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ABSTRACT 

Bioinformatics is a fast growing research area and describes any use of computers to 

handle biological information. One of the major research efforts is structure prediction of 

proteins. The torsion angles (phi-psi) of proteins are considered as the degrees of freedom 

of a protein because of their control of the proteins’ three dimensional structures. In this 

thesis, we used rotational isomeric state model in order to calculate statistical averages 

and correlations for torsional angles of denaturated proteins. For this purpose, we grouped 

each consecutive three residues (triplets) starting from first and used molecular dynamics 

simulations on triplets. Afterwards, we constructed energy maps for the phi-psi angles of 

the central residue of each triplet considered. Results showed that triplets have intrinsic 

propensities for some conformational preferences which favor the choice of the native 

state torsional angles and they are context dependent, determined by the amino acid 

sequence of the protein. Furthermore, we improved the stochastic weights with the aim of 

introducing the long range effects in two different approaches: Monte Carlo method and 

genetic algorithm method. Besides, we calculated heat capacity as function of 

temperatures by statistical mechanics for three different sets of stochastic weights which 

are obtained from molecular dynamics, Monte Carlo method and genetic algorithm 

method. Additionally, we proposed a dynamic rotational isomeric state model analogous 

to rotational isomeric state model and calculated transition probabilities from one state to 

another. The states are chosen as alpha-helix, beta-sheets, turns and all other states. 

Results support the idea that during folding, secondary structures forms sequentially. 
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NOMENCLATURE 

MD Molecular Dynamics 

NMR  Nuclear magnetic resonance 

RIS Rotational Isomeric State 

DRIS Dynamics Rotational Isomeric State 

PDB Protein Data Bank 

CI2 Chymotrypsin Inhibitor 2 

X First residue of the triplet  

Y Middle residue of the triplet 

Z Z third residue of the triplet 

φ the angle of right-handed rotation around N-Cα 

ψ psi angle is the angle of right-handed rotation around CA- Cα 

ω the angle of right-handed rotation about C-N bond 

( )φE  Total configurational energy 

iu ;ζη  statistical weight for bonds i-1 and i in the state ζη 

Ui . Statistical weight matrix for bond i 

( )φΩ  statistical weight of a configuration of the chain 

ANOVA Analysis of Variance  

Z Partition Function 

E microscopic energy 

U Internal Energy 

k Boltzmann constant 

Cp Heat Capacity 

F Generator Matrix 

rkl Distance between bond r  and k (Angstrom) 

S2 Radius of gyration (Anstrom2) 

np number of virtual bond 

lp Length of the virtual length 
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Chapter 1 

INTRODUCTION 

 
Proteins are polymer chains that consist of amino acid repeat units. They fold into 

unique 3-dimensional structures. The shape into which a protein naturally folds is known 

as its native state and is determined by its sequence of amino acids that are joined by 

peptide bonds.  

A peptide bond is a chemical bond formed between two amino acid residues 

(There are twenty amino acids encoded by the standard genetic code) when the carboxyl 

group of one residue reacts with the amino group of the other residue, releasing a 

molecule of water. The chemical reaction of this process is as follows:  

 

OHHCOOCRHCOONHCRNHHCOOCRNHHCOOCRNH 223132313 +→+ −+−+−+  

 

The chain obtained by this condensation reaction is shown in Figure 1.1 

 

 

 
Figure1.1. The planes and center of rotation around a peptide bond adopted from [1] 

 

The C-N bond has a partial double bond character (the nitrogen atom attaining a 

partial positive charge and the oxygen atom a partial negative charge) and rotation is not 
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possible around this bond. The whole arrangement of C, O, N and H atoms is planar. The 

angle ω of the bond between Cα and N (generally close to 180 deg), the dihedral angles φ 

(the bond between N and Cα) and  ψ (the bond between Cα and C) can have a certain 

range of possible values [2].  

 

A torsion angle between 2 atoms j and k needs to consider 4 atoms i, j, k, l so that 

atoms i, j, k define one plane and atoms j, k, l define another plane; bringing the planes 

into coincidence gives the torsion angle along the bond where the planes intersect (the 

definition of torsion angle ψ (Cα-C) bond is given in Figure 1.2). In terms of defining a 

torsion angle for the main chain atoms of a protein, for the atoms N1-Cα-C-N2 the torsion 

angle is positive when the N1-atom is made to coincide with the N2-atom by a clockwise 

rotation when looking along the Cα-C bond. Consequently, the coordinates of the main 

chain atoms are used to calculate the dihedral angles φ and ψ. φ will be missing for the 

first residue in each chain and φ will be missing for the last residue in each chain. 

 
Figure 1.2. Torsion angle definition adopted from [1] 

 

These angles are considered as the degrees of freedom of a protein because of 

their control of the proteins’ three dimensional structures. The conformations of proteins 

can be determined from backbone configurations by specifying of proteins’ φ and ψ 

angles. 
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One end of every polypeptide chain, called the amino terminal or N-terminal, has 

a free amino group. The other end, with its free carboxyl group, is called the carboxyl 

terminal or C-terminal. 

Proteins are not only the building blocks of the cells but they also execute nearly 

all cell functions.  The multiplicity of functions performed by proteins arises from a huge 

number of different three dimensional shapes which they adopt. 

The particular amino-acid sequence of a protein causes it to fold into its native 

conformation. The folding process depends on the protein sequence as well as on the 

characteristics of their surrounding solution ([3], [4]) and temperature [5]. 

It appears that in transition to the native state, a given amino acid sequence always 

takes roughly the same route and proceeds through roughly the same number of 

fundamental intermediates [6]. At the coarsest level, folding first involves the 

establishment of secondary structure, particularly alpha helices and beta sheets, turns and 

only afterwards the tertiary structure [7]. In Figure 1.3., you can see the secondary 

structures and their chemical structures. The hydrogen bond formation between certain 

oxygen and hydrogen atoms identifies the secondary structures alpha-helix and beta 

sheet.  

 

Figure1.3. Secondary structures in protein adopted from [1] 
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Ramachandran map specifies some of the secondary structure in terms of 

rotational angles. In Figure 1.4., we can see some of the specified secondary structures.  

 

Figure1.4 Secondary structures on Ramachandran map adopted from  [1] 

Molecular dynamics (MD) simulation numerically solves Newton's equations of 

motion on an atomistic or similar model of a molecular system to obtain information 

about its time-dependent properties [8]. Beginning in theoretical physics, the method of 

MD gained popularity in material science and since the 1970s also in biochemistry and 

biophysics. It serves as an important tool in protein structure determination and 

refinement. The interaction between the objects is either described by a force field 

(classical MD), a quantum chemical model, or both [9].  

 

Contribution 

Several studies were performed about different levels of correlations among φ-ψ 

angles [2, 10]. NMR results also give clues about proteins’ conformation preferences [11, 

12]. In the present study, we show the context dependency of torsional angles by using 

MD. We used Chymotrypsin Inhibitor 2 (CI2) because of availability of the experimental 

studies. Moreover, we adopt rotational isomeric state (RIS) model to proteins by 
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representing torsional angles as discrete states and try to predict heat capacity of CI2 

which is one of the important thermodynamic properties via statistical mechanics. 

Additionally, we analyzed local dynamics of denaturated CI2 by the help of dynamic 

rotational isomeric state (DRIS) model. 

 

Outline 

Chapter 2 summarizes the previous studies that are related to our work. Chapter 3 

elaborates the methods and main ideas used in this thesis. The model mainly depends on 

representing torsion angles as discrete states and the potentials are calculated as 

probabilities derived from the molecular dynamics. Chapter 4 illustrates the analysis of 

the probability calculations. Application of the statistical mechanics and heat capacity 

calculations are analyzed in Chapter 5. Last analysis is dynamics of denaturated CI2 and 

discussed in chapter 6. Chapter 7 finalizes the thesis by concluding the entire study. 
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Chapter 2  

RELATED WORK 

In this chapter we summarize the previous works about effect of neighbor residues 

to present residues’ conformational preferences, theoretical and experimental studies on 

thermodynamic properties of CI2, and dynamics of proteins. 

2.1 Short-range Interactions between Residues and Torsional Angle Preferences  

Ramachandran put forward the correlations between φ and ψ angles of a single 

residue. His point of view included exclusion of steric overlaps which hold both 

denaturated and native proteins [2]. In this study, we extend the analysis of phi-psi angles 

to a sequence of triplets and include torsional energies into our calculations in addition to 

Ramachandran’s steric maps. For this purpose, we use molecular dynamics simulations 

on triplets and construct energy maps for the phi-psi angles of the central residue of each 

triplet considered.  

Interactions among neighbor residues are analogous to short-range interactions 

along the primary sequence. These interactions are not sufficient to give information 

about the tertiary structure of proteins as was discussed by Bahar et al. [13]. Molecular 

dynamics calculations for the triplets in this study relate to short-range interactions. 

Our efforts for obtaining a more detailed study of the phi-psi Ramachandran maps 

were in part motivated by the work of Karplus which showed that torsional angle 

distributions have more fine structure than is generally observed [14].  

The first clear demonstration of neighboring residue effect was given by Penkett 

et al. [11]. They introduced coupling constants of peptides by NMR studies. Jha et al. 

studied structural propensities for alpha helices, beta sheets in a restricted coil library and 

they concluded these propensities are often strongly influenced by both the chemical 

nature and the conformation of neighboring residues, contrary to the Flory isolated 
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residue hypothesis [15]. The physical cause of the neighboring residue effect was studied 

by Avbelj et al. [16]. 

Keskin et al. used RIS model to calculate correlations for torsional angles of CI2 

with two approaches: The first approach is using knowledge-based pairwise dependent 

torsional energy maps from Protein Data Bank (PDB) [17] and second approach is 

collecting torsional angle data from random coil configurations. Knowledge-based 

potentials showed strong correlations between neighboring torsional angles and those 

correlations favored the selection of the native state torsional angles [18].  Our work puts 

forward another approach by using RIS model that is constructing statistical weight 

matrices from molecular dynamics.  

2.2. Experimental and Theoretical Studies about Heat Capacity of CI2 

Obtaining information about thermodynamic properties of proteins is quite 

important to understand their equilibrium. In the literature CI2 system has been 

extensively studied as a model protein system in computational studies because of its 

small size (64 residues) and abundance of experimental studies.  

Jackson et al.. evaluated experimental results of the heat capacity change over the 

temperature and for denaturation of CI2 [19, 20]. In their further work, Jackson et al.. 

studied  also enthalpy and entropy of unfolding of CI2 experimentally [21] 
 
In addition to the experimental results, there are several computational studies on 

heat capacity and transition phase of CI2 including the thermodynamics of its folding. 

 

Kaya and Chan computed the heat capacity change with temperature and 

determined the transition state for CI2 theoretically by using an analytical model which is 

a polymer-lattice model for short sequenced proteins [22].  

 

Similar to Kaya and Chan, Micheletti et al. studied the determination of the 

folding transition temperature by monitoring the temperature at which heat capacity show 
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a peak [23]. They used an equilibrium analysis of proteins with known native state 

structures and introduced the term “native state overlap” which characterizes 

advancement of folding to native state by monitoring the residues’ configurations. In our 

study, we calculated the corresponding changes in the radii of gyration in order to define 

the rapid volume transition using the method introduced by Flory for calculating the 

averages of physical properties over configuration spaces[24]. 

 

Moreover, Day and Dugget discussed in their study the sensitivity of the folding 

and unfolding transition state of CI2 to changes in temperature. They concluded that the 

structure of the transition state of CI2 does not change significantly under varying 

denaturation conditions [25]. 

 

Lazaridis and Karplus presented a method for estimating the heat capacity of 

proteins via molecular dynamics and gave results  from which contributions heat capacity 

arises [26]. Hao and Scheraga proposed a statistical mechanical study in their work. They 

did not use specifically  CI2 but used a lattice polymer method and analyzed statistical 

mechanics characteristics of the model with the help of Monte Carlo simulations [27]. In 

our study we also use statistical mechanics to compute heat capacity, however with RIS 

model. Related to Lazaridis and Karplus, Hao and Scheraga introduced the effect of the 

solution on heat capacity. They did not observe any transition state appearance while 

analyzing thermodynamics properties such as average enthalpy and average thermal 

energy.  

 

2.3. Dynamics of Folding Process 
 

Dynamics of protein folding is a wide research area. Eaton et al.. summarized in 

their experimental work the protein folding and unfolding on the previously inaccessible 

nanosecond-microsecond timescale. They concluded that the comprehension of the 

protein folding mechanism includes knowing the elementary structural processes in 
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protein folding. Scientists are now able to measure rates on a wide range of timescales of 

interest by the help of available fast kinetic methods [28].  

 

In addition, Fersht reviewed nucleation mechanisms in protein folding in his 

study. Fersht emphasized the Levinthial paradox which says that there are an enormous 

number of conformations open to the denaturated state of a protein and a search through 

these would take an eternity. Therefore, one can conclude that the folding process is 

hierarchic and there exist folding intermediates and transition states through folding [29].  

 

Eaton et al. stated in their work that some of the folding intermediates fold 

formerly. Alpha helices fold fastest among other secondary structures [28]. Forcellino et 

al. proposed a simple model that characterizes the folding of small proteins. They 

questioned alpha helices and beta-sheet barriers affecting the protein folding problem 

[30]. 

It is important to understand the local dynamics of proteins at the residue level. 

There are few studies about local chain dynamics of proteins. Elizier et al. stated that 

under weakly folding conditions, the polypeptides fluctuate between unfolded states and 

local elements of structure that become extended and stabilized as the chain becomes 

more compact. These results provide a detailed model for molecular events that are likely 

to occur during folding of myglobin [31]. Moreover, Markwick et al. studied local 

structure and backbone dynamics and present strong correlations between NMR 

relaxation and local psi angle [32]. 

 

Skolnick and Kolinski studied 24-nearest-neighbor lattice model of proteins that 

includes both alpha and beta-carbon atoms. They examined number of distinct situations. 

They concluded that the universal conditions for the formation of a unique native 

conformation are tertiary interactions and the occurrence of relatively small intrinsic turn 

preferences that choose the native conformation from a numerous of packed states.  They 

also concluded that the results are universal; they do not depend on lattice, protein model 

or Monte Carlo dynamics [33]. 
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Ding et al. stated that denatured states indeed have strong local conformational 

bias toward native states while a random-coil power law scaling of protein sizes is 

preserved. [34].Furthermore, Kiefhaber et al. studied unfolded chain dynamics as a model 

for the earliest steps in folding mechanisms. They used triplet-triplet energy transfer to 

measure formation of interchain contacts in several proteins and they examined the effect 

of amino acid sequence on local chain dynamics by using host-guest peptides. They could 

determine the time constants for development of the earliest steps intrachain contacts 

during protein folding [35]. 

 

The RIS model is a powerful tool to investigate the configurational statistics of 

polymer chains. Bahar  and Erman develop a description of local chain dynamics in terms 

of conformational transitions between isomeric states[36]. There are several articles that 

study the DRIS model and make a comparison with the previous and theoretical works 

[37], [38], [39]. However, all the previous works are for polymer chains. We apply the 

method in a different way for proteins. Previous works define rates from the energy 

differences in torsion energies while we use directly molecular dynamics simulations in 

order to compute the rates of transition between basins of Ramachandran maps. Via DRIS 

model we calculated transition probabilities for individual bonds.  
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Chapter 3 

MATERIALS AND METHOD 

3.1. Simulations 
The Chymotrypsin Inhibitor 2 (2CI2) has 64 residues available in the Protein Data 

Bank (PDB) [17].In Figure 3.1 one can see the three dimensional structure of CI2.  We 

grouped each consecutive three residues (triplets) starting from first and called them 

triplets by using VMD [40]. More explicitly, the organization of the triplets is as follows: 

first triplet contains 1st, 2nd and 3rd residues and second triplet contains 2nd, 3rd and 4th 

residues and etc. Therefore we have n-2 triplets where n is the number of residue. We 

denote the first, second (middle) and third residues as Let X, Y and Z, respectively. 

 
Figure 3.1. Tertiary structure of CI2 retrieved from VMD [40] 

 

A triplet comprising the i-1st, i th and i+1st residues, has six torsion angles, φi-1, ψi-

1, φi, ψi, φi+1, ψi+1. The torsion angle φi-1 that indicates rotation about the Ni-1-Cα
i-1 is 

undefined. Throughout the simulations the angles φi-1 and ψi+1 were fixed at 0o. Similarly, 

the torsion angle ψi+1 that indicates rotation about the Cα
i+1-Ci+1 is undefined. It was also 

fixed at 0o. The four internal angles ψi-1, φi, ψi, φi+1 define the conformation of the triplet. 
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Among these four internal angles, we focused on the pair-wise occurrence of the angles 

ψi- φi, and ψi- φi+1. 

 

The first problem that we faced was the duration of the simulations. Four ns 

simulation of one of the triplets in a water box take approximately 27 hours which is very 

long computation time. Therefore we decided to simulate the triplets in vacuum but with 

a dielectric constant 20 which is used commonly for proteins [41, 42]. The simulations 

take c.a. 1.5 hour in vacuum for 5 ns.  

 

The purpose of the simulations was to determine the preferences of the triplets for 

certain specific conformation via molecular dynamics. After few trials we saw that the 

initial configuration played crucial role for the conformational preference of triplets. 

Therefore, we defined eight initial states and set the initial conformations of each triplet 

to one of those states. The states are given in Table 3.1. 
 

Table 3.1 the torsional angles defined as initial states 

Initial State  ψi φi ψi+1 

1 90o -90o 90o 

2 90o -90o -90o 

3 90o 90o 90o 

4 90o 90o -90o 

5 -90o 90o -90o 

6 -90o 90o 90o 

7 -90o -90o 90o 

8 -90o -90o -90o 

 
 

 
 

 



 
Chapter 3: Materials and Methods.                                                                                    13 

 

Another problem was raised when we performed trials for the simulations.  For 

some initial states, the triplet was trapped around the initial states conformation due to 

hydrogen bonds and could not move freely. In Figure 3.2., nitrogen, oxygen and 

hydrogen has colors as blue, red and black, respectively. We see the hydrogen bond 

between the oxygen of the residue Z and the hydrogen bonded to nitrogen of the residue 

X blocks the triplet’s motions. 

 

.

 
Figure3.2. Hydrogen bond formation due to initial condition of triplet 

 

 X-ray crystal diffraction usually cannot resolve the positions of hydrogen 

atoms or reliably distinguish nitrogen from oxygen and carbon, and over 80% of the 

three-dimensional macromolecular structure data in the PDB were obtained by X-ray 

crystallography [17]. Most of the MD packages use N-methylamine for N-terminal 

ending of protein and Acetyl group for C-terminal of protein [41-43].  We used the MD 

package NAMD [44] with CHARMM27 [42] parameter file where the default ending for 



 
Chapter 3: Materials and Methods.                                                                                    14 

 

N-terminal is one hydrogen and for C-terminal one oxygen. CHARMM27 parameter file 

contain several C-terminal endings for any purpose of using [42], i.e.: Fanelli et al..  used 

methylated C-terminal in their study for docking purposes [45].   

However, none of the C-terminals could make the H-bond avoid to be formed 

because of the present oxygen. In order to impede the H-bond formation between the 

oxygen of residue Z and the hydrogen of residue X, we converted carbonyl terminal to 

sp3 carbon (the carbon with 4 single bonds) with 3 hydrogen atoms as described in 

further detail in Appendix A.1.  

Next step was to check whether the triplets’ preferences favor certain basins in the 

Ramachandran plot or not, such as beta sheets or alpha helices. For this purpose, we 

examined the simulation results for specific triplets that found in beta-sheets and alpha 

helices in CI2. 

Figure 3.3. shows the simulation results for the residues 34, glutamic acid; residue 

35, alanine; and residue 36, lysine, that are found as alpha helix in CI2. Initial coordinates 

were set to beta-sheet conformation for that simulation which is one of the initial states 

we defined already. In Figure 3.3., the filled circles show the values of the torsion angles 

φ and ψ obtained at specific intervals during the simulations. We can see from the Figure 

3.3 that the residue 35, which is the middle residue of the triplet, prefers not to be in the 

beta-sheet. On the contrary, it appears near the alpha helix conformation. The red button 

represents the area where the simulation ended. 
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Figure3.3. The change of torsional angle configuration of residue 35 for the entire 

simulation 
 

Similarly, we check the triplet that is in the beta-sheet conformation in CI2. The 

simulations results are presented in Figure 3.4. for the triplet that contains residues 48, 49 

and 50. The residues are isoleucine, isoleucine and valine, respectively. Initial 

coordinates were set to the alpha helix conformation; however the residue prefers to be in 

the beta-sheet conformation.  

 
Figure3.4. The change of torsional angle configuration of residue 49 for the entire 

simulation 



 
Chapter 3: Materials and Methods.                                                                                    16 

 

However, we do not expect all the triplets to prefer the right conformation for the 

CI2, since the triplets could be at any conformation in different proteins, a triplet could be 

in an alpha helix in one secondary structure whereas it could be in a beta-sheet in other 

protein.  

In the simulations, the temperature was maintained at 310 K by means of 

Langevin dynamics using a coupling coefficient of 5/ps [42, 43]. Initial velocities were 

generated randomly at 310 K in accordance to the masses assigned to the atoms [42]. The 

time step was 1 fs and configurations were sampled at 1000 fs intervals. Minimization 

was done for 200-300 steps. Exclusion policy is defined as the value of 1-4, all 1-3 pairs 

will be excluded along with all pairs connected by a set of two bonds (i.e., if atom A is 

bonded to atom B, and atom B is bonded to atom C, and atom C is bonded to atom D, 

then the atom pair A-D would be excluded) [46].Cutoff distance and pairlist-distance 

were used as 12 Ǻ and 13.5 Ǻ respectively [46]. The simulations were carried out in a 

Linux-based cluster which each node has Intel Pentium 4 2.4 GHz processor. 

 

Finally, we have 8 different 5ns simulations each of them corresponds the initial 

configurations for each triplet. 5000 data points were saved for each simulation and we 

have 40000 data points for each triplet.  

3.3. Rotational Isomeric State Approximation 
In the rotational isomeric state approximation, each bond is assumed to obtain 

several discrete rotational states. We use discrete state formalism for the torsion angles, 

where each torsion angle is divided into 30o intervals. Therefore, we have 12 torsional 

states representing the torsion angles, for example: any angle between -180o and -150o is 

represented as state 1, while any angle between 180o and 150o is represented as state12. 

The basins indicated by blue are the beta and alpha regions in Figure 3.5. 



 
Chapter 3: Materials and Methods.                                                                                    17 

 

 
Figure3.5. Twelve states that represent each torsional angle 

 

Description of the conformations of the molecules in terms of discrete rotational 

isomeric states is both convenient and well rationalized by physical circumstances [47].  

 

If a given bond assumes a definite rotational state, the occurrence of either of its 

nearest neighbors along the chain in that definite rotational state is strongly encouraged. 

Therefore, the rotational potential for a given bond acquires dependence on the rotational 

states of its neighbors. The RIS approximation takes the place of all other characteristics 

of bond rotational potentials in its effect on the configurations of chain molecules. 

3.4. Probability Level 

By the RIS model we calculate the probability of each state for a bond. The 

method of calculation is outline in Appendix A.2. We clarify the concept with following 

example. 

In Figure 3.6., we can see the probabilities of states for residue 24’s phi angle. 24th 

residue of CI2 is tryptophan and its native psi angle is 61.205 (9, in state representation.) 
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Figure 3.6. The probabilities for residue 24’s psi angle  

 

Then, we sort the states in descending order like in Figure 3.7 

 
Figure 3.7. The probabilities for residue 24’s psi angle in ascending order 

 

After sorting the probabilities of states, we check the native state’s order. The 

highest probability is state 10. If the native state of this angle would be 10, then 

probability level for this bond would be 12. However, the native state of this angle is 9, 

and state 9 has the second highest probability. Therefore, probability level for this angle 

is 11.  

We define “the probability level” term in order to determine the achievement of 

RIS model for each bond easily. 
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3.5. Statistical Wight Matrices for Interdependent Bonds  
 

Here, for demonstration; we have 6 bonds and use two states for each bond α and 

β. Assume that we have a configuration: 

α α  β α β β 

The rotational potential affecting any given bond i, depends exclusively on 

configuration of i-1, i, i+1 bond. Interactions of longer range are ignored.  Then, the total 

configurational energy can be expressed as a sum of energies for the first-neighbor pairs; 

( )φE  =Eα + Eαα + Eαβ+ Eβα +Eαβ +Eββ                                        (3.1) 

  In general, we may write the total configurational energy for n bonds as; 

( ) ( ) ∑∑
−

=

−

=
− ==

1

1
;

1

1
1 ,

n

i
i

n

i
iii EEE ζηφ φφ                                         (3.2) 

where ζ denotes the state of bond i-1 and η that of bond i. iE ;ζη  is taken into consideration 

as the contribution to ( )φE  related to the assignment of bond i, to state η, bond i-1 being in 

state ζ. 

The statistical weights are calculated from the conformational energies. The 

statistical weight for bonds i-1 and i in the state ζη is given as:  

)exp( ,1;
; RT

E
u ii

i
−−= ζη

ζη                                           (3.3) 

Statistical weights for all states of the bond pairs i-1 and i may be arranged in a matrix, 

called the statistical weight matrix, Ui. The ζη th element iu ;ζη of Ui represents the 

statistical weight when bond i is in state η while the bond i-1 is in state ζ. The statistical 

weight of a configuration of the chain as a whole is given by  

       ( ) ∏
−

=

=Ω
1

1
;

n

i
iuζηφ                                               (3.4) 

Flory stated that the statistical weights could be chosen as the primary quantities 

for characterizing a configuration rather than energies [47]. Moreover, statistical weights 

must include neighbor dependence and yield correct statistical weight for any 

configuration of the bond.  
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The configuration partition function is given as; 

( )
( ) ( )

∑∏∑
−

=

=Ω=
φ

ζη
φ

φ

1

1
;

n

i
iuZ                                      (3.5) 

where the summations are taken over all configurations. 

      

From the simulations we derived residue-specific conformational potentials as 

probabilities. The details of the calculations are given in the Appendix A2 and analysis of 

the calculations is given in Chapter 4. 
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Chapter 4 

ANALYSIS OF PROBABILTY CALCULATIONS 

 4.1. Comparison of Probability Levels  
 

The probabilities are calculated using the method described in the Appendix A.2. 

Since there are 12 states for each torsion angle, we can arrange these states from 1 to 12, 

in an increasing order with respect to their probabilities. We then identify for each bond 

for each bond, the probability level of the native state. For the ith bond, for example, if 

the highest probability is the same as in the native state, we identify the probability level 

of the ith bond as 12. We calculated the probability level of each bond in this manner. 

Results are shown in Figure4.1, where the triangles are the probability levels obtained 

from the triplets and the circles are obtained from the full sequence. The abscissa in the 

figure represents the bond indices of CI2. Since there are two rotatable bonds for each 

residue, the number of the bond indices is twice that of the residues number. The ordinate 

corresponds to the probability level for that bond. The probability levels for triplets are 

distributed mainly on 6th, 8th and 9th level whereas the probability levels for chain are 

distributed mainly on the 11th and 12th level. 

 

 If the probabilities were from a random source, average probability level and its 

standard deviation would be 6.45 and 3.45, respectively [18]. In Table 4.1, the average 

probability levels and standard deviations for the triplets and the chain are presented. The 

average probability level is 7.63 for the triplets and 9.20 for the chain whereas the 

standard deviations are 2.75 and 2.93, correspondingly. The raw data for the chain and 

triplet probability levels for each bond are given in Appendix A.3. 
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Figure 4.1. The probability levels for each bond. (For chain and triplets)  

 

Table 4.1 The statistics of   probability calculations 
 Random Triplets Chain 

Average Probability Level 6.45 7.63 9.20 

Standard Deviation 3.45 2.75 2.93 

The increase in the average probability levels is expected as in RIS model because 

of the interdependence of the bonds each other. In Figure 4.2, we try to visualize the 

interdependence of the bonds. Let the allowable basin for the ψi-1-φi map be A and the 

allowable basin for the φi -ψi map be B. Then the allowable basins cannot be independent. 

Furthermore, the allowable basin for the ψi-1-φi–ψi map can the intersection of map A and 

B.  
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.  

Figure4.2. Interdependence of individual bonds according to RIS model 

4.2. Modifications of Stochastic Weights to Include Long-Range Effects 

The average probability level, for the chain is calculated as 9.20. These 

probability levels are based on the stochastic weights that reflect near neighbor 

interactions only, and long range effects are not included. However, the native chain 
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conformation is obtained in the presence of long range effects also, and the probability 

levels should reflect long-range effects also. However, the latter effects cannot be 

assessed by analytical approaches, and recourse to methods such as Monte Carlo or 

Genetic algorithms is necessary. In this section, we try to modify the short range 

stochastic weights such that the calculated probability levels approach 12.0 which equate 

the most probable state of the chain to that of the native conformation.  

4.2.1. Monte Carlo 
 

The stochastic weights from the simulations were taken as initial stochastic 

weights based on short-range interactions. The method of calculation is as follows; we 

randomly choose one residue, and one state for its two torsion angles φ and ψ. Then we 

increase the stochastic weight of this state by 0.1, we recalculate bond probabilities with 

the new stochastic weight and check whether the average probability level of the chain 

increases or not. The method increases the native states’ stochastic weights of randomly 

chosen bond with 20% probability. If the average probability level increases, we accept 

the change in the stochastic weight, and continue with the procedure. If the average 

probability level does not increase, we decline the change in the stochastic weight and 

continue with the procedure. The scheme for the method is shown in Figure 4.3 

 

The highest average probability level among the 5 runs was 11.3. In order to see 

the difference between the different Monte Carlo simulations, we performed the statistical 

method, Analysis of Variance (ANOVA), which tests the difference between the means 

of two or more groups. The details of ANOVA are given in Appendix A.4.  The results of 

the ANOVA test show that the difference among 5 is negligible.  

However, Monte Carlo simulations were not sufficient to reach necessary 

highness in average probability level. Therefore we used another method to improve the 

average probability level. Therefore, we used another method to reflect the long-range 

effects on the probability levels. 
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Figure 4.3. Summary of the Monte Carlo method 

 

4.2.2. Genetic Algorithm 
 

Since Monte Carlo method could not reach necessary highness in probability 

level, we thought the problem as an optimization problem. The stochastic weights should 

be arranged in a way that the average probability level would be 12.  

Genetic algorithms are mainly used for optimization of highly complex problems. 

In the present study we used GAlib, which is genetic algorithm library that contains a set 

of C++ genetic algorithm objects [48].  
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The Utilization of the Genetic Algorithm  

    

 

 
Figure 4.4 Utilization of genetic algorithm 

 

           The outline of genetic algorithm and the application to our problem is given in 

Appendix A.5. The comparison between a general genetic algorithm and its application to 

our problem is given in Figure4.4.  

Similarly to Monte Carlo simulations, we performed 5 different runs of genetic 

algorithm and the results of the ANOVA test shows that the differences among these 5 

runs are insignificant. The highest probability level reached with genetic algorithm was 

11.94. 

 

4.3. Comparison of the Modification of the Stochastic Weights Methods  

In order to see the modification of the stochastic weights better, we introduce 

Figure 4.5, Figure 4.6 and Figure 4.7 below. These figures are drawn for the same 
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residue, 65th residue (Phenylalanine) of CI2. The Figure 4.5 is the energy map obtained 

direct from the simulations. The Figure 4.6 and Figure 4.7 are the modified energy maps 

obtained from Monte Carlo and genetic algorithm methods, respectively. 
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Figure 4.5 Energy map for the initial 
simulation result 
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Figure 4.6 Energy map for the Monte 
Carlo results
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Figure 4.7 Energy map for Genetic Algorithm results 

 
 

The figures are for the 65th residue (Phenylalanine) of CI2 and 65th residue is in 

the beta-helix structure in native CI2 conformation. The darker basins represent highness 

in probability. 

Monte Carlo simulation provides short decrease in the probability near the alpha-

helix conformation whereas a short increase in the beta-helix conformation compared to 



 
Chapter 4:Analysis of  Probability Calculations                                                              28 

 

the energy map obtained from MD. However, genetic algorithm completely modifies the 

energy map compared to the MD simulation results. Although the conformation of the 

highest probability is not altered significantly, the probabilities are scattered all around 

the energy map obtained from the genetic algorithm compared to the energy maps 

obtained from MD and the Monte Carlo method.  

Moreover, we compare the highest probabilities of the energy maps obtained from 

different methods. The highest probability value is 0.26 in Figure 4.5, 0.22 in Figure 4.6 

and while 0.11 in Figure 4.7.   

Any physical constraints were not given in the genetic algorithm. Although, the 

highest probability is in the correct configuration on the energy maps obtained from 

genetic algorithm, there are some basins which are physically meaningless on the energy 

maps. 

In order to see the effects of modification of stochastic weights in details, we 

constructed Table 4.2, Table 4.3 and Table 4.4. The tables consist of the three lowest 

energies and corresponding average torsion angles. We split the results into three specific 

groups, which are alpha-helix, beta-sheet and turn. So, residues 39-43 are in alpha-helix 

conformation, residues 44-46 are in turn and residues 47-51 are in beta sheet 

conformation in their native states.  

In Table 4.2, the three lowest energies and corresponding average torsional angles 

are tabulated for MD results. The lowest energies for residues in alpha helix structure are 

not in the native configurations; on the other hand, some of the residues’ (residue 40 and 

residue 42) second and third lowest energies are in the native configuration. Similarly, the 

conformations of the lowest energies for turn structure are not predicted correctly. On the 

contrary, beta structures lowest energies are near the native configuration.  
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Table 4.2 Energies for specific secondary structures of the molecular dynamics results 

 Residue φ Ψ Ener(kcal) Φ Ψ Ener(kcal) φ ψ Ener(kcal)
Alpha-helix residue39 165 -105 -2.31295 135 -105 -1.94453 165 -75 -1.93592

 residue40 165 -105 -2.13752 135 -105 -1.95291 -75 -105 -1.6523
 residue41 105 -105 -2.13432 135 -105 -1.94147 -45 -105 -1.43548
 residue42 -75 -105 -1.98038 165 -105 -1.81013 -105 -105 -1.70291
 residue43 -45 -75 -2.04656 -45 -105 -2.03196 165 -105 -1.98597

Turn residue44 165 -75 -2.79078 135 -75 -2.1843 105 -75 -1.29365
 residue45 165 -105 -2.46692 -165 -105 -1.91137 165 -135 -1.52404
 residue46 -75 -105 -1.78571 165 -105 -1.7144 -75 -75 -1.65182

Beta-sheet residue47 165 -105 -2.24117 165 -75 -1.80059 135 -105 -1.59974
 residue48 165 -105 -2.31086 165 -75 -1.94862 -75 -105 -1.7313
 residue49 165 -105 -2.12778 -75 -105 -1.86334 165 -75 -1.80302
 residue50 165 -105 -2.36787 165 -75 -2.07656 135 -105 -1.74666
 residue51 135 -105 -2.20337 165 -105 -2.0519 135 -75 -1.75661

 

When we study further the Monte Carlo results in Table 4.3, the configurations 

that give the lowest energies slightly changed. In addition, the values of the energies have 

slightly increased also for alpha helix, turn structure and some of residues for beta-sheet. 

For residues 50 and 51, the values of the lowest energies have slightly decreased. 

Table 4.3 Energies for specific secondary structures of the Monte Carlo results 

 Residue φ ψ Ener(kcal) Φ Ψ Ener(kcal) φ ψ Ener(kcal)
Alpha-helix residue39 165 -105 -2.24949 165 -75 -1.96738 135 -105 -1.8803

 residue40 135 -105 -2.1727 165 -105 -2.0149 135 -75 -1.76256
 residue41 -45 -75 -2.2753 105 -105 -1.84471 135 -105 -1.65194
 residue42 -75 -105 -2.04185 165 -105 -1.86839 -105 -105 -1.762
 residue43 -45 -75 -2.02105 -45 -105 -2.00596 165 -105 -1.95997

Turn residue44 165 -75 -2.76378 135 -75 -2.16459 -15 -75 -1.43522
 residue45 15 -105 -2.3345 165 -105 -2.16748 -165 -105 -1.61344
 residue46 135 -105 -2.10452 -75 -105 -1.89583 165 -105 -1.85373

Beta-sheet residue47 105 -105 -2.09815 165 -105 -1.99339 105 -135 -1.73703
 residue48 165 -105 -2.23347 165 -75 -1.94268 135 -105 -1.64921
 residue49 135 -105 -2.43539 165 -105 -1.92904 -75 -105 -1.6453
 residue50 105 -105 -2.45149 165 -105 -2.13686 165 -75 -1.6155
 residue51 165 -105 -2.42507 135 -105 -2.24299 -45 -105 -1.64019
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Examining Table 4.4, we see that genetic algorithm’s results predict the 

conformations correctly as expected. And as seen from the Figure 4.7, since the 

probabilities are scattered over all the configurations, lowest energies for corresponding 

configurations increased with respect to former results. 

Table 4.4 Energies for specific secondary structures of the Genetic Algorithm results 

 Residue φ ψ Ener(kcal) φ ψ Ener(kcal) φ ψ Ener(kcal)
Alpha-helix residue39 -45 -45 -1.89839 135 -75 -1.72992 -45 -105 -1.58499

 residue40 -15 -15 -1.6286 15 -15 -1.49675 -165 -15 -1.36397
 residue41 -45 -75 -2.4001 165 165 -2.32562 165 -135 -1.02211
 residue42 -15 -75 -1.85189 45 -75 -1.60949 -165 -75 -1.52382
 residue43 -75 -135 -1.93035 -15 -75 -1.55381 75 135 -1.38843

Turn residue44 105 -45 -1.90135 -15 -15 -1.89875 -105 165 -1.79601
 residue45 -165 -105 -1.92087 75 165 -1.70896 15 -75 -1.47839
 residue46 135 -15 -1.83155 135 -45 -1.51646 -45 105 -1.44649

Beta-sheet residue47 105 -165 -2.29187 -165 -165 -1.9575 -135 -105 -1.71522
 residue48 135 -75 -1.88774 -45 -45 -1.62835 -165 -165 -1.52769
 residue49 -75 -105 -2.10955 135 -165 -1.97284 135 45 -1.618
 residue50 15 165 -1.17858 -15 -105 -0.72485 -45 -105 -0.72348
 residue51 165 -135 -2.23068 165 165 -1.887 -135 165 -1.35648

 

The reason why MD cannot predict alpha helix conformations properly is that we 

constructed the stochastic weights from triplets. The formation of alpha structures depend 

on the hydrogen bond  formation between ith and i+4 th residues [49] as we can see in 

Figure 4.8. We miss the (i+3)rd and (i+4)th residues in order to observe the alpha helix 

structure formation accurately by triplets.  
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Figure 4.8. alpha helix as secondary structure adopted from [1] 

 

To sum up and compare all the average probability level calculations results we 

introduce the Table 4.5. We have formerly seen that chain gives strong correlations than 

triplets. The same model is used by Keskin et al., but the energy maps are constructed 

from PDB [18]. Knowledge-based potentials give higher average probability level than 

MD based potentials. The characteristics of the MD are very important in this case.  

 

The difference between average probability of triplets and chain shows that 

context dependence is significant in establishing the torsional bond angle preferences for 

the native state. Keskin et al. calculated the average probability 6.57 based on torsional 

angle data obtained from random configurations. Therefore one should search some 

factors that cause phi-psi preferences. Serrano proposed that the amount of hydrophobic 

surface and hydrogen-formation with the solvent could be responsible for conformational 

preferences. Moreover, intrinsic propensities for beta-sheet and alpha-helix point out that 

the chain of the amino acids determine preferences [50].  

 

By evaluating statistical weights of torsional angles from MD, we show that even 

triplets have intrinsic propensities for conformational preferences. In addition, for native 

state of chain are context dependent, because of the significant improvement of the 

average probability level over chain.  
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Monte Carlo simulations give higher average probabilities than MD and PDB 

result, because we added long-range effect. Since the highest average probability level is 

12, 11.34 which is the average probability level for Monte Carlo simulation is not high 

enough to represent the native state. The reason that Monte Carlo simulation could not 

reach highest average probability level may be that the system trapped into a local 

minimum, since we accepted only the configurations that improve the average probability 

level in the system.  Therefore, we used one of the powerful optimization methods, 

genetic algorithm.  

   
Table 4.5 Summary of comparison of the average probability levels  

Method Triplet Chain PDB Monte 
Carlo 

Genetic 
Algorithm 

Average 
Probability Level 7.63 9.20 10.10 11.34 11.94 
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Chapter 5 

STATISTICAL MECHANICS of DENATURATED PROTEINS 
 

The basic thermodynamics and statistical thermodynamics concepts that we used 

in this study are given in Appendix A.6. in details. We introduced the heat capacity in 

terms of partition function and temperature in Appendix A.6 and we defined how to 

calculate partition function RIS model in chapter 3. In section 5.1, we give details of the 

integration of the partition function to obtain heat capacity for a denaturated protein 

chain. 

5.1. Integration of the RIS Model Partition Function to Obtain Heat Capacity 
Equation 
 

 The heat capacity in terms of partition function is given in Appendix A.6: 
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The partition function, in our system is defined as the serial multiplication of 

stochastic weight matrices where U1 and Un are the row and the column vectors. So, 

partition function is a scalar quantity; 

nUUUUZ ......321=        (5.1.2) 

The difficulty about taking the derivative of a partition function may be 

circumvented by introducing the term “super matrix” [47]. For simplicity, we assume that 

we have three stochastic weight matrices having the dimension nxn, where n is the 

number of states defined for the model. And the serial multiplication of the three weight 

matrices is  

321 UUUZ =                                                                  (5.1.3) 

The first derivative for the stochastic weight matrix is 




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 Since U matrices are functions of 
T
1 , Z is also function of  

T
1 . 
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Therefore first derivative of the partition function is defined by Equation 5.1.6 
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By the chain rule we can rewrite
T
Z
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∂  as in Equation 5.1.7 
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Therefore, Equation 5.1.6 can be rewritten as in Equation 5.1.8 
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Super matrix is introduced by a 2nx2n dimensional matrix   
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Then serial multiplication for all super matrices is 
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  and 






∂

∂

T

Z
1

  can be extracted from the final result. The last entry of the first row or the 

first entry of the last column is
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Similarly the second derivative can be calculated by defining another “super matrix” [47]; 
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Serial multiplication of the B matrices is given in Equation 5.1.11; 
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The left hand of the Equation 5.1.12 can be extracted in the same way as in Equation 

5.1.9.  Formerly, we should define 2
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If we rearrange the Equation 5.1.13; 
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Finally, we should insert the first and the second derivative of the partition function in to 

the heat capacity Equation (5.1.1) by denoting Z
T
Z ′=
∂
∂  and Z
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Here, as the reader will notice, there are two terms cancel each other.  
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And the final equation for Cp becomes as in Equation 5.1.17; 
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If we rearrange Equation 5.1.17 in terms of 
kT
1

=β , where k is the Boltzmann constant, 

Cp becomes as in Equation 5.1.18 

( ) Z
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32

111111
ββ

  (5.1.18) 

 

5.2. Results of Heat Capacity Calculations  
In addition to being one of the most important properties of a material, heat 

capacity is also the distinguishing characteristic of a phase transition (sudden change in 

one or more physical properties) [51]. 

In Chapter 4, we introduced three different sets of stochastic weights, each of 

them obtained from different methods which are MD, Monte Carlo and genetic algorithm. 

Heat capacity of CI2 is calculated for the three different methods as a function of 

temperature. The results are shown in Figure 5.1. We observe a sudden decrease in the 

heat capacity of CI2 for all of the three methods with increasing temperature. A sudden 

alteration of the heat capacity may be a consequence of the transition state which is 

defined as the energy barrier for proteins and transition state of CI2 was studied both 

experimentally and theoretically [19, 25, 52-54]. Moreover, the peak point of the heat 

capacity obtained from the genetic algorithm is at 298 K and much higher than that of the 

MD and Monte Carlo. The reason for that may be the modifications in the stochastic 

weights. These modifications refer to the long-range interactions. 
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Figure 5.1. Heat capacities for different configurations 

 

The heat capacity change of CI2 (from configuration) over temperature in aqueous 

solution was given by Makhatadze et al. and Table 5.1 is adopted from their work. 

Experimental procedures for thermodynamic properties can only specify two stable 

macroscopic states, the native and the denatured, and the determination of these 

properties depends on the temperature, pH, salt concentration [55]. The heat capacities 

increase for both natured and denatured states and denatured state has higher heat 

capacity than natured state. Entropy is higher in denatured state because configuration 

and non-polar contacts with water.  

Makhatadze et al. stated that the entropy of protein unfolding in aqueous media 

includes two components: one is associated with the increase of configurational freedom 

in the polypeptide chain and the other with the hydration of groups that become exposed 

on unfolding. The configurational entropy of protein unfolding relates to the entropy 

changes in the absence of solvent, i.e. vacuum [56]. The configurational entropy is used 



 
Chapter 5:Statistical Mechanics of Denaturated Proteins                                                 38 

 

several theoretical studies by assuming to have value 15-20 J / mol K  per residue at 25 
oC [57-59]. We defined the heat capacity in terms of temperature and partition function 

which contain only configuration information of CI2. 

Table 5.1 Heat capacity of CI2 in aqueous Solution at  

Temperature (K) 278 298 323 358 373 398 

Heat Capacity native(kJ/ 
mol K) 

12.4 13.3 14.5 15.6 16.7 17.8 

Heat Capacity denaturated 
(kJ/ mol K) 

15.8 16.9 17.8 18.0 18.2 18.0 

Heat Capacity change (kJ/ 
mol K) 

3.4 3.6 3.3 2.4 1.5 0.2 

 

We also computed heat capacities for polyglycine obtained from MD and genetic 

algorithm as function of temperature in Figure 5.2. The heat capacity of polyglycine 

obtained from genetic algorithm is higher than the heat capacity of polyglycine obtained 

from MD. 

 
Figure 5.2. Heat capacities for polyglycine 
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Day et al. indicated in their study that the structure of the transition state CI2 does 

not change significantly under varying denaturation conditions, such as temperature [25].  

At this point, one should search for a quantity that characterizes a configuration of 

polypeptide chain and this quantity should give information about the transition state of a 

protein. Radius of gyration is defined as the root-mean-square distance of the collection 

of atoms, from their common center of gravity. In other words, packed forms of chains 

have smaller radius of gyration values compared to unpacked and long chains. Transition 

state in terms of radius of gyration may be defined as a presence of an inflection point 

while the radius of gyration increases.  

Calculation of <s2> defined as the average value of s2 for over every possible 

configuration is given in Appendix A.7 in details. 

 Figure 5.3. shows the <s2> values obtained from the three methods which are 

MD, Monte Carlo and genetic algorithm similar to that of heat capacity calculations. 

Additionally, we calculated <s2> values for polyglycine that are adopted from MD and 

genetic algorithm.  

<s2> values for polyglycine obtained from genetic algorithm and MD do not vary 

remarkably with respect to temperature. Moreover, <s2> values of CI2 obtained the MD 

and the Monte Carlo configurations increase with the temperature, however we do not 

observe a sudden increase. <s2> value for CI2 which configuration obtained from genetic 

algorithm demonstrates an inflection point as temperature increases. The inflection point 

of that <s2> value is at the 285 K where the heat capacity shows the peak point. In order 

to see the inflection point better, Figure 5.4. is drawn. 
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Figure5.3. <s2> values for different conformations 

 

The radius of the gyration of native CI2 is 125 Ǻ, but we defined the radius of 

gyration in terms of an average value. Therefore, we can use the term characteristic ratio 

which shows the departure from a freely jointed chain and every polymer has its own 

characteristic ratio. Miller et al. presented in their work theoretical results of average 

dimensions of random coil polypeptide copolymers, one of them is polyglycine [60].  

The characteristic ratio is defined as the ratio of mean squared end to end bond 

length and number of bonds and the details are given in Appendix A.7. The characteristic 

ratio is calculated as two for 100% glycine content of a random coil chain [60].  

When we use the polyglycine’s radius of gyration value obtained from genetic 

algorithm, we assume 225Ǻ because the radius of gyration slightly changes with the 

temperature and freely jointed chain. The characteristic ratio of this polyglycine was 

calculated as 00.275.1 ≈ .  
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The derivative of <s2> values are drawn in Figure 5.4. For CI2, we observe 

collapse transition which is defined as the transition from an open coil form to a compact 

form. However, for polyglycine we do not observe a collapse transition. 

 
Figure 5.4. Derivative of the <s2> for genetic algorithm 
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Chapter 6 

LOCAL DYNAMICS OF DENATURATED PROTEINS 
 

It is assumed in the rotational isomeric state theory that each bond can be at 

certain states, which are defined as angular rotations. In the present study, we define for 

each bond twelve different states as 300 intervals. And the transitions between those states 

are calculated from the Langevin dynamics. The simulations are described in the 

materials and method section. The DRIS model is analogous to RIS mode and the 

probability of transitions between two states is calculated. The details of the calculations 

are given in the Appendix A.8.  

6.1. Dynamic Rotational Isomeric State Model Results 
 

We have defined 12 discrete states that represent the torsional angle of CI2. So, 

we have 1212 transition state probabilities that are very hard to analyze. Therefore, we 

define four states which make transition probabilities easy to visualize. These states are 

commonly preferred configurations in proteins, alpha helix, beta-strand and turn. The 

filled yellow squares in Figure 6.1 are the native torsion angles of CI2.  We defined the 

fourth state as all other states. The transition probabilities are defined as the sum of the 

transitions from other state to that state. For example, the transition probability for the 

alpha helix is defined as transitions to the alpha helix from all other defined states.   
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Figure 6.1 states for transition probabilities 

 

The transition probabilities are calculated for the triplets and the chain separately. 

The following two figures, Figure 6.2 and Figure 6.3 represent the change in transition 

probabilities of the residue 69’s bond (phi) as a function of time for the triplet and the 

chain, respectively. We can see that the governing transition probability is all-other-state 

whereas the transition probabilities for turn and alpha helix are stunted for the triplet. 

When we look at the transition probabilities for the same residues phi angle but over the 

chain, we can see that the transition probability for beta-strand is the leading transition 

probability among all other transition probabilities.  

 

Residue 69 is in the beta-strand in native configuration of CI2. The triplet that 

contains residue 69 in the middle has the following residues, leucine, phenyl alanine and 

valine. When we look generally at the transition probabilities over the bonds that are in 

beta-sheets in native state of CI2, the DRIS method predicted the leading probabilities as 

in their native states. 
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Figure 6.2. Transition probabilities of 

Residue 69 for triplet  

 

 

 

 

 

 

 
Figure 6.3. Transition probabilities of 

residue 69 for chain 

 

 

 

 

 

 
Figure 6.4 Transition probabilities of 

residue 35 for triplet  

 
Figure 6.5 Transition probability of 

residue 35 for chain  
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Similarly, Figure 6.4 and 6.5 are the transition probabilities for residue 35 that is 

found in alpha helix in CI2. Figure 6.4 is for the triplet and Figure 6.5 is for the chain. In 

Figure 6.3, leading transition probability is for the beta-strand conformation, and the 

smallest transition probability is to alpha helix. The triplet itself prefers beta-strand 

conformation instead of alpha-helix conformation. In Figure 6.5, alpha helix becomes 

dominant among the transition probabilities for the chain. At t = 0 all other states has the 

highest transition probabilities. As time passes, the transition probability for alpha-helix 

dominates among all other transition probabilities. If we look generally the transition 

probabilities of the bonds that are found in alpha helices, we see that the leading 

transition probabilities are commonly predicted correctly over the chain even though the 

transition probabilities for triplets do not give the leading states correctly. 

 

Similar analysis about transition probabilities for beta-strand and alpha-helix can 

be presented for turn. The difficulty about the turn’s transition states is their definition. 

Turn state and alpha-helix state are very close to each other, which make it hard to 

distinguish the transition probabilities of the turn sate from the alpha-helix state. Among 

several residues which are in turn in their native state, only residue 45 has the dominant 

transition probability for turn. In Figure 6.6, the transition probabilities for triplets are 

shown for residue 45 and the dominant transition probability is for alpha helix. In fact, 

the transition probability for turn is very close to the transition probability for alpha helix 

as time increases. In Figure 6.7, the leading transition probability passed to turn from 

alpha-helix. 
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Figure 6.6 Transition probabilities of 

residue 45 for triplet 

 
Figure 6.7 Transition probabilities of 

residue 45 for chain 

The following analysis is the orientational autocorrelation function (OACF) that 

gives us a clue about the timing of the change in the transition probabilities. The details 

of the calculations are given in Appendix A.8. The Figures 6.8 and 6.9 are OACF as 

function of time for the triplet and chain. Observe that the two figures are almost 

identical.  According to autocorrelation functions, alpha-helix formation is the fastest 

among other conformations. Moreover, turn formation is slower than alpha helix 

formation but faster than beta-strand formation. 

 

Figure 6.8 The OACF function of 

temperature for triplet. 

Figure 6.9 The OACF function of 

temperature for chain.
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Chapter 7 

CONCLUSION 
 

Protein folding problem is one of the most important issues in biological sciences. 

There are numerous experimental and theoretical studies about investigating the effect 

of short and long range interactions in proteins. Understanding of preferences of 

torsion angle in a protein is an important approach in protein folding problem. 

Our starting point involves predicting preferences of torsion angle in CI2 by using 

MD. CI2 has 64 residues experimentally determined. We grouped each consecutive 

three residues (triplets) starting from the first and performed 5 ns simulations for each 

triplet, starting from the 8 different initial configurations. 

Although the RIS model was used for polymeric chains, Keskin et al. [18] 

introduced the proper way of representing stochastic weights of a polypeptide chain 

via knowledge-based potentials. In this study, we derived the stochastic weights from 

MD and evaluated them via RIS over the chain. Triplets showed different secondary 

structural preferences. Due to interdependency of the bonds, these preferences favor 

the choice of the native state torsional angles for the chain of CI2 and they are context 

dependent, determined by the amino acid sequence of the protein. 

The model contains only short range interactions and two approaches were 

applied in order to include long range interaction to stochastic weights: Monte Carlo 

and genetic algorithms. The highest average probability level was obtained from the 

genetic algorithm method. Comparison of stochastic weights obtained from different 

methods showed that this method modifies the stochastic weights remarkably from 

MD and Monte Carlo results.  

Additionally, the expression for the heat capacity, Cp, was derived in terms of the 

RIS model partition function and temperature by applying statistical mechanics 

concepts. Presence of transition phase was observed as a peak point in heat capacity 
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versus temperature. For CI2, the peak coincides with the inflection point of the  radius 

of gyration versus temperature curve. 

Furthermore, local chain dynamics of CI2 was investigated via DRIS model that is 

analogous to the RIS model. The transition rates were derived from MD, and 

transition probabilities from one state to the other states were calculated for the 

triplets and chain separately. The differences, which were observed in the transition 

probabilities for residues in a alpha-helix, a beta strand and a turn. According to 

OACF, alpha-helix formation was the fastest among other conformations whereas 

turn formation was slower than alpha helix formation but faster than beta-strand 

formation.  

The RIS model is used actually for polymer chains calculations [47, 61]. Although 

the RIS model is used for polymer chains, the method can be easily applied to 

polypeptide chains. Dill et al. concluded that proteins are polymers, therefore theories 

and models of polymers can be used as starting point for treating proteins [62]. 

Consequently, computational calculations applied to polymer chains by RIS model 

may be applied to proteins.  
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A.1 MODIFICATION IN THE TOPOLOGY FILE 
PRES CTH3         0.00 
ATOM C    CT3    -0.27 
ATOM HC1  HA      0.09 
ATOM HC2  HA      0.09 
ATOM HC3  HA      0.09 
DELETE ATOM O 
BOND  C HC1 C HC2 C HC3 
IC HC1  C    CA   N     1.1110  0.0000  120.0000  0.0000  0.0000 
IC HC2  C    CA   N     1.1110  0.0000    0.0000  0.0000  0.0000 
IC HC3  C    CA   N     1.1110  0.0000 -120.0000  0.0000  0.0000 
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A.2 CALCULATIONS OF PROBABILITY 
The multiplication part can be obtained by matrix multiplication. Flory stated following 

equations for this purpose,  
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At this point, we should see the details of the multiplication. For demonstration here, we 

again assume two states for each bond, and create stochastic weight matrices as follows; 
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(A.2.2) 

In this present study, we have statistical weight matrices sequences for bonds from 

the triplets’ simulations i.e;U2 U3 U4 for the first triplet and U4 U5 U6  for the second 

triplet and etc. We have 126 bonds total and the bonds are put in order as φ1 ψ2 φ3 ψ4 etc. 

Each triplet is represented by 4 bonds because φ angle is not defined for the first residue 

of the triplet and ψ angle is not defined for the third residue of the triplet. We supply the 

chain connectivity by serial multiplication of last two stochastic weight matrices for each 

triplet. i.e.:  U3 U4 U5 U6 U7 U8 U9 U10 etc... 

The pairwise dependent probabilities are ),( iiXYZP ψφ  and  ),( 1+iiXYZP φψ  calculated as  

∑
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where ),( 1+iiXYZN φψ  is the total number of observed conformations in that state and  

∑ XYZN  is the total number of conformations. ),( iiXYZP ψφ  is the probability that 

represents the intraresidue correlations for middle residue Y and  ),( 1+iiXYZP φψ  is the 

probability that interresidue correlations between iψ  of residue Y and 1+iφ  of residue Z.  

The conformational energy is defined as follows; 
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where )(0
iXYZP φ  and )(0

iXYZP ψ are the uniform distribution probabilities, which are valid 

when all angles have equal probabilities. In discrete state formalism, they are directly 

proportional to the size of the angular intervals of the states, 12 in this case. 

The statistical weights are calculated from the conformational energies. The statistical 

weight for bonds i-1 and i in the state ζη is given as:  

)exp( ,1;
; RT

E
u ii

i
−−= ζη

ζη     (A.2.6) 

The probability iip ,1; −ζη  that represents bond i-1 is in state ζ while the bond i in state η is 

calculated by equating all the entries to zero except the stochastic weight in state ζη; 
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By equating all the entries to zero, we multiply ζη th state over the all possible 

configurations and calculate the statistical weight of that configuration ( )i,ζηΩ  . When we 

divide the statistical weight of that conformation to configuration partition function we 

obtain the probability of ζη th state for that bond. 
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A.3 RAW DATA FOR AVERAGE PROBABILITY LEVEL CALCULATIONS 

 

AI TPL CPL MCPL GAPL AI TPL CPL MCPL GAPL AI TPL CPL MCPL GAPL
1 12 4 12 12 43 9 11 12 12 85 5 11 11 11
2 11 9 12 12 44 8 10 12 11 86 7 5 12 12
3 6 12 12 12 45 9 11 11 12 87 8 8 8 12
4 7 5 11 12 46 4 5 5 12 88 4 9 12 12
5 5 10 10 12 47 5 10 10 12 89 6 12 12 12
6 4 6 9 12 48 3 5 8 12 90 4 4 12 12
7 5 10 10 12 49 8 11 11 12 91 6 12 12 12
8 11 11 11 12 50 4 9 10 12 92 11 9 9 12
9 5 11 12 12 51 6 12 12 12 93 5 10 10 12

10 3 7 7 12 52 2 2 12 12 94 7 7 7 12
11 8 11 11 12 53 8 8 8 12 95 9 11 11 12
12 8 4 11 12 54 11 10 12 12 96 11 11 12 12
13 9 11 12 11 55 6 12 12 11 97 6 12 12 12
14 4 4 12 12 56 7 5 12 12 98 11 11 12 12
15 6 12 12 12 57 9 11 11 12 99 6 12 12 12
16 4 4 12 12 58 11 9 11 12 100 7 5 12 12
17 8 9 9 12 59 6 12 12 12 101 6 12 12 12
18 11 11 12 11 60 11 10 12 12 102 12 12 12 12
19 7 7 12 12 61 6 12 12 12 103 6 12 12 12
20 4 1 12 12 62 7 7 12 12 104 12 10 12 12
21 9 10 12 12 63 5 10 10 12 105 8 7 10 12
22 12 12 12 12 64 12 11 12 12 106 4 5 12 12
23 9 11 11 12 65 9 12 12 12 107 6 12 12 12
24 12 12 12 11 66 11 9 11 12 108 2 1 10 12
25 9 11 12 12 67 9 11 11 12 109 3 8 8 12
26 8 9 12 12 68 11 10 11 12 110 1 2 11 12
27 9 11 12 12 69 7 6 12 12 111 6 12 12 12
28 8 7 12 12 70 2 2 12 12 112 12 12 12 12
29 9 11 12 12 71 9 11 12 12 113 9 11 11 12
30 8 8 12 12 72 11 12 12 12 114 11 11 11 12
31 8 8 8 12 73 9 11 12 12 115 6 12 12 12
32 8 10 12 12 74 7 7 11 12 116 4 3 12 12
33 8 7 12 12 75 6 12 12 12 117 5 10 10 12
34 8 7 12 12 76 12 12 12 12 118 12 12 12 12
35 8 8 8 12 77 9 11 11 12 119 9 12 12 12
36 8 8 12 12 78 11 12 12 12 120 11 9 10 12
37 9 11 12 12 79 9 11 12 12 121 9 12 12 12
38 8 8 11 12 80 2 2 12 12 122 11 11 11 12
39 8 9 9 12 81 6 12 12 12 123 5 10 11 12
40 8 8 10 12 82 11 11 12 12 124 12 12 12 12
41 9 11 11 11 83 6 12 12 12 125 9 11 11 12
42 4 4 4 12 84 7 8 12 12 126 11 11 11 12
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A.4 ANOVA CALCULATIONS 
An ANOVA (Analysis of Variance), sometimes called an F test, is closely related to the t 

test. The major difference is that, where the t test measures the difference between the 

means of two groups, an ANOVA tests the difference between the means of two or more 

groups. A one-way ANOVA, tests differences between groups that are only classified on 

one independent variable. We have 5 different sets of stochastic weights from Monte 

Carlo simulations and genetic algorithm runs. The ANOVA method was applied to each 

bond’s probability distributions. For the ANOVA test, we have 5 groups and 12 objects 

that correspond to simulation runs and torsional states, respectively. 

withinBetweenTotal SSSSSS +=                             (A.4.1) 

Between

p

j
jj SSxxn =−∑

=1

2)(                           (A.4.2) 

∑∑
= =

=−
p

j

n

i
withinjij

j

SSxx
1 1

2)(               (A.4.3) 

We calculated the sum of squares between the groups and sum of squares within the 

groups from the equations A.4.2 and A.4.3, respectively. x is for the mean value over all 

groups, jn is the number of states and p is the number of objects.   

     1−= nDfb            (A.4.4) 

     )1( −= npDfw          (A.4.5) 

The degrees of freedom for between groups and the within groups are given in Equation 

A.4.4 and A.4.5, respectively. Mean square between (MSB) and mean square between 

(MSW) are defined as the ratio of the sum of squares to the degrees of freedom. 

     
b

between

Df
SS

MSB =           (A.4.6) 
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between

Df
SS

MSW =            (A.4.7) 
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The F-value is defined as the ratio of the MSB and MSW. The critical value for 5 groups 

and 12 subjects is given as 3.15. The F values we calculated from Monte Carlo and 

genetic algorithm simulations are between 0 and 1, far from critical value. 

.   
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A.5 GENETIC ALGORITHM 

Basic Description of Genetic Algorithm 

Genetic algorithms are inspired by Darwin's theory of evolution. Solution to a problem by 

genetic algorithms uses an evolutionary process. The algorithm begins with a set of 

solutions (represented by chromosomes) called population. Solutions from one population 

are taken and used to form a new population. This is motivated by a hope, that the new 

population will be better than the old one. Solutions which are then selected to form new 

solutions (offspring) are selected according to their fitness - the more suitable they are the 

more chances they have to reproduce. This is repeated until some condition (for example 

number of populations or improvement of the best solution) is satisfied.  The outline for 

basic genetic algorithm is as follows: 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 
problem)  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  
3. [New population] Create a new population by repeating the following steps until 

the new population is complete  
1. [Selection] Select two parent chromosomes from a population according 

to their fitness (the better fitness, the bigger chance to be selected)  
2. [Crossover] With a crossover probability cross over the parents to form 

new offspring (children). If no crossover was performed, offspring is the 
exact copy of parents.  

3. [Mutation] With a mutation probability mutate new offspring at each 
locus (position in chromosome).  

4. [Accepting] Place new offspring in the new population  
4. [Replace] Use new generated population for a further run of the algorithm  
5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population  
6. [Loop] Go to step 2  

As we can see, the outline of the basic genetic algorithm is very general. The first 

question to ask is how to create chromosomes and what type of encoding to choose. The 

next question is how to select parents for crossover. This can be done in many ways, but 

the main idea is to select the better parents (best survivors) in the hope that the better 

parents will produce better offspring. A chromosome should in some way contain 
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information about solution that it represents. In our problem, we search for a complete set 

of stochastic weight matrices that would give the average probability level as 12 for CI2. 

Therefore, our chromosomes are set of stochastic weights represent the stochastic weights 

of bonds in CI2, i.e.: U1 U2 U3 U4 U5 U6 etc. After we have decided what encoding we 

will use, we can proceed to crossover operation but first we have to choose appropriate 

chromosomes to crossover. The average probability level is calculated for each 

chromosome (set of stochastic weights) and the chromosomes, which have higher average 

probability, have bigger chance to be selected. This is the key part of the evolution. 

Crossover can be illustrated as follows: ( | is the crossover point, and assume that we have 

eight stochastic weight matrices for 8 bonds for demonstration) : 

Chromosome 1 U1 U2 U2 U4 | U5 U6 U7 U8  

Chromosome 2 U1 U2 U2 U4 | U5 U6 U7 U8

Offspring 1 U1 U2 U2 U4 | U5 U6 U7 U8

Offspring 2 U1 U2 U2 U4 | U5 U6 U7 U8

Now, we have the new population reproduced from the best parents (set of 

stochastic weights that give the highest average probability results). After a crossover is 

performed, mutation takes place. Mutation is intended to prevent falling of all solutions in 

the population into a local optimum of the solved problem. Mutation operation randomly 

changes the offspring results from crossover. As mutation, we changed the stochastic 

weight for randomly chosen states of a randomly chosen bond. Crossover and mutation 

probabilities are used as default values of GAlib [48]. Then we placed the new offspring 

(crossover and mutated) in the new population and we use the new population for further 

run of the algorithm. We run the algorithm for 100,000 generations.  
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A.6. STATISTICAL MECHANICS 

Thermodynamic Connection 
The partition function can be used to find the expected (average) value of any 

microscopic property of the system, which can then be related to macroscopic variables. 

For instance, the expected value of the microscopic energy E is interpreted as the 

microscopic definition of the thermodynamic variable internal energy (U), and can be 

obtained by taking the derivative of the partition function with respect to the 

temperature[51] 

 

Then internal energy which is the average energy is defined as 
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Due to chain rule, internal energy can be written as; 
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First part of the equation is; 
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Second part of the equation can be computed as follows;  

T in terms of β is
βk

T 1
=  (A.6.5)  

and the derivative of T in terms of β is 2kTT
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∂
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So, internal energy becomes, 
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Since heat capacity is defined as follows, 
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if we insert U in to the equation above, Cp becomes; 
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Due to the product rule, Equation isA.5.21 becomes  
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Finally we get the final result by computing all the necessary derivations 
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Rearranging the Equation  A.5.22 we get 
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A.7 RADIUS OF GYRATION CALCULATIONS 

Square of the Magnitude of the Chain Vector 
Vectors are denoted by an arrow i.e. l

r
 and matrices are denoted by capital letter i.e.T   

The square of the magnitude of r is given by 

jjh
jh

h
T

h

n

h lTTTllr
rr

11
1

22 .......2 −+
<
∑∑ +=      (A.7.1) 

where T
hl
r

is the row form of the bond vector and hl is its magnitude and T is the 

transformation matrix. Transformation matrix is defined as follows; 
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where θ is for the angle between the bonds φ is for the torsional angles. In the following 

tables, the fixed values for the angles and lengths are tabulated. 

Torsional Angles Length (A) 

Phi 1.47 

Psi 1.53 

Omega 1.32 

 

Bond Angles Degree  

<CαCN 66 

< CNCα 57 

< NCαC 70 

 

For bond i the generator matrix is proposed; 
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The square of the magnitude of the chain vector is defined as: 
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[
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21
2 −=    2≥n                (A.7.4) 

where [1G  and ]nG  represents the first row of 1G  and the final column of nG , 

respectively. 

 

If we look closely to the Equation (A.7.4);   

 
Figure A.7.1. The distance r2 between i-1th and i+1 th bond 

The dashed line is the distance (r) between the bonds i-1 and i+1. So the multiplication of 

the generator matrices is, as it was given in Equation (A.6.4); 

 

[ ]
































=
+

−−−

1
1

10

2

0
0
1

21

2
1

2

2
111

2
rr

r

r

rr i

i

i

i

i
T

i

ii
T

i

l
l
l

T
Tl

lTlr    (A.7.5) 

 

)(2 111111
2

1
22

1
2

++−−−−+− +++++= ii
T

iiii
T

iii
T

iiii lTllTTllTllllr
rrrrrr

 (A.7.6) 

The matrix multiplication ends up to be in the form of equation (A.7.1) which is nothing 

but the summation of three vectors. If we have more than one matrix in the middle, the 

serial multiplication of G matrices will be identical to Equation (A.7.1). 

The matrix iU represents the matrix of statistical weights iu ,ζη  applicable to rotational 

isomeric states n....3,2,1=ζη  for bonds i-1 and i. It is given as 

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RTEζη  is defined as conformational energy where 0P denotes the 

uniform distribution probabilities. 
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The configuration partition function for the chain is given by the serial product of iU  

matrices 

niii UUUUZ ......11 +−=      (A.7.7) 

When we consider a configuration-dependent molecular property, { }( )Φ= ff , we assume 

that this property can be stated as the sum of the contributions of each individual bond of 

the chain.  

The Generator matrix is defined by  

     isii FEU )( ⊗=ℑ     (A.7.8) 

Where iF  is the diagonal array of the generator matrices  )().......2(),1( nFFF  for the 

rotational states 1,2,……n  and Es is the matrix identity of the order s of matrix Fi . The 

dimensions of the ℑ  matrix is nxs, where n is the number of the isomeric states, and s is 

the dimension of F matrix. 

Equation (A.7.8) is actually formulated as; 
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The reader should figure out that serial multiplication of iℑ matrices simultaneously 

generates the product of the statistical weights ζηu ’s and every statistical weight is 

multiplied with the generator matrix )(ηF  for the same configuration. Therefore, the 

serial multiplication of  iℑ  ‘s includes the sum of the complete set of statistical weights 

and generator matrices for each configuration. Division by the sum Z yields the average 

of <f>. 

 

 Statistical Mechanical Averages over the Configurations 

In detailed form of the matrices, please observe the difference, assuming there are 

three rotational isomeric states; 
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The third matrix that represent ω is given as identity, because it is fixed to an angle and 

doesn’t rotate.  

ωϕψϕωϕψϕωϕψϕωϕψϕωϕψϕωϕψϕ 111111 23,2,22,2,21,2,13,1,12,1,11,1, ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅= uuuuuuuuuuuuZ  

ωϕψϕωϕψϕωϕψϕ 111 33,3,32,3,31,3, ⋅⋅+⋅⋅+⋅⋅+ uuuuuu  (A.7.11) 

The major difference comes up with the angle omega, because omega angle can 

be only at one state. When defining the generator matrix iℑ  for the present case; ωℑ  

should be treated differently from the other two matrices, because omega torsional angle 

is fixed to state 3. 
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Each ℑ  matrix has the dimension of 3x5, where 3 come from the rotational isomeric 

states and 5 from the generator matrix’s dimension. The serial multiplication of ℑ  

matrices will give the following result; 
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Finally <f> is defined as 
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where  [1ℑ  is the first row of the 1ℑ  and  ]nℑ  is the last column of the nℑ  . 

One should notice that first row of the generator matrix contains only 1st state for ϕℑ  and 

only one 3rd state for ωℑ .  Therefore only for the terminal matrices they should be 

defined as follows while calculating the average quantity,  
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For any two bonds in the chain, this result can be easily modified to following form, 
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In the specific case, we want to calculate <r2>, therefore the generator matrix is G (see 

Appendix A.4). So the former equation becomes  
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where iℑ  is defined as  
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Radius of gyration 
Lagrange’s theorem which is related the center of gravity for a system of masses to the 

distances between their centers taken pairwise is as follows; 

si  is the vector from the center of gravity to chain atom I, and let r0i be the vector be from 

the zeroth atom to the ith of chain in its specified configuration. 

 

Then   si=s0+r0i  s0 being the vector leading from the center of gravity to the zeroth atom.  

The square of the radius of gyration is by definition  
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If we substitute si into the foregoing equation, we have  
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In more details, the equation becomes 
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So s2   turns into the following equation 

( ) ( )∑ ∑∑
= =

−− ⋅+−+=
n n

i
j

n

j
ii rrnrns

1 1
0

1
0

22
0

12 11    (A.7.23) 

Due to the law of cosines  
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Finally we have 
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In order to calculate radius of gyration, we calculated >< 2
ijr  for every alpha carbon. 

Therefore, s2 is the average value over the all possible conformations, <s2>.  

Characteristic Ratio 
 

The relationship between <s2> and average <r2> is introduced by Flory [47] when 

we assume the chain is long enough: 
6

2
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>=<

rs      (A.7.26) 

So the characteristic ratio becomes: 2
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where np is the number of the virtual bonds and lp is the length of the virtual bonds. 
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A.8. CONFIGURATION STOCHASTICS OF CHAIN DYNAMICS 
For a sequence consisting of N skeletal bonds the time rate of change of P(N)(t) is 

defined as follows: 

( ) ( )tPA
dt

tdP NN
N

)()(
)(

=                               (A.8.1) 

where A(N) is the  12Nx12N matrix the  elements of which describing the rate from one 

state to another. The solution to the equation (A.7.1) is  

( ) ( ) ( )[ ] )0(exp)0()exp( )(1)()()()()( ====
− tPBtLBtPtAtP NNNNNNN   (A.8.2) 

where B(N) is the matrix form of eigenvectors of A(N) and [B(N)]-1 is the inverse of the 

eigenvectors matrix. Also, L(N) is the diagonal matrix of eigenvalues of A(N). So, we can 

define the time-dependent probability matrix as C(N), which is 
1)()()()( ))(exp( −= NNNN BtLBC    (A.8.3) 

We define the equation for two bonds by   )0()( )2()2()2( == tdiagPCtP  (A.8.4). 

In order to define C(2) , we should first define  A(2). For simplicity, we define two states α 

and β for each bond here and we have 22x 22 dimensional matrixes and every state has its 

own transition rate. 

αα →αα  r11 αβ →  αα  r21 βα →  αα  r31 ββ →  αα  r41 

αα→  αβ  r12 αβ →  αβ  r22 βα →  αβ  r32 ββ →  αβ  r42 

αα→  βα  r13  αβ →  βα  r23 βα →  βα  r33 ββ →  βα  r43 

αα→  ββ  r14 αβ →  ββ  r24 βα →  ββ  r34 ββ →  ββ  r44 

 

Transition rates matrices are defined as follows; 
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Finally, we have the joint probability matrix for bond i as  a function of time and 

defined as  iotp );(),( ζηζη .In addition, we define the probability for bond i-1  in the state ζ 

at time 0 and time t as 1);(),( −iotp ζζ .The partition function for transition probabilities is 

denoted by Z ( )τ  for a given time interval,τ . Conventionally, the partition function is the 

serial multiplication of stochastic weight matrices as follows;  

)()()....()()( 121 τττττ nn VVVVZ −=    (A.8.5) 

The elements of the stochastic weight matrix are denoted as v and we define it as  

          
1);(),(

);(),(

−

=
iot

iot

p
p

v
ζζ

ζηζη      (A.8.6) 

Moreover, the stochastic weight matrix should be rearranged in order to ensure 

that serial multiplication of the matrices respects the chain connectivity. Vi(τ) is divided 

into submatrices, each represents the stochastic weights for the transitions to a given final 

state.  
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V M  (A.8.7) 

The probability of the transition from one state to another can be determined from the 

joint probability calculations; 

)()(.....).....()()( 11
'

121),0(),( τττττζηζη nnkkkit VVVVVVVZp −+−=  (A.8.8) 

Where V’  is the stochastic weight matrix obtained by equating the entries zero except that 

vi(ζη(t), ζη(0)).  

 

Orientational Autocorrelation Function  
Local orientational motions depend in fact on the transition of several consecutive 

bonds. A quantitative measure of such motions would be the orientational autocorrelation 

function (OACF) related with a vectoral quantity m rigidly affixed to the chain. The 

function is defined as                                  >⋅< )()0( τmm .     (A.8.8) 
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The OACF which depends on the rotations of the pair bonds (i-1,i) is 
0

11
0 )()()0()0()()0( mTTTTmmm ii

T
i

T
i

T ><>=⋅< −− τττ   (A.8.9) 

where Ti is the transformation matrix that express m in the ith bond-based local frame. 

The average over all configuration transitions can be calculated by using the following 

mathematical method that is formulated before. 

We define a pseudo diagonal matrix 
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