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ABSTRACT 

 

Clustering is an important data mining problem that identifies groups of entities that 

are similar to each other with respect to a certain number of attributes. In this thesis, two 

mathematical programming based approaches to clustering are presented. The proposed 

mathematical programming based approaches are applied to a digital platform company’s 

customer segmentation problem involving transactional attributes related to the customers. 

In the first model, the clustering problem is formulated as a mixed-integer linear 

programming problem with the objective of minimizing the maximum cluster diameter 

among all clusters. In order to overcome difficulties related to computational complexity 

of this model, a heuristic clustering approach is developed that improves computational 

times dramatically without compromising from optimality in most of the cases that were 

tested. In the second model, the clustering problem is modeled as a mixed-integer 

nonlinear programming problem with the objective of minimization of sum of within-

group distances. We show that every extreme point solution of the nonlinear relaxation of 

the model is integer due to the unimodularity property of the constraint set of the model. 

We solve the continuous relaxation of the model, obtain integer solutions and observe that 

solution time of the model is very short. Although the model is solved to local optimality, 

the interpretations derived from the solution of the model are promising. The performance 

of the approaches is tested both on an illustrative example and on a real problem. The 

analysis of the results indicates that the approaches are computationally efficient and 

create meaningful segmentation of data. 
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Chapter 1 

INTRODUCTION 

 

Customer Relationship Management (CRM) is one of the most important topics in 

marketing. Today, companies are looking for answers to questions such as who are the 

most preferred customers, who are loyal to the company, who have a tendency to churn, 

which product may attract more customers, which products should be placed together on 

the shelves of a retail outlet to increase the sales, etc. CRM is a marketing concept which 

aims to create new ways to answer these kinds of questions that the companies are seeking 

to respond. It can be defined as improved understanding of customer needs and desires, 

and better targeting of marketing efforts to satisfy the expectations of ongoing customers, 

to attack the potential ones and to increase the market share of a company. When we 

purchase something in the store, we leave more than our money behind us. Our transaction 

contains unknown facts about us and since the early eighties companies have the 

opportunity to store these transactions that may be instrumental in understanding the 

behavior of their customers. This fact led to an increased dimensionality of the stored data 

in data warehouses of the companies. As a result, the abundance of large data collections 

and the need to extract hidden knowledge within them have triggered the development of 

another new research area, Data Mining (DM). DM is the development of new methods to 

analyze large databases in order to find out hidden information. Researchers from different 

branches of science, such as machine learning, statistics, databases, visualization and 

graphics, optimization, computational mathematics and theory of algorithms are working 

in this interdisciplinary field.  

Although DM encompasses statistical techniques which necessitate statisticians and 

experts to explore and to analyze the data, the state of the art indicates that there is more to 

DM than statistical analysis. Marketing people are new owners of the job and they are 
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asking for more actionable results. More importantly, new owners of the data are asking 

new questions that cannot be answered by existing tools. Furthermore, traditional 

techniques are based on the fact that one may first develop a hypothesis and then validate 

it on the data, but new era is asking for unknowns which should be driven from data. 

DM has several application areas and therefore several techniques suitable for 

application are being explored by researchers. Segmentation is the general name of a 

descriptive DM model class with the purpose of improving the efficiency of marketing 

strategies. In marketing literature it is defined as the grouping of customers into previously 

unknown categories. Clustering analysis which originates from mathematics is a DM 

technique developed for the purpose of identifying groups of entities that are similar to 

each other with respect to certain similarity measures which are utilized in segmentation 

applications. It is useful in several exploratory pattern analysis, grouping, decision-

making, and machine-learning situations, including DM, document retrieval, image 

segmentation and pattern recognition.   

Clustering is particularly applied when there is a need to partition the instances into 

natural groups, but predicting the class of objects is almost impossible. There are a large 

number of approaches to the clustering problem, including optimization based models that 

employ mathematical programming for developing efficient and meaningful clustering 

schemes. It has been widely emphasized that clustering and optimization may help each 

other in several aspects, leading to better methods and algorithms with increased accuracy 

and efficiency. Exact and heuristic mathematical programming based clustering 

algorithms have been proposed in recent years. However, most of these algorithms suffer 

from scalability as the size and the dimension of the data set increases. In most cases, 

mathematical programming based clustering models belong to the group of NP-complete 

problems that makes them have exponential solution times. Another important discussion 

in clustering is the definition of best partitioning of a data set, which is difficult to predict 

since it is a relative and subjective topic. Different models may result in different solutions 

subject to the selected clustering criteria and the developed clustering model. Therefore, 

the development of efficient and robust clustering algorithms is a need in both DM and 

CRM areas. 
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This thesis studies a mathematical programming based approach to the clustering 

problem with a real application. For this purpose, two-mixed integer nonlinear 

mathematical programming models are proposed with the criteria of minimization of the 

maximum cluster diameter and minimization of sum of within group pair-wise distances 

respectively. We refer to these models as MIP-Diameter and MINLP-SWGD in the rest of 

the thesis. The first model is linearized and reduced to a mixed integer linear mathematical 

programming model. The second nonlinear model is solved as a continuous relaxation and 

reduced to a nonlinear programming model. The solution of the relaxed NLP-SWGD 

model is shown to be integer due to the total unimodularity property. The second model 

results in a local optimal solution in a very reasonable time. The accuracy of the proposed 

models is analyzed on an illustrative data set, and the computational performance of the 

models is analyzed on a real data set. Furthermore, in order to overcome the computational 

difficulties of the MIP-Diameter model, the graph theoretic maximal independent set 

approach is utilized to provide initial assignments of data points to clusters. Two seed 

finding algorithms, SF1 and SF2, are developed with the purpose of reducing the solution 

time of the model while preserving the near-optimality of the final solution. As shown in 

our experimental results, the solution time of the model is reduced drastically by applying 

the proposed seed finding algorithms to the model while the solution quality worsens 

slightly. In addition to seed finding algorithms, a preprocessing methodology is proposed 

to further improve the solution time of the model by reducing the size of the branch and 

bound tree. This preprocessing methodology is an extension of the seed finding 

algorithms. It is a heuristic approach to determine the inclusion of some instances to 

clusters initially and also exclusion of some instances from clusters. The experiments on 

illustrative and real data sets are also reported for this methodology to analyze the effect of 

these rules on the solution quality of the proposed model and algorithm. Previous studies 

conducted upon minimization of maximum diameter criterion deal only with the value of 

the objective function and the solution time of the model. In this study, we have shown 

that the solution of the MIP-Diameter model is still open to improvements even in the case 

of the model being solved to optimality. There exist alternative optimal solutions due to 

the structure of the model since it considers only the assignment of instances which 
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determines the value of the objective function of the model. In order to improve the 

solution quality of the MIP-Diameter model, a reassignment algorithm is proposed which 

relies on improving two criteria, the average of distances between each data point and 

other data points assigned to the same cluster and the sum of average within-cluster 

distances. The proposed seed finding algorithm, the MIP-Diameter model and the 

reassignment algorithm constitute the proposed clustering algorithm. The experimental 

results of the algorithm are reported to analyze its efficiency and performance. The results 

of the proposed algorithm are compared with the results of the well-known K-Means 

algorithm, and interpretations derived from the solutions of both algorithms are given.  

This thesis is organized as follows: The literature survey on customer relationship 

management, data mining, the clustering problem and optimization based clustering 

models is given in Chapter 2. In Chapter 3, the proposed MIP-Diameter model, the 

proposed seed finding algorithms SF1 and SF2, the reassignment algorithm and the 

preprocessing rules are given and experiments conducted on a small illustrative data set 

are reported to analyze the accuracy and performance of the models visually. 

Experimental results and findings on the Digiturk data set are reported in Chapter 4. In 

Chapter 5, the proposed MINLP-SWGD model’s formulation is given and experiments 

with the proposed model applied to the Digiturk problem to analyze its performance and 

efficiency are reported. In Chapter 6, the two proposed clustering models are compared in 

terms of studied clustering performance measures and benchmarked with the solution of 

the K-Means algorithm. Also, interpretations derived from the solution of the algorithm, 

the nonlinear model and the K-Means algorithm are given. Finally, the thesis is concluded 

by summarizing the results and discussing ideas for future work.  
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Chapter 2 

LITERATURE SURVEY 

 

Customer relationship management (CRM) is described by several professionals as 

efforts done by companies with the purpose of understanding their customers successfully, 

satisfying their needs and anticipating their desires without compromising from increasing 

their profitability and enlarging their market shares in today’s competitive markets. Today, 

companies are in search of transactions that possess key information about their customers 

which may lead them to success and revenue. As transactional and categorical data 

accumulate and are stored in data warehouses, extracting knowledge out of huge data sets 

becomes a crucial problem. Data mining (DM) has been an integral part of CRM studies, 

with the premise that companies can achieve successful customer relations if they 

understand their customers’ characteristics and desires in an improved fashion with 

respect to the traditional CRM implementations as also pointed out by Nemati and Barko 

[1]. 

DM is a recently developing research area which incorporates the development of new 

methods, algorithms and technology to explore patterns and relationships to gain insight 

and to extract hidden knowledge in data warehouses. Briefly, Grossman et al. [2] defined 

DM as the process of finding hidden patterns, associations, rules and statistically 

significant structures in large databases. Owners of data are asking new questions that 

cannot be answered by existing data analysis models. DM sometimes seems to be an 

automatic information extraction system but in fact this approach is contradictory to the 

current state of the art in DM where human intervention is inevitable. The importance of 

interaction between human and data mining is also pointed out in Grossman et al. [2] and 

Fayyad et al. [3]. 
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Rygielski et al. [4] gave an overview of data mining; its applications in industry and 

the techniques used under this topic, and explained the relation and interaction between 

DM and CRM applications from various aspects. Interested reader in applications of DM 

may refer to Hwang et al. [5].  

The role of optimization in DM has been elaborated by Padmanabhan and Tuzhilin [6] 

who discussed that DM and optimization can help each other in the development of new 

CRM applications, such as maximizing customer lifetime value, customer analysis and 

customer interactions. In the same study, it is stated that optimization and DM may 

interact in one of the following two ways, either optimization may state a step of DM 

process, or optimization may be the main frame of the development of DM techniques.  

Developing a DM model based on optimization is typically difficult and furthermore it 

is often intractable to obtain an exact solution of the model. In most DM problems, there 

will be no unique solution and problem sizes give rise to computational problems where 

the number of variables and constraints increase drastically. In the literature, there exist 

studies which incorporate mathematical programming approaches into DM but their main 

limitation always remains as problem size and solution times.  

Clustering is a descriptive DM technique with applications in data exploration, 

segmentation, targeted marketing, and cross-selling [3], [5]. Originally, it is a mathematics 

problem which has been studied for years. The definition of the clustering problem is to 

group similar instances into a number of categories to characterize and to classify the data. 

These categories, in other words, clusters can be formed in various forms with various 

objectives. In clustering, there exist two objectives which should be considered 

simultaneously: the similarity of instances within a cluster should be maximized while the 

similarity of instances between clusters should be minimized. Roiger and Geatz [7] 

pointed out benefits of clustering such as observing meaningful and hidden relations that 

may exist in the data set, analyzing the set of input attributes in order to find out the best 

set of attributes to build a promising business model, and even in some cases determining 

outliers.  
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In this thesis we refer to the term instance as a point in a single or a multi-dimensional 

space. An instance consists of attributes and each attribute constitutes a dimension in 

space.  

There exist different clustering approaches in the literature such as distance-based, 

model-based and partition-based clustering approaches. Since the proposed models in this 

thesis are distance-based special attention is given to distance-based clustering 

approaches. In the distance-based approach, similarity and dissimilarity between instances 

is captured by a distance function. Attributes of an instance are quantified and the 

similarity of instances is formulated using a metric. These metric measures are then 

aggregated using averages and correlations. On categorical data it is harder to propose 

metric measures since it is possible to deteriorate data while transforming it from 

categorical scale to numerical scale. Assume that we have an attribute for the brand of our 

customers’ cars. The values of this attribute are categorical and we want to use a distance-

based clustering scheme in our application. And further assume that this attribute has three 

different values such as BMW, Volkswagen and Mercedes-Benz. In the transformation of 

this attribute into numerical scale assume that we denote BMW with 1, Volkswagen with 

2 and Mercedes-Benz with 3. If we apply such a transformation, we accept that 

Volkswagen is more similar to BMW and Mercedes-Benz than BMW and Mercedes-Benz 

are similar to each other. But actually, the brands BMW and Mercedes-Benz belong to the 

group of luxury automobiles and Volkswagen belongs to a lower automobile class. Thus, 

due to this type of transformation difficulties it is hard to apply metric measures on data 

sets including categorical attributes.  

In DM, the dimensionality of data is one of the main concerns since it directly 

influences the efficiency, performance and accuracy of the proposed solution 

methodology. At this point, definitions of data, model and solution method terms are given 

to make the things clearer. Data refers to a dataset which consists of instances. The model 

defines according to which criterion and constraints the partitioning of the data set will be 

obtained. Solution method of a model is the way the model is solved. Assume that we 

have an optimization based model. We can solve it to optimality if the computational 
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complexity of the model allows by solving it with the appropriate solver or if it does not 

allow we may apply a heuristic approach to solve the problem.  

Reduction of dimensionality constitutes another research field in DM. It aims to 

reduce data size in a model and achievement of stability and robustness in the behavior of 

the model solution [3]. The reduction should be unique for the combination of data, model 

and results. Depending on the data or the model, there are several ways to diminish the 

dimensionality of data. Derivation of new more manageable attributes that compromise 

information stored in attributes which are used in the derivation of these new attributes is 

one of techniques used under this topic. New attribute derivation is highly put into practice 

in case of having a lot of time-series and sequential records. Removal of dependent or 

similar attributes is a must since the existence of highly dependent attributes in the data set 

may lead to skewed results and this process is also classified under data cleaning step of 

the overall DM process.  

In some cases, dimensionality reduction may result in an easier fitting of the model 

since there can be less number of attributes and/ or instances in a reduced data set. 

However this may affect the accuracy of the model. In time-series and sequential data 

analysis, one may apply different techniques in reducing the dimensionality of data such 

as Kalman filtering, hidden markov models and database methods like detection of 

episodes and frequent sequences [3].  

Another important point in clustering is how to initiate the partitioning of the 

instances. According to this criterion, most commonly, analytical clustering techniques are 

analyzed in two types: hierarchical and nonhierarchical [8], [9], [10].  

The hierarchical clustering (HC) methods proceed as a series of partitioning operations 

starting with a single cluster containing all instances and ending when a predefined 

terminating criterion is achieved. These techniques are classified as agglomerative and 

divisive methods [8]. The HC methods do not require the number of clusters to be known 

at the beginning, which constitutes a robust advantage over nonhierarchical methods. On 

the other hand in these methods, once an instance is assigned to a cluster, the assignment 

is irrevocable. Therefore, Sharma [11] stated that the HC methods are applied to generate 
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some interpretations over the data set and the solution of a HC may be used as an input for 

a nonhierarchical method in order to improve the resulting cluster solution. 

Nonhierarchical clustering (NHC) methods, also called partitioning clustering [10], 

refers to the case where the number of partitions is known a priori. Usually, the data is 

divided into K  clusters initially and the NHC algorithm iterates for all possible 

movements of data points between the formed clusters until a stopping criterion is met. 

According to Sharma [11], the nonhierarchical algorithms have two main differences; the 

selection of the initial cluster representatives, such as mean, centroid or median, and the 

way it assigns the instances to the clusters. In these methods, each cluster can be 

represented by the center of the cluster (K-Means) or by one instance located in the cluster 

center (K-Medoids). The NHC algorithms are sensitive to initial partitions and due to this 

fact, there exist too many local minima [11]. 

On the other hand, there are also NHC algorithms that build the clusters incrementally, 

such as the heuristic global K-Means method of Likas et al. [12]. They state that the 

optimal K  cluster solution can be reached from the optimal solution of )1( −K  cluster 

problem by utilizing a local search over all data set by running the K-Means algorithm 

repetitively to come up with the best possible thK  cluster center. Experimentally, the 

algorithm is shown to be superior to the classical K-Means algorithm. Although the 

algorithm may lead to promising solutions, it does not guarantee to reach to the global 

optimal solution. 

Perhaps the most commonly used clustering algorithm is the K-Means algorithm. In 

this thesis, our proposed method is benchmarked with the K-Means algorithm, and 

therefore a literature review on this approach will follow now. Fisher [13] modeled the 

objective function of minimization of the sum of within-cluster distances for single 

dimension case and proposed a least squares algorithm without a stopping criterion. In 

later years, K-Means algorithm is implemented by applying this criterion as an error 

function. K-Means is an iterative distance-based clustering algorithm [10], [14] which was 

first suggested by Forgy [15]. In K-Means algorithm, the similarity measure is the squared 

Euclidean distance. In the widely known K-Means approach, the iterative objective is to 

minimize the summation of 2-norm distances between each data point and the center of 
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the cluster which it belongs to [16]. The K-Means algorithm has two main steps: the 

assignment of instances to the proper clusters and the updating of the cluster centers [9]. 

Each instance is assigned to a cluster that it is most similar subject to the criteria defined. 

Cluster centers are updated after the assignment of all instances is finished by computing 

the mean for each cluster. This may continue until no reassignment takes place or a 

predefined terminating criterion is achieved.  

 K-Means is reported to work well in practice, although its worst case time complexity 

is shown to be exponential [10]. The K-Means algorithm works well when the candidate 

clusters are approximately of equal size. Also, with K-Means it is impossible to interpret 

which attributes are significant and for this reason several irrelevant attributes may cause 

sub-optimal results. An important problem faced with K-Means algorithm is that the 

resulting solution is a local minimum which is sensitive to the initially selected cluster 

centers [14]. In their study, it is shown that the algorithm converges to a local minimum if 

differentiability conditions to a Kuhn-Tucker point hold. Thus, in order to find good 

minima, repeating the algorithm several times with different starting points is required, 

without guaranteeing the global optimality.  

The determination of initial cluster centers constitutes another research area since it 

directly affects the accuracy and the performance of K-Means, a good initial solution may 

lead to a highly accurate and efficient clustering and a bad initial solution may lead to an 

inaccurate and late terminating clustering scheme. Sampling is pointed as an alternative to 

determine the set of initial cluster centers. There are various studies conducted on the topic 

of finding good seeds, where a seed is an instance of the data set which may possibly 

attract other data points around itself according to the defined clustering criterion, but 

none of them promises to find out the initial seeds that will achieve the global optimal 

solution [17]. 

Other interesting clustering algorithms are Birch [10], Cobweb [18] and Clarans [19]. 

Birch (Balanced Iterative Reducing and Clustering using Hierarchies) is suggested where 

available memory is limited which is first presented by Zhang et al. [10]. It is an 

incremental and hierarchical clustering algorithm applicable to large data sets. 

Characteristics of the Birch algorithm are that one iteration of the algorithm ends with a 
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successful clustering, and additional steps improve the quality of the clustering. In Zhang 

et al.’s study, it is stated that the other clustering techniques ignore the fact that data points 

in a data set are not equally important and dense data points can be considered as a group. 

This clustering method is applicable to large datasets, and it achieves this by concentrating 

on dense portions of the dataset. The limitation of the technique is that, it is sensitive to 

parameter settings. 

Cobweb, introduced by Fisher [18], is a well-known representative of conceptual 

clustering technique. It forms a concept hierarchy to capture knowledge [7]. Cobweb deals 

only with categorical (nominal) data and groups the instances in a hierarchical structure 

based on the cluster quality. The measure of quality of clusters is called category utility. 

Main limitations of the Cobweb are that it handles only nominal attributes, and computing 

the category utility measurement is an expensive task to accomplish  [10], [20]. Also, 

Roiger and Geatz [7] emphasized the impact of instance ordering on the resulting 

clustering. 

Clarans is a type of K-Medoids algorithm. K-Medoids algorithms are a variation of K-

Means type algorithms in which the cluster information is captured by the medoid of the 

cluster instead of the mean of the cluster. Clarans differs from other K-Medoids 

algorithms by its randomized partial search strategy. In Clarans, the clustering problem is 

represented as a graph in which each node is a K-partition represented by K medoids, and 

two nodes are neighbors if only one medoid of them is different and the rest is same. The 

algorithm starts with a randomly selected node. Starting with this node, it checks the 

defined limited number of neighbor nodes and if a better neighbor is found, it switches to 

that neighbor and continues; if not it records the initial starting point as local minimum 

and selects a new random starting point. Limitations of the Clarans are that it may fail to 

converge to a definite local minimum due to random search and efficiency considerations 

[10]. 

In the literature, there are several studies that incorporate optimization in clustering. 

Optimization based clustering methods are developed to produce an optimal partition of 

instances into a specified number of groups by either minimizing or maximizing some 

numerical criterion. The criterion depends on the application and data being studied. It is 
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typically NP-Hard to reach to global optimum in optimization based clustering problems 

[3], [21]. Examples for clustering criterions in optimization can be stated as follows: 

minimization of sum of within groups squared distances, minimization of sum of within 

group averages and minimization of maximum cluster diameter.  

Researchers have been studying clustering problem with mathematical programming 

approaches since the early 70s. In an early study, Vinod [22] developed two mathematical 

programming formulations of the clustering problem. The first formulation originated 

from warehouse location problems. The idea of a group leader in which an instance of data 

set that identifies the group is applied and the objective of the proposed first integer 

programming model is to minimize the sum of within group distances between the leader 

and instances assigned to corresponding cluster. If we assume the group leader as the 

center of the cluster then the objective turns out to be the minimization of sum of distances 

between center of cluster and instances assigned to that cluster. Several definitions for the 

cost matrix are given. The second formulation is also an integer mathematical 

programming model with the objective of minimization of within-group sums of squares 

(WGSS). In order to make things clearer, in the model there is a set of constraints to 

compute cluster means and a set of constraints to count the number of instances assigned 

to each cluster. A nonlinear objective function for the model is constructed as the 

summation of distances between instances and their corresponding cluster means. A string 

property is defined and stated to be necessary to obtain the minimum for this model but in 

later years, Rao [23] showed that this statement is invalid. Both for the one and multi 

dimensional cases, by proper selection of cost function and validity of string property, it is 

shown that the nonlinear objective function can be reduced to a linear one by using 0-1 

variables. Computational results are reported only for very small sized data sets and finally 

the study is concluded by stating that the integer programming formulations are flexible 

and efficient in grouping problems.  

In the years following Vinod’s study, Rao [23] formulated the clustering problem with 

different distance based mathematical programming models respectively with the 

objectives of minimization of within groups sums of distances (WGSD), minimization of 

the sum of average within group squared distances (WGAD), minimization of total within 
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group distance (TWGD) and minimization of the maximum within-group distance 

(MWGD). Rao [23] proposed a number of linear and non-linear integer programming 

models for these clustering objectives. For the WGSD criterion, a dynamic programming 

algorithm was proposed for the 1-dimensional case. For the p-dimensional case, an integer 

linear programming model was proposed for this partitioning criterion. The formulation is 

stated to be valid under certain conditions. It is claimed that the model is reduced to a set 

partitioning problem with a predefined number of partitions. Validation condition of the 

model is the distance function should be Euclidean and/ or a defined string property in the 

study should be satisfied. The string property is not a necessary condition for optimality 

which stated as there exists a seed instance in each cluster and the distance between the 

leader of a cluster and any instance in other clusters rather than this cluster cannot be less 

than any distance between this leader and instances assigned to this cluster. A solution 

scheme is proposed for the reduced set partitioning problem and the solution time is stated 

to be reasonable. The second proposed model in the study is a nonlinear integer 

programming formulation of the criterion WGAD. In the special case where the number of 

entities in each cluster is specified, it is shown that the model is reduced to an integer 

linear programming model. But, for the reduced model it is stated that the number of 

constraints increases enormously with increased number of instances and clusters, and so 

that the model is computationally tractable only for small sized sets. An alternatively 

proposed solution scheme is partitioning instances into two most compact clusters and 

continuing this process until a predefined number of clusters is reached. As a third model, 

the TWGD is studied and a solution approach only for two cluster case is proposed.  

Finally, the fourth proposed model is an integer linear programming problem of the 

criterion MWGD. It is stated that the formulation is tractable only for data sets with small 

number of instances since the number of constraints of the model increase enormously. A 

heuristic solution approach for the 2-cluster problem is given for this model.  

Later on, Brusco [24] studied the TWGD and MWGD criteria with a branch and bound 

methodology. The TWGD branch and bound algorithm is implemented by deriving better 

lower bounds with solving sub matrices sequentially and by deriving tighter upper bounds 

by utilizing an exchange algorithm. The improvement is achieved over the existing work 
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of Klein and Aronson [25]. In their branch and bound algorithm, at any particular node of 

the branch and bound tree, instance set is divided into two parts, the first 1n  instances are 

assigned and the last 2n  instances are unassigned. The bound is derived from three 

components: TGWD of assigned instances, TGWD between assigned and unassigned 

instances and TGWD of unassigned instances. It is straightforward to calculate the first 

two components. Brusco proposed new branch and bound algorithm by altering the 

computing procedure of the third component by applying the exchange algorithm for 

partitioning developed by Banfield and Bassil [26].  The exchange algorithm is a local 

search procedure starting with an initial random partitioning of the data set using two 

types of reassignment operations. The algorithm is modified for MWGD criterion since 

TGWD model is criticized as resulting clusters tend to have approximately same number 

of instances. MWGD criterion is selected because to modify the algorithm according to the 

other criterions such as WGAD is stated to be difficult. The modified MWGD algorithm is 

implemented by deriving upper bounds with utilizing a randomized complete-link 

clustering algorithm. The computational results are reported for data sets consisting of up 

to 40 instances and the squared Euclidean distance is used. For TGWD criterion, the 

solution time reported for 40 instances and 6 clusters solution is 3152.12 seconds on a 

666MHz Pentium III computer with 128MB of RAM running in a Windows 98 

environment.The branch-and-bound methods reported in this study are not applicable on 

large data sets due to concerns on computational time. Moreover, the efficiency and 

performance of the algorithms are reported to be very sensitive to the number of clusters. 

Bradley et al. [9] investigated integer programming formulations with the objective of 

minimizing the sum of distances between each data point and its corresponding cluster 

center, in other words implementation of K-Means algorithm within an optimization 

model. In their studies, they divided the clustering methods into three classes: metric-

based methods, model-based methods and partition-based methods and focused on 

mathematical programming formulations of two popular nonhierarchical clustering 

techniques, K-Means and K-Median. Another objective function that has been of interest 

is the minimization of the sum of within cluster distances.  
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Koontz et al. [21] propose a branch and bound clustering algorithm that utilizes the 

WGSS criterion. The proposed algorithm is stated to determine sharper lower bounds than 

the basic branch and bound approach by proving the property, in a set of n  instances 

divided into two sets with 1n  and 2n instances in each, such that nnn =+ 21 , the sum of 

the minimal WGSS values for the two sets cannot be greater than the minimal value of 

WGSS for n  instances. It is claimed that the efficiency of the proposed algorithm depends 

heavily on the selected clustering criterion’s structure since the algorithm uses bounds 

based on the properties of the objective function. 

Diehr [27] studies algorithm of Koontz et al. [21] with the objectives of minimization 

of the WGSS criterion and WGAD criterion for effectiveness and efficiency. Modifications 

of the previous algorithm are investigated and performance of modifications is studied as a 

function of number of instances, number clusters and separation degree of the generating 

distributions of the data set. It is stated that criterions applicable for the proposed 

algorithm should share the property that an added instance to a set of  n  instances should 

not decrease the value of the minimum objective function value. The distance function is 

defined as squared Euclidean distance. Diehr’s algorithm uses the same bounds with 

Koontz algorithm but their difference is Diehr’s algorithm changes the order of 

enumeration and applies heuristics in order to decrease the solution time. The study is 

concluded as the proposed algorithm is applicable for data sets up to 120 instances, the 

number of partitioning is less than 6 or less and the clusters are well separated.   

Still, integer programming models for clustering problem, such as those developed by 

Vinod [22] and Rao [23] may be preferred as they add more flexibility to the model, and 

they consume less computing time than previous approaches such as dynamic 

programming.  

Here we summarize our contributions with comparison to existing work that’s closest 

to our work. In this thesis we study two mathematical programming models for clustering. 

Both of these models were proposed earlier by Rao [23]. The objective functions of the 

studied models are (1) minimization of the maximum cluster diameter (MWGD) and (2) 

minimization of sum of within-group distances (TWGD).  
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We formulate the first model as a mixed integer nonlinear programming (MINLP) 

model. We then study a linearization which corresponds to the model proposed by Rao 

[23]. For the MWGD model, Rao provided a heuristic approach only for the 2-cluster 

problem and no experimental findings are reported in the study in terms of solution quality 

and computational findings.  

In later years, Brusco [24] studied the MWGD criteria with a similar MINLP 

formulation to the Rao’s TWGD formulation. He proposed a branch and bound algorithm 

to solve the model. He applied the proposed algorithm to data sets consisting of up to 45 

instances. In this study, we aimed at solving larger instances and considered three 

clustering criteria: (1) minimization of the MWGD, (2) minimization of the total within-

group averages (WGAD) and (3) minimization of the TWGD. We first focused on solving 

the MWGD model. In order to improve the solution time of the model we propose two 

seed finding algorithms that utilize a maximal independent set in a parameterized graph. 

The solution time of the model is improved drastically by the proposed approach without 

compromising from optimality significantly. Next, we proposed and tested rules for 

reducing the size of the model again with minor deviations from optimal solution.  

We improve the solution of the model in terms of the WGAD criterion by a 

reassignment algorithm. We also show that solving the ,..,1,..,4,3,2 kk −  clustering 

problems sequentially by providing the objective value of the previous solution as an 

upper bound to the next model improves the solution times significantly. The seed finding 

algorithm, the MWGD model and the reassignment algorithm constitute the proposed 

algorithm for clustering in this thesis based on the MWGD clustering performance 

criterion.  

We next considered the TWGD criterion. We formulate the second model also as a 

MINLP model. Rao [23] proposed a solution methodology only for 2-cluser case and again 

no experimental results were reported in his study. Brusco proposed to solve the model by 

a branch and bound algorithm but the proposed algorithm is applied only on small data 

sets. We solve the continuous relaxation of the SWGD MINLP model after showing that 

the model satisfies the total unimodularity property. Thus, we find local optima in the 

order of seconds in our experiments with up to 500 instances partition up to 5 clusters.  



 
 
Chapter 2: Literature Survey                                                                                                17 
                                                                                         

 

Furthermore, we compare the solution of the proposed algorithm, the TWGD model 

and the K-Means algorithm and also derive some interpretations from these solutions. We 

observe that the interpretability of the solutions of the proposed algorithm and the 

nonlinear model TWGD is better than the interpretability of the solution of the K-Means 

algorithm. We apply hypothesis testing to analyze the solutions achieved by the proposed 

algorithm, the TWGD model and the K-Means algorithm statistically and show that  the 

solution of the proposed algorithm and the TWGD model lead to significantly better 

solutions than the K-Means algorithm.  
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Chapter 3 

THE MIP-DIAMETER MODEL AND                                                           
THE PROPOSED HEURISTIC CLUSTERING ALGORITHMS 

 

3.1 The Proposed MIP-Diameter Mathematical Programming Model 
 

In this chapter, a mixed-integer programming model to partition the data set into 

exclusive clusters is studied. The objective function of the model is to minimize the 

maximum diameter of the generated clusters with the goal of obtaining evenly compact 

clusters. This criterion was previously studied by other researchers [23], [24]. Rao [23] 

proposed a very similar integer programming model with the difference that the maximum 

diameter variable is also set to be an integer. It is stated that the formulation is tractable 

only for small sized data sets since the number of constraints of the model increases 

exponentially. A heuristic solution approach for the 2-cluster case is given in the study. 

Brusco [24] studied the same criterion applied to the integer programming formulation of 

Klein and Aronson [25] and proposed a branch and bound algorithm. The algorithm 

utilizes a randomized complete-link clustering algorithm to obtain upper bounds and sub-

matrices are solved sequentially to obtain lower bounds. In the study, the computational 

results seemed to be promising in terms of solution time and closeness to the optimality 

but no information is provided on the cluster quality of the solutions. 

 In the model in this study, it is assumed that the number of desired clusters K  is 

known a priori since the determination of the number of clusters constitutes another 

subject of research in the clustering literature and it is out of the scope of this thesis. 

However, typically K  will be small and the proposed method can be repeated for 

Kk ,..,3,2,1=  for some k  much smaller than number of instances, if necessary. 

As previously stated by Rao [23], the mathematical programming formulation of the 

minimization of maximum diameter criterion is computationally demanding. Moreover, 



 
 
Chapter 3: The MIP-Diameter Model and the Proposed Heuristic Clustering Algorithms 19                   
                                                                                         

 

there exist alternative optimal solutions since the objective function of the model is 

insensitive to assignments except for the ones that occur in the “largest” cluster. Later, in 

order to improve the solution quality of the model, we propose a reassignment algorithm 

in Section 3.2. 

The goal of the model is to find the optimal partitioning of the data set into K  

exclusive clusters given a data set of n data items in −m dimensions, i.e. a set of n  points 

in .mR The parameter ijd  denotes the distance between two data points i  and j  in mR  and 

can be calculated by any desired norm on mR such as the Euclidean or the Tchebycheff. 

The mathematical formulation of the model, MIP-Diameter, is given below. 

MIP-Diameter: 

             Minimize maxDZ =       (3.1) 

  subject to 

                                      jkikijk xxdD ≥  Kknjnikji ,..,1,,..,1,,..,1,,, ===∀  (3.2)  

                                     1
1

=∑
=

K

k
ikx  nii ,..,1, =∀     (3.3)  

                                          kDD ≥max    Kkk ,..,1, =∀      (3.4)  

                                        { }1,0∈ikx       Kkniki ,..,1,,..,1,, ==∀   (3.5)  

                                           0≥kD          Kkk ,..,1, =∀     (3.6)  

In this model, the variable kD  denotes the diameter of the cluster k  and the variable 

maxD  denotes the maximum diameter among the generated clusters (MWCD), which 

forms the objective function of the model. The variable ikx  is a binary decision variable 

that represents the assignment of an instance to a particular cluster; it takes a value of 1 if 

the instance i  is assigned to cluster k , and 0  otherwise.  According to constraint (3.2), 

the diameter of cluster l  is allowed to be at least the maximum distance between any two 

data points assigned to cluster k . Since the model aims to partition the data points into 

exclusive clusters, each instance should be assigned to only one cluster as given in 

equation (3.3). Constraint (3.4), in conjunction with the objective function, helps set 
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variable maxD equal to the value of the maximum diameter. The model has kn  binary 

variables, 1+k  continuous variables and )( 2knO constraints. 

The MIP-Diameter model is a nonconvex bilinear mixed-integer programming model 

and as such, it is almost impossible to solve this model to optimality in a reasonable 

amount of time even with small number of instances. Therefore, we linearize the MIP-

Diameter constraint (3.2) that has a bilinear term without increasing the size of the 

formulation as follows: 

    )1( −+≥ jkikijk xxdD        

      Kknjnikji ,..,1,,..,1,,..,1,,, ===∀  (3.7) 

Here, if both of decision variables ilx  and jlx  are equal to 1, then the constraint will be 

active, meaning that data points i  and j  are assigned to cluster k  and the diameter of the 

cluster has to be at least as long as the distance between them. If one of the decision 

variables or both of them are equal to zero, the constraint will be redundant. 

Although the linear MIP-Diameter model outperforms the nonlinear model in terms of 

CPU time and the number of iterations, the experimental findings given in Section 3.5 

show that the computational performance of the model is not comparable with other non-

optimization based suggested studies and algorithms in the literature such as the K-Means 

algorithm. Moreover, the experiments on synthetic data sets, where the global optimal 

solution is known a priori, show that the objective function of the model should be 

strengthened. Considering this, we develop a reassignment algorithm which we present in 

Section 3.2.2. The proposed algorithm is developed given in the following sections 

considering all these facts. In order to improve the solution time, a heuristic approach is 

developed that is based on solving the model with initial seeds, followed by a 

reassignment heuristic aimed at improving the cluster quality of the model by 

incorporating sum of within cluster distance averages as a secondary measure. 
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3.2 The Proposed Heuristic Clustering Algorithm 
 

The proposed clustering algorithm is based on two approaches in addition to the MIP-

Diameter model.  The proposed seed finding algorithm is developed to achieve a reduction 

in the solution time of the model without compromising from the near-optimality of the 

solution and is stated in detail in Section 3.2.1. The reassignment algorithm is developed 

to improve the solution quality of the MIP-Diameter model due to the reason we stated in 

previous chapter. First the seed finding algorithm is applied on the data set and then the 

MIP-Diameter model initialized by the solution of the seed finding algorithm is solved. 

Finally the reassignment algorithm is applied to the solution of the model. The flowchart 

of the algorithm is given below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: The flowchart of the proposed clustering algorithm 

 

3.2.1 Introducing Seeds 

 

The idea of fixing the assignment of some instances to certain clusters has been used 

in clustering algorithms before with the goal of improving computational efficiency. These 

fixed assignments typically improve the computational performance of the algorithm; 

however, a new question of how to best determine the instances to be fixed, the seeds, is 

Data 

Seed Finding Algorithm 

MIP-Diameter Model 
initialized with seeds 

Reassignment Algorithm 

Preprocessing of the Data 
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raised. In particular, selecting an initial seed for each cluster in such a way to ensure that 

the seeds are separated well from each other is desired. To achieve this, we use a graph-

theoretic approach which utilizes the concept of a maximal independent set, which has 

been used in other clustering studies [28]. The proposed seed finding algorithm works as 

follows. A graph ),( RR EVG =  is constructed where the set of vertices V  corresponds to 

instances. An edge between two vertices exists in RE  if the distance between the two 

corresponding instances is less than R , a distance parameter that is initialized as the 

average of minimum and maximum values of ijd  values. Given this graph RG , an 

independent set RS  of RG  is a subset of V  such that there is no edge in RE  among the 

members of RS . A maximal independent set is constructed by starting initially with a 

randomly picked vertex v from the set V  and eliminating the vertices adjacent tov. This 

step is repeated until no more vertices can be added to RS . Then, the size of RS  is 

checked, and this procedure is repeated by adjusting the distance parameter R  through a 

line search and by rebuilding the corresponding graph RG  until the maximal independent 

set RS  in the current graph consist of K  points. Once a maximal independent set with size 

K  is achieved, each vertex in the maximal independent set is assigned to a different 

cluster for initializing the MIP-Diameter model. Although the procedure is sensitive to the 

selection of the initial vertex and different maximal independent sets can be constructed 

with different initial vertices, the seed finding algorithm improve CPU times of the MIP-

Diameter model significantly in our computational tests.  

Once the K  seeds to be assigned to the K  clusters are determined as described above, 

the MIP-Diameter model can be solved with these instances fixed. Obviously, this 

constitutes a heuristic approach to solving the MIP-Diameter model. As it will be reported 

later, this heuristic approach is capable of obtaining near optimal solutions for the MIP-

Diameter model with much less computational effort.  
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3.2.2 The Reassignment Algorithm  

 

To address the problem of poor quality clusters due to the insensitivity of the MIP-

Diameter model to the assignments that take place in the clusters that do not change the 

objective function, a reassignment procedure is proposed. The reassignment procedure 

relies on improving two new criteria, the average of distance between each data point and 

other data points assigned to the same cluster and the sum of averages of within-cluster 

distances.  

Let kC  denote the set of all instances assigned to cluster k . Then for instance i  that 

belongs to cluster k , the quantity  

)1/( −=∑
≠
∈

k

ij
Cj

ij
k

i CdAP
k

        (3.8) 

is computed where kC denotes the number of elements in cluster k .  

At each step of the reassignment algorithm, it is hypothesized that an assignment that 

yields a smaller k
iAP  is better than one with a larger k

iAP  since the instances within the 

clusters, on average, would be closer to each other. Once all the possible reassignments 

are checked for all data points, it is hypothesized that the whole reassignment procedure 

yields a better sum of within-cluster average distances calculated as AT  where  

∑ ∑∑
= ∈

≠
∈

−=
K

k
kk

Ci
ij
Cj

ij CCdAT
k k1

))1(/()(    (3.9) 

which is the sum of the average of within-cluster distances. 

The reassignment algorithm works as follows: Given the solution of the MIP-Diameter 

model obtained with fixed seeds, each instance is considered for a possible reassignment 

different than the one generated by the model. An instance i  is selected, and tentatively it 

is considered for reassignment to each cluster k . The improvement is computed, if any, 

that takes place in k
iAP , the average of distances between point i  and other points in 

cluster k , if such a reassignment were to be conducted. In addition, it is checked that such 

a reassignment would not worsen the objective function of the MIP-Diameter model, 
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maxD , beyond an allowed range described by means of a multiplier β  which has to be 

greater than or equal to 1. In other words, the reassignment procedure may allow for a 

deterioration of maxD  to β maxD  in order to achieve a better AT  value eventually, if the 

parameter β  is set equal to a value that is strictly greater than 1. The instance under study 

is reassigned to a cluster that yields the largest improvement in k
iAP  without worsening 

the maximum diameter beyond the allowed range. Once every instance is considered for 

reassignment, a second pass is conducted in the same way. The reassignment procedure 

stops when it is not necessary to reassign instances anymore. Finally, the new AT  value is 

compared with the initial AT  value that is obtained from the solution of the MIP-

Diameter model with fixed seeds and if the new AT  is less than the initial one, the 

reassignment of the data points is accepted. Otherwise, the solution of the MIP-Diameter 

model with the given seeds remains unchanged. This final control checks the AT  value in 

order to eliminate undesired solutions which can be produced by the reassignment 

algorithm. A formal description of the algorithm is presented as follows. 

 

Step 1:  Seed Finding  

Step 1.0 Set iteration number 0=t . 

Set lower and upper bounds to { }ijdtl min)( = , { }ijdtu max)( = . 

Step 1.1     Set 
2

)()()( tutltR +
= . 

Step 1.2 Construct the graph )(tRG  where instances correspond to vertices, and 

the edge )(),( tRji Ε∈ , if )(tRdij ≤ . 

Step 1.3 Find a maximal independent set S in )(tRG . 

If KS = , then go to Step 2.  

If KS < , then set )()1( tltl =+ , )()1( tRtu =+ , 1+= tt  and  

Go to Step 1.1. 

If KS > , then set )()1( tRtl =+ , )()1( tutu =+ , 1+= tt . 
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Go to Step 1.1.  

Step 2:  Linear MIP-Diameter Model with Fixed Seeds 

Let { }KvvvS ,,, 21 K= . Without loss of generality, set 1=iix  for each Svi ∈ . Solve 

the MIP-Diameter model with these assignments fixed. For ni K1= , define 

( ) kiC =  for k  such that 10 =ikx  where 0
ikx denotes the optimal value of the 

assignment variable ikx  according to the solution of the MIP-Diameter model. 

Step 3:  Reassignment 

Step 3.0 Set 0* xx = , where 0x is the solution obtained in Step 2. 

For Kk ,..,1= , let ( )*xCk  denote the instances assigned to cluster k  in 

assignment matrix *x . Let 1*)(/*)(
*)(

−= ∑
≠
∈

xCdxAP k

ji
xCj

ij  denote the 

average distance between instance i  and other data points in cluster k , 

{ }ijxCjik dxD
k *)(,

max*)(
∈

=  denote the diameter of cluster k  and 

Initial_ ∑ ∑ ∑
= ∈

≠
∈

−=
k

k
kk

xCi
ij

xCj
ij xCxCdxAT

k k1 *)( *)(
))1*)((*)(/()(*)(  denote the 

sum of within cluster averages in solution *x . 

 Set ( ){ }*max
1

xDR kkl K=
=  and set 1≥β . 

Step 3.1 Set 1=i . Set 0=update . 

Step 3.2 Set 1=k . 

Step 3.3 If 1* =ikx  and Kk < , set 1+= kk  and go to Step 3.4. 

If 1* =ikx  and Kk = , set 1+= ii  and go to Step 3.5. 

Step 3.4 Let Cx denote the solution in which instance i  is moved from cluster 

( )iC  to cluster k . 

 If ( ) ( )*xAPxAP C ≤  and RxD C β≤)(max , then  

set ( ) kiC =  and Cxx =* , update = update + 1. 

 If Kk < , set 1+= kk and go to Step 3.3. Otherwise go to Step 3.5. 
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Step 3.5 If ni < , set 1+= ii and go to Step 3.2. 

If ni = and 0=update ,  

Set ∑ ∑∑
= ∈

≠
∈

−=
K

k
kk

Ci
ij
Cj

ij xCxCdxATFinal
k k1

))1*)((*)(/()(*)(_ , 

Go to Step 3.6. 

If ni = and 0>update , go to Step 3.1. 

Step 3.6      If *)(_ xATFinal < *)(_ xATInitial , then STOP. 

If *)(_ xATInitial < *)(_ xATFinal , then set 0* xx = , i.e. revert to the 

clustering solution at the end of Step 2. 

3.3 Improved Seed Finding  

 

In Section 3.2 of the thesis, the proposed clustering algorithm is stated and a formal 

description of the algorithm is given. In the next chapter of the thesis, several 

computational experiments are reported to indicate the efficiency and performance of the 

proposed algorithm, and the improvement achieved by applying seed finding and 

reassignment algorithms to the initialization and solution, respectively, of the MIP-

Diameter model. An alternative seed finding algorithm is developed to improve the 

robustness of the seed finding step presented in the previous section. The seed finding 

algorithm proposed in the previous section is named as Seed Finding 1 (SF1) and the 

algorithm proposed in this section is named as Seed Finding 2 (SF2) in later parts of the 

study.  

The SF1 algorithm has a random nature and it is known that the quality of initial seeds 

has a direct impact on the final solutions and reported solution times of the algorithm. In 

order to overcome this issue, alternative maximal independent set finding methods are 

studied to improve the performance of the proposed algorithm. Among these alternative 

seed finding algorithms, the most promising one is selected and, now, a detailed 

explanation of the alternative seed finding approach will be given. 
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The aim of the alternative seed finding algorithm is to select a set of vertices belonging 

to a maximal independent set in a way that the selected vertices have the largest number of 

neighbors around them. The expectation behind this algorithm is to select a set of vertices 

that will act as natural cluster centers. Recall that in the procedure of SF1, a parameter R  

is set and according to this parameter the graph RG  is constructed. Over this graph, a 

random selection procedure is applied to form a maximal independent set. The alternative 

proposed seed finding algorithm SF2 proceeds as follows. Consecutively two graphs 

),(
11 RR EVG =  and ),(

22 RR EVG =  are constructed where the set of vertices V  

corresponds to instances and an edge between two vertices exists in 
1RE or 

2RE if the 

distance between the two corresponding instances is less than the corresponding 

parameter 1R  or 2R  respectively. 1R  and 2R  are distance parameters that are initialized as 

the average of minimum and maximum values of ijd  values existing at the beginning of 

the algorithm and the same line search procedure given in Section 3.2 applies to the 

determination of these parameters. Initially, the first graph ),(
1

EVGR =  is constructed and 

the number of neighbors of each vertex is counted. Next, the second graph ),(
2

EVGR =  is 

constructed according to the parameter 2R  and the vertex having the largest number of 

neighbors according to the ),(
1

EVGR =  graph is set as the initial element of the maximal 

independent set. A maximal independent set is constructed by starting initially with this 

the selected vertex v and eliminating the vertices adjacent tov, since an independent set S  

is a subset of V  such that there is no edge among the members of S . If there will be a tie, 

the most populated vertex is selected arbitrarily. This step is repeated until no more 

vertices can be added to S . Then, the size of S  is checked, and this procedure is repeated 

by adjusting the distance parameter 2R  through line search and by rebuilding the 

corresponding graph ),(
22 RR EVG =  until the maximal independent set S  in the current 

graph consists of k  points. If k  points cannot be obtained due to the combination of these 

two parameters 1R  and 2R , the distance parameter 1R  is updated according to the number 

of seeds found. If the number of seeds obtained is less than the required number, then 1R  
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is decreased by recalculating its value in order to construct a denser graph. Similarly, if the 

number of seeds found is more than the required number, then 1R  is increased. The 

procedure continues until the desired number of seeds is reached. 

Similarly, once a maximal independent set with size k  is achieved, each vertex in the 

maximal independent set is assigned to a different cluster to initialize the MIP-Diameter 

model and the rest of the algorithm proceeds as stated in Section 3.2. 

A formal description of the alternative seed finding algorithm is presented as follows. 

 

Seed Finding 2 (SF2) 

Step 1: Construction of the graph ),(
11 RR EVG =  

Step 1.0 Set iteration number to 01 =t . 

Set lower and upper bounds to { }ijdtl min)( 11 = , { }ijdtu max)( 11 = . 

Step 1.1     Set 
2

)()(
)( 1111

11
tutl

tR
+

= . 

Step 1.2 Construct the graph )( 11 tRG  where instances correspond to vertices, and 

the edge )( 11
),( tRji Ε∈ , if )( 11 tRdij ≤ . 

Step 1.3 For  ni ...1= , set 0)( =ineighbor . 

Step 1.4 Set  1=i . 

Step 1.5 Set 1=j . 

Step 1.6 If  edge )( 11
),( tRji Ε∈ , set 1)()( += ineighborineighbor . 

 If nj < , then set 1+= jj  and repeat this step. 

 If nj =  and ni < , then set 1+= ii  and go to Step 1.5. 

      Otherwise go to Step 2. 

Step 2: Construction of the graph ),(
22 RR EVG =  

Step 2.0 Set iteration number to 02 =t . 

Set lower and upper bounds to { }ijdtl min)( 22 = , { }ijdtu max)( 22 = . 

Step 2.1     Set 
2

)()(
)( 2222

22
tutl

tR
+

= . 
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Step 2.2 Construct the graph )( 22 tRG  where instances correspond to vertices, and 

the edge )( 22
),( tRji Ε∈ , if )( 22 tRdij ≤ . 

Step 2.3 Find a maximal independent set S in )( 22 tRG  such that 

If KS = , then STOP.  

If KS < , then set )()1( 22 tltl =+ , )()1( 22 tRtu =+ , 122 += tt  and  

Go to Step 2.1. 

If KS > , then set )()1( 22 tRtl =+ , )()1( 22 tutu =+ , 122 += tt . 

Go to Step 2.1.  

If S  does not converge to k , then set )()1( 11 tltl =+ , )()1( 11 tRtu =+ , 

111 += tt   and Go to Step 1.1 or, 

 then set )()1( 11 tRtl =+ , )()1( 11 tutu =+ , 111 += tt  and Go to Step 1.1. 

 

In our computational experiments, the experiments conducted by applying the two 

seed finding algorithms SF1 and SF2 to the proposed clustering algorithm are reported. 

Both SF1 and SF2 algorithms produce promising results and show a positive improvement 

in the solution time of the MIP-Diameter model but although the improved solution time 

of the algorithm is reduced drastically in comparison to its solution without fixing the 

seeds initially, still they are open to improvements. In Section 3.4 we propose a 

preprocessing algorithm to reduce the solution time of the model by fixing some of the 

instances to clusters initially, while preserving the quality of the solution.   

3.4 Preprocessing with Inclusion and Exclusion Rules 

 

The computational results of the proposed algorithm in terms of accuracy and 

performance are promising compared to other mathematical programming clustering 

models and optimization based algorithms existing in the literature but in order to cope 

with other heuristic clustering algorithms, in this section of the study, an inclusion and 

exclusion rule extraction methodology is given. 
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As mentioned before, the aim of SF2 is finding seeds which are possibly close to being 

natural cluster centers. This idea can be extended to setting inclusion and exclusion rules 

without compromising from optimality significantly. Actually, this preprocessing 

methodology is an extension of the seed finding algorithm. The SF1 and SF2 algorithms 

produce a set of seeds which are assumed to be sufficiently away from each other and each 

one may lead to the formation of a cluster. At this point, we may assume these seeds as the 

gravitational center of the clusters and expect them to keep other points around them in the 

corresponding cluster. Some instances will be very close to the center and some will be 

away from it. The instance which is close to the seed of a cluster is expected to be far from 

the seed of the other clusters. By setting a cutoff value which represents being close to or 

away from the seeds, a set of instances are initially fixed to the clusters in addition to the 

seeds or excluded from some clusters which means the so-called instance will not be 

assigned to this cluster during the execution of the MIP-Diameter model.  

First, the SF1 or SF2 algorithms are applied and a set of seeds are determined. For 

ni ,..,1=  and Kk ,..,1= ,  let ikdis  denote the distance between the instance i and the seed 

k  and for Km ,..,1= , and let ilmrr  denote the relative ratio 

im

ik
ikm dis

dis
rr =     (3.10)  

  

 which is the ratio of the distance between instance i and seed k  and the distance between 

instance i  and seed m , where mk ≠ . So, there exists 







2
K

 number of relative distance 

ratios for each instance i . 

Let c  denote the cut off parameter value used in inclusion and exclusion rules. For 

instance i , for a fixed seed k  and for Km ,..,1= , where mk ≠ , if crrikm ≤  then instance 

i  is assigned to the cluster of seed k . Similarly, if crrikm ≥ , then instance i  is not allowed 

be assigned to the cluster k  by setting the required constraint in the MIP-Diameter model. 

The first rule applies for inclusion of instances to clusters and second rule applies for 

exclusion of instances from corresponding clusters. 
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A formal description of the inclusion / exclusion rules is presented as follows. 

 

Inclusion / Exclusion Rules 

Step 1: Calculation of the distances between instances and seeds  

Step 1.0 Set .1=i  

Step 1.1     Set .1=k  

Step 1.2 Set ildis the distance between the instance i  and seed k ,  

If Kk < , then 1+= kk  and go to Step 1.2, 

 If Kk =  and  ni < , then 1+= ii  and go to Step 1.1. 

 Otherwise go to Step 1.3. 

Step 1.3 If ni = , then go to Step 2. 

Step 2: Calculation of the relative ratio rr values 

Step 2.0 Set .1=i  

Step 2.1     Set .1=k  

Step 2.2 Set .1=m  

Step 2.3 Set 
im

ik
ikm dis

dis
rr =  for km ≠ . 

 If Km < , set 1+= mm  and go to Step 2.3. 

 If Km =  and Kk < , set 1+= kk  and go to Step 2.2. 

 If Km = , Kk =  and ni < , set 1+= ii  and go to Step 2.1. 

If Km = , Kk =  and ni = , then go to Step 3. 

Step 3: Inclusion rules 

Step 3.0 Set c cutoff value. 

Step 3.1 Set .1=i  

Step 3.2 Set .1=k  

Step 3.3 For km ...1=  where km ≠ ,  

If crrikm ≤ , then set 1=ikx , 

If  Kk < , then set 1+= kk  and go to Step 3.3. 

If  Kk =  and ni < , then set 1+= ii  and go to Step 3.2. 
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If  Kk =  and ni = , then go to Step 4. 

Step 4: Exclusion rules 

Step 4.0 Set c cutoff value. 

Step 4.1 Set .1=i  

Step 4.2 Set .1=k  

Step 4.3 For Km ,..,1=  where km ≠ ,  

If crrikm ≥ , then set 0=ikx , 

If  Kk < , then set 1+= kk  and go to Step 4.3. 

If  Kk =  and ni < , then set 1+= ii  and go to Step 4.2. 

If  Kk =  and ni = , then STOP. 

 

In the next section, the proposed model and algorithms are applied to test their 

performance on a synthetic data set.  

3.5 Experiments on an Illustrative Example 

 

In this part of the thesis, the proposed mathematical programming MIP-Diameter 

model and the variations of the heuristic clustering algorithms are applied on a set of 81 

data points shown in Figure 3.2. For the purpose of illustration, data points are represented 

in a 2-dimensional space and the distance between any two points is calculated by the 

Euclidean distance measure.  

Experiments are performed on this synthetic data set, which consists of four distinct 

clusters to show how MIP-Diameter model may fail to reach an acceptable solution, and 

to evaluate the accuracy and the performance of the proposed clustering algorithms and as 

well as comparing the results of algorithms with the results of the well-known K-Means 

algorithm. Also, the proposed inclusion/ exclusion rules are applied on the data set to 

analyze their efficiency and their impact on the solution quality of the MIP-Diameter 

model and the proposed clustering algorithm in this thesis.  
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3.5.1 Experiments with the MIP-Diameter Model 

 

For the data set given in Figure 3.2, the minimum value of the maximum diameter of 

the generated clusters is 8, since the horizontal and vertical distance between any two 

neighbor data point is equal to 1. The optimal solution to the linearized MIP-Diameter 

model is obtained using the CPLEX 8.1 solver in approximately three hours of CPU time 

on a PC with Pentium IV 3.06 GHz processor, 512 MB memory. There are 524,954 

branch & bound nodes enumerated with respect to the 329 variables and 13,045 

constraints for this illustrative example. The maximum diameter is found as 8. These 

computational findings indicate the difficulty of solving the proposed MIP-Diameter 

model exactly.  

In Figure 3.3, the optimal solution of the model is illustrated on the data set and it is 

seen that there are 10 data points that could possibly be assigned better. These assignments 

are due to the fact that MIP-Diameter model considers only the assignments of instances 

which set the maximum diameter value and it is insensitive to other assignments being 

made. It is observed that similar instances are assigned to different clusters which may 

lead to a biased interpretation of the solution. These assignments do not deteriorate the 

minimum value of maxD but result in an increase in the value of AT  value. Thus, the 

proposed reassignment algorithm is developed with the purpose of fixing these distorted 

assignments.  
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Figure 3.2: Data points and their graphical representation 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.3: The solution of the MIP-Diameter model without seeds 
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3.5.2 Experiments with SF1  

 

Next, the MIP-Diameter model initialized by the SF1 algorithm is applied on the same 

data set. A set of experiments are reported in order to observe accuracy, efficiency and 

performance of the SF1 and the effect of randomness of the algorithm on these 

parameters. In these experiments, initially, the algorithm starts by the seed finding 

algorithm SF1 to determine 4 seeds and then the MIP-Diameter model is solved with these 

seeds. The experiments are given in Table 3.1. It is seen that the MIP-Diameter model 

solved with seeds also reaches the optimal solution in all of the experiments as maximum 

diameter value is again found to be 8. However, by applying the seed finding algorithm 

the running time of the model is decreased from almost three hours to 4.08 to 13.41 

seconds while preserving the optimality of the resulting solution. The achievement in the 

solution time of the model is promising but further investigation on the solution quality of 

the model should be done. In Figures 3.4 and 3.5, a good solution and a bad solution 

example of the model are illustrated to show the possible outcomes of the model initiated 

by the SF1.  

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 3.4: A solution of the MIP-Diameter model with seeds found by SF1 
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Figure 3.5: A possible alternative solution of the MIP-Diameter model with seeds  

    found by SF1 
 
As expected, when one examines Figure 3.4 and Figure 3.5, it is seen that there are 

still assignments of data points that are open to improvement. Figure 3.4 indicates that 

good initial seeds may lead to a successful assignment pattern. In this figure, there exist 

only 2 distorted assignments while preserving the optimality of the model and the reported 

solution time for this experiment is only 4.08 seconds. But, Figure 3.5 is shown to indicate 

the effect of randomness of the SF1 algorithm on the solution quality of the MIP-Diameter 

model. In this solution, there are 13 distorted assignments and the reported solution time is 

11.98 seconds. The computational findings of these two solutions, in experiments 1 and 4 

respectively, and alternative solutions of the SF1 algorithm applied to MIP-Diameter 

model are given in Table 3.1. 

In below Table 3.1, the results of different solutions are given in order to observe the 

effect of randomness of the SF1 algorithm on the solution quality of the MIP-Diameter 

model. The number of variables is 329 and the number of constraints is 13,049 in all 

experiments reported in below table. Here, Iter. denotes the number of iterations the model 

executed and Node denotes the number of branch & bound nodes enumerated by the 

model. Dmax is the optimal solution found and Distorted denotes the number of distorted 

assignments in the final solution of the model initialized by SF1 algorithm. In the last two 

0

2

4

6

8

10

12

14

0 5 10 15 20



 
 
Chapter 3: The MIP-Diameter Model and the Proposed Heuristic Clustering Algorithms 37                   
                                                                                         

 

columns, (sec)t denotes CPU time and Solv (MB) denotes the size of required solver 

memory in megabytes. 

 

Exp. 
Number Iter. Node Dmax Distorted t(sec) Solv.  

(MB) 

1 859 0 8 2 4.08 6.12 
2 855 11 8 9 7.17 6.05 
3 1135 37 8 11 8.78 6.05 
4 1267 56 8 13 11.98 6.05 
5 1350 53 8 8 13.41 6.12 

Table 3.1: Computational results for SF1 algorithm 
 

The preservation of the optimal solution of the model is a good achievement of the 

SF1 algorithm but due to the random nature of the algorithm, several set of seeds can be 

determined and there is no guarantee on the selection of seeds which may end up with a 

meaningful solution. In later parts of the study, the findings from the real data set 

strengthen this hypothesis with respect to the SF1 algorithm.  

3.5.3 Experiments with SF2  

 

In this section of the study, the MIP-Diameter model initialized by the SF2 algorithm 

is applied on the illustrative data first to analyze the efficiency of the algorithm and then to 

compare the performance of the two seed finding algorithms and their impact on the MIP-

Diameter model. Several solutions of MIP-Diameter model initialized by SF2 algorithm 

are reported in below Table 3.2. The solutions of these experiments are also the exact 

solution for the minimization of maximum diameter criterion. The running times of the 

experiments are from 9.45 seconds to 17.11 seconds. In Figure 3.6, an assignment pattern 

of the MIP-Diameter model initialized with seeds found by SF2 algorithm is shown. 
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Exp. 
Number Iter. Node Dmax Distorted t(sec) Solv.  

(MB) 

6 1331 3 8 7 9.45 6.05 
7 1562 81 8 6 11.26 6.05 
8 1649 80 8 8 12.14 6.05 
9 2030 105 8 4 14.94 6.05 

10 2269 117 8 4 17.11 6.05 

Table 3.2: Computational results for SF2 algorithm 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.6: The solution of the MIP-Diameter model with seeds found by the SF2  
    algorithm 

 
Here we observe consistency and less variation among experiments. Note that SF2 is a 

deterministic algorithm which is a derandomized version of SF1. By derandomization, the 

run times increase slightly, the solution quality stays the same and most importantly robust 

solutions are obtained. 

3.5.4 Experiments with Proposed Heuristic Clustering Algorithm and Its 

 Comparison with K-Means 

 

In this section of the illustrative example part of the study, the proposed seed finding 

algorithm is applied on the solution of the MIP-Diameter model initialized by two seed 

finding algorithms where the value of parameter β equals to 1. The 10 experiments 
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reported in Tables 3.1 and 3.2 initialized by SF1 and SF2 algorithms converge to the same 

solution which is shown below in Figure 3.7 after the reassignment algorithm is applied to 

the solution of the MIP-Diameter model with seeds. In this solution, only one data point is 

assigned incorrectly. The CPU time of the reassignment algorithm on this data set is 

minimal, thus we ignore its computation time in this part of the study. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.7: The solution of the proposed algorithm 
  

Next, the solution of the proposed algorithm is compared with the solution of the well-

known K-Means algorithm according to the measure AT , the sum of average distances of 

the generated clusters. In below Figure 3.8, the assignment pattern of the K-Means 

algorithm is illustrated and in Table 3.3 the numerical values for the exact solution, the 

MIP-Diameter model’s solution, the K-Means algorithm’s solution and the proposed 

algorithm’s solution are given. Based on the values given in Table 3.3, the proposed 

algorithm solution is only 0.2% worse than the optimal solution of the MIP-Diameter 

model with respect to the sum of averages of within-cluster distances which aims to 

generate compact clusters. However, the defined clustering measures indicate that the 

solution of the K-Means algorithm is not close to the optimal partitioning of the data set.   

In order to compare the two algorithms to the K-Means algorithm, we also discuss the 

quality of the solutions. The solution quality of the K-Means algorithm on this illustrative 
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data set as seen from Figure 3.8 is not favorable. The clusters formed by K-Means 

algorithm are different from the original clusters existing in the data set. One of the 

resulting clusters generated by K-Means algorithm is the combination of two different 

clusters originally. The numerical observations constitute an important step in the 

clustering analysis. But another important expectation from clustering algorithms is the 

interpretability of the resulting solutions. In this example we show that K-Means algorithm 

may lead to a skewed interpretation of the resulting solution although the AT  value of the 

solution of this algorithm seems comparable to those of the other algorithms.  

 

 

 

 

 

 
Table 3.3: The comparison of results based on the sum of averages of within-cluster 

distances and maxD  
 

 

 

 

 

 

 

 

 

 
 

 
Figure 3.8: The solution of the K-Means algorithm 

 

Solution AT Dmax 

Optimal 10.8766 8 

MIP-Diameter model with seeds 12.3127 8 

K-Means algorithm 11.3838 10.05 

Proposed algorithm 10.8988 8 
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3.5.5  Effect of Inclusions and Exclusions on the Performance of the Proposed 

 Clustering Algorithm 

 

In this section, experimental results for the Inclusion/ Exclusion rules applied to the 

MIP-Diameter model is reported in order to analyze the efficiency of the proposed rules 

and their impact on the solution quality of the model. In Table 3.4, the experimental 

results are reported to observe the effect of the Inclusion/ Exclusion rules on the MIP-

Diameter model solution. These experiments are conducted as follows. First, the SF2 

algorithm is applied on the data set and 4 seeds are selected, then these seeds are given as 

input to Inclusion/ Exclusion rule derivation algorithm and the value of the cutoff 

parameter c  is set to a value depending on the data set and the type of the rule one prefers 

to apply on the model. The instances to be assigned to certain clusters are determined 

according to the value of c . Then, MIP-Diameter model is solved with these initial 

assignment and finally the reassignment algorithm is applied on the solution of the MIP-

Diameter model in order to correct possible deterioration resulted by inclusion/ exclusion 

rules and to improve the solution quality of the MIP-Diameter model. 

In experiments performed on these rules, we observe that the effect of including an 

instance has a bigger impact than the exclusion of an instance from a cluster. When the 

variable ikx  denoting the assignment of instance i  to cluster k  is fixed to 1, from 

constraint (3.3) the rest of ikx  for each k  is fixed to 0 . This eliminates K  decision 

variables from the problem. When it is fixed to 0, only one of the decision variables is 

fixed and, 1−K  decision variables for instance i  are still free. For this reason, first the 

experiments conducted with inclusion rules are reported in Table 3.4 to analyze their 

impact on the solution of the model. In Table 3.4, the newly introduced expression 

max%D denotes the difference, in percentage, between the exact solution of the model and 

the optimal solution achieved by the model initialized by inclusions. Final maxD  value 

denotes the value of the maximum diameter and also Final AT denotes the value of sum of 

averages within clusters occurring in the solution of the reassignment algorithm.  
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In Table 3.4, it is shown that when the value of  c  increases, there are more number of 

instances to be fixed to clusters initially. Until c  takes the value of 0.4, the optimal 

solution of the model is equal to the exact solution of the model. If we increase the c  

value more than this level, maxD  starts to deteriorate but we see that the reassignment 

algorithm fixes this deterioration and reduces the value of the AT  value to the best 

possible value achievable by the proposed clustering algorithm which is previously 

reported as the solution of the clustering algorithm in Table 3.3. The inclusion/ exclusion 

rules are proposed in order to decrease the solution time of the MIP-Diameter model while 

preserving the accuracy of the solution to a possible extent. The solution time of the model 

is decreased to 0.25 CPU seconds while the solution of the model is still reported to be 

optimal according to the minimization of the maximum diameter criterion and only 0.2% 

worse than the optimal solution of the MIP-Diameter model with respect to the sum of 

averages of within-cluster distances. 

 

Exp. 
Number c Number of 

Inclusions Iter. Node Dmax % Dmax 
Final 
Dmax 

Final 
AT t (sec) 

11 - 4 1331 3 8 - 8 10. 8988 9.45 
12 0.2 16 1123 64 8 - 8 10. 8988 5.89 
13 0.3 25 235 1 8 - 8 10. 8988 1.16 
14 0.4 33 283 3 8 - 8 10. 8988 1.08 
15 0.5 41 108 0 8.06 0.775 8 10. 8988 0.34 
16 0.6 50 44 0 9.22 15.25 8 10. 8988 0.3 
17 0.7 58 28 0 10.05 25.625 8 10. 8988 0.26 
18 0.8 66 11 0 10.05 25.625 8 10. 8988 0.28 
19 0.9 73 6 0 10.05 25.625 8 10. 8988 0.25 

Table 3.4: The inclusion experiments for different values of c cutoff value 

 
Finally, we study the impact of exclusions on the performance and solution quality of 

the MIP-Diameter model. To observe this, the c  value for inclusion is set to be equal to 

0.3, which preserves the exactness of the solution of the model on the illustrative data set. 

Experiments are performed on this setting with different values of c  value for exclusion. 

Exclusion rules work as the opposite of the inclusion rules. A higher c  value for exclusion 

means that a smaller number of instances will be excluded from clusters because as the c  
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value increases in exclusion, the further instances to seeds are excluded from 

corresponding clusters. In Table 3.5, the experimental results are given for this set of 

experiments.  

From Table 3.5, it is seen that the exact solution for the illustrative data set is achieved 

for all c  values in the exclusion rule. Also it is seen that the exclusions has a positive 

impact on the solution time of the model but when compared with inclusions, as stated 

previously their effect is less.  

 

Exp. 
Number c Number of  

Exclusions Iter. Node Dmax % Dmax t (sec) 

11 1 81 201 2 8 - 1.03 
12 1.1 70 207 2 8 - 0.76 
13 1.2 65 217 2 8 - 0.81 
14 1.3 50 255 2 8 - 0.92 
15 1.4 40 257 1 8 - 0.94 
15 1.5 29 232 1 8 - 1.05 

Table 3.5: The exclusion experiments for different values of c cutoff value 
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Chapter 4 

EVALUATION OF THE PROPOSED MIP-DIAMETER MODEL AND 
HEURISTIC CLUSTERING ALGORITHM ON A REAL DATA SET 

 

In this part of the thesis, the performance and the accuracy of the MIP-Diameter model 

and the proposed heuristic clustering algorithm are examined on a real data set. In later 

parts of this section, results of various computational experiments carried on data sets 

drawn from the Digiturk database are reported.  

In this thesis, real data from a satellite broadcasting company, Digiturk, is used in our 

computational experiments. The company, founded in 1999, is a private digital platform 

operating in Turkey. The firm has around 800,000 customers and provides five product 

packages, three pay-per-view services and also various channels, interactive channels and 

events to its customers. Digiturk is eager to find out the opportunities in customer 

relationship marketing, such as one–to–one marketing. The company would like to 

segment its customers based on the transactional factors, such as their package 

subscriptions, pay-per-view purchases, and interactive event interests. Also, in Chapter 6 

of the study an interpretation of the customer segments obtained by the clustering 

algorithm applied to Digiturk data is given. 

In this section of the study, the MIP-Diameter model is solved by using OPL Studio 

version 3.6.1 [29], CPLEX version 8.1 and seed finding, reassignment and K-Means 

algorithms are implemented using MATLAB 7.0 [30]. The experiments are performed on 

a notebook with 256 MB memory and 1.5 GHz speed Pentium (R) M processor running 

under Windows XP Professional.  
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4.1 Experiments with the MIP-Diameter Model 

 

On the real data set consisting of 23 attributes and 2000 instances several sets of 

experiments are performed in order to analyze the performance and the accuracy of the 

proposed MIP-Diameter model. We selected 100, 200, 300, 400 and 500 instances out of 

2000 instances to perform our experiments. 

First, we performed a set of experiments on the linearized MIP-Diameter model 

without seeds to compare its results with the one initiated with seeds. One can observe the 

positive effect of the seed finding algorithm on the solution of the MIP-Diameter model, 

in terms of improvement in the number of iterations, the number of nodes and the CPU 

time required to partition the data set into 2 clusters by examining the results given in 

Table 4.1 and Figure 4.1. From Figure 4.1, one can see that the solution time of the MIP-

Diameter model without seeds increases exponentially and if the model is solved with 

seeds, it is seen that the solution time reduces drastically. 

In Table 4.1, k  is the number of clusters, N  is the number of instances, .Var  is the 

number of variables and .Cons  is the number of constraints in the model, .Iter  is the 

number of iterations the model performs and ).(MBSolv is the required memory size, 

(sec)t denotes CPU time and maxD  is the objective function value of the MIP-Diameter 

model.  

     Without Seeds With Seeds 

Exp. 
Number k N Var. Cons. Dmax Iter. Node t(sec) Solv. (MB) Dmax Iter. Node t(sec) Solv.(MB)

1 2 100 203 10002 10.8 3615 42 8.92 4.65 10.8 430 11 1.84 4.66 
2 2 200 403 40002 10.8 14295 79 149.03 17.97 10.8 1257 31 22.38 17.97 
3 2 300 603 90002 10.8 35943 251 1895.45 39.74 10.8 1761 39 70.61 39.74 
4 2 400 803 160002 10.8 45988 122 3787.94 70.23 10.8 2346 55 292.94 70.23 
5 2 500 1003 250002 10.8 50609 116 8129.77 100.95 10.8 2343 34 893.34 100.95 

Table 4.1: A comparison of MIP-Diameter model with MIP-Diameter with seeds 
 

It is seen in Table 4.1 that CPU times, number of nodes and iterations decrease 

significantly when seeds are used while the optimal solution of the model is preserved. We 

performed several experiments with varying size of data sets and number of clusters and 
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from all those experiments the positive effect of the seed finding algorithm is approved. 

While partitioning the same data set with 100 instances into 4 clusters without seeds takes 

more than 2 weeks of time, by applying the seed finding algorithm we partition the same 

data set into 4 clusters only in 33.2 seconds.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: The effect of the seed finding algorithm on the solution time of the MIP- 
Diameter model 

 

 

The positive effect of feeding seeds to the MIP-Diameter model is observed 

experimentally in above Table 4.1 and Figure 4.1. In the 2 cluster case, the optimality of 

the model is preserved while achieving an improvement in solution time of the model. In 

many clustering algorithms, the 2 cluster case is mentioned as a special case and in this 

proposed algorithm, selection of the 2 seeds for 2 clusters is done by determining the 

instances which have the longest distance between each other. Thus, the preservation of 

the optimality is an expected result for the 2 cluster case. 
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4.2 Comparison of the Performance of SF1 and SF2 Algorithms on the Real Data Set   

 

In Chapter 3, we proposed two seed finding algorithms and later in the same chapter, 

we reported a set of experiments on an illustrative data set in order to show the 

performance of the proposed SF1 and SF2 algorithms. As discussed earlier, SF1 algorithm 

picks a randomly selected node to form a maximal independent set and each time the 

algorithm proceeds, it may produce a different seed set. In most cases tested, the 

performance and accuracy of the algorithm was seen to be promising and the results 

reported were optimal or very close to the optimal solution. But, giving initially seeds to 

algorithms is a widely studied area and it has been proven that the quality of the seeds 

directly affects the quality of the final solution and the performance of the solution 

algorithm. The SF2 algorithm is designed with the purpose of reducing the effect of the 

randomness that exists in the SF1 algorithm. The SF2 algorithm proceeds by selecting the 

first element of the candidate independent set according to the popularity of the nodes 

which is defined on a parametric graph. The rest of the algorithm proceeds the same way 

as SF1 does. Thus, the SF2 algorithm is expected to be more stable than the SF1 

algorithm. In Tables 4.2, 4.3, 4.4 and 4.5 the experimental results of the SF1 and SF2 

algorithms performed on the real data set of 100 instances partitioned into 3 and 4 clusters 

are reported respectively.  

 

 

 

 

 
 
 
 

Table 4.2: SF1 Algorithm applied to the MIP-Diameter model on the data set of 100 
instances for 3 cluster solution 

 

Exp. 

Number 
k N Var. Cons. Dmax Iter. Node t(sec) Solv. (MB) 

6 3 100 304 14956 9.8 1103 110 9.8 6.98 

7 3 100 304 14956 8.9 1866 169 14.09 6.97 

8 3 100 304 14956 9.4 4666 344 17.5 6.97 

9 3 100 304 14956 8.9 3251 304 17.8 6.97 

10 3 100 304 14956 8.9 7471 749 25.61 6.97 
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Table 4.3: SF2 Algorithm applied to the MIP-Diameter model on the data set of            

100 instances for 3 cluster solution 
 

 

 

 

 

 

 
Table 4.4: SF1 Algorithm applied to the MIP-Diameter model on the data set of           

100 instances for 4 cluster solution 

 
 

 

 

 

 

 
 
Table 4.5: SF2 Algorithm applied to the MIP-Diameter model on the data set of 100 

instances for 4 cluster solution 
 

The objective function value of the MIP-Diameter model applied on the 100 instance 

data set without seeds for 3 clusters is found to be 8.9. As previously stated, the same data 

set could not be partitioned into 4 clusters in more than two weeks of time but based on 

our experiments with seeds we expect that the value of the optimal solution for the 4 

cluster solution is 8.5. From above tables, it is seen that SF2 algorithm leads to better 

Exp. 

Number 
k N Var. Cons. Dmax Iter. Node t(sec) Solv. (MB) 

11 3 100 304 14956 8.9 1899 247 14.14 6.97 

12 3 100 304 14956 8.9 2892 285 18.17 6.90 

13 3 100 304 14956 8.9 3467 377 18.55 6.97 

14 3 100 304 14956 8.9 6659 433 23.19 6.98 

15 3 100 304 14956 8.9 6053 395 24.27 6.90 

Exp. 

Number 
k N Var. Cons. Dmax Iter. Node t(sec) Solv. (MB) 

16 4 100 405 19908 8.5 4535 686 33.2 9.27 

17 4 100 405 19908 8.8 3417 647 33.47 9.17 

18 4 100 405 19908 8.5 16195 2906 70.88 9.17 

19 4 100 405 19908 8.8 14874 4163 95.34 9.17 

20 4 100 405 19908 8.5 77334 20262 379.33 9.27 

Exp. 

Number 
k N Var. Cons. Dmax Iter. Node t(sec) Solv. (MB) 

21 4 100 405 19908 8.5 6661 678 35.09 9.16 

22 4 100 405 19908 8.5 6035 1042 38.59 9.17 

23 4 100 405 19908 8.5 11683 3249 76.33 9.17 

24 4 100 405 19908 8.5 18940 7888 138.69 9.17 

25 4 100 405 19908 8.5 33132 6799 142.34 9.17 
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solutions than the SF1 algorithm. In Table 4.2, two of the experiments are reported to be 

suboptimal for the 3 cluster solution case and in Table 4.4 two of the experiments are 

reported to be suboptimal for the 4 cluster solution case. None of the experiments 

conducted with the SF2 algorithm is reported to be suboptimal which constitutes an 

advantage over the SF1 algorithm indicating its robustness. It would not be favorable to 

compare the solutions times of the models initialized by alternative seed finding 

algorithms since both algorithms involve a random part in their structure. However we can 

conclude that compared with the solution times more than two weeks of time, all of the 

reported solution times are very promising.  

4.3 Experiments with the Proposed Heuristic Clustering Algorithm 
 

In Tables 4.6, 4.7 and 4.8, the experimental findings with the proposed algorithm are 

given with the goal of illustrating the benefit of the reassignment procedure. For this part 

of the study, data sets with 100, 200 and 300 instances are partitioned into two to five 

clusters. In addition to the explanations in Section 4.1, the term AT  in the below tables is 

the sum of averages of within-cluster distances. 

In these experiments, we apply a property of the proposed MIP-Diameter model.  

 

Property 4.1: The objective function value of the k  cluster solution can be used as an 

upper bound in the 1+k  solution.  

Proof: The proof of this property follows easily from the following observation. In the 

MIP-Diameter model, the optimal solution of the k  cluster model is feasible to the 1+k  

cluster model. Therefore the objective function value of the 1+k  model is expected to be 

at least as good as the objective function value of the k  cluster model which means that 

the objective function value of the k  cluster model can be used as an upper bound for the 

1+k  cluster solution. � 

Based on the above property, the experiments reported in Tables 4.6, 4.7 and 4.8 are 

conducted. CPU Times reported in the below tables are achieved by using the upper bound 

constraint.  For this data set, the solution of the two cluster case has almost no impact on 

the solution time of the three cluster case since the gap between the two objective function 
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values is large but it is seen that the improvement in solution times is promising for the 

increasing number of cluster as the gap between the values of the maxD values is small. The 

partitioning of the 300 instance data set into five clusters takes more than 1,000 second for 

several seed sets however by applying the stated property in above, the solution is 

achieved in only 10.72 seconds. By applying this property, we may partition the data set 

into 5 cluster recursively. In the below tables, the solution times are not reported as 

aggregate since we want to emphasize the positive effect of the Property 4.1 on the 

solution efficiency of the model. Due to this fact aggregate solution times also should be 

considered. The aggregate solution time of the 5-cluster solution on 300 instance data set 

is actually 1,004 seconds. When we compare this value with the above stated value, one 

can state there is not a significant achievement due to this property. But when we solve the 

4-cluster solution, the benefits we achieve by applying this property are significant since 

the solution time of the proposed algorithm for 4-cluster case is more 1,000 seconds. 

When we apply this property, it reduces into only 53.72 seconds for 300 instance data set 

as seen from Experiment 36 in Table 4.7.  

In all of these experiments, the coefficient β is taken as 1. We note that the sum of 

average within cluster distances almost always improves with reassignment and the 

improvement is more significant as the number of clusters increases. One can observe 

these findings from Figures 4.3, 4,4 and 4.5.  

 

Table 4.6: The experimental results of Proposed Algorithm on the 100 instance data set 

 

 

    MIP-Diameter Proposed Algorithm 

Exp. 

Number 
k Var. Cons. Iter. Node Dmax AT t(sec) 

Solv. 

(MB) 
RIter. Dmax AT %Dmax %AT t(sec)

Total

t(sec) 

26 2 203 10002 430 11 10.8 13.228 1.84 4.66 3 10.8 12.4425 0.00 0.06 0.34 2.18 

27 3 304 14956 1899 247 8.9 17.791 14.14 6.97 4 8.9 17.6075 0.00 0.01 0.61 14.75

28 4 405 19909 31 0 8.5 23.273 0.36 9.17 4 8.5 22.3050 0.00 0.04 0.81 1.17 

29 5 506 24861 180 0 8.4 29.566 1.36 11.48 10 8.4 27.3717 0.00 0.08 1.92 3.28 
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Table 4.7: The experimental results of Proposed Algorithm on the 200 instance data set 

 

Table 4.8: The experimental results of Proposed Algorithm on the 300 instance data set 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: The performance of the algorithm in terms of CPU Time according to the 

number of instances and the number of clusters 
 

In above Figure 4.2, one can observe the positive effect of the Property 4.1 on the 

performance of the proposed algorithm in addition to the seed finding algorithm. As a 

remark, the solution time of the 3-cluster case for all data sets is long compared to the 4 

    MIP-Diameter Proposed Algorithm 

Exp. 

Number 
k Var. Cons. Iter. Node Dmax AT t(sec) 

Solv. 

(MB) 
RIter. Dmax AT %Dmax %AT t(sec)

Total

t(sec) 

30 2 403 40004 1257 31 10.8 13.199 24.38 17.97 4 10.8 12.387 0.00 0.06 2.00 26.38 

31 3 604 59906 6131 505 8.9 18.111 172.81 26.72 3 8.9 17.4138 0.00 0.04 2.90 175.71

32 4 805 79809 181 0 8.5 22.704 1.97 35.44 3 8.5 21.974 0.00 0.03 3.84 5.81 

33 5 1006 99711 - - 8.4 27.073 1.81 44.18 3 8.4 26.724 0.00 0.01 4.63 6.44 

    MIP-Diameter Proposed Algorithm 

Exp. 

Number 
k Var. Cons. Iter. Node Dmax AT t(sec) 

Solv. 

(MB) 
RIter. Dmax AT %Dmax %AT t(sec) 

Total

t(sec) 

34 2 603 90004 1761 39 10.8 13.008 75.75 39.73 4 10.8 12.3663 0.00 0.05 5.95 81.70 

35 3 904 134857 16607 954 8.9 17.841 874.58 59.35 3 8.9 17.3427 0.00 0.03 8.77 883.35

36 4 1205 179709 1602 19 8.5 23.571 53.72 78.95 5 8.5 21.8446 0.00 0.07 17.34 71.06 

37 5 1506 224561 - - 8.4 26.638 10.72 98.54 6 8.4 26.5557 0.00 0.00 25.48 36.20 
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and more cluster cases because the gap between the values of the 2-cluster and 3-cluster 

solution is big. Therefore, the derived upper bound for 3-cluster case has no impact on the 

solution time of the algorithm. But as the number of clusters is increased, this gap gets 

smaller and the solution time of the algorithm improves dramatically. Moreover, the MIP-

Diameter model loses its exponential solution time property.  

 

 

 

 

 

 

 
Figure 4.3: The effect of the proposed algorithm on the value of AT on the 100 instance 

data set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: The effect of the proposed algorithm on the value of AT on the 200 instance 
data set 
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Figure 4.5: The effect of the proposed algorithm on the value of AT on the 300 instance 
data set 

4.4 Experiments with Inclusion / Exclusion Preprocessing Rules 

 

In Tables 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 the experimental results with the 

inclusion/ exclusion preprocessing rules applied to the proposed algorithm with the 

purpose of observing the benefits achieved are given. Data sets with 100, 200 and 300 

instances are partitioned into two to five clusters for this part of the study. The tables are 

organized as follows: the first table for each data set shows the computational values in 

terms of number of iterations, number of nodes and solution time required and the value 

of maxD and AT  criteria achieved by the MIP-Diameter model initialized solely with seeds 

and MIP-Diameter model initialized with included and excluded instances in order to 

observe the improvement achieved by the proposed inclusion/ exclusion rules. The second 

table reports the results of the reassignment algorithm applied to the solutions reported in 

first tables. Therefore, the proceeding two tables for each data set should be analyzed 

together to observe the improvements.  

All experiments reported in this section are performed as follows: seeds are 

determined to partition the data set into two to five clusters by applying the SF2 algorithm. 

The MIP-Diameter model is solved as initialized by these seeds and the objective function 
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value of each preceding solution is used as an upper bound in the solution of the 

consecutive experiment. The experiments with inclusions and exclusions use the same set 

of seeds to determine which instances will be assigned to certain clusters and which 

instances will be excluded from certain clusters. Next, the MIP-Diameter model is solved 

following the same procedure. We note that one should consider the reported solution 

times in these experiments as aggregate times as we stated in Section 4.3 of the thesis. 

Next, the reassignment algorithm is applied on both solutions for the same data set with 

equal number of clusters. The c value for inclusion is set to 0.7 and c  value for exclusion 

is set to 1.5 in all experiments reported in this section in order to analyze possible 

outcomes of proposed methodology to improve the solution time of the MIP-Diameter 

model. 

When we analyze the below tables, maxD  deteriorates when the inclusion and 

exclusions are applied over a certain cutoff value for inclusions and below a certain cutoff 

value for exclusions. However, the AT  values occurring in both solutions are reported to 

be very close to each other. The solution time of the model is decreased in all cases. In 

experiment 47, the value of maxD  is increased 6% but from other side, the solution time is 

reduced drastically while at the same time an improvement in AT  value is achieved. Next, 

from Tables 4.10, 4.12 and 4.14 it can be observed the final AT  for two solutions are 

reported to be very close to each other. Also, one can observe these findings from Figures 

4.6 and 4.7. Thus, we can conclude that the proposed inclusion/ exclusion rules have a 

positive impact on solution time of the proposed MIP-Diameter model while preserving 

the final quality of the solution, further to tell possibly in some cases resulting in an 

ignorable increase in final AT  values.  

Table 4.9: The experimental results of MIP-Diameter model initialized by applying 
Inclusion and Exclusion rules on the 100 instance data set 

   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions and Exclusions 

Solv. Exp. 
Number k N Iter. Node Dmax AT t(sec) Solv. 

(MB) Inc. Exc. Iter. Node Dmax AT t(sec) 
(MB) 

38 2 100 430 11 10.81 13.23 1.84 4.66 28 23 94 9 10.8 13.05 0.23 4.71 
39 3 100 1899 247 8.9 17.79 14.14 6.97 54 9 33 0 9.2 18.30 0.31 6.92 
40 4 100 31 0 8.5 23.27 0.36 9.17 22 0 - - 9.1 23.68 0.31 9.17 
41 5 100 180 0 8.4 29.57 1.36 11.48 21 0 10 0 9 29.47 0.47 11.47 
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Table 4.10: The experimental results of Reassignment Algorithm applied on the solutions 
of the MIP-Diameter model reported in Table 4.9  

 

 
 
 
 
 

Table 4.11: The experimental results of MIP-Diameter model initialized by applying 
Inclusion and Exclusion rules on the 200 instance data set 

 

 

 

Table 4.12: The experimental results of Reassignment Algorithm applied on the solutions 
of the MIP-Diameter model reported in Table 4.11 

 

 

 

 
   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions 

and Exclusion 

Exp. 
Number k N RIter. Dmax AT %Dmax %AT RIter. Dmax AT %Dmax %AT 

42 2 100 3 10.8 12.44 0.00 0.06 2 10.8 12.44 0.00 0.05 
43 3 100 4 8.9 17.61 0.00 0.01 5 8.9 17.61 0.03 0.04 
44 4 100 4 8.5 22.31 0.00 0.04 8 8.9 22.50 0.02 0.05 
45 5 100 10 8.4 27.37 0.00 0.08 8 9 27.20 0.00 0.08 

   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions and Exclusions 

Solv. Exp. 
Number k N Iter. Node Dmax AT t(sec) Solv. 

(MB) Inc. Exc. Iter. Node Dmax AT t(sec) 
(MB) 

46 2 200 1257 31 10.8 13.19 24.38 17.97 57 47 218 1 10.8 12.97 0.92 17.99 
47 3 200 6131 505 8.9 18.11 172.81 26.72 96 7 279 3 9.5 17.79 1.95 26.74 
48 4 200 181 0 8.5 22.70 1.97 35.44 55 0 - - 8.9 23.37 1.84 35.45 
49 5 200 - - 8.4 27.07 1.81 44.18 68 0 - - 8.4 28.09 1.92 441.88 

   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions and 
Exclusions 

Exp. 
Number k N RIter. Dmax AT %Dmax %AT RIter. Dmax AT %Dmax %AT 

50 2 200 4 10.8 12.39 0.00 0.06 4 10.8 12.39 0.00 0.05 
51 3 200 3 8.9 17.42 0.00 0.04 2 9.5 17.40 0.00 0.02 
52 4 200 3 8.5 21.98 0.00 0.03 4 8.9 22.33 0.00 0.04 
53 5 200 3 8.4 26.73 0.00 0.01 4 8.4 26.78 0.00 0.05 
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   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions and Exclusions 

Solv. Exp. 
Number k N Iter. Node Dmax AT t(sec) Solv. 

(MB) Inc. Exc. Iter. Node Dmax AT t(sec) 
(MB) 

54 2 300 1761 39 10.8 13.01 75.75 39.73 86 71 363 3 10.8 12.94 2.75 39.78 
55 3 300 16607 954 8.9 17.84 874.58 59.35 95 34 545 30 9.8 19.19 11.11 59.39 
56 4 300 1602 19 8.5 23.57 53.72 78.95 118 6 201 0 8.5 22.81 4.11 78.99 
57 5 300 - - 8.4 26.64 10.72 98.54 101 0 - - 8.4 27.86 4.47 98.56 

Table 4.13: The experimental results of MIP-Diameter model initialized by applying 
Inclusion and Exclusion rules on the 300 instance data set 

 
 
 

   MIP-Diameter initialized with seeds only MIP-Diameter initialized with Inclusions and 
Exclusions 

Exp. 
Number k N RIter. Dmax AT %Dmax %AT RIter. Dmax AT %Dmax %AT 

58 2 300 4 10.8 12.37 0.00 0.05 5 10.8 12.37 0.00 0.04 
59 3 300 3 8.9 17.34 0.00 0.03 6 9.7 17.91 0.01 0.07 
60 4 300 5 8.5 21.84 0.00 0.07 3 8.5 21.81 0.00 0.04 
61 5 300 6 8.4 26.56 0.00 0.00 4 8.4 26.57 0.00 0.05 

Table 4.14: The experimental results of Reassignment Algorithm applied on the solutions 
of the MIP-Diameter model reported in Table 4.13  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.6: The effect of the preprocessing rules on the solution time of the proposed 

algorithm on 300 instance data set 

0

200

400

600

800

1000

1200

2 3 4 5

Number of clusters

C
PU

 T
im

e 
(s

ec
)

With seeds
Preprocessing



 
Chapter 4: Evaluation of the Proposed MIP-Diameter Model and Heuristic Clustering 
Algorithms on a Real Data Set                                                                                            57 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: The effect of the preprocessing rules on the Dmax and AT values of the 

proposed algorithm on 300 instance data set 
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Chapter 5 

A MIXED-INTEGER NONLINEAR MATHEMATICAL PROGRAMMING 
MODEL TO MINIMIZE THE SUM OF WITHIN-GROUP DISTANCES      

(MINLP-SWGD)  
 

5.1 Proposed Mathematical Programming Model 

 

In this part of the thesis, a mixed-integer nonlinear programming model (MINLP) with 

the objective function of minimization of the sum of within-group distances (SWGD) is 

studied. Previously, clustering problem with this criterion is studied by Rao [23]. Rao [23] 

studied the same MINLP model, and named the partitioning criterion as total within-group 

distances (TWGD). He proposed the linearization of the model by adding a set of 

constraints. He proposed a solution methodology only for the two cluster case but reported 

no computational results. Brusco [24] studied the criterion of minimization of the sum of 

within-group distances in addition to the minimization of the maximum diameter criterion. 

In the study, he proposes a branch and bound algorithm in which tighter upper bounds are 

derived by utilizing an exchange algorithm. For the TWGD criterion, the solution time 

reported for 40 instances and 6 clusters is 3152.12 seconds. The branch-and-bound 

methods reported in his study are not applicable on large data sets due to limitations on 

computational time. Moreover, the efficiency and performance of the algorithms are 

reported to be very sensitive to the number of clusters. 

 The formulation of the problem with the objective defined above leads to a mixed-

integer nonlinear programming problem.  

Given a data set of n data items in m - dimensions, i.e. a set of n  points is mR , the 

objective of the proposed mathematical programming model is to find the optimal 



 
Chapter 5: A Mixed-Integer Nonlinear Mathematical Programming Model to Minimize 
the Sum of Within-Group Distances                                                                                   59 

 

partitioning of the data set into K  exclusive clusters, assuming that the number of desired 

clusters is known a priori. 

The mathematical formulation of the model MINLP-SWGD is given below. 

MINLP-SWGD: 

                          Minimize  ∑∑∑
=

−

= +=

=
K

k

n

i

n

ij
jkikij xxdZ

1

1

1 1
    (5.1) 

subject to                               

1
1

=∑
=

K

k
ikx    nii ,..,1, =∀    (5.2) 

{ }1,0∈ikx       Kkniki ,..,1,,..,1,, ==∀  (5.3) 

                        

where the variable ikx  is assigned to the value 1 or 0  according to whether the thi  

instance is assigned to cluster k  or not. The objective function of the model is the 

summation of pairwise distances between the data points assigned to the same cluster 

(5.1). The model aims to partition the data points into exclusive clusters and therefore each 

instance should be assigned to only one cluster as given in equation (5.2). The model has 

kn  binary variables, one continuous variable and )(knO constraints.  

The MINLP-SWGD model is a nonconvex MINLP model which is difficult to solve 

exactly. With a bilinear objective function MINLP models inherit the combinatorial 

structure of MIP models and the difficulty of solving nonconvex NLP models. The 

subclasses of MIP and nonconvex models belong to the class of NP-Hard problems. The 

solution methods of MINLP models can be stated as Outer Approximation methods (OA) 

[31], Branch and Bound Algorithms [32], Extended Cutting Plane methods [33] and 

Generalized Bender’s Decomposition [34].  

We modeled the MINLP-SWGD model with GAMS IDE version 2.0.30.1 [35] and 

used the DICOPT solver to solve the problem. DICOPT, developed by Grossman and 

Kocis [36], is a general purpose MINLP solution algorithm which utilizes the OA method. 

The OA methods require the solution of a related MIP and a NLP problem successively. 

MINLP model is decomposed into a linear master MIP problem and a NLP subproblem. 
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Since our model is nonconvex, the DICOPT algorithm solves the problem to local 

optimality. BARON is a global optimization solver but it is applicable only on small-sized 

data sets, since convergence to the global optimal solution is a demanding process. In the 

next chapter of the thesis, the computational experiments performed on the real data set 

with the proposed model are given. The reported solution times for the model seem to be 

very promising.  

In further investigation of the proposed model, we formed the continuous relaxation of 

the model as a nonlinear programming (NLP) model. The binary decision variables are set 

as positive continuous variables (5.3). Lower and upper bounds are given as 0 and 1 

respectively, to limit the value of the assignment variables. In order to solve the 

continuous relaxation of the MINLP-SWGD model, we use the MINOS solver. It is an 

NLP solver which also does not guarantee global optimality. In the results of the 

experiments all the NLP model solutions are found to be integer. Further investigation on 

the proposed model leads us to the following property.  

 

Property 5.1: Total Unimodularity Property [37] 

 

Let A  be an nm×  integer matrix and it has a rank of m  which means that it consists 

of m  linearly independent rows. Then, we say that A  is unimodular if the determinant of 

every basis matrix B of A  has value 1+  or 1− . The proof of the unimodularity theorem is 

given by Ahuja et al. [37]. Thus, relying on this proof, we can state that if the integer 

valued matrix A  is unimodular, then every basic feasible solution of the polyhedron 

defined by the constraints bAx = where 0≥x , is integer for every integer valued right 

hand side vector b . The analyzed total unimodularity property applies to a special 

subclass of unimodular matrices. If every square submatrix of A  matrix has a determinant 

of 0  or 1±  then the matrix A  is totally unimodular. Again, in the same reference it is 

stated that every totally unimodular matrix is unimodular since each basis matrix B  of the 

matrix A  has a determinant of 1±  .ڤ 
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Proposition 5.1:  The constraint set of the MINLP-SWGD model has the total 

unimodularity property. 

Proof of the Proposition 5.1: For the constraint 5.3, n  is the number of data points and k  

is the number of clusters, the corresponding A  matrix of the MINLP-SWGD model can be 

stated algebraically as follows.  
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The above nkn×  matrix A  is 10 −  matrix and its rank is equal to n  since it consists 

of n  linearly independent rows.  

 

Claim 5.1: Every square submatrix of A  has a determinant 0  or 1+  and therefore it is a 

totally unimodular matrix.  

Proof of the Claim 5.1: To prove the claim, we need to show every square submatrix 

M of A  of size k  has determinant of 0  or 1+ . We apply induction hypothesis on the size 

of the square submatrix to achieve this result. Since the matrix A  is a 10 −  matrix, the 

claim is true for 1=k . Assume that the claim holds for some k  and let M  be any 

)1()1( +×+ kk  submatrix of A . There exist two possibilities that the submatrix 

M satisfies. The first possibility is M  contains a column with no nonzero element; the 

second possibility is some column lM   has exactly one nonzero element, let’s say in the 

thi  row. In the first case, the determinant of M  is 0  and the claim holds. In case two, let 

'M  denote the submatrix of M  obtained by deleting the thi  row and thl  column. This 

implies  )'det(1)det( MM += . By the induction hypothesis we stated, )'det(M  is either 0  
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or 1+ , so )det(M  is also 0  or 1+ . This establishes the claim. Thus, we can conclude that 

the matrix A  is a unimodular matrix since every totally unimodular matrix is unimodular.  

 

Corollary 5.1: There exists an extreme point solution of the NLP relaxation of the 

MINLP-SWGD model defined by Constraint 5.3 is integer. 

Proof of the Corollary 5.1: Follows from Proposition 5.1 and Property 5.1, we conclude 

that an extreme point solution of the NLP relaxation of the MINLP-SWGD model defined 

by Constraint 5.3 is integer. Since our model is bilinear, we prefer to use the term extreme 

point in stead of using the term basic feasible solution since the stated term belongs to the 

linear programming.  

Due to Corollary 5.1, we solve the continuous relaxation of the MINLP-SWGD, as 

stated earlier. Since the objective function of the MINLP-SWGD model is nonconvex, then 

the solutions cannot be guaranteed to be global optimal.  In next chapter of the thesis, we 

report computational experiments conducted on real data set of the proposed model in 

order to analyze its efficiency and performance. 

5.2 Experiments with NLP-SWGD on Illustrative Data Set 
 

In this section of the thesis, the proposed MINLP-SWGD model is applied on the 

illustrative data set given in Section 3.5. We performed experiments on this data set with 

MINLP-SWGD model to evaluate the quality of the solution of the model. We also 

observe that the solution times of the model solved by MINOS are quite small for this 

synthetic data set. 

In Figure 5.1, the solution of the model is shown. Visually, two data points seem to be 

assigned incorrectly but according to the objective function value of the model this 

assignment pattern results in the minimum value for the criterion of the model. The global 

optimal solution of the model is known a priori since the data set is synthetic. For this 

example, the solution of the MINLP-SWGD model is the global optimal solution but this 

finding does not imply that the global solution can be obtained in all experiments with 

different data sets due to nonconvexity of the objective function unless a global 

optimization solver is used. The value of the objective function is 2234, there are 325 
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decision variables and 324 constraints in the model. We modeled MINLP-SWGD problem 

with GAMS IDE version 2.0.30.1 [35] and performed our experiments on a workstation 

with 3.2 GHz Xeon processor and 2 GB memory.  The reported solution time of the 

MINLP-SWGD model is 0.25 seconds. 

Furthermore, this experiment clearly shows that different clustering algorithms may 

lead to different assignment patterns due to the different types of partitioning criteria 

applied in the models. Even in the case of exact partitioning of the models, as seen in 

Figure 5.1 the models may lead to different assignments of data points to clusters. We 

believe that, this observation is important to emphasize the subjectivity of clustering 

approaches. This constitutes one of the biggest difficulties in the clustering problem.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: The solution of the NLP-SWGD model on the illustrative data set 

 

5.3 Experiments with MINLP-SWGD on the Real Data Set 
 

In this section of the thesis, computational experiments with the proposed MINLP-

SWGD model are given in Tables 5.1, 5.2, 5.3, 5.4 and 5.5 on 100 to 500 instance data 

sets. Each data set is partitioned into two to five clusters. The CPU times of the models is 

very promising on all data sets and can be seen to be in the order of seconds.  
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Exp. 
Number K N Var. Cons. SWGD Iter. t(sec) Solv. (MB) 

62 2 100 201 100 15152.25 66 0.42 3.9 Mb 
63 3 100 301 100 9388.02 80 0.56 3.9 Mb 
64 4 100 401 100 6649.29 88 0.73 3.9 Mb 
65 5 100 501 100 5155.61 111 1.02 3.9 Mb 

Table 5.1: Experiments with MINLP-SWGD model on 100 instance data set 

 
Exp. 

Number K N Var. Cons. SWGD Iter. t(sec) Solv. (MB) 

66 2 200 401 200 60916.59 130 1.78 5.0 Mb 
67 3 200 601 200 37749.49 159 3.33 5.0 Mb 
68 4 200 801 200 26725.59 173 4.45 5.0 Mb 
69 5 200 1001 200 20855.44 253 7.53 5.0 Mb 

Table 5.2: Experiments with MINLP-SWGD model on 200 instance data set 

 

 

 

 

 
Table 5.3: Experiments with MINLP-SWGD model on 300 instance data set 

 

Exp. 
Number K N Var. Cons. SWGD Iter. t(sec) Solv. (MB) 

74 2 400 801 400 244800.39 233 10.83 7.6 Mb 
75 3 400 1201 400 152348.91 296 20.72 7.6 Mb 
76 4 400 1601 400 108904.30 381 33.86 7.6 Mb 
77 5 400 2001 400 84242.07 477 52.31 7.6 Mb 

Table 5.4: Experiments with MINLP-SWGD model on 400 instance data set 
 

Exp. 
Number K N Var. Cons. SWGD Iter. t(sec) Solv. (MB) 

78 2 500 1001 500 383394.41 310 21.94 10.2 Mb 
79 3 500 1501 500 238696.25 381 39.74 10.2 Mb 
80 4 500 2001 500 171581.1 471 64.53 10.2 Mb 
81 5 500 2501 500 132823.1 572 97.70 10.2 Mb 

Table 5.5: Experiments with MINLP-SWGD model on 500 instance data set 
 

Exp. 
Number K N Var. Cons. SWGD Iter. t(sec) Solv. (MB) 

70 2 300 601 300 137259.99 195 5.72 6.0 Mb 
71 3 300 901 300 84986.94 260 10.69 6.0 Mb 
72 4 300 1201 300 60198.26 254 13.53 6.0 Mb 
73 5 300 1501 300 46913.18 320 20.75 6.0 Mb 
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Figure 5.2: The solution time of the SWGD model versus the increased number of clusters 
and instances 

 
Also, in Figure 5.2 how the solution time of the model is affected with increased 

number of instances and clusters can be observed.  

When we observe the above experimental findings, we see that the size of the required 

memory stays the same as K  increases and the solution time of the model increases 

linearly.
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Chapter 6 

THE COMPARISON OF THE MODELS AND                                
INTERPRETATIONS DERIVED FROM THE DATA SET  

 

In this section of the thesis, first we compare the results of the proposed clustering 

algorithm, MINLP-SWGD model and K-Means algorithm according to the maxD , AT  and 

SWGD  performance measures. Next, we give some interpretations derived from the 

solutions of the stated algorithms and the SWGD model, and conclude the section by 

showing that the proposed algorithm and the nonlinear model is better than the K-Means 

algorithm in terms of interpretability of the solutions which indicates that the proposed 

models and algorithm in this thesis yield a successful segmentation of the data.  

6.1 Comparison of the Proposed Algorithm, MINLP-SWGD Model and K-Means 

Algorithm According to the maxD , AT  and SWGD  Performance Measures 

 

The aim of this section is to observe and analyze the value of the studied clustering 

performance measures maxD , AT  and SWGD achieved by the proposed algorithm, 

MINLP-SWGD model and K-Means algorithm. The experiments performed on 100, 200 

and 300 instance data sets are reported with this purpose. The previously reported 

experiments are given to observe the improvements gained by the proposed algorithm, the 

proposed seed finding algorithms and the proposed preprocessing rules. In this section, the 

experiments are reported to analyze the solution quality of the models and algorithms in 

terms of the measures maxD , AT  and SWGD achieved by the proposed algorithm, MINLP-

SWGD model and K-Means algorithm.  

In Tables 6.1, 6.2 and 6.3, Diak denotes the diameter of the cluster k  and Nk denotes the 

number of instances assigned to cluster k .  
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From above tables, one can observe that according to the maxD  performance measure, 

the best solutions are occurred with the proposed algorithm. In some experiments SWGD 

model result in better maxD  values than the K-Means algorithm does and in some K-Means 

algorithm is superior to the SWGD model. This observation is not surprising since the 

objective of the proposed algorithm is to minimize the maxD  value, and problems are 

solved  to a near-optimal solution.  

Similarly, the SWGD model achieved the best SWGD values when compared to other 

two algorithms although it has been solved to local optimality. Except the 2-cluster 

solutions, the proposed algorithm results in better SWGD values than the K-Means 

algorithm. In 2-cluster case, the difference between the SWGD values between the two 

algorithms is at most 1%. 

Next when we observe the AT  values achieved, we see that K-Means algorithm results 

in the most promising results. One may not expect this finding. When we further 

investigate the results, this fact is due to the number of instances assigned to the clusters.  

In some cases, K-Means algorithm partitions the data set into big and small clusters. A 

widely discussed issue with the minimization of the AT  measure is its sensitivity to the 

size of the resulting clusters. As indicated in Section 3.2 of the study, AT  measure is a 

normalized measure and its value decreases as the size of the corresponding cluster 

increases. Thus, big clusters generated with the K-Means algorithm lead to smaller AT  

values.  

Another important observation based on the below experiments is the SWGD model 

partitions the data set into clusters with almost equal number of instances. Again, it is a 

widely discussed issue of the model in clustering studies but no experimental findings 

were reported previously. Similarly, K-Means algorithm may generate clusters with equal 

number of instances in some cases due to initially determined cluster centers. On the other 

hand, in some cases it may produce clusters with different cardinalities.  

To sum up, all these facts and findings show us the difficulty and subjectivity of the 

clustering analysis. With mathematical and statistical models, one can solve the problem 

but each clustering measure aims to perform a different criterion and although the models 
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seem quite similar they may result in different solutions. The hardest part of the clustering 

is the analysis of the solutions. Especially in business applications, the interpretation of the 

resulting clusters constitutes an important step. Even in some cases, a very successful 

clustering scheme in terms of numerical findings may not result in a high quality 

clustering. This fact may both depend on the data or the applied performance measure. 

Thus, in the next section of the thesis we give some interpretations derived from the 

solutions of the proposed algorithm, SWGD model and K-Means algorithm in order to 

observe their solution quality on the Digiturk problem.  
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Proposed Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
82 100 2 10.68 10.77       44 56       10.80 12.44 15546 
83 100 3 8.83 8.90 8.90     33 28 39     8.90 17.61 95349 
84 100 4 8.37 8.43 8.37 8.50   19 31 30 20   8.50 22.31 6948.5 
85 100 5 8.37 8.40 7.75 7.81 8.37 15 30 17 18 20 8.40 27.37 5468.5 

SWGD Model 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
86 100 2 10.54 11.87       50 50       11.87 12.37 15152.25 
87 100 3 8.89 9.49 9.38     34 33 33     9.49 17.44 9388.02 
88 100 4 7.55 8.37 8.66 9.38   26 25 25 24   9.38 22.24 6649.29 
89 100 5 7.55 7.94 8.43 9.38 8.49 24 20 19 19 18 9.38 27.24 5155.61 

K-Means Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
90 100 2 10.80 11.18       55 45       11.18 12.48 15315 
91 100 3 8.94 8.49 9.85     47 17 36     9.85 17.35 10295 
92 100 4 8.94 3.46 8.89 9.90   30 5 34 31   9.90 19.91 8301.3 
93 100 5 8.37 9.00 7.81 8.43 7.14 28 19 6 31 6 9.00 25.96 6196.8 

Table 6.1: The comparison of the maxD , AT  and SWGD values achieved by the proposed 
algorithm, MINLP-SWGD model and K-Means algorithm on the 100 instance 
data set 
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Proposed Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
94 200 2 10.68 10.80       88 112       10.80 12.39 62537 
95 200 3 8.89 8.83 8.90     79 65 56     8.90 17.41 38471 
96 200 4 8.42 8.50 8.37 8.50   38 64 56 42   8.50 21.97 27872 
97 200 5 7.87 8.40 8.40 7.81 8.37 39 59 36 30 36 8.40 26.72 21887 

SWGD Model 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
98 200 2 10.54 11.87       100 100       11.87 12.31 60916.59 
99 200 3 8.89 9.49 10.58     67 66 67     10.58 17.26 37749.49 

100 200 4 7.55 8.37 8.49 9.38   54 50 48 48   9.38 21.91 26725.59 
101 200 5 7.21 9.06 9.64 8.12 8.43 44 38 38 40 40 9.64 26.94 20855.44 

K-Means Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
102 200 2 11,23 10,77       91 109       11,23 12,38 63993 
103 200 3 11,23 9,38 7,55     95 49 56     11,23 17,04 42079 
104 200 4 8,89 3,46 9,49 9,90   65 10 62 63   9,90 19,37 33307 
105 200 5 8,89 8,12 7,81 8,89 8,72 54 46 34 33 33 8,89 26,92 22822 

Table 6.2: The comparison of the maxD , AT  and SWGD values achieved by the proposed 
algorithm, MINLP-SWGD model and K-Means algorithm on the 200 instance 
data set 
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Proposed Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
106 300 2 10.68 10.80       132 168       10.80 12.37 140940 
107 300 3 8.83 8.89 8.90     97 119 84     8.90 17.34 86785 
108 300 4 8.50 8.37 8.49 8.43   96 83 63 58   8.50 21.84 62690 
109 300 5 8.40 7.81 8.40 8.31 8.25 47 51 91 52 59 8.40 26.56 49785 

SWGD Model 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
110 300 2 10.54 11.87       151 149       11.87 12.29 137259.99 
111 300 3 8.89 9.49 10.58     101 99 100     10.58 17.18 84896.94 
112 300 4 7.55 8.37 8.66 9.38   81 74 72 73   9.38 21.78 60198.25 
113 300 5 7.28 9.49 7.94 8.72 8.49 69 58 59 57 57 9.49 26.66 46913.18 

K-Means Algorithm 
Exp. 

Number N K Dia1 Dia2 Dia3 Dia4 Dia5 N1 N2 N3 N4 N5 Dmax AT SWGD 
114 300 2 11.23 10.77       134 166       11.23 12.37 140330 
115 300 3 11.23 8.89 8.89     140 99 61     11.23 17.13 95842 
116 300 4 8.89 9.90 9.33 7.35   91 111 74 24   9.90 20.91 72516 
117 300 5 9.33 7.35 8.25 8.89 8.37 70 24 61 87 58 9.33 25.57 52217 

Table 6.3: The comparison of the maxD , AT  and SWGD values achieved by the proposed 
algorithm, MINLP-SWGD model and K-Means algorithm on the 300 instance 
data set 
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6.2 Interpretation of the Results of the Proposed Algorithm, the SWGD Model and 

the K-Means Algorithm 

 

In this part of the thesis, we compare the results of the proposed algorithm, the SWGD 

model and the K-Means algorithm. For this purpose, we used 300 instances data set 

clustered into 5 classes by three approaches. 

Naturally, a realistic interpretation of the results can be made only in cooperation with 

the true owners of the task. We derive our interpretations based on numeric findings from 

the partitioning of the data set. We use a hypothesis testing model to observe the 

numerical attribute significance since the real data we used in our experiments is in 

numeric form.  

As previously stated, the common goal of all clustering methods is to maximize the 

similarities within the clusters and at the same time to maximize the dissimilarities 

between the clusters. We set up our hypothesis testing on the maximization of the 

dissimilarities between the resulting clusters. Therefore, we test if the formed clusters by 

the methods studied in this thesis are significantly different from each other or not.  

 To achieve this first we state our null hypothesis which states a negative point of view 

in the formation of different clusters. It specifies the existence of no significant difference 

between the clusters. Once the experiments are performed, we have the assignment pattern 

of the instances according to the three different methods; we test if the results show a 

significant difference between the clusters. Based on the model of the [7], we apply the 

below model to test for a significant difference between the clusters. 
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where 

 p and r denote the cluster p  and r such that Kp ,..,1= , Kr ,..,1=  and rp ≠  

where K  is the number of clusters 

 d  denotes the attribute d  such that md ,..,1=  where m  is the number of 

attributes  
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 pr
dT  is the test statistic for between the clusters p  and r according to the attribute 

d  

 p
dx and r

dx  cluster means for the independent clusters for the attribute d  

 p
dv and r

dv  are variance scores for respective means for the attribute d  

 pn and rn  are corresponding cluster sizes  

 

The numerator is the absolute difference between the two means of the clusters p and 

r according to the attribute d . We calculate the standard error as the square root of the 

sum of the two variance scores of the associated cluster means d  as we assume that the 

generated clusters are independent from each other. This difference in the numerator is 

divided by the standard error to test if there is a significant difference between the clusters 

according to the corresponding attribute. We test if the pr
dT  value for the corresponding 

clusters and attribute is greater than or equal to 1.96 to be 95% confident that the 

difference between two means is not by chance. We use 1.96 as the cutoff value since we 

assume that the distribution of means and differences are normal.  

The hypothesis test states that if any pair of cluster comparisons shows a significant 

difference, the corresponding attribute can be considered significant in clustering.  

We calculate the pr
dT  values based on mean, variance and population of clusters and 

observe if the formed clusters are significantly different from each other. If the answer of 

this test is positive, then we aim to label the clusters according to their significant 

differentiating features. Details can be seen in Appendix A.  

We observe that the clusters formed by the proposed algorithm in this thesis are more 

interpretable than the clusters formed by the K-Means algorithm. According to the results 

of our algorithm, we are able to identify clusters of standard package users, sport fanatics 

and a group of people who are willing to spend their money in interactive events such as 

TV games. Standard package owners are long-lived customers who are at the same time 

sensitive to price changes since the amount of payment is a concern for the people 

belonging to this group. They switch from one package to another seldomly. For the 

attribute which denotes the frequency of changes between packages, the sport fanatics are 
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the leaders. Since their main concern is the sport package, they do not change their 

packages. Sport fanatics cluster can be classified as a subgroup of standard package users 

but this cluster’s main difference is its dependency on a certain period of time which is the 

period of the football league season. Another cluster consists of people who are interested 

in pay-per-view services, interactive events, TV games, etc. This group of people pay 

more, use more but also switch between the packages more. They benefit from various 

features offered to them and thus this group can be seen as the potential revenue 

generating cluster. Statistical tests indicate that the differentiation in attribute values is 

significant.  

Next, we analyze the interpretability of the results of the proposed NLP-SWGD model. 

One of the stated limitations of the proposed model in the literature is that the formed 

clusters by this model have approximately equal size. Although, the resulting clusters 

seem to be equal in size, we are able to derive some interpretations from the solution. 

Similar to the interpretations given for the proposed algorithm, we observe the clusters of 

standard package subscribers, sport fanatics and high-spending customers. In this solution, 

again the standard package subscribers have the same interesting feature. They are stable 

customers of the company but also they have sensitivity to an increase in price. In general, 

they do not benefit from interactive events. 

When we look at the results of the K-Means algorithm, we can not easily interpret the 

clusters obtained. Moreover, the pr
dT  values calculated for the clusters of our algorithm 

are more promising for the ones calculated for the K-Means clusters. Based on our 

intuitive observations, our algorithm leads to a better solution than K-Means algorithm. 

However, we note that K-Means might deliver different clusters when different initial 

points are used and it may be possible to obtain interpretable clusters as well. Still, the fact 

that our algorithm and the SWGD model do not require trial and error experimentation 

constitutes an advantage.   
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Chapter 7 

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH 

 

The objective of this thesis is to develop a mathematical programming based clustering 

approach applicable on large data sets. Two mathematical programming clustering models 

and a heuristic clustering algorithm are proposed with this purpose. The proposed models, 

the components of the proposed clustering algorithm are applied on an illustrative data set 

and a real data set to analyze their performance and efficiency.  

The proposed first mathematical programming model MIP-Diameter forms clusters by 

minimizing the maximum diameter of the generated clusters. First, we give the MINLP 

formulation of the model and then we reduce it to a mixed integer linear (MIP) 

formulation by linearization of the nonlinear constraint existing in the model without 

increasing the number of constraints and variables. The proposed model is nonhierarchical 

in the sense that the number of the clusters is assumed to be known a priori.  

In order to overcome the issues related with the computational difficulty of the MIP-

Diameter model, a graph-theoretic approach based on maximal independent set is utilized 

to find initial cluster seeds. The aim of the seed finding approach is to determine a set of 

leader data points from the data set in order to improve the solution time of the proposed 

model without compromising from the quality and accuracy of the resulting solution. 

Originally, the maximal independent set algorithm is a random algorithm. We observe the 

possible outcomes of the model initialized by SF1 algorithm and show that giving seeds to 

the MIP-Diameter model reduces the solution time drastically. Next, in order to improve 

the quality of the seeds and the robustness of the proposed seed finding methodology, we 

propose an alternative seed finding algorithm. This alternative SF2 algorithm selects the 

members of the maximal independent set according to the measure of the popularity of 

nodes. The term popularity refers to the number of neighbor nodes a data point has over 
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the parametric sparse graph. We analyze the solutions of two seed finding algorithms and 

observe their positive effect on the model. In order to further improve the solution time of 

the proposed MIP-Diameter model, an analytical preprocessing methodology is proposed. 

This preprocessing methodology is an extension of the seed finding algorithms. It is a 

heuristic approach to determine the inclusion of some instances to clusters initially and 

also exclusion of some instances from clusters according to a determined cutoff value to 

determine the relative closeness of data points to each cluster seed. The experiments on 

illustrative and real data sets are also reported for this methodology to analyze the positive 

impact of these rules on the solution quality of the proposed model and algorithm.  

Furthermore, as stated previously, in order to improve the solution quality of the 

proposed model MIP-Diameter, a reassignment algorithm is proposed. The reassignment 

algorithm is developed to reassign distorted data points existing in the solution of MIP-

Diameter model which may be possibly assigned in a better way. The proposed seed 

finding algorithm, the MIP-Diameter model and the reassignment algorithm constitute the 

proposed clustering algorithm. The various experimental results of the algorithm are 

reported to analyze its efficiency and performance. The results of the algorithm are 

compared with the results of the well-known K-Means algorithm. The solution of the 

proposed methodology is more interpretable than the solution of K-Means algorithm 

applied over the same real data set.  

In Chapter 5 of the thesis, a second mathematical programming based model MINLP-

SWGD is given. It is a mixed integer nonlinear programming model with the objective 

function of the minimization of sum of within-group distances. The objective function of 

the model is nonconvex due to its bilinear structure and therefore the solution of the model 

to the global optimality is a challenging subject. We show that every basic feasible 

solution of the relaxation of the model is integer. As a result, the solution of the 

continuous relaxation of the model results in integer Solutions. Therefore, we solve the 

corresponding continuous nonconvex model and obtain a local optimal solution. We solve 

the model on various real data sets and observe that the run times are in the order of 

seconds for problems with 500 instances partitioned in 5 clusters. This indicates the 
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potential to solve larger data sets. Also, we give interpretations that show a meaningful 

segmentation analysis is achievable with the proposed clustering model. 

The topics that remain to be explored in the future include improving the reassignment 

algorithm and investigation of further methods to solve the SWGD model to global 

optimality.
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APPENDIX A 
 

    
 Proposed Algorithm SWGD Model K-Means Algorithm 
       
 T1  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    2.46    2.58    2.50    2.76          0    5.01    0.62    1.18    2.06          0    3.80    0.10    0.68    9.14 
2     2.46         0    0.16    4.46    0.37     5.01         0    5.19    6.26    6.75     3.80         0    3.30    2.80   14.64 
3     2.58    0.16         0    4.74    0.55     0.62    5.19        0     0.46    1.34     0.10    3.30         0    0.69    7.50 
4     2.50    4.46    4.74        0     4.66     1.18    6.26   0.46         0     0.98     0.68    2.80    0.69         0    9.21 
5     2.76    0.37    0.55    4.66         0     2.06    6.75   1.34    0.98         0     9.14   14.64   7.50    9.21         0 
    
    
 T2  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    2.34    9.14    1.52    0.16          0    1.74    0.47   9.63    0.98          0    6.84    3.53    2.01    7.69 
2     2.34         0    5.81    0.42    2.20     1.74         0    1.36    6.11    0.98     6.84         0    1.53    4.54   16.67 
3     9.14    5.82         0    5.22    8.99     0.47    1.36         0    9.50    0.51     3.53    1.53         0    1.88    9.77 
4     1.52    0.42    5.22         0    1.40     9.62    6.11    9.50        0    9.46     2.01    4.54    1.88         0    9.80 
5     0.16    2.20    8.99    1.40         0     0.98   0.98    0.51    9.46         0     7.69   16.67   9.77    9.86         0 
    
    
 T3  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    0.51    0.90     2.50    3.66          0    4.36    2.44   1.58   4.76          0    0.53    1.89   4.17    2.78 
2     0.51        0     1.18     2.79    3.83     4.36         0    2.72   4.78   2.01     0.53         0    2.28   4.39    3.02 
3     0.90    1.18         0     1.18    2.73     2.44    2.72         0   3.23   3.86     1.89    2.28         0   2.86    1.39 
4     2.50    2.79    1.18         0     1.90     1.58    4.78    3.23        0   4.97     4.17    4.39    2.86        0    1.40 
5     3.66    3.83    2.73    1.90          0     4.76    2.01    3.86    4.97       0     2.78    3.02    1.39   1.40         0 
    
    
 T5  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    2.77    5.11    2.27   9.97         0    2.73    2.79    3.95    6.14          0    2.83    4.76   4.98    3.60 
2     2.77         0    1.74    0.13   12.16    2.73        0     0.26    0.61    8.83     2.83         0    1.98    7.46    5.56 
3     5.11    1.74         0    1.64   16.76    2.79    0.26         0    0.23    8.39     4.76    1.98         0    9.11    6.88 
4     2.27    0.13    1.64         0   10.22    3.95    0.61    0.23         0   11.46        4.98    7.46    9.11         0    0.39 
5     9.97   12.16   16.76  10.22       0     6.14    8.83    8.39  11.46          0     3.60    5.56    6.88    0.39         0 
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 T6  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1         0    15.9     20.0      2.24     20.0         0    1.48   10.7    22.1      22.1          0    22.1     0.11    22.1    0.58 
2    15.9         0     2.15      10.1     2.15    1.48         0     8.8    13.0      13.0     22.1         0     11.5         0    5.67 
3    20.0    2.15          0      12.1          0    10.7    8.89        0    3.86      3.86     0.11    11.5          0    11.5    0.47 
4    2.24    10.1     12.1           0     12.1    22.1   13.0    3.86         0           0     22.1         0     11.5         0    5.67 
5    20.0    2.15          0      12.1          0    22.1   13.0    3.86         0           0     0.58    5.67      0.47   5.67         0 
    
    
 T7  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0     8.92   14.21  14.68    3.14          0    13.43   13.79   14.69    6.05          0   12.78   12.81    5.10    5.43
2     8.92         0      4.01    4.73    5.30    13.43         0     1.38          0    5.46    12.78         0    1.95      6.06   3.73
3    14.21    4.01          0    0.83    9.73    13.79    1.38          0    1.44     6.48    12.81    1.95         0      7.21   5.03
4    14.68    4.73     0.83         0    10.33    14.69         0     1.44          0    5.74     5.10     6.06    7.21         0     1.25
5     3.14     5.30     9.73  10.33          0     6.05     5.46     6.48     5.74         0     5.43     3.73    5.03      1.25        0
    
    
 T8  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0     9.53   12.73   13.18   3.39           0    6.20   11.74    9.44    3.74          0   11.29   10.64    5.05    5.87
2     9.53         0      2.29    2.16    3.96      6.20         0     4.47    2.45    1.73    11.29         0    0.47     3.60    2.69
3    12.73    2.29         0     0.23    6.00    11.74    4.47       0       2.18    5.87    10.64    0.40        0      3.24    2.35
4    13.18    2.16     0.23         0    5.98      9.44    2.45     2.18         0    4.04     5.05    3.60    3.24           0    0.73
5     3.39     3.96    6.00     5.98         0      3.74    1.73     5.87    4.04         0     5.87    2.69    2.35      0.73        0 
    
    
 T9  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1           0   14.05    0.56     6.47     3.58          0    5.05   19.37     3.41    3.32          0   11.60    8.23     3.16   14.93
2    14.05          0   12.71    3.25   17.66     5.05         0     6.76     1.94    7.06    11.60         0    0.65   13.70    3.04
3      0.56   12.71         0     6.48     2.69   19.37    6.76          0   10.94    20.11     8.23     0.61         0     9.81   1.50 
4      6.47     3.25    6.48          0     9.27     3.41    1.94   10.94          0    5.82     3.10   13.70    9.81          0   16.87
5      3.58   17.66    2.69     9.27         0     3.32    7.06   20.11     5.82         0    14.93    3.04    1.50   16.87         0
    
    
 T11  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    4.87    3.88    2.37   3.24          0    1.71    4.46    5.26    1.64          0    4.99    3.64    0.11    1.55 
2     4.87         0    0.12    1.94    8.09     1.71         0    2.66    3.48    3.28     4.99         0    0.75    4.95    6.32 
3     3.88    0.12         0    1.54    6.33     4.46    2.66         0    0.88    6.05     3.64    0.75         0    3.67    4.87 
4     2.37    1.94    1.56         0    5.08     5.26    3.48    0.88         0    6.79     0.16    4.95    3.67         0    1.32 
5     3.24    8.09    6.39    5.03         0     1.64    3.28    6.05    6.79        0     1.55    6.32    4.86    1.32       0 
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 T12  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    1.36    3.86    2.56    2.82          0    3.98    3.01    4.83       0          0    1.79    2.79    0.94   2.91 
2     1.36         0    4.46    3.36    1.28     3.98         0    1.11    1.73    3.98     1.79         0    1.14    0.95   3.54 
3     3.86    4.46         0    1.64    4.95     3.01    1.11         0    2.68    3.01     2.79    1.13        0     2.05   4.19 
4     2.56    3.36    1.64         0    4.05      4.83    1.73    2.68         0    4.83     0.94    0.95    2.05        0    3.25 
5     2.82    1.28    4.95    4.05      0          0    3.98    3.01    4.83       0     2.91    3.54    4.19    3.24       0 
    
    
 T13  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    0.54    4.48    2.50    1.01          0    2.82    0.53    5.39    1.04          0    3.49    3.36    0.56    4.49 
2     0.54         0    3.55    1.78    1.33     2.82         0    3.14    2.46    3.87     3.49         0    0.50    2.69    7.37 
3     4.48    3.55         0    1.65    5.00     0.53    3.14         0    5.56    0.40     3.36    0.50         0    2.75    6.26 
4     2.50    1.78    1.65         0    3.11     5.39    2.46    5.56         0    6.50     0.56    2.69    2.75         0    4.36 
5     1.01    1.33    5.00    3.11         0     1.04    3.87    0.40    6.50         0     4.49    7.37    6.26    4.36         0 
    
    
 T14  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0   10.76    4.99    7.39    3.79          0     7.02   10.19    9.46    4.20          0    9.85    5.68    3.23    7.01 
2    10.76         0    4.56    1.02    5.44     7.02         0    1.42      0.60    2.93     9.85         0    1.50    6.19    0.23 
3     4.99    4.56         0     2.72    0.95    10.19    1.42        0      1.03    4.99     5.68    1.50         0    3.05    1.35 
4     7.39    1.02     2.72         0    3.52     9.46     0.60   1.03         0      4.18     3.23    6.19    3.05         0    4.49 
5     3.79    5.44     0.95    3.52         0     4.20     2.93   4.99      4.18         0     7.01    0.23    1.35    4.49         0 
    
    
 T15  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1         0      14.5     25.2     8.75     28.1          0      5.91   14.28   24.15   29.39          0  19.09    6.03   25.19     3.54 
2     14.5          0     5.39     3.40     8.67     5.91           0     6.04   10.75   15.42    19.09        0    6.99     7.17     9.02 
3     25.2     5.39          0     8.65     4.03    14.28     6.04          0    4.08     9.30      6.03   6.99         0   11.63     1.88 
4     8.75     3.40     8.65          0     11.5    24.15   10.75     4.08         0     6.51    25.19   7.15  11.63          0   13.53 
5     28.1     8.67     4.03     11.5          0    29.39   15.42     9.30    6.51         0     3.54    9.08    1.88   13.53         0 
    
    
 T16  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    6.86    7.65     10.03      1.94        0      8.11   11.12   7.16    0.45          0    8.46    9.61    1.06    1.27 
2     6.86         0    0.83       3.11      6.67     8.11         0    2.18    1.97    5.11     8.46         0    2.96    6.98    4.73 
3     7.65    0.83         0       2.26      7.33    11.12   2.10         0    4.50    7.17     9.61    2.96         0    8.58    6.68 
4    10.03   3.11    2.26            0      9.31     7.16    1.97    4.39         0    3.78     1.06    6.98    8.58         0    1.79 
5     1.94    6.67    7.33       9.31           0     0.45    5.11    7.17    3.78         0     1.27    4.73    6.68    1.79         0 
    
    
    



 
 
Appendix A                                                                                                                         81 

 

    
    
 T17  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1              0    14.6    21.6     2.31   23.5          0         0      9.97     20.1    21.9         0     15.3     0.60   20.0    2.51 
2         14.6         0    6.00    11.9    5.55          0         0      10.4     21.1    23.2      15.3        0     15.6   4.14   10.3 
3         21.6    6.00         0    18.5    1.05     9.97     10.4          0     9.42    10.2      0.60   15.6          0   20.1   2.99 
4         2.31    11.9    18.5         0    19.7     20.1     21.1     9.42          0    0.08      20.0   4.12     20.1        0   13.8 
5         23.5    5.55    1.05    19.7         0     21.9     23.2     10.2     0.08         0      2.51   10.3     2.99   13.8        0 
    
    
 T18  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    3.01    4.53    1.83    1.09          0    0.05    0.79    3.39    1.76          0    3.37    0.48    0.07    3.16 
2     3.01         0    0.91    0.59    4.25     0.05        0     0.78    3.08    1.47     3.37         0    2.02    3.72    0.51 
3     4.53    0.91        0     1.39    6.30     0.79    0.78         0    2.19    2.46     0.48    2.02         0    0.46    2.16 
4     1.83    0.59    1.39         0    2.69     3.39    3.08    2.19         0    6.17     0.07    3.72    0.46         0    3.33 
5     1.09    4.25    6.30    2.69         0     1.76    1.47    2.46    6.17         0     3.16    0.51    2.16    3.33         0 
    
    
 T19  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    2.37    4.32    1.85    0.19          0    1.82    1.18    3.83    0.31          0    3.88    1.66    2.09    1.66 
2     2.37         0    1.78    3.42    2.52     1.82         0    2.75    5.22    2.67     3.88         0    5.26    1.85    5.26 
3     4.32    1.78         0    5.35    4.48     1.18    2.75         0    2.67    0.99     1.66    5.26         0    3.59         0 
4     1.85    3.42    5.35         0    1.78     3.83    5.22    2.67         0    3.77     2.09    1.85    3.59         0    3.59 
5     0.19    2.52    4.47    1.78        0     0.31    2.67    0.99    3.77         0     1.66    5.26         0    3.59         0 
    
    
 T20  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    3.51    8.89    5.33    0.69          0    3.98    2.41    8.55    1.35          0    6.49    6.14    3.64    0.18 
2     3.51         0    5.05    1.84    2.45     3.98         0    2.07    4.32    2.14     6.49         0    0.33    2.48    6.03 
3     8.89    5.05         0    3.10    7.50     2.41    2.07         0    6.68    0.40     6.14    0.33         0    2.63    5.79 
4     5.33    1.84    3.10         0    4.21     8.55    4.32    6.68         0    6.33     3.64    2.48    2.63         0    3.30 
5     0.69    2.45    7.50    4.21         0     1.35    2.14    0.40    6.33         0     0.18    6.03    5.79    3.30         0 
    
    
 T21  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    0.44    0.23    2.14    2.67          0    1.12    3.70    1.58    1.58          0    1.46    3.72    1.90    1.90 
2     0.44         0    0.60    1.71    2.46     1.12         0    2.71    2.44    2.44     1.46         0    2.80    2.83    2.83 
3     0.23    0.60         0    2.19    1.80     3.70    2.71         0    4.69    4.69     3.72    2.80         0    4.36    4.36 
4     2.14    1.71    2.19         0    3.51     1.58    2.44    4.69        0         0     1.90    2.83    4.36         0         0 
5     2.67    2.46    1.80    3.51       0     1.58    2.44    4.69        0         0     1.90    2.83    4.36         0         0 
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 T22 
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    1.01    0.85    3.47    2.42          0    1.30    0.74         0    3.52          0    1.09    2.17    2.55    1.31 
2     1.01         0    0.19    2.61    2.82     1.30         0    0.56    1.28    3.55     1.09         0    1.50    3.33    0.63 
3     0.85    0.19         0    2.82    2.83     0.74    0.56         0    0.72    3.33     2.17    1.50         0    3.39    0.74 
4     3.47    2.61    2.82         0    4.62          0    1.28    0.79         0    3.34     2.55    3.33    3.39         0    2.61 
5     2.42    2.82    2.83    4.62         0     3.52    3.55    3.33    3.34         0    1.31    0.63    0.74     2.61        0 
    
    
 T23  
 1        2         3         4         5 1        2         3         4         5 1        2         3         4         5 
1          0    1.32    1.47    3.79    1.71          0     3.59    1.39    1.59    2.53          0    1.06    2.47    1.13    5.13 
2     1.32         0    0.05    4.70    2.78     3.59         0    2.15    5.16    1.03     1.06         0    3.49    2.22    6.55 
3     1.47    0.05         0    5.12    3.00     1.39    2.15         0    2.96    1.12     2.47    3.49         0    1.41    1.86 
4     3.79    4.70    5.12         0    1.66     1.59    5.16    2.96         0    4.10     1.13    2.22    1.41         0    3.80 
5     1.71    2.78    3.00    1.66         0     2.53    1.03    1.12    4.10         0    5.13    6.55    1.86    3.80        0 
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