over F (resp. the degree of inseparability) as the separable degree
of the minimal polynomial of 4 over F. One can also define the separable degree of
an extension E/F as being the number of all F-homomorphisms from E into F; it is
denoted by [E : F|;. Let E/F be an extension with F' a field of characteristic p > 0,
let 4 € E be algebraic over F, having the degree of inseparability p°. Then [F(u) : F),

is equal to the separable degree of u over F, and

[F(u) : F] = p° - [F(u) : Fla.

Throughout this Thesis F' denotes an arbitrary field and ) a fixed algebraically
closed field containing F' as a subfield; any overfield of I is a subfield of Q. For any
n € N*, (,, denotes a primitive n-th root of unity over F, that is, a generator of the
cyclic group p,(Q) = {z € Q]z™ = 1}. We denote by u(F), the set of all roots of
unity in F. Then we have

n(F) < p(F) < F*,

for all n € N*. We also have

p(F) = p(F) and pim(F) C pn(F) if m|n.
k>1

2.4 Ruler and Compass Constructions

In this part we will use one of our previous results which is about calculating the
degree of a field extension. We apply that result to some problems which come from
classical Greek geometry.

In the ancient Greek geometry, people restricted the instruments that they used,
and they obtained a wide range of geometric constructions using only rulers and

compasses. With these two instruments, it is possible to divide a line segment into
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many equal parts, to bisect an angle and to draw parallel lines. Also given any
polygon of a certain area, it is possible to construct a square of equal area of the
polygon. There are many other constructions obtained in this way, but there are
also some constructions for which these two instruments are inadequate. Some of the
well known constructions that the Greeks could not construct using only rulers and
compasses are: duplicating the cube, trisecting the angle, squaring the circle. In other
words, the first problem asks for constructing a cube twice the volume of a given cube,
the second one asks for constructing an angle one third the size of a given angle, and
the last one asks for constructing a square of area equal to the area of a given circle.

Before providing the proofs for the impossibility of the three problems above, we
are going to formalize the idea of the ruler and compass construction. Let Py be a
set of points in the Euclidean plane R2. Then using a ruler, we can draw a straight
line through any two points of P, and using a compass, we can draw a circle whose
center is a point of Py, and whose radius is equal to the distance between some pair

of points in F.

Definition 2.4.1. The points of intersections of any two distinct lines or circles
drawn using a ruler and a compass are said to be constructible in one step from the
set Py. More generally, a point r € R? is constructible from Py if there is a finite
SEQUETICE T, T3, . . .,Tn = T of points of R?, such that for each j = 1,2, ..., n the point

r; 5 constructible in one step from the set Py U {ry,ra,...,7j_1}. O

Example 2.4.2. Suppose we are given two points py, ps € R%. Now we are going to
construct the midpoint of the line segment determined by these two points.

1. Using a ruler, we can draw the line that passes through the points p; and po,
namely, p;ps.

2. Using a compass, we can draw the circle whose center is p; and whose radius
is pipa.

3. Also we can draw the circle whose center is ps and whose radius is p;ps.

4. Now let r; and ry be the intersection points of these circles.

5. Using the ruler, we draw the line ryrs.
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6. Now let 73 be the intersection point of the lines p1ps and ri7s.
Then the sequence of points r1, 7,73 provides a construction of the midpoint of

the line pyps. O

Since a line is determined by any two distinct points on itself and a circle is deter-
mined by its center and a point on itself, all the traditional geometrical constructions
of Fuclidean geometry fall into the scope of Definition 2.4.1.

We are going to see that the limitations of the ruler and compass constructions is
related to the degree of some field extension.

To each stage of the construction, we associate a subfield of C, generated by the
coordinates of the points constructed. So, let Ky be generated by the z- and y-
coordinates of the points in Py. Then clearly, Kj is a subfield of R. If r; = (z;,v;),
then we can define K; to be the field obtained from Kj_; by adjoining z; and y; to

K;_1. We can write this as follows:
K; = Kj({z5,4:}) = Kj-(z5,45).
Then we have a tower of subfields,
KoCKyC...CK,CR

After doing some calculations, we can see that z; and y; in K; are roots of some
quadratic polynomials over K;_;. In order to do that, we have to consider three cases:
line meeting circle, line meeting line and circle meeting circle.

We are going to derive a criterion for constructibility and use Proposition 2.3.5.

Proposition 2.4.3. If r = (z,y) 4s constructible from a subset Py of R?, and K, is
the subfield of R generated by the coordinates of the points of Py, then the degrees

[Ko(z) : K] and [Ky(y) : K]
are powers of 2.
Proof. Using the result which we have mentioned above, we obtain

[Kj_1(z;) : Kj—1] = 1 or 2, similarly [K; 1(y;) : Kj_1] =1or 2.
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Then from Proposition 2.3.5, we have
[K-1(zj,45) : Kja] = [Kj-a(),95) « Kjea(as)] - [Kja(zs) - Kja] = 1,2 0r 4,

But since we have defined K as K;_1(z;,y;), we can say that [K; : K;_1] is a power

of 2. Clearly, [K : Kq] is a power of 2. Since
[Kn : Ko] = [Kn . Kg(&))] . [Ko(iv) . Ko],
we have [Ko(z) : Ko} is a power of 2. Similarly, [Ko(y) : Ko| is a power of 2. O

If we take in the above proposition r to be a real number and Py = Q, then we
have a nice result which says that any constructible real number is algebraic over Q
and its degree over the rational numbers is a power of 2.

Now we can solve our geometric problems, which we mentioned at the beginning

of this section, using algebraic notions.

Squaring the circle:
The problem is to construct a square whose area. is equal to that of a circle of radius
1, using a ruler and a compass. This is equivalent to constructing the real number
/7. But this is impossible since from our last result we know that a constructible real

number should be algebraic over QQ, whereas the number 7 is transcendental over Q.

Duplicating the cube:
The problem is to construct a cube whose volume is 2, using a ruler and a compass.
But this time such a construction is equivalent to constructing the real number /2.

This number is algebraic over Q, but its degree over Q is 3, by the theorem below. 2

Trisecting the angle 7 /3:

2If g is a monic polynomial (the polynomial is monic if the leading coefficient is 1) with integer

coefficients then any rational root of g is an integer: Suppose that m/n is a root of g with
ged(m,n) = 1. Let ¢ = ag + a1 X + ... + ap1 X% 1 + X*, s0 we have ag + aym/n+ ... +
ag_1(m/n¥=1 & (m/n)* = 0. Then, apn® + aym(n)*~1 + ...+ ax_1(m)*~'n+ (m)* = 0. But this
implies that n|m which is a contradiction. Hence any rational root of g should be integer.
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It is easy to construct the angle /3, starting from the points (0, 0) and (1, 0). To
trisect the angle 7/3, we again start from the points (0,0) and (1,0). In order to do
that, we have to construct the point («,0) where o = cos(7/9). If we construct the
point (c, 0), then we can also construct the point (3,0) where 3 = 2 cos(n/9). From

trigonometry we know that
cos(38) = 4 cos®(0) — 3 cos().
If we put 8 = 7/9, then cos(36) = 1/2. Now (3 satisfies the cubic equation
g -33-1=0.

But f = X2 — 3X — 1 is irreducible over Q. Suppose that [ is reducible over Q.
Then f has a root, a in Q. By the theorem which was used in the impossibility proof
of the duplicating the cube, a would be an integer dividing 1. But %1 is not a root

of f, so f is irreducible over Q. So, [Q(8) : Q] = 3, which is not a power of 2.

2.5 Splitting Fields

In this section our aim is to show that every polynomial f € F[X]|\ F has a splitting

field over F' and any two splitting fields of f over F' are isomorphic.

Proposition 2.5.1. If F is a field and h € F[X] is irreducible, then F[X]/(h) is a
field containing ( an isomorphic copy of ) F and a root of h.

Proof. Since h is irreducible, the principal ideal 7 = (k) is a nonzero prime ideal. We
know that F[X] is a PID, and so I is a maximal ideal. Hence, E = F[X]/I is a field.
Clearly, a — a+ I is an isomorphism from F onto the subset {a+1 : a € F} of E.
Let ¢ = X + I € E. Our aim is to show that € is a root of h, that is h(#) = I, since
I is the identity element of F[X]/I. Let h = ap + a1 X + a3 X2 + ... + 0, X", where

a; € F. According to the isomorphism above, we can identify the elements of F' with
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the elements of the set {a + 1 : a € F}. So,

h(0) = (ag+ 1)+ (a1 +1)0 + ...+ (an + 16",
=(a+N+@+HX+D+...+(an + DX +I)
=(apg+ 1)+ (@X+1)+...+ (@ X"+ 1)
=g+ X+...+a, X"+1
=h+1=1

Thus, § € E = F|X]/I is a root of k. 0

Theorem 2.5.2. Let f € F[X], where F is a field. Then there exists a splitting field
E

containing F.

Proof. We are going to prove this theorem by induction on the degree of the polyno-
mial f. If deg(f) = 1, then f is linear. So we can take F = F, since f splits over F.
If deg(f) > 1, then we can write f = g - h where h is irreducible. If A is linear and
deg(g) < deg(f), then by induction hypothesis, there exists a splitting field of g over
F. But this splitting field is also a splitting field of f, since & is linear. If deg(h) > 1,
then we construct the field F(uy) by using the above proposition, where u; is a root
of the polynomial k. By induction hypothesis, we can find a splitting field F of the
polynomial f/(X — uy) over F(u1). Then we obtain E = F(u1)(ug, us, ..., u,) where
Ug, U3, . . . , Uy are roots of the polynomial f/(X —uy). Hence, E = F(uy, u2, us, - . . , Uy)-

This shows that F is a splitting field of f over F. O
If 6 : F — L is a field homomorphism, then one defines a map
7: F[X] — L[X],

Tlag+ a1 X + ...+ 0, X") = 0(ap) + o(a1) X + ...+ o(a,) X"

ff=ap+a; X +...+a,X" then (f) will be denoted in the sequel by o(f).
Now we show that any two splitting fields over F' of a polynomial f € F|X] are

isomorphic. Firstly, we prove this statement for an irreducible polynomial.
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Proposition 2.5.3. Let F' and Fy be fields with o an isomorphism of F' onto Fy.
Let f € F[X] be an irreducible polynomial and o(f) € Fo|X) be the corresponding
polynomial. Let E = F(u) and Ey = Fy(ug) where u and uy are roots of f and o(f)
respectively. Then o can be extended to an isomorphism of E onto Ey which coincides
with o on F and sends u into ug. In this case, the number of such extensions is the

same as the number of distinct roots of o(f) in Ey.

Proof. Define n from the field E = F(u) to the field Ey = F(ug) by
7)(2 a;u’) Z (as)u.
=0 =0

This map is well-defined. Indeed, let g, h € F[X] be such that g(u) = h(u). So,
(9 —h)(w) =0.

Since f is irreducible and u is a root of f, by Proposition 2.3.5 part (1), we deduce
that f|(g — h). We have g — h = f - k with k € F[X]. Applying o to this equation,
we obtain

o(g — h) = o(fk).

Since o is an isomorphism, o(g) — o(h) = o(f)o (k). But this implies that

a(f) 1 {e(g) — o(h)).

Since ug is a root of o (), ug is also a root of a(g) —a(h), that is, a(g)(up) = a(h)(up).
We obtain

n(g(w)) = n(h(w)).
Hence, this map is well-defined. It can easily be shown that this map is one to one
and onto. Thus, this map is an isomorphism. It sends u into ug and agrees with ¢ on
F. It is clear that the number of such extensions is the same as the number of distinct

choices of ug , hence the number of distinct roots of o(f) in Ey. O

Now we are going to prove the next result which is more general than this one.
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Proposition 2.5.4. Let F' and Fy be fields with o an isomorphism of F onto Fy. Let
f € F[X] and o([f) € Fy[X] the corresponding polynomial. Let E and Ey the splitting
fields of f and o(f) respectively. Then o can be extended to an isomorphism of E

onto Eg. If f is separable over F, then there are exactly [E : F| extensions of o.

Proof. We prove this proposition by induction on [E: F|. If [E: F] =1, then E=F

and f factors into distinct linear factors over E, that is,

F=1Ix - w)

in F[X]. Now we apply the isomorphism o and obtain

o(f) = [ T(X = o(w))

in Fy[X]. Hence, o(u;) are the roots of o(f). Ey is generated over Fy by the roots of
o(f) since it is a splitting field of o(f). Therefore, Ey = Fp, and there is only one
extension.

Now assume [E : F] > 1. Then f is not a product of linear factors in F[X]. So,
we may assume that f has an irreducible factor, say g of degree bigger than 1. Then,
o(g) is a root of o(f). Let u be a root of g (clearly, v ¢ F, otherwise g would be
reducible over F). Then, by Proposition 2.5.3, the isomorphism o can be extended
to an isomorphism of F(u) onto Fy(o(wu)). It is easy to see that Eis a splitting field
of f over F(u) and F is a splitting field of o(f) over Fo(o(u)). We have

[E: F(u)] < [F: F],

since u ¢ F. So, by induction hypothesis, o can be extended to an isomorphism of E
onto Ey.

Now we are going to show that there are exactly [E : F)] extensions of o, where
f is a separable polynomial over F. We proceed again by induction on [E : FJ. If
[E : F] > 1 then there exists an irreducible factor of f of degree bigger than 1. Let
f = p-q, where p is irreducible over F' of degree d > 1. Let u be a root of p. Then,

o(u) is a root of o(p).
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By Proposition 2.5.3, o can be extended to an isomorphism of E onto E;. We
know that o(f) is separable since f is separable and o is one to one. Also, o(p) is
separable, which means that it has exactly d roots. By Proposition 2.5.3, there are
exactly d isomorphisms extending o, one for each root of p. Clearly, F is a splitting

field of f over F'(u) and Ej is a splitting field of o(f) over Fy(o(u)). We know
E: Fu)]=E: F}/[F(u): Fl=[E: Fl/d<[E: F].

By induction hypothesis, for each of the d isomorphisms, we have exactly [E : F}/d
extensions to E. Therefore, o has exactly d- [E : F}/d extensions, whichis [F: F]. O

Example 2.5.5. Let F = Q and f = (X2 —2)(X?~3). Clearly, £ = Q(v2,V3) is a
splitting field of f since E is generated over Q by v/2 and /3 and the roots of f are
+1/2 and £/3. Now we calculate the degree of E over F. v/3 is of degree 2 over Q,
since its minimal polynomial is X? — 3 ( X2 — 3 is irreducible over Q by a theorem
which is discussed in the impossibility proof of duplicating the cube). So the degree
of the extension Q(v/2,v/3)/Q(v/2) is at most 2.

If X2 —3 is also irreducible over Q(\/Q-), then the degree of this extension is exactly
2. Since the degree of X2 — 3 is 2, this polynomial is reducible over Q(v/2), if it has
a root in Q(+/2), which is v/3 € Q(+/2). Then, using the fact that {1,v/2} generates
Q(v/2), we obtain v/3 = a + by/2 for some a,b € Q. Squaring both sides, we obtain
3 = (a? + 2b°) + 2abV/2.

If ab # 0, then v/2 should be a rational number, but this is a contradiction. If
b = 0, then this implies that v/3 should be a rational number, which again leads to
a contradiction. If ¢ = 0, then we have V3 = /2. Multiplying both sides with \/5,
we obtain the result that /6 is a rational number, but this is again a contradiction.
Hence, v/3 ¢ Q(+/2). Using Proposition 1.2.5, we have [Q(v/2, v3) : Q] = 4. We can
easily see that {1,v/2, V3, 6} generates E. ]
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2.6 Foundations of Galois Theory

Now after we have gathered all the required tools, we can start to investigate Galois

Theory.

Definition 2.6.1. The Galois group of a polynomial f € F[X] is the Galois group of
E/F, where E is a splitting field of f. O

Clearly, Gal(E/F) is a subgroup of Aut(E), where Aut(E) denotes the set of
all automorphisms of E. We can easily see that Aut(F) forms a group under the
composition of mappings.

Now we are going to prove a result which will be used throughout the Thesis.

Lemma 2.6.2. Let f € F|X], and let E/F be o splitting field of f over F. If we have
o € Gal(E/F) and if u is a root of f, then o(u) is also a root of f.

Proof. Let f =by+b; X +b: X%+ ...+ b,X™ € F[X]. Since u is a root of f, we have
bo + biu + bou? + ... + b,u™ = 0. Applying o to both sides of the equation, we obtain
o(bo) + a(by)o(u) + a(b)o(u)® + . .. + a(by)o(u)” = 0. But ¢ fixes the elements of F'

pointwise, 80 o(b;) = b; for all 1 < ¢ < n. Hence, o(u) is a root of f. 0

In particular, let E = F(u), and let u be algebraic over F. Now put g = Min{u, F).
Then, for ¢ € Gal(E/F), we have that o(u) is also a root of g.

Now in the next examples we determine the Galois groups of some extensions.

Example 2.6.3. Consider the field extension C/R. It is easy to see that C = R(¢).
So, we deduce that C is a splitting field of the polynomial f = X? + 1 € R[X], since
the roots of f are +i. The degree of the extension R(¢)/R is 2, since the minimal
polynomial of i over R is X2 + 1, that is [C: R] = 2.

By Definition 2.6.1, the Galois group of f is Gal(C/R). Let o € Gal(C/R) and let
u be a root of f. Then, o(u) is also a root of f by Lemma 2.6.2. This means that o
sends roots of f to roots of f. But f has exactly two roots which are 3i. Then, we
have exactly two automorphisms in Gal(C/R). These are o7 : ¢ — 4, i.e., 01 = I¢

and oy : i — —i, i.e., 02(a + bi) = a — bi. Therefore Gal(C/R) = {1¢, o2} O
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Example 2.6.4. Now we determine the Galois group of the extension Q(+/2)/Q. We
know that /2 is algebraic over Q and its minimal polynomial is f = X% — 2 € Q[X].
The other roots of this polynomial are £+/2 and £2+/2, where ¢ is a complex cube root
of unity. But these roots of f do not belong to Q(+/2). Hence, Lemma 2.6.2 shows
that Gal(Q(¥/2)/Q) consists only of the identity automorphism. O

Proposition 2.6.5. If f € F|X] is a separable polynomial and if E/F 1is its splitting
field, then |Gal(E/F)| = [E : F.

Proof. In Proposition 2.5.4, if we take F' = Fy and E = Fy, and 0 : FF — F as the
identity mapping on F, then there are exactly [E : F] automorphisms of F fixing F.
In other words |Gal(E/F)| = [E : F]. O

2.6.1 Galois Correspondence

Let E/F be a field extension with Galois group Gal(E/F) = G. In this section our
aim is to set up a correspondence between the subgroups of (G and the intermediate
fields lying between E and F.

Firstly, we are going to define a set which will play an important role in the
subject.

Let H be a subgroup of G. Fix(H) denotes the set of all elements of E which are

fixed by every automorphism in H, i.e,
Fix(H) ={a € E|o(a) =a,0 € H}.

It is easy to see that this set is a subfield of E, so it is natural to call this set as the
fixed subfield of F under H.

Now we can define two maps such that

a : Intermediate( E/F) — Subgroups(G), a(K) = Gal(E/K)

3 : Subgroups(G) — Intermediate( E/F), B(H) = Fix(H).
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The first map is from the set of intermediate fields of E containing F' into the set
of subgroups of the Galois group G and the second map is from the subgroups of G
into the set of intermediate fields of the extension E/F.

We list some of the basic properties of these two maps:

() FCKCLCE,then Gal(E/K) D Gal(E/L)

(i) If 1 € J € H C G, then Fix(J) D Fix(H)

(iii) Fix(E/Fix(G)) 2 F

(iv) Gal(E/Fix(G)) 2 G.

To show that the first statement holds, let ¥ C K C L C E and o € Gal(E/L).
Soo(z) ==z, forall z € L. But L D K, so o(z) = z for all z € K, which means that
o € Gal(E/K). Therefore we have Gal(E/K) D Gal(E/L). The other statements can
be shown in a similar way.

According to our last result, the above maps between the set of subgroups of G
and the set of intermediate fields lying between E and F' are inclusion reversing.

From what we have introduced above, we see that the equalities Gal(E/FE) = 1
and Fix(1) = E holds.

It is not always the case that Fix(G) = F. For example, if take F = Q and
E = Q(+/2), then by Example 2.6.4, we have G = Gal(l5/F) = {1}. Hence, we have
Fix(G) = E # F. But F C Fix(G) always holds, since any element of F is left fixed

by any automorphism in G.

Definition 2.6.6. An algebraic extension E/F is called Galois if Fix(G) = F, that
is, G fizes F' and nothing more. In other words, E/F is said to be Galois, if for all
uw € E, u ¢ F there exists an F-automorphism o of E such that o(u) # u, that is, all

elements of E, which do not belong to F, are moved by some automorphism of E. [
Now the following result expresses the Galois extensions in a different way.

Proposition 2.6.7. The following conditions are equivalent for a finite extension

E/F with Galois group G = Gal(E/F).

(1) F = Fix(Q).
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(2) Every irreducible polynomial p € F[X] with one root in E is separable and has
all its roots in F; that is p splits over E.

(3) E is a splitting field of some separable polynomial f € F[X].

Proof. (1) = (2) : Let p € F[X] be an irreducible polynomial having a root « in
E. Let u = ug,us,...,u, be the distinct images of v under the automorphisms in
G.2 Proposition 2.6.2 implies that each u; is a root of p in E. Then deg(p) > r. Let
g € E[X] be such that

g=]](x - w). (2.6.1)

Let o € G, so we have o(u;) = u; for some 1 < ¢,j < r. Hence, applying o to the
Equation ( 2.6.1), we obtain o(g) = g. But E/F is a Galois extension, which means
that G fixes F' and nothing more. So, g € F[X]. We know that u is a root of both of
the polynomials p and g. Clearly, p is the minimal polynomial of u over F, since p is
irreducible over F. Part (1) of Proposition 2.3.8 implies that p|g, which means that
deg(p) < deg(g) = r. But we also have deg(p) > r. Hence, p = g, which means that p
splits over E.

(2) = (3) : Suppose that (2) holds. Let u; € E with u; ¢ F. We have that
E/F is an algebraic extension, since E/F is finite. Then w; is algebraic over F. Let
f1 € F[X] be its minimal polynomial. Clearly it is irreducible. Then, by hypothesis,
we have that f; is a separable polynomial which splits over E. Let K; C E be its
splitting field. If K; = F, then we are done.

Otherwise, if Ky # E, choose up € E and up ¢ K. Then, uy has also a minimal
polynomial, say fo € F[X], which is irreducible. By hypothesis, f; is separable and
splits over E. Let K € F be a splitting field of f; fo, which is separable and splits
over E. If K, = E, then we are done. If not, we can continue in this way. But we
have to stop somewhere since the extension E/F is finite.* Hence, E = K, for some

m. Therefore F is a splitting field of some separable polynomial.

3E/F is a finite extension, so, this implies that |G| < co.

4Gal(E/F) is finite hence it has finitely many subgroups. After proving The Fundamental The-
orem of Finite Galois Theory we can say that E/F has also finitely many intermediate fields.



Chapter 2: Galois Theory 49

(3) == (1) : Suppose that (3) holds. Then F is a splitting field of some separable
polynomial f € F[X]. Theorem 2.6.5 implies that |G| = |Gal(E/F)| = [E : F]. It is
easy to see that F C Fix(G) C E. E is also a splitting field of f over Fix(G) and

Gal(E/Fix(G)) = Gal(E/F).
Using Theorem 2.6.5 again for the field extension F/Fix(G), we have
|Gal(E/Fix(G))| = [E : Fix(G)].
But F C Fix(G) C E implies that
[E: F]l=[E:Fix(GQ)] - [Fix(G): F].
Then [Fix(G) : F] = 1, which means that Fix(G) = F. O
Now we state and prove a more general version of Proposition 2.6.7.

Proposition 2.6.8. Let F be an extension field of F. Then the followings conditions

on E/F are equivalent.

(1) E is a splitting field over F' of a separable polynomial f.
(2) F =Fix(G) for some finite subgroup of automorphisms of E.
(3) The extension E/F is finite, normal and separable.

Moreover, if E and F' are as in (1) and G = Gal(E/F), then F = Fix(G); and if G
and F are as in (2), then G = Gal(E/F).

Proof. (1) = (2) : Assuming (1), we can say that F/F is finite. The remaining part
of the proof will be similar to that of (3) == (1) of Proposition 2.6.7. We have also
proven the first of the supplementary statements above, in the previous theorem.

(2) = (3) : By Artin’s Lemma below, [F : F] < |G, but |G| < co. So, E/F is
finite. Now assume (2). Let p € F[X] be an irreducible polynomial having a root
u € E. Now using a similar argument in the proof of (1) = (2) of Proposition 2.6.7,
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we can prove that p splits over E and has all its roots in E. Then, we can say that
E/F is normal and separable.

(3) == (1) : Since F is finite dimensional over F, we can write E = F(ry,r2,...,1%),
where r; is algebraic over F, for all 1 < ¢ < k. Let f; be the minimal polynomial of r;
over F, for all 1 < ¢ < k. By hypothesis, each f; splits over E. But this implies that
f= H’f fi is separable and E = F(ry,rg,...,7s) is a splitting field of f over F.

Now we prove the second of the supplementary statements. We know that
|Gal(E/F)| = |E : F).

Since G C Gal(E/F), we have |G| < [E : F]. But from Artin’s Lemma below, we
have [E : F] < |G]. Therefore,

|G| =[E : F] = |Gal(E/F)|.
Hence, G = Gal(E/F). O

Lemma 2.6.9. (Artin) Let G be a finite group of automorphisms of a field E and
let F =Fix(G). Then [E : F] < |G].

Proof. Let |G| = n. If we can show that any m > n elements of E are linearly depen-
dent over F, then we are done. We use a result from linear algebra on linear equations
which says: Any system of n homogenous linear equations in m > n unknowns with
coefficients in a field E, has a nontrivial solution in E.

Let

G={o¢1=1,a2,...,ozn}

be a finite set of automorphisms of F and let uy, us, ..., %, € E where m > n. Then,
the above result on linear equations implies that we have a nontrivial solution of the
system of n linear equations
n m
i=1 j=1
in m unknowns. We pick one of such solutions, say (b, ba, . . ., bn,), where the number

of nonzero terms is minimum. With possible reordering, we may assume that by # 0.
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If we mulﬁply the solution (by, by, ..., by,) with by?, then we have a solution with the
first entry equals to 1. Hence, we may assume that by = 1.

Now we claim that all b; € F' = Fix(G). Suppose that for some j, b; ¢ F. Without
loss of generality, for j = 2, let by ¢ F. Then there exists some o € G such that
ag(ba) # be. Now applying ay to the system of equations

n m
DD _ailu)b; =0,
=1 j=1

we obtain
n m

Zz(ako‘i)(uj)ak(bj) =0.

=1 j=1
But (agor, agos, . . ., aroy) is a permutation of (ay, ay, ..., o). Then, we have

K m

DO ailuy)on(b;) =0.

i=1 j=1
Thus, (1, ag(bs), ..., ar(by,)) is also a solution of the system of equations ( 2.6.2).

If we subtract this solution from the solution (1, bs, . . . , by,), then we obtain another
solution of the system of equations ( 2.6.2), which is (0, by — ax(b2), . . . , bm — ax(bm)).
Since we have by # g (b2), this new solution is nontrivial and it has a smaller number
of nonzero terms than the solution (1,bs,...,b,,) has. But this is a contradiction,
since at the beginning, we had picked the solution having the least number of nonzero
terms. Hence, all §; € F = Fix(G). Now for i = 1, we have } ', wjz; = 0. This

shows that {u; |1 < i < m} is a linearly dependent set over F. Hence,
[E: F]<|G.
O

Now we are ready to prove The Fundamental Theorem of Finite Galois Theory.
By this theorem and the Galois Criterion of solvability by radicals, we will under-
stand why “FEquations of higher degree than 4 cannot generally be solved by radi-
cals.” This theorem also provides the correspondence between the subgroups of G
and the intermediate fields lying between E and F, where E/F is a field extension
and G = Gal(E/F).



Chapter 2: Galois Theory 52

Theorem 2.6.10. (Fundamental Theorem of Finite Galois Theory) Let E/F be a
finite Galois extension, and let G = Gal(E/F). Let I' = Subgroups(G) and let
¥ = Intermediate(E/F'). The maps

I — 3, H— Fix(H),

and

Y —T, K — Gal(E/K)

are tnverses and so are bijections of I onto X2 and of ¥ onto I'. Moreover, the following

properties hold.

(1) |H| = [E:Fix(H)], |G : H| = [Fix(H) : F), for every H €T.

(2) H is normal in G <= Fix(H) is normal over F, and Gal{Fix(H)/F) = G/H.

Proof. Let H be a subgroup of G = Gal(E/F). We have F C Fix(G) and F C Fix(H),
so Fix(H) is a subfield of E containing F' If we apply the second supplementary result
of Proposition 2.6.8 to H, then we obtain Gal(F/Fix(H)) = H. So by part (1) of

Proposition 2.6.8 and Lemma 2.6.9 we have
|Gal(E/Fix(H))| = [E : Fix(H)] = |H]|.
Now let K be an intermediate field of the extension E/F. We have
Gal(E/K) C Gal(E/F) = G.

Also by part (1) of Proposition 2.6.8, E is a splitting field of some separable polynomial
over F. Then, it is clear that E is also a splitting field of some separable polynomial
over K. Now we apply the first of the supplementary results of Proposition 2.6.8 to
the field extension E/K. We obtain

K = Fix((Gal(E/K))).

Now we have shown that the maps between I' and X are inverses of each other, so
they are bijections of I' onto ¥ and of ¥ onto I'. Also, the first part of (1} is shown

above.
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We have |G| = |E : F] = [E : Fix(H)] - [Fix(H) : F] = |H| - [Fix({) : F] by part
(1). Also we know that |G| = |H| - [G : H]. So,

[G : H] = [Fix(H) : F].

Therefore (1) is proven.

Now we prove part (2). We claim that H is normal in G if and only if we have
n(Fix(H)) = Fix(H), for every n € G. Let h € Fix(H). We have to show that n(h) is
fixed under every automorphism in H. Let ¢ € H. So,

a(n(h)) = (on)(k) = (nn~"on) (k) = n(n~" on)(R).

But H is normal in G. Hence, n~lon € H. Now (n~ton)(h) = h implies that

o(n(h)) = n(h).

Thus, n(Fix(H)) C Fix(H) for every n € G. But for n € G, h € Fix(H) and ¢ € H,
we have g(h) = h. Clearly,
(non™)(n(h)) = n(h).

So, the subgroup nH7™! corresponds to the subfield (Fix(H)). But H is normal in
G, so this implies that nH7n~! = H. This shows that n(Fix(H)) and Fix(H) have the
same dimension over F. This follows from part (1). Hence n(Fix(H)) = Fix(H).

Conversely, we show that for all 7 € G, nHn™! = H. Similarly, for € G,
h € Fix(H) and o € H, we have o(h) = h. Clearly, (non~1)(n(h)) = n(h). This shows
that the subfield n(Fix(H)), which is equivalent to Fix(H) by hypothesis, corresponds
to the subgroup nHn~!. Similarly nHn~! = H, for all € G. This shows that H is a
normal subgroup of G. So we have proven our claim.

Now in this case we prove that
Gal(Fix(H)/F) =2 G/H.

For all n € G, n(Fix(H)) = Fix(H), so the restriction 77 = 7|rx() is an automorphism

of Fix(H)/F. Thus, we have the restriction homomorphism which is defined as:

¢:Gal(E/F) — Gal(Fix(H)/F), n+— 1.
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The image of ¢, say G, is a group of automorphisms in Fix(H). We have Fix(G) = F.
We can write
Fix(C) = {z € Fix(H) [1]() = 2,7 € G},

But this set is a subset of Fix(G) = F. Also this set contains F. Hence Fix(G) = F.
Thus, G = Gal(Fix(H)/F) by the supplementary result (2) of Proposition 2.6.8. The
kernel of the above homomorphism is the set {n € G|7|pix = 1}. By the Galois
correspondence, this is Gal(E/Fix(H)) = H. Hence, by the Fundamental Theorem of
Isomorphism,

G/H =G = Gal(Fix(H)/F).

Since F = Fix(G), we have that Fix(H) is normal over F by Proposition 2.6.8.
Conversely, suppose that Fix(H) is normal over F. Since [E : F] is finite, it is an

algebraic extension. So, Fix(H)/F is also an algebraic extension. Let a € Fix(H),

and let f be the minimal polynomial of a over F. Since Fix(H) is normal over F, we

can say that f splits over Fix(I{). Then,
f=X—-a (X —a2)...(X —an)

where g = q; for some ¢ € {1,2,...,m} and a; € Fix(H), forall s € {1,2,...,m}. For
n € G, f(n(a)) is also a root of f by Proposition 2.6.2. But this shows that n(a) = a;
for some j € {1,2,...,m}. This implies that n(a) € Fix(H), since a; € Fix(H). Hence,
n(Fix(H)) C Fix(H). But as we have shown above, this implies that nHn~! C H for
all € G. Therefore, H is a normal subgroup of G. O

Now we consider the case where the extension E/F is infinite dimensional. In this
case the group G = Gal(E/F) is equipped with a natural topology.

We define a subset U of GG to be open if for each o € U, there exists an intermediate
field K C E such that

(a) The degree [K : F] is finite.

(b) If ¢’ is another element of G and the restrictions o|x and o'|k are equal, then

o eU.



Chapter 2: Galois Theory 55

The resulting collection of open sets forms a topology on G, called the Krull
topology, and G is a topological group under the Krull topology.
Now we state the theorem which explains the Galois correspondence for infinite

extensions.

Theorem 2.6.11. (Galois Correspondence for Infinite Extensions) Let E/F' be a field
extension and G = Gal(E/F). The correspondence
K — Gal(E/K)

defined for all intermediate fields F C K C E, is an inclusion reversing bijection
between the set of all intermediate fields K and the set of all closed subgroups H of
G. Its inverse is the correspondence

defined for all closed subgroups H of G. The extension K/F is normal if and only if

Gal(E/K) is a normal subgroup of G, and in this case the restriction map
G — Gal(K/F)
has kernel Gal(E/K).

Now we give some examples in which we use The Fundamental Theorem of Finite

Galois Theory.

Example 2.6.12. Let f = X? — 5 € Q[X]. Since the roots of f are r = V5,
ry = —/5, we have that E = Q(v/5) is a splitting field of the polynomial f. Then the
Galois group of f is Gal(E/Q). Let G = Gal(E/Q). The Q-automorphisms of E are,
o1:71 — 7 09 :T1 —> 7Ty
g — T2 e — TN
Then clearly, G = Z,. In Section 2.7, we will also define the Galois group of the

extension £/Q as the permutation group of the set of roots of f. Using this fact we

see that oy corresponds to (1) and o corresponds to (1,2). Now we have

G= {01702} = {(1)7 (132)} & Zo.
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Since f is a separable polynomial and E is a splitting field of f, |G| = [E : Q] = 2.
Now we determine the subgroups of G and the corresponding fixed subfields of E.

The subgroups of G The corresponding fixed subfields
Go ={(1)} Fix(Go) =Q(v5)

O

Example 2.6.13. Let f = X* — 2 € Q[X]. Let E C C be a splitting field of the
polynomial f. We can factorize f over E such that

f=X-OX + (X —i§)(X +if).

where ¢ = /2. So,
ar =& o =1, 03 = =€, a4 = —i€

are the roots of the polynomial f. Then E = Q(&,4). Since E is a splitting field of a
separable polynomial f over @, F is normal and separable over Q by Proposition 2.6.8.

Also F is finite dimensional over . We can write

[E: Q] = [Q(&,9) : Q¥)] - [Q(¢) - Q.

We know that £ is a root of the polynomial f and f is irreducible over Q by Eisenstein’s

Criterion.? Then, f is the minimal polynomial of ¢ over Q. So,

[Q(¢) : Q] = 4.

The minimal polynomial of ¢ over Q(€) is X? + 1, since 2+ 1= —1+1=0 and
i ¢ Q(¢) C R. This shows that X2+ 1 is irreducible over Q(£). Hence,

[Q(£,7) : Q)] =2.

SEisenstein’s Criterion: Let f = ag + a1.X + ... + a, X" be s polynomial over Z. Suppose that
there is a prime ¢ such that g { a,, gla; for 0 < i < n—1 and ¢? { ag. Then f is irreducible over Q.
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Therefore we have
[E:Q]=8.
Now we determine the elements of the Galois group, say G = Gal(E/Q), of the
polynomial f over Q. Since E is a splitting field of f over Q and f is a separable

polynomial, we have

|Gal(E/Q)| = [E: Q] =8.
So, there are 8 automorphisms in the Galois group by Proposition 2.6.5. Now the
table below displays the elements of the Galois group of f over Q. :

automorphism o1 o2 03 o1 o5 Og a7 g
sends 4 into i i i il —i -5 | —i —
and o = £ into o1 o o3 a7 o g o3 g
80, o = € into g g g o] Qg e 2] Qg 3
oz = —¢ into a3 oy oy (a2 o3 g o vy
oy = —1t€ into g oy o) a3 10 Qg Qg ol
o; can therefore be

represented by the | (1) | (1234) | (13)(24) | (1432) | (24) | (12)(34) | (13) | (14)(23)
permutation

Now we show how to fill some cells of this table, the remaining cells can be filled in
a similar way. Consider a4. We are given 04(7) =7 and 4(§) = a4 = —i£. Then,
o4{0n) =04(i€) = 04(6)04(€) = doy =i(—i§) = { = on.
o4(as) =04(—€) = —04(§) = —as = —(=if) = i{ = as.
o4(as) =04(—i€) = —04(1)o4(§) = —ioy = ~i(~i) = —§ = as.
So we have shown that o4(as) = o1, 04(e3) = as and o4(ey) = a3. Now we have
completed the 5% column. After completing the table, we can identify the Galois

group of the extension F/Q. In the table we have represented the automorphisms of

the Galois group G as permutations. So,

G={(1),(1,23,4),(1,3)(2,4),(1,43,2),(2,4).(1,2)3, 4,(1, 3), (1, 4)(2, 3)}.
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In G, we have 5 elements of order 2 and 2 elements of order 4. It is easy to
see that (G is non-Abelian. But we know that there are exactly 2 non-isomorphic,
non-Abelian groups of order 8. One of them is the quaternion group, which has one
element of order 2; and the other is the dihedral group, which has 5 elements of order
2. -Therefore G = Dg. Now, we find all subgroups of G and compute all fixed subfields

which correspond to these subgroups. Since G has order 8, it has subgroups of order
1,2,4,8. We have that

Go = {(1)}
is the subgroup of G of order 1, and
Gy = {(1)1 (274)}7 Ga = {(1)3 (17 3)}1 G = {(1)7 (172)(37 4)}

Gy = {(1)7 (17 3)(2) 4)}3 G5 = {(1)7 (1’ 4)(27 3)}
are subgroups of G of order 2. Now other subgroups of G which have order 4 can also

be determined. They are,

Ge={(1),(1,3),(2,4),(1,3)(2,4)}, Gr = {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},
Gs = {(1),(1,2,3,4),(1,3)(2,4), (1,4, 3,2)}.
The subgroup of G of order 8 is itself, which we denote by Gy = G. Now we find the

corresponding subfields to these subgroups of G. Since E = Q(i,£) = Q(4, V2), we
have that F is generated by the 8 elements

over Q. So we have that Q(i), Q(v/2) and Q(iv/2) are some of the intermediate fields
of E/Q. Clearly, they are fixed subfields of some of the above subgroups of G. We
don’t compute all the fixed subfields of the extension £/Q. They can be computed in
a similar way. Now we compute the fixed subfield of the subgroup

Gy ={(1),(1,3)(2,4)} = {o3)

of G. Let z € E be such that o3(z) = z. Then these z’s will be the elements of the
fixed subfield of G4 over Q. Since z € E we have
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z=ag+a;&+ a2£2 -+ (1353 + a4t + agif + a6i§2 + a7i§3
for some elements ag, a1, ..., a7 € Q. Then,
0'3(51:) =03(a0 +a:& + 0.262 + 0,353 + a4t + asif + a6i§2 + a7i§3)
=ag + a103(§) + a203(€2) + a303(€%) + a403(7) + aso3(3)o3(E)
+a603(1)03(E?) + aros(i)os(E’)
=ao + a1(—E) + a2(€)* + az(—€%) + ayi
+asi(—E) + agi€® + a7i(—E°)
=z.
Hence we obtain
a1 = —0y, 02 = Q2,03 = —03,04 = G4, A5 = —05, 06 = Ug, Oy = —d7.
But this implies that a; = a3 = a5 = a7 = 0. So, = can be written as
T =ag+ a2§2 + aqi + (1,6’1152 =ag + ag\/§ + a4t + agi\/i.

Hence the fixed subfield of G, over Q is Q(i, v/2). For the other subgroups of G which
have order 2, computing the corresponding fixed subfield is similar. Now we list all the
subgroups of G together with the fixed subfields of the extension E/Q corresponding
to the subgroups.

The subgroups of G The corresponding fixed subfields
Go ={(1)} Fo=Q(,vV2)=E
Gy ={(1),(2,4)} F =Q(V?2)
Gy ={(1),(1,3)} Fy =Q(iv/2)
Gs ={(1), (1,2)(3,4)} F3 =Q(v2(1 + 1))
Gs ={(1),(1,3)(2,4)} Fy =Q(i, V2)
Gs ={(1),(1,4)(2,3)} Fy =Q(V2(1 - 1))

Gs ={(1)7 (17 3)1 (23 4)5 (17 3)(23 4)} Fs =Q(\/§)
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Gr ={(1),(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} Fr =Q(iv2)
Gs ={(1)a (11 2,3, 4); (1: 3)(27 4)7 (17 4,3, 2)} Fy =Q(7’)
Gg ={(1)7 (1a 2>314)7 (1:3)(2’4)7 (17473a 2) Fo = =

(24),(1,2)(3,4), (1,3),(1,4)(2,3)}

Using the table we can easily see that the corresponding subgroup of the subfield
Q(7) is Gs, since all automorphisms in Gy fix 4 and Q. Clearly, we can also see this in
the above diagram. Now we check that F7 is the fixed subfield of G7. We show that
the automorphisms in G7 fix iv/2 = 62 = €€ = az0y. We have

(1,2)(3,4)(oea1) =os(az)os(r) = a1 = aga;.
(1,3)(2,4)(0201) =03(02)o3(1) = s = (—i€)(—€) = i€* = azen

(1,4)(2, 3)(0201) =0s(a2)os(a1) = azas = (=€)(—if) = oz

Hence we have shown that €2 is fixed by the elements of G. Therefore, the subfield
Fr of E/Q corresponds to G7. We can also check the corresponding subfield Fg of the
subgroup Gg in a similar way. The fixed subfields of Gy and Gy follow immediately
from the definition of the Galois group. O

Example 2.6.14. Consider the polynomial f = X34 X + 1 over the field
F=17Z,={0,1}.

Let a1, g, a3 be the roots of f. Then a splitting field of the polynomial f over F
is E = F(aj, as,as). So the Galois group of f is Gal(E/F). E/F, being finite, is
algebraic. So, E/F is a separable extension, since it is an algebraic extension over a
finite field F' = Z,. Clearly, f is irreducible over F. If f were reducible over F, then
it would have a root in F. But we have f(0) =1, and f(1) = 1. So, f is irreducible
over F.

Now we can use the following result which says that:
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If f € F,[X] is irreducible of degree n. Then, a splitting field of f is
For = Fo[X1/(f) = Fo(Q),
where { = 7 in F,[X]/(f) and the distinct roots of f are
¢ ¢ ¢ T
Let ag = ¢. Then we have oy = (% and a3 = ¢*. Since (3 = ( + 1, we have that
= ¢=(+1)¢ =+ Now we have
E= F(a17a27 C¥3) = F(g)‘
Since [E : F] = 3 there are no intermediate fields of the extension E/F. Since f is

a separable polynomial over F, and F is a splitting field of f over F, by Proposition
2.6.5 we have that |Gal(E/F)| = [E : F]. So,

|Gal(E/F)| = 3.

Thus, Gal(E/F) = Zs. We also express G such that Gal(E/F) = {(1), (1, 2, 3),(1, 3, 2)}.
There are two subgroups of the group Gal(E/F), namely {(1)} and itself. Now we
can list the subgroups of Gal(E/F) and the corresponding subfields of E/F. ]

The subgroups of G The corresponding fixed subfields
Gy ={(1),(1,2,3),(1,3,2)} F, =F =7,

O

Now we can start the last section of the first part. In this section we prove the

Galois’ Criterion for Solvability by Radicals.

2.7 The Galois’ Criterion for Solvability by Radicals

We start this section by defining the concept of solvability of an equation by radicals
over a field F. Also we give the definition of a radical extension. Then, we prove some

results in order to be able to prove Galois’ Criterion for Solvability by Radicals.
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Definition 2.7.1. Let f € F[X] be monic of positive degree. Then the equation f =0
is solvable by radicals over F if there exists a field extension E/F which possesses a
tower of subfields

F=FRCFC...CFu=EFE (2.7.1)

where each Fy1q = Fi(b;) and b7 = a; € F; and E contains o splitting field over F of
[ A tower of subfields such as ( 2.7.1) is called a root tower of F for E. O

Since each subfield F;.; of F is obtained by adjoining a root b, = =n/a; of the
equation X™ —a; = 0 to the field F; and all the roots of f are contained in the
field E, this definition says that every root of f can be obtained by starting with
the elements of the base field and having a finite sequence of rational operations and

solving equations of the form X™ —a = 0.

Definition 2.7.2. A field extension E/F is said to be a classical radical extension
of F, if we have E = F(uy,ua, ..., Un), where for all u;, 1 € {1,2,...,m} there exists
some n; € N* such that ul* = a € F(uy,ug,...,u;i_1). We denote u; = %/a and call

it as an n; — th radical of a. [

Using the second definition, we can say that the extension E/F in the first defin-
ition is a classical radical extension.

Let f has distinct roots in a splitting field £ 2 F. We know that the Galois group
of the polynomial f is the Galois group of the extension E/F. Let G = Gal(E/F),
and

f=X—-rm)(X—=r)...( X =)

in E[X]. Then E = F(r1,1e,...,7y) since E is a splitting field of f. Let

R={ry,re,...,rn}

be the set of roots of f.

Now we show that we can also identify the Galois group of the extension E/F
with a permutation group of the set R. Actually, Galois defined the Galois group as a
permutation group of the set of roots of f. On the other hand, Dedekind realized that
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this group can also be defined as the group of F-automorphisms of the splitting field
of f. Since we used the Dedekind’s definition, now we show that we can also define
the Galois group of an extension E/F as a permutation group of the set R.

Let n € G. By Lemma 2.6.2, we have n(R) = R. Hence, n induces a permutation

of R. Now there is a homomorphism

¢:nr—lr

of G into the symmetric group S,, of the permutations of the roots of f. Since the

roots of f generate E/F we obtain

(M =nr=1<=1g=1,

which means that 7 is the identity automorphism on G. But this shows that the kernel
of { consists only of the identity automorphism. So, we have that { is a monomorphism
of G into S,. Therefore, G is isomorphic to a subgroup of S,. We denote the image
of ¢ by Gy. If Gy = S, then the Galois group of the polynomial f is the symmetric

group .5,,.

Definition 2.7.3. Let E be an over field of F. E/F is called Abelian (resp. cyclic) if
it is Galois over F and G = Gal(E/F) is Abelian (resp. cyclic). g

Before proving our first lemma, we are going to provide a result which is used in

the proof of it.

Proposition 2.7.4. Let f be a monic polynomial of positive degree in F[X]. Then
all the roots of f in any splitting field E/F are simple if and only if ged(f, f) = 1.

Proof. Let d = ged(f, f’) in F[X]. Suppose that f has a multiple root in E[X]. Then
we have f = (X —r1)*g(X) where k > 1. If we take the derivative of both sides, then

we obtain

f=kX —r)f g+ (X —r)y.

Since k > 2, clearly (X — r)¥ divides f’. So, (X — r)* divides both f and f’. This
shows that d # 1.
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Conversely, suppose that all roots of f are simple. Then,

n

f = H(X — ’l”i)

=1

in E[X] and if ¢ # j then r; # r;. If we take the derivative of f, we obtain

n—1
f, = Z(X_Tl)“ . (X_"'i_l)(X —T¢+1)...(X—rn).
i=2
This clearly shows that (X — ;)4 f’ for all . Therefore ged(f, /') = 1. O

Lemma 2.7.5. Let E be the splitting field of f = X™ — 1 over F of characteristic 0.
Then, G = Gal(E/F) is Abelian, that is, the extension E/F is Abelian.

Proof. Since the characteristic of F is 0, f’ = (X™ — 1) = nX™"! # 0. So, we have
ged(f, /') = 1. By Proposition 2.7.4, f has distinct roots in E. Clearly, these roots
form a group under multiplication. Also we know that R is cyclic. So, we can write

R = (r). Then we show that the map

77'—>7]|R

of G into Aut(R) is a monomorphism,. Since F is a splitting field of f, the roots
of f generate E. If n|g = 1, then n is the identity automorphism of E. Hence, the
kernel of this map consists only of the identity automorphism. So, this map is a
monomorphism. Hence, G is isomorphic to a subgroup of Aut(R). Now we show that
Aut(R) is an Abelian group. Let o,7 € Aut(R). It is clear that Aut(R) C G. By
Lemma 2.6.2, for r € R, we have o(r) = r* and 7(r) = r7, for some i, j € {1,2,...,n}.

Then,
(@7)(r) = o(r(r)) = o(r?) = ()" = " = 1" = (') = 7(r') = 7(o(r)) = (r0)(r).

So, Aut(R) is an Abelian group since r generates R. Therefore G is also an Abelian
group. O

Lemma 2.7.6. If F contains n distinct n-th roots of unity, then the Galois group of

X™ — a over F is cyclic of order a divisor of n.
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Proof. Let R be the set of n-th roots of unity in F. Let E be the splitting field of the
polynomial X™ — a. If 7 is a root of X™ — a, then the other roots of this polynomial
are

r, re, T€2, ..., revTL

where ¢ is the n~th root of unity in F. Since E is a splitting field of the polynomial
X" ~aq and € € F, we have E = F(r). Let n € G. Then by Lemma 2.6.2, we have

n(r) = ret, for some i. Now the map

n— ¢

is clearly a monomorphism of G into R. Thus, G is isomorphic to a subgroup of R
which is a cyclic group. Hence G is also a cyclic group. Since the order of R is n and

G is isomorphic to a subgroup of R, the order of (G is a divisor of n. O

Now we are going to prove Hilbert’s Theorem 90. But firstly, we define trace and

norm of an element in a field extension.

Definition 2.7.7. Let E/F be a finite Galois extension with Galois group G such
that G = {01,09,...,0n}. For a € E the trace of a and the norm of a are defined

respectively,
T(a) = o1(a) + o2(a) + ... + ou(a)
N(a) = g1(a) - 02(a) ...on(a)

Clearly, for o; € G, 0(T(a)) = (3.7 0i(0;(a)) = T(a), since {oi0;}11 < j < n} s
a permutation of o1,09,...,0,. So, T(a) € F, and similarly N(a) € F. Now we list

some of the preliminary properties of the norm.

(1) N(a-b) = N(a)-N(b) where a,b € E, that is, the norm function is multiplicative.

(2) If 0 € G and a € FE then N(o(a)) = N(a).

We can also define the norm and trace of an element in a finite, separable extension
E/F with degree n. We take 01,09, ..., 0, as all distinct F-homomorphisms of F into
F. O
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Theorem 2.7.8. (Hilbert’s Theorem 90) Let E/F be a finite, Galois extension where
G = Gal(E/F) is cyclic of order n; let o be a generator of G. then N(a) = 1 if and
only if there exists b € E, b # 0 such that a = bo(b)™1.

Proof. Since o generates G, we have N(a) = ac(a)o?(a)...o" 1(a). Suppose that
a=ba(b)~L.

Now we have,

N(a) = N(bo(5))) = NON(o(B)) = NON(o(8))~ = NEN (B =1,

Suppose that N(a) = 1, and ¢ € E. We define the “partial norms”:
do = ac, di = ac(a)o(c), dz = ac(a)o*(a)o?(c),...
dp-1 = ao(a)...c" Ha)o" ) = ™" Y c), since N(a) = 1.
ao(d) = ac(a)o®(a)...c" (a)o"™(c) = diyq, for all 0Ki<n—2.  (2.7.2)

By Dedekind’s Lemma®, {1,0,02,...,0" '} is linearly independent over E. So, there
exists ¢y € G such that
do+di+...+dp1#0.

Now for cg € G, let b=dy+d; + ...+ d,_1. We claim that
a = bo(b)™L.
Now by Equation ( 2.7.2), we have
o) =o(do) +o(ds) + ... +0(dnoy1) =a dy +da + ... + dpi1] + 0™(c0).

But o™ = 1. Then, 6™(cg) = cp and ¢ = a~'dp. Now if we put ¢g in the above

equation, we obtain
U(b) = a-l[dg + d1 -+ d2 +...+ dn—l]‘

But this implies that o(b) = a~1b. Therefore, a = bo(b)~. a

5Dedekind’ s Lemma says: Any set of distinct automorphisms of E is linearly independent over
E.
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Now we are ready to prove our next lemma.

Lemma 2.7.9. Let p be prime and assume F contains p distinct p-th roots of unity.

Let E/F be cyclic and p dimensional. Then E = F(b) where bP € F.

Proof. Let w be a primitive p-th root of unity. Since E/F is cyclic, it is Galois over
F and its Galois group is cyclic of order p. Since w € F,

N(w) =w" =1.

We have
|G| = |Gal(E/F)| = |E : F|.

Let o be a generator of the cyclic group G. By Hilbert’s Theorem 90, w = bo(b)~}

for some b € E. Then, o(b) = w~b. So we have,
o(bP) = (w™'b)? = bP.

Since E/F is a Galois extension and o generates G, we have b* € Fix(G) = F. We
also have b ¢ F, since otherwise, o(b) = b which implies that w = 1. But w is a
primitive p-th root of unity. So, F(b) # F. Hence, F'(b) is an intermediate field of the
extension E/F and it is not equal to F. But E/F is of degree p, where p is a prime
number. So, we have E = F(b). O

Lemma 2.7.10. Let f € F[X] and let E be an extension field of F. Then the Galois
group of f over E is isomorphic to a subgroup of the Galois group of f over F.

Proof. Let L be a splitting field of f over E. Since E D F, E contains a splitting field
K of f over F by Theorem 2.5.2. If

1
in L{X], then we can write L = E(ry,7s,...,7,). Also K = F(ry,ra,...,rs). If

n € Gal(L/E),
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then % permutes the roots {ry,rs,...,7,} and 7 fixes E. Since F C E, n also fixes F.
Hence,

n|lx € Gal(K/F).

Now we show that the restriction homomorphism, n — 7| of Gal(L/E) into
Gal(K/F), is a monomorphism. We know that n|x = 1 implies that 7 is identity on
L, since L is generated over E by the roots of f. So, this restriction homomorphism
is a monomorphism of Gal(L/E) into Gal(K/F). Hence, Gal(L/E) is isomorphic to
a subgroup of Gal(K/F). O

Let E be a finite dimensional extension field of F' of characteristic 0. Then clearly
E is algebraic over F. So, there exists a normal closure E /F of the extension E/F,

which is also finite dimensional. Let
G = Gal(E/F).

Now our aim is to show that F is generated over F by n(E) where n € G. We call
n(E) as the conjugates of E/F in E. Let E be the subfield of £ which is generated
by the »(E), n € G. Then clearly G maps the subfield E’ onto itself. Now we obtain a
finite set of automorphisms whose fixed subfield is F| since E is normal and separable
over F. But this shows that £’ is normal over F by Proposition 2.6.7. But E/ Fis
the normal closure of the extension E/F, which means that it is the “least” normal
extension containing E/F as a subextension. Hence, E =E.

Now we are going to prove our last lemma before the Galois’ Criterion for Solv-

ability by Radicals.

Lemma 2.7.11. Let E/F have a root tower over F, say F = F; C Fp C ... C Fryq
with Fi1 = Fi(b;), b € F;, and assume E is generated over F' by a finite set of
elements whose minimal polynomials are separable. Then the normal closure E/ F of
E/F has a root tower over F such that the distinct integers n; for this tower are the

same as those occurring in the given tower.
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Proof. Since E/F is finite, it is algebraic. So, there exists a normal closure E/ F of

the extension E/F. If we apply n € Gal(E/F) to the tower of fields
F=FRCFkhC.. CHEiu,

with Fyy = Fi(b;), b € F;, then we also have a root tower for n(E) over F, since
n(F) = F. Let Gal(E/F) = {m,m,...,}. Since E = F(by,by,...,b,) and we know
that the normal closure E/F of E/F is generated by the conjugate fields, n(E),
7K Gal(E/F), we have

E=F(mby),...,mb)imabe),. .., m(be)s- ),

By induction on n; € N*, for some ¢ € {1,2,...,r}, we can show that the same n; for
all i € {1,2,...,r} will also occur in this root tower. Thus, the normal closure E /F
has a root tower over F, with the same n;s. O

. Now we can prove the Galois’ Criterion for Solvability by Radicals.

Theorem 2.7.12. (Galois’ Criterion for Solvability by Radicals) An equation f =0
18 solvable by radicals over a field F' of characteristic 0 if and only if its Galois group

18 solvable.

Proof. Suppose that f = 0 is solvable by radicals over F' of characteristic 0. Then
there exists an extension field E / F containing a splitting field E/F of f, which has a
root tower over F' as in Equation ( 2.7.1). Using Lemma 2.7.11, we may assume that
E /F is a normal extension. Since F/F is finite, it is algebraic. But we know that any
algebraic extension of a field of characteristic 0 is separable, so E/ F' is a separable
extension. Hence, E, is being separable and normal over F| is Galois over F.

If n is the least common multiple of the integers n;, in the root tower of E /F, then
we can extend this tower from E to E(t), where ¢ is a primitive n-th root of unity. If E
is a splitting field of some polynomial g over F’, then g is separable by Proposition 2.6.7.
Also E’(t) is a splitting field over F' of the polynomial g - (X™ — 1), which is clearly

separable. Hence, E(t) is separable and normal over F. By Proposition 2.6.7, it is
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Galois over F. Since t" = 1 and 1 € F, we can rearrange the tower, where we have

F(t) as the second term. Then, we obtain
F=RCFR=FtCFC...CE#. (2.7.3)

Let G be the Galois group of the extension E/F, and H be the Galois group of
the extension E/F Using Lemma 2.7.5, we have that F3 is Abelian over Fj. Using
Lemma 2.7.6, we have that Fj,; is Abelian over Fj, for i > 1. Since F; D F(t),
we have that F; contains n distinct n-th roots of unity. Let H; be the subgroup of
the group H = Gal(E(t)/F), which corresponds to the subfield F;. Then we have
H;, = Ga,l(E(t) /F;). Since the minimal polynomial of each element of Fj; splits over
Fi41 for all ¢, by the definition of the root tower, we have that Fj,; is normal over F;
for all 4.

By Theorem 2.6.10, we can say that H;,; <G for all . Also we have H;;, < H; for

all . Moreover, by Theorem 2.6.10, we obtain
H;/H;1y = Gal(Fyy 1/ F).

Hence, H;/H;y; is an Abelian group, since F;;; is Abelian over F; for all 4. Thus,
we have a normal series for H with Abelian factors, so H is solvable. Again by

Theorem 2.6.10, we have
G =Gal(E/F) = H/Gal(E/E).

We know that E is normal over F. Hence G is solvable from Proposition 2.2.5, since
it is isomorphic to a quotient group of H.

Conversely, assume that the Galois group G of f is solvable. Let E be a splitting
field of the polynomial f over F. Then Gal(E/F) = G. Clearly, E/F is an algebraic
extension of a field of characteristic 0. Then E/F is a separable extension. This says
that f is separable over F, since all its irreducible factors are separable in F[X]. So,

by Proposition 2.6.5, we have |G| = [E : F]. Let n = |G| = [E : F]. We put

F1=Fa F2=F(t)a
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where { is a primitive n-th root of unity and E= E(t). By Lemma 2.7.10, we have
that the Galois group of f over F5, which is the Galois group of E / F5, is isomorphic
to a subgroup H of G. By Proposition 2.2.4, H, being a subset of G, is also solvable.

By Proposition 2.2.3, H has a normal series such that
1 =Hr+1<l...<f1r2<1111 =I{,

with factors H;/H; 1 cyclic of prime order p;, forall 1 < ¢ < r.

Correspondingly, we have an increasing chain of subfields such that
FRCFC.. . Fp=E

We have, H; = Gal(l?? / Fi+1). By Proposition 2.7.10, we have that Fj,4 is normal over
F;, and H;/H;y1 is isomorphic to the Galois group of Fiy;/F;. Hence, F;.1/F; has a
cyclic Galois group with prime order p; for all i. Since Gal(F;;1/F;) is a subgroup
of G, we have p;||G|. But F; D F>, so F; contains a primitive n-th root of unity.
Since p; | |G|, F; contains p; distinct p;-th roots of unity. By Lemma 2.7.9, we have
F;11 = Fi(bi), where B € F;. Hence, E possesses a root tower over F, where E

contains a splitting field over F' of the polynomial f. Therefore, f = 0 is solvable by
radicals over F. 0

Now we give an example of an insoluble quintic polynomial. We claim that the
polynomial f = X%~ 6X + 3 is not solvable by radicals over Q. In order to do that,

we have to give a result first.

Theorem 2.7.13. Let p be prime number, and let f be an irreducible polynomial of

degree p over Q. Suppose that f has exactly two non-real roots in C. Then the Galois
group of f over Q is Sp.

Proof. By the Fundamental Theorem of Algebra, we know that C contains a splitting
field of the polynomial f. Let F C C be a splitting field of the polynomial f. Then the
Galois group of f is G = Gal(E/Q). Since E is an algebraic extension over a field of

characteristic 0, E/Q is a separable extension. So, all roots of f are distinct. Then,
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G is isomorphic to a subgroup of S,. Also, |G| = [E : Q]. Let u € E\Q be a root of
f. Then,

[Q(w) : Q] = p,
since f is an irreducible polynomial over Q of degree p. Then, p|[FE : Q}, but we have
|G| = [E : Q). So, we obtain p||G]|.

By Cauchy’s Lemma (it will be discussed in the following chapter in Lemma
4.4.19), G contains an element of order p. This implies that G contains a p-cycle,
since the only elements of S, of order p are the p-cycles. Also we know that the
complex conjugation (sends two non-real roots to each other and leaves the other
real roots fixed) induces an automorphism of F, fixing Q pointwise. But complex
conjugation is a transposition. Therefore without loss of generality, we may assume
that G contains (1,2) and (1,2,3,...p).

We claim that these two permutations generate S,. Let H be a subgroup of G
that is generated by these permutations. We put

b=(1,2) and c=(1,2,3,...p).
Then, cbe™! = (2,3) € H and ¢(2,3)c™! = (3,4) € H. Suppose that for some i < p,
(i,i +1) € H. Then, c(¢,i +1)c! = (i +1,i+2) € H. So by induction on i, all
transpositions of the form (7,7 + 1) lies in H. Also
(L2)2,3)(1L2) =13 e H,  (1,3)(3,4)(1,3)=(1,4) ¢ H.
Now suppose for some ¢ < p, we have that (1, ) lies in H. Then,

(L,)(E, e+ 1)(1,i)=(1,i+1) € H.
Hence, by induction on 4, we have that S, contains all transpositiouns of the form (1,%).
Let 4,5 € {1,2,...,p} and © # 1 # j. Then,

(¢,5) = (1,)(L,5)(L9) = (,§) € H.

But we know that any permutation in S, can be written as a product of transpositions,
so H = S,. Hence S, is generated by (1,2) and (1,2,3,...p). Since we have shown
that H = S5, < G, we have G = S, d
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Now we aim to say that the Galois group of the polynomial f = X® —6X + 3 is
Ss, by using Theorem 2.7.12. By Eisenstein’s Criterion, we know that f is irreducible
over Q. Now we show that f has exactly three real roots, so we are able to say that f
has exactly two non-real roots, since f is a separable polynomial over Q. Firstly, we
evaluate [ at

r=-2,-1,0,1,2

to see the behavior of f around 0. f(-2) = =17, f(-1) = 8, f(0) =3, f(1) = -2,
f(2) = 23. This shows that f passes the x-axis at least three times, since f is a
continuous function defined on R. Since f can not change sign without passing through
the z-axis, f has at least three real roots.

Rolle’s Theorem says that if ¢; and ¢, are two roots of f then there exists ¢ € (¢1, t2)
such that f’(c) = 0. But [/ = 5X* — 6 has only two roots which are +¢/6/5. So, f
has at most three real roots. Hence, f has exactly three real roots and two non-real
roots. Now we can use Theorem 2.7.13.

Now that f = X% —6X + 3 satisfies the conditions of the polynomial given in the
Theorem 2.7.13, the Galois group of the polynomial f is S;. But we know that Ss is
not a solvable group. Therefore, f = X® — 6X + 3 over Q is not solvable by radicals
by Theorem 2.7.12.
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Chapter 3

COGALOIS THEORY

In this chapter we investigate Cogalois Theory. We start by providing some results
which will be used in the proof of The Vahlen-Capelli Criterion. This is a criterion
which deals with the irreducibility of binomials X™ — a over an arbitrary field. Then
we define some concepts such as G-radical extensions and G-Kneser extensions which
are used in defining Cogalois and G-Cogalois extensions. We also define Galois and
Cogalois connections and strongly G-Kneser extensions. Then the definition of G-
Cogalois extensions will be given. Lastly, we present some examples of G-Cogalois

extensions.

3.1 The Vahlen-Capelli Criterion

Lemma 3.1.1. Leta € F, and let m,n € N* be relatively prime. Then, the polynomial
X" — q is irreducible in F[X] if and only if polynomials X™ —a and X™ —a are both
irreducible in F[X).

Proof. We can write X™" — g = (X™)™ — a = (X™)" — a. Suppose that X™ — q is
irreducible and X™ ~ g or X™ — g is reducible in F[X]. If X™ — a is reducible over F,
then we have

X" —a= f * 9,
where f, g € F[X] and deg(f), deg(g) < n. If we replace X by X™, then we obtain
X" —a= f(X™)g(X")

in F[X], where deg(f(X™)),deg(g(X™)) < mn. But this shows that X™ — q is

reducible over F), which is a contradiction. Similarly, assuming that X™—a is reducible
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over F, we again obtain a contradiction. Hence, if X™" — g is irreducible in F[X],
then both of the polynomials X™ — a and X™ — a should be irreducible in F[X].
Conversely, assume that both of the polynomials X™—a and X™-q are irreducible
in F[X]. Now let u € Q be a root of the polynomial X™" — a. Then v™" — a = 0. So,
we can see that (™) — a = 0. Hence, u™ is a root of the polynomial X™ — a which
is assumed to be irreducible. Similarly, 4™ is a root of the irreducible polynomial

X™ — a. Hence we have,
[F(u™) : F]=nand [F(u"): F] =m.
But we know that
FCFu™ CF(u) and F C F(u") C F(u),

so, we can say that [F(u™) : F] = n|[F(u) : F| and [F(u") : F] = m|[F(u) : F].
Hence lem(m,n) = mn | [F(u) : F], since m and n are relatively prime. So we have

mn < [F(u) : F]. But u is assumed to be a root of the polynomial X™" — a, so
[F(u) : F] < mn.

Therefore, we obtain [F(u) : F] = mn, which means that Min(u, F) = X™ — q. In
other words, X™" — q is irreducible in F[X]. O

Lemma 3.1.2. Let p € P and a € F. Then X? — a is irreducible in F|X) if and only
ifa & F?.

Proof. Suppose that a € F?. Then we have a = b?, for some b € F. So, X?—a = X?-b°
is reducible in F[X], since X — b € F[X] is a factor of X? — a.

Conversely, assume that a ¢ F?. Suppose that X? — a is reducible in F[X]. Let f
be an irreducible factor of degree n of X? —a. Then 1 < n < p.

Let u € Q be a root of f. So the roots of f in € are of the form (*u, 0 <i<p—1,
where ¢ € 1 is a p-th root of unity. Let ¢ = f(0), so we have that +c is the product
of the roots of f. We have ¢ = w.u.C?u ... (? Ty = ("= D/ 2yn,
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Now we put (™"~1/2 = ¢ where £ € Q is a p-th root of unity. Then, +c = £u™.
Since n < p and p is prime, n and p are relatively prime integers. So, there exists

some integers r, s such that rn + sp = 1. Now we obtain
uw= um+sp — (un)r(up)s — (:‘:cg—-l)ras.

Thus, uf" = (£c)"a®. Since XP—a is assumed to be reducible in F[X], we have a®, ¢" €

F. Hence, u£™ € F. But a = v? = wP(€")P = (u€")? € FP? leads to a contradiction. [J

Lemma 3.1.3. Let p € P and a € F be such that X? — a reducible in F[X] and let
u € Q be a root of f = XP — a. Then the following statements hold.

(1) If p>2, orif p=2 and Char(F) = 2, then u ¢ F(u)P.

(2) If p=2 and Char(F) # 2, then u € F(u)? if and only if —4a € F*.

Proof. (1) Suppose that u € F(u)?. Then, we have u = vP, for some v € F(u). Since
u € Q is a root of the irreducible polynomial f, we have [F'(u) : F] = p. We can write
V= Zz;(l, cru®, where cg, c1,...,cp_1 € F. If Char(F) = p, then

p—1 p—1 p~1
uw=vf =) auf) =) ) =) dd.

k=0 =0 =0
But Zk;%) chak € F, since every term in this sum is in F. Hence, u € F. So, we have
a = uP € FP. But this contradicts Lemma 3.1.2, since f is irreducible by hypothesis.
In particular, u ¢ F(u)?, for p = 2 = Char(F).

Suppose that Char(F) # p and u € F(u)P. Now we put u = v*, for some v € F(u).
Consider the field E = F(u, (), where (, is a primitive p-th root of unity. Clearly, £
is a splitting field of the polynomial f € F[X].

This polynomial is separable, since it has distinct roots in any splitting field of f.
Hence E/F is a normal extension by Proposition 2.6.7. So, any ¢ € Gal(E/F') sends
u into some other root of f.

On the other hand, we know that for every 0 < 7 < p—1, qu, is a root of the
irreducible polynomial f. So, the minimal polynomials of these roots over F' are the

same, that is X? — a.
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Hence all of these roots are conjugates elements of each other over F. Thus, for
ug,, there exists o; € Gal(E/F) such that o;(u) = u(}. Now we put v; = 04(v), where

0 €4 < p— 1. Since u = vP, we have
oi(u) = oi(v7) = (03 (v))’ = v},

By Lemma 3.1.2, we can see that a ¢ F?, which means that u? ¢ F?. This implies
that u ¢ F, but u = v? so we have, v € F(u) \ F. Hence, F(v) C F(u). On the
other hand, we also have F(u) = F(v?) C F(v). Thus, F(u) = F(v). If we put
f == Min(v, F), then

deg(f) = [F(v) : F] = [F(u) : F] = deg(X” —a) = p.

Now for every i,j € {0,1,...,p—1}, 0s(u) # o;(w) holds. Since otherwise we have,,
(i =1,but i—j < pand order of ¢, is p in Q*. Hence, for every 4, j € {0,1,...,p—1},
we observe that o;(u) # o;j(u). Also o;(v) # o;(v), for all 4,5 € {0,1,...,p — 1},
since u = vP. Because, 0; € Gal(E/F), for all i € {0,1,...,p — 1}, we have that
o; fixes the elements of F' pointwise. So for all 4+ € {0,1,...,p — 1}, we obtain
flo:(v)) = o3(f(v)) = 0, since v is a root of f. This implies that f has at least p
distinct roots in €, which are vy, vq, . .., vp—1. But the degree of fisp, sovg, v1, ..., vp-1
are exactly all the roots of f in (). Since f is a polynomial over F, the product of
the roots of [, say w = ’;;é v, € F. Now, if we multiply the equalities C;,“u =,
k=0,1,...,p— 1, then we obtain

p—1 -1 p—1
H(;fu = Hv,z: = (Hvk)p = uP.
k=0 k=0 k=0
Now we put
p—1
n= H CZI,@ — Cﬁ(p—l)/2’
k=0

and we obtain nuf = na = w”.
If p > 2, then (p — 1)/2 € Z. And this implies that » = 1, since the order of ¢,

is p. So we obtain ¢ = w? € FP. But this leads to a contradicﬁion, since X? — ¢ is
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irreducible over F, and according to the Lemma 3.1.2, a should not be an element of
F?_ Hence we have proven (1).

(2) Let p = 2 and Char(F) # 2. Suppose that u € F(u)2. Then u = v?, where
v =+ fu, o, § € F. Now we have

u=v?= (a+ fu)? = o® + u? + 20fu = o? + F%a + 20fu.
Since {1, u} is a basis of the vector space F(u) over F, we have
o>+ Pa=0and 208 =1.

If we write 8 = 1/2c, then we obtain o + (1/4a2)a = 0. Thus, a = —4a* So we
have,

—4a = 16a* = (2a0)* € F*,

since o € F.

Conversely, suppose that —4a € F4. Since Char(F) s 2, there exists v € F* such
that —4a = v*. We have 4| — 4a so, 2|+* Now we have —4a = v* = (2a)*, where
o € F*. Then, —a = —u® = 4o*. But this implies that 40? + v? = 0. If we take
B = (2a)~! € F*, then clearly,

(a+ Bu)? = o® + f2u® + 20fu = u.
Therefore u = (o + Bu)? € F(u)?. Hence we have proven (2). d
Lemma 3.1.4. LetpeP,ne€N,n>2, anda € F.

(1) If p> 2, or if p =2 and Char(F) = 2, then X?" — a is irreducible in F|X] if
and only if a ¢ F”.

(2) If p = 2 and Char(F) # 2, then X?" — qa is irreducible in F|X)] if and only if
a ¢ F? and —4a ¢ F*.

Proof. (1) Suppose that a € FP. Then a = b for some b € F. So, we have

X —a= (X" — P
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But this polynomial is divisible by X?*™" — b.

Conversely, suppose that a ¢ FP. Let v €  be a root of X?" —a. we put u := T
50 we obtain u? = (v¥" )P = v»" = a. Consider the polynomial X? — a. Now we have
that u € Q is a root of this polynomial. But a ¢ F®. So, by Lemma 3.1.2, we have that
X? — g is irreducible in F[X]. Hence, [F(u) : F] = p, since the minimal polynomial
of u over Fis X? — q.

Clearly X?" — q is irreducible in F[X] if and only if the minimal polynomial of v
over F is X?" — a, in other words v has degree p™ over F.

Now we prove by induction on n that X?" —a is irreducible over F. Forn = 1, XP—qa
is irreducible in F[X] by Lemma 3.1.2. So, v has degree p over F. From Lemma 3.1.3
(1), we can say that u ¢ F(u)P. So, the polynomial X** " —u € F(u)[X] is irreducible
over F(u) by induction hypothesis. We have defined u such that u = v*" ", so v is
a root of this irreducible polynomial. Hence, the degree of v over F(u) is p"L.
Consequently, the degree of v over F' is p", since v has degree p over F. This proves
that XP" — q is irreducible over F. Hence we have proven (1).

(2) Now let p = 2 and Char(F) # 2. Also assume that @ € F? or ~4a € F*. If
a € F?, then a = b? for some b € F. Then, X" — g = (X2" )2 — b2. But this implies
that X"~ — b divides X?" — a. Therefore, X?" — a is reducible in #[X]. Now assume
that ~4a € F%. Then, —4a = ¢* for some ¢ € F. Since Char(F) # 2, we have ¢ = 2b

for some b € F*. Hence we obtain
a=~4"1c" = ~4712%* = —4p*.
Now we put Y := X?"*. Then
X —a=Y*+4b* = Y+ 40°Y? + 4b* — p’Y?
= (Y24 2% — (2bY)% = (Y2 + 207 + 26%)(Y'? — 2bY + 20%).

This shows that X?" — a is reducible in F[X], since b € F.
Conversely, assume that Char(F) # 2, a ¢ F? and —4a ¢ F*. We have to prove
that X% —.a is irreducible over F. We do induction on n. Let v € Q be a root of

X?" — g. Then we put « = v¥" . Clearly, u? = a. Consider the polynomial X2 — a.
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We can see that u is a root of this polynomial. Since a ¢ F2, by Lemma 3.1.2, X? —q
is irreducible over F. Hence, the minimal polynomial of u over F' is X? — a. Thus,
[F(u) : F] = 2. In the proof of (1), the fact that X?" — g is irreducible over F means
exactly that X2~ — u is irreducible over F(u).

We know that for n = 2, u is a root of X2 — g, and X? — q is irreducible over
F. We also assumed that —4a ¢ F*. Now we can use Lemma 3.1.3 (2), and obtain
u=1v? ¢ F(u)% So, X? — u is irreducible over F(u) by Lemma 3.1.2.

If n > 2, then by the induction hypothesis, X2*™" —u € F(u)[X] is irreducible over
F(u) if and only if u ¢ F(u)? and —4u ¢ F(u)*. Now if —4u € F(u)?, then —4u = k*
for some k € F(u). Then, k% € F(u)2. We also have that 0 # 4 = 22 € F'(u)?. Hence,
we should have —u € F(u)2.

Now we claim

~u € F(u)? <= u € F(u)*

We know that the map o : F(u) — F(u), where o(u) = —u, is an element of
Gal(F'(u)/F). Suppose that u € F(u)?. Then, there exists z € F(u)?, such that
u = 22. Now we obtain

o(u) = —u = o(2%) = o(2)2
But o(z) is an element of F(u). Thus, we obtain —u € F(u)?. Reverse implication

can be shown in a similar way. Hence, we can say that
u ¢ F(u)? = —4u ¢ F(u)*.
We have
u ¢ F(u)® and —4u ¢ F(u)* <= u ¢ F(u)>

But we assumed that —4a ¢ F*. Hence by Lemma 3.1.3 (2), we have u ¢ F(u)%
Therefore, X2 —u € F(u)[X] is irreducible over F'(u), and this implies that X" —a

is irreducible over F. Hence we have proven (2). O

Now we can state and prove The Vahlen-Capelli Criterion. But before proving

that, let us define the set —4F*. We have —4F* := {—40*|b € F}.
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Theorem 3.1.5. (The Vahlen-Capelli Criterion) Let F be an arbitrary field, and let
n € N*, and let a € F. Then the followings are equivalent.

(1) The polynomial X™ — a is irreducible in F[X].
(2) a ¢ FP forallp € P, and a ¢ —4F* whenever 4| n.

Proof. (1) = (2) : For n = 1, there is nothing to prove, since X — a is irreducible
over F. So we can assume that n > 2. Now let p be a prime divisor of n. Then p € P,,.
If we have @ € F?, then a = b? for some b € F. So we have, X™ —a = (X™)P — PP,
where n = pm. But this implies that X™ — b € F[X] divides X™ — a. Hence, X" — ¢
is reducible over F.

If4|n and @ € —4F*, then a = —4b*, for some b € F; and n = 4k, for some k € Z.

Then we have,
X"—a = (X%)24(20%)? = (X% 1-20%)%— (2b2F)? = (X% —2b2F+20%) (X 2* 422" 4-2b7)

Thus, X™ — a is reducible over F. This proves (1) = (2).
(2) = (1) : Conversely, assume that (2) holds. Let

— pF For
n=p;....0

be the decomposition of n as a product of distinct prime numbers py, p2, . .., pr with
r, ki, ko, ..., k. € N*. By Lemma 3.1.1, in order to show that X™ —a is irreducible over
F, it is enough to check that XPi' — q is irreducible over F, for all i € {1,2,...,r}.
But this follows from Lemma 3.1.4 and the fact that Char(F) # 2 and a ¢ —4F*
implies that —4a ¢ F*4.

If this is not the case, then we have —4a = b4, for some b € F. Since Char(F) # 2,
we have b = 2¢ for some ¢ € F*. Then we have —4a = (2c)* = 16¢*. This implies that
a = —4c*. But this leads to a contradiction, since a ¢ —4F*. Hence we have shown

that X™ — g is irreducible in F[X]. This proves (2) = (1). O

Now the following result is an alternative version of the Vahlen-Capelli Criterion.
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Proposition 3.1.6. (A Variant of the Vahlen-Capelli Criterion)Let F' be an arbi-
trary ﬁeld, letn €N, n2>2, and let a € F*. Then the polynomial X™ — a is reducible
in F[X] if and only if one of the following two conditions are satisfied.

(1) a € F* for some s €N, s 22, s|n, or
(2) 4{n and —4a € F*,
Proof. We can easily see that for any a € F™*, we have
~4a € F* <= a € —4F™.

We have shown the implication (==) in the proof of The Vahlen-Capelli Criterion.
But we can clearly show the reverse implication.

If we take the negation of Theorem 3.1.5, then we have that X™ — a is reducible
over F if and only if either ¢ € F? for some prime divisor p of n, or —4a € F*4,
whenever 4 | n.

If we take a divisor s of n as prime in (1) above, we can see that the negation of
The Vahlen-Capelli Criterion and Proposition 3.1.6 are equivalent. Hence this proves
Proposition 3.1.6. O

Remark 3.1.7. The negation of The Vahlen-Capelli Criterion does not say that
X" — q is reducible over F if and bnly if eifher a € FP? for some prime divisor p of n,
or 4{n and —4a € F*. If we take F' as any non perfect field of characteristic 2, then
F?#F and F2C F. Let F =Fy(Y) = {f(Y)/g(Y)] f, g € Fs[Y]}. Clearly, F is non
perfect. If F = F?, then Y € F?. So, we have

Y =(f(Y)/g(Y))? = (a0 +ari¥Y +... + a Y™/ (bo + .Y +... + b Y™)?,
where f(Y),9(Y) € Fo[Y] and a,, by, # 0. Then we have
@2+ a2V 4 4@V =Y + Y3 4 A YA

since Char(F) = 2. But this is a contradiction, since the degrees do not match..

Hence F is a non perfect field, that is F' # F2. Now let ¢ € F\F?, and consider the
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polynomial X* — a. According to Theorem 3.1.5, we have that X* — q is irreducible,
since a ¢ F? and a ¢ —4F* = {0}. But we also have —4a = 0 € F*. This shows that
X* — a is reducible over F, according to the negation of the Vahlen-Capelli Criterion

above. But this leads to a contradiction. [

Now we try to put some conditions on the field F or on the binomial X™ — g in

order to make the condition
a ¢ —4F* whenever 4{n

more accurate.

Definition 3.1.8. The field F' is said to satisfy the condition Co(n; a) (resp. Ci(n;a)),
where n € N* and a € F*, if the binomial X™ — a has a root in Q, say ¥/a, such that

pn(F(/a)) C F (resp. pn(F(3/a)) C {-1,+1}). m

Examples 3.1.9. (1) Any field F satistying the condition C;(n;a), clearly satisfies
the condition Cy(n;a). The field C satisfies the condition Cy(n;a), for any n € N,
n > 2 and any a € C*, since C is algebraically closed. But it does not satisfy the
condition C1(2; —1), since po(C) = {+i} € {1}

(2) If ¢, € F, for some n € N*, where (, is a primitive n-th root of unity, then
clearly all the other distinct roots of X™ — 1, which are 1, ,,¢2,..., (" also belongs
to F. Hence, p,(F(3/a)) C F.

(3) Any subfield F' of R satisfies the condition Ci(n;a), for any odd number n € N*
and any a € I'*; as well as for any n € N*, and any a € R}.

(4) The field Q does not satisfy the condition Cy(4; —4). The roots of the poly-
nomial X4+ 4 are 1 +4,1 —4,—1 +14,—1 —i. If /=4 denotes any of these roots,
then we have Q(v/—4) = Q(3). So, all 4-th roots of unity, which are +1, &4, lie in
us(Q(v/—4)). But, i ¢ Q. Therefore,

1a(Q(V-4) £ Q.

Thus, Q does not satisfy the condition Cy(4; —4). O



Chapter 3: Cogalois Theory 84

Proposition 3.1.10. The following assertions hold for a field F satisfying the con-
dition Cy(n, a).

(1) The polynomial X™ — a is reducible in F[X] if and only if a € F* for some

divisor s > 1 of n.
(2) Min(/a,F) = X™ — b, where m=ord(/{‘-/\5), m|n and b= a".

Proof. (1) Let f be the minimal polynomial of /a over F, and let deg(f) = m. Hence,
the roots of this polynomial over F are {/a(’ € €, where i € {0,1,...,m — 1}. So,

the constant term of f is the product of these roots, which is
bO = igl Wla
where r = m(m — 1)/2. Then, we obtain

"= by ¥a ™ € pa(Q) N F(¥/3), (3.1.1)

since (¢7)* = 1 implies that ¢¢ € p,(Q). Because f is a polynomial over F, we

have by € F. Also since F(/a) is a field, we have ({/a)™™ € F({/a). Therefore,
(n € F({/a).

Clearly, () NF(/a) = pn(F({/a)). But we know that F satisfies the condition
Co(n; ). Hence pn(F({/a)) C F. By Equation ( 3.1.1), we have {7, € F, since by € F.
Hence,

b= {/a" =+bh(. € F.

Therefore X™ — b € F[X]. But clearly {/a is a root of the polynomial X™ — b. Since
deg(f) = m, we have f = Min({/a, F) = X™ — b.

If a € F* for some divisor s > 1 of n, then by Proposition 3.1.6, we have that
X™ — a is reducible over F.

Conversely, suppose that X™ — a is reducible over F. Then 1 < m = deg(f) < n,
since f is the minimal polynomial of {/a over F. We put d = ged(m,n). Then we

have n = ds and m = di for some s, t € N*. We know that ged(s,t) = 1, so there
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. . 't
exists u,v € Z such that ul +vs = 1. Since a = {/a" = /o™ and b= o™ = Ya",

so we obtain a® = b°. Thus,
a = aut-i»vs — (at)u vs (bs)u v (bu v)

But we know that a, b € F. Hence, a = (b“a")® € F*. Clearly, s|n and s > 1.
Otherwise if s = 1, then n = ged(m, n). But this implies that n|m, and this implies
that n < m. But we have m < n. Therefore this proves (1).

(2) We have proved in (1) that Min(/a, F) = X™ — b. Hence it is enough to
show that m = ord(% and m |n. Now we show that m is the order of /”\/\E in the
quotient group F({/a)/F. Now we put k& = ord( \/— ). Then, (\/— )¥ = 1 implies that
c= {/a" € F. We know that ({/a)" = a € F, so we have k|n.

Now we claim that Min(a, F) = X* — c. Then we can say that k = m, since
Min({/a, F) = X™ b= X" — ¥a".

Clearly, {/a is a root of X* — ¢. So it is enough to show that X* — ¢ is irreducible
over F. Suppose that X* — ¢ is reducible over F. We see that

1(F(/a)) C pa(F(¥/a)) C F

since k |n and F satisfies the condition Cy(n;a). Now we can apply (1) to the poly-
nomial X* — ¢. Then there exists some e € F™* such that ¢ = €. for some divisor i > 1

of k. So, we have k = 7j where j € N*. Then we obtain
c=é = a" = ¥’ = (Y.
Hence, ({/a’e~1)i = 1. But this implies that /a@'e™! € pi(€2). Also since
Va, e € F({/a),
we obtain ¥/a’e~! € F({/a). So,

Y € wi(Q) NF(/a) = w(F/a)) C un(F(3/a)) C F,
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since i | k| n. Because e! € F*, we have /& € F*. But this leads to a contradiction,
since 1 € 7 < k and k € N* is the least number such that {‘/Ek € F. Therefore,

Min(¥a, F) = X* —c=X™—b.
Thus, m = k and m divides n. This proves (2). O

Proposition 3.1.11. Any field F satisfies the condition Co(n;a) for any n € P and
any a € F*.

Proof. If n = e(F), then for all z € u,(f2), we have z" — 1 = 0. This implies that
(z — 1)™ =0, that is z = 1. So, u,(02) = {1}, and we have nothing to prove. Now we
may assume that n # e(F). We know that

pn(F) = pn(Q) N F*,

and p,(F) is a subgroup of the group p,(Q2), which has prime order n. Then uy,(F)
is either p,(Q) or un(F) = {1}. If pn(F) = pin(€2), then we have u,(Q) C F.

Now suppose that u,(F) = {1}. Let {/a € Q be a root of the polynomial X" — a.
We claim that u,(F({/a)) # 1,(2). Then we can say that p,(F(/a)) = {1}, since
pn(F({/a)) is a subgroup of u,(f2), and u,(Q) has prime order.

If a € F™ then a = b" for some b € F. Then F({/a) = F(b) = F. So,

ﬂ'n(F( %)) = ;Ln(F) = {1} # /I’n(Q)

Now suppose that a ¢ F™ and p,(F({/a)) = pn(Q). Then clearly, (, € pn(Q) lies
in F(3/a). Hence we obtain F(¢,) € F({/a). Thus,

[F(Ca) : 1| [F(¥/a) : F].

Since a ¢ F™, by Lemma 3.1.2, we have that X™ — q is irreducible over F. Hence, the
minimal polynomial of {/a over F'is X™ — a. But this implies that [F({/a) : F] = n.

Since n is a prime number and

[F(Ga)  F1|[F(¥/a) : F]
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we have [F((,) : F] = 1. So, {, € F, and we also have (, € u,(F) = {1}. But this

leads to a contradiction, since (, is a primitive n-th root of unity. Therefore we have

pn(F(/a)) # pn(Q)).

This means that p,(F({/a)) = {1}, that is, F' satisfies the condition Cy(n;a). O

3.2 Some Results on Bounded Abelian Groups

In this section, we are going to present some basic properties of Abelian groups
of bounded order which will be used in the remaining part of the Thesis. Let G
be an arbitrary multiplicative group with identity element e. If n € N*, we put
G™ = {z" |z € G}. For any torsion group G, (a group is said to be a torsion group if

every element of it has finite order) we will use the following notation:
O¢ = {ord(z) | z € G}.

For a nonempty, finite set A of natural numbers, lem(A) will denote the least
common multiple of all numbers of A, and max(A) will denote the greatest number

of A.

Definition 3.2.1. A group is said to be a group of bounded order if G is a torsion
group and the subset O of N is a bounded set, or equivalently, a finite set. £

It is clear that any finite group is a group of bounded order, and any direct product
or direct sum of infinitely many copies of a finite Abelian group of order n > 1 is an
infinite group of bounded order.

Now we list some results and give a definition which will be needed throughout

the remaining part of the Thesis.

Proposition 3.2.2. If (G is an Abelian group of bounded order, and m = maz(Og),
then G™ = {e} and lem(Og) | m. a
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Definition 3.2.3. Let G be a group of bounded order. The least number n € N* with
the property that G™ = {e} is called the exponent of G and is denoted by exp(G). The
group G is said to be n-bounded if G is a group of bounded order and exp(G) = n. [

Lemma 3.2.4. Let G be an n-bounded Abelian group. If G* = {e} for some k > 1,
then n | k.
O

Proposition 3.2.5. Let G be an n-bounded Abelian group. Then, for any d € N,
d|n there exists x4 € G such that d = ord(zy). In particular, for every p € P, there
ezists z, € G such that p = ord(z,). 0

Remark 3.2.6. Proposition 3.2.5 can be reformulated as follows: If G is any n-

bounded Abelian group, then Og = D,. |

Proposition 3.2.7. For any finite Abelian group G, exp(G) divides |G|, and |G|
divides a power of exp(G). In particular, |G| and exp(G) have the same prime divisors.

O

Lemma 3.2.8. (Cauchy’s Lemma) For any finite Abelian group G and any prime

divisor p of |G| there exists at least an element z, € G with ord(z,) = p. 0

3.3 Kneser Extensions

In this section we define the G-radical and the G-Kneser extensions. We also give a

criterion called the Kneser Criterion which characterizes Kneser extensions.

3.8.1 G-radical and G-Kneser Eztensions

For any field extension E/F, we define
T(E/F) = {z € E*|z" € F* for some n € N*}.

Clearly, F* is a subgroup of T'(E/ F'), so we can consider the quotient group T(E/F)/F*.
For any z € E, we denote by Z the coset of z modulo F* in the group E*/F*.
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By definition of T(E/F) we can see that T(E/F)/F* is the torsion group of the
quotient group E*/F*, and it is denoted by ¢(F*/F*). Now we recall that a group G
is said to be a torsion group, if all elements of G have finite order.

In the definition below, we give a name to the group T(E/F)/F*, since it plays
an important role in this part, similar to that of Galois group in the first part.

Definition 3.3.1. The Cogalois group of an arbitrary field extension E/F, denoted
by Cog(E/F), is the quotient group T(E/F)/F*.

A finite extension E/F is said to be a Cogalois extension, if E = F(T(E/F)) and
|Cog(E/F)| =|E : F)]. O

For every z € T(E/F), there exists n € N* such that z” = a € F*. So, as in
the Definition 2.7.2, z is denoted as {/z and is called the n-th radical of «. Hence,
T(E/F) is precisely the set of all “radicals” of elements of F' in E.

Definition 3.3.2. An extension E/F is said to be radical, if there ezists A C T(E/F)
such that E = F(A). We say that E/F 1is a simple radical extension, if there ezxists
an a € T(E/F) such that E = F(a). O

Definition 3.3.3. Let E/F be an eztension and let G be a group. Then E/F is said
to be a G-radical extension, if F* < G £ T(E/F) and E = F(G). O

Remarks 3.3.4. (1) Clearly, any G-radical extension E/F is also G’-radical exten-
sion, for any G’ with G < G' < T(E/F).

(2) Let F C K C E be a tower of fields. If E/F is a radical extension, then so is
E/K, and we have E = F(A), where ACT(E/F). But E= F(A) C K(A) C E, so
we have E = K(A). Hence, E/K is also radical extension. But later we will see that
in general, K/F is not a radical extension.

(3) Any radical extension is algebraic, by definition of a radical extension. So, if

E/F is a G-radical extension, then E = F(G) = F[G]. a

Lemma 3.3.5. Let E/F be a G-radical extension, which is not necessarily finite.

Then any set of representatives of the factor group G/ F* is a set of generators of the
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F-vector space E. In particular, one has
|G/F*| 2 [E: F].

Proof. Because, E/F is G-radical, we have E = F(G) = F[G]. Let T = {t;|i € I} be

a set of representatives of the factor group G/F*. Then G/F* = {t;|i € I'}. For each

x € E, there exists a1, ag, ..., 0, € Fand g1,90,...,9n € Gsuchthatz =Y 2, axge.

Clearly, g € G/F* for all k. Then, we have g, = (xt;,, where 8 € F*, for all k.
Thus,

n n T
=) onge = (onBe)ti, = ¥ Oti,,
p k=1 ey

where 6; = a0k € F. Hence, T is a set of generators of the F-vector space FE. O
Next we give a corollary that can be shown using Lemma 3.3.5.

Corollary 3.3.6. Let E/F be a finite G-radical extension. Then there ezists a sub-
group H of G such that H/F* is a finite group and E/F is H-radical. |

Proposition 3.3.7. The following statements are equivalent for an arbitrary G-

radical extension E/F.

(1) There ezists a set of representatives of the factor group G/F* which is linearly

independent over F.
(2) Bwery set of representatives of G/F* is linearly independent over F.
(8) Ewvery set of representatives of G/F* is a vector space basis of E over F.

(4) There ezists a set of representatives of G/F* which is a vector space basis of F

over F.

(5) Ewery subset of G consisted of elements having distinct cosets in the group G /F*

is linearly independent over F.

(6) Every finite subset {z1,%a,...,2n} C G such that z; # ; for each 4,5 €
{1,2,...,n}, i # j, is linearly independent over F.
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(7) For every subgroup H of G such that F* < H and H/F* is a finite group,

|H/F*| < [F(H): F].

Proof. We only prove (7) = (2), since other parts can be shown in a similar way.
(3) = (4), (4) == (1) and (5) <= (6) are obvious and (2) == (3) follows from
Lemma 3.3.5. Assume that (7) holds. Let T = {¢;]i € I} be a set of representatives
of the factor group G/F* and let {¢1,1s,...,%,} be a finite subset of 7. Now consider
the subgroup (ZI,Z;,,Z;) of the group G/F™, generated by {ﬂ,t’;,,t:,} Since
we have G < T(E/F), for all ¢ € {1,2,...,n}, % has finite order. So the subgroup

generated by {f1,%,...,,} has also finite order since
|{E1, 12, . . ., 1n)| < ord(fy)ord(23) . . . ord(f,).

Now since {fy, s, . .., 1) is a subgroup of G/F*, we have (i1,%3,...,1,) = H/F*,
for some H < G with F* < H. By assumption we have [H/F*| < [F(H) : F]. Clearly

F(H)/F is an H-radical extension, since
F*<H<LGLT(E[F).

So we can apply Lemma 3.3.5 to the extension F(H)/F. Then |H/F*| 2 [F(H) : F].
Thus we have

|H/F*| =[F(H): F].

This implies that any set of representatives of the group H/F* is a vector space
basis of F(H) over F, that is, any set of representatives of the group H/F* is linearly
independent. So, {t1,%2,...,%,} is linearly independent over F. Since any finite subset

of T is linearly independent over F, we have that 7 is linearly independent over F. [

Now we define G-Kneser extensions which we have mentioned at the beginning of

this section.

Definition 3.3.8. A finite extension E/F is said to be G-Kneser, if it is a G-radical
extension such that |G/F*| 2 [E : F|. The extension E/F is called Kneser, if it is
G-Kneser for some group G. d
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Corollary 3.3.9. The following assertions are equivalent for a finite G-radical ez-

tension E/F.
(1) E/F is G-Kneser.
(2) |[G/F*|=[E: F].
(3) Ewery set of representatives of G/F* is a vector space basis of E over F.

(4) There ezists a set of representatives of G/F* which is linearly independent over

F.

(5) Every finite subset {z1,Z2,...,2n} C G such that 7; # Z; for each i,j €
{1,2,...,n}, i # j, is linearly independent over F.

(6) The extension F(H)/F is H-Kneser for every H, F* < H < G.

Proof. By Lemma 3.3.5 we can see that (1) <= (2). (2) = (3),' (3) <= (4) and
(4) = (5) follows from Proposition 3.3.7. (5) = (6) follows both from Lemma 3.3.5
and Proposition 3.3.7. If we take H = G, (6) = (1) can be shown. O

Proposition 3.3.10. Let E/F be a finite G-Kneser extension. Then, the extension
F(H)/F is H-Kneser and F(H)NG = H for every H with F* < H < G.

Proof. By Corollary 3.3.9, we have that F(H)/F is H — Kneser. Clearly,we have
H C F(H)N G. Now we have to show the other inclusion. Let z € F(H) N G, then
we have

T = arhy + aghs + ... + aghyg, (331)

where o; € F and h; € H for all . We can take f; #* fz}, forall4,5 € {1,2,...,k}in
H/F* C G/F*. Equation ( 3.3.1) implies that ét, hi, ha, ..., hy are linearly dependent
over F.

So, from Corollary 3.3.9, we can say that there exists at least two equal cosets.

But we have assumed that h; # hj;, for all ¢, j. So, we should have 7 = f/z; for some
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J. But, this implies that z = ah;, o € F*. Thus = € H, since F* < H. Therefore we
have F(H)NG C H. O

Remark 3.3.11. (1) Any Cogalois extension E/F is clearly a Kneser extension. If we
put G = T(E/F), we can see that any Cogalois extension F/F is a T(E/F)-Kneser
extension. But the converse of this statement does not hold.

Consider the extension Q(1/~3)/Q. This extension is Q*(y/—3)-Kneser,' but it is
not a Cogalois extension. Since (3,(3 ¢ Q*, and § = 1 € Q*; we have a‘g” =1, and

1,6, E;,? € Q*(¢s)/Q*. Hence

o~ o~

Q* (C3>/Q* = ’ C?n 5.;?}

We know that

Cog(Q(V-3)/Q) = T(Q(V-3)/Q)/Q" = t{Q(V=3)"/Q").

We have that s € Q*(+/—3). Since (3 is a primitive third root of unity, it is a root
of the polynomial X? + X + 1 € Q[X]. But we also have ¢ = 1. Hence the order of
Gs is finite in Q*(v=3). Thus, G € H(Q*(v=3)/Q"). Hence (Gs) < H(Q*(v=3)/Q").
Therefore, ((z) = Q*((3)/Q* < Cog(Q(v/—3)/Q). Thus,

|Cog(Q(V=3)/Q)| >3 >2=|Q(=3):Q|,

since the order of the group Q*((s)/Q* is 3. But this shows that the extension
Q(v/=3)/Q is not a Cogalois extension.

On the other hand, this extension is Q*(1/—3)-Kneser. In order to show this, we
have to have |Q*(v/—=3)/Q*| = |Q(+/=3) : Q|. But we know that |Q(v/=3) : Q| = 2,
so it is enough to show that |Q*(1/=3)/Q*| = 2. We have (v/—3)2 = —3 € Q*, so
V=) =1

Thus we obtain

Q"(v=3)/Q" = {1,v=3},

1Q*(+/=3) is the subgroup of the multiplicative group C* of C, which is generated by Q* and
V=3




Chapter 3: Cogalois Theory 94

and this implies that |Q*(v/-3)/Q*| = 2.
Hence, Q(+/—-3)/Q is Q*(v/—3)-Kneser extension. O

3.8.2 The Kneser Criterion

The Kneser Criterion is one of the most important theorems in this section, since it

characterizes the separable Kneser extensions.

Theorem 3.3.12. (The Kneser Criterion) The following assertions are equivalent

for a separable G-radical extension E/F with finite G/F*.

(1) E/F is a G-Kneser extension.
(2) For every odd primep, (€ G= G E€F, andl1+{orl -G eG@= (4 €F.

(3) pp(G) = pp(F) for every odd prime p, and 1+ s 0orl — (€ G =>4 € F.

Proaf. Since E/F is a G-radical extension, we have E = F(G). Also G/F* is given
to be a finite group, so we have that F/F is a finite extension.

(2) = (3) : Assume that (2) holds. Then we have, for every odd prime p,
GEG=>(EF

Now we have to show that ,(G) = u,(F). Let z € up(G), we have z? = 1. So, the
order of z € G is either 1 or p, since p is prime.

If the order of z is 1, then z = 1, which means that z € F. Therefore z € p,(F). If
ord(z) = p, then (z) = ({,), since (, is a primitive p-th root of unity. Because z € G,
we have {z) < G. Also we have (, € (z) < G. Now by our assumption, we obtain
(p € F. But this implies that x € ((,) < F. Hence z € p,(F'). The other inclusion is
clear, since F* < G. Thus, py(F) = up(G).

(3) = (2) : Now assume that (3) holds. Then clearly we have that for any odd
prime p, ¢, € G == (;, € F. Since the other parts are the same, there is nothing to

prove. 0
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(1) = (2) : If Char(F) =2, then (4 =1. Hence, 1 + (4 € G =1 - {4, € G.
If Char(F) # 2,and 1+ ¢ € G, then (1 +()? =2, € G.But 2€ F* < G, so if

we multiply the above equation by the inverse of 2, then we obtain {4 € . So,
Gl+G)=G+G=-1+4EQG,

since (4 # =+1 is a root of the polynomial X% —1 = (X2+1)(X?-1) € F[X]. We also
have that —1 € G, since —~1 € F* < G. So we obtain (-1){(—~1+{) =1—-{ € G.
The other implication can similarly be shown.

Now suppose that the extension £/F is G-Kneser and p is an odd prime such that
¢ € G. Our aim is to show that {, € F. We have E;,p =1, so the order of {, € G/F*
is 1 or p.

It ord(@) = p, then the cosets 1, é;,, . ,g?pp_l are distinct in the group G/F*. So
by Corollary 3.3.9, we can say that {1,(,¢2,..., (87"} C G is linearly independent
over F. But (, is a primitive p-th root of unity, so {, # 1. We also have

E—1=(G-ET+&+...+G+1)=0.

This shows that
Er+ .+ G+1=0.

But we know that the subset {1, ¢, (If, cees Cg'l} of GG is linearly independent. So,
this leads to a contradiction. Hence, ord((,) = 1 in G/F*. Hence {, =1, so ¢, € F*.
Therefore we have proven the first part of (2).

Now we show the second part of (2). If we have 1+ {4 € G, then we have to
consider two cases:

i) If Char(F) = 2, then (} = 1 implies that {4 = 1, that is {; € F.

ii) Suppose that Char(F) # 2. We have shown above that (1 + (4)® = 2¢; and

¢? = —1. So, we can deduce that
A+G) =+ =4f=-4€ F".

This implies that ord(1+ ) € {1,2,4} in G/F*.
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It ord(l/—}-\(:;) =1, then 1+ {4 € F*. But this shows that {4, € F.

If ord(T + ¢1) = 2, then (1+(q)? € F*. We have (1+ ()2 = 2(s, 50, 2¢s € F*. But
since F is a field and Char(F) # 2, we have 27! € F. Hence, {4 € F.

If ord(m) = 4, then the cosets

11+ 60+ 0% (0+0)

are distinct in the group G/F*. So by Corollary 3.3.9, the set
{1, m, ( m)z, (m)"‘} is linearly independent over F. But this leads to a con-

tradiction, since we have
214+ (=2)1+ )+ 1+ &) +0.(1+ )P =0.

Thus, we conclude that the order of i/—{—z can not be equal to 4. Hence, ord(m)
ghould be 1 or 2. Therefore, we obtain (4 € F, as we have shown above. At the
beginning of the proof of (1) = (2), we have shown that 1+, e G <= 1-(, € G
held in the above two cases. So, we have proven (1) = (2).

(2) = (1) : Now suppose that (2) holds. By Lemma 3.3.5, we have
G/F*| > |E: FI,

so it is enough to show that |G/F*| < [E : F]. We can assume that |G/F*| > 2.

Firstly, we consider the case, where G/F* is a p-group, then we generalize this
fact. Since G/F* is a finite group, we may assume that |G/F*| = p’, where p € P
and ¢t € N*. Then by the First Sylow Theorem?, we know that there is a chain of
subgroups H;/F* of order p*, where 1 < i < t. Then we have

Fr=Ho<H £... £ H; =G,

where |Hp/Hp1| = p for all k = 1,2,...1. The equality |Hy/Hi_1| = p comes from
the fact that Hy/F*/Hp_1/F* is isomorphic to Hy/H_;. Now by induction on k,
0 £ k < t, we prove that the following two statements hold.

2First Sylow Theorem: Let |G| = mp™, Wllelte n is positive and p does not divide m. For each
i€ {1,2,...,n} there is & subgroup of order p*, and if ¢ < n, each subgroup of order p* is normal
in a subgroup of order p**!.
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(Ak) [F(H) : F(He-1)] =p.

(Bg) If p > 2, and c € F(Hy) with @ € Hy, then ¢ € Hy.

If p =2, and c € F(Hy) with 2 € Hy, and either ¢ € G or {4 ¢ F(Hy), then
¢ € H.

For k = 0, we can see that (Ap) is not defined and (Bg) holds, since Hy = F*. So
we may assume that k& > 1. Now we suppose that (Bj—1) holds. We show that (Bj-1)
implies that (Ay). Since |Hp/Hg-1| = p, it follows that Hy/Hy_1 is a cyclic group.
Let @ = aH}y_1 be a generator of this cyclic group. Then a ¢ Hy_q, and @* = 1, which

means that (aHy_1)? = Hg_1. So, a? € Hi_1. Now we have
a € Hy, \ Hy_y, H, = Hk_1<a>, and a® € Hy_1.

Clearly, a is a root of the polynomial g = X? — a? € F(Hy_1)[X]. We show that
this polynomial is the minimal polynomial of a over F(Hj_1). Then we obtain

[F(H) : F(H-1)] = p,

as desired. So it is enough to show that g = X? — a? is irreducible over F(Hy_1).
Now we suppose that g is reducible over F(Hj_1), and end up with a contradiction.
By Lemma 3.1.2, we can say that a® € F(Hg_1)?. Then there exists b € F(Hj_1) such
that ¢ = b, But this implies that b € F(Hg_1) is a root of the polynomial g. We
also have o = a? € Hy_1.
If p > 2, then we have b € Hy_; by (Bg_;1). We know that b is a root of the
polynomial g. So, b is of the form a(,, with « € Hy,. Since b € Hy,_1 < Hy, we have

Cp——-a_leHkSG’.

But we have (2), so {, € F. But this implies that a = b(;! € Hp_1, since F* < Hy_1.
But this contradicts the fact that a € Hy \ Hg_y.

If p = 2, then a? = b? implies that @ = %b. So, b € H}, since a € H;, < G. Again
using (Bg_1), and knowing that b € G and a? = b? € Hj_;, we can conclude that
b € Hy_y. This implies that a € Hy_1, but this contradicts the choice of a. Hence, for
all prime p, g = X® — d” is irreducible over F(Hj_1). Therefore, (Ax) holds.
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Now we have both (A;) and (Bg—_1). Our aim is to show that (Bj) holds. We

consider two cases, where p is an even or an odd prime.

Case I:

Suppose that p > 2. Let ¢ € F(Hy), with ¢® € Hy,. We have to show that ¢ € H.
Since ¢ € Hy, we have ¢? € Hy/Hy1. We have that @ is a generator of the cyclic
group Hy/Hy_, of order p. Then, we have ¢ = a?% where 0 < ¢ < p — 1. Now we can
write

& = a%d,

where d € Hj,_;.
First suppose that ¢ > 0. We know that

F(Hy) = F(Hy-1(a)) = (F(Hg-1))(a).

A F(Hj)-homomorphism should send the roots of g to themselves by Lemma 2.6.2,

S0,
N(@) =a: (06) - (4. (agg™) = a? - (P2 = o,
since p > 2 and ¢, is a primitive p-th root of unity. Now we can write
a? = FdL.
If we take the norms of both sides of this equation, we obtain

N(a?) = N(F)N(d™),

since the norm function is multiplicative (We have defined the “norm” of an element

in a field extension in the Definition 2.7.1). Then we have
(aP)? = (N(c)d™ ). (3.3.2)

But 1 € ¢ < p, so p and ¢ are relatively prime integers. Then, there exists some

u, v € Z such that up + vq = 1. Hence, we have

o = (a”)! = ((&")*)"((a")")" = (@) (N (c)d™")")".
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But we know that P, N(c)d~! € F(Hy_1), so a? can be written as a p-th power of an
element from the field F(H-1). But this leads to a contradiction, since

g=X?—a’ € F(Hy_1)[X]

is irreducible over F/(Hj_1). But by the above result and Lemma 3.1.2, we have that
g = XP — a” is reducible over F(Hj_1).

So we cannot have g > 0. Therefore, ¢ = 0. So, & = a%d = d € Hy_1. If we put
K = F(Hy_1), then F(Hy) = K(a).

Now let L be the normal closure of the extension K(a)/K in Q. Since E/F is
a separable extension, we can say that L/K is also a separable extension. Being
the normal closure of a finite extension ,L/K is also a finite extension. Also by
the definition of normal closure, L/K is normal. Hence, /K is a Galois extension
according to Proposition 2.6.7.

So, Fix(Gal(L/K)) = K, and for a € L\ K, there exists ¢ € Gal(L/K) such that
¢(a) # a.

Since a? € Hy_; C K, we have ¢(a?) = o® = p(a)P. So, (a~l¢(a))? = 1. Then
we can write atp(a) = (. So, we have ¢(a) = a(,, since ¢(a) # a implies that
a~lp(a) # 1. Then we have that a~'¢(a) is a primitive p-th root of unity. Also since
& € Hp1 C K, we have p(c?) = ¢ = ¢(c)P. Similarly we have o(c) = c(J*, where
0 < m < p— 1. Then we obtain

p(a™e) = pla) " p(e) = 4G oGy = 0~

Our aim is to show that a™™c € F(Hy_1) = K. So, we should show that a™™c

—m

is fixed under every automorphism in the group Gal(L/K). Now we put w = a ™.

Clearly w € K(a). We know that [K(a) : K] = p, so we have
Z A,
0<i<p—-1
where \; € K. Since ¢(a) = ap, we have

plw) = E Z )\azgp Z (Aig)a’ = Z iat = w.

0<i<p—1 0Ki<p— 0<i<p—1 0gi<p—1
(3.3.3)
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Since ¢, is a primitive p-th root of unity, ¢, is a root of the polynomial
XP 4 XP 24 XP 34+ X +1€ K[X].

Then we have [K((,) : K] < p—1. We also have [K(a) : K] = p. But p and the degree
of the extension K({,)/K are relatively prime, so by Proposition 2.3.6, we have

K(a,é) : K] =[K(¢) : K] [K(a) : K].

So, we have
[K()(a) : K] = [K(a) : K] =p.

In particular, this shows that the set {1, a,a?,...,aP*} which is linearly indepen-
dent over K, is linearly independent over K((,). So, if we put the terms in Equation
(13.3.3) together, we have \; = (%, foralli € {0,1,...,p—1}. Ifforall 1 <4 < p—1,
Ai = 0 then clearly, w = Ay € K. Now suppose that w ¢ K. So, there exists some
1 € j < p—1 such that ); # 0. Then we have X;(1 — ¢J) = 1. Now we can divide
both sides of the above equation by A;, since A; # 0. Hence, we obtain 1 = g , that
is ¢, = 1. But this is a contradiction, since (, # 1.

Therefore, w = a™™c € K = F(H_1). We have
wf = (a™™c)? = (a®) P € Hy_1,

since aP, ¢ € Hy_y. So by (By_1), we can say that w = a ™c € Hy_y. Therefore,

¢ € Hy, since @™ € Hy and Hy_; < Hy. So assuming (By_1), we have shown (By).

Case II: Suppose that p = 2. Let ¢ € F(I1) be such that ¢ € Hj, and either we
have ¢ € G or {4 ¢ F(Hy). We show that ¢ € Hy. Similar to Case I, we have ¢ = a%d,
where d € Hi,_1 and 0 € ¢ < 1.

If ¢ = 1, then ¢® = ad. We take the norm of both sides of the equation, and we
obtain

N(c)* = N(a)N(d).
But since p = 2 and N(a) = a?( /2, we have N(a) = a?(z = —a?. Clearly, we also

have N(d) = d?, since d € Hy_;. So,

—~a? = N(c)*d™2.
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Hence we have —a? = (N{c)d*)?, where N(c)d~' € F(H_,). Now put t = N(c)d™ L.

Then we have
2_ g2

We can also write —1 = (at)2, so we have a~'t = £(4. Then we can write a = +(4t.

But this implies that {4 ¢ F(Hg-1), since a € F(Hj_1). We also have

F(Hy) = F(He-1)(a) = F(Hg-1)(£Gt) = F(Hp-1)(C),
since t € F(Hy—1). We know that

[F(Hg) : F(He-1)] = [F(He-1(Ca) : F(He-1)] = 2,
and ¢ € F(Hy). So, ¢ = z + y(4, where z,y € F(H_1). Hence we obtain,
¢ = (2 +yG)? = 2% + 20yCs — v = (&% — ¥*) + 2wy(s = £(atd,
since ¢ = —1. So, we have z? — y? = 0, which means x = 3-y. Thus, we obtain
c=z+ Gy = (1£()z.

Clearly, we should have Char(F') # 2, otherwise (4 = 1, and this would imply that
a =z € F(H_,). But this contradicts the choice of a.

By our assumption ¢? € Hy. We also have |Hy : Hy_1| = 2. So, 2 e Hy/Hg-1.
Then we obtain (c2)? = 1 and this implies that ¢ = 1. So, we have ¢? € Hj_;. Now

we have ¢! = (1 & ¢;)z*. But
(1£¢)* = (1 )% = (#20)* = —4
Then ¢* = —4z*. So, we have
o* = 47—t € Hy_y.

Since (4 ¢ F(Hy_1), using (Bg_1), we can say that 22> € Hy_;. After applying
(Bg_1) once more, we obtain £ € Hy_;. Then 1 £ (4, = cx™' € G. So, using our
assumption in (2), we deduce that {4 € F C F(Hj_1). But this is a contradiction,
since {4 ¢ F(Hy_1). So we should have ¢ = 0 and we obtain ¢ = d € Hy_1.
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Now we continue as in the Case I. Consider the automorphism
¢ € Gal(F(Hy)/F(Hg-1))

with p(a) = —a. We have ¢(?) = p(c)? = ¢?, since ¢ € Hy_1. So, ¢ = +¢(c). If
¢ = ¢(c), then we take 7 to be an even integer and if ¢ = —¢(c), then we take j to be
an odd integer, so we deduce that p(a’c) = a’c. Similar to the Case I, we can show
that a’c € F(Hy_1). Since we have a¥c? € Hy_1, according to the statement (By_1),
we have a’c € H,_;. Hence, ¢ € Hy, since ¢/ € Hy, and Hy_; < Hj. Therefore,
we have proven (By) assuming (Bgk_1). So, (By) is proven inductively. Hence we
can say that (Ag), holds since we have proven that by assuming (By-1). Now since

E = F(G) = F(Hy), using (Ag), we deduce that
[E . F] = [F(Hk) o F(Hk_l)][F(Hk_1) b F(Hk__z)] 600 [F(Hl) 3 F] =pt = 'G/F*l

Hence, E/F is a G-Kneser extension.
Now suppose that
IG/F* | =pP...p7,
where p; are mutually distinct prime numbers and ¢; € N*, 1 < ¢ < r. Now let H;/F*
be a p;-Sylow subgroup of G/F™, for all . Then

‘Hi/F*i = p?’

foralllg<igr

We have shown above that
|Hi/F*| = [F(H,) : F] = p}'.
But we know that [F(H;) : F] divides the degree of the extension E/F. Then p¥
divides [E : F] for all 1 € ¢ < . So, we have that [],_, p* divides [E : F]. Hence,
|G/ F*| divides [E : F]. Therefore,
|G/F*| < [E: FI.

So, we have shown that E/F is a G-Kneser extension. Therefore we have proven the

Kneser Criterion.
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3.4 Cogalois Extensions

In this section we study Cogalois extensions. We have defined Cogalois extensions
as finite T(E/F)-Kneser extensions at the beginning of the previous section. In
this section we provide the Criterion of Greither and Harrison which characterizes
the Cogalois extensions. We also give another criterion, called Gay-Vélez Criterion,
which is similar to the Greither-Harrison Criterion. At the end of this section we

provide some examples concerning Cogalois extensions.

3.4.1 The Greither-Harrison Criterion

Before proving the criterion, we need to define some concepts. Firstly, we recall the
concept of purity in Group Theory. A subgroup H of an Abelian multiplicative group
G is called pure, if G* N H = H™, for every n € N*. Then we give the definition of a

pure extension.

Definition 3.4.1. An extension E/F is said to be pure, if u,(E) C F for every
peP. a

Lemma 3.4.2. The following assertions are equivalent for an extension E/F.
(1) E/F is pure.
(2) pp(E) = pp(F) for every p € P.
(3) G EE=(, €F for everyp € P.

(4) (op ¢ E\F for everyp € P.

Proof. Since p,(F) C F, we can see that (1) <= (2) and (2) =3 (3) hold. We first
show that (3) = (1).

(3) => (1) : Now assume that (3) holds, and let ¢ € u,(E). Then ¢ = 1, so the
order of the element ( € E* is a divisor of p. If p is an odd prime, then ord(() is
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either 1 or p. If ord(¢) = 1, then ( =1 € F, as desired. If ord(¢) = p, then ¢ is a
generator of p1,( F). Then (¢} = ({p) in Q*. Thus, {, € (¢} < E*. So, according to our
assumption, we obtain {, € F. Then, { € ((;) < F*. So, we obtain { € F, as desired.

Now assume that p = 4, then ¢* = 1. So, ord(¢) € {1,2,4}. If ord(¢) = 1, then
¢ =1¢€ F. If ord(¢) = 2, then ( = —1 € F. If ord({) = 4, then similar to the case
where p is an odd prime, we have { € F. Therefore, E/F is a pure extension.

(3) <= (4) : If Char(F) = 2, then we have {4 = 1, and (y,, is & primitive p-th root
of unity for every odd prime p. It is clear that {4, = 1. We know that qgg =1, so we

can write it as ((¢g,;)?)? — 1 = 0. Since Char(F) = 2, we have

(¢ —1)* =0.

Then we have ({2,)? = 1. So the order of {5, € Q* is 1 or p. But we know that {3, # 1,
so ord({ap) = p, and this implies that (yp is a primitive p-th root of unity for every
odd prime p.

Now consider the case where Char(F) # 2. We want to show that —(3, is a

primitive p-th root of unity for every odd prime p. We have

() =1,

since the order of ¢, is 2p. Then ({z,)? = —1. We have

(=) = (~1)P(Gp)” = (-1)(-1) = L.

If Char(F) = p, then —(9p = 1 = (,, but this is not the case. If Char(F") # p, then
—(op # 1. So, ord(—(sp) = p. Now we have shown that —(,, is a primitive p-th root
of unity for every odd prime p.

Now assume (3) holds and (y, € E \ F, for some p € P. Then p should be an
odd prime, otherwise we would have that p = 2. So, we have (, € E \ F, but this
contradicts (3). If Char(F) = 2, then {3 = {, € E \ F, but this contradicts (3). If
Char(F') # 2, then we have —(3, = {, € E\ F. Again this contradicts (3). So we have
shown (3) = (4).
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(4) = (3) : Conversely assume that (4) holds. For p = 2, we have {4, ¢ E\ F,
and (3) follows. Now suppose that p is an odd prime and ¢, € E. We have to show
that (, € F. Suppose that ¢, ¢ F. Then we have (o, € E, using the facts above.
But assuming that (, ¢ F, we have +(o, ¢ F. So, (3, € E \ F, and this contradicts

(4). Thus we have proven (4) => (3). Hence we are done. [

Remarks 3.4.3. (1) A field F is said to be a field with few n-th roots of unity, where
n € N*, if p,(F) C {-1,1}, for all n € N*, that is, u(F') C {-1,1}. According to the
definition of a pure c)étension, for any extension E/F with E, a field with few roots
of unity, is a pure extension. Since any subfield of R is a field with few roots of unity,
we can say that any extension E/F, where E is a subfield of R, is a pure extension.
Clearly, any extension E/F with u,(E) C F, for all n € N* is a pure exten-
sion. Now our aim is to show that for any field F' and any m € N*  the extension

F(X1,Xo,...,Xn)/F is pure. First of all we show that
pn(F (X1, Xa, ... s Xm)) = pn(F), (3.4.1)

for any field F' and any m,n € N*. Then we can deduce that F(Xy, Xs,..., Xn)/F
is a pure extension by the Equation ( 3.4.1) and the fact that p,(F) C F. Clearly,

ll'n(p) .g ll*n(F(X1>X27' . 7Xm))

Now we show the other inclusion.

Let f/g € pn(F(X1,Xa,...,Xm)), wehave (f/g)" = 1,and f,g € F[X1,Xa,..., Xn)].
Since f* = g", we have that the irreducible factors of f and g are the same. Now we
put f=a-p .. . pf and g = b-plf...pis, where a, b € F* and s, I;, k; € N*, and p;
are irreducible polynomials over F, for all 7 € {1,2,...,s}. Since f* = g”, we have
a"=b"and l; =k;, for all 1 < i < s. So, f/g = a/b. But a™ = b", so (a/b)" =1, and
we have f/g € pn(F). Therefore,

tn(F(X1, X2, ..., Xm)) = o (F).

This implies that F'(X1, Xs,...,Xm)/F is a pure extension. In particular the exten-
sion Fy(X)/F2(X?) is also pure.
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(2) A quadratic extension Q(v/d)/Q, where d is a square-free integer is pure if and
only if d # —1, —3. We will see this in Corollary 3.4.16. O

Proposition 3.4.4. Let F C K C E be a tower of fields. Then E/F is pure if and
only if both K/F and E/K are pure.

Proof. Clearly, we have p,(F) C pp(K) C pp(E), for every p € P. If E/F is a pure
extension, then by Lemma 3.4.2, we have p,(E) = p,(F), and so pp(F) = pp(K) =
pp(E). Thus, K/F and E/K are both pure extensions, by Lemma 3.4.2. The other

part is similar. Hence, we are done. O

Lemima 3.4.5. Let E/F be a finite separable G-radical extension. If E/F is pure,
then E/F is G-Kneser and G =T(E/F).

Proof. Since E/F is a G-radical extension, FF = F(G), where F* < G < T(E/F).
Then E = F(G) C F(T(E/F)). So, E = F(T(E/F)), and this implies that E/F is
also a T(E/F)-radical extension. Now we want to show that E/F is T(E/F)-Kneser,
and we are going to use The Kneser Criterion.

Let p be an odd prime such that {, € T(E/F). Then, (, € E, but this implies
that ¢, € F by Lemma 3.4.2. Now if 1 £ (4, € T(E/F), then clearly 1+ (4, € E.
But this implies that {4 € E. So, again by Lemma 3.4.2, we deduce that {, € F. By
Theorem 3.3.12, we obtain that E/F is a T(F/F)-Kneser extension. Also, by the

same argument, we have that E/F is a G-Kneser extension. We have
T(E/F)=ENT(E/F)=F(G)NT(E/F) =G,
by Proposition 3.3.10. Hence we have G = T(E/F), and E/F is G-Kneser. O

Now we are going prove the Greither-Harrison Criterion. Before this theorem, we
recall the definition of a Cogalois extension. A finite extension E/F is said to be

Cogalois, if E/F is a radical extension such that |Cog(E/F)| = [E : F}.

Theorem 3.4.6. (The Greither-Harrison Criterion) The following statements are

equivalent for a finite extension E/F.
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(1) E/F is Cogalois.
(2) E/F is radical, separable and pure.

Proof. (1) == (2) : Suppose that E/F is Cogalois . So it is radical. Now we show that
E/F is separable extension. Suppose that E/F is not separable, so we necessarily
have Char(F) = p > 0. Because E/F being a finite extension, it is algebraic, and we
know that any algebraic extension over a field of characteristic 0 is separable.

Now p divides [E : F], since in the first part of the thesis, we have seen that
a power of the characteristic divides the degree of the extension. Since we have a

Cogalois extension, we have
|Cog(E/F)| = [E/F].

Then p divides the order of the Cogalois group of the extension F/F. By Lemma 3.2.8
there exists an element X € Cog(E/F) =T(E/F)/F*, of order p. So we have \? € F*,
and A ¢ F*.

Clearly F is an infinite field, otherwise £/F would be separable since any algebraic
extension over a finite field is separable.

Since A ¢ F, for any u € F, we have u+X ¢ F. We also have (u+X)P = P+ € F,
since Char(F) = p. So, m € Cog(E/F). Now our aim is to show that for every
M1, pe € F distinct, we should have

1+ A% iz + A

If we have m = ;I;—{-\/\, then p1 + A = a{ug + A), for some a € F*. If a # 1, then
g1 ~ aps = A(a — 1). But we can multiply both sides of this equation by the inverse

of @ ~ 1 (inverse of a — 1 exists, since a — 1 is not equal to 0). Hence,
A= (u1 — ap)(a— )74 (3.4.2)

But the right hand side of Equation ( 3.4.2) lies in F, so A should be in F. But this is
a contradiction. Thus, a = 1, and this means that u; + A = o + A. Hence, p; = ps.
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Therefore we have shown that for every p;, ps € F distinct, /m # /72’*1-\5\ But
we know that F' is an infinite field, so according to what we have shown above, we
can say that Cog(E/F), which is finite, contains infinitely many elements of the form
u/—}:\)\, where y € F. But this is a contradiction. Hence we have shown that E/F is a
separable extension.

Now it remains to show that E/F is a pure extension. We prove this by using
Lemma 3.4.2. Suppose that { € py(FE), so, (¢ = 1. We claim that ¢ € F.

Let g be an odd prime. If Char(F) =p = ¢, then (? =(?=1, thatis, (=1€ F.
So we may suppose that g # p = Char(F). And we can take { # 1, since 1 € F. Then
we have

1+ ¢+ G+ + ¢t =0,

since ¢ # 1 is a root of the polynomial X?—1 € F[X]. This implies that 1, ¢, ¢?, ...,¢?!
are linearly dependent over F.

Clearly, ¢ € Cog(E/F) = t(E*/F*), since ¢ = 1. Then ord(() in Cog(E/F) is
either 1 or ¢q. If ord(f) = g, then the elements 1, , 62, . ‘,C/q\‘l of Cog(E/F) are
distinct. So, by Corollary 3.3.9, we obtain that 1, ¢, ¢?,...,(%? € E are linearly
independent over F. But this is contradiction, hence ord(f ) =1in Cog(E/F), that is
e F*.

Now we investigate the case ¢ = 4. By the same reasoning, we may suppose that
Char(F) # 2. Since we have

1+¢-(1+¢) =0,

the elements 1, , 1+ of E are linearly dependent over F. So, again by Corollary 3.3.9,
we have that 1, Z, l—l—/\C € Cog(E/F) can not be distinct. But any equality gives that
¢ € F. Hence, the extension E/F is pure by Lemma 3.4.2.

Conversely, suppose that the extension E/F is radical, separable and pure. By
Lemma 3.4.5, we have that E/F is T(E/F)-Kneser. By Corollary 3.3.9, this implies
that

(T(B/F)/F*| = |Cog(E/F)| = |E : F].
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And this implies that E/F is a Cogalois extension. Hence we are done. O

Examples 3.4.7. (1) The quartic extension Q( \/m) /Q is separable, since it is
algebraic over a field of characteristic 0. It is algebraic since it is a finite extension.
Since we have shown that any extension E/F, where E is a subfield of R is pure, we
deduce that the extension Q(m) /Q is pure, since Q(m) is a subfield
of R. But in Proposition 3.4.13, we will show that the extension Q(m) /Q is
neither radical, nor Cogalois.

(2) The quadratic extension Q(z)/Q is separable, since it is an algebraic extension
over a field of characteristic 0. Also, Q(¢)/Q is clearly a G-radical extension, where
G = Q*(@i) and Q* < G < T(Q(#)/Q). But Q(¢)/Q is not a pure extension since
1(Q(4)) C Q does not hold for all p € P. Consider p = 3 € P. The primitive third
root of unity is clearly in p3(Q(%)), but it is not contained in Q. Hence, the extension
Q(2)/Q is not pure. So, from Theorem 3.4.6, we deduce that Q(z)/Q is not a Cogalois

extension. In Proposition 3.4.15 (2) we will see that

——

Cog(Q()/Q) ={1,7%, T+4, T—i}=(1+4) =7,

(3) The quadratic extension Fy(X)/F2(X?) is G-radical, where G = F3(X?)(X).
Also this extension is pure by Remarks 3.4.3. But it is not separable. Let E = Fy(X)
and F = F5(X?). Now our aim is to show that E/F is not separable. Let X = u.
Then F(u) = Fo(X?)(X) C E. We also have

E =Fa(X) C Fo(X)(X?) = Fo(X*)(X) = F(u).

So, E = F(u).

Now we claim that Min(u, F) = Z? — 2. Clearly, u is a root of Z2 — u2. Suppose
that Z2 — u? is reducible over F. Then it would have a root in F. But the roots of
this polynomial are v and —u which do not belong to F. Hence, Z2 — 42 is irreducible
over F. So, Min(u, F) = Z% — u%. But (Z? ~ 4?) = 0, so E/F is not separable. So, it

is not Cogalois. O

Theorem 3.4.8. (The Gay-Vélez Criterion) The following assertions are equivalent

for a finite extension E/F.
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(1) E/F is Cogalois.

(2) E/F is radical, separable, and satisfies the following conditions: for every odd
prime p, {, € F whenever {, € T(E/F), and {4 € F whenever 1+{, € T(E/F).

(3) E/F is radical, separable, and (o, ¢ E\ F for every p € P.

Proof. (1) <= (8) follows from Lemma 3.4.2 and Theorem 3.4.6.

(1) = (2) : Suppose that E/F is a Cogalois extension. By Remarks 3.3.11 we
know that E/F isa T(E/ Fj—Kneser extension. If we apply Kneser Criterion to this
extension where G = T(E/F), we obtain (2).

(2) = (1) : By Kneser Criterion, we deduce that E/F is T(E/F)-Kneser, so it

is a Cogalois extension. Hence we are done. O

Remark 3.4.9. By The Greither-Harrison Criterion, it follows that any Cogalois
extension is separable. On the other hand a Kneser extension does not have to be a
separable extension. Consider Fo(X)/Fo(X?). This extension is not separable by (3)
of Examples 3.4.7. But, it is a Kneser extension. Let E = Fo(X) and F = Fa(X?). We
take G = F*(X). Now our aim is to show that E/F is G-Kneser. By Examples 3.4.7
(3) we have E = F(u), where v = X, and Min(u, F) = Z% — u?. Therefore,

[E:F|=[F(u): Fl=2.

If we show that the order of X is 2 in F* (X)/F*, then we are done, since we have

|G/F*| = |F*(X)/F*| = ord(X). But X = XF*, and clearly, (X F*)?> € F*. Thus,
|G/F*| = |F*(X)/F*| = ord(X) =2 = [E : F].

Therefore, E/F is G-Kneser. O

3.4.2 Some Exzamples and Properties of Cogalois Extensions

In this section we present some examples concerning Cogalois extensions Also we list

some basic properties of Cogalois extensions.
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Examples 3.4.10. (1) We have seen in Remarks 3.4.3 that the extension E/F is
pure, where E is a subfield of R. So any finite G-radical extension E/F with E a
subfield of R is Cogalois by Greither-Harrison Criterion. It is clear that E/F is
separable. Because Q C F C E and E/F being finite, it is algebraic. And F is an
algebraic extension over a field of characteristic 0. So, F/F is separable.

Now by Lemma 3.4.5, we have G = T(E/F). But this implies that
Cog(E/F)=T(E/F)/F*=G/F~.
Now consider the extension

Q( a1, ..., ¥/ar)/Q,

with r € N* ay,...,a,,n1,...,n. € N* and %/a; is a positive real n;-th root of a;,
for all i, 1 € ¢ < r. Using the same idea as above, we deduce that this extension is
a G-radical Cogalois extension, where G = Q*( v/ay, ..., %/a,). Hence the Cogalois
group of this extension is Q*( /a1, ..., %/a,)/Q".

(2) A quadratic extension Q(v/d)/Q, where d # 1 is a square free integer, is
Cogalois if and only if d % —1, —3. This will be shown at the end of this section.

(3) We know that Q((g, ¥/5) is a splitting field of the separable polynomial

f=X9~5€Q{X]7

where roots of f are (§v/5, 0 < i < p — 1. So, Q((s, v/5) is a Galois extension by
Proposition 2.6.7. Hence, Q(Co, V/5)/Q((s) is a Galois extension. Also this extension
is Cogalois. Clearly, it is separable and G-radical, where G = (Q())*{(o, V5). O

Proposition 3.4.11. The following assertions hold for a tower of fields F C K C E.
(1) There exists a canonical exact sequence of Abelian groups.

1 — Cog(K/F) — Cog(E/F) — Cog(E/K).

(2) If E/F is a Cogalois extension, then E/K and K/F are both Cogalois exten-

sions.
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(8) If E/F is a radical extension, and E/K, K/F are both Cogalois extensions,
then E/F 1is a Cogalois extension.

(4) If E/F is Cogalois, then the groups Cog(E/K) and Cog(E/F)/Cog(K/F) are

canonically isomorphic.

Proof. (1) We claim that the canonical map
Cog(E/F) — Cog(E/K), oF* — zK*

is a group homomorphism with kernel Cog(K/F). It is clear that this map is a ho-
momorphism. Now we show that the kernel of this homomorphism is Cog(K/F).
Let z be an element of the kernel of this homomorphism. Then zK* = K*, since

Cog(E/K) =T(E/K)/K*. So, we have z € K*. But since
z € Cog(E/F)=T(E/F)/F*,

we have z" € F*, for some n € N*. But this implies that
zeT(K/F)/K* = Cog(K/F).

Also if z € Cog(K/F), then we can clearly see that z lies in the kernel of this
homomorphism.

Now we can say that the sequence
1 — Cog(K/F) — Cog(E/F) — Cog(E/K),

of Abelian groups is exact, because the image of the first map and the kernel of the
second map is 1 (the second map is the inclusion homomorphism) and also, the image
of the second map and the kernel of the third map is Cog(K/F), as we have shown
above.

(2) Suppose that E/F is a Cogalois extension. Then, by Theorem 3.4.6, we have
that E/F is radical, separable and pure. Clearly, E/K is also a radical, separable
and pure extension. So, again by Theorem 3.4.6, we have that E/K is Cogalois. But
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we can not easily deduce that K/F is also Cogalois, since K/F' does not have to be
a radical extension.

Now we are going to show that K/F is a Cogalois extension. Since E/F is a
Cogalois extension, Cog(K/F) is finite. Also Cog(K/F) is finite, being a subgroup
of Cog(E/F). Now let r be the number of elements in Cog(K/F). If £3,%3,...,%,
are all the elements of Cog(K/F) = T(K/F)/F*, then using Corollary 3.3.9, and the
fact that F/F is Cogalois (T'(E/F)-Kueser), we have that the subset {Z3,%3,...,%,}
of K is linearly independent over F. So,

|Cog(K/F)| < [K : F].

From (1), we know that there exists a canonical monomorphism of groups such

that
Cog(E/F)/Cog(K/F) ~ Cog(E/K).

So, we have

|Cog(E/F)|/|Cog(K/F)| < |Cog(E/K),
since the groups Cog(E/F) and Cog(K/F) are finite. But we know that E/F
and E/K are Cogalois extensions, so this implies that [Cog(E/F)| = [E : F], and
|Cog(E/K)| = [E : K|. Now we obtain
(B : FY/|Cog(K/F)| < [E: K] = [ FI/K : F.
But this means that
|Cog(K/F)| 2 [K : F].

Since we have the opposite inequality above, we deduce that
|Cog(K/F)| = [K : F].

From the above fact, we can say that {2, za,...,2,} is a vector space basis of K over
F. So, we can write K = F(z1,z3,...,,). Since Cog(K/F) = T(K/F)/F*, we have
{z1,22,...,7,} CT(K/F). Thus, we have that K/F is a radical extension. Also, we
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know that K/F is separable and pure. Therefore, K/F is a Cogalois extension by
Theorem 3.4.6.

(3) Suppose that F/K and K/F are Cogalois extensions. Then these extensions
are separable and pure by Theorem 3.4.6. But this implies that FE/F is a separable
extension. By Proposition 3.4.4, we also have that E/F is a pure extension. Hence
by Theorem 3.4.6, we have that E/F is Cogalois, since E/F was given to be a radical
extension.

(4) From (1) we know that there is a canonical monomorphism
¥ : Cog(B/F)/Cog(K/F) — Cog(E/K)

of Abelian groups. From (1) we also know that E/F, E/K and K/F are all Cogalois
extensions. Hence, we have |Cog(E/F)| = [E : F], |Cog(E/K)| = [F : K] and
|Cog(K/F)| = [K : F]. So, we obtain

|Cog(E/F)/Cog(K/F)| = |Cog(E/F)|/|Cog(K/F)| = [E: F|/|K : F]
= [F: K] = |Cog(E/K)|.

This shows that 1/ surjective. But we know that ¢ is a monomorphism, so 1 is an
isomorphism of groups.

g

Now we give a result which says that any Cogalois extension is an extension with

Cogalois correspondence.
Theorem 3.4.12. The following statements hold for a finite Cogalois extension E/F.

(1) The maps — NT(E/F) :{ — C and F(—) : C —> £ are isomorphisms of
lattices, inverse to one another, where £ = {K |F C K, K is a subfield of E}
and
C={H|F*< H<T(E/F)}

(2) For every intermediate field K € £, one has K = F(T(K/F)).
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(3) For every subgroup H € C, one has Cog(F(H)/F) = H/F*.
Proof. (1) Let H € C. Then by Proposition 3.3.10,
FH)NT(E/F) = H.

Now let K € €. Since E/F is a Cogalois extension, we have that E/K and K/F
are also Cogalois extensions by the previous proposition. So, E/K is T(E/K)-Kneser
and E/F is T(E/F)-Kneser. Then we have

E=F(T(E/F)) € K(T(E/F)) C K(T(E/F)K") C E.
So, E = K(T(E/F)K*). Thus, E/K is T(E/F)K*-radical, since clearly,
T(E/F)K* < T(E/K).
But by Lemma 3.4.5, T(E/F)K* = T(E/K), that is E/K is T(E/F)K*-Kneser. So,
|E: K] = |(T(E/F)K*)/K*| = |T(E/F)/(K* N T(E/F)),
dlearly, (T(E/F)K*)/K* and T(E/F)/(K*NT(E/F)) are group isomorphic. Hence,
[K : Fl=[E: FI/[E: K| =|T(E/F)/F"|/|T(E/F)/(K*NT(E/F))| = (KNT(E/F))/F"|.

On the other hand, by Corollary 3.3.9, we have F(K* N T(E/F))/F is K* N
T(E/F)-Kneser. So, we have [F(K*NT(E/F)): F] = |K*NT(E/F)/F*|. Since

F(K* NT(E/F)) C F(K*) C K(K*) = K,
we deduce that K = F(K*NT(E/F)). We also have
K=F(K*NT(E/F))=F(KNT(E/F)).

Hence, we have shown that these two maps given above are isomorphism of lattices,
inverse to one another, since K € ¢, H € C are arbitrary.

(2) Let K € &. Clearly, we have K NT(E/F) = T(K/F). Then, we should have

F(T(K/F) =K,
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since (1) implies that the above maps are inverse to one another.
(3) Let H € C. We know that H = F(H)NT(E/F) = T(F(H)/F), by Proposi-
tion 3.3.10. So, Cog(F(H)/F) = T(F(H)/F)/F* = H/F*. O

Now we give an example which shows that the property of being radical, Kneser,
or Cogalois is not transitive. We investigate the quartic extension Q(v/1 + v/2)/Q.

Proposition 3.4.13. The following assertions hold.

(a) Q(V2) is a subfield of the field Q(v/1+ v2).

(b) [R(V1++v2) : Q(2) =2, and [Q(vV1+V2) :

(c) Q(\/—-{T 2)/Q is not a Cogalois extension.

d) Q( m) /Q(v2) and Q(v2)/Q are Cogalois extensions.

(e) (c) Q(m) /Q is neither a radical, nor o Kneser eztension, nor a Cogalois
extension.

(£) Cog(@QW/1+v2)/Q) = {1, V2}.

(g) The element V1 + 2 of the group Q(m )*/Q* has infinite order.
Proof. Let F=Q, K =Q(2), E=Q (\/m‘i) and 6 = /1 + 2.

(a) Since v2 = 62 — 1 € Q(f) = E, we have K = Q(+v/2) C Q(6) = E. Also we
have F = K(6), since K(8) = Q(v/2)(8) = Q(6)(v2) = E(v/2) = E. So, it is clear
that K is a subfield of F.

(b) We know that 8 satisfies the polynomial f = X*—2X?—1. Consider f(X +1).
But, we can apply the Eisenstein Criterion to f(X + 1) = X4+ 4X3 + 4X?% — 2. So,
f(X +1) is irreducible over Q. Hence, f is irreducible over Q. Hence, [E : F] = 4. So,
[E:K]=2.

(c) The conjugates of 8 over Q are the roots of its minimal polynomial X4—-2X2-1.
Since two of the roots of this polynomial are m, and —v/1 + /2, the other
two roots of it should satisfy the equation X2 = 1 —+/2. So, clearly they are complex,
and they do not belong E C R. Therefore, E/F is not a normal extension, this means
that E/F is not Galois.

(d) By Remarks 3.4.3, we know that E/F and K/F are pure extensions since

F is a subfield of R. Also, these extensions are separable, since they are algebraic
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extensions over a field of characteristic 0. We also have E = K(0) = K(K*{f)), and
K = F(F*(/2)), where K* < K*{#) < T(E/K), and F* < F*(v/2) < T(K/F). So,
E/K and K/F are Cogalois extensions by the Greither-Harrison Criterion.

(e) We know again by Remarks 3.4.3 that E/F is a pure extension. Also it is
separable by the same reasoning as above. So, by the Greither-Harrison Criterion it
is Cogalois if and only if it is radical. Since any Kneser extension is radical, if we show
that E/F is not a Cogalois extension, then we can deduce that (e) holds. Now suppose
that E/F is a Cogalois extension. Then we should have [E : F] = [Cog(E/F)| = 4.
Hence this group should be isomorphic to Zs X Zsy or to Zy.

Case I: Suppose that Cog(E/F) & Zy X Zy. So, there exists some 3,7 € Q. such
that

Cog(E/F) = Q(V/B, y»/Q" = {1, VB, V7, VB}
So by Corollary 3.3.9, we can see that {1, /3, \/7, v/07} is a vector space basis of

5=0(V1+V2) = QWA v3).

But Q(vB, v/7)/Q is a Galois extension, since it is a splitting field of the separable
polynomial (X2—3)(X?—+). On the other hand, we know by (c) that Q(v/1 + v/2)/Q

is not a Galois extension. Thus, this case is impossible.

E over F. Hence,

Case II: Suppose that Cog(E/F) = Z4. Then, there exists o € . such that
Cog(E/F) = Q*(¢/a)/Q* = {1, Va, Vo, Voi}.

Again by Corollary 3.3.9, {1, ¥/«, \4/52, {‘/&3} is a vector space basis of E over Q. So,

p=0(V1+v2) -ava.

We can easily see that the degree of the extension E/Q(/c) is 2, since the minimal
polynomial of /& over Q(v/a) is X% — /a. But [E : F] =4, so [Q(/a) : Q] = 2.
Hence, /o ¢ Q. Since |Cog(E/F)| = 4, Cog(E/F) has a unique proper subgroup
which has order 2. So by Theorem 3.4.12 (1), we deduce that E/F has a unique

we have
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proper intermediate field. By (a), we know that @(+/2) is such an intermediate field.
So we have Q(v2) = Q(v/a). Hence, V2 = k+/a, where k € Q. Then we obtain
2 = ak?. Since E = Q(f) = Q(¥/), there exists some a, b, ¢, d € Q such that

6’=\/1+\/_2_=a+b{‘/5+6\4/a_2+d\7(—1§.

We can write the above equation as

8 — (a + cva) = ¥a (b + dva). (3.4.3)

If we square the both sides of Equation ( 3.4.3), then we obtain
6% — 20(a + cv/a) + (a + cv/a)? = Va (b + dva)?.

Clearly, 62 = 1+ V2 € Q(v/2) = Q(/@). Since (a + cy/a@)? and the right hand side
of the above equation are in Q(y/a), we have that a + cy/a = 0. Otherwise we would
have that § € Q(y/&) = Q(v/2). But this will imply that E = Q(f) C Q(v/2). This is
a contradiction, since E/K has degree 2 by (b). So we obtain

6 = Yo (b+ dva). (3.4.4)
We can write the above equation as
b+dv2 _ 1
6 Yo
but we know that \/a = v/2/k, so we obtain
bk+dv2 _ k.
6  Ya

So we deduce that (%t&2)* € Q. Now we put

o o (Ot VD)
S+ v2p

Then clearly, u coincides with its conjugate in the quadratic extension Q(v/2)/Q.

e Q.

Since any Q-homomorphism fixes elements of Q pointwise. So, we have

(bk + dv2)*  (bk — dv2)*
(1+v2?  (1-v2)?
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Taking the square roots of both sides, we obtain

(bk +dv2)?  (bk — dv/2)?

1+v2)  (V2-1)°

hence,

(bk + dV2)2 (V2 — 1) = (bk — dvV2)2(V2 + 1).

So, we obtain

VK% — Abdk + 24% = 0.

We can also write the above equation as
(bk — 2d)? = 24°.

Now we claim that d = 0, for otherwise taking the square root of the above equation
we would have v/2 € Q, which is a contradiction. Hence d = 0, so bk = 0. Then b = 0,
so by Equation ( 3.4.3), we have § = 0, which is a contradiction. Therefore, we have
proven the fact that E/F is not a Cogalois extension.
(f) Clearly,
{, V3} € Cog(@(y/1+v3)/Q.

The show the other inclusion, it is enough to show that |Cog(E/F)| = 2. By Propo-
sition 3.4.11, we know that there exists a canonical monomorphism of groups
Cog(E/F)/Cog(K/F) ~ Cog(E/K).
By (d), the quadratic extensions F/K and K/F are both Cogalois. So we have
|Cog(E/K)| = |Cog(K/F)] =2.

Then we should have {Cog(E/F)| is 2 or 4. Assume that |Cog(E/F)| = 4. Then as
in the proof of (e), there are 2 cases: Cog(E/F) & Zq X Zy or Cog(E/F) = Zy. In
the first case, there exists 3, v € Q% such that

e ——

Cog(E/F) = Q(+/B, v3)/Q" = {1, VB, 73, v/B7}-
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Now we claim that {1, v/3, /7, VB7} is a vector space basis of E over F. We have
VY ¢ Q(/B), for otherwise there exists some a, b € Q such that /¥ = a + b/B.
Squaring both sides, we obtain v = a? + b23 + 2ab+/B. But this implies that /3 € Q
and so, # = 1 which is a contradiction. So, we should have V7 ¢ Q(+/B). Hence,
[Q(VB, v/7) : Q] = 4. But this implies that E = Q(,/8, /7). So, clearly, E/F is a
radical extension. But this contradicts (e).

If we have Cog(E/F) = Z4, then there exists a € Q7 such that
Cog(E/F) = Q(¥a)/Q" = {1, ¥, Vo, Vo).

Clearly, /a ¢ Q(y/a). Otherwise there exists some a, b € Q such that ¢/ = a+b/a.
Squaring both sides, we obtain /& = a?+b2a+2aby/a. Then /a (2ab—1) = —a®~ba.
If 2ab—1 # 0, then +/a € Q which is a contradiction. So, we should have 2ab—1 = 0.
Then, —a® — b?a = 0, but this is contradiction, since a € Q4. Hence, /a ¢ Q(Va).
This implies that {1, ¢/a, Va2, ¥od} is a vector space basis of E over F. Thus, E/F
is a radical extension. But this contradicts (e) again. So, we have Cog(E/F) = 2.
Thus, we have proven (f).

(g) Assume that ord(1/+7§) is finite, say n. Then, (m)n € Q.. Now we put
(m " = q, where a € Q. Then we have m = {/a. Clearly, Q(/a)/Q is
a Cogalois extension, hence Q(m) is a, Cogalois extension But this contradicts
(e). Thus, we have proven (g). O

3.4.8 The Cogalois Group of a Quadratic Extension

In general, to calculate the Cogalois group of a given extension is quite hard. In this
subsection, we are going to give a description of the Cogalois group of any quadratic
extension.

We will denote v/—1 by i, and v/—d by iv/d, for any d € Q. as usual.

. Lemma 3.4.14. Let d # 1 be a square-free rational integer, and let W denote the
group of roots of unity 1(Q(vd)) in Q(v/d). Then
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(1) W = pp(C) = {1} if d # -1, 3.
(2) W = pg(C) = {1, +i} if d = —1.
(8) W = us(C) = {£1, (1 +iv/3)/2, £(1 — iv/3)/2} if d = —3. 0

Proposition 3.4.15. Let E = Q(v/d), where d # 1 is a square-free integer. Then
(1) Cog(E/Q) = (V) 2 Z if d # —1, =3,
(2) Cog(B/Q) = (T+7) 2 Z, if d=-1.
(3) Cog(E/Q) = (i3 - (1+iv3)) = Zg if d = —3.

Proof. Let o € T(E/Q), o = a+bv/d for some a, b € Q, since o € E* = Q(v/d)*. We
have Cog(E/Q) = T(E/Q)/Q*. Now consider & € Cog(E/Q). It is clear that @ = 1
if and only if @ € Q.

Now suppose that o ¢ Q, that is b # 0. Since @ € T(E/Q), there exists some
n € N*, n > 1 such that o = c € Q*. So a is root of f = X" —c € Q[X]. The roots of
this polynomial are o £, where £ is a primitive n-th root of unity. Since F = Q(\/E)
and @ = a + bv/d, where a, b € Q, we have E = Q(c). So, the minimal polynomial
Min(e, Q) of a over Q has degree 2, since |F : Q| = 2. Clearly, Min(a, Q) divides f. So
the roots of Min(«, Q) are «, o, where £ € p(C). E/Q is a normal extension since the
minimal polynomial of 'each element of F splits over F. Since & and o are conjugates
elements over Q, af € E. We have & = (a€)/a, so £ € ENp(C) = u(E) = W.

On the other hand, the product of the roots of Min{c, Q) belongs to Q, i.e,

a*¢ € Q. (3.4.5)
Now we are going to deal with three cases considered in the proposition.
Case I: d # —1, —3. By the previous Lemma, we have £ € {1, 1}. Then by

Equation ( 3.4.5), o? € Q. So, a? + db? + 2abv/d € Q. Then we should have ab = 0.
But we assumed first that b # 0, so we have a = 0. Thus, o = bv/d, and so & = V/d.
Hence,

Cog(E/Q) = {1, Vd} = (Vd) = 7.
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Case II:

d = —1. We have a = a + bi and o? = a® — b? + 2abi. By the previous lemma
again, £ € {1, —1,4, —i}.

If we have ¢ = 1, then Equation ( 3.4.5) implies that o € Q. So, a® — b*>+2abi €
Q. Again we should have ab = 0, so a = 0. Thus, & = bi, and & = 4.

If ¢ = &4, then Equation ( 3.4.5) implies that ia? € Q. So, (a? — b%)i — 2ab € Q.
Hence, a®> — b? =0, and so a = %b.

If we have @ = b, then o = a + bi = b(1 + ). So, & = I+i If a = —b, then

a = —b(1—1). Hence, @ = 1—7%. Therefore,

e — e

Cog(QW)/Q) = {1,7, T+, T—i} = (T+i) = Zs

Case III: d = —3. We have a = a + biv/3 and o® = a? — 3b? + 2abi/3. By the

previous lemma again, £ € {£1, £(1 +4v/3)/2, (1 —iv/3)/2}.
If ¢ = £1, then Equation ( 3.4.5) implies that o® € Q. So, we should have that
ab=0. Then a = 0, and so a = biv/3. Hence, & = 7/\/\5
If £ = (1 + i1/3)/2, then again by Equation ( 3.4.5), we have (1 +iv/3)o? € Q.
Thus,
a? — 362 — 6ab + (a® — 3b+ 2ab)ivV3 € Q.

Clearly we should have that a® — 35 + 2ab = (a — b)(a + 3b) = 0. So we have either
a="bora=-3b.

If a = b, then o = b(1 +4v/3), and so @ = 1:;/3. If we have a = —3b, then
o = b(~3 +iv/3). Hence, @ = —?:-H\\/g = z/\/\{‘_} (lm)

If £ = £(1 — 4v/3)/2, then we have (1 — iv/3)a?® € Q. Thus,

a® — 3b% + 6ab + (—a? + 36% + 2ab)iv3 € Q.

So, we should have —a? + 3b% 4 2ab = (a + b)(—a+3b) = 0. So we have either ¢ = —b

or g = 3b.
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If g = —b, then o = —b(1 — iv/3), hence @ = 1 — /3. If a = 3b, then we have
o = b(3 +4v3), and so & = 3+ iv/3 = iv/3 - (1 — i/3). Therefore,

Cog(E/Q) = {1, ;/\g, 1:;/5, ;:/\5 (1:;\75), 1’—/;'\\/5, f\/\g (112?/;}) } & Zs.
0

Corollary 3.4.16. The following statements are equivalent for a square-free rational
integer d # 1. integer.

(1) Q(vd)/Q is a pure extension.

(2) Q(vd)/Q is a Cogalois extension.

(3) d# -1, -3.

Proof. By Proposition 3.4.15, Q(v/d)/Q is a Cogalois extension if and only if we have
|Cog(Q(vd)/Q)| = 2, that is, by Proposition 2.3.15 again, if and only if d # —1, —3.
So we have (2) <= (3). The equivalence (1) <= (2) follows from the Greither-

Harrison Criterion. O

3.5 Strongly Kneser Extensions

In this chapter we are going to introduce the notions of Cogalois connection, strongly
G-Kneser extension and G-Cogalois extension. G-Cogalois extensions are separable
G-Kneser extensions £/ F for which there exists a canonical lattice isomorphism be-
tween the lattice of all subextensions of E/F and the lattice of all subgroups of the
group G/F*. Also we are going to provide a characterization of G-Cogalois extensions
in terms of n-purity.

We show that a separable G-Kneser extension E/F is G-Cogalois if and only if the
group G/F™ has a prescribed structure. As a consequence, we deduce that the group
G is unique. This means that if the extension E/F is simulta,neously (G-Cogalois and
H-Cogalois, then we should have G = H. Then the Kneser group of a G-Cogalois
extension can be defined as the group G/F*, and this group will be denoted by
Kne(E/F).
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Throughout this section, E/F will denote a fixed extension and G a group such
that F* < G < E*. We also use the following notation:

G:={H|F<H<G,

& := Intermediate(F/F) = {K | F C K, K subfield of F}.

3.5.1 Galois and Cogalois Connections

In this subsection we are going to present the dual concepts of Galois connection
and Cogalois connection for arbitrary posets. The concept of closed element is also
provided. Then, the concepts of field extension with Galois correspondence and field

extension with Cogalois correspondence are introduced.

Definition 3.5.1. A Galois connection between the posets (X, <) and (Y, <) is a

pair of order-reversing maps
a: X —Yandp3:Y — X
satisfying the following conditions:
z< (Boa)(z), Vz € X, andy < (o B)(y), Vy €Y.
O

Whenever we have a Galois connection as in the above definition, we are going to

use the notation

XY

8

If the maps o and 3 are both order-preserving instead of order-reversing, we obtain

a Cogalois connection between X and Y. Now we have the following definition.
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Definition 3.5.2. A Cogalois connection between the posets (X, < Y) and (Y, <Y)

s a pair of order-preserving maps
a:X —Yadf:Y — X
satisfying the following conditions:

(Boa)(z) <z, Vz€X, andy € (a0 B)(y), Vy € Y.

Now if we denote by X°? the opposite poset of X, then clearly,
o

XY

8

is a Cogalois connection if and only if

a
il

B

is a Galois connection. Now if we have
o

X—Y

is a Galois connection, then

Yy T/— X

is also a Galois connection.But we do not have the same property for a Cogalois

connection.

Let
o

XY

B

be a Galois or Cogalois connection. Let z € X (resp. y € Y'), then the element a(z)

(resp. B(y)) is denoted by z’ (resp. y'). Now we shall use the notation:

.’If” e (xl)l, xl{l o (xll)l’ yli == (yl)l, yll/ — (yl/)l’
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If we have 2” = 2 for an element 2z in X or Y, then z is said to be a closed element
of X or Y. A closed element is also called Galois object (resp. Cogalois object) in the
case of a Galois (resp. Cogalois) connection. X (resp. Y) denotes the set of all closed
elements of X (resp. Y).

The following proposition lists the basic properties of Galois and Cogalois connec-

tions.

Proposition 3.5.3. With the notation above, the following assertions hold for a
Galois or Cogalois connection between the posets X and Y.

(1) 2/ = 2" for every element z of X orY.

(2) X =8(Y) and Y = a(X).

(3) The restrictions@: X — Y and 8:Y — X of o and 3 to the sets of closed

elements of X and Y are bijections inverse to one another.

Proof. We will only consider the case of a Cogalois connection.
(1) Let z € X and y € Y. Since az) = 2’/ and f(y) = ¢/, we have 2" < z and
y < " by Definition 3.5.2. Since the priming operation is order-preserving in the case

of a Cogalois connection, we have
xlll — (Z,”)/ g x/ and yl < (yll)l.

"

Since 7’ is an element of Y, we have z’ < (z/)” = ™. But this proves that 2" = z.

Since ¥ € X, we have ()" = ¢y < /. Hence we obtain y”” = y. So we have proven
(V).

(2) Let z € X. Then we have z” = z. So, z = ¢" = (')’ = B(z') € B(Y).
Conversely, let z € B(Y). Then, z = B(y) = ¢/, for some y € Y. But we have
v =y" = (/) by (1) and so £ = z”. Thus, z € X. Hence, X = S(Y). The other
equality can be proven in a similar way.

(3) Let y € Y. Then by (2), there exists some € X such that y = a(z) = 2. So,

(@o B)(y) = a(B(a(z))) =" =o' =1y.

In a similar way, one can show (8 o @)(z) = , for all z € X, O
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The most important example of a Galois connection is the one which we studied
in Galois Theory. Actually, the name, Galois connection comes from there. Let E/F
be an arbitrary field extension, and denote by ' the Galois group Gal(E/F) of E/F.
Then clearly the maps

o : Intermediate( E/F') — Subgroups(I'), a(K) = Gal(E/K),

and

3 : Subgroups(I') — Intermediate(E/F), 3(A) = Fix(A),

gives a canonical Galois connection between the lattice Intermediate(E/F) of all
intermediate fields of the extension £/ F and the lattice Subgroups(I') of all subgroups
of I". We will call it the standard Galois connection associated with the extension E/F.

Proposition 3.5.4. With the notation above, the following assertions are equivalent
for a finite extension E/F with Galots group I

(1) E/F is a Galois extension.

(2) Every intermediate field of the extension E[F s a closed element in the stan-
dard Galois connection associated with E/F.

(3) F is a closed element in the standard Galois connection associated with E/F.

(4) The map « is injective.

(8) The map (3 is surjective.

(6) The maps a and 8 establish anti-isomorphism of lattices, inverse to one an-

other, between the lattices Intermediate(E/F) and Subgroups(T').

Proof. By Part I, we can easily see that (1) = (2) = (3) = (1) = (6). Also
(6) => (5) and (6) = (4) are clear.

(5) = (3) : Suppose that 3 is surjective. Then F = §(A) = Fix(A) = A/, for
some A < I'. So F" = Fiz(A)' = (A')" = A" = A’ = Fix(A) = F. Hence, F' is a
closed element in the standard Galois connection associated with E/F.

(4) => (3) : Suppose that « is injective. We know that F/ = F"” = (F")". So,
a(F) = a(F"). But since « is assumed to be injective, we have F' = F”. Hence, F is

a closed element of the extension E/F. O
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Let E/F be a G-radical extension. Then the maps
x : Intermediate(E/F) — Subgroups(G/F™), x(K) = (K N G)/F*,

w : Subgroups(G/F*) — Intermediate( F/F), w(H/F*) = F(H),

set a Cogalois connection between the lattices Intermediate( E/ F) and Subgroups(G/F*).
We call it the standard Cogalois connection associated with the extension E/F. It is
easy to see that the standard Cogalois connection is associated with only radical
extensions, whereas the standard Galois connection is associated with any extension.

Clearly, the lattice Subgroups((//F*) is canonically isomorphic to the lattice
G={H|F*<H<G}

Now we denote ¢ by the lattice of all intermediate fields of the extension E/F. Then
the Cogalois connection that is described above, is the same with the one which is

below. Also it will be called the standard Cogalois connection associated with E/F:
%
— ¢
(4

where

p:€—G, ¢(K)=KNQG,
¥:G— & Y(H)=F(H).

Now we can define the following concepts.

Definition 3.5.5. An eztension E/F with Galois group T' is said to be an exten-
sion with I'-Galois correspondence if the standard Galois connection associated with
E/F yields a lattice anti-isomorphism between the lattices Intermediate(E/F) and
Subgroups(T).

Dually, a G-radical extension E/F is said to be an extension with G/ F*—Cogalois
correspondence if the standard Cogalois connection associated with E/F gives rise to
a lattice isomorphism between the lattices Intermediate(E/F) and Subgroups(G/F*).
O
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Remark 3.5.6. Clearly, by Proposition 3.5.4, any finite extension £/ F with I-Galois
correspondence is necessarily a Galois extension. Also the fact that E/F is an ex-
tension with I'~Galois correspondence implies that [E : F| = |Gal(E/F)|, this follows
from Proposition 2.6.7.

Conversely, if we have the equality [E : F] = |Gal(E/F)| for a finite exten-
sion E/F, then E/F is necessarily a Galois extension. Let Fix(Gal(E/F)) = L.
By Lemma 2.6.9, [E : L] < |Gal(E/F)|. Similar to the proof of Lemma 2.6.9, one
can show that [E : L] > |Gal(E/F)|. So, |[E : L] = |Gal(E/F)|. But we have
[E : L} < [E: F], since FF C L. We have also [E : F] = |Gal(E/F). Hence,
[E: F] = |FE : L]. Therefore, FF = L. So, E/F is a Galois extension.

But we do not have the same situation for a finite extension E/F with G/F*-
Cogalois correspondence. For such extensions, the equality [E : F| = |G/F*| which
says that E/F is G-Kneser is, in general, not a consequence of the fact that E/F is

an extension with G/F*-Cogalois correspondence. a

3.5.2 Strongly G-Kneser Ezxtensions

A subextension of a Kneser extension is not necessarily a Kneser extension. For ex-
ample, Q(v/2 + v/2)/Q is not a Kneser extension since it is not radical. On the other
hand, we have Q(\/Q——I——_\E) C Q(¢i6) and Q(¢16)/Q is a Q*{(i6)-Kneser extension.
In this subsection we introduce strongly GG-Kneser extensions. These extensions are
G-Kneser extensions E/F such that every subextension K/F of E/F is K* N G-
Kneser. It turns out that such extensions are precisely the G-Kneser extensions with
G/ F*-Cogalois correspondence.

In the remaining part of this section E/F will denote a fixed G-radical extension.
Recall that

G:={H|F"< H<G},

¢ := Intermediate( £/F) = {K | F C K, K subfield of E}.
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Proposition 3.5.7. Let E/F be a finite G-Kneser extension, and let K be an inter-
mediate field of E/F. Then, the following assertions are equivalent.

(1) K/F is H-Kneser for some H € G.

(2) K/F is K* N G-Kneser.

(8) E/K is K*G-Kneser.

Proof. (2) = (1) is obvious.

(1) = (3) : Let K/F be a H-Kneser extension, for some H € G. Then, K = F(H)
and [K : F] = |H/F*|. By Proposition 3.3.10, F(H)NG=KNG = K*NG = H.
We have also £ = F(G), but FF C K and so, E = F(G) C K(G). So, we obtain
E = K(G) = K(K*G). But we know that

(K*'G)/K*=G/(K*NG) =G/H.

Since G/F* is finite and F* < H < G, clearly, G/H is finite. So, this implies that
(K*G)/K* is finite. Since F* < G < T(E/F), we have

K* < K*F* < K*G < K*T(E/F).

Clearly, we can see that K* < K*G < T(FE/K). Hence, E/K is a K*G-radical

extension. We also have
[B: K] = [E: FI/IK : F] = |G/F"|/|H/F*| = |G/1] = |(K*G)/ K",

thus, E/K is a K*G-Kneser extension.
(8) = (2) : Now suppose that E/K is K*G-Kneser. Then,

[E: K] = [(K*G)/K™| = |G/(K" N G)|.

So, [K : F] = [E : F|/[E : K} = |G/F*|/|G/(K* N G)| = |(K* N G)/F*|. By
Proposition 3.3.10 again we have, F(K* N G)/F is K* N G-Kneser. So,

[F(K*NQG): F]=|(K*NG)/F*| =K : F).

But F(K*NG) C F(K*) C K(K*) = K. Thus, we obtain K = F(K*NG). Therefore,
K/F is K* N G-Kneser. O
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Proposition 3.5.8. Let F' C K C FE be a tower of fields, and let G be a group such
that F* € G < E*. If K/F is K* N G-Kneser and E/K is K*G-Kneser, then E/F

is G-Kneser.

Proof. First we have to show that E/F is G-radical. By hypothesis K = F(K*NG),
and E = K(K*G). So, K C F(G) hence E C F(G). Thus, we have F = F(G). Since
E/K is K*G-radical, (K*G)/K* is a torsion group. So, for g € G C K*G there exists
some m € N* such that g™ € K*. Also, we have that K/F is K* N G-radical. Then,
(K*NG)/F* is a torsion group. Since g™ € K* N G, there exists some n € N* such
that ¢g"™" = (¢™)™ € F*. So we can deduce that G/F™* is a torsion group. Hence, E/F

is a G-radical extension. On the other hand we have

[E:F]=[E: K] |K: F]l=|(K*G)/K*| - |(K* N G)/F*|
=|G/(K"NG)| - |[(K*NG)/F*| = |G/F"|.

Therefore, E/F is a G-Kueser extension. O
Now we can bring Propositions 3.5.7 and 3.5.8 together in the following theorem.

Theorem 3.5.9. Let FF C K C E be o tower of fields, and let G be a group such that
F* £ G < E*. Consider the fqllowing assertions:

(1) K/F is K* N G-Kneser.

(2) E/K is K*G-Kneser.

(3) E/F is G-Kneser.

Then any two of the assertions (1) — (3) imply the remaining one.

)
)

Example 3.5.10. By /=9, we denote one of the complex roots, say v/6(1 +1)/2, of
the irreducible polynomial f = X*+ 9 € Q[X]. Applying Eisenstein Criterion to the
polynomial f(X + 1), we can deduce that f(X + 1) is irreducible over Q, hence f is
irreducible over Q. Now we have

— e — A}

Q (V=9) /0" = {T, T8, (V) (V0 )
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So,
|QY(V-9)/Q* =4=[Q(V-9): Q].
Hence, Q(¥/—9)/Q is a Q*(v/—9)-Kneser extension. We have

(v=9)% = (VB(1 +)/2)? = 6/4(2) = 3i.
So, i = (v/—9)?/3 € Q(/-9). Hence,
V6= (2¢=9)/(1 +i) € Q(+/=9).

Then we have Q(v/6) C Q(+/—9). So, it is natural to consider the intermediate field
K = Q(+/6) of the extension Q(¢/—9)/Q. Now we claim that Q(¥/—9)/K is not a
K*Q*(v/—9)-Kneser extension. If it were then we have

2 = [Q(V-9) : K] = [Q(¥/-9) : Q(V6)]

= |(K*Q*(V=9))/K*| = | Q(¥/=9))/(Q(vV6)* nQ*(V=9))| = | Q«(V=9)/Q"| = 4
But this is a contradiction. So, by Proposition 3.5.7, Q(+/6)/Q is not a H-Kneser

extension for every H with Q* < H < Q*(¢/=9). On the other hand Q(+/6)/Q is
Q*(v/6)-Kneser extension. 0

Now we have the following definition.

Definition 3.5.11. A finite extension E/F is said to be strongly G-Kneser if it is a
G-radical extension such that the extension E/K is K*G-Kneser for every interme-
diate field K of E/F.

The extension E/F is called strongly Kneser if it is strongly G-Kneser for some
group G.

So, the extension in Example 4.4.10 is not a strongly G-Kneser extension.

The following theorem reformulates the concept of strongly G-Kneser extension.

Theorem 3.5.12. The following statements are equivalent for a finite G-radical ex-

tension E/F.
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(1) E/F is strongly G-Kneser.

(2) K/F is K* 0 G-Kneser for every intermediate field K of E/F.

(3) E/K is K*G-Kneser for every intermediate field K of E/F.

(4) [E: K] = |G/(K* N G)| for every intermediate field K of E/F.

() [K : F] = [(K* N G)/F*| for every intermediate field K of E/F.

Proof. The equivalences (1) <= (2) <= (3) follows from Proposition 3.5.7. The
implications (2) = (5) and (3) == (4) are clear.
(5) = (2) : In (5) we can take as K the field E, so we obtain

[E: F]=|(E"NG)/F"|=|G/F"|.

But we also know that E/F is a G-radical extension, so E/F is a G-Kneser extension.

Let K an arbitrary intermediate field of the extension E/F. Then, by Proposi-
tion 3.3.10, F(K* N G)/F is K* N G-Kueser. So, [F(K* NG) : F] = |(K* N G)/F*|.
But by hypothesis we have [K : F] = [(K*NG)/F*|. So, [F(K*NG): F]=[K : F].
Clearly, F(K*NG) C F(K*) C K(K*) = K. Thus, K = F(K*NG). Therefore, K/F
is a K* N GG-Kneser extension.

(4) = (5) : In (4) we can take as K the field F and we obtain
[E:F|=|G/(F*NG)|=|G/F*|.

Since E/F is also a G-radical extension, we have that E/F is a G-Kneser extension.

For any intermediate field K of E/F, we have
[K: Fl=[E: F/[E: K] =|G/F"|/|G/(K" N G)| = |(K" N G)/F"|,
as desired. O

In the proof of the above theorem, we can easily see that any strongly G-Kneser
extension is G-Kneser, but the converse does not hold in general, as we can see in
Example 3.5.10.

The following result provides a characterization of G-Kneser extensions E/F for

which the standard Cogalois connection becomes a bijective correspondence between
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¢ and G, where
G={H|F*< H<G},

¢ := Intermediate(E/F) = {K | F C K, K subfield of E}.

This result will be the dual version of the corresponding result for Galois extensions

which we stated in the Proposition 3.5.4.

Theorem 3.5.13. The following assertions are equivalent for a finite G-radical ex-
tension E/F.

(1) E/F 1is strongly G-Kneser.

(2) E/F is G-Kneser, and the map ¢ : G — &, Y(H) = F(H), is surjective.

(3) E/F is G-Kneser, and every element of £ is a closed element in the standard
Cogalois connection associated with E/F.

(4) E/F is G-Kneser, and the map ¢ : £ — G, @(K) = K NG, is injective.

(8) E/F is G-Kneser, and the maps — NG :¢§ — G, F(-):G — £ are
isomorphisms of lattices, inverse to one another.

(6) E/F is a G-Kneser extension with G/ F*-Cogalois correspondence.

Proof. (1) => (2) : Suppose that E/F is a strongly G-Kneser extension, and let K
be in £. By Theorem 3.5.12, the extension K/F is K* 1 G-Kneser. So, we have
K=F(K*NG).Nowlet H=KNG=K*NG €G. So, K =F(H) =(H). Hence,
1 is surjective.

(2) <= (3) follows from Proposition 3.5.3 (2).

(2) = (4) : Let K1, K3 € £ be such that (K1) = ¢(K>3). So, K1NG =K, NG.
By hypothesis ' is surjective. Then, there exists H;, Hy € G such that Ky = F(H;)
and Ko = F(Hy). So, we obtain Ky NG = F(H) NG and Ko NG = F(H,) NG,
But by Proposition 3.3.10, we have F(H;) NG = H; and F(Hy) NG = H,. Thus,

1 NG = Hy and Ky NG = Hy. But we assumed at the beginning of this paragraph
that K1 NG = K, NG. Hence, Hy = Hy. Therefore, K1 = K5, and so ¢ is injective.

(4) = (5) : For all H € G, we have

(pot)(H) = p(y(H)) = o(F(H)) = F(H)NG = H,
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by Proposition 3.3.10. So, po = 1g. This shows that ¢ is surjective. By hypothesis
we know that ¢ is injective, hence ¢ is bijective and ¢ is its inverse. Thus, ¢ and
are isomorphisms of posets, and also isomorphisms of lattices inverse to one another.

(8) = (1) : Let K € £. Using Theorem 3.5.12, it is enough to show that K/F
is K* N G-Kneser. By hypothesis, 1 is surjective. So, there exists H € G such that
K = ¢(H) = F(H). But the maps ¢ and ¢ are inverse to one another, so we have
H = ¢(K)= KNG = K*NG. By Proposition 3.3.10, F(H)/F is H-Kneser, in other
words, K/F is K* N G-Kneser.

(5) <=> (6) : Now we denote G the lattice Subgroups (G/F*) of all subgroups of the
quotient group G=G JF*. Clearly, the lattices G and G are canonically isomorphic.
So, the Cogalois connection associated with E/F

£t g
¥
can be expressed equivalently using the Cogalois connection
— g

e

Y
where 3(K) = (KNG)/F* and ¥(H/F*) = F(H). Thus, the maps —NG : & — G,
and F(~) : G — & are isomorphisms of lattices, inverse to one another if and only

is the maps

—~

p:£—G
and
v:G—¢
are lattice isomorphisms, inverse to one another. So, by Definition 3.5.5, if and only

if E/F is an extension with G/F*-Cogalois correspondence. O

In the next result we see that the quotient extensions and subextensions of strongly

Kneser extensions are also strongly Kneser.

Proposition 3.5.14. Let E/F be a strongly G-Kneser extension. Then for any
intermediate field K, the following assertions hold.
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(1) K/F is strongly K* N G-Kneser.
(2) E/K 1s strongly K*G-Kneser.

Proof. (1) Let L be an intermediate field of the extension K/F. Then by Theo-
rem 3.5.13, there exists H € G with L = F(H). We have F* < H < G. Clearly
we have, I € F(H)* = L* < K* and H < G. So, F* < H < K*NQG. Since
L = F(H), by Theorem 3.5.13 again, we have K/F is strongly K* N G- Kneser.

(2) Let M be a subfield of E with K C M C E. Since E/F is strongly G-Kneser,
by Theorem 3.5.12, E/M is M*G-Kneser. Clearly, M*G = M*(K*G) since K* C M*.
So, E/M is M*(K*G)-Kneser. Since M is arbitrary, by Theorem 3.5.12 again, E/K
is strongly K*G-Kneser. O

3.5.8 G-Cogalois Extensions

In this section we investigate G-Cogalois extensions. G-Cogalois extensions in Coga-
lois Theory plays the same role as that of Galois extensions in Galois Theory. A G-
Cogalois extension is defined as a separable G-Kneser extension with G/F*-Cogalois
correspondence.

Using the concept of “local purity” which we called as n-purity, where n is the
exponent of the finite group G/F*, we can characterize G-Cogalois extensions E/F
in the class of G-Kneser extensions.

Now we recall Definition 3.4.1 which says that the extension E/F is called pure
when p,(E) C F, for all p € P.

The next definition defines the concept of “local purity”.

Definition 3.5.15. Let E/F be an arbitrary extension and let n € N*. The extension
E/F is called n-pure if uy(E) C F, for every p € Py. O

It can easily be seen that an extension E/F is pure if and only if it is n-pure for
every n € N*. It is clear that an n-pure extension is not necessarily pure. Consider

the extension Q(+/—3)/Q. This extension is 2-pure, since P» = P N Dy = &. But
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this extension is not 3-pure. Since P3 = {3}, and for p = 3 € Ps, we have that

ps(Q(v=3)) = {1, (-1 +/=3)/2} £ Q. So the extension Q(+/—3)/Q is not pure.
The next result which characterize the strongly Kneser extensions in terms of

standard Cogalois connection is more stronger than Theorem 3.5.13. This time the

extension E/F is separable.

Theorem 3.5.16. (The n-Purity Criterion) The following assertions are equivalent
for a finite separable G-radical extension E/F with G/F* finite and n = exp(G/F*).

(1) E/F is strongly G-Kneser.

(2) E/F is G-Kneser, and the map ¢ : G — &, (H) = F(I), is surjective.

(8) E/F is G-Kneser, and every element of £ is a closed element in the standard
Cogalois connection associated with E/F.

(4) E/F is G-Kneser, and the map ¢ : £ — G, ¢(K) = KNG, is injective.

(5) E/F is G-Kneser, and the maps — NG : & — G, F(—=):G — & are
tsomorphisms of lattices, inverse to one another.

(6) E/F is a G-Kneser extension with G/F*-Cogalois correspondence.

(7) E/F is n-pure.

Proof. In the proof of Theorem 3.5.13 we have shown that the equivalences (1) through
(6) hold for extensions which are necessarily separable.

(7) => (1) : Suppose that the extension E/F is n-pure. Let K € ¢ be arbitrary.
We are going to use Theorem 3.5.12, so it is enough to show that K/F is K* N G-
Kneser. For this we can use Kneser Criterion (Theorem 3.3.12). Let p be an odd prime
such that ¢, € K*NG. Our aim is to show that {, € F. If p|n, then p € PND,, = P,.
So pp(E) C F, by n-purity; hence, ¢, € F. If ged(p, n) = 1, then there exists some
a, b € Z such that ap + bn = 1. Hence,

=G =g e P

since n = exp(G/F*) implies that G® C F* by Definition 3.2.3.
Now suppose that 1 + {4 € K* N G. Then we should have Char(F) # 2. For
otherwise (14 (4)* =1+ (§ =0 € K" NG, which is a contradiction.
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Let m = ord(m). By previous results (1 + (4)* = —4 € F*, so m € {1, 2, 4}.
Im=1,then 1+ ¢ € F*. If m =2, then (1 + ¢4)? = 2¢, € F*. Since, Char(F) # 2,
¢4 € F*. If m = 4, then clearly 4|7, since G* C F*.But 1+ {;, € K*NG C E. So,
¢4 € E, and by n-purity this implies that {4, € F. Thus, K/F is K* N G-Kneser, and
so, E/F is strongly G-Kneser.

(2) = (7) : Now suppose that the extension F/F is G-Kneser and the map ¢ is
surjective. Our aim is to show that for all p € Py, u,(E) C F. Then we deduce that
E/F is pure. Now let p be an odd prime with p|n. Then by Proposition 3.2.5 there
exists g € G such that ord(g) = p. By Proposition 3.3.10, the extension F(F*{g})/F
is F™*{g)-Kneser. So,

[F(g): F]l = [F(F*(g})) : F] = |F*{9)/F*| = l{g)| = p. (3.5.1)

Assume that (, € E. Clearly, X? — g? € F[X], since ord(g) = p implies that
g® € F*. Also g is a root of this polynomial, and by Equation ( 3.5.1) we have,
Min(g, F) = X? — g?. Then we have Min({, g, F) = X? — ¢?, so [F((9) : F] = p.
Since F({,g) € £, and v is surjective, there exists 1 € G such that

F(Gg) = F(h) = F(F™(h)),

where ord(ﬁ) = p, since [F'(h) : F] = p. So we obtain (, g € F(h). Then, {, € F(h,g).
The subgroups (), (:’;) of G/F* have the same order, so they are either equal or they
have empty intersection. If they have empty intersection, then (g, =G e (h). By
Proposition 3.3.10, we know that the extension F(F*(g, h))/F is F*(g, h)-Kneser.

Thus,

[F(g, h) : F] = [F(F*(g, b)) : F] = |[F(F"{g, b))/ F"| = |(G, }| € {p, p"}.

We know that ' C F({,) C F(g, h), and [F({,) : F1 < p—1,s0 [F({) : F] =1, since
[F(g, h) : F] € {p, p*} and [F((,) : F] must divide [F'(g, h) : F]. Hence, (, € F, as
desired.

Suppose that 4 |n and {4, € E\ F. Now try to get a contradiction. We should have
Char(F') # 2. By Proposition 3.2.5 again, G/F* contains an element of order 4, say
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g. Since F(({y) € £, and ¢ is surjective, there exists h € G such that
F(G) = F(h) = F(F*(h}).

We have that ord(h) = 2, since [F({y) : F] = 2. Hence, {4, € F(h), which implies
that (4 = A + ph, for some A, p € F. Then, ((4)%2 = —1 = A? + 2\uh + p2h?. But
h? € F, since ord(h) = 2. So we should have that 2Au = 0. By hypothesis, (4 ¢ F, so
it # 0. Then we should have that A = 0. Hence, {4 = ph, and so {4 € G. Now put
K = F((1+ {4)g). Then, we use the implication (2) = (1) and Theorem 3.5.12 to
obtain E/K is K*G-Kneser. Since 1+ ¢4 = (1+()gg~! € K*G, by Kneser Criterion
we have {4 € K. We know that [(1 + (4)g]* = —4g* € F*, since ord(g) = 4. So this
clearly implies that [K : F] < 4. Since (4, € K, and [K : F| < 4, we have that

Ca=Xo+ 1+ )g+ (1 + 64)292 +A3(1+ C4)3g3

= Ay + Arg + Ailag + 222Gg? + 223(g® — 2Xs4°,

for some Ag, A1, A2, A3 € F. Since {1, (4, g, (a9, Cag?, Ca9®, 93} € G is linearly depen-
dent over F, by Corollary 3.3.9 we should have that {4 must be congruent modulo F*

with one of the following elements

15 g, C4g: <4g2a 44931 93'

But ord(Z ) = 2, and ord(g) = 4, so the only possibility we can have is that & =T1.
Thus, {4, € F*, which contradicts our hypothesis, since we assumed that {4 ¢ F. Hence

we are done. O

In the class of finite extensions E/F with G/F* Cogalois correspondence the
most important ones are those which have the property of being separable also. In

the following definition we give them a special name.

Definition 3.5.17. An extension E/F is called G-Cogalois if it is a separable strongly

(G-Kneser extension. O

Remark 3.5.18. A strongly G-Kneser extension is not necessarily separable, as the

example in Remark 3.4.9 shows. O
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The next result shows that the subextensions and quotient extensions of a G-

Cogalois extension are also G-Cogalois.

Proposition 3.5.19. Let E/F be a G-Cogalois extension. Then for any intermediate
field K of E/F, the following assertions hold.

(1) K/F is K* N G-Cogalois.

(2) E/K is K*G-Cogalois.

Proof. By Proposition 3.5.14, the result follows immediately. O

3.5.4 The Kneser group of a G-Cogalois extension

In this section we are going to show that a separable G-Kneser extension is GG-Cogalois
if and only if the group G has a prescribed structure. Then, consequently we can say
that the group G/F* of any G-Cogalois extension E/F is uniquely determined. This
group is called the Kneser group of E/F and denoted by Kne(E/F).
If A is a multiplicative group with identity element e, then for any p € P we denote
by
t,(A) = {z € A|z7" = e for some n € N}

the p primary component of the group A. Now recall that we have denoted by
Cog(E/F), the torsion subgroup of the quotient group E*/F*. By Cog,(E/F), we
are going to denote the subgroup of Cog(E/F) consisting of all its elements of order
< 2.

Theorem 3.5.20. Let E/F be a separable G-Kneser extension with n = exp(G/F*).

(1) Suppose that 41n — 2. Then E/F is a G-Cogalois extension if and only if

G/F* = P t,(Cog(E/F)).

pEPy,
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(2) Suppose that n =2 (mod 4). Then E/F is a G-Cogalois extension if and only
i
ar=| @ tp(COg(E/F») € Cors(B/F).
pEPR\{2}

d

Corollary 3.5.21. Let E/F be an extension which is simultaneously G-Cogalois and
H-Cogalois. Then G = H.

Proof. Let m = exp(G/F*), n = exp(H/F*), and k = [E : F|. Then we have
|G/F*|=|H/F*|=|E: F]=k.

By Proposition 3.2.7, the order and exponent of a finite Abelian group have the same
prime divisors. So we have P,, = P,,, = Px. Using Theorem 3.5.20, it is enough prove
that 4| n if and only if 4| m.

Suppose that 4 | m. Then by Proposition 3.2.5, G/F* contains an element of order
4, say g. Now set G; = F*(g) and E; = F(G1). By Theorem 3.5.16 (2), there exists Hy
such that F* < H; € H, By = F(Hy). Clearly, |H;/F*| = 4. By Proposition 3.5.19,
E,/F is Ef N G-Cogalois. We have E; NG = E;NG = F(G1) NG = Gy by
Proposition 3.3.10. Hence, E;/F is a G1-Cogalois extension. Similarly, we can also
show that E;/F is a H;-Cogalois extension. By Theorem 3.5.16, we know that there
is a bijective Cogalois correspondence between the lattice of all intermediate fields of
the extension F;/F and the lattice of all subgroups of the cyclic group G;/F* of order
4. So, E1/F has only one proper intermediate field. Now we can use the bijective
Cogalois correspondence between the lattice of all intermediate fields of the extension
E1/F and the lattice of all subgroups of H;/F*, and deduce that the quotient group
H;/F* of order 4 has only one proper subgroup. Hence, this group is necessarily
cyclic and clearly, 4| n. The other inclusion can be shown in a similar way. Hence, we

are done. O

So, for any G-Cogalois extension, the uniqueness of the group G is deduced. Now

the following concept make sense.
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Definition 3.5.22. If E/F is a G-Cogalois extension, then the group G/F* is called
the Kneser group of the extension E/F and is denoted by Kne(E/F). a

8.5.5 Galois G-Cogalois Extensions

In this section we are going to deal with finite field extensions which are simultaneously
Galois and G-Cogalois. Firstly, we characterize G-radical extensions, not necessarily

finite, which are separable or Galois.

Gualois G-radical Extensions

Recall that for any torsion group T' with identity element e, we introduced in Sec-
tion 3.2 the notation:

Or = {ord(z) |z € T}.

When the subset O7 of N is a bounded set, or a finite set, then we say that the torsion
group 1" is a group of bounded order, and the least number n € N* with the property
that 7" = {e} is the ezponent exp(T) of T. The group T is n-bounded if T' is a group
of bounded order and exp(T) = n.

We know that for any G-radical extension F/F, which is not necessarily finite,
the group G/F* is a torsion Abelian group. So, we can consider the subset of natural

numbers, Og/p-.

Definition 3.5.23. A G-radical extension E/F, which is not necessarily finite, is
said to be a bounded extension if G/F* is a group of bounded order; in this case, if
exp(G/F*) = n, we say that E/F is an n-bounded extension. O

If E/F is an n-bounded extension, then Remark 3.2.6 implies that
OG / F* = Dn

Now we list some important results which will be needed in the remaining part of

the Thesis.
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Lemma 3.5.24. Let E/F be a G-radical extension which is not necessarily finite.

Then E/F is separable if and only if ged(m, e(F)) = 1 for allm € Og/p-. O

Corollary 3.5.25. Let E/F be an n-bounded G-radical extension, which is not nec-
essarily finite. Then E/F is a separable extension if and only if ged(n,e(F)) = 1.
O

Corollary 3.5.26. Let E/F be o finite G-radical extension with G/F* finite, and let
n = exp(G/F*). Then E/F is separable if and only if ged(n,e(F)) = 1. O

Proposition 3.5.27. Let E/F be a G-radical extension, which is not necessarily
finite. Then E/F is a Galois extension if and only if ged(m,e(F)) =1 and (,, € E
for allm e OG/F*‘ O

Corollary 3.5.28. Let E/F be an n-bounded G-radical extension. Then E/F is a
Galois extension if and only if ged(n,e(F)) =1 and {, € F. a

Corollary 3.5.29. Let E/F be a finite G-radical extension with G/F* a finite group
of exponent n. Then E/F is a Galois extension if and only if ged(n,e(F)) = 1 and
(n € E.

O

Abelian G-Cogalois Extensions

In this subsection we provide an important result which says that the Kneser group

and the Galois group of any finite Abelian G-Cogalois extension are isomorphic.

Theorem 3.5.30. For any finite Abelian G-Cogalois extension E/F, the groups
Gal(E/F) and Kne(E/F) are isomorphic. a

Corollary 3.5.31. For any finite Abelian Cogalois extension E/F, the groups Gal(E/F)
and Cog(E/F) are isomorphic. O

Proof. The extension E/F is clearly a T(E/F)-Kneser extension. So, by Theo-
rem 3.5.32 in the following section, F/F is T(E/F)-Cogalois. Hence, Gal(E/F)
is isomorphic to Kne(E/F) =T(E/F)/F* = Cog(E/F) by Theorem 3.5.30.

O
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3.5.6 Some Ezxamples of G-Cogalois Extensions

In this section we are going to present some examples of G-Cogalois extensions.

Firstly, we give a result which helps us to determine some G-Cogalois extensions.
Theorem 3.5.32. Any finite Cogalois extension E/F is T(E/F)-Cogalois.

Proof. By the Greither-Harrison Criterion (Theorem 3.4.6), the extension E/F is
separable and pure. So, it is n-pure for all n € N*. In particular we have that E/F is
n = exp(T(E/F)/F*)-pure. So, E/F is strongly T'(F/F)-Kneser by Theorem 3.5.16.
But E/F is also separable, hence the extension E/F is T(E/F)-Cogalois. O

Examples 3.5.33. (1) In Proposition 3.4.13, we have shown that the extensions
Q(v?2)/Q and Q(+/1 + v/2)/Q(+v/2) are Cogalois. Also we have shown that

[Q(/1+v2): QW2 =2=[Q(+2): Q.

So, the extensions Q(+/2)/Q and Q(m) /Q(+/2) are finite. Now we can use
Theorem 3.5.32 and obtain Q(v/2)/Q is Q*(v/2 )-Cogalois and Q(m) /Q(V?2)
is Q*(m }-Cogalois.

(2) By Corollary 3.4.16, we know that the quadratic extension Q(v/d)/Q is Coga-
lois if and only if d # —1, —3 where d # 1 is a square-free rational integer. Again we
can use Theorem 3.5.32 to deduce that the extension Q(v/d) /Q is Q*(v/d )-Cogalois,
where d # -1, —3.

In Remark 3.3.11 we have shown that the extension Q(v/—3)/Q is Q*(v/—=3)-
Kneser. So, it is Q*(v/=3)-radical. But this extension is also separable and finite.
We also have Q*(v/=3)/Q* = {1, \//—\_3} So, exp(Q*(v/—3)/Q*) = 2. But it is clear
that this extension is 2-pure. Hence by Theorem 3.5.16, Q(v/—3)/Q is strongly
Q*(v/—38)-Kneser. Thus, it is Q*(v/—3)-Cogalois. Similarly we can show that the
extension Q(v/—1)/Q is Q*(v/—1)-Cogalois. So, we deduce that any quadratic ex-
tension Q(v/d )/Q, where d # 1 is a square-free rational integer, is Q*(v/d )-Cogalois.

Also we know that any quadratic extension Q(vd)/Q, where d # 1 is a square-

free rational integer is a Galois extension, since Q(\/c_l) is a splitting field of some
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separable polynomial. Galois group of this extension has order 2, so it is cyclic.
Hence, Q(v/d)/Q is an Abelian G-Cogalois extension. Thus by Corollary 3.5.31,
Kne(Q(vd)/Q) and Gal(Q(vd)/Q) are isomorphic, where d # 1 is a square-free
rational integer.

(3) By Examples 3.4.10, we know that the extension

Q(¥as; -, ¥/ar)/Q,

with r € N*, ay,...,a,,n1,...,n, € N* and %/a; is a positive real ni-th root of a;,
for all 7, 1 < 4 < r is a finite Cogalois extension. So, again by Theorem 3.5.32, this
extension is T(Q( %/a1, ..., %/a,)/Q)-Cogalois. But again by Examples 3.4.10, we
have

TQVa,..., ¥a)/Q) = Q(¥a,..., ).
So, this extension is Q*( %/ay, ..., %/a, )-Cogalois.

(4) Suppose that o can be written as a finite sum of real numbers of type + %/a;,
1<i<rwherer, ng, ...,0, ay, ..., 6 € N*. Then the extension Q(a)/Q is clearly
a subextension of the extension of the extension in (3), since Q(a) is a subfield of
Q( /@y, ..., %/a;) C R. In (3) we have shown that Q( v/a1, ..., %/a,)/Q is Cogalois.
So, by Proposition 3.4.11 we can say that the extension Q(«)/Q, which is finite, is
Cogalois. Again by Theorem 3.5.32, we can say that Q(a)/Q is Q*(a)-Cogalois. O

Other than finite Cogalois extensions, there are also some other large classes of
(G-Cogalois extensions. The n-Purity Criterion provides us with these other classes of
G-Cogalois extensions: classical finite Kummer extensions, finite generalized Kummer
extensions, finite Kummer extensions with few roots of unity and finite quasi-Kummer

extensions.

Classical Kummer Extensions

Recall that € is a fixed algebraically closed field containing F' as a subfield; and any
field containing F' will be a subfield of 2. For any nonempty subset A of F* and any
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n € N*, {/A will denote the subset of T'(€2/F) defined by
VA= {zeQ|z"c A}

In particular, if A = {a}, then {/{a} is precisely the set of all roots in Q of
the polynomial X® — a € F[X]. {/a denotes a root, which is not specified, of the
polynomial X* — g € F[X]. So, ¥/a € ¥/{a}. We have

Yia} ={Cvalo<k<n-1}

In particular, if ¢, € F, then F(3/{a}) = F({/a). If we have that F is a subfield of
R and @ > 0, then {/a will denote the unique positive root in R of the polynomial
X" —a.

Definition 3.5.34. A classical n-Kummer extension, where n € N*, is an Abelian
extension E/F such that ged(n,e(F)) = 1, un(F) C F and Gal(E/F) is a group of
exponent o divisor of n.

A classical Kummer extension, or just ¢ Kummer extension is any extension which
is a classical n-Kummer extension for a certain integer n > 1. If E/F is a classical

Kummer extension, we also say that E is a classical Kummer extension of F. 4

Theorem 3.5.35. The following assertions are equivalent for an extension E/F and

a natural number n 2 1.
(1) E/F is a classical n-Kummer extension.
(2) ged(n,e(F)) =1, pp(Q) C F, and E = F(Y/A) for some @ # A C F*.

(3) ged(n,e(F)) = 1, po(Q) C F, and E = F(B) for some @ # B C E* with
B CF.

O

Corollary 3.5.36. The following assertions are equivalent for a finite extension E/F

and a natural number n > 1.
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(1) E/F is a classical n-Kummer extension.

(2) ged(n,e(F)) =1, ua(Q) € F, and E = F({/aq, ..., {/a;) for some r € N* and
{a1,...,a,} € F*.

O

Lemma 3.5.37. Let E/F be a separable G-radical extension with G/F* finite, and let
n € N* be such that G™ C F*. If the extension E/F is n-pure then E/F is G-Cogalois.

Proof. The finite group G/F* is clearly a group of bounded order and has a finite
exponent, say m. Then by Lemma 3.2.4, m|n. If we have p € P,,, then clearly,
p|n. So by hypothesis, u,(£) C F. But this shows that E/F is m-pure. So, by
Theorem 3.5.16, E/F is G-Cogalois. O

Theorem 3.5.38. Let E/F be a finite classical n-Kummer extension where we have
E = F({/dy,..../a;), n,r € N* and {ay,...,a.} C F*. Then, the following state-

ments hold.
(1) E/F is an F*{3/ax,. .., {/ar)-Cogalois extension.

(2) The maps H — F(/H) and K — K™ N (F**{ay,...,a,)) establish isomor-
phisms of lattices, inverse to one another, between the lattice of all subgroups
H of F*a1,:..,ar) conlaining F*" and the lattice of all intermediate fields
K of E/F. Moreover, any subezstension K/F of E/F is a classical n-Kummer

extension.

(3) If H is any subgroup of F*"(ay,...,a,) containing F*", then any set of repre-
sentatives of the group VVH/F* is a vector space basis of F(V/H) over F, and
[F(YH): F]=|H/F*"|. In particular, one has

[E: Fl = |F™(/a,. ... V&) | F*| = |F™ay, ... a)/F™.
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(4) There exists a canonical group isomorphism

F*(%/ay,. .., e/ F* =2 Hom(Gal(E/F), un(F)).

Generalized Kummer Eztensions

In this subsection we investigate another class of G-Cogalois extensions. This class,
namely the class of generalized Kummer extensions is larger than the class of classical
Kummer extensions which we have presented in the previous section. This new class
includes the class of Kummer eztensions with few roots of unity that we are going to
present in the following section.

The theory of finite generalized Kummer extensions can be developed using the
properties of G-Cogalois extensions. These extensions in general are not Galois ex-
tensions, so Galois Theory can not be applied here as in the case of classical Kummer

extensions.

Definition 3.5.39. We say that a finite extension E/F is a generalized n-Kummer
extension, where n € N*, if ged(n,e(F)) = 1, u,(F) C F, and there exits some
r € N*,a4,...,a, € F* such that E = F({/aq,..., {/ar).

A generalized Kummer extension is an extension which is a generalized n-Kummer

extension for some integer n = 1. 0

Any classical n-Kummer extension is a generalized n-Kummer extension. By
Corollary 3.5.26, any generalized Kummer extension is separable but not necessarily

a Galois extension.

Lemma 3.5.40. Let E/F be a finite generalized n-Kummer extension, where we have
E=F({/ai,..., /ar),r € N*and ay,...,ar € F*. Then E/F isan F*({/a1,. .., {/ar)-
Cogalois extension.

Proof. The extension E/F is G-radical, where G = F*(/ay, ..., {/a,), and clearly
G" C F. Also for every p € Py, we have u,(F) C p,(E) C F. So, the extension F/F
is n-pure. Hence by Lemma 3.5.37, we have that E/F is a G-Cogalois extension. [
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Theorem 3.5.41. Let F be a field, and let r, n € N*, a4,...,a, € I'*. Let’s denote

G = F*(/ay, ..., {/ar) and we have EE = F(3/ay,..., {/a,). If ged(n,e(F)) =1, and
un(E) C F, then the following statements hold.

(1) The generalized n-Kummer extension E/F is G-Cogalois.

(2) The maps H — F(YHNG) and K — K" O (F**{ay,...,a,)) establish iso-
morphisms of lattices, inverse to one another, between the lattice of all subgroups
H of F*{aa,...,a,) containing F*"* and the lattice of all intermediate fields K
of E/F. Moreover, any subextension K/F of E/F is a generalized n-Kummer

ertension.

(3) If H is any subgroup of F**{ai,...,a,) containing F*", then any set of repre-
sentatives of the group (YHNG)/F* is a vector space basis of F(YHNG) over
F, and [F(YHNGQ) : F] = |H/F*|. In particular, one has

[E: Fl = |F™/a,..., a)/F| = [F™a,...,a)/F*"|.

O

Proposition 3.5.42. A finite generalized Kummer extension is a classical Kummer

extension if and only if it is a Galois extension.

Proof. Assume that E/F is a finite generalized n-Kummer extension, where we have
E = F(/ay,...,Y/a), r € N* ay,...,a, € F*, and p,(E) C F. Now we denote
G = F*({/ai,..., /ar) and let m = exp(G/F*). If E/F is a Galois extension, then
by Corollary 3.5.29, we have ged(m, e(F)) =1 and (,, € E. Since m | n, we have

Cm € EN pm(Q) = pm(E) € pn(E) C F.

Hence, E/F is a classical m-Kummer extension.
Conversely, we know that any classical Kummer extension is a Galois extension
by definition.
O
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Remark 3.5.43. Let E/F be an extension such that there exists r, ny,...,n, € N*
and ay,...,ar € F* with E = F(/aq,..., %/a,). Let G = F*(%/ay,..., ¥/a,;) and
n = lem{ny,...,n,). Now we show that if ged(e(F),n) = 1, and p,(E) C F, then
E/F is a generalized n-Kummer extension and a G-Cogalois extension. For all 4,
1 < i < r we can find some g; € N* such that n = ¢;n;. So we have /a; = {’/&?"_, and
E = F(g/ci,. .., ¢/cr), where ¢; = off, for all ¢, 1 <4 < r. Hence by Lemma 3.5.40,

E/F is a F*(3/ci, . .., 3/cr)-Cogalois extension. O

Examples 3.5.44. (1) A generalized Kummer extension is not necessarily a classical
Kummer extension. Consider the extension E/F, where F = Q(i), and E = F(¥/3).
So, e(F) = 1. Clearly, ged(8,1) = 1 and ug(E) = {1, ~1, i, —i} C F, since /2 ¢ E.
So, by Remark 3.5.43, we have that E/F is a generalized 8-Kummer extension, since
lem(2, 8) = 8. The minimal polynomial over F of ¥/3, which is, X8 — 3 does not split
over [, since v/2 ¢ E. So, E/F is not a normal extension, hence it is not a Galois
extension. So, by Proposition 3.5.42, E/F is not a classical Kummer extension.

(2) Notice that any generalized n-Kummer extension F/F is clearly n-pure since
for any p € P,, we have up(E) C u,(F) C F. However the converse does not hold.
Consider the extension Q((,3)/Q(¢,), where p is an odd prime. We claim that this
extension is p?-pure but not a generalized p>-Kummer extension. Let E = Q((3),
and F' = Q((,). Firstly, we have to show that for all p € P, u,(E) C F. We have
P2 = {p}. But clearly u,(E) C F. So, E/F is p>-pure. But E/F is not a generalized

p*-Kummer extension, since p,2(E) € F. O

Kummer Extensions with Few Roots of Unity

In this subsection we are going to present a very particular cases of generalized Kum-

mer extensions, namely the Kummer extensions with few roots of unity.

Definition 3.5.45. A finite extension E/F is said to be an n-Kummer extension
with few roots of unity, where n € N*, if ged(n,e(F)) = 1, pp(E) C {~1, 1}, and
there exists r € N*, and ay,...,ar € F* such that E = F({/ai,. .., {/ar).
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A Kummer extension with few roots of unity is an eztension which is an n-

Kummer extension with few roots of unity for some positive integer n 2 1. O
The following result is a consequence of Theorem 3.5.41.

Theorem 3.5.46. Let F' be a field, and let v, n € N*, a1,...,a, € F*. Let’s denote

G = F*{/ai,..., ¥/ar) and we have E = F({/ay, ..., /a,). If ged(n, e(F)) = 1, and
wn(E) C {—1, 1}, then the following statements hold.

(1) The n-Kummer extension with few roots of unity E/F is G-Cogalois.

(2) The maps H — F(VHNG) and K — K™ N (F**{ay,...,a,)) establish iso-
morphisms of lattices, inverse to one another, between the lattice of all subgroups
H of F*"{a4,...,a,) containing F*" and the lattice of all intermediate fields K
of E/F. Moreover, any subeztension K/F of E/F is an n-Kummer extension

with few roots of unity.

(3) If H is any subgroup of F**{ay,...,a,) containing F*", then any set of repre-
sentatives of the group (VHNG)/F* is a vector space basis of F(YHNG) over
F, and [F(YHNG) : F] = |H/F*™|. In particular, one has

[E: Fl = |F"(/a,..., Y& | F*| = |F*™ay,. .., a) ) F™.

]

Remark 3.5.47. (1) Let F' be a subfield of R, and let r, n € N* ay,...,a, € F*
Denote G = F*({/a1,..., {/ar) and E = F(y/ay, ..., {/a,). If ged(n,e(F)) = 1, and
pn(E) C {—1, 1}, then (1), (2), (3) of Theorem 3.5.46 is satisfied, since any subfield
of R is a field with few roots of unity.

(2) Consider the, extension Q(v/—=3,v2)/Q(v=3). Let E = F(+/2), where we
have F = Q(+/=3). Our aim is to show that this extension is a classical Kummer
extensjon which is not a Kummer extension with few roots of unity. F/F is a Galois

extension since it is a splitting field of the separable polynomial X3 — 2 € F[X].
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Also by Proposition 2.6.5, Gal(E/F) 2 Zs, since the degree of this extension is 3.
So, we have an Abelian extension. Now we claim that this extension is a classical
3-Kummer extension. Clearly, ged(3,1) = 1, and u3(Q2) C F. Also Gal(E/F) is a
group of exponent 3. Hence, the extension E/F is a classical 3-Kummer extension.
But this extension is not a Kummer extension with few roots of unity, since us(E) €
{~1, 1}. E/F, being a classical Kummer extension, is an F*(+/2)-Cogalois extension
by Theorem 3.5.38. So, E/F is an Abelian F*{{/2)-Cogalois extension. Hence by
Theorem 3.5.30, the groups Gal(F/F) and Kne(E/F) are isomorphic. Thus,

Gal(E/F) = Kne(E/F) & Zs.

Quasi Kummer Extensions

In this subsection we are going to deal with another class of G-Cogalois extensions,
namely the class of quasi-Kummer extensions. These extensions are close to the class

of classical Kummer extensions.

Definition 3.5.48. A finite extension E/F is said to be a quasi-Kummer extension, if

there exists r, ny,ng, ..., ny € N*, anday,...,ar € F* such that E = F(v/aq,..., ¥/ar),
ged(n, e(F)) =1, and py(Q) C F for any p € Py, where n =lem(ny,. .., n,). O

Clearly, any finite classical Kummer extension is a quasi-Kummer extension. But
the converse is not true, since the class of quasi-Kummer extensions is strictly larger

than the class of classical Kummer extensions.

Theorem 3.5.49. A quasi-Kummer extension F(%/a1,. .., %/ar)/F as in the Defi-
nition 8.5.48, is F*( y/aq, ..., %/ar)-Cogalois. O

Proof. Let G = F*(~/a1,..., %/ar), n =lem(ny,...,n,), and m = exp(G/F*). Then
clearly, m | n. So, for any p € Pp,, p|n, and we have p,(E) C p,(2) C F. Hence, the
extension F/F is m-pure. Also this extension is separable by Corollary 3.5.26, hence

by Theorem 3.5.16, E/F is G-Cogalois. O
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Theorem 3.5.50. Any finite Galois G-Cogalois extension is a quasi-Kummer exten-

sion.

Proof. Let E/F be a finite Galois G-Cogalois extension, and let {b1,...,b-} be a
set of representatives of the finite quotient group G/F*. If n = exp(G/F*), then

b =a; € F, for all i, 1 < ¢ < r. So, we have

E=F(by,...,b) = F(ay,..., Ya).

So, E/F is a G-radical extension. We also have that E/F is a Galois extension.
So, by Corollary 3.5.29 we have ged(n, e(F)) = 1 and ¢, € E. Hence, () C pn(E).
By Theorem 3.5.16, the G-Cogalois extension E/F is n-pure. So for all p € P,,
pp(E) € F. Thus, py(Q) C p,(E) C F, for all p € P,. But this implies that the

extension E/F is quasi-Kummer. O

Corollary 3.5.51. The following assertions are eguivalent for an algebraic number

field E.
(1) E/Q is a Galois G-Cogalois extension for some group G.

(2) E/Q is an Abelian G-Cogalois extension for some group G.

(8) There exists finitely many nonzero rational integers ay,...,a, such that F =
Q(,/al, ey \/ar).

(4) E/Q is a classical 2-Kummer extension.

Proof. (1) == (3) : By Theorem 3.5.50, E/Q is a quasi-Kummer extension. So, there
exists r,n,...,n, € N*, and ay,...,a, € Q* such that F = Q( w/ay,..., %/a,). Also
we have pu,(C) C Q, for all p € P,, where n = lem(ny,...,n,). But we know that
¢m € Qif and only if m =1 or m = 2. So, we must have that n < 2. But this implies
that n; < 2,forall i =1,...,r. So, we are done.

(3) = (4) follows from Corollary 3.5.36.

(4) = (2) and (2) = (1) are obvious. O
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Remark 3.5.52. The extension Q(¢,)/Q is G-Cogalois for some group G if and only
ifne{l,23,4,6,8, 12, 24}. We know that

Gal(Q((n)/Q) = U(Zy),

where U(Z,) denotes the group of units of the ring Z, of integers modulo n. Also
we know that the extension Q(¢,)/Q is a Galois extension, since Q((,) is a splitting
field of the separable polynomial X" —1 € Q[X]. So, for n € {1, 2, 3, 4, 6, 8, 12, 24},
the extension Q(¢,)/Q is an Abelian G-Cogalois extension for some group G. So,
by Theorem 3.5.30, we have that the groups Gal(Q(¢,)/Q) and Kne(Q(¢./Q) are

isomorphic. So,

Kne(Q(¢)/Q) = Gal(Q(¢)/Q) = U(Zy).
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