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ABSTRACT

In this thesis a new multimodal speaker/speech recognition system that integrates audio,

lip texture, lip geometry, and lip motion modalities is presented. There have been several

studies that jointly use audio, lip intensity and/or lip geometry information for speaker

identification and speech recognition applications. This work proposes using explicit lip

motion information, instead of or in addition to audio, lip intensity and/or geometry infor-

mation, for speaker identification and speech-reading within a unified feature selection and

discrimination analysis framework, and addresses two important issues: i) Is using explicit

lip motion information useful? and ii) if so, what are the best lip motion features for these

two applications? The best lip motion features for speaker identification are considered to be

those that result in the highest discrimination of individual speakers in a population, whereas

for speech-reading, the best features are those providing the highest phoneme/word/phrase

recognition rate. The audio modality is represented by the well-known mel-frequency cep-

stral coefficients (MFCC) along with the first and second derivatives, whereas lip texture

modality is represented by the 2D-DCT coefficients of the luminance component within a

bounding box about the lip region. Several lip motion feature candidates are considered

including dense motion features within a bounding box around the lip, lip contour motion

features, lip shape features, and combinations of them. Furthermore, a novel two-stage

discriminant analysis is introduced to select the best lip motion features for speaker iden-

tification and speech-reading applications. The fusion of audio, lip texture and lip motion

modalities is performed by the so-called Reliability Weighted Summation (RWS) decision

rule. Experimental results show that the proposed discriminative analysis significantly im-

proves the unimodal performance of the lip motion modality. Moreover, using explicit lip

motion information in addition to audio and lip texture yields further performance gains in

bimodal speaker/speech recognition systems.
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ÖZETÇE

Bu tezde ses, dudak dokusu, dudak geometrisi ve dudak devinimlerini birleştiren yeni

bir çok-kipli konuşmacı/konuşma tanıma sistemi sunulmaktadır. Konuşmacı ve konuşma

tanıma uygulamalarında ses, dudak yeğinliği ve/veya dudak geometri bilgisini beraber kul-

lanan birkaç çalışma mevcuttur. Bu çalışmada konuşmacı tanıma ve konuşma okuma için,

ses, dudak yeğinlik ve/veya geometri bilgisi ile birlikte ya da bu bilgilerin yerine, açık

dudak devinim bilgisinin kullanımı önerilmekte; konu öznitelik seçimi ile ayırım analizi

çerçevesinde incelenmektedir. Çalışma iki önemli soruya cevap aramaktadır: i) Açık du-

dak devinim bilgisi yararlı mıdır? ve ii) Devinim bilgisi yararlı ise, sözü edilen uygula-

malarda eniyi dudak devinim öznitelikleri nelerdir? Konuşmacılar arasında en yüksek ayrımı

sağlayan öznitelikler, konuşmacı tanıma probleminde eniyi dudak devinim öznitelikleri ol-

makla beraber konuşma okumada eniyi öznitelikler, en yüksek fonem/kelime/deyiş tanıma

oranına erişenlerdir. Ses doruğu, mel frekans kepstral katsayıları ile katsayıların birinci

ve ikinci türevleriyle gösterilirken, dudak doku kipi, dudak bölgesinin yeğinlik değerlerinin

2B-AKD (Ayrık Kosinüs Dönüşümü) katsayıları ile ifade edilmektedir. Birden çok du-

dak devinim öznitelik adayı ele alınmaktadır: dudak bölgesi içinde ızgara-tabanlı yoğun

devinim öznitelikleri, dudak çevriti üzerinde devinim öznitelikleri ve son olarak dudak şekil

parametreleri ile bunların bileşimleri. Buna ek olarak, konuşmacı tanıma ve konuşma oku-

mada eniyi dudak devinim özniteliklerini belirlemek üzere iki basamaklı yeni bir ayrımsama

analizi tanıtılmaktadır. Ses, dudak dokusu ve dudak devinim kiplerinin tümleştirilmesi

Güvenilirlik Ağırlıklı Toplama karar kuralıyla gerçekleştirilmiştir. Deneysel sonuçlarda,

önerilen ayırımsal analizin dudak deviniminin tek-kipli başarımını oldukça geliştirdiği görül-

mektedir. Bunun yanında, ses ve dudak doku bilgisi ile birlikte açık dudak devinim bilgisinin

kullanımı, iki-kipli konuşmacı/konuşma tanıma sistemlerinin başarımlarında ilave kazanım

sağlamaktadır.
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Chapter 1

INTRODUCTION

Lip information has been extensively employed in the state-of-the-art audio-visual speech

and speaker recognition applications, since lip movements are highly correlated with the

audio signal. Hence, it is natural to expect that speech content can be revealed through

lip reading; and lip movement patterns also contain information about the identity of the

speaker. In audio-visual recognition literature, there exist three alternative representations

for lip information: i) lip texture, ii) lip geometry (shape), and iii) lip motion features.

The first represents lip movements implicitly along with texture information that might

sometimes carry useful discrimination information; but in some other cases the texture

may degrade the recognition performance since it is sensitive to acquisition conditions.

The second, lip geometry, usually requires tracking of the lip contour and fitting contour

model parameters and/or computing geometric features such as horizontal/vertical open-

ings, contour perimeter, lip area, etc. This option may seem as the most powerful one for

modeling lip movement, especially for speech-reading problem, since it is easier to match

mouth openings-closings with the corresponding phonemes. However, lip tracking and con-

tour fitting are very challenging tasks, since contour tracking algorithms are in general very

sensitive to lighting conditions and image quality. The last option is the use of explicit lip

motion features, which are potentially easy to compute and robust to lighting variations

between the training and test data sets.

It is worth noting that there are relatively less number of technologies employing the ex-

plicit lip motion in audio-visual recognition as compared to the lip texture and lip geometry.

Thus, investigating the best lip motion features for unimodal speech-reading and speaker

identification will definitely be an asset for the literature. However, it is generally agreed

that no single technology, i.e., modality, will meet the needs of all potential recognition ap-

plications. Hence, integration of multiple modalities should also be attacked so as to obtain
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improved recognition systems.

The design of a multimodal recognition system requires addressing three basic issues:

i) Which modalities to fuse, ii) How to represent each modality with a discriminative and

low-dimensional set of features, and iii) How to fuse existing modalities.

For the first issue, modalities to fuse, it is a fact that recent speaker/speech recognition

technologies have generally employed available visual data together with audio. Audio is

probably the most natural source to recognize what is uttered and a valuable source to iden-

tify a speaker [1]. The speech content and voice can be interpreted as two different, though

correlated, modalities existing in audio signals. Likewise, video signal can be split into

different modalities, such as face/lip texture and lip motion information that is correlated

with the audio. The lip motion modality, whether implicit or explicit, has been extensively

utilized in speech recognition systems but not so common in speaker recognition. The first

reason for this is that the lip motion, or the lip modality in general, is not considered as the

primary modality to be used in speaker recognition. The second reason is the sophisticated

feature processing, which will be briefly explained while discussing the second issue.

The second issue, representative feature selection, also includes modeling of classifiers

through which each class is represented with a statistical model or a representative feature

set. The lip motion is known to be the least investigated modality in feature representa-

tion as compared to face and audio, for which there are well-known representations. The

main reason for the lack of feature-level investigation of lip motion is, as stated before, the

sophisticated feature processing to reveal biometrics. More specifically, as far as speech is

concerned, it is usually sufficient to extract the principal components of the lip movement.

However, the principal components of the lip movement are not usually sufficient to well

discriminate the biometric properties of a speaker. High frequency or non-principal com-

ponents of the signal should also be valuable especially when the objective is to model the

biometrics. For speaker recognition, the best features are those that result in the highest

discrimination of individual speakers in a population whereas for speech recognition, the

features providing the highest phoneme/word/phrase recognition rate are considered as the

best ones. Other than discrimination capability, curse of dimensionality, computational ef-

ficiency, robustness and invariance are other important criteria in selection of the feature

set and the recognition methodology for each modality.
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Audio-only speaker/speech recognition systems are far from being perfect especially un-

der noisy conditions. Performance problems are also observed in video-only speaker/speech

recognition systems, where poor picture quality, changes in pose and lighting conditions,

and varying facial expressions may have detrimental effects [2, 3]. Hence, robust solutions

for both speaker and speech recognition should employ multiple sources, such as audio, lip

texture, and lip motion in a unified scheme. For the final issue, fusion problem, different

strategies are possible: In the so-called early integration, modalities are fused at data or

feature level, whereas in late integration decisions or scores resulting from each unimodal

recognition are combined to give the final conclusion. Multimodal decision fusion can also

be viewed from a broader perspective as a way of combining classifiers, which is a well

studied problem in pattern recognition. The main motivation here is to compensate possi-

ble misclassification errors of a certain classifier with other available classifiers and to end

up with a more reliable overall decision. Misclassification errors are in general inevitable

due to numerous factors such as environmental noise, measurement and modeling errors or

time-varying characteristics of signals. A comprehensive survey and discussion on classifier

combination techniques can be found in [4].

In this thesis, we will develop a multimodal speaker/speech recognition scheme that uses

an improved lip motion information together with lip texture and audio. The lip motion

modality is improved by means of a novel two-stage discrimination analysis that selects best

lip motion features. In the remaining part of this chapter, we will give a brief summary of the

relevant past research and our contribution. Then in Chapter 2, we will develop a theoretical

framework that the whole thesis work will be based on. Chapter 3 describes the lip tracking

procedure together with the lip motion feature representation. The proposed two-stage dis-

criminative lip motion feature extraction technique is presented in Chapter 4. The question

”how to fuse” is addressed in Chapter 5 together with the other audio-visual modalities

available. Experimental results will be presented in 2 different chapters: Chapter 6 outlines

the unimodal system performance and discussions on the discrimination analysis, whereas

in Chapter 7 multimodal system performances are presented. Finally the conclusions are

given in Chapter 8.
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1.1 State-of-the-art

In audio-visual speech recognition (speech-reading), lip texture information is widely used.

In [5, 6], principal component analysis (PCA) has been applied to raw lip intensity image

to reduce its dimension, and the reduced vector is used as the visual feature. Another

possibility is to use DCT coefficients of the gray-scale lip image [7]. They then apply linear

discriminant analysis (LDA) to the final feature vector formed by concatenating a number of

consecutive feature vectors centered at the current frame so as to capture dynamic speech

information. However, lip texture features are sensitive to intensity variations between

the training and test data sets. Geometric features have been employed in speech-reading

[8, 9, 10, 11, 12, 13], since it is easier to match mouth openings-closings with the corre-

sponding phonemes. Deformable templates [8, 9], active shape models (ASM) [13, 14, 15],

and snakes [16] have been used to obtain different lip geometry features; however, they all

suffer from complex feature extraction and training procedures. In [9], Gaussian mixture

models (GMM) are used to model both the lip and the non-lip region and lip tracking is

performed by deformable templates. A number of horizontal and vertical Euclidean dis-

tances representing the lip openings are then selected as features. Kaynak et al. [11] use

horizontal/vertical distances along with the orientation angle to represent the lip shape.

In fact, most of the techniques in the speech-reading literature utilize a combination of lip

texture and primitive geometric lip shape features. In [17], the lip feature vector is formed

by concatenating the Karhunen-Loève transformed inner-outer lip contour points with the

texture information which is represented in a similar way as in the so-called eigenlips tech-

nique [5]. In [15], the geometric information extracted by active shape models is used along

with the gray-level appearance features and then fused with audio for speech recognition.

Perez et al. [14] utilize a set of lip shape features extracted by ASM together with DCT

coefficients of the gray-level appearance information. There is only a limited amount of

work reported in which explicit lip motion information is used for speech-reading. Aleksic

et al. [16] use gradient vector flow (GVF) snakes to extract outer lip contour and calculate

the lip movement at 10 predefined points by point-wise coordinate difference. They then

reduce the feature dimension by PCA and use lip features together with other facial anima-

tion features. However, selection of best lip motion features has not been addressed within

a framework.
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For speaker identification, unlike speech-reading, lip information has been employed in

only a few works. In [18, 19], the DCT coefficients of gray-scale lip images are considered as

lip features. It is relatively easy to obtain this feature, but it again suffers from illumination

variation between the training and test data sets. Lip geometry is used in [20], where lip

segmentation is carried out by forming an accumulated difference image, and considering

moving parts of that image. Then, a number of predefined horizontal and vertical distances

are taken as geometric lip features. Mok et al. [21] find the outer lip contour by active shape

models, and form a feature vector using both the model parameters and some additional

distances representing the lip shape. In the audio-visual fusion system presented in [22],

the lip contour is first tracked and then each contour pixel is associated with chromatic

features that constitute the initial feature vector. The dimension of the feature vector is

then reduced via PCA followed by LDA. However, the initial step of PCA reduction filters

out some useful discrimination information valuable to biometric speaker identification, and

temporal correlations in lip motion are not taken into account in discrimination analysis.

The lip feature vector proposed in [23] for speaker verification is composed of lip shape

parameters concatenated with intensity values along the lip contour. The feature dimension

is then reduced by PCA with no discrimination analysis at all. In the speaker identification

literature, there are only two reported works employing explicit lip motion as lip features.

In [24], following the computation of the optical flow between two consecutive lip frames,

the power spectrum from the three-dimensional motion field is calculated and used as lip

motion features. In [25], the lip motion is represented by the full set of frequency-domain

coefficients of the dense optical flow vectors computed within rectangular lip frames and

then fused with face texture and acoustic features for multimodal speaker identification.

However no discrimination analysis was performed, and no specific attention was paid to

optimize the unimodal performance of the lip motion modality.

In modality fusion problem, the speaker recognition schemes proposed in [22, 23, 25, 26,

27] are basically opinion fusion techniques that combine multiple expert decisions through

adaptive or non-adaptive weighted summation of scores, whereas in [28, 29], fusion is carried

out at feature-level by concatenating individual feature vectors so as to exploit the tem-

poral correlations that may exist between audio and video signals. In audio-visual speech

recognition, audio and lip data can be concatenated [5], while unimodal recognition rates
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are combined to obtain the fused result [30]. Furthermore, recent works show the success

of multi-stream HMM structures in speech recognition [7, 12, 14, 17].

1.2 System Overview and Contribution

Although numerous methods have been proposed for integration of lip information to

speech/speaker recognition solutions, there is no framework proposed for selection of the

most discriminative lip motion features optimally in the literature. This work aims at pro-

viding quantitative answers to the following open questions:

i) Is explicit lip motion, instead of or in addition to audio, lip intensity and/or geometry

useful for speech/speaker recognition, and

ii) If so, what are the best lip motion features for speech-reading and speaker identification

applications?

In order to answer these questions, first the problem of finding the best lip motion represen-

tation is considered in our work. Several lip motion feature candidates have been evaluated

including dense motion features within a bounding box about the lip, lip contour motion

features, and combination of these with lip shape features. In the dense motion computa-

tion case, no explicit information about the lip shape is included in the feature vector. The

main disadvantage of this strategy is that some irrelevant noisy motion vectors may show

up especially inside the inner lip boundary as parts of this region are occluded or uncov-

ered during the speaking act. In the contour motion computation case, the lip boundary

is tracked over time and only the motion of lip boundary pixels are taken into account. In

this way, noisy motion vectors are mostly eliminated at the cost of disregarding some useful

motion information around the lip. One advantage of this strategy is that extracted lip

shape information can explicitly be included and exploited in the feature set as additional

information.

After finding the best lip representation, a novel two-stage discriminant analysis is intro-

duced to select the best lip motion features from this representation. At the first stage, the

most discriminative features are selected from the full set of DCT coefficients of a single lip

motion frame by using a probabilistic measure that maximizes the ratio of intra-class and

inter-class probabilities. At the second stage, the resulting discriminative feature vectors

are interpolated and concatenated for each time instant within a neighborhood, and further
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analyzed by LDA to reduce dimension, this time taking into account temporal discrimina-

tion information. Following the determination of the best lip motion features, a multimodal

system for both speech-reading and speaker identification has been implemented by fusing

the best lip motion features with lip texture and audio.

Hence, the main contribution of this work is the introduction of a framework for deter-

mination of the most discriminative lip motion and shape features for speech-reading and

speaker identification. The other contribution is made by fusing the available audio-visual

modalities.
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Chapter 2

THEORETICAL FRAMEWORK

2.1 Speaker Recognition

Speaker recognition task can be formulated as either verification or identification problem.

The latter can further be classified as open-set or closed-set identification. In the closed-set

identification problem, a reject scenario is not defined and an unknown observation is clas-

sified as belonging to one of the R registered pattern classes. In the open-set problem, the

objective is, given the observation from an unknown pattern, to find whether it belongs to

a pattern class registered in the database or not; the system identifies the pattern if there

is a match and rejects otherwise. Hence, the problem can be thought of as an R + 1 class

identification problem, including also a reject class. Open-set identification has a variety of

applications such as the authorized access control for computer and communication systems,

where a registered user can log onto the system with her/his personalized profile and access

rights. In this work, we formulate the speaker recognition problem in an open-set identifi-

cation framework, which is a more challenging and realistic way of addressing the problem

as compared to closed-set speaker identification and verification. Note that verification is a

special case of the general open-set identification problem.

The speaker identification problem is often formalized by using a probabilistic approach:

Given a feature vector f representing the sample data of an unknown individual, compute

the a posteriori probability P (λr|f) for each speaker’s model λr. The sample feature vector

is then assigned to the class λ∗ that maximizes the a posteriori probability,

λ∗ = arg max
λr

P (λr|f). (2.1)

One can rewrite (2.1) in terms of class-conditional probabilities using Bayes Rule:

P (λr|f) =
P (f |λr)P (λr)

P (f)
. (2.2)

Since P (f) is class independent and assuming equally likely class distribution, (2.1) is
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equivalent to

λ∗ = arg max
λr

P (f |λr). (2.3)

In the open-set identification problem, an imposter class λR+1 is introduced as the

R + 1’th class. Since it is difficult to accurately model the imposter class, λR+1, we employ

the following solution which includes a reject strategy through the definition of the likelihood

ratio ρ̄(λr) [31]:

ρ̄(λr) = log
P (f |λr)

P (f |λR+1)
= log P (f |λr)− log P (f |λR+1). (2.4)

Computation of class-conditional probabilities P (f |λr) needs a prior modeling step,

through which a probability density function of feature vectors is estimated for each class

r = 1, 2, . . . , R by using available training data. A common and effective approach to model

the impostor class is to use a universal background model, which is estimated by using all

available training data regardless of which class they belong to.

Then (2.3), which is accurate for a closed-set identification problem, is modified as,

λ∗ = arg max
λ1,...,λR

ρ̄(λr), (2.5)

and then
if ρ̄(λ∗) ≥ τ accept

otherwise reject
(2.6)

where τ is the optimal threshold which is usually determined experimentally to achieve the

desired false accept or false reject rate [32].

The performance of the speaker identification systems are often measured using the equal

error rate (EER) figure. The EER is calculated as the operating point where false accept

rate (FAR) equals false reject rate (FRR). In the open-set identification case, false accept

and false reject rates can be defined as,

FAR = 100× Fa

Na + Nr
and FRR = 100× Fr

Na
, (2.7)

where Fa and Fr are the number of false accepts and rejects, and Na and Nr are the total

number of trials for the true and imposter clients in the testing, respectively.
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2.2 Speech Recognition

Speech recognition task can be formulated to identify a specific utterance, such as in the

isolated word recognition task. Therefore the closed-set identification framework can be

used to address the speech recognition problem with an isolated word dictionary.

The identification problem is formalized within the maximum likelihood framework.

We can employ the maximum likelihood solution, which maximizes the class-conditional

probability, P (f |λr), for r = 1, ..., R. Hence a decision in the closed-set identification is

taken as,

λ∗ = arg max
λ1,...,λR

log P (f |λr) = arg max
λ1,...,λR

ρ(λr). (2.8)

The performance of the speech recognition systems are generally measured by the

phoneme/word/phrase recognition rate in percentage, that is the ratio of the true matches

to the total number of trials.

2.3 Recognition using Hidden Markov Models (HMM)

The Hidden Markov Models (HMM), [33], is a special case of Markov chains. It can be

described as a doubly stochastic process, where the sequence of one stochastic process is

observed and the other is not (it is the hidden part which gives the name of Hidden). The

identification task addresses the problem of finding the most probable path or sequence of

the hidden stochastic process, given an observation sequence and HMM parameters. Since

it is able to provide a mathematical framework for sequentially evolving pattern recognition

tasks, HMM can fit to both speech recognition and speaker identification problems.

The temporal characterization of an audio-video stream can successfully be modeled

using an HMM structure, where state transitions model temporal correlations and in each

state Gaussian classifiers model signal characteristics. Considering a left-to-right continuous

density HMM structure, an HMM can be defined by the following parameter set:

• N is the number of states, where states are denoted by S = {s1, s2, · · · , sN}.

• A = {aij} is the matrix of state transition probabilities where aij is the probability

of making a transition from state i to state j, such that aij = P (qτ+1 = sj |qτ = si),
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Figure 2.1: A Hidden Markov Model with three emitting states and continuous output
distributions

where qτ is the state at time τ . The state transition probabilities are assumed to be

time independent.

• B = {bj(f)} is the vector of observation probabilities associated with each emitting

state j, with bj(f) = P (f |qτ = sj).

• Π = {πi} is the vector with the initial state probabilities of entering the model at

state i such that πi = P (q1 = si).

A HMM can now be represented by the compact parameter set λ = (A, B,Π). Since

the speech signal evolves forward in time, the transition probability matrix A is normally

constrained to only allow self-loops, by residing in the same state for several consecutive

frames, or transitions from left to right.

The likelihood function for the temporal characterization, that is the probability of observing

feature vector sequence F = (f1, f2, ...,fK), given the model λ is defined as,

P (F|λ) =
∑

all q
P (F, q|λ), (2.9)

where q = (q1, q2, ..., qK) is a possible state transition sequence. Further we can write the

joint probability of the observation sequence and the state transition sequence given the

model as,

P (F, q|λ) = P (F|q, λ)P (q|λ), (2.10)



Chapter 2: Theoretical Framework 12

where

P (F|q, λ) = bq1(f1)bq2(f2) · · · bqK (fK), and

P (q|λ) = πq1aq1q2aq2q3 · · · aqK−1qK .

The resulting likelihood function from (2.9) will be in the form of,

P (F|λ) =
∑

all q
πq1bq1(f1)aq1q2bq2(f2)aq2q3 · · · bqK−1(fK−1)aqK−1qK bqK (fK), (2.11)

in which observation symbol probabilities bj(f) are modeled using Gaussian mixture den-

sities as,

bj(fk) =
L∑

l=1

ωjlN (fk, µjlΣjl), (2.12)

where for each state j feature vector probabilities are represented as the weighted sum of L

Gaussian mixture densities with means µjl, covariance matrices Σjl and weights ωjl, such

that
∑

l ωjl = 1 and 0 < ωjl ≤ 1.

HMMs are known to be as effective structures to model the temporal behavior of the

speech signal, and thus they are widely used both in audio-based speaker identification and

speech recognition applications [1]. State-of-the-art systems use HMMs for text-dependent

and Gaussian mixture models (GMM) for text-independent speaker identification [34].

HMM-based techniques are preferred in text-dependent scenarios since HMM structures

can successfully exploit the temporal correlations of a speech signal. Since lip motion is

strongly coupled with audio utterance, HMMs can also be employed for temporal charac-

terization of lip features.

We use word-level continuous-density HMM structures for both speaker identification

and speech recognition tasks. Each speaker or utterance in the database is modeled using

a separate HMM that is trained over some repetitions of the lip motion streams of the

corresponding speaker or utterance. In the recognition process, given a test feature set,

each HMM structure associated with a speaker or an utterance produces a likelihood. In

the speaker identification case, a world HMM model is also trained over the whole training

data of the population. The log-ratio of the speaker likelihoods and the world class likelihood

results in a stream of log-likelihood ratios that are used in the speaker identification process.

The system identifies the person if there is a match and rejects otherwise. Alternatively in
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speech recognition, the impostor or world class is not defined; thus the best match is given

by the utterance class that maximizes the produced likelihood as described in Section 2.2.
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Chapter 3

LIP MOTION FEATURE EXTRACTION

The proposed lip motion feature extraction and analysis system is depicted in Figure 3.1.

It consists of a preprocessing module, a lip motion estimation module, and a two-stage

discrimination module. We consider two alternatives for lip motion estimation: i) Dense

motion vectors within a rectangular grid, and ii) Motion vectors along the lip contour

together with lip shape information. Each of these modules are explained in detail below.

3.1 Preprocessing

The purpose of the preprocessing module is to register lip regions in successive frames by

eliminating global head motion so that the extracted motion features within the lip region

correspond to speaking act only. Hence, each frame of the sequence is aligned with the first

frame using a 2D parametric motion estimator. For every two consecutive frames, global

head motion parameters are calculated using hierarchical Gaussian image pyramids and the

12-parameter quadratic motion model [35]. The frames are successively warped using the

calculated parameters. Thus by only hand-labeling the mid-point of the lip region in the

first frame, we can automatically extract the lip region for the whole sequence.

Using the initial quadratic transform to model head motion, at each pixel (xp, yp) in the

region of interest, the flow vector [u(xp, yp), v(xp, yp)] is estimated from the image intensities

I(xp, yp, t) and I(xp +u(xp, yp), yp + v(xp, yp), t+1) at time instants t and t+1 respectively

as,

u(xp, yp) = a1x
2
p + a2y

2
p + a3xpyp + a4xp + a5yp + a6,

v(xp, yp) = b1x
2
p + b2y

2
p + b3xpyp + b4xp + b5yp + b6. (3.1)

The optimal motion parameters {a1, · · · , a6, b1, · · · b6}, which best describe the motion at

each pixel in the region of interest, are found through an optimization task and used to

back-warp the face frames.
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The use of quadratic transform for motion modeling assumes certain physical conditions

for the 3D geometric surface of the object, its 3D real motion, and the camera projection

model. The quadratic transform gives an exact description of the 3D rotation, translation

and scaling of an object with a parabolic surface under parallel projection [36]. Thus it

serves only as a good approximation for the rigid motion of the human head and is quite

effective in modeling the motion between consecutive frames for which the movement is

mostly not very abrupt.

3.2 Motion Estimation Alternatives

In order to investigate the effect of different types of motion estimation approaches, two

different methods to compute the lip motion vectors have been utilized: i) Optical flow, ii)

Block matching.

3.2.1 Motion Estimation by Optical Flow

Optical flow is defined as an apparent motion of image brightness, I(x, y, t), which changes

in time to provide an image sequence. There exist two crucial assumptions which the optical

flow rely on:

1. Brightness I(x, y, t) depends on coordinates x, y in greater region of the image.

2. Brightness of every point of a moving or static object does not change in time.

Suppose that some object in the image, or some point of an object, moves and after time

dt the object displacement is (dx, dy). Using Taylor series for brightness I(x, y, t) gives the

following:

I(x + dx, y + dy, t + dt) = I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + · · · , (3.2)

where ”· · · ” are higher order terms. According to the second assumption, (3.2) becomes

I(x + dx, y + dy, t + dt) = I(x, y, t), (3.3)

and
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + · · · = 0 (3.4)
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By dividing (3.4) by dt and defining dx
dt = u and dy

dt = v, the following equation called

optical flow constraint equation is obtained:

∂I

∂t
=

∂I

∂x
u +

∂I

∂y
v (3.5)

Here u and v are components of optical flow field in x and y coordinates respectively. Since

(3.5) has more than one solution, more constraints are required.

In the Lucas-Kanade method [37], by using the optical flow equation for group of adjacent

pixels and assuming that all of them have the same velocity, a system of linear equations

can be formed. In a non-singular system for two pixels a velocity vector can be computed to

solve the system. However, combining equations for more than two pixels is more effective.

It is possible to get a system that has no solution; yet it can be solved roughly using the

least-squares (LS) method. The weighted combination of equations is used. This method

involves the solution of 2× 2 linear system:

∑
x,y

W (x, y)IxIyu +
∑
x,y

W (x, y)I2
yv = −

∑
x,y

W (x, y)IyIt

∑
x,y

W (x, y)I2
xu +

∑
x,y

W (x, y)IxIyv = −
∑
x,y

W (x, y)IxIt, (3.6)

where W (x, y) is the Gaussian window. Ix, Iy and It are the partial derivatives of I with

respect to x, y and t respectively. The Gaussian window may be represented as a compo-

sition of two separable kernels with binomial coefficients. Iterating through the system can

yield even better results. That is, retrieved offset is used to determine a new window in the

second image from which the window in the first image is subtracted while It is calculated.

In our optical flow approach, a three-level hierarchical structure using Lucas-Kanade

technique in an image neighborhood of 13×13 is employed. Hierarchical motion estimation

speeds the motion search up by repeatedly down-converting both the current and the refer-

ence frame by a factor of two in both dimensions, and doing motion estimation on smaller

pictures. At each stage of the hierarchy, vectors from lower levels, i.e., smaller versions of

the picture, are used as a guide for searching at higher levels. This dramatically reduces

the size of search for large motions. Intel’s open-source computer vision library OpenCV c©

possesses a build-in implementation of the algorithm with sub-pixel accuracy. Details about

the pyramidal implementation of the algorithm can be found in [38].
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3.2.2 Motion Estimation by Block Matching

Block matching (BM) is a technique that searches corresponding image point in two suc-

cessive images by comparing a block of surrounding image points in both images. There

exist different search ways depending on the motion such as full-search BM, neighborhood-

search BM, etc. It is a known fact that the full-search approach is computationally more

expensive than the neighborhood-search. Thus when there is a priori information that the

motion is not too large, as in lip movement, one can utilize the neighborhood-search BM

by specifying the maximum allowable lengths of the motion in both x and y directions.

Another issue in block-matching is the matching criterion: there are well-known criteria

such as sum-of-absolute differences (SAD) and sum-of-squared differences (SSD).

Mathematically speaking, block matching aims to find the displacement vector d =

(dx, dy) by minimizing the residual function ∆(d) for a block of size (2bx + 1) × (2by + 1)

surrounding the pixel (px, py) of the image I in the next image J :

∆(dSSD) =
px+bx∑

x=px−bx

py+by∑

y=py−by

(I(x, y)− J(x + dx, y + dy))2, (3.7)

∆(dSAD) =
px+bx∑

x=px−bx

py+by∑

y=py−by

|I(x, y)− J(x + dx, y + dy)| . (3.8)

In this work, for the sake of better comparison between motion estimation methods,

a three-level hierarchical block-matching algorithm with SSD criterion and blocks of size

13×13 has been implemented. Quarter-pel accuracy is reached by interpolating the original

lip image and using appropriate 6-tap Wiener and bilinear filters used in H.264/MPEG-4

AVC [39]. The maximum allowable displacement vector is set to dmax= [±7.75,±7.75]

considering all pyramid levels. This maximum allowable setting is found to be successful to

model all motion vectors accurately [40].

3.3 Extraction of Grid-based Motion Features

The first alternative that we consider is the use of a dense uniform grid of size Gx ×Gy on

the intensity lip image. This grid definition allows to analyze the whole motion information

contained within the rectangular mouth region. The motion analysis is conducted using both
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the optical flow and the block matching methods described in Section 3.2.1 and Section 3.2.2,

respectively.

The motion estimation procedure yields two Gx × Gy 2D matrices, V x and V y, which

contain the x- and y- components of the motion vectors at grid points, respectively. The

motion matrices, V x and V y, are separately transformed via 2D-DCT. The first M DCT

coefficients along the zig-zag scan order, both for x and y directions, are combined to form a

feature vector f of dimension 2M as depicted in Figure 3.2. This feature vector representing

the dense grid motion will be denoted by fGRD.

Transforming the motion data into DCT domain has two advantages. First, it serves as

a tool to reduce the feature dimension by filtering out the high frequency components of

the motion signal. Second, DCT de-correlates the feature vector so that the discriminative

power of each feature component can independently be analyzed as will later be addressed

in Section 4.1.

3.4 Extraction of Contour-based Motion Features

3.4.1 Lip Contour Extraction

The accuracy and robustness of the lip contour extraction method are crucial for a recogni-

tion system that uses lip shape information. There exist many techniques in the literature

that attempt to solve the lip segmentation/tracking problem [16, 41, 42, 43, 44, 45, 46, 47].

The performance of these techniques usually depend on acquisition specifics such as image

quality, resolution, head pose and illumination conditions. In region-based lip segmentation

techniques, color information is often used as an important cue to differentiate lip pixels

from those of the skin. In order to achieve this, the state-of-the-art techniques use, for

instance, Markov random fields [46], linear discriminant analysis [47], adaptive Gaussian

mixture models [41] or fuzzy clustering methods as in [42, 44]. There are also a number

of boundary-based techniques to represent and to extract the lip contour, such as splines,

active shape models, snakes, and parametric models, that use color gradient and/or edge

information. Active shape models (ASM) [13, 48] impose a priori information about possible

lip movements so as to avoid unrealistic lip models, however they require a large training set

of registered lip images acquired under predefined face orientation and lighting. Classical

active contours [43] and their extensions such as GVF-snakes [16] suffer from complex pa-
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rameter tuning, and they are unable to perfectly fit to certain characteristic lip parts such

as Cupid’s bow.

For lip contour extraction, we employ the quasi-automatic technique proposed in [45],

where we fit polynomials on the outer lip contour. The technique is based on 6 designated

key points detected on the lip contour. The algorithm can briefly be outlined as follows:

• The algorithm starts by manually putting one single seed above the mouth and near

its vertical symmetry axis to initialize the jumping snake [49].

• The upper lip boundary is found by after the convergence of the snake and the three

points forming the Cupid’s bow on the upper lip, i.e., P2, P3, and P4, are detected by

a simple local maxima-minima function.

• Another key point P6 on the lower lip boundary near the vertical axis of the mouth is

located by analyzing the one-dimensional gradient of the pseudo-hue along the vertical

axis passing by P3.

• Mouth corners P1 and P5 are detected using both the minima of luminance computed

along each vertical pixel group and an edge criterion. Figure 3.3.a shows a lip image

during the mouth corner detection.

• The modeling stage is basically an optimization task that uses the color information

to draw two lines fitting to the Cupid’s bow and four cubic polynomials for the rest.

Figure 3.3.b illustrates the parametric model candidates for the upper right contour

and the optimal one.

• The key points are tracked from one image to the other using a variant of the Lucas-

Kanade algorithm adapted to the particular geometry of the mouth and the modeling

stage is repeated for the other images in the sequence.

Details about the algorithm can be found in [45]. Figure 3.4.a shows the 6 key points and

the fitted parametric model on a lip image.

When tested on our visual database, the technique proposed in [45] mostly yields very

accurate lip tracking results, but only under some assumptions on the acquisition environ-

ment and illumination conditions. Nevertheless, the algorithm fails in about one-tenth of
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the sample video sequences. For some speakers, the lack of discriminative color information,

especially on the lower lip boundary, becomes occasionally so severe that even a human eye

can hardly make a distinction. Thus we have integrated a user interaction mechanism into

the original algorithm described in [45]. In cases where it fails, the algorithm is assisted with

some extra key points which are hand-labeled on the lip boundary. Figure 3.4.c displays

examples of lip contours extracted from various images of our database.

3.4.2 Contour-based Motion Features

The extracted parametric lip contour is in fact a rough sketch of the real lip and does not

contain sufficiently detailed information for especially the speaker identification problem,

i.e., to characterize discriminative biometrics of different speakers. The discriminative infor-

mation can be captured by incorporating the motion vectors computed along the parametric

lip contour. Thus in the contour-based lip motion representation, only motion vectors com-

puted on the pixels along the extracted lip contour are taken into account and the rest is

discarded. In this case, the two sequences of x and y motion components on the contour

pixels are separately transformed using one-dimensional DCT. Note that the length of the

resulting sequence of motion components on each direction may vary from one frame to

another according to varying lip shape. In order to obtain a feature vector of fixed size in

each frame, prior to 1-D DCT transformation, the length of the sequence is normalized to

a fixed number by using linear interpolation. This number, Mmax is the maximum number

of contour points achieved in any lip frame of all available sequences. The DCT coefficients

computed separately for x and y directions are concatenated to form the feature vector that

is denoted by fCTR. Figure 3.5 depicts the procedure for extraction of contour-based lip

motion features.

3.4.3 Lip Shape Features

The contour-based lip motion feature vector fCTR can further be fused with lip shape

parameters to improve the representation. We will denote the lip shape feature vector by

fSHP. Recall that we parameterize the lip shape with four cubic polynomial and two line

segments. Polynomial segments can be specified by sampling four points on each whereas a

pair of endpoints is sufficient to represent a line segment. Since the lip contour is composed
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of these 6 segments articulated at their endpoints, a minimum number of 14 points is

necessary to uniquely represent the parameterized lip shape, which corresponds to a feature

vector of 28 point coordinates in x and y directions. These points should appropriately

be sampled on the lip contour. In order to assure translation and rotation invariance, we

represent the lip shape in terms of horizontal and vertical distances between the sampled

points. One possible such feature vector representation is composed of 8 simple parameters:

the maximum horizontal distance (L1), and the 7 vertical distances from the Cupid’s bow

and from the equidistant upper lip points to the lower lip boundary (L2, ..., L8) as depicted

in Figure 3.4.b. The vertical lines are selected to be perpendicular to the line joining the two

corners of the lip. The concatenation of lip shape parameters with contour-based motion

information is illustrated in Figure 3.5.
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Figure 3.1: Block diagram of the overall lip feature extraction system



Chapter 3: Lip Motion Feature Extraction 23

Figure 3.2: Grid-based lip motion feature extraction

(a) (b)

Figure 3.3: Crucial lip contour extraction stages (a) Mouth corner detection (b) Parametric
model fitting.
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(a) (b)

(c)

Figure 3.4: Lip contour modeling (a) The 6 key points and parametric models fitted on the
outer contour, (b) The 8 lip shape parameters, (c) Extracted lip contours.
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Figure 3.5: Contour-based lip motion feature extraction and concatenation of motion and
shape features (the dashed lines show the optional path to include lip shape parameters).
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Chapter 4

DISCRIMINATION ANALYSIS

In this work, we propose a novel approach for feature reduction, where we select the most

discriminative lip motion features in two successive stages, the so-called Bayesian and tem-

poral discrimination stages. In the Bayesian discrimination analysis stage, we use a prob-

abilistic measure that maximizes the ratio of intra-class and inter-class probabilities. The

temporal discrimination stage uses the linear discriminant analysis (LDA). The LDA is a

well-known dimension reduction and feature extraction method to achieve discrimination

among multiple classes [7, 50, 51]. The details of these two stages are discussed in the

following.

However, it will be beneficial to first give a brief information on Gaussian mixture models

since it serves as a tool to estimate unknown probability densities in Bayesian feature

selection. The theory of the LDA will be also discussed within the theoretical background.

4.1 Bayesian Discriminative Feature Selection

Let fk denote the k-th component of a feature vector f . Given an observation fk, the

maximum a posteriori (MAP) estimator selects the class λi with the maximum posterior

probability P (λi|fk) which can be written in terms of class-conditional probability distrib-

utions:

P (λi|fk) =
P (fk|λi)P (λi)

P (fk)

=
P (fk|λi)P (λi)

P (fk|λi)P (λi) +
∑

j 6=i P (fk|λj)P (λj)

=
[
1 +

∑
j 6=i P (fk|λj)P (λj)
P (fk|λi)P (λi)

]−1

(4.1)

Then the MAP estimator becomes the maximum mutual information estimator (MMIE)

[52] by maximizing the ratio l(λi|fk),

l(λi|fk) = log
P (fk|λi)P (λi)∑

j 6=i P (fk|λj)P (λj)
. (4.2)
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This ratio can be interpreted as the ratio of intra-class and inter-class probabilities, and

when maximized, it can serve as a measure of discrimination between the class λi and all

other classes for the corresponding feature component fk.

In most cases, the class probabilities, P (λi), can be assumed to be equally likely. Thus

the only unknown in the l(λi|fk) ratio is the class-conditional probabilities P (fk|λi). The

class-conditional probability distributions are generally computed over some training data

using expectation-maximization type algorithms, assuming an underlying probability dis-

tribution. Gaussian mixture density modeling has been widely used in various disciplines

that require signal characterization for classification and recognition, as well as estimation

of unknown probability densities. In this work, the Gaussian mixture models are used for

the class-conditional probability density function, p(fk|λi), estimation, where fk and λi are

respectively the k-th feature coefficient and the i-th class model. The maximum-likelihood

method has been one of the most commonly used techniques to estimate the parameters of

the mixture densities. Mathematically speaking, if we have an input sequence of N samples

{x1, . . . , xN}, the underlying density function for K mixtures is given as,

f(x) =
K∑

k=1

ωkNk(µk, Σk), (4.3)

where ωk values are the mixture weights, µk and Σk are respectively mean vector and covari-

ance matrix of the k-th Gaussian mixture density Nk. The EM (Expectation-Maximization)

algorithm to train the mixture densities over our sample data is given as:

• Initialize mixture weights, means and covariance matrix. Repeat the following E-step

and M-step until achieving convergence.

• E-step: Calculate the responsibility p(k|xn) of each Gaussian mixture Nk for each

training data point xn as,

pkn = p(k|xn) =
p(xn|k)ωk

p(xn)
, (4.4)

where p(xn) can be calculated as, p(xn) =
∑K

k=1 p(xn|k)ωk.

• M-step: Re-estimate mixture weights, means and covariance matrix,

ω̂k =
∑

n pkn∑
k

∑
n pkn

, µ̂k =
∑

n pknxn∑
n pkn

, σ̂2
ik =

∑
n pkn(xn − µ̂k)(xn − µ̂k)′∑

n pkn
. (4.5)
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The EM algorithm is employed using diagonal covariance matrices, since feature components

are assumed to be independent of each other.

When the class-conditional probability distributions are available for a K dimensional

feature vector (f1, f2, . . . , fK), where the components are statistically independent, one can

compute the discriminative power of the independent feature f i
k that belongs to class λi

using l(λi|f i
k). The larger the ratio l(λi|f i

k), the more discriminative is the feature; that

is, the class-conditional probability for its own class is high and the average of the class-

conditional probabilities over all other classes is low.

Let us refer to the training data, which is used to compute the class-conditional prob-

ability densities, as f i
k, that is a collection of observations of the k-th feature component

from the i-th class, which is available for all feature components and for all classes. We

propose the following discrimination measure, d(fk), to estimate the discriminative power

of each feature fk:

d(fk) =
∑

i

1
L

L−1∑

l=0

l(λi|f i
k(l)), (4.6)

where L is the number of observations in each class λi.

4.1.1 Discriminative Feature Ranking

The proposed discrimination measure, when computed for each independent feature, creates

an ordering {fki} among the components of the feature vector such that

d(fk1) > d(fk2) > · · · > d(fkK
). (4.7)

This ordering can be used to select the most N discriminative features, or similarly to

eliminate the least K − N discriminative features from the full set of features. Then the

reduced discriminative feature vector can be written as,

f̃
N

= (fk1 , fk2 , ..., fkN
). (4.8)

This selection strategy makes sense whenever the joint discrimination measure of any two

features is less than the sum of their individual discriminative powers. A sufficient condition

for this is to have statistically independent features. In this case, the proposed ordering is

a valid ordering with respect to feature discriminative power.
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We considered two alternative feature vectors fGRD and fCTR to represent the lip mo-

tion in Chapter 3. Both involve the DCT coefficients of the motion vectors computed either

on a 2D rectangular grid covering the lip region or along the 1D lip boundary pixels. Under

the Gaussian distribution assumption, the DCT transformation de-correlates observation

vectors so that each feature approximately becomes independent from the rest of the fea-

tures. After applying the DCT transformation, traditionally, the low indexed N coefficients,

that we refer to as FirstN, are used as the representative features since they yield the best

reconstruction for the original observations. Following the notation introduced in this sec-

tion, this feature vector can be expressed as fN = (f1, f2, ..., fN ). The discriminative set of

features, f̃
N

, that are introduced in (4.8), will be referred to as DiscrimN. Note that they

are selected according to the discriminative power ordering specified in (4.7).

4.1.2 Total Discrimination Measure

The proposed discrimination analysis also offers a means to assess and compare the expected

identification performances of the different lip feature sets. Note that the measure d(f) in

(4.6) is an estimate of the discrimination power of each component in the feature vector.

The discriminative power of the N selected features (the reduced feature vector) can then

be estimated by the total discrimination measure, DN (f), which is defined as follows:

DN (f) =
N∑

n=1

d(fkn). (4.9)

The numerical estimates for DN (fGRD) and DN (fCTR) will later be provided in the ex-

perimental results section along with the corresponding recognition results. Note that the

Bayesian discrimination analysis can not be applied to the lip shape feature vector fSHP

since the lip shape parameters, which are few in number, are not in general statistically

independent of each other.

4.2 Temporal Discriminative Feature Selection using LDA

The Bayesian MMIE-based discriminative feature selection technique described in Sec-

tion 4.1 does not model and exploit the temporal correlations existing between successive

lip frames. One could include the first and second derivatives of the feature vectors to
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better model temporal variations, but this would result in higher dimensional feature rep-

resentations. Alternatively, following the work of Potamianos et al. [7], we use the LDA for

temporal discrimination analysis, where we successively concatenate the Bayesian-reduced

lip feature vectors through a window of fixed duration so as to capture dynamic visual speech

information, and obtain a new sequence of higher dimensional feature vectors. Then, each of

these feature vectors is projected to a lower dimensional discriminative feature space using

the LDA analysis.

The LDA maps a given high dimensional feature vector to a subspace of reduced di-

mension that best describes the discrimination among classes. This is achieved using two

statistical measures, the within-class scatter matrix (Sw) and the between-class scatter

matrix (Sb),

Sw =
R∑

j=1

Qj∑

i=1

(xj
i − µj)(x

j
i − µj)T , (4.10)

Sb =
R∑

j=1

(µj − µ)(µj − µ)T , (4.11)

where xj
i is the i-th sample of class j, µj is the mean of class j, µ is the mean of all classes,

R is the number of classes, and Qj the number of samples in class j [53].

The goal is to maximize the between-class scattering while minimizing the within-class

variations. Hence, LDA seeks for a projection matrix W that maximizes the function:

ε(W ) =
det (W T SbW )
det (W T SwW )

, (4.12)

provided that Sw is a nonsingular matrix. The ε(W ) function is maximized when the

column vectors of the projection matrix W are the eigenvectors of S−1
w Sb. The LDA

has two important limitations: i) The matrix S−1
w Sb has nonzero eigenvalues at most one

less than the total number of classes (R − 1), that puts an upper bound on the reduced

dimension, and ii) At least K + R training samples are needed to guarantee the existence

of the inverse matrix S−1
w , where K denotes the initial feature vector dimension. Thus, the

common practice is, prior to LDA, to use an intermediate dimension reduction technique

such as PCA that does not involve a discrimination analysis.

Due to the second limitation of the LDA, an intermediate step to reduce the feature

vector dimension is needed. This intermediate reduction is also preferable to reduce the
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computational complexity of the LDA analysis. In this regard, the Bayesian MMIE-based

analysis that we propose in Section 4.1, can also serve as an intermediate dimension reduc-

tion method that selects a discriminative set of features from a larger set of DCT coefficients

including some non-principle (or minor) feature components at each time instant.

The MMIE-based discrimination analysis results in a feature vector f̃(t) for each time

instant t. Prior to concatenation within a window, the feature vector f̃(t) is linearly inter-

polated in time by some factor whose value depends on the frame rate. In the interpolated

temporal domain, each feature vector at time instant t is concatenated with the previous

and the next T feature vectors, so as to form a new higher dimensional feature vector that

we denote by F (t):

F (t) = [f̃(t− T ), f̃(t− T + 1), · · · , f̃(t), · · · , f̃(t + T − 1), f̃(t + T )]. (4.13)

The LDA analysis is then performed on this concatenated vector of dimension (2T + 1)N .

The dimension of the resulting discriminative feature space is bounded above by R−1, that

is one less than the total number of classes. Figure 4.1 illustrates the formation of the final

feature vector, that we will denote by LDA(f̃(t)), via temporal and spatial discrimination

analysis.
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Figure 4.1: Two-stage discrimination analysis for lip motion features.



Chapter 5: Multimodal Decision Fusion with Audio and Lip Texture 33

Chapter 5

MULTIMODAL DECISION FUSION WITH AUDIO AND LIP

TEXTURE

In this chapter, the decision fusion strategy employed and other modalities, namely audio

and lip texture will be presented.

5.1 Other Audio-Visual Features

5.1.1 Audio Features

Audio stream is represented with the mel-frequency cepstral coefficients (MFCC), as they

yield good discrimination of speech signals. The audio stream is processed over 10 msec

frames centered on 25 msec Hamming window for 16 kHz sampled audio signal. Each

analysis frame is first multiplied with a Hamming window and transformed to frequency

domain using Fast Fourier Transform (FFT). Mel-scaled triangular filter-bank energies are

calculated over the square magnitude of the spectrum and represented in logarithmic scale

[54]. The resulting MFCC features, cj , are derived using discrete cosine transform (DCT)

over log-scaled filter-bank energies ei:

cj =
1

NM

NM∑

i=1

ei cos ((i− 0.5)
jπ

NM
), j = 1, 2, ..., N. (5.1)

where NM is the number of mel-scaled filter banks and N is the number of MFCC features

that are extracted. The MFCC feature vector is defined as, C = [c1c2 · · · cN ]T . The audio

feature vector fA is formed as a collection of MFCC vector C along with the first and

second delta MFCCs, fA = [C ∆C ∆∆C]. Audio feature extraction is briefly illustrated

in Fig. 5.1.a.

5.1.2 Lip Texture Features

It has been a common practice to use intensity-based features for the representation of

lip texture [7, 18]. There are certain advantages and draw-backs of the intensity-based lip
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features, such as representing texture information as well as shape but being sensitive to

illumination changes. Fig. 5.1.b shows the intensity-based DCT feature extraction. The

intensity-based lip features, which are denoted by fLt
, are extracted by the Bayesian dis-

crimination [55] from the zig-zag scan of 2D-DCT coefficients.

(a) (b)

Figure 5.1: Block diagrams of the feature extraction for modalities: (a) Audio, (b) Lip
texture.

5.2 Multimodal Decision Fusion At a Glance

When more than one information source is available, the fusion of information from different

sources can reduce overall uncertainty and increase the robustness of a classification system.

Suppose that P different classifiers, one for each of the P modalities f1, f2, ...,fP , are

available. Each classifier, say the p-th classifier, produces a set of N -class log-likelihood

ratios ρp(λn), n = 1, . . . , N . The problem then reduces to computing a single set of joint log-

likelihood ratios ρ(λ1), ρ(λ2), ..., ρ(λN ) for these P modalities. In the Bayesian framework,

assuming that f1, f2, ...,fP are statistically independent, the joint log likelihood ratio is

given by the sum of the individual ratios:

ρ(λn) = log
P (f1|λn) · · ·P (fP |λn)

P (f1|λN+1) · · ·P (fP |λN+1)
=

∑
p

ρp(λn), (5.2)
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which is equivalent to the so-called product rule [4]. In practice, there are three main

problems with the optimality of this rule. First, partial decisions coming from different

classifiers may be correlated. Second, due to modeling errors and/or measurement noise,

the estimated distribution model of training features, i.e., P (fp|λn), may not always comply

with the actual distribution of test features. Third, the impostor model, i.e., P (fp|λN+1),

is a mere approximation of the reality. As a result, the log likelihood ratios coming from

separate classifiers should each be considered as an opinion or a likelihood score rather than

a probabilistic value. The statistics and the numerical range of these likelihood scores mostly

vary from one classifier to another, and thus they need to be normalized into the interval

(0, 1) before the fusion process, using methods such as sigmoid and variance normalization.

Unfortunately there is no formally “correct” or optimal way of normalization, which is

investigated in detail in [56]. In this work a sigmoid normalization is used as in [26], which

maps likelihood ratios to the (0, 1) interval by normalizing the likelihood ratio ρ using the

function

g(ρ) =
[
1 + e−( ρ−µ

2σ
+1)

]−1
, (5.3)

where µ and σ are the mean and the standard deviation of the likelihood ratio ρ over the

accept subjects, respectively.

In order to cope with the above problems, various approximation approaches have been

proposed in the literature as alternatives to the product rule (i.e., the sum rule in log

domain) such as max rule, min rule and reliability-based weighted summation. In fact,

the most generic way of computing joint ratios (or scores) can be expressed as a weighted

summation:

ρ(λn) =
P∑

p=1

ωpρp(λn) for n = 1, 2, ..., N, (5.4)

where ωp denotes the weighting coefficient for modality p, such that
∑

p ωp = 1. Then, the

fusion problem becomes finding the optimal weight coefficients. Note that when ωp = 1
P ∀p,

(5.4) is equivalent to the product rule. On one side, there are hard-level combination

techniques such as max rule, min rule and median rule [4], that use binary values for

assignment of the weighting coefficients. These techniques combine decisions rather than

likelihood scores and in this way try to filter out some of the erroneous likelihoods. The

max rule and the min rule for example rely only on the classifier with the highest and the

lowest best likelihood scores, respectively, and disregard the decisions of the other classifiers.
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In this sense, the max rule tends to have a high false accept rate, whereas the min rule is

suited to high security applications. Both methods rely solely on likelihood scores and do not

employ an additional reliability measure. Soft-level combination techniques, on the other

hand, regard each coefficient as a measure of the relative reliability Rp of each classifier

so that each wp becomes directly equal to Rp. We refer to this combination method as

Reliability Weighted Summation (RWS) rule. Reliability values Rp can be set to some fixed

values using some a priori knowledge about the performance of each modality classifier

or can be estimated adaptively for each decision instant. The problem of the reliability-

based weighting approach is that the numerical estimation of reliability values itself, which is

ideally feature and class dependent, is not in general very accurate; thus erroneous likelihood

scores contribute to the joint score, corrupting correct partial decisions.

5.3 Reliability Weighted Summation (RWS)

Among various reliability estimation techniques existing in the literature, we favor the one

proposed in [18], since it is better suited to the open-set speaker identification problem by

assessing both accept and reject decisions of a classifier, and it can easily be defined for the

closed-set identification problem.

The RWS rule combines likelihood ratio values of the N modalities weighted by their

reliability values ωn as in (5.4). The reliability value ωn is estimated based on the difference

of likelihood ratios of the best two candidate classes λ∗ and λ∗∗, that is, ∆n = ρn(λ∗) −
ρn(λ∗∗), for modality n. In the absence of reject class, that is for closed-set identification,

the likelihood difference of the best two candidates, ∆n, can be used as the reliability value.

However, in the presence of a reject class, one would expect a high likelihood ratio ρn(λ∗)

and a high ∆n value for true accept decisions, and a low likelihood ratio ρn(λ∗) and a low ∆n

value for true reject decisions. Hence, a normalized reliability measure ωn can be estimated

by,

ωn =
1∑
i γi

γn, (5.5)

where

γn =





∆n closed− set

(e(ρn(λ∗)+∆n) − 1) + (e(κ−ρn(λ∗)−∆n) − 1) open− set
(5.6)

The first and second terms for open-set identification in γn are associated with the true
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accept and true reject, respectively. The symbol κ stands for an experimentally determined

factor to reach the best compromise between accept and reject scenarios. The κ value is set

to 0.65 as it is found to be optimal for open-set speaker identification task in [18].
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Chapter 6

EXPERIMENTAL RESULTS I: UNIMODAL PERFORMANCE

6.1 Database and Test Environment

The audio-visual database have been acquired using a Sony DSR-PD150P video camera at

Multimedia, Vision and Graphics Laboratory (MVGL) of Koç University. The data acqui-

sition system built at MVGL can be seen in Figure 6.1. Speaker identification and speech-

reading experiments have been conducted using the MVGL-AVD database [57], which con-

tains audio-visual data collected from a population of 50 speakers (R = 50). A view of

the variation in our database is presented in Figure 6.2. The visual dataset has color video

frames of size 720 × 576 pixels at a rate of 15 fps, each containing the frontal view of a

speaker’s head, and the audio stream has 16 kHz sampling rate. The database includes

two distinct scenarios, that are the name (Dn) and the digit (Dd) scenarios. In the name

scenario, each subject utters ten repetitions of her/his name as the secret phrase. A set

of impostor data is also collected with each subject in the population uttering five differ-

ent names from the population. In the digit scenario, each subject utters ten repetitions

of a fixed digit password 348 572. Both scenarios are used in the speaker identification

experiments. As for speech-reading, each name uttered in the name scenario dataset is re-

garded as an isolated phrase, and a subset from this dataset, Ds ⊂ Dn, which includes more

than 12 repetitions of each name utterance, is used as the testbed for our speech-reading

experiments.

In the experimental studies, first an initial lip region of size 128 × 80 is segmented

from each video frame, following the registration of successive face regions by global motion

compensation. For grid-based motion analysis, a rectangular grid of size Gx×Gy = 64×40 is

considered for each lip segment. Hence each grid covers a pixel block of size 2×2. Following

motion estimation and 2D-DCT, a feature vector of size 2M , is obtained by interlacing M

features from x direction and M features from y direction, where M = 50 is used in the

experiments. Then the FirstN features, fN
GRD, are extracted by eliminating some high-
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Figure 6.1: Data acquisition system at Koç University.

indexed DCT coefficients to obtain a vector of size N , where N ≤ 2M . For contour-based

motion analysis, we follow a similar procedure. First, the lip contour is extracted in each

frame with the method described in Section 3.4.1. Following motion estimation and 1D-

DCT on the lip contour pixel locations, a feature vector of size 2M , is obtained, where

M = 50. The low-indexed DCT coefficients then provide us with the contour-based FirstN

features, fN
CTR. The third candidate for the best lip feature representation is obtained

by concatenating contour-based motion features with the 8 lip shape parameters, that is

fN
CTR + fSHP. In addition to the lip motion features, recall that the lip texture features

are the 2D-DCT coefficients of the lip intensity image whereas the audio features are the

MFCC coefficients along with the first and the second derivatives.

The temporal characterization of the audio and the audio-visual modalities are per-

formed by HMM structures. The HMM structures are implemented using the HTK tool

version 3.3, where each class is represented by a word-level, 6-state left-to-right HMM struc-

ture. While the performance of the speaker identification system is measured using the equal

error rate figure, that of the speech recognition system is presented with the recognition

rate, that is the ratio of the true matches to the total number of trials.

In the following sections, we will present the unimodal recognition results. In Section 6.2,

we will first compare optical flow and block matching techniques for motion estimation in

the recognition sense. We will then consider each scenario one by one in more detail, and

for each scenario we will provide the performances of the three lip motion feature represen-

tations, fN
GRD, fN

CTR and fN
CTR + fSHP in Section 6.3, Section 6.4 and Section 6.5. Later,
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Figure 6.2: Sample subjects from the MVGL-AVD database.

experimental results based on the two-stage discrimination analysis of these lip motion fea-

tures for each scenario are discussed in Section 6.6. The decision fusion results of the best

lip motion and lip intensity features, and Bayesian feature selection are further discussed in

Section 6.7 and Section 6.8 respectively.

6.2 Comparison of Optical Flow and Block Matching Techniques

Table 6.1 presents the unimodal EER performances of two different speaker identification

scenarios, namely Name and Digit under different motion estimation techniques. It is ob-

served that the lip motion features calculated by the block-matching method provide better

EER performance as compared to the ones computed by the optical flow. The most reason-

able explanation for this fact is the erroneous measurements introduced due to the theory

and assumptions behind the optical flow computation. In addition, it is worth repeating

that the optical flow estimation is carried out by the OpenCV c©’s build-in function employ-

ing the Lucas-Kanade method described in Section 3.2.1. Hence the classical block matching

method is computationally more expensive than the optical flow. So for these two motion

estimation techniques there exist a trade-off between accuracy and computational load.
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Table 6.1: Unimodal performance comparison of the optical flow and the block matching
techniques under speaker identification scenarios.

Feature Type Optical Flow Block Matching

Name fGRD 8.4 6.8

EER (%) f̃GRD 8.4 6.5

LDA(f̃GRD) 7.6 5.2

Digit fGRD 14.8 12.8

EER (%) f̃GRD 14.3 12.2

LDA(f̃GRD) 7.6 5.2

6.3 Speaker Identification: Name Scenario

In the name scenario implementation, the Dn database is partitioned into two disjoint sets,

{Dn1 and Dn2}, each having five repetitions from each subject in the database. The subsets

Dn1 and Dn2 are then used for training and testing, respectively. Since there are 50 subjects

and five repetitions for each true and imposter client tests, the total number of trials for

the true accepts and true rejects is respectively Na = 250 and Nr = 250.

The three lip motion feature candidates, fN
GRD, fN

CTR and fN
CTR + fSHP, are tested on

the database. Figure 6.3 displays the EER performances with varying feature dimension

N for speaker identification. We observe that the grid-based motion feature fN
GRD achieves

6.8% EER, and outperforms the contour-based features. We also observe that the addition

of lip shape information, fSHP, to the contour-based motion features, fCTR, improves the

performance of contour-based features.

6.4 Speaker Identification: Digit Scenario

In the digit scenario, the Dd database is partitioned into two disjoint sets, {Dd1 and Dd2},
each having five repetitions of the same 6-digit number from each subject in the database.

The subsets Dd1 and Dd2 are then used for training and testing, respectively. Note that, in

the digit scenario, no imposter recordings are performed since every subject utters the same

6-digit number. Hence, the imposter clients are generated by the leave-one-out scheme,
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Figure 6.3: Name Scenario: The EER results for grid-based, contour-based and shape
information-added motion features.

where each subject becomes the imposter of the remaining R−1 subjects in the population.

Having R = 50 subjects and five testing repetitions, the resulting total number of trials for

the true accepts and true rejects (imposters) becomes respectively Na = 250 and Nr = 250.

The three lip motion feature candidates, fN
GRD, fN

CTR and fN
CTR + fSHP, are tested on

the database. Figure 6.4 displays the EER performances with varying feature dimension N .

We observe that the grid-based motion feature fN
GRD and the lip contour and shape based

feature fN
CTR + fSHP achieve the same minimum 12.8% EER, and outperforms the contour

only feature fN
CTR. Note that, speaker identification through digit scenario is harder, and

the resulting EER performances are poorer than the name scenario performances.

6.5 Speech-Reading Scenario

In this scenario, the database Ds includes 35 different phrases, i.e., R = 35. Each phrase,

which is actually the name of a speaker from the name database population, is repeated at

least twelve times. The Ds database is partitioned into two disjoint sets Ds1 and Ds2 , one

for training and the other for testing, each having the same number of utterance repetitions.

Figure 6.5 displays performances of the three lip motion feature candidates, fN
GRD, fN

CTR
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Figure 6.4: Digit Scenario: The EER results for grid-based, contour-based and shape
information-added motion features.

and fN
CTR + fSHP. We observe that the lip contour and shape based feature fN

CTR + fSHP

achieves the best recognition rate, 70.48%. However, the lip contour only fN
CTR and lip

motion based fN
GRD features perform quite close to this best recognition rate, which are

respectively 69.52% and 67.62%.

6.6 Evaluation of Discrimination Analysis

The Bayesian discriminative feature selection method and the temporal LDA analysis have

been applied to different lip motion feature representations in various combinations. The

best EER and recognition rates attained are provided in Table 6.2. These values are obtained

by choosing the feature size N as the one that maximizes the performance for each case. In

Table 6.2, fN and f̃
N

stand for the FirstN and DiscrimN features, whereas LDA(fN ) and

LDA(f̃
N

) denote the features obtained by applying the temporal LDA using T = 6 as the

temporal window parameter. The best performance rate for each scenario is indicated in

bold in the table. The best EER rate attained for speaker identification is 5.2% under both

name and digit scenarios after two-stage discrimination, whereas the best recognition rate

for speech-reading, 72.86%, is achieved using Bayesian discrimination alone. Note that the
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Figure 6.5: Speech-Reading: The recognition rates for grid-based, contour-based and shape
information-added motion features.

temporal LDA brings significant performance gain in speaker identification especially under

the digit scenario. On the other hand, the Bayesian discriminative feature selection method,

when used alone, yields performance gain in all scenarios. Also note that the use of lip shape

parameters in addition to contour-based motion features improves the performance to 9.2%

and 8.8% EER in name and digit scenarios, respectively, and to 70.48% recognition rate in

speech-reading.

In Table 6.2, we observe that the best performances are obtained using the grid-based

motion features for both speaker identification and speech-reading. Figure 6.6 plots the

performances of the grid-based FirstN features, DiscrimN features and DiscrimN features

with LDA at varying dimensions (10 to 50) for speaker identification and speech-reading

scenarios. The key observations of these experiments are: i) DiscrimN achieves the same

or better performance at relatively lower dimensions by selecting a discriminative subset

of coefficients, which are not necessarily the principle components ii) As the feature vector

dimension N increases the performance saturates, iii) The use of temporal LDA in addition

to Bayesian discrimination, brings additional EER gain in speaker identification. However,

this is not the case in speech-reading, where the temporal LDA may even degrade the

recognition rate.
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Table 6.2: Evaluation of two-stage discrimination analysis for lip motion and shape features
under speaker identification and speech-reading scenarios.

Feature EER (%) Recog. Rate (%)

Type Name Digit Speech-Reading

fN
GRD 6.8 12.8 67.62

f̃
N
GRD 6.5 12.2 72.86

LDA(fN
GRD) 5.6 5.8 67.14

LDA(f̃
N
GRD) 5.2 5.2 67.62

fN
CTR 10.3 17.4 69.52

f̃
N
CTR 9.8 17.6 70.00

LDA(f̃
N
CTR) 12.0 18.88 60.95

fSHP 18.9 23.5 51.43

fN
CTR + fSHP 9.2 12.8 70.48

f̃
N
CTR + fSHP 9.4 13.8 69.52

LDA(f̃
N
CTR + fSHP ) 10.4 8.8 61.90

In the Name scenario, the best EER performances for each feature set, FirstN, DiscrimN

and DiscrimN+LDA, are 6.8%, 6.5% and 5.2% whereas in the Digit scenario, they are 12.8%,

12.2% and 5.2%. For speech-reading, the best recognition rate is measured for DiscrimN as

72.86%.

6.7 Combining Motion and Intensity Information

We have performed experiments to determine whether using explicit lip motion features,

instead of or in addition to lip intensity information, provides further performance gain.

Following the common practice of other lip-based recognition systems such as [7, 18], we

form the intensity-based lip feature vector by scanning the 2D-DCT coefficients in the

zig-zag order, that are computed from the raw intensity values within the rectangular lip

region. The best performance rates achieved with intensity-only and motion-only features

are presented in Table 6.3 for speaker identification (name and digit) and speech-reading.
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The last row of Table 6.3 displays the corresponding performance rates when lip motion

is combined with lip intensity by using the decision fusion scheme, the reliability weighted

summation, proposed in [18]. We use the best grid-based lip motion features for each

scenario and the DiscrimN features to represent intensity information without any further

temporal discrimination as they yield the best performance in all scenarios. We observe

that the addition of intensity information yields a significantly higher performance gain in

the case of speaker identification under the digit scenario as compared to the other lip-based

scenarios and representations. This is mostly due to the texture information conveyed in the

intensity-based lip features. The texture serves as an important discriminative information

especially under the digit scenario since the imposters of this scenario are generated by the

leave-one-out scheme and thus not registered in the population. It is also as expected to

observe that, for speech-reading, the lip motion features perform better than the intensity-

based lip features since the speech information is strongly coupled with the lip movement

and thus better represented with motion-based features. The use of lip intensity information

in addition to lip motion does not neither improve the performance in the case of speech-

reading.

Table 6.3: Speaker identification and speech-reading performance results for intensity-only
features, motion-only features and their decision fusion.

Feature EER (%) Recog. Rate (%)

Type Name Digit Speech-Reading

Intensity 5.60 1.74 62.86

Motion 5.20 5.20 72.86

Intensity⊕Motion 3.60 1.60 70.95

6.8 Discussions on the Bayesian Feature Selection

In this part of the experimental results, we will demonstrate how the discrimination power

DN (f), as defined in (4.9), can be used to pre-estimate the relative recognition performances

of different lip feature types. We will also provide some experimental details of the Bayesian
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discriminative feature selection procedure applied to the grid-based (fGRD) and to the

contour-based (fCTR) lip motion features. The left column of Figure 6.7 presents the

discrimination power of DiscrimN (f̃
N
GRD) features of these two representations, and the

right column presents the corresponding experimental EER and recognition rates for speaker

identification and speech-reading. We observe that the numerical discrimination power

estimates and the corresponding experimental performances match with each other, that is,

the higher the discriminative power for a given feature type, the higher is the corresponding

recognition performance.

The Bayesian discrimination analysis results in an ordering of the transform domain

coefficients, where the first N of these coefficients are picked as the representing features.

The indices of these discriminative coefficients are worth examining in more detail. Recall

that the x- and y-direction grid-motion vectors are separately processed by 2D-DCT trans-

formation and then the first 50 coefficients from x- and y-direction are concatenated into

a single vector to be further processed by the Bayesian discrimination analysis. Figure 6.8

plots the indices of the first 50 discriminative coefficients from x- and y-direction DCT co-

efficients for different recognition scenarios. The non-principle coefficients are considered to

be those having coefficient indices higher than 25. We observe that there are more number

of valuable non-principle coefficients in the case of speaker identification as compared to

speech-reading. From Figure 6.8 one can also observe that the number of non-principle

coefficients computed from the x components of the lip motion vectors is more than those

resulting from the y components.

A similar observation can be performed for the Bayesian discrimination of the grid-

contour fusion based fGRD+CTR feature. Figure 6.9 plots the indices of the discrimina-

tive coefficients for the grid and contour based features, respectively on the left and right

columns. On the right column of Figure 6.9, the first half of the coefficients are from x-

direction, and the second half from y-direction. Note that, the number of discriminative

coefficients from the grid-based features is significantly more than the contour-based fea-

tures. In Figure 6.9, the contour-based features exhibit a poor discrimination, which is

also validated with the poor experimental recognition results as presented in Figure 6.3,

Figure 6.4 and Figure 6.5.
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Chapter 7

EXPERIMENTAL RESULTS II: MULTIMODAL PERFORMANCE

In this chapter, the performance gain is presented by fusing 3 different modalities: i)

the improved lip motion modality, ii) lip texture, and iii) audio, by RWS rule. The audio

recordings are perturbed with varying levels of additive noise during the testing sessions

to simulate adverse environmental conditions. The additive acoustic noise is picked to be

either a mixture of office and babble noise or the car noise. Abbreviations and descriptions

for the modalities and fusion techniques are given in Table 7.1.

Table 7.1: Abbreviations and descriptions for modalities and fusion techniques

A Audio modality

Lt Lip texture modality

Lm Lip motion modality

+ Product rule

⊕ RWS rule

7.1 Speaker Identification: Name Scenario

Table 7.2 presents the EER performance of the unimodal and multimodal speaker identifi-

cation system (Name) for audio, lip texture and lip motion modalities. The audio modality

is perturbed with the office&bubble noise. The EER performances of the lip texture and

lip motion modalities are 5.6% and 5.2%, which are close to each other and better than the

audio modality at 15 dB SNR and below. When the product rule and the RWS rule are

applied to fuse pair of modalities or all the three modalities, the EER performance increases

significantly. The RWS rule is observed to perform better than product rule, especially un-
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der noisy conditions. The best EER performance is achieved with the fusion of all three

modalities at 15 dB SNR and below. Above 15 dB SNR, the best performance is achieved

with the fusion of lip texture and audio modalities.

Table 7.2: Speaker identification results for Name scenario: Equal error rates at varying
office&bubble noise levels for different modalities and multimodal fusion structures.

EER (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5

A 1.0 1.6 2.4 5.3 14.8 25.4 31.5

Lt 5.6

Lm 5.2

Lm + A 2.6 3.2 3.6 4.4 7.2 17.5 22.8

Lm ⊕A 0.8 1.2 1.8 3.2 5.6 13.6 19.2

Lt + A 0.4 0.4 0.8 2.0 4.4 11.2 15.9

Lt ⊕A 1.0 0.8 1.0 1.8 3.0 6.8 9.6

Lm + Lt + A 1.6 1.4 1.4 1.4 1.7 3.6 4.4

Lm ⊕ Lt ⊕A 1.2 1.2 1.2 1.2 1.4 3.2 3.2

Table 7.3 presents the EER performance of the unimodal and multimodal speaker iden-

tification system (Name) for audio, lip texture and lip motion modalities, where the audio

modality is perturbed with the car noise. The EER performances of the lip texture and

lip motion modalities are again better than the audio modality at 10 dB SNR and below.

Besides the fact that both decision fusion techniques yield performance improvement, the

RWS rule is better as compared to the product rule, especially under noisy conditions. The

best EER performance is achieved with the fusion of all three modalities at all noise levels.
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Table 7.3: Speaker identification results for Name scenario: Equal error rates at varying car
noise levels for different modalities and multimodal fusion structures.

EER (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5 0 -5

A 1.0 1.2 1.6 4.8 13.2 18.8 22.4 30.8 39.7

Lt 5.6

Lm 5.2

Lm + A 2.6 2.2 2.8 3.4 6.0 10.8 12.0 15.1 22.4

Lm ⊕A 0.8 0.8 1.2 2.0 4.8 8.0 9.6 13.6 19.8

Lt + A 0.4 0.8 0.8 1.2 3.6 7.0 7.0 12.0 18.4

Lt ⊕A 1.0 0.8 1.2 2.0 2.8 4.8 5.0 6.8 10.8

Lm + Lt + A 1.6 1.2 1.2 2.0 1.6 2.0 2.8 4.8 4.6

Lm ⊕ Lt ⊕A 1.2 0.8 1.0 1.6 1.2 1.6 2.4 4.0 4.2

7.2 Speaker Identification: Digit Scenario

Table 7.4 presents the EER performance of the unimodal and multimodal speaker identifi-

cation system (Digit) for audio, lip texture and lip motion modalities. The audio modality

is perturbed with the office&bubble noise. The EER performances of the lip texture and lip

motion modalities are 1.74% and 5.2%. Since, in the digit scenario every subject utters the

same six digit password, the audio modality suffers and the lip texture modality benefits

with respect to the name scenario. When the product rule and the RWS rule are applied

to fuse pair of modalities or all the three modalities, the EER performance increases signifi-

cantly. The RWS rule is observed to perform better than product rule at all SNR conditions.

The best EER performance is achieved with the fusion of all three modalities at all SNR

levels.

Table 7.5 presents the EER performance of the unimodal and multimodal speaker iden-

tification system (Digit) for audio, lip texture and lip motion modalities, where the audio
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Table 7.4: Speaker identification results for Digit scenario: Equal error rates at varying
office&bubble noise levels for different modalities and multimodal fusion structures.

EER (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5

A 2.4 3.4 6.9 12.2 24.9 33.1 37.1

Lt 1.74

Lm 5.2

Lm + A 2.4 2.4 2.4 4.0 10.4 18.0 23.2

Lm ⊕A 2.4 2.4 2.4 4.0 10.0 16.8 22.0

Lt + A 0.4 0.4 0.4 1.4 6.8 14.0 18.4

Lt ⊕A 0.4 0.4 0.4 0.8 4.0 10.0 13.8

Lm + Lt + A 0.8 0.8 1.2 1.2 2.6 4.2 5.2

Lm ⊕ Lt ⊕A 0.4 0.4 0.6 0.8 2.4 3.8 5.2

modality is perturbed with the car noise. The RWS rule is again observed to perform better

than product rule at all SNR conditions. The best EER performance is achieved with the

fusion of all three modalities at all SNR levels. It is worth noting that at some noise levels,

the EER performance of the multimodal system is 0%, which is mainly due to insufficient

training-testing repetitions. The experiments can be repeated a number of times using

different subsets from Dd.

7.3 Speech-Reading Scenario

Table 7.6 presents the recognition performance of the unimodal and multimodal speech-

reading system for audio, lip texture and lip motion modalities. The audio modality is

perturbed with the office&bubble noise. The recognition performances of the lip texture

and lip motion modalities are 62.86% and 72.86%. Since, the lip texture modality suffers

to capture lip reading related information, the recognition rate of this modality is relatively
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Table 7.5: Speaker identification results for Digit scenario: Equal error rates at varying car
noise levels for different modalities and multimodal fusion structures.

EER (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5 0 -5

A 2.4 2.6 2.8 5.6 11.0 18.6 24.2 37.2 45.4

Lt 1.74

Lm 5.2

Lm + A 2.4 2.4 2.8 2.8 5.8 6.6 8.6 17.1 25.9

Lm ⊕A 2.4 2.2 2.0 2.0 3.8 6.0 7.9 18.8 27.6

Lt + A 0.4 0.4 0.4 0.4 1.4 3.0 5.2 13.8 23.2

Lt ⊕A 0.4 0.4 0.4 0.4 0.8 1.6 2.8 10.8 18.8

Lm + Lt + A 0.8 0.8 0.4 0.4 0.4 0.8 1.2 1.6 1.8

Lm ⊕ Lt ⊕A 0.4 0.4 0.0 0.0 0.0 0.4 0.6 1.6 4.2

poorer than the lip motion and audio modalities. When the product rule and the RWS rule

are applied to fuse pair of modalities or all the three modalities, the recognition performance

increases if the lip texture modality is not in the fusion. The best recognition performance

is achieved with the RWS fusion of audio and lip motion modalities at all SNR levels.

Table 7.7 presents the recognition performance of the unimodal and multimodal speech-

reading system for audio, lip texture and lip motion modalities, where the audio modality

is perturbed with the car noise. Again when the product rule and the RWS rule are applied

to fuse pair of modalities or all the three modalities, the recognition performance increases

if the lip texture modality is not in the fusion. The best recognition performance is achieved

with the RWS fusion of audio and lip motion modalities at all SNR levels.
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Table 7.6: Speech-Reading results: Recognition rates at varying office&bubble noise levels
for different modalities and multimodal fusion structures.

Recognition (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5

A 90.00 88.57 87.62 86.67 80.00 62.86 39.05

Lt 62.86

Lm 72.86

Lm + A 86.19 84.28 84.28 84.28 80.95 72.38 63.33

Lm ⊕A 91.43 90.95 88.57 88.10 84.76 75.71 69.05

Lt + A 76.67 77.14 78.57 76.67 76.19 69.04 54.76

Lt ⊕A 76.67 77.14 75.24 74.76 73.33 68.57 61.69

Lm + Lt + A 80.95 81.42 80.95 81.90 79.04 75.71 69.52

Lm ⊕ Lt ⊕A 78.57 78.57 76.19 77.14 74.28 72.38 68.10
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Table 7.7: Speech-Reading results: Recognition rates at varying car noise levels for different
modalities and multimodal fusion structures.

Recognition (%)

Source Noise Level (dB SNR)

Modality clean 25 20 15 10 7 5 0 -5

A 88.10 87.14 85.71 85.24 78.57 73.81 68.57 51.43 35.71

Lt 62.86

Lm 72.86

Lm + A 84.76 83.81 82.38 81.43 80.47 75.71 73.33 67.14 53.81

Lm ⊕A 90.00 88.57 86.67 85.71 82.85 79.05 75.24 73.33 60.47

Lt + A 77.62 78.10 77.14 76.66 74.76 71.90 68.57 61.90 45.71

Lt ⊕A 77.14 76.66 76.66 76.19 75.23 74.76 74.28 69.05 55.24

Lm + Lt + A 79.52 80.00 79.05 77.62 76.66 75.24 76.19 73.81 68.10

Lm ⊕ Lt ⊕A 79.52 77.14 77.14 75.71 76.66 75.24 74.76 74.28 64.76
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Chapter 8

CONCLUSIONS

Biometric person identification technologies focus on voice, face, iris and retina scans, signa-

ture strokes, fingerprint and gait as distinguishing source of personal information. However,

state-of-the-art audio-visual speech recognition systems usually employ two critical source:

speech signal and lip information. The lip motion information, which is highly correlated

with the speech signal, has been extensively utilized in speech recognition. Despite the

general belief that the lip motion possesses valuable biometric information, there have been

few studies investigating this modality in speaker identification. More specifically, almost

all of the existing systems employ the lip texture and/or geometry to model the lip motion.

The use of the explicit lip motion, which is in fact what is meant by the lip information,

is relatively rare. This has been the first issue in the speech/speaker recognition literature,

that motivates us to investigate the lip motion modality. The second point open to debate

is the optimal feature representation for the lip motion information. Determination of the

best lip motion features has been the primary objective of this work. By obtaining the

best lip motion features, i.e., the most discriminative features among classes, it is possible

to maximize the unimodal recognition performance. However, no matter how successful

the modality is, robustness has always been an issue for unimodal systems. More reliable

and robust recognition systems should be build by fusing individual modalities. The audio

information of speech and the temporal and visual characterization of lip constitute more

information about the speech content and the identity of the speaker, making them good

modalities to fuse. The necessity to build robust recognition systems directs us towards

integrating visual features with audio.

Taking the outlined issues into account, we propose a new multimodal speaker/speech

recognition system that integrates audio, with several lip modalities. We mainly focus on

the explicit lip motion features in addition to or instead of the texture- and geometry-based

lip features. For this purpose, we have investigated two kinds of lip motion representations:
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firstly we compute the grid-based motion features within a bounding box around the lip

region and thus, take the motion of the non-lip (skin) region into account. Secondly we

calculate the contour-based motion features on the outer lip contour and discard the effect

to the surrounding area. In addition to the explicit motion features on the outer contour,

simplistic lip shape features are also extracted and concatenated with the contour-based

motion feature vector to find out the contribution of geometric lip information. We have

performed an additional investigation on the motion estimation techniques, namely optical

flow and block matching, to determine the superior one in the recognition sense.

In our first experiments, it is observed that the motion features computed by the block

matching technique provide better recognition rates as compared to the optical flow. As

mentioned in Section 6.2, the theory and mathematical assumptions behind the optical flow

computation may result inaccurate motion vectors, not only in length but also in direc-

tion. However, the optical flow is computationally less expensive than the block matching.

Secondly, we have shown that for speaker/speech recognition, grid-based dense lip motion

features are superior and more robust compared to contour-based lip motion features. This

shows the importance of the skin region even if some erroneous vectors show up. We have

also concluded that explicit lip motion is useful in addition to lip intensity and/or geome-

try. Explicit lip motion fused with lip intensity provides additional performance gain only

in speaker identification, the EER rate being improved to 3.6% and 1.6% under the name

and digit scenarios, respectively. The lip motion is found to be more valuable than the lip

intensity for speech-reading.

Recall that before applying the two-stage discrimination analysis, we first transform the

motion data into DCT domain. This transformation has two advantages. First, it serves as

a tool to reduce the feature dimension by filtering out the high frequency components of the

motion signal. These high frequency components are mostly due to noise and irrelevant to

our analysis since it is unnatural to have very abrupt motion changes between neighboring

pixels of the lip region, where the motion signal is expected to have some smoothness.

Second, DCT de-correlates the feature vector so that the discriminative power of each

feature component can independently be analyzed.

For optimal lip motion feature representation, we have introduced a novel two-stage

discrimination analysis technique that involves the spatial Bayesian feature selection and
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the temporal LDA. The experimental results reveal that the Bayesian discrimination analysis

improves the performance in both speaker identification and speech-reading. It is interesting

to see that after spatial Bayesian discrimination, a small set of DCT features that possess

more discriminative power is formed regardless of their energy or coefficient index. The

Bayesian discriminative feature selection serves also as an intermediate dimension reduction

step prior to the temporal LDA, by successfully selecting the lip features that are tailored for

the specific recognition problem. The temporal LDA is beneficial for speaker identification,

especially under the digit scenario. The LDA maps a given high dimensional feature vector

to a subspace of reduced dimension that best describes the discrimination among classes.

In speaker identification, the LDA is able to well discriminate among classes, i.e., different

speakers, however, it collapses in speech-reading scenario since the classes are now some

isolated phrases. In other words, the LDA cannot effectively reduce the feature dimension

and the reduced feature vector is unable to catch the uttered phrases from the lip motion.

Apart from the efforts to maximize the unimodal performance of the explicit lip motion

modality, we have fused the lip motion features with audio and lip texture to build a reliable

and robust system that is able to cope with the real-life problems. The audio features are

composed of the MFCCs along with the first and second derivatives whereas the lip texture

features are the 2D-DCT coefficients of the gray-level lip images. Since the reliability of each

independent source of information (lip motion, audio, lip texture) may vary under different

light and acoustic conditions, our multimodal decision fusion strategy significantly improves

the overall performance. The RWS decision fusion rule with the given reliability measures

provides better results than the product rule as it introduces a priori information on the

modality reliability. It is interesting that a successful system has been built for speaker

identification without using the face modality, which is usually considered as indispensable

in this problem.

There are further issues to be addressed. First, the lip region should be detected in a

fully automatic way to allow complete implementations. There exist a number of ways to

detect and segment the lip region however they usually suffer from translational/rotational

invariance. The main concern behind the lip segmentation problem is to extract the lip

from the mouth image. When lip motion analysis is the primary issue, lip images should

be registered and carefully extracted using a static reference point, for instance the center
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point in the image. Otherwise, the lip motion analysis cannot be carried out correctly.

Second, the training and test database should be enriched both in terms of total population

and variety for a more reliable performance analysis. The variety in database refers mainly

to changing environmental conditions such as lighting and background, and to including

video sequences where the head of the speaker may undergo arbitrary rigid motion. This

would allow us to better measure the tolerance of our system to head rotation and changing

illumination. Third, more modalities such as face, iris, can be added to the current system

to obtain more robust solutions. All these issues should be further investigated.
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Appendix A

SPEAKER IDENTIFICATION: NAME SCENARIO

POPULATION NAME LIST1

1. Müge Pirtini 21. Ozan Özkan 41. Engin Akın

2. Meral Robens 22. Murat Bahadır Soydan 42. Doğa Aydın

3. Işılay Talay 23. Mehmet Tuğrul Tekin 43. Uğur Dirim

4. Kıvılcım Büyükhatipoğlu 24. Umut Küçükkabak 44. Mustafa Yiğit

5. Leyla Mizrahi 25. Özgür Kaya 45. Uğur Üçgül

6. Selcan İşçi 26. Can James 46. Can Kızılkale

7. İdil Kokal 27. Buğra Tarı 47. Tanır Özçelebi

8. Ali Selim Aytuna 28. Eren Kalkan 48. Mustafa Can Filibeli

9. Ferda Ofli 29. Yücel Yemez 49. Mehmet Emre Yavuz

10. Abdullah Memiş 30. Ferit Ozan Akgül 50. Alper Kanak

11. Çağlar Ataman 31. Ömer Faruk Kurt

12. Bülent Öktem 32. Seçkin Bayrak

13. Ali Ekşim 33. Cihan Oruç

14. Seçkin Kepenek 34. Davut Otar

15. Alper Tolga Kocataş 35. Doruk Kayaalp

16. Engin Erzin 36. Cengiz Ulubaş

17. Baran Atılgan 37. Egemen Şentin

18. Tahir Çelebi 38. Aykun Haddeler

19. Ulaş Kemal Ayaz 39. Emre Yanık

20. Birhan Güzel 40. Emir Erel

1There are also out of population names in imposter recordings, these are: Işıl Yıldırım, Sinem Bozkurt,
Erhan Deniz, Suzay Özkan, Uğur Çelikyurt, Arda Gezdur, Harun Dericioğlu, Meral Turhan, Sezen Cürgül
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Appendix B

SPEECH-READING: LIST OF PHRASES

1. Ali Selim Aytuna 21. Ferit Ozan Akgül

2. Ali Ekşim 22. Ferda Ofli

3. Alper Kanak 23. Işılay Talay

4. Alper Tolga Kocataş 24. Mustafa Can Filibeli

5. Abdullah Memiş 25. Müge Pirtini

6. Baran Atılgan 26. Meral Robens

7. Birhan Güzel 27. Murat Bahadır Soydan

8. Bülent Öktem 28. Mehmet Tuğrul Tekin

9. Buğra Tarı 29. Mehmet Emre Yavuz

10. Çağlar Ataman 30. Özgür Kaya

11. Can James 31. Ozan Özkan

12. Can Kızılkale 32. Seçkin Bayrak

13. Cihan Oruç 33. Seçkin Kepenek

14. Cengiz Ulubaş 34. Tahir Çelebi

15. Davut Otar 35. Tanır Özçelebi

16. Engin Erzin

17. Eren Kalkan

18. Emre Yanık

19. Umut Küçükkabak

20. Yücel Yemez
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